WorldWideScience

Sample records for lens optical apparatus

  1. Magnetic lens apparatus for a low-voltage high-resolution electron microscope

    Science.gov (United States)

    Crewe, Albert V.

    1996-01-01

    A lens apparatus in which a beam of charged particles of low accelerating voltage is brought to a focus by a magnetic field, the lens being situated behind the target position. The lens comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. The lens apparatus comprises the sole focusing lens for high-resolution imaging in a low-voltage scanning electron microscope.

  2. Photoflash unit having optical system including aspheric lens to enhance light output

    International Nuclear Information System (INIS)

    English, G.J.

    1984-01-01

    A photoflash unit employing an optical system or apparatus with improved center beam candle power seconds and zonal lumen seconds from the flash lamp therein, said unit also employing a minimized utilization ratio of lamp-to-package cross-sectional area. Each individual lamp capsule comprises a reflective element, a refractive element (lens), and at least one photoflash lamp (light source). The lens provides for lamp shred magnification so as to fill the cell (capsule) width to thus provide maximum transfer of light to the subject on axis. One embodiment has the light source fused (glued) to the reflector and lens while a second embodiment has an air interface between the source and the optical elements. In both embodiments, the lens is aspheric and substantially covers both the reflector and source

  3. Multiplane optical microscope

    Science.gov (United States)

    Li, Tongcang; Ota, Sadao; Kim, Jeongmin; Wang, Yuan; Zhang, Xiang

    2017-11-21

    This disclosure provides systems, methods, and apparatus related to optical microscopy. In one aspect, an apparatus includes a sample holder, a first objective lens, a plurality of optical components, a second objective lens, and a mirror. The apparatus may directly image a cross-section of a sample oblique to or parallel to the optical axis of the first objective lens, without scanning.

  4. Development of optical apparatus with remote analysis in nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; Cha, Byung Heon; Ko, Do Kyeong; Cha, Hyeong Ky

    1999-12-01

    Optical apparatus with remote analysis was developed. It is composed with Dye laser, optical fiber and optical transmitter, and optical corrector. Laser light is arming in untested sample, and there is back scattered fluorescence. Material is identified by detecting and analysis of this fluorescence. Liquid and solid dye laser was carry out. The maximum efficiency was up to 34 percent. and the divergency and bandwidth of laser light are 2 mrad and 4.2 GHz, respectively. A dye laser with two wavelength was also carry out. 3 inch optical transmitter with fluorite lens was developed and the spatial resolution was less than 2 arc sec. And large optical corrector with 6 inch was developed and that mirror was coated by enhanced aluminum. Thus the efficiency was up to 92 percent. (author)

  5. Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens

    International Nuclear Information System (INIS)

    Ke, Yougang; Liu, Yachao; Zhou, Junxiao; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun

    2016-01-01

    In the optical system, most elements such as lens, prism, and optical fiber are made of silica glass. Therefore, integrating Pancharatnam-Berry phase elements into silica glass has potential applications in the optical system. In this paper, we take a lens, for example, which integrates a Pancharatnam-Berry phase lens into a conventional plano-convex lens. The spin states and positions of focal points can be modulated by controlling the polarization states of the incident beam. The proposed lens has a high transmission efficiency, and thereby acts as a simple and powerful tool to manipulate spin photons. Furthermore, the method can be conveniently extended to the optical fiber and laser cavity, and may provide a route to the design of the spin-photonic devices.

  6. Optical fiber stripper positioning apparatus

    Science.gov (United States)

    Fyfe, Richard W.; Sanchez, Jr., Amadeo

    1990-01-01

    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  7. Electro-optically actuated liquid-lens zoom

    Science.gov (United States)

    Pütsch, O.; Loosen, P.

    2012-06-01

    Progressive miniaturization and mass market orientation denote a challenge to the design of dynamic optical systems such as zoom-lenses. Two working principles can be identified: mechanical actuation and application of active optical components. Mechanical actuation changes the focal length of a zoom-lens system by varying the axial positions of optical elements. These systems are limited in speed and often require complex coupled movements. However, well established optical design approaches can be applied. In contrast, active optical components change their optical properties by varying their physical structure by means of applying external electric signals. An example are liquidlenses which vary their curvatures to change the refractive power. Zoom-lenses benefit from active optical components in two ways: first, no moveable structures are required and second, fast response characteristics can be realized. The precommercial development of zoom-lenses demands simplified and cost-effective system designs. However the number of efficient optical designs for electro-optically actuated zoom-lenses is limited. In this paper, the systematic development of an electro-optically actuated zoom-lens will be discussed. The application of aberration polynomials enables a better comprehension of the primary monochromatic aberrations at the lens elements during a change in magnification. This enables an enhanced synthesis of the system behavior and leads to a simplified zoom-lens design with no moving elements. The change of focal length is achieved only by varying curvatures of targeted integrated electro-optically actuated lenses.

  8. Liquid lens: advances in adaptive optics

    Science.gov (United States)

    Casey, Shawn Patrick

    2010-12-01

    'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.

  9. Multipoint photonic doppler velocimetry using optical lens elements

    Science.gov (United States)

    Frogget, Brent Copely; Romero, Vincent Todd

    2014-04-29

    A probe including a fisheye lens is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface and then reflected back from the surface, is Doppler shifted by the moving surface, collected into fisheye lens, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to an index-matching lens and eventually to a fisheye lens. The fiber array flat polished and coupled to the index-matching lens using index-matching gel. Numerous fibers in a fiber array project numerous rays through the fisheye lens which in turn project many measurement points at numerous different locations to establish surface coverage over a hemispherical shape with very little crosstalk.

  10. Effects of Coupling Lens on Optical Refrigeration of Semiconductors

    International Nuclear Information System (INIS)

    Kai, Ding; Yi-Ping, Zeng

    2008-01-01

    Optical refrigeration of semiconductors is encountering efficiency difficulties caused by nonradiative recombination and luminescence trapping. A commonly used approach for enhancing luminescence efficiency of a semiconductor device is coupling a lens with the device. We quantitatively study the effects of a coupling lens on optical refrigeration based on rate equations and photon recycling, and calculated cooling efficiencies of different coupling mechanisms and of different lens materials. A GaAs/GaInP heterostructure coupled with a homo-epitaxial GaInP hemispherical lens is recommended. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Double-beam optical method and apparatus for measuring thermal diffusivity and other molecular dynamic processes in utilizing the transient thermal lens effect

    International Nuclear Information System (INIS)

    Gupta, A.; Hong, S.; Moacanin, J.

    1981-01-01

    A method and apparatus for measuring thermal diffusivity and molecular relaxation processes in a sample material utilizing two light beams, one being a pulsed laser light beam for forming a thermal lens in the sample material, and the other being a relatively low power probe light beam for measuring changes in the refractive index of the sample material during formation and dissipation of the thermal lens. More specifically, a sample material is irradiated by relatively high power, short pulses from a dye laser. Energy from the pulses is absorbed by the sample material, thereby forming a thermal lens in the area of absorption. The pulse repetition rate is chosen so that the thermal lens is substantially dissipated by the time the next pulse reaches the sample material. A probe light beam, which in a specific embodiment is a relatively low power, continuous wave (Cw) laser beam, irradiates the thermal lens formed in the sample material. The intensity characteristics of the probe light beam subsequent to irradiation of the thermal lens is related to changes in the refractive index of the sample material as the thermal lens is formed and dissipated. A plot of the changes in refractive index as a function of time during formation of the thermal lens as reflected by changes in intensity of the probe beam, provides a curve related to molecular relaxation characteristics of the material, and a plot during dissipation of the thermal lens provides a curve related to the thermal diffusivity of the sample material

  12. Optical design of transmitter lens for asymmetric distributed free space optical networks

    Science.gov (United States)

    Wojtanowski, Jacek; Traczyk, Maciej

    2018-05-01

    We present a method of transmitter lens design dedicated for light distribution shaping on a curved and asymmetric target. In this context, target is understood as a surface determined by hypothetical optical detectors locations. In the proposed method, ribbon-like surfaces of arbitrary shape are considered. The designed lens has the task to transform collimated and generally non-uniform input beam into desired irradiance distribution on such irregular targets. Desired irradiance is associated with space-dependant efficiency of power flow between the source and receivers distributed on the target surface. This unconventional nonimaging task is different from most illumination or beam shaping objectives, where constant or prescribed irradiance has to be produced on a flat target screen. The discussed optical challenge comes from the applications where single transmitter cooperates with multitude of receivers located in various positions in space and oriented in various directions. The proposed approach is not limited to optical networks, but can be applied in a variety of other applications where nonconventional irradiance distribution has to be engineered. The described method of lens design is based on geometrical optics, radiometry and ray mapping philosophy. Rays are processed as a vector field, each of them carrying a certain amount of power. Having the target surface shape and orientation of receivers distribution, the rays-surface crossings map is calculated. It corresponds to the output rays vector field, which is referred to the calculated input rays spatial distribution on the designed optical surface. The application of Snell's law in a vector form allows one to obtain surface local normal vector and calculate lens profile. In the paper, we also present the case study dealing with exemplary optical network. The designed freeform lens is implemented in commercially available optical design software and irradiance three-dimensional spatial distribution is

  13. Advanced Optical Signal Processing using Time Lens based Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads

    2016-01-01

    An overview of recent progress on time lens based advanced optical signal processing is presented, with a special focus on all-optical ultrafast 640 Gbit/s all-channel serial-to-parallel conversion, and scalable WDM regeneration....

  14. Capillary Optics as an x-ray Condensing Lens An Alignment

    CERN Document Server

    Cappuccio, G

    2000-01-01

    The procedure of capillary lens alignment is described in detail. The theoretical basis of capillary optics is given in the framework of a comparative analysis of monocapillary and polycapillary optics. The results of x-ray $9 distribution scanning behind the capillary lens for various angle planes, together with the tting results, are presented. A qualitative explanation is given for the discrepancy between the expected and observed divergences of x-ray $9 beams transmitted by the capillary lens.

  15. Analysis of a Thin Optical Lens Model

    Science.gov (United States)

    Ivchenko, Vladimir V.

    2011-01-01

    In this article a thin optical lens model is considered. It is shown that the limits of its applicability are determined not only by the ratio between the thickness of the lens and the modules of the radii of curvature, but above all its geometric type. We have derived the analytical criteria for the applicability of the model for different types…

  16. Time Lens based Optical Fourier Transformation for All-Optical Signal Processing of Spectrally-Efficient Data

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads

    2017-01-01

    We review recent progress in the use of time lens based optical Fourier transformation for advanced all-optical signal processing. A novel time lens based complete optical Fourier transformation (OFT) technique is introduced. This complete OFT is based on two quadratic phase-modulation stages using...... four-wave mixing (FWM), separated by a dispersive medium, which enables time-to-frequency and frequency-to-time conversions simultaneously, thus performing an exchange between the temporal and spectral profiles of the input signal. Using the proposed complete OFT, several advanced all-optical signal......, such as orthogonal frequency division multiplexing (OFDM), Nyquist wavelength-division multiplexing (Nyquist-WDM) and Nyquist optical time division multiplexing (Nyquist-OTDM) signals....

  17. The gravitational lens effect and its optical equivalents

    International Nuclear Information System (INIS)

    Freitas, L.R. de.

    1987-01-01

    This work presents the evolution of the use of the so called gravitational lens effect from a simple observational teste of the General Relativity theory to an instrument to measure cosmological parameters. A detailed analysis of how a gravitational ''lens'' deflects light without forming images is shown for the case of the deflector with spherical symmetry. In addition, the exact optical equivalent of a cylindrical gravitational lens, which forms true images, is proposed. Finally the problem of the formation of multiple images and the related astronomical observations is discussed. (author) [pt

  18. The Zoom Lens: A Case Study in Geometrical Optics.

    Science.gov (United States)

    Cheville, Alan; Scepanovic, Misa

    2002-01-01

    Introduces a case study on a motion picture company considering the purchase of a newly developed zoom lens in which students act as the engineers designing the zoom lens based on the criteria of company's specifications. Focuses on geometrical optics. Includes teaching notes and classroom management strategies. (YDS)

  19. Double lens device for tunable harmonic generation of laser beams in KBBF/RBBF crystals or other non-linear optic materials

    Science.gov (United States)

    Kaminski, Adam

    2017-08-22

    A method and apparatus to generate harmonically related laser wavelengths includes a pair of lenses at opposing faces of a non-linear optical material. The lenses are configured to promote incoming and outgoing beams to be normal to each outer lens surface over a range of acceptance angles of the incoming laser beam. This reduces reflection loss for higher efficiency operation. Additionally, the lenses allow a wider range of wavelengths for lasers for more universal application. Examples of the lenses include plano-cylindrical and plano-spherical form factors.

  20. Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation.

    Science.gov (United States)

    Kim, Eon; Ehrmann, Klaus; Uhlhorn, Stephen; Borja, David; Arrieta-Quintero, Esdras; Parel, Jean-Marie

    2011-05-01

    Presbyopia is an age related, gradual loss of accommodation, mainly due to changes in the crystalline lens. As part of research efforts to understand and cure this condition, ex vivo, cross-sectional optical coherence tomography images of crystalline lenses were obtained by using the Ex-Vivo Accommodation Simulator (EVAS II) instrument and analyzed to extract their physical and optical properties. Various filters and edge detection methods were applied to isolate the edge contour. An ellipse is fitted to the lens outline to obtain central reference point for transforming the pixel data into the analysis coordinate system. This allows for the fitting of a high order equation to obtain a mathematical description of the edge contour, which obeys constraints of continuity as well as zero to infinite surface slopes from apex to equator. Geometrical parameters of the lens were determined for the lens images captured at different accommodative states. Various curve fitting functions were developed to mathematically describe the anterior and posterior surfaces of the lens. Their differences were evaluated and their suitability for extracting optical performance of the lens was assessed. The robustness of these algorithms was tested by analyzing the same images repeated times.

  1. Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation

    Science.gov (United States)

    Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

    2000-08-29

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

  2. Liquid lens with double tunable surfaces for large power tunability and improved optical performance

    International Nuclear Information System (INIS)

    Li, Lei; Wang, Qiong-Hua; Jiang, Wei

    2011-01-01

    In this paper we propose a liquid lens with two tunable interfaces formed by two kinds of immiscible liquids. The proposed liquid lens uses liquid pressure to change the shape of the interfaces. It can provide a large tunable range of optical power and improved optical performance. By applying suitable liquids the gravity effect can also be negligible. To prove the principles, a liquid lens with 7 mm aperture was fabricated. The optical performance indicates that the proposed liquid lens can provide a large tunable range of both positive and negative powers even using liquids with small differences in refractive indices. The resolution is better than 50 lp mm −1 under white light environment. The spherical aberration and coma are also largely reduced. The proposed liquid lens can also provide the optical designer with the freedom to choose the combination of liquids to reduce or even correct aberrations

  3. Polarization Imaging Apparatus with Auto-Calibration

    Science.gov (United States)

    Zou, Yingyin Kevin (Inventor); Zhao, Hongzhi (Inventor); Chen, Qiushui (Inventor)

    2013-01-01

    A polarization imaging apparatus measures the Stokes image of a sample. The apparatus consists of an optical lens set, a first variable phase retarder (VPR) with its optical axis aligned 22.5 deg, a second variable phase retarder with its optical axis aligned 45 deg, a linear polarizer, a imaging sensor for sensing the intensity images of the sample, a controller and a computer. Two variable phase retarders were controlled independently by a computer through a controller unit which generates a sequential of voltages to control the phase retardations of the first and second variable phase retarders. A auto-calibration procedure was incorporated into the polarization imaging apparatus to correct the misalignment of first and second VPRs, as well as the half-wave voltage of the VPRs. A set of four intensity images, I(sub 0), I(sub 1), I(sub 2) and I(sub 3) of the sample were captured by imaging sensor when the phase retardations of VPRs were set at (0,0), (pi,0), (pi,pi) and (pi/2,pi), respectively. Then four Stokes components of a Stokes image, S(sub 0), S(sub 1), S(sub 2) and S(sub 3) were calculated using the four intensity images.

  4. Front lighted optical tooling method and apparatus

    International Nuclear Information System (INIS)

    Stone, W. J.

    1985-01-01

    An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument. A method of measuring a radius of curvature of an unknown surface includes positioning the spherometer on a surface between the surface and a depth measuring optical instrument. As the spherometer is frontally illuminated, the distance from the depth measuring instrument to the fiducial mark and the underlying surface are alternately measured and the difference in these measurements is used as the sagittal height to calculate a radius of curvature

  5. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    Science.gov (United States)

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  6. Spatial optic multiplexer/diplexer

    International Nuclear Information System (INIS)

    Tremblay, P.L.

    1991-01-01

    An apparatus is described for simultaneous transmission of optic signals having different wavelengths over a single optic fiber. Multiple light signals are transmitted through optic fibers that are formed into a circumference surrounding a central core fiber. The multiple light signals are directed by a lens into a single receiving fiber where the light combines and is then focused into the central core fiber which transmits the light to a wavelength discriminating receiver assembly

  7. An all-silicone zoom lens in an optical imaging system

    International Nuclear Information System (INIS)

    Zhao Cun-Hua

    2013-01-01

    An all-silicone zoom lens is fabricated. A tunable metal ringer is fettered around the side edge of the lens. A nylon rope linking a motor is tied, encircling the notch in the metal ringer. While the motor is operating, the rope can shrink or release to change the focal length of the lens. A calculation method is developed to obtain the focal length and the zoom ratio. The testing is carried out in succession. The testing values are compared with the calculated ones, and they tally with each other well. Finally, the imaging performance of the all-silicone lens is demonstrated. The all-silicone lens has potential uses in cellphone cameras, notebook cameras, micro monitor lenses, etc. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Remote nano-optical beam focusing lens by illusion optics

    Science.gov (United States)

    Margousi, David; Shoorian, Hamed Reza

    2014-08-01

    In this paper, as a new application of illusion optics, a nano-optical plasmonic focusing lens structure is proposed to manipulate the light remotely by employing illusion optics theory. Plasmonic nano-optic lenses that enable super-focusing beyond the diffraction limit have been proposed as an alternative to the conventional dielectric-based refractive lenses. In the presence of an illusion device, the electromagnetic plane-waves can penetrate into a metal layer and a clear focus appears. When the illusion device is removed, waves are blocked to transmit through the metal wall. In comparison with conventional methods, our proposed method avoids any physical changes or damages in the original structure. The proposed structure can be realized by isotropic layered materials, using effective medium theory. The special feature of the proposed structure and the device concepts introduced in this work gives it an opportunity to be used as a flexible element in ultrahigh nano-scale integrated circuits for miniaturization and tuning purposes.

  9. Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading

    Directory of Open Access Journals (Sweden)

    You Na Kim

    2016-01-01

    Full Text Available Purpose. To quantify whole lens and nuclear lens densities using anterior-segment optical coherence tomography (OCT with a liquid optics interface and evaluate their correlation with Lens Opacities Classification System III (LOCS III lens grading and corrected distance visual acuity (BCVA. Methods. OCT images of the whole lens and lens nucleus of eyes with age-related nuclear cataract were analyzed using ImageJ software. The lens grade and nuclear density were represented in pixel intensity units (PIU and correlations between PIU, BCVA, and LOCS III were assessed. Results. Forty-seven eyes were analyzed. The mean whole lens and lens nuclear densities were 26.99 ± 5.23 and 19.43 ± 6.15 PIU, respectively. A positive linear correlation was observed between lens opacities (R2 = 0.187, p<0.01 and nuclear density (R2 = 0.316, p<0.01 obtained from OCT images and LOCS III. Preoperative BCVA and LOCS III were also positively correlated (R2 = 0.454, p<0.01. Conclusions. Whole lens and lens nuclear densities obtained from OCT correlated with LOCS III. Nuclear density showed a higher positive correlation with LOCS III than whole lens density. OCT with a liquid optics interface is a potential quantitative method for lens grading and can aid in monitoring and managing age-related cataracts.

  10. Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Manapuram, R K; Larin, K V; Baranov, S A; Manne, V G R; Mashiatulla, M; Sudheendran, N; Aglyamov, S; Emelianov, S

    2011-01-01

    We propose a real-time technique based on phase-sensitive swept source optical coherence tomography (PhS-SSOCT) modality for noninvasive quantification of very small optical path length changes produced on the surface of a mouse crystalline lens. Propagation of submicron mechanical waves on the surface of the lens was induced by periodic mechanical stimulation. Obtained results demonstrate that the described method is capable of detecting minute damped vibrations with amplitudes as small as 30 nanometers on the lens surface and hence, PhS-SSOCT could be potentially used to assess biomechanical properties of a crystalline lens with high accuracy and sensitivity

  11. Optical fabrication of large area photonic microstructures by spliced lens

    Science.gov (United States)

    Jin, Wentao; Song, Meng; Zhang, Xuehua; Yin, Li; Li, Hong; Li, Lin

    2018-05-01

    We experimentally demonstrate a convenient approach to fabricate large area photorefractive photonic microstructures by a spliced lens device. Large area two-dimensional photonic microstructures are optically induced inside an iron-doped lithium niobate crystal. The experimental setups of our method are relatively compact and stable without complex alignment devices. It can be operated in almost any optical laboratories. We analyze the induced triangular lattice microstructures by plane wave guiding, far-field diffraction pattern imaging and Brillouin-zone spectroscopy. By designing the spliced lens appropriately, the method can be easily extended to fabricate other complex large area photonic microstructures, such as quasicrystal microstructures. Induced photonic microstructures can be fixed or erased and re-recorded in the photorefractive crystal.

  12. An analytical method for predicting the geometrical and optical properties of the human lens under accommodation.

    Science.gov (United States)

    Sheil, Conor J; Bahrami, Mehdi; Goncharov, Alexander V

    2014-05-01

    We present an analytical method to describe the accommodative changes in the human crystalline lens. The method is based on the geometry-invariant lens model, in which the gradient-index (GRIN) iso-indicial contours are coupled to the external shape. This feature ensures that any given number of iso-indicial contours does not change with accommodation, which preserves the optical integrity of the GRIN structure. The coupling also enables us to define the GRIN structure if the radii and asphericities of the external lens surfaces are known. As an example, the accommodative changes in lenticular radii and central thickness were taken from the literature, while the asphericities of the external surfaces were derived analytically by adhering to the basic physical conditions of constant lens volume and its axial position. The resulting changes in lens geometry are consistent with experimental data, and the optical properties are in line with expected values for optical power and spherical aberration. The aim of the paper is to provide an anatomically and optically accurate lens model that is valid for 3 mm pupils and can be used as a new tool for better understanding of accommodation.

  13. Radiation measuring apparatus

    International Nuclear Information System (INIS)

    Schmid, C.J.

    1983-01-01

    A colorimeter in which a light source, a collimating lens and a band pass filter are supported by a housing that is movable with respect to a stationary beam dividing assembly in a direction at least substantially transverse to the optical axis of the light from the source. The assembly separates the incoming collimated and filtered light into a sample beam and a reference beam which are directed back toward the housing in directions parallel to the optical axis. The movement of the housing toward or away from the sample produces an increase or decrease in the intensity of the light illuminating the sample and a corresponding decrease or increase in the intensity of the light at the reference detector. The arrangement is such that the apparatus may be readily adjusted to obtain accurate colorimeter readings even for samples having abnormally high or low density characteristics

  14. Optical architecture of HoloLens mixed reality headset

    Science.gov (United States)

    Kress, Bernard C.; Cummings, William J.

    2017-06-01

    HoloLens by Microsoft Corp. is the world's first untethered Mixed Reality (MR) Head Mounted Display (HMD) system, released to developers in March 2016 as a Development Kit. We review in this paper the various display requirements and subsequent optical hardware choices we made for HoloLens. Its main achievements go along performance and comfort for the user: it is the first fully untethered MR headset, with the highest angular resolution and the industry's largest eyebox. It has the first inside-out global sensor fusion system including precise head tracking and 3D mapping all controlled by a fully custom on-board GPU. Based on such achievements, HoloLens came out as the most advanced MR system today. Additional features may be implemented in next generations MR headsets, leading to the ultimate experience for the user, and securing the upcoming fabulous AR/MR market predicted by most analysts.

  15. Optical fiber plasmonic lens for near-field focusing fabricated through focused ion beam

    Science.gov (United States)

    Sloyan, Karen; Melkonyan, Henrik; Moreira, Paulo; Dahlem, Marcus S.

    2017-02-01

    We report on numerical simulations and fabrication of an optical fiber plasmonic lens for near-field focusing applications. The plasmonic lens consists of an Archimedean spiral structure etched through a 100 nm-thick Au layer on the tip of a single-mode SM600 optical fiber operating at a wavelength of 632:8 nm. Three-dimensional finite-difference time-domain computations show that the relative electric field intensity of the focused spot increases 2:1 times when the number of turns increases from 2 to 12. Furthermore, a reduction of the intensity is observed when the initial inner radius is increased. The optimized plasmonic lens focuses light into a spot with a full-width at half-maximum of 182 nm, beyond the diffraction limit. The lens was fabricated by focused ion beam milling, with a 200nm slit width.

  16. Time lens based optical fourier transformation for advanced processing of spectrally-efficient OFDM and N-WDM signals

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Morioka, Toshio

    2016-01-01

    We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals.......We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals....

  17. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    Science.gov (United States)

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  18. Design of a Test Bench for Intraocular Lens Optical Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Alba-Bueno, Francisco; Vega, Fidel; Millan, Maria S, E-mail: francisco.alba-bueno@upc.edu, E-mail: fvega@oo.upc.edu, E-mail: millan@oo.upc.edu [Departamento de Optica y Optometria, Universidad Politecnica de Cataluna, C/ Violinista Vellsola 37, 08222 Terrassa (Spain)

    2011-01-01

    The crystalline lens is the responsible for focusing at different distances (accommodation) in the human eye. This organ grows throughout life increasing in size and rigidity. Moreover, due this growth it loses transparency through life, and becomes gradually opacified causing what is known as cataracts. Cataract is the most common cause of visual loss in the world. At present, this visual loss is recoverable by surgery in which the opacified lens is destroyed (phacoemulsification) and replaced by the implantation of an intraocular lens (IOL). If the IOL implanted is mono-focal the patient loses its natural capacity of accommodation, and as a consequence they would depend on an external optic correction to focus at different distances. In order to avoid this dependency, multifocal IOLs designs have been developed. The multi-focality can be achieved by using either, a refractive surface with different radii of curvature (refractive IOLs) or incorporating a diffractive surface (diffractive IOLs). To analyze the optical quality of IOLs it is necessary to test them in an optical bench that agrees with the ISO119679-2 1999 standard (Ophthalmic implants. Intraocular lenses. Part 2. Optical Properties and Test Methods). In addition to analyze the IOLs according to the ISO standard, we have designed an optical bench that allows us to simulate the conditions of a real human eye. To do that, we will use artificial corneas with different amounts of optical aberrations and several illumination sources with different spectral distributions. Moreover, the design of the test bench includes the possibility of testing the IOLs under off-axis conditions as well as in the presence of decentration and/or tilt. Finally, the optical imaging quality of the IOLs is assessed by using common metrics like the Modulation Transfer Function (MTF), the Point Spread Function (PSF) and/or the Strehl ratio (SR), or via registration of the IOL's wavefront with a Hartmann-Shack sensor and its

  19. Electro-optical characteristics of a liquid crystal lens with polymer network

    International Nuclear Information System (INIS)

    Bielyikh, S.P.; Subota, S.L.; Reshetnyak, V.Y.; Galstian, T.

    2010-01-01

    We study a tunable-focus lens in which the key element is a gradient-polymer-stabilized liquid crystal (G-PSLC) structure. In this paper, we further develop the theoretical model, that describes the dependence of the G-PSLC lens' focal length on the applied voltage and presents a theoretical study of lens aberrations. According to Fermat's principle, we minimize the optical path of a test light beam and calculate the angles of a ray exiting from the cell. Using these results, the lateral and longitudinal aberrations are estimated. The obtained results can be used to optimize the G-PSLC lenses.

  20. A study of optical design and optimization applied to lens module of laser beam shaping of advanced modern optical device

    Science.gov (United States)

    Tsai, Cheng-Mu; Fang, Yi-Chin; Chen, Zhen Hsiang

    2011-10-01

    This study used the aspheric lens to realize the laser flat-top optimization, and applied the genetic algorithm (GA) to find the optimal results. Using the characteristics of aspheric lens to obtain the optimized high quality Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using two aspheric lenses in the aspheric surface optical system to complete 80% spot narrowing under standard deviation of 0.6142.

  1. Therapeutic radiation apparatus having an optical pointer

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification relates to a therapeutic irradiating apparatus including a radiation source arranged to provide a beam of penetrating radiation and an optical alignment indicator comprising at least two light sources each provided with means to provide a planar divergent beam of light located so that at least two light beams intersect along a line substantially coincident with the central axis of the path of the radiation beam. The claim relates to cylindrical lenses providing the means of providing the divergent beams, and to lasers as the light sources. Claims are also made for the apparatus providing means of supporting and aligning the patient, and for disposing the light sources so that the exit point of the radiation beam is illuminated. (U.K.)

  2. Time-lens based optical packet pulse compression and retiming

    DEFF Research Database (Denmark)

    Laguardia Areal, Janaina; Hu, Hao; Palushani, Evarist

    2010-01-01

    recovery, resulting in a potentially very efficient solution. The scheme uses a time-lens, implemented through a sinusoidally driven optical phase modulation, combined with a linear dispersion element. As time-lenses are also used for pulse compression, we design the circuit also to perform pulse...

  3. Optical implementation of multifocal programmable lens with single and multiple axes

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Lenny A; Millan, Maria S; Perez-Cabre, Elisabet, E-mail: lenny.alexandra.romero@upc.edu [Optics and Optometry Dep. Technical University of Catalonia Violinista Vellsola 37, 08222 Terrassa (Spain)

    2011-01-01

    In this work we analyse the generation of a diffractive optical element (DOE) consisting of a multifocal Fresnel lens by means of an LCoS (liquid cristal on silicon) spatial light modulator (SLM). The multifocal lens is composed of a set of lenses of different focal length that share a common optical axis (coaxial combination) or have different axes in parallel (multi-axis combination). For both configurations, we present several ways to combine the phase distributions for three lenses with different focal lengths (f1, f2, f3), into a single-phase distribution addressed to the SLM. Numerical simulations were carried out along with the experimental analysis to corroborate the results.

  4. Development of Three-Dimensional Dental Scanning Apparatus Using Structured Illumination

    OpenAIRE

    Ahn, Jae Sung; Park, Anjin; Kim, Ju Wan; Lee, Byeong Ha; Eom, Joo Beom

    2017-01-01

    We demonstrated a three-dimensional (3D) dental scanning apparatus based on structured illumination. A liquid lens was used for tuning focus and a piezomotor stage was used for the shift of structured light. A simple algorithm, which detects intensity modulation, was used to perform optical sectioning with structured illumination. We reconstructed a 3D point cloud, which represents the 3D coordinates of the digitized surface of a dental gypsum cast by piling up sectioned images. We performed ...

  5. Digitally switchable multi-focal lens using freeform optics.

    Science.gov (United States)

    Wang, Xuan; Qin, Yi; Hua, Hong; Lee, Yun-Han; Wu, Shin-Tson

    2018-04-16

    Optical technologies offering electrically tunable optical power have found a broad range of applications, from head-mounted displays for virtual and augmented reality applications to microscopy. In this paper, we present a novel design and prototype of a digitally switchable multi-focal lens (MFL) that offers the capability of rapidly switching the optical power of the system among multiple foci. It consists of a freeform singlet and a customized programmable optical shutter array (POSA). Time-multiplexed multiple foci can be obtained by electrically controlling the POSA to switch the light path through different segments of the freeform singlet rapidly. While this method can be applied to a broad range of imaging and display systems, we experimentally demonstrate a proof-of-concept prototype for a multi-foci imaging system.

  6. Consumer electronic optics: how small can a lens be: the case of panomorph lenses

    Science.gov (United States)

    Thibault, Simon; Parent, Jocelyn; Zhang, Hu; Du, Xiaojun; Roulet, Patrice

    2014-09-01

    In 2014, miniature camera modules are applied to a variety of applications such as webcam, mobile phone, automotive, endoscope, tablets, portable computers and many other products. Mobile phone cameras are probably one of the most challenging parts due to the need for smaller and smaller total track length (TTL) and optimized embedded image processing algorithms. As the technology is developing, higher resolution and higher image quality, new capabilities are required to fulfil the market needs. Consequently, the lens system becomes more complex and requires more optical elements and/or new optical elements. What is the limit? How small an injection molded lens can be? We will discuss those questions by comparing two wide angle lenses for consumer electronic market. The first lens is a 6.56 mm (TTL) panoramic (180° FOV) lens built in 2012. The second is a more recent (2014) panoramic lens (180° FOV) with a TTL of 3.80 mm for mobile phone camera. Both optics are panomorph lenses used with megapixel sensors. Between 2012 and 2014, the development in design and plastic injection molding allowed a reduction of the TTL by more than 40%. This TTL reduction has been achieved by pushing the lens design to the extreme (edge/central air and material thicknesses as well as lens shape). This was also possible due to a better control of the injection molding process and material (low birefringence, haze and thermal stability). These aspects will be presented and discussed. During the next few years, we don't know if new material will come or new process but we will still need innovative people and industries to push again the limits.

  7. Gaussian beam profile shaping apparatus, method therefore and evaluation thereof

    International Nuclear Information System (INIS)

    Dickey, F.M.; Holswade, S.C.; Romero, L.A.

    1999-01-01

    A method and apparatus maps a Gaussian beam into a beam with a uniform irradiance profile by exploiting the Fourier transform properties of lenses. A phase element imparts a design phase onto an input beam and the output optical field from a lens is then the Fourier transform of the input beam and the phase function from the phase element. The phase element is selected in accordance with a dimensionless parameter which is dependent upon the radius of the incoming beam, the desired spot shape, the focal length of the lens and the wavelength of the input beam. This dimensionless parameter can also be used to evaluate the quality of a system. In order to control the radius of the incoming beam, optics such as a telescope can be employed. The size of the target spot and the focal length can be altered by exchanging the transform lens, but the dimensionless parameter will remain the same. The quality of the system, and hence the value of the dimensionless parameter, can be altered by exchanging the phase element. The dimensionless parameter provides design guidance, system evaluation, and indication as to how to improve a given system. 27 figs

  8. Fresnel Lens Solar Concentrator Design Based on Geometric Optics and Blackbody Radiation Equations

    Science.gov (United States)

    Watson, Michael D.; Jayroe, Robert, Jr.

    1999-01-01

    Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables effect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion and applying blackbody radiation equations the spot energy distribution can be determined. These equations are used to design a fresnel lens to produce maximum flux for a given spot size, lens diameter, and image distance. This approach results in significant increases in solar efficiency over traditional single wavelength designs.

  9. A wide-angle gradient index optical model of the crystalline lens and eye of the octopus.

    Science.gov (United States)

    Jagger, W S; Sands, P J

    1999-08-01

    Cephalopods and fish have had no common ancestor since the Cambrian, and their eyes are a classic example of convergent evolution. The octopus has no cornea, and immerson renders the trout cornea optically ineffective. As a result, the nearly spherical lens is responsible for all refraction in these eyes. In spite of the fact that the octopus lens consists of two joined parts, while the trout lens consists of one part, we show here that their optical properties are very similar. An index gradient bends rays within these lenses, adding power and correcting spherical aberration. High spherical symmetry in both lenses strongly reduces other monochromatic aberrations and yields a wide field of vision, advantageous in attack and evasion. The octopus Mattheissen's ratio, 2.83, an inverse measure of light-gathering power, lies above the trout value of 2.38 but within the range of values reported for fish. Strong uncorrected longitudinal chromatic aberration is nearly identical in both animals as a result of similar lens protein optical properties, and will limit resolution. We discuss how animal lifestyle requirements and lens material properties influence the design of these eyes.

  10. Micro sized implantable ball lens-based fiber optic probe design

    Science.gov (United States)

    Cha, Jaepyeong; Kang, Jin U.

    2014-02-01

    A micro sized implantable ball lens-based fiber optic probe design is described for continuous monitoring of brain activity in freely behaving mice. A prototype uses a 500-micron ball lens and a highly flexible 350-micron-diameter fiber bundle, which are enclosed by a 21G stainless steel sheath. Several types and thickness of brain tissue, consisting of fluorescent probes such as GFP, GCaMP3 calcium indicator, are used to evaluate the performance of the imaging probe. Measured working distance is approximately 400-μm, but is long enough to detect neural activities from cortical and cerebellar tissues of mice brain.

  11. Collimating lens for light-emitting-diode light source based on non-imaging optics.

    Science.gov (United States)

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Zhang, Gongjian

    2012-04-10

    A collimating lens for a light-emitting-diode (LED) light source is an essential device widely used in lighting engineering. Lens surfaces are calculated by geometrical optics and nonimaging optics. This design progress does not rely on any software optimization and any complex iterative process. This method can be used for any type of light source not only Lambertian. The theoretical model is based on point source. But the practical LED source has a certain size. So in the simulation, an LED chip whose size is 1 mm*1 mm is used to verify the feasibility of the model. The mean results show that the lenses have a very compact structure and good collimating performance. Efficiency is defined as the ratio of the flux in the illuminated plane to the flux from LED source without considering the lens material transmission. Just investigating the loss in the designed lens surfaces, the two types of lenses have high efficiencies of more than 90% and 99%, respectively. Most lighting area (possessing 80% flux) radii are no more than 5 m when the illuminated plane is 200 m away from the light source.

  12. Objective lens

    Science.gov (United States)

    Olczak, Eugene G. (Inventor)

    2011-01-01

    An objective lens and a method for using same. The objective lens has a first end, a second end, and a plurality of optical elements. The optical elements are positioned between the first end and the second end and are at least substantially symmetric about a plane centered between the first end and the second end.

  13. Oxygen transport through soft contact lens and cornea: Lens characterization and metabolic modeling

    Science.gov (United States)

    Chhabra, Mahendra

    The human cornea requires oxygen to sustain metabolic processes critical for its normal functioning. Any restriction to corneal oxygen supply from the external environment (e.g., by wearing a low oxygen-permeability contact lens) can lead to hypoxia, which may cause corneal edema (swelling), limbal hyperemia, neovascularization, and corneal acidosis. The need for adequate oxygen to the cornea is a major driving force for research and development of hypertransmissible soft contact lenses (SCLs). Currently, there is no standard technique for measuring oxygen permeability (Dk) of hypertransmissible silicone-hydrogel SCLs. In this work, an electrochemistry-based polarographic apparatus was designed, built, and operated to measure oxygen permeability in hypertransmissible SCLs. Unlike conventional methods where a range of lens thickness is needed for determining oxygen permeabilities of SCLs, this apparatus requires only a single lens thickness. The single-lens permeameter provides a reliable, efficient, and economic tool for measuring oxygen permeabilities of commercial hypertransmissible SCLs. The single-lens permeameter measures not only the product Dk, but, following modification, it measures separately diffusivity, D, and solubility, k, of oxygen in hypertransmissible SCLs. These properties are critical for designing better lens materials that ensure sufficient oxygen supply to the cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment, Thus, estimation of the in-vivo corneal oxygen consumption rate is essential for gauging adequate oxygen supply to the cornea. Therefore, we have developed an unsteady-state reactive-diffusion model for the cornea-contact-lens system to determine in-vivo human corneal oxygen-consumption rate. Finally, a metabolic model was developed to determine the relation between contact-lens oxygen transmissibility (Dk/L) and corneal oxygen deficiency. A

  14. Characterization of the Effects of Hyperbaric Oxygen on the Biochemical and Optical Properties of the Bovine Lens.

    Science.gov (United States)

    Lim, Julie C; Vaghefi, Ehsan; Li, Bo; Nye-Wood, Mitchell G; Donaldson, Paul J

    2016-04-01

    To assess the morphologic, biochemical, and optical properties of bovine lenses treated with hyperbaric oxygen. Lenses were exposed to hyperbaric nitrogen (HBN) or hyperbaric oxygen (HBO) for 5 or 15 hours, lens transparency was assessed using bright field microscopy and lens morphology was visualized using confocal microscopy. Lenses were dissected into the outer cortex, inner cortex, and core, and glutathione (GSH) and malondialdehyde (MDA) measured. Gel electrophoresis and Western blotting were used to detect high molecular weight aggregates (HMW) and glutathione mixed protein disulfides (PSSG). T2-weighted MRI was used to measure lens geometry and map the water/protein ratio to allow gradient refractive index (GRIN) profiles to be calculated. Optical modeling software calculated the change in lens optical power, and an anatomically correct model of the light pathway of the bovine eye was used to determine the effects of HBN and HBO on focal length and overall image quality. Lenses were transparent and lens morphology similar between HBN- and HBO-treated lenses. At 5- and 15-hour HBO exposure, GSH and GSSG were depleted and MDA increased in the core. Glutathione mixed protein disulfides were detected in the outer and inner cortex only with no appearance of HMW. Optical changes were detectable only with 15-hour HBO treatment with a decrease in the refractive index of the core, slightly reduced lens thickness, and an increase in optimal focal length, consistent with a hyperopic shift. This system may serve as a model to study changes that occur with advanced aging rather than nuclear cataract formation per se.

  15. An apparatus to measure water optical attenuation length for LHAASO-MD

    Science.gov (United States)

    Li, Cong; Xiao, Gang; Feng, Shaohui; Wang, Lingyu; Li, Xiurong; Zuo, Xiong; Cheng, Ning; Wang, Hui; Gao, Bo; Duan, Zhihao; Liu, Jia; He, Huihai; Saeed, Mohsin; Lhaaso Collaboration

    2018-06-01

    The large high altitude air shower observatory (LHAASO) is being constructed at 4400 m a.s.l. in Daocheng, Sichuan Province, aiming to reveal the secrets of cosmic rays origin. And it has the largest surface muon detector array in the world. Due to the needs of calibration and construction of muon detector, we developed a water optical attenuation measurement device using an 8 m long water tank. The results are presented for filtered water at wavelength of 405 nm, which proves this apparatus can reach an accuracy of about 20% at 100 m. This apparatus has not only a high precision measurement of water attenuation length up to 100 m but is also very convenient to be used, which is crucial for water optical properties study during LHAASO detector construction.

  16. An automated thermoelectric power apparatus using electro-optic relays

    International Nuclear Information System (INIS)

    Chakravarti, A.; Ranganathan, R.

    1992-01-01

    We report the design and construction of a thermoelectric power apparatus using home-made electro-optic relays with Z-80A microprocessor for automatic data acquisition and control. The advantages of such relays made out of LED-LDR combinations for the measurement of ΔE and ΔT are discussed in details. (author). 7 refs., 5 figs

  17. Axial movement of the dual-optic accommodating intraocular lens for the correction of the presbyopia: Optical performance and clinical outcomes

    Directory of Open Access Journals (Sweden)

    Javier Tomás-Juan

    2015-04-01

    Full Text Available Presbyopia occurs in the aging eye due to changes in the ciliary muscle, zonular fibers, crystalline lens, and an increased lens sclerosis. As a consequence, the capacity of accommodation decreases, which hampers to focus near objects. With the aim of restoring near vision, different devices that produce multiple focuses have been developed and introduced. However, these devices are still unable to restore accommodation. In order to achieve that goal, dual-optic accommodating Intraocular Lenses have been designed, whose anterior optic displaces axially to increase ocular power, and focus near objects. Although dual-optic accommodating IOLs are relatively new, their outcomes are promising, as they provide large amplitudes of accommodation and a greater IOL displacement than single-optic accommodating IOLs. The outcomes show comfortable near vision, higher patients’ satisfaction rates, and minimal postoperative complications like Posterior Capsular Opacification and Anterior Capsular Opacification, due to their design and material.

  18. Optical transmission and laser ablation of pathologically changed eye lens capsule

    Energy Technology Data Exchange (ETDEWEB)

    Gamidov, A A; Bolshunov, A V [Research Institute of Eye Diseases, Russian Academy of Medical Sciences, Moscow (Russian Federation); Yuzhakov, A V; Shcherbakov, E M; Baum, O I; Sobol, E N [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation)

    2015-02-28

    Optical transmission and ablation mechanisms in the secondary cataract films under the impact of 1.06-mm laser radiation are studied. The comparison of incident and transmitted (paraxial) radiation power at different values of the power density is carried out for two types of the eye lens capsule tissue (hard and soft) possessing different optical and mechanical properties. It is found that the effective attenuation coefficient for soft films is almost five times as large as that for the hard ones. The obtained measurement data on the transparency variation in the process of laser action allow the temperature evaluation and the determination of dominant mechanism of laser ablation, as well as the development of recommendations, providing the prevention or reduction of possible side effects. The obtained results can be used to optimise the regimes of laser impact in the process of the opacified lens capsule removal.

  19. Refractive neutron lens

    International Nuclear Information System (INIS)

    Petrov, P.V.; Kolchevsky, N.N.

    2013-01-01

    Model of the refractive neutron lens is proposed. System of N lenses acts as one thin lens with a complex refraction index n*. The maximum number N max of individual lenses for 'thick' neutron lens is calculated. Refractive neutron lens properties (resolution, focal depth) as function of resolution factor F 0 =ρbc/μ and depth of field factor dF 0 =λF 0 =λρbc/μ are calculated. It is shown that micro resolution of the refractive neutron optics is far from the wavelength in size and its open possibilities for progress in refractive neutron optics. (authors)

  20. Chromatic correction for a VIS-SWIR zoom lens using optical glasses

    Science.gov (United States)

    Zhao, Yang; Williams, Daniel J. L.; McCarthy, Peter; Visconti, Anthony J.; Bentley, Julie L.; Moore, Duncan T.

    2015-09-01

    With the advancement in sensors, hyperspectral imaging in short wave infrared (SWIR 0.9 μm to 1.7 μm) now has wide applications, including night vision, haze-penetrating imaging, etc. Most conventional optical glasses can be material candidates for designing in the SWIR as they transmit up to 2.2 μm. However, since SWIR is in the middle of the glasses' major absorption wavebands in UV and IR, the flint glasses in SWIR are less dispersive than in the visible spectrum. As a result, the glass map in the SWIR is highly compressed, with crowns and flints all clustering together. Thus correcting for chromatic aberration is more challenging in the SWIR, since the Abbé number ratio of the same glass combination is reduced. Conventionally, fluorides, such as CaF2 and BaF2, are widely used in designing SWIR system due to their unique dispersion properties, even though they are notorious for poor manufacturability or even high toxicity. For lens elements in a zoom system, the ray bundle samples different sections of the each lens aperture as the lens zooms. This creates extra uncertainty in correcting chromatic aberrations. This paper focuses on using only commercially available optical glasses to color-correct a 3X dual-band zoom lens system in the VIS-SWIR. The design tools and techniques are detailed in terms of material selections to minimize the chromatic aberrations in such a large spectrum band and all zoom positions. Examples are discussed for designs with different aperture stop locations, which considerably affect the material choices.

  1. Lens thickness assessment: anterior segment optical coherence tomography versus A-scan ultrasonography

    Directory of Open Access Journals (Sweden)

    Nikoo Hamzeh

    2015-12-01

    Full Text Available AIM: To assess lens thickness measurements with anterior segment-optical coherence tomography (AS-OCT in comparison with A-scan ultrasonography (A-scan US. METHODS: There were 218 adult subjects (218 eyes aged 59.2±9.2y enrolled in this prospective cross-sectional study. Forty-three eyes had open angles and 175 eyes had narrow angles. Routine ophthalmic exam was performed and nuclear opacity was graded using the Lens Opacities Classification System III (LOCS III. Lens thickness was measured by AS-OCT (Visante OCT, Carl Zeiss Meditec, Dublin, CA, USA. The highest quality image was selected for each eye and lens thickness was calculated using ImageJ software. Lens thickness was also measured by A-scan US. RESULTS: Interclass correlations showed a value of 99.7% for intra-visit measurements and 95.3% for inter-visit measurements. The mean lens thickness measured by AS-OCT was not significantly different from that of A-scan US (4.861±0.404 vs 4.866±0.351 mm, P=0.74. Lens thickness values obtained from the two instruments were highly correlated overall (Pearson correlation coefficient=0.81, P<0.001, and in all LOCS III specific subgroups except in grade 5 of nuclear opacity. Bland-Altman analysis revealed a 95% limit of agreement from -0.45 to 0.46 mm. Lens thickness difference between the two instruments became smaller as the lens thickness increased and AS-OCT yielded smaller values than A-scan US in thicker lens (β=-0.29, P<0.001 CONCLUSION: AS-OCT-derived lens thickness measurement is valid and comparable to the results obtained by A-scan US. It can be used as a reliable noncontact method for measuring lens thickness in adults with or without significant cataract.

  2. Beam steering performance of compressed Luneburg lens based on transformation optics

    Science.gov (United States)

    Gao, Ju; Wang, Cong; Zhang, Kuang; Hao, Yang; Wu, Qun

    2018-06-01

    In this paper, two types of compressed Luneburg lenses based on transformation optics are investigated and simulated using two different sources, namely, waveguides and dipoles, which represent plane and spherical wave sources, respectively. We determined that the largest beam steering angle and the related feed point are intrinsic characteristics of a certain type of compressed Luneburg lens, and that the optimized distance between the feed and lens, gain enhancement, and side-lobe suppression are related to the type of source. Based on our results, we anticipate that these lenses will prove useful in various future antenna applications.

  3. Axial movement of the dual-optic accommodating intraocular lens for the correction of the presbyopia: optical performance and clinical outcomes.

    Science.gov (United States)

    Tomás-Juan, Javier; Murueta-Goyena Larrañaga, Ane

    2015-01-01

    Presbyopia occurs in the aging eye due to changes in the ciliary muscle, zonular fibers, crystalline lens, and an increased lens sclerosis. As a consequence, the capacity of accommodation decreases, which hampers to focus near objects. With the aim of restoring near vision, different devices that produce multiple focuses have been developed and introduced. However, these devices are still unable to restore accommodation. In order to achieve that goal, dual-optic accommodating Intraocular Lenses have been designed, whose anterior optic displaces axially to increase ocular power, and focus near objects. Although dual-optic accommodating IOLs are relatively new, their outcomes are promising, as they provide large amplitudes of accommodation and a greater IOL displacement than single-optic accommodating IOLs. The outcomes show comfortable near vision, higher patients' satisfaction rates, and minimal postoperative complications like Posterior Capsular Opacification and Anterior Capsular Opacification, due to their design and material. Copyright © 2014. Published by Elsevier Espana.

  4. Lens decenter and tilt measurement by interferogram

    Science.gov (United States)

    Hung, Min-Wei; Wu, Wen-Hong; Huang, Kuo-Cheng

    2009-11-01

    For the recent years, the vigorous development of the electro-optic industry, particularly the digital camera and the cellular phone camera, has placed a larger and larger demand for the optical devices. Among the optical lens, the aspherical optical lens plays the key component because the aspherical lens may provide better imaging quality then the spherical lens does. For the manufacturing reason, the aspherical lens is prone to a decenter or tilt issue with respect to the optical axes of its two surfaces. To measure decenter and tile error specifically would help to obviate the deficient lens, but most of the present measuring method can't provide this function. This paper proposed a new method to specifically measure the decenter and tile of lens by observing the interferogram of each surface. And the corresponding measuring instrument, which contains interferometer and motion stages, was introduced as well.

  5. Apparatus for observing a sample with a particle beam and an optical microscope

    NARCIS (Netherlands)

    2010-01-01

    An apparatus for observing a sample (1) with a TEM column and an optical high resolution scanning microscope (10). The sample position when observing the sample with the TEM column differs from the sample position when observing the sample with the optical microscope in that in the latter case the

  6. Tailoring optical complex field with spiral blade plasmonic vortex lens

    Science.gov (United States)

    Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2015-01-01

    Optical complex fields have attracted increasing interests because of the novel effects and phenomena arising from the spatially inhomogeneous state of polarizations and optical singularities of the light beam. In this work, we propose a spiral blade plasmonic vortex lens (SBPVL) that offers unique opportunities to manipulate these novel fields. The strong interaction between the SBPVL and the optical complex fields enable the synthesis of highly tunable plasmonic vortex. Through theoretical derivations and numerical simulations we demonstrated that the characteristics of the plasmonic vortex are determined by the angular momentum (AM) of the light, and the geometrical topological charge of the SBPVL, which is govern by the nonlinear superposition of the pitch and the number of blade element. In addition, it is also shown that by adjusting the geometric parameters, SBPVL can be utilized to focus and manipulate optical complex field with fractional AM. This miniature plasmonic device may find potential applications in optical trapping, optical data storage and many other related fields. PMID:26335894

  7. Three-Dimensional Cataract Crystalline Lens Imaging With Swept-Source Optical Coherence Tomography.

    Science.gov (United States)

    de Castro, Alberto; Benito, Antonio; Manzanera, Silvestre; Mompeán, Juan; Cañizares, Belén; Martínez, David; Marín, Jose María; Grulkowski, Ireneusz; Artal, Pablo

    2018-02-01

    To image, describe, and characterize different features visible in the crystalline lens of older adults with and without cataract when imaged three-dimensionally with a swept-source optical coherence tomography (SS-OCT) system. We used a new SS-OCT laboratory prototype designed to enhance the visualization of the crystalline lens and imaged the entire anterior segment of both eyes in two groups of participants: patients scheduled to undergo cataract surgery, n = 17, age range 36 to 91 years old, and volunteers without visual complains, n = 14, age range 20 to 81 years old. Pre-cataract surgery patients were also clinically graded according to the Lens Opacification Classification System III. The three-dimensional location and shape of the visible opacities were compared with the clinical grading. Hypo- and hyperreflective features were visible in the lens of all pre-cataract surgery patients and in some of the older adults in the volunteer group. When the clinical examination revealed cortical or subcapsular cataracts, hyperreflective features were visible either in the cortex parallel to the surfaces of the lens or in the posterior pole. Other type of opacities that appeared as hyporeflective localized features were identified in the cortex of the lens. The OCT signal in the nucleus of the crystalline lens correlated with the nuclear cataract clinical grade. A dedicated OCT is a useful tool to study in vivo the subtle opacities in the cataractous crystalline lens, revealing its position and size three-dimensionally. The use of these images allows obtaining more detailed information on the age-related changes leading to cataract.

  8. Characteristics of the thick, compound refractive lens

    International Nuclear Information System (INIS)

    Pantell, Richard H.; Feinstein, Joseph; Beguiristain, H. Raul; Piestrup, Melvin A.; Gary, Charles K.; Cremer, Jay T.

    2003-01-01

    A compound refractive lens (CRL), consisting of a series of N closely spaced lens elements each of which contributes a small fraction of the total focusing, can be used to focus x rays or neutrons. The thickness of a CRL can be comparable to its focal length, whereupon a thick-lens analysis must be performed. In contrast with the conventional optical lens, where the ray inside the lens follows a straight line, the ray inside the CRL is continually changing direction because of the multiple refracting surfaces. Thus the matrix representation for the thick CRL is quite different from that for the thick optical lens. Principal planes can be defined such that the thick-lens matrix can be converted to that of a thin lens. For a thick lens the focal length is greater than for a thin lens with the same lens curvature, but this lengthening effect is less for the CRL than for the conventional optical lens

  9. Evaluation of Geometrical Modulation Transfer Function in Optical Lens System

    Directory of Open Access Journals (Sweden)

    Cheng-Mu Tsai

    2015-01-01

    Full Text Available This paper presents ray tracing algorithms to evaluate the geometrical modulation transfer function (GMTF of optical lens system. There are two kinds of ray tracings methods that can be applied to help simulate the point spread function (PSF in the image plane, for example, paraxial optics and real ray tracings. The paraxial optics ray tracing is used to calculate the first-order properties such as the effective focal length (EFL and the entrance pupil position through less cost of computation. However, the PSF could have a large tolerance by only using paraxial optics ray tracing for simulation. Some formulas for real ray tracing are applied in the sagittal and tangential line spread function (LSF. The algorithms are developed to demonstrate the simulation of LSF. Finally, the GMTF is evaluated after the fast Fourier transform (FFT of the LSF.

  10. Probing the negative permittivity perfect lens at optical frequencies using near-field optics and single molecule detection

    NARCIS (Netherlands)

    Moerland, R.J.; van Hulst, N.F.; Gersen, H.; Kuipers, L.

    2005-01-01

    Recently, the existence of a perfect lens has been predicted, made of an artificial material that has a negative electric permittivity and a negative magnetic permeability. For optical frequencies a poormans version is predicted to exist in the sub-wavelength limit. Then, only the permittivity has

  11. Hydrostatic pressure and temperature effects on nonlinear optical rectification in a lens shape InAs/GaAs quantum dot

    International Nuclear Information System (INIS)

    Bouzaïene, L.; Ben Mahrsia, R.; Baira, M.; Sfaxi, L.; Maaref, H.

    2013-01-01

    We have performed theoretical calculation of the nonlinear optical rectification in a lens shape InAs/GaAs quantum dot (0D). The combined effects of hydrostatic pressure and temperature on the nonlinear optical rectification in lens-shaped InAs QDs are studied under the compact density matrix formalism and the effective mass approximation. From our calculation, it is found that the subband energies and optical rectification susceptibility are quite sensitive to the applied hydrostatic pressure and temperature. The results show that the resonant peak of the optical rectification can be red-shifted or blue-shifted and their intensity also varied by external probes such as hydrostatic pressure and temperature. In addition, the oscillator strength is strongly affected by these parameters. - Highlights: ► Theoretical calculation of the nonlinear optical rectification in a lens shape InAs/GaAs quantum dot was performed. ► Optical rectification susceptibility is quite sensitive to the applied hydrostatic pressure and temperature. ► The oscillator strength is strongly affected by the applied hydrostatic pressure and temperature.

  12. Overlapped illusion optics: a perfect lens brings a brighter feature

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yadong; Gao Lei; Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Du Shengwang, E-mail: kenyon@ust.hk [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2011-02-15

    In this paper, we show that a perfect lens can be employed to make multiple objects appear like only one object in the far field, leading to a new concept in illusion optics. Numerical simulations have been performed to verify the functionalities for both passive and active objects. The conceptual device can be utilized to enhance the illumination brightness for both incoherent and coherent systems.

  13. Overlapped illusion optics: a perfect lens brings a brighter feature

    International Nuclear Information System (INIS)

    Xu Yadong; Gao Lei; Chen Huanyang; Du Shengwang

    2011-01-01

    In this paper, we show that a perfect lens can be employed to make multiple objects appear like only one object in the far field, leading to a new concept in illusion optics. Numerical simulations have been performed to verify the functionalities for both passive and active objects. The conceptual device can be utilized to enhance the illumination brightness for both incoherent and coherent systems.

  14. Assessment of a liquid lens enabled in vivo optical coherence microscope.

    Science.gov (United States)

    Murali, Supraja; Meemon, Panomsak; Lee, Kye-Sung; Kuhn, William P; Thompson, Kevin P; Rolland, Jannick P

    2010-06-01

    The optical aberrations induced by imaging through skin can be predicted using formulas for Seidel aberrations of a plane-parallel plate. Knowledge of these aberrations helps to guide the choice of numerical aperture (NA) of the optics we can use in an implementation of Gabor domain optical coherence microscopy (GD-OCM), where the focus is the only aberration adjustment made through depth. On this basis, a custom-designed, liquid-lens enabled dynamic focusing optical coherence microscope operating at 0.2 NA is analyzed and validated experimentally. As part of the analysis, we show that the full width at half-maximum metric, as a characteristic descriptor for the point spread function, while commonly used, is not a useful metric for quantifying resolution in non-diffraction-limited systems. Modulation transfer function (MTF) measurements quantify that the liquid lens performance is as predicted by design, even when accounting for the effect of gravity. MTF measurements in a skinlike scattering medium also quantify the performance of the microscope in its potential applications. To guide the fusion of images across the various focus positions of the microscope, as required in GD-OCM, we present depth of focus measurements that can be used to determine the effective number of focusing zones required for a given goal resolution. Subcellular resolution in an onion sample, and high-definition in vivo imaging in human skin are demonstrated with the custom-designed and built microscope.

  15. Contact lens surface by electron beam

    International Nuclear Information System (INIS)

    Shin, Jung Hyuck; Lee, Suk Ju; Hwang, Kwang Ha; Jeon Jin

    2011-01-01

    Contact lens materials needs good biocompatibility, high refractive index, high optical transparency, high water content etc. Surface treat method by using plasma and radiation can modify the physical and/or chemical properties of the contact lens surface. Radiation technology such as electron beam irradiation can apply to polymerization reaction and enhance the functionality of the polymer.The purpose of this study is to modify of contact lens surface by using Eb irradiation technology. Electron beam was irradiated to the contact lens surface which was synthesized thermal polymerization method and commercial contact lens to modify physical and chemical properties. Ft-IR, XP, UV-vis spectrophotometer, water content, oxygen trans-metastability were used to characterize the surface state, physicochemical, and optical property of the contact lens treated with Eb. The water content and oxygen transmissibility of the contact lens treated with Eb were increased due to increase in the hydrophilic group such as O-C=O and OH group on the contact lens surface which could be produced by possible reaction between carbon and oxygen during the Eb irradiation. All of the lenses showed the high optical transmittance above 90%. In this case of B/Es, TES, Ti contact lens, the optical transmittance decreased about 5% with increasing Eb dose in the wavelength of UV-B region. The contact lens modified by Eb irradiation could improve the physical properties of the contact lens such as water content and oxygen transmissibility

  16. Development of a Fresnel lens for cold neutrons based on neutron refractive optics

    International Nuclear Information System (INIS)

    Oku, T.; Morita, S.; Moriyasu, S.; Yamagata, Y.; Ohmori, H.; Takizawa, Y.; Shimizu, H.M.; Hirota, T.; Kiyanagi, Y.; Ino, T.; Furusaka, M.; Suzuki, J.

    2001-01-01

    We have developed compound refractive lenses (CRLs) for cold neutrons, which are made of vitreous silica and have an effective potential of (90.1-2.7x10 -4 i) neV. In the case of compound refractive optics, neutron absorption by the material deteriorates lens performance. Thus, to prevent an increase in neutron absorption with increasing beam size, we have developed Fresnel lenses using the electrolytic in-process dressing grinding technique. The lens characteristics were carefully investigated with experimental and numerical simulation studies. The lenses functioned as a neutron focusing lens, and the focal length of 14 m was obtained with a 44-element series of the Fresnel lenses for 10 A neutrons. Moreover, good neutron transmission of 0.65 for 15 A neutrons was obtained due to the shape effect. According to comprehensive analysis of the obtained results, it is possible to realize a CRL for practical use by choosing a suitable lens shape and material

  17. Development of a Fresnel lens for cold neutrons based on neutron refractive optics

    CERN Document Server

    Oku, T; Moriyasu, S; Yamagata, Y; Ohmori, H; Takizawa, Y; Shimizu, H M; Hirota, T; Kiyanagi, Y; Ino, T; Furusaka, M; Suzuki, J

    2001-01-01

    We have developed compound refractive lenses (CRLs) for cold neutrons, which are made of vitreous silica and have an effective potential of (90.1-2.7x10 sup - sup 4 i) neV. In the case of compound refractive optics, neutron absorption by the material deteriorates lens performance. Thus, to prevent an increase in neutron absorption with increasing beam size, we have developed Fresnel lenses using the electrolytic in-process dressing grinding technique. The lens characteristics were carefully investigated with experimental and numerical simulation studies. The lenses functioned as a neutron focusing lens, and the focal length of 14 m was obtained with a 44-element series of the Fresnel lenses for 10 A neutrons. Moreover, good neutron transmission of 0.65 for 15 A neutrons was obtained due to the shape effect. According to comprehensive analysis of the obtained results, it is possible to realize a CRL for practical use by choosing a suitable lens shape and material.

  18. Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens.

    Science.gov (United States)

    Rosales, Patricia; Marcos, Susana

    2009-05-01

    To implement geometrical and optical distortion correction methods for anterior segment Scheimpflug images obtained with a commercially available system (Pentacam, Oculus Optikgeräte GmbH). Ray tracing algorithms were implemented to obtain corrected ocular surface geometry from the original images captured by the Pentacam's CCD camera. As details of the optical layout were not fully provided by the manufacturer, an iterative procedure (based on imaging of calibrated spheres) was developed to estimate the camera lens specifications. The correction procedure was tested on Scheimpflug images of a physical water cell model eye (with polymethylmethacrylate cornea and a commercial IOL of known dimensions) and of a normal human eye previously measured with a corrected optical and geometrical distortion Scheimpflug camera (Topcon SL-45 [Topcon Medical Systems Inc] from the Vrije University, Amsterdam, Holland). Uncorrected Scheimpflug images show flatter surfaces and thinner lenses than in reality. The application of geometrical and optical distortion correction algorithms improves the accuracy of the estimated anterior lens radii of curvature by 30% to 40% and of the estimated posterior lens by 50% to 100%. The average error in the retrieved radii was 0.37 and 0.46 mm for the anterior and posterior lens radii of curvature, respectively, and 0.048 mm for lens thickness. The Pentacam Scheimpflug system can be used to obtain quantitative information on the geometry of the crystalline lens, provided that geometrical and optical distortion correction algorithms are applied, within the accuracy of state-of-the art phakometry and biometry. The techniques could improve with exact knowledge of the technical specifications of the instrument, improved edge detection algorithms, consideration of aspheric and non-rotationally symmetrical surfaces, and introduction of a crystalline gradient index.

  19. Studies on α-Al2O3: C based optically stimulated luminescence badge for eye lens monitoring applications

    International Nuclear Information System (INIS)

    Kumar, Munish; Kulkarni, M.S.; Ratna, P.; Gaikwad, N.; Tripathi, S.M.; Sharma, S.D.; Babu, D.A.R.; Bhatnagar, Amit; Muthe, K.P.; Sharma, D.N.

    2014-01-01

    The prototype two element eye-lens dosimeter badge based on indigenously developed α-Al 2 O 3 : C optically stimulated luminescence dosimeter was investigated comprehensively for its suitability for eye-lens monitoring applications. The badge is calibrated to measure the eye-lens dose in terms of H p (3). The minimum measurable dose using the eye-lens dosimeter badge is observed to be ∼ 35 μSv. This prototype eye-lens dosimeter badge was found to be suitable for measuring doses from X-rays, beta and gamma radiations to the eye-lens. The satisfactory performance of the prototype two element eye-lens dosimeter badge along with its attractive features such as multiple readout, less processing time, very good beta response uniquely position it for monitoring the eye-lens dose are presented. (author)

  20. A high excitation magnetic quadrupole lens quadruplet incorporating a single octupole lens for a low spherical aberration probe forming lens system

    Science.gov (United States)

    Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Li, Liyi

    2018-03-01

    This paper describes the design of a new probe forming lens system consisting of a high excitation magnetic quadrupole lens quadruplet that incorporates a single magnetic octupole lens. This system achieves both a high demagnification and a low spherical aberration compared to conventional high excitation systems and is intended for deployment for the Harbin 300 MeV proton microprobe for applications in space science and ion beam therapy. This relative simplicity of the ion optical design to include a single octupole lens minimizes the risks associated with the constructional and operational precision usually needed for the probe forming lens system and this system could also be deployed in microprobe systems that operate with less magnetically rigid ions. The design of the new system is validated with reference to two independent ion optical computer codes.

  1. Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator.

    Science.gov (United States)

    MacDonald, A J R; Popowich, G G; Hauer, B D; Kim, P H; Fredrick, A; Rojas, X; Doolin, P; Davis, J P

    2015-01-01

    We have developed a system for tapered fiber measurements of optomechanical resonators inside a dilution refrigerator, which is compatible with both on- and off-chip devices. Our apparatus features full three-dimensional control of the taper-resonator coupling conditions enabling critical coupling, with an overall fiber transmission efficiency of up to 70%. Notably, our design incorporates an optical microscope system consisting of a coherent bundle of 37,000 optical fibers for real-time imaging of the experiment at a resolution of ∼1 μm. We present cryogenic optical and optomechanical measurements of resonators coupled to tapered fibers at temperatures as low as 9 mK.

  2. Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes.

    Science.gov (United States)

    Li, Liwei; Bryant, Doug; Van Heugten, Tony; Bos, Philip J

    2013-04-08

    A near-diffraction-limited, low-haze and tunable liquid crystal (LC) lens is presented. Building on an understanding of the key factors that have limited the performance of lenses based on liquid crystals, we show a simple design whose optical quality is similar to a high quality glass lens. It uses 'floating' electrodes to provide a smooth, controllable applied potential profile across the aperture to manage the phase profile.

  3. Apparatus and method of optical marker projection for the three-dimensional shape measurement

    Science.gov (United States)

    Chen, Zhe; Qu, Xinghua; Geng, Xin; Zhang, Fumin

    2015-08-01

    Optical photography measurement and three-dimensional (3-D) scanning measurement have been widely used in the field of the fast dimensional and surface metrology. In the measurement process, however, retro-reflective markers are often pasted on the surface in advance for image registration and positioning the 3-D measuring instruments. For the large-scale workpiece with freeform surface, the process of pasting markers is time consuming, which reduces the measurement efficiency. Meanwhile, the measurement precision is impaired owing to the thickness of the marker. In this paper, we propose a system that projects two-dimensional (2-D) array optical markers with uniform energy on the surface of the workpiece instead of pasting retro-reflective markers, which achieves large-range and automated optical projection of the mark points. In order to conjunction with the 3-D handheld scanner belonging to our team, we develop an apparatus of optical marker projection, which is mainly composed of the high-power laser, the optical beam expander system, adjustable aperture stop and Dammann grating of dibasic spectrophotometric device. The projection apparatus can achieve the function of beams of 15 * 15 uniformly light of the two-dimensional lattice. And it's much cheaper than the existing systems.

  4. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    Science.gov (United States)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  5. A course in lens design

    CERN Document Server

    Velzel, Chris

    2014-01-01

    A Course in Lens Design is an instruction in the design of image-forming optical systems. It teaches how a satisfactory design can be obtained in a straightforward way. Theory is limited to a minimum, and used to support the practical design work. The book introduces geometrical optics, optical instruments and aberrations. It gives a description of the process of lens design and of the strategies used in this process. Half of its content is devoted to the design of sixteen types of lenses, described in detail from beginning to end. This book is different from most other books on lens design because it stresses the importance of the initial phases of the design process: (paraxial) lay-out and (thin-lens) pre-design. The argument for this change of accent is that in these phases much information can be obtained about the properties of the lens to be designed. This information can be used in later phases of the design. This makes A Course in Lens Design a useful self-study book, and a suitable basis for an intro...

  6. Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens

    International Nuclear Information System (INIS)

    Yi, Jianjia; Burokur, Shah Nawaz; Lustrac, André de; Piau, Gérard-Pascal

    2015-01-01

    The broadband directive in-phase emission from an array of sources conformed cylindrically is numerically and experimentally reported. Such manipulation is achieved through the use of a lens designed by transformation optics concept. The all-dielectric lens prototype is realized through three-dimensional (3D) polyjet printing and presents a graded refractive index. A microstrip antenna array fabricated using standard lithography techniques and conformed on a cylindrical surface is used as TE-polarized wave launcher for the lens. To experimentally demonstrate the broadband focusing properties and in-phase directive emissions, both the far-field radiation patterns and the near-field distributions have been measured. Experimental measurements agreeing qualitatively with numerical simulations validate the proposed lens and open the way to inexpensive all-dielectric microwave lenses for beam forming and collimation

  7. Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jianjia [IEF, CNRS, UMR 8622, Université Paris-Sud, 91405 Orsay Cedex (France); Burokur, Shah Nawaz, E-mail: shah-nawaz.burokur@u-psud.fr; Lustrac, André de [IEF, CNRS, UMR 8622, Université Paris-Sud, 91405 Orsay Cedex (France); Université Paris-Ouest, 92410 Ville d' Avray (France); Piau, Gérard-Pascal [AIRBUS Group Innovations, 92150 Suresnes (France)

    2015-07-13

    The broadband directive in-phase emission from an array of sources conformed cylindrically is numerically and experimentally reported. Such manipulation is achieved through the use of a lens designed by transformation optics concept. The all-dielectric lens prototype is realized through three-dimensional (3D) polyjet printing and presents a graded refractive index. A microstrip antenna array fabricated using standard lithography techniques and conformed on a cylindrical surface is used as TE-polarized wave launcher for the lens. To experimentally demonstrate the broadband focusing properties and in-phase directive emissions, both the far-field radiation patterns and the near-field distributions have been measured. Experimental measurements agreeing qualitatively with numerical simulations validate the proposed lens and open the way to inexpensive all-dielectric microwave lenses for beam forming and collimation.

  8. Novel Scanning Lens Instrument for Evaluating Fresnel Lens Performance: Equipment Development and Initial Results (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, R.; Miller, D. C.; Kurtz, S. R.; Anton, I.; Sala, G.

    2013-07-01

    A system dedicated to the optical transmittance characterization of Fresnel lenses has been developed at NREL, in collaboration with the UPM. The system quantifies the optical efficiency of the lens by generating a performance map. The shape of the focused spot may also be analyzed to understand change in the lens performance. The primary instrument components (lasers and CCD detector) have been characterized to confirm their capability for performing optical transmittance measurements. Measurements performed on SoG and PMMA lenses subject to a variety of indoor conditions (e.g., UV and damp heat) identified differences in the optical efficiency of the evaluated lenses, demonstrating the ability of the Scanning Lens Instrument (SLI) to distinguish between the aged lenses.

  9. Freeform lens design for LED collimating illumination.

    Science.gov (United States)

    Chen, Jin-Jia; Wang, Te-Yuan; Huang, Kuang-Lung; Liu, Te-Shu; Tsai, Ming-Da; Lin, Chin-Tang

    2012-05-07

    We present a simple freeform lens design method for an application to LED collimating illumination. The method is derived from a basic geometric-optics analysis and construction approach. By using this method, a highly collimating lens with LED chip size of 1.0 mm × 1.0 mm and optical simulation efficiency of 86.5% under a view angle of ± 5 deg is constructed. To verify the practical performance of the lens, a prototype of the collimator lens is also made, and an optical efficiency of 90.3% with a beam angle of 4.75 deg is measured.

  10. Optical turbulence in a spinning pipe gas lens

    CSIR Research Space (South Africa)

    Mafusire, C

    2009-07-01

    Full Text Available in the Spinning Pipe Gas Lens by optical means • Axial Propagation • Boundary Layer Phase Structure Function and Slope Correlation • Slope Correlation ( ) ( ) ( )[ ]2rrxrD φφφ −+= ( ) ( ) ( )rsrxsrCs += Inner Scale Outer Scale • Phase Structure Function... -----------------------Mean 4 3 2 1 DΦ(r2) or SC(r2) DΦ(r1) or SC(r1) Phase Structure Function ( ) oon Lrl,LC.logrlogrDlog ≤≤⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ⎟⎠ ⎞⎜⎝ ⎛+= 2 22912 3 5 λ π φ Homogeneity Isotropy Boundary LayerAxisPropagation Path 1. Axial propagation fulfils...

  11. Quadrupole magnetic lens

    International Nuclear Information System (INIS)

    Piskunov, V.A.

    1981-01-01

    The following connection of windings of electromagnet is suggested for simplification of the design of qUadrupole magnetic lens intended for use in radiotechnical and electron-optical devices. The mentioned windings are connected with each other by a bridge scheme and the variable resistors are switched in its diagonals in the lens containing four electromagnet with windings connected with two variable resistors the mobile contacts of which are connected with a direct current source. Current redistribution between left windings and right windings takes place at shift of mobile contact of variable resistor, and current redistribution between upper and low coils of electromagnets takes place at shifting mobile contact of the other variable resistor. In this case smooth and independent electron-optical misalignment of lens by two mutually perpendicular directions proceeds. Use of the given design of the lens in the oscillograph permits to use printing assembly for alignment plate and to reduce the number of connections at the expense of decreasing the number of resistors

  12. Placement of a crystalline lens and intraocular lens: Retinal image quality.

    Science.gov (United States)

    Siedlecki, Damian; Nowak, Jerzy; Zajac, Marek

    2006-01-01

    The influence of changes of both crystalline lens and intraocular lens (IOL) misalignment on the retinal image quality was investigated. The optical model of the eye used in investigations was the Liou-Brennan model, which is commonly considered as one of the most anatomically accurate. The original crystalline lens from this model was replaced with an IOL, made of rigid polymethylmethacrylate, in a way that recommend obligatory procedures. The modifications that were made both for crystalline lens and IOL were the longitudinal, the transversal, and the angular displacement.

  13. Properties of the cathode lens combined with a focusing magnetic/immersion-magnetic lens

    International Nuclear Information System (INIS)

    Konvalina, I.; Muellerova, I.

    2011-01-01

    The cathode lens is an electron optical element in an emission electron microscope accelerating electrons from the sample, which serves as a source for a beam of electrons. Special application consists in using the cathode lens first for retardation of an illuminating electron beam and then for acceleration of reflected as well as secondary electrons, made in the directly imaging low energy electron microscope or in its scanning version discussed here. In order to form a real image, the cathode lens has to be combined with a focusing magnetic lens or a focusing immersion-magnetic lens, as used for objective lenses of some commercial scanning electron microscopes. These two alternatives are compared with regards to their optical properties, in particular with respect to predicted aberration coefficients and the spot size, as well as the optimum angular aperture of the primary beam. The important role of the final aperture size on the image resolution is also presented.

  14. A super-oscillatory lens optical microscope for subwavelength imaging.

    Science.gov (United States)

    Rogers, Edward T F; Lindberg, Jari; Roy, Tapashree; Savo, Salvatore; Chad, John E; Dennis, Mark R; Zheludev, Nikolay I

    2012-03-25

    The past decade has seen an intensive effort to achieve optical imaging resolution beyond the diffraction limit. Apart from the Pendry-Veselago negative index superlens, implementation of which in optics faces challenges of losses and as yet unattainable fabrication finesse, other super-resolution approaches necessitate the lens either to be in the near proximity of the object or manufactured on it, or work only for a narrow class of samples, such as intensely luminescent or sparse objects. Here we report a new super-resolution microscope for optical imaging that beats the diffraction limit of conventional instruments and the recently demonstrated near-field optical superlens and hyperlens. This non-invasive subwavelength imaging paradigm uses a binary amplitude mask for direct focusing of laser light into a subwavelength spot in the post-evanescent field by precisely tailoring the interference of a large number of beams diffracted from a nanostructured mask. The new technology, which--in principle--has no physical limits on resolution, could be universally used for imaging at any wavelength and does not depend on the luminescence of the object, which can be tens of micrometres away from the mask. It has been implemented as a straightforward modification of a conventional microscope showing resolution better than λ/6.

  15. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens.

    Science.gov (United States)

    Jiang, Ning; Wang, Chao; Xue, Chenpeng; Li, Guilan; Lin, Shuqing; Qiu, Kun

    2017-06-26

    We propose a flat wideband chaos generation scheme that shows excellent time delay signature suppression effect, by injecting the chaotic output of general external cavity semiconductor laser into an optical time lens module composed of a phase modulator and two dispersive units. The numerical results demonstrate that by properly setting the parameters of the driving signal of phase modulator and the accumulated dispersion of dispersive units, the relaxation oscillation in chaos can be eliminated, wideband chaos generation with an efficient bandwidth up to several tens of GHz can be achieved, and the RF spectrum of generated chaotic signal is nearly as flat as uniform distribution. Moreover, the periodicity of chaos induced by the external cavity modes can be simultaneously destructed by the optical time lens module, based on this the time delay signature can be completely suppressed.

  16. Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots

    International Nuclear Information System (INIS)

    Vahdani, M.R.K.; Rezaei, G.

    2009-01-01

    Optical transitions in a Lens-Shaped Quantum Dot (LSD) are investigated in the presence of a hydrogenic impurity. The electronic wave functions are obtained analytically and the energy eigenvalues are calculated numerically. The density matrix formulation with the intersubband relaxation are used to evaluate the (linear and third order nonlinear) absorption coefficient (AC) and the change in the refractive indices (RI) analytically. The effect of the size of the LSD and optical intensity on the AC and RI are investigated. It is found that AC and RI are strongly affected by the optical intensity and the size of the LSD.

  17. Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Vahdani, M.R.K. [Department of Physics, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Rezaei, G., E-mail: grezaei@mail.yu.ac.i [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914 (Iran, Islamic Republic of)

    2009-08-17

    Optical transitions in a Lens-Shaped Quantum Dot (LSD) are investigated in the presence of a hydrogenic impurity. The electronic wave functions are obtained analytically and the energy eigenvalues are calculated numerically. The density matrix formulation with the intersubband relaxation are used to evaluate the (linear and third order nonlinear) absorption coefficient (AC) and the change in the refractive indices (RI) analytically. The effect of the size of the LSD and optical intensity on the AC and RI are investigated. It is found that AC and RI are strongly affected by the optical intensity and the size of the LSD.

  18. Experimental apparatus with full optical access for combustion experiments with laminar flames from a single circular nozzle at elevated pressures.

    Science.gov (United States)

    Joo, Peter H; Gao, Jinlong; Li, Zhongshan; Aldén, Marcus

    2015-03-01

    The design and features of a high pressure chamber and burner that is suitable for combustion experiments at elevated pressures are presented. The high pressure combustion apparatus utilizes a high pressure burner that is comprised of a chamber burner module and an easily accessible interchangeable burner module to add to its flexibility. The burner is well suited to study both premixed and non-premixed flames. The optical access to the chamber is provided through four viewports for direct visual observations and optical-based diagnostic techniques. Auxiliary features include numerous access ports and electrical connections and as a result, the combustion apparatus is also suitable to work with plasmas and liquid fuels. Images of methane flames at elevated pressures up to 25 atm and preliminary results of optical-based measurements demonstrate the suitability of the high pressure experimental apparatus for combustion experiments.

  19. Peripheral Defocus of the Monkey Crystalline Lens With Accommodation in a Lens Stretcher

    Science.gov (United States)

    Maceo Heilman, Bianca; Manns, Fabrice; Ruggeri, Marco; Ho, Arthur; Gonzalez, Alex; Rowaan, Cor; Bernal, Andres; Arrieta, Esdras; Parel, Jean-Marie

    2018-01-01

    Purpose To characterize the peripheral defocus of the monkey crystalline lens and its changes with accommodation. Methods Experiments were performed on 15 lenses from 11 cynomolgus monkey eyes (age: 3.8–12.4 years, postmortem time: 33.5 ± 15.3 hours). The tissue was mounted in a motorized lens stretcher to allow for measurements of the lens in the accommodated (unstretched) and unaccommodated (stretched) states. A custom-built combined laser ray tracing and optical coherence tomography system was used to measure the paraxial on-axis and off-axis lens power for delivery angles ranging from −20° to +20° (in air). For each delivery angle, peripheral defocus was quantified as the difference between paraxial off-axis and on-axis power. The peripheral defocus of the lens was compared in the unstretched and stretched states. Results On average, the paraxial on-axis lens power was 52.0 ± 3.4 D in the unstretched state and 32.5 ± 5.1 D in the stretched state. In both states, the lens power increased with increasing delivery angle. From 0° to +20°, the relative peripheral lens power increased by 10.7 ± 1.4 D in the unstretched state and 7.5 ± 1.6 D in the stretched state. The change in field curvature with accommodation was statistically significant (P lens has greater curvature or relative peripheral power. Conclusions The cynomolgus monkey lens has significant accommodation-dependent curvature of field, which suggests that the lens asserts a significant contribution to the peripheral optical performance of the eye that also varies with the state of accommodation.

  20. Preliminary Investigation of an Active PLZT Lens

    Science.gov (United States)

    Lightsey, W. D.; Peters, B. R.; Reardon, P. J.; Wong, J. K.

    2001-01-01

    The design, analysis and preliminary testing of a prototype Adjustable Focus Optical Correction Lens (AFOCL) is described. The AFOCL is an active optical component composed of solid state lead lanthanum-modified zirconate titanate (PLZT) ferroelectric ceramic with patterned indium tin oxide (ITO) transparent surface electrodes that modulate the refractive index of the PLZT to function as an electro-optic lens. The AFOCL was developed to perform optical re-alignment and wavefront correction to enhance the performance of Ultra-Lightweight Structures and Space Observatories (ULSSO). The AFOCL has potential application as an active optical component within a larger optical system. As such, information from a wavefront sensor would be processed to provide input to the AFOCL to drive the sensed wavefront to the desired shape and location. While offering variable and rapid focussing capability (controlled wavefront manipulation) similar to liquid crystal based spatial light modulators (SLM), the AFOCL offers some potential advantages because it is a solid-state, stationary, low-mass, rugged, and thin optical element that can produce wavefront quality comparable to the solid refractive lens it replaces. The AFOCL acts as a positive or negative lens by producing a parabolic phase-shift in the PLZT material through the application of a controlled voltage potential across the ITO electrodes. To demonstrate the technology, a 4 mm diameter lens was fabricated to produce 5-waves of optical power operating at 2.051 micrometer wavelength. Optical metrology was performed on the device to measure focal length, optical quality, and efficiency for a variety of test configurations. The data was analyzed and compared to theoretical data available from computer-based models of the AFOCL.

  1. Two-step technique for posterior optic buttonholing of intraocular lens.

    Science.gov (United States)

    Agarwal, Tushar; Jhanji, Vishal; Singh, Digvijay; Khokhar, Sudarshan

    2014-04-01

    This study aims to describe a two-step surgical technique for placement of a posterior chamber intraocular lens (IOL) in cases with crystalline lens subluxation resulting from non-progressive zonular dialysis. The first stage entails a phacoemulsification with creation of a 4-mm posterior capsular opening using an automated vitrector. The second stage performed 6 weeks later includes an anterior vitrectomy and injection of a foldable three-piece IOL in the sulcus. The haptics of IOL are positioned in the sulcus while the optic is pushed behind the posterior capsular opening therefore "buttonholing" the IOL. Seven eyes of seven patients with posttraumatic zonular dialysis were operated using this technique. Follow-up of all cases revealed a well-centered IOL with good postoperative visual acuity (20/20 to 20/80). Our two-stage surgical technique precludes the insertion of capsular tension ring in cases with non-progressive zonular dialysis. The technique is recommended in the presence of less than or equal to 6 clock hours of zonular dialysis with preexisting posterior capsular tear or herniation of vitreous in the anterior chamber.

  2. Beveled fiber-optic probe couples a ball lens for improving depth-resolved fluorescence measurements of layered tissue: Monte Carlo simulations

    International Nuclear Information System (INIS)

    Jaillon, Franck; Zheng Wei; Huang Zhiwei

    2008-01-01

    In this study, we evaluate the feasibility of designing a beveled fiber-optic probe coupled with a ball lens for improving depth-resolved fluorescence measurements of epithelial tissue using Monte Carlo (MC) simulations. The results show that by using the probe configuration with a beveled tip collection fiber and a flat tip excitation fiber associated with a ball lens, discrimination of fluorescence signals generated in different tissue depths is achievable. In comparison with a flat-tip collection fiber, the use of a large bevel angled collection fiber enables a better differentiation between the shallow and deep tissue layers by changing the excitation-collection fiber separations. This work suggests that the beveled fiber-optic probe coupled with a ball lens has the potential to facilitate depth-resolved fluorescence measurements of epithelial tissues

  3. Luneburg lens in silicon photonics.

    Science.gov (United States)

    Di Falco, Andrea; Kehr, Susanne C; Leonhardt, Ulf

    2011-03-14

    The Luneburg lens is an aberration-free lens that focuses light from all directions equally well. We fabricated and tested a Luneburg lens in silicon photonics. Such fully-integrated lenses may become the building blocks of compact Fourier optics on chips. Furthermore, our fabrication technique is sufficiently versatile for making perfect imaging devices on silicon platforms.

  4. Design of optical element combining Fresnel lens with microlens array for uniform light-emitting diode lighting.

    Science.gov (United States)

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Kong, Depeng

    2012-09-01

    One kind of optical element combining Fresnel lens with microlens array is designed simply for LED lighting based on geometrical optics and nonimaging optics. This design method imposes no restriction on the source intensity pattern. The designed element has compact construction and can produce multiple shapes of illumination distribution. Taking square lighting as an example, tolerance analysis is carried out to determine tolerance limits for applying the element in the assembly process. This element can produce on-axis lighting and off-axis lighting.

  5. Particle swarm optimization applied to automatic lens design

    Science.gov (United States)

    Qin, Hua

    2011-06-01

    This paper describes a novel application of Particle Swarm Optimization (PSO) technique to lens design. A mathematical model is constructed, and merit functions in an optical system are employed as fitness functions, which combined radiuses of curvature, thicknesses among lens surfaces and refractive indices regarding an optical system. By using this function, the aberration correction is carried out. A design example using PSO is given. Results show that PSO as optical design tools is practical and powerful, and this method is no longer dependent on the lens initial structure and can arbitrarily create search ranges of structural parameters of a lens system, which is an important step towards automatic design with artificial intelligence.

  6. Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel

    Science.gov (United States)

    Badran, Hussain Ali

    In this work thermal lens spectrometry (TLS) is applied to investigate the thermo-optical properties of new organometallic compound containing azomethine group, Dichloro bis [2-(2-hydroxybenzylideneamino)-5-methylphenyl] telluride platinum(II), doped polyacrylamide gel using transistor-transistor logic (TTL) modulated cw 532 nm laser beam as an excitation beam modulated at 10 Hz frequency and probe beam wavelength 635 nm at 14 mW. The technique is applied to determine the thermal diffusivities, ds/dT and the linear thermal expansion coefficient of the sample. All-optical switching effects with low background and high stability are demonstrated.

  7. Primary anterior chamber intraocular lens for the treatment of severe crystalline lens subluxation.

    Science.gov (United States)

    Hoffman, Richard S; Fine, I Howard; Packer, Mark

    2009-10-01

    Subluxated cataractous and clear lenses are commonly treated by limbal or pars plana lensectomy followed by primary or secondary intraocular lens (IOL) implantation. Adjunctive capsular prosthetic devices have facilitated lens removal and IOL centration in these challenging cases but have also added complexity and potential complications to the procedure. Although crystalline lens extraction may be required to clear the visual axis in mild to moderate lens subluxations, we propose insertion of a primary anterior chamber IOL without lens extraction in severe subluxations when the eye is optically aphakic or can be made functionally aphakic following neodymium:YAG laser zonulysis. Two cases demonstrating this approach are presented.

  8. Variable-focus liquid lens for portable applications

    NARCIS (Netherlands)

    Kuiper, S.; Hendriks, B.H.W.; Huijbregts, L.J.; Hirschberg, A.; Renders, C.A.; As, van M.A.J.; Mouroulis, P.Z.; Smith, W.J.; Johnson, R.B.

    2004-01-01

    The meniscus between two immiscible liquids can be used as an optical lens. A change in curvature of this meniscus by electrowetting leads to a change in focal distance. We demonstrate that two liquids in a tube form a self-centered tunable lens of high optical quality. Several properties were

  9. Apparatus for Teaching Physics.

    Science.gov (United States)

    Gottlieb, Herbert H., Ed.

    1981-01-01

    Describes: (1) a variable inductor suitable for an inductance-capacitance bridge consisting of a fixed cylindrical solenoid and a moveable solenoid; (2) long-range apparatus for demonstrating falling bodies; and (3) an apparatus using two lasers to demonstrate ray optics. (SK)

  10. Qualification of a Null Lens Using Image-Based Phase Retrieval

    Science.gov (United States)

    Bolcar, Matthew R.; Aronstein, David L.; Hill, Peter C.; Smith, J. Scott; Zielinski, Thomas P.

    2012-01-01

    In measuring the figure error of an aspheric optic using a null lens, the wavefront contribution from the null lens must be independently and accurately characterized in order to isolate the optical performance of the aspheric optic alone. Various techniques can be used to characterize such a null lens, including interferometry, profilometry and image-based methods. Only image-based methods, such as phase retrieval, can measure the null-lens wavefront in situ - in single-pass, and at the same conjugates and in the same alignment state in which the null lens will ultimately be used - with no additional optical components. Due to the intended purpose of a Dull lens (e.g., to null a large aspheric wavefront with a near-equal-but-opposite spherical wavefront), characterizing a null-lens wavefront presents several challenges to image-based phase retrieval: Large wavefront slopes and high-dynamic-range data decrease the capture range of phase-retrieval algorithms, increase the requirements on the fidelity of the forward model of the optical system, and make it difficult to extract diagnostic information (e.g., the system F/#) from the image data. In this paper, we present a study of these effects on phase-retrieval algorithms in the context of a null lens used in component development for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Approaches for mitigation are also discussed.

  11. Pipework inspection apparatus

    International Nuclear Information System (INIS)

    Wrigglesworth, K.J.; Knowles, J.F.

    1987-01-01

    The patent concerns a pipework inspection apparatus, which is capable of negotiating bends in pipework. The apparatus comprises a TV camera system, which contains an optical section and an electronics section, which are connected by a flexible coupling. The system can be pulled or pushed along the bore of the pipework. (U.K.)

  12. Optical design of soft multifocal contact lens with uniform optical power in center-distance zone with optimized NURBS.

    Science.gov (United States)

    Vu, Lien T; Chen, Chao-Chang A; Yu, Chia-Wei

    2018-02-05

    This study aims to develop a new optical design method of soft multifocal contact lens (CLs) to obtain uniform optical power in large center-distance zone with optimized Non-Uniform Rational B-spline (NURBS). For the anterior surface profiles of CLs, the NURBS design curves are optimized to match given optical power distributions. Then, the NURBS in the center-distance zones are fitted in the corresponding spherical/aspheric curves for both data points and their centers of curvature to achieve the uniform power. Four cases of soft CLs have been manufactured by casting in shell molds by injection molding and then measured to verify the design specifications. Results of power profiles of these CLs are concord with the given clinical requirements of uniform powers in larger center-distance zone. The developed optical design method has been verified for multifocal CLs design and can be further applied for production of soft multifocal CLs.

  13. Thermo-optical properties of Nd{sup 3+} doped phosphate glass determined by thermal lens and lifetime measurements

    Energy Technology Data Exchange (ETDEWEB)

    Martins, V.M. [Instituto de Física, Universidade Federal de Uberlândia, CEP38408-902 Uberlandia, Minas Gerais (Brazil); CIMAP – Centre de recherche sur les Ions, les Matériaux et la Photonique UMR 6252 CEA-CNRS-ENSICAEN-Université de Caen, 14050 Caen Cedex 4 (France); Messias, D.N., E-mail: dnmessias@infis.ufu.br [Instituto de Física, Universidade Federal de Uberlândia, CEP38408-902 Uberlandia, Minas Gerais (Brazil); Doualan, J.L.; Braud, A.; Camy, P. [CIMAP – Centre de recherche sur les Ions, les Matériaux et la Photonique UMR 6252 CEA-CNRS-ENSICAEN-Université de Caen, 14050 Caen Cedex 4 (France); Dantas, N.O. [Instituto de Física, Universidade Federal de Uberlândia, CEP38408-902 Uberlandia, Minas Gerais (Brazil); CIMAP – Centre de recherche sur les Ions, les Matériaux et la Photonique UMR 6252 CEA-CNRS-ENSICAEN-Université de Caen, 14050 Caen Cedex 4 (France); Instituto de Física de São Carlos, Universidade de São Paulo, USP, CEP 13560-970 São Carlos, SP (Brazil); Catunda, T. [Instituto de Física de São Carlos, Universidade de São Paulo, USP, CEP 13560-970 São Carlos, SP (Brazil); Pilla, V.; Andrade, A.A. [Instituto de Física, Universidade Federal de Uberlândia, CEP38408-902 Uberlandia, Minas Gerais (Brazil); and others

    2015-06-15

    In this paper the Normalized Lifetime Thermal Lens technique was applied to a set of Nd-doped phosphate samples in order to obtain its thermal and optical properties. Moreover, radiative emission properties were obtained by the Judd–Ofelt theory. The luminescence quantum efficiency obtained by both methods agreed very well, indicating that this thermal lens approach can be used in more complex systems where no radiative property is available. - Highlights: • Normalized Lifetime Thermal Lens was used to investigate Nd-doped samples. • Experimental setup and data analysis are simpler than in conventional techniques. • Luminescence quantum yield agrees with that obtained through standard techniques. • This approach, to obtain the quantum yield, can be extended to more complex systems.

  14. Post-lens tear turbidity and visual quality after scleral lens wear.

    Science.gov (United States)

    Carracedo, Gonzalo; Serramito-Blanco, Maria; Martin-Gil, Alba; Wang, Zicheng; Rodriguez-Pomar, Candela; Pintor, Jesús

    2017-11-01

    The aim was to evaluate the turbidity and thickness of the post-lens tear layer and its effect on visual quality in patients with keratoconus after the beginning of lens wear and before lens removal at the end of eight hours. Twenty-six patients with keratoconus (aged 36.95 ± 8.95 years) participated voluntarily in the study. The sample was divided into two groups: patients with intrastromal corneal ring (ICRS group) and patients without ICRS (KC group). Distance visual acuity (VA), contrast sensitivity, pachymetry, post-lens tear layer height and post-lens tear layer turbidity (percentage area occupied and number of particles per mm 2 ) were evaluated with optical coherence tomography before and after wearing a scleral lens. A significant increase of turbidity was found in all groups assessed (p turbidity parameters with distance VA but no correlation between turbidity and post-lens tear layer thickness at the beginning was found (p > 0.05). A strong correlation in all groups between the post-lens tear layer at the beginning and differences of tear layer thickness between two measures was also found (p turbidity. © 2017 Optometry Australia.

  15. The Effect of the Crystalline Lens on Central Vault After Implantable Collamer Lens Implantation.

    Science.gov (United States)

    Qi, Meng-Ying; Chen, Qian; Zeng, Qing-Yan

    2017-08-01

    To identify associations between crystalline lens-related factors and central vault after Implantable Collamer Lens (ICL) (Staar Surgical, Monrovia, CA) implantation. This retrospective clinical study included 320 eyes from 186 patients who underwent ICL implantation surgery. At 1 year after surgery, the central vault was measured using anterior segment optical coherence tomography. Preoperative anterior chamber depth, lens thickness, lens position (lens position = anterior chamber depth + 1/2 lens thickness), and vault were analyzed to investigate the effects of lens-related factors on postoperative vault. The mean vault was 513 ± 215 µm at 1 year after surgery. Vault was positively correlated with preoperative anterior chamber depth (r = 0.495, P lens position (r = 0.371, P lens thickness (r = -0.262, P lens position than eyes in the other two vault groups (which had vaults ≥ 250 µm) (P lens position less than 5.1 mm had greatly reduced vaults (P lens could have an important influence on postoperative vault. Eyes with a shallower anterior chamber and a forward lens position will have lower vaults. [J Refract Surg. 2017;33(8):519-523.]. Copyright 2017, SLACK Incorporated.

  16. Characterization of Soft Contact Lens Edge Fitting during Daily Wear Using Ultrahigh-Resolution Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Lele Cui

    2018-01-01

    Full Text Available Purpose. To determine conjunctival overlap over the edge of soft contact lens and to visualize the peripheral postlens tear film (PoLTF underneath soft contact lenses using ultrahigh-resolution optical coherence tomography (UHR-OCT. Methods. Twenty participants (4 males and 16 females, 23.0 ± 3.7 years were fitted with two different types of soft contact lenses randomly. The limbus with lens was imaged with the UHR-OCT at the horizontal meridian every two hours up to 6 hours during lens wear. The conjunctival overlap was ranked as the percentage of the edge covered by the conjunctiva. The frequency of occurrence for visualized peripheral PoLTF was determined. Results. The average conjunctival overlaps at insertion were 49% and 73% for galyfilcon A and balafilcon A lenses and increased significantly to 84% and 90% by 6 hours of lens wear (P<0.001. Lenses with rounded edges had more conjunctival overlap than the lenses with angled edges (P=0.014. There were significant decreases for PoLTF on the conjunctiva (P=0.014 and peripheral cornea (P=0.004 over the study period compared to insertion. The percentage of subjects with PoLTF on the conjunctiva (32.5% and peripheral cornea (36% were greater in subjects wearing balafilcon A lenses (P=0.017. Conclusions. Increased conjunctival overlap over the lens edges and reduced PoLTF underneath the peripheral region of soft contact lenses were shown during lens daily wear. The lens edge configuration may play a role in conjunctival response and peripheral PoLTF.

  17. Optical Time-Division Multiplexing of 10 Gbit/s Ethernet Signals Synchronized by All-Optical Signal Processing Based on a Time-Lens

    DEFF Research Database (Denmark)

    Areal, Janaina Laguardia

    This Thesis presents 3 years work of an optical circuit that performs both pulse compression and frame synchronization and retiming. Our design aims at directly multiplexing several 10G Ethernet data packets (frames) to a high-speed OTDM link. This scheme is optically transparent and does not req...... coupler, completing the OTDM signal generation. We demonstrate the effectiveness of the design by laboratory experiments and simulations with VPI and MatLab....... not require clock recovery, resulting in a potentially very efficient solution. The scheme uses a time-lens, implemented through a sinusoidally driven optical phase modulation, combined with a linear dispersion element. As time-lenses are also used for pulse compression, we design the circuit also to perform...

  18. LASL lens design procedure: simple, fast, precise, versatile

    International Nuclear Information System (INIS)

    Brixner, B.

    1978-11-01

    The Los Alamos Scientific Laboratory general-purpose lens design procedure optimizes specific lens prescriptions to obtain the smallest possible image spots and therefore near-spherical wave fronts of light converging on all images in the field of view. Optical image errors are analyzed in much the same way that they are measured on the optical bench. This lens design method is made possible by using the full capabilities of large electronic computers. First, the performance of the whole lens is sampled with many precisely traced skew rays. Next, lens performance is analyzed with spot diagrams generated by the many rays. Third, lens performance is optimized with a least squares system aimed at reducing all image errors to zero. This statistical approach to lens design uses skew rays and precisely measured ray deviations from ideal image points to achieve greater accuracy than was possible with the classical procedure, which is based on approximate expressions derived from simplified ray traces developed for pencil-and-paper calculations

  19. A lazy way to design infrared lens

    Science.gov (United States)

    Qiu, RongSheng; Wu, JianDong; Chen, LongJiang; Yu, Kun; Pang, HaoJun; Hu, BaiZhen

    2017-08-01

    We designed a compact middle-wave infrared (MWIR) lens with a large focal length ratio (about 1.5:1), used in the 3.7 to 4.8 μm range. The lens is consisted of a compact front group and a re-imaging group. Thanks to the compact front group configuration, it is possible to install a filter wheel mechanism in such a tight space. The total track length of the lens is about 50mm, which includes a 2mm thick protective window and a cold shield of 12mm. The full field of view of the lens is about 3.6°, and F number is less than 1.6, the image circle is about 4.6mm in diameter. The design performance of the lens reaches diffraction limitation, and doesn't change a lot during a temperature range of -40°C +60°C. This essay proposed a stepwise design method of infrared optical system guided by the qualitative approach. The method fully utilize the powerful global optimization ability, with a little effort to write code snippet in optical design software, frees optical engineer from tedious calculation of the original structure.

  20. Glass molding of 3mm diameter aspheric plano-convex lens

    Science.gov (United States)

    Sung, Hayeong; Hue, Myung sang; Lee, Giljae; Ryu, Geunman; Kim, Dongguk; Yang, Suncheol

    2017-10-01

    The many industries and research fields have demands for small scale optical systems. To satisfy the demands, many studies are conducted and the miniaturization technologies have been developed. The optical lens is directly related to the optical systems and a key component for the miniaturization. So the aspheric surface which can replace multispherical lenses is applied to the optical lens. And fabrication methods to reduce the diameter of the lens have been developed. The glass molding pressing (GMP) process is an attractive method to fabricate aspheric lens among the lens manufacturing processes. Because the GMP process has advantages of productivity, repeatability and so on. In this study, a 3 mm diameter aspheric plano-convex lens was fabricated using the GMP process. The GMP process was divided into heating, pressing, annealing and cooling. And the process was conducted using a commercial glass molding machine. Mold tools consist of an upper and a lower mold insert, an inner and an outer guide. The aspheric and the flat surfaces of the mold inserts were coated with ta-C to prevent the sticking of the glass to the mold. The surfaces of molded lens were measured by white interferometry and surface profilometer. The height and the diameter were measured using optical microscopy. As results, the aspheric surface of the lens was 5.1187 nm in Ra and 0.242 um in Pt. And the flat surface was 2.6697 nm in Ra and 0.13 um in Pt. The height and the diameter were 1.935 mm and 3.002 mm respectively.

  1. The role of low light intensity: A step towards understanding the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells

    Science.gov (United States)

    Lojpur, Vesna; Mitrić, Miodrag; Validžić, Ivana Lj

    2018-05-01

    We report here an optic/lens system that we used so far, for cooling the surface of solar cells, the reduction of light intensity and the change of light distribution that reaches the surface of the solar cell. The objective was to improve photovoltaic characteristics under very low light illumination, as well as to understand the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells. It was found that for all so far designed thin-film solar cells made and based on the synthesized Sb2S3, optics/lens system causes an increase in open circuit voltage (VOC) and short circuit current (ISC) and thus the efficiencies of made solar devices. Values of energy gaps for the thin-films made devices were in the range from 1.4 to 2 eV. Improvements of the photovoltaic response of the designed devices are found to be better at the lower light intensity (5% sun), than at higher intensities of light. For the same intensity of light used optic/lens improves the efficiency of the devices, by changing the light distribution. Other processes that are related to the optics/lens system, leading to an increase in ISC and VOC and consequently to an increase in efficiencies of the designed devices, are investigated.

  2. A Next-Generation Apparatus for Lithium Optical Lattice Experiments

    Science.gov (United States)

    Keshet, Aviv

    hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using an FPGA-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100ns achieved over effectively arbitrary sequence lengths. Experimental set-ups for producing, manipulating, and probing ultracold atomic gases can be quite complicated. To move forward with a quantum simulation program, it is necessary to have an apparatus that operates with a reliability that is not easily achieved in the face of this complexity. The design of a new apparatus is discussed. This Sodium-Lithium ultracold gas production machine has been engineered to incorporate as much experimental experience as possible to enhance its reliability. Particular attention has been paid to maximizing optical access and the utilization of this optical access, controlling the ambient temperature of the experiment, achieving a high vacuum, and simplifying subsystems where possible. The apparatus is now on the verge of producing degenerate gases, and should serve as a stable platform on which to perform future lattice quantum simulation experiments. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  3. Nonlinear optical rectification in a vertically coupled lens-shaped InAs/GaAs quantum dots with wetting layers under hydrostatic pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ben Mahrsia, R.; Choubani, M., E-mail: mohsenchoubani3@yahoo.fr; Bouzaiene, L.; Maaref, H.

    2016-06-25

    In this paper we explore the structure parameters, hydrostatic pressure and temperature effects on Nonlinear optical rectification (NOR) in an asymmetric vertically coupled lens-shaped InAs/GaAs quantum dots. During epitaxial growth, lens-shaped quantum dots (QDs) are formed on the wetting layer (WL). Many theoretical works have neglected WL and its effect on nonlinear optical properties of QD-based systems for sake of simplicity. However, in this work the WL has been shown to be so influential in the intersubband energy and nonlinear optical rectification magnitude. Also, a detailed and comprehensive study of the nonlinear optical rectification is theoretical investigated within the framework of the compact density-matrix approach and finite difference method (FDM). It's found that nonlinear optical rectification coefficient is strongly affected not only by the WL, but also by the pressure, temperature and the coupled width between the QDs. Obtained results revealed that a red or a blue shift cane be observed. This behavior in the NOR gives a new degree of freedom in regions of interest for device applications. - Highlights: • Vertically coupled lens-shaped InAs/GaAs quantum dots is investigated. • Photon energy shifts towards the red with increasing pressure. • Photon energy shifts towards the blue with increasing temperature. • Intersubband energy decreases with increasing the wetting layer width. • Nonlinear optical rectification magnitude is controlled and adjusted.

  4. An adjustable electron achromat for cathode lens microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M., E-mail: rtromp@us.ibm.com [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Leiden Institute of Physics, Kamerlingh Onnes Laboratory, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-12-15

    Chromatic aberration correction in light optics began with the invention of a two-color-corrected achromatic crown/flint lens doublet by Chester Moore Hall in 1730. Such color correction is necessary because any single glass shows dispersion (i.e. its index of refraction changes with wavelength), which can be counteracted by combining different glasses with different dispersions. In cathode lens microscopes (such as Photo Electron Emission Microscopy – PEEM) we encounter a similar situation, where the chromatic aberration coefficient of the cathode lens shows strong dispersion, i.e. depends (non-linearly) on the energy with which the electrons leave the sample. Here I show how a cathode lens in combination with an electron mirror can be configured as an adjustable electron achromat. The lens/mirror combination can be corrected at two electron energies by balancing the settings of the electron mirror against the settings of the cathode lens. The achromat can be adjusted to deliver optimum performance, depending on the requirements of a specific experiment. Going beyond the achromat, an apochromat would improve resolution and transmission by a very significant margin. I discuss the requirements and outlook for such a system, which for now remains a wish waiting for fulfilment. - Highlights: • The properties of cathode objective lens plus electron mirror are discussed. • In analogy with light-optical achromats, cathode lens plus mirror can be configured as an electron achromat. • Unlike light optics, the electron achromat can be adjusted to best fulfill experimental requirements.

  5. Near-field optical recording based on solid immersion lens system

    Science.gov (United States)

    Hong, Tao; Wang, Jia; Wu, Yan; Li, Dacheng

    2002-09-01

    Near-field optical recording based on solid immersion lens (SIL) system has attracted great attention in the field of high-density data storage in recent years. The diffraction limited spot size in optical recording and lithography can be decreased by utilizing the SIL. The SIL near-field optical storage has advantages of high density, mass storage capacity and compatibility with many technologies well developed. We have set up a SIL near-field static recording system. The recording medium is placed on a 3-D scanning stage with the scanning range of 70×70×70μm and positioning accuracy of sub-nanometer, which will ensure the rigorous separation control in SIL system and the precision motion of the recording medium. The SIL is mounted on an inverted microscope. The focusing between long working distance objective and SIL can be monitored and observed by the CCD camera and eyes. Readout signal can be collected by a detector. Some experiments have been performed based on the SIL near-field recording system. The attempt of the near-field recording on photochromic medium has been made and the resolution improvement of the SIL has been presented. The influence factors in SIL near-field recording system are also discussed in the paper.

  6. The partial coherence modulation transfer function in testing lithography lens

    Science.gov (United States)

    Huang, Jiun-Woei

    2018-03-01

    Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.

  7. HE 1113-0641: THE SMALLEST-SEPARATION QUADRUPLE LENS IDENTIFIED BY A GROUND-BASED OPTICAL TELESCOPE

    International Nuclear Information System (INIS)

    Blackburne, Jeffrey A.; Schechter, Paul L.; Wisotzki, Lutz

    2008-01-01

    The Hamburg/ESO quasar HE 1113-0641 is found to be a quadruple gravitational lens, based on observations with the twin 6.5 m Magellan telescopes at the Las Campanas Observatory, and subsequently with the Hubble Space Telescope. The z S = 1.235 quasar appears in a cross configuration, with i' band magnitudes ranging from 18.0 to 18.8. With a maximum image separation of 0''.67, this is the smallest-separation quadruple ever identified using a ground-based optical telescope. Point-spread function (PSF) subtraction reveals a faint lensing galaxy. A simple lens model succeeds in predicting the observed positions of the components, but fails to match their observed flux ratios by up to a magnitude. We estimate the redshift of the lensing galaxy to be z L ∼ 0.7. Time delay estimates are on the order of a day, suggesting that the flux ratio anomalies are not due to variability of the quasar, but may result from substructure or microlensing in the lens galaxy.

  8. The lens and cataracts.

    Science.gov (United States)

    Matthews, Andrew G

    2004-08-01

    It is conservatively estimated that some form of lens opacity is present in 5% to 7% of horses with otherwise clinically normal eyes.These opacities can range from small epicapsular remnants of the fetal vasculature to dense and extensive cataract. A cataract is defined technically as any opacity or alteration in the optical homogeneity of the lens involving one or more of the following: anterior epithelium, capsule, cortex, or nucleus. In the horse, cataracts rarely involve the entire lens structure (ie, complete cataracts) and are more usually localized to one anatomic landmark or sector of the lens. Complete cataracts are invariably associated with overt and significant visual disability. Focal or incomplete cataracts alone seldom cause any apparent visual dysfunction in affected horses,however.

  9. Adaptive optics plug-and-play setup for high-resolution microscopes with multi-actuator adaptive lens

    Science.gov (United States)

    Quintavalla, M.; Pozzi, P.; Verhaegen, Michelle; Bijlsma, Hielke; Verstraete, Hans; Bonora, S.

    2018-02-01

    Adaptive Optics (AO) has revealed as a very promising technique for high-resolution microscopy, where the presence of optical aberrations can easily compromise the image quality. Typical AO systems however, are almost impossible to implement on commercial microscopes. We propose a simple approach by using a Multi-actuator Adaptive Lens (MAL) that can be inserted right after the objective and works in conjunction with an image optimization software allowing for a wavefront sensorless correction. We presented the results obtained on several commercial microscopes among which a confocal microscope, a fluorescence microscope, a light sheet microscope and a multiphoton microscope.

  10. Optical zoom lens module using MEMS deformable mirrors for portable device

    Science.gov (United States)

    Lu, Jia-Shiun; Su, Guo-Dung J.

    2012-10-01

    The thickness of the smart phones in today's market is usually below than 10 mm, and with the shrinking of the phone volume, the difficulty of its production of the camera lens has been increasing. Therefore, how to give the imaging device more functionality in the smaller space is one of the interesting research topics for today's mobile phone companies. In this paper, we proposed a thin optical zoom system which is combined of micro-electromechanical components and reflective optical architecture. By the adopting of the MEMS deformable mirrors, we can change their radius of curvature to reach the optical zoom in and zoom out. And because we used the all-reflective architecture, so this system has eliminated the considerable chromatic aberrations in the absence of lenses. In our system, the thickness of the zoom system is about 11 mm. The smallest EFL (effective focal length) is 4.61 mm at a diagonal field angle of 52° and f/# of 5.24. The longest EFL of the module is 9.22 mm at a diagonal field angle of 27.4 with f/# of 5.03.°

  11. In vivo crystalline lens measurements with novel swept-source optical coherent tomography: an investigation on variability of measurement

    Science.gov (United States)

    Shoji, Takuhei; Kato, Naoko; Ishikawa, Sho; Ibuki, Hisashi; Yamada, Norihiro; Kimura, Itaru; Shinoda, Kei

    2017-01-01

    Objective To evaluate the reproducibility of in vivo crystalline lens measurements obtained by novel commercially available swept-source (SS) optical coherence tomography (OCT) specifically designed for anterior segment imaging. Methods and analysis One eye from each of 30 healthy subjects was randomly selected using the CASIA2 (Tomey, Nagoya, Japan) in two separate visits within a week. Each eye was imaged twice. After image scanning, the anterior and posterior lens curvatures and lens thickness were calculated automatically by the CASIA2 built-in program at 0 dioptre (D) (static), −1 D, −3 D and −5 D accommodative stress. The intraobserver and intervisit reproducibility coefficient (RC) and intraclass correlation coefficient (ICC) were calculated. Results The intraobserver and intervisit RCs ranged from 0.824 to 1.254 mm and 0.789 to 0.911 mm for anterior lens curvature, from 0.276 to 0.299 mm and 0.221 to 0.270 mm for posterior lens curvature and from 0.065 to 0.094 mm and 0.054 to 0.132 mm for lens thickness, respectively. The intraobserver and intervisit ICCs ranged from 0.831 to 0.865 and 0.828 to 0.914 for anterior lens curvature, from 0.832 to 0.898 and 0.840 to 0.933 for posterior lens curvature and from 0.980 to 0.992 and 0.942 to 0.995 for lens thickness. High ICC values were observed for each measurement regardless of accommodative stress. RCs in younger subjects tended to be larger than those in older subjects. Conclusions This novel anterior segment SS-OCT instrument produced reliable in vivo crystalline lens measurement with good repeatability and reproducibility regardless of accommodation stress. PMID:29354706

  12. Method for Surface Scanning in Medical Imaging and Related Apparatus

    DEFF Research Database (Denmark)

    2015-01-01

    A method and apparatus for surface scanning in medical imaging is provided. The surface scanning apparatus comprises an image source, a first optical fiber bundle comprising first optical fibers having proximal ends and distal ends, and a first optical coupler for coupling an image from the image...

  13. Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher.

    Science.gov (United States)

    Maceo Heilman, Bianca; Manns, Fabrice; de Castro, Alberto; Durkee, Heather; Arrieta, Esdras; Marcos, Susana; Parel, Jean-Marie

    2015-02-10

    The purpose of this study was to quantify accommodation-induced changes in the spherical aberration of cynomolgus monkey lenses. Twenty-four lenses from 20 cynomolgus monkeys (Macaca fascicularis; 4.4-16.0 years of age; postmortem time 13.5 ± 13.0 hours) were mounted in a lens stretcher. Lens spherical aberration was measured in the unstretched (accommodated) and stretched (relaxed) states with a laser ray tracing system that delivered 51 equally spaced parallel rays along 1 meridian of the lens over the central 6-mm optical zone. A camera mounted below the lens was used to measure the ray height at multiple positions along the optical axis. For each entrance ray, the change in ray height with axial position was fitted with a third-order polynomial. The effective paraxial focal length and Zernike spherical aberration coefficients corresponding to a 6-mm pupil diameter were extracted from the fitted values. The unstretched lens power decreased with age from 59.3 ± 4.0 diopters (D) for young lenses to 45.7 ± 3.1 D for older lenses. The unstretched lens shifted toward less negative spherical aberration with age, from -6.3 ± 0.7 μm for young lenses to -5.0 ± 0.5 μm for older lenses. The power and spherical aberration of lenses in the stretched state were independent of age, with values of 33.5 ± 3.4 D and -2.6 ± 0.5 μm, respectively. Spherical aberration is negative in cynomolgus monkey lenses and becomes more negative with accommodation. These results are in good agreement with the predicted values using computational ray tracing in a lens model with a reconstructed gradient refractive index. The spherical aberration of the unstretched lens becomes less negative with age. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  14. Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher.

    Science.gov (United States)

    Marussich, Lauren; Manns, Fabrice; Nankivil, Derek; Maceo Heilman, Bianca; Yao, Yue; Arrieta-Quintero, Esdras; Ho, Arthur; Augusteyn, Robert; Parel, Jean-Marie

    2015-07-01

    To determine if the lens volume changes during accommodation. The study used data acquired on 36 cynomolgus monkey lenses that were stretched in a stepwise fashion to simulate disaccommodation. At each step, stretching force and dioptric power were measured and a cross-sectional image of the lens was acquired using an optical coherence tomography system. Images were corrected for refractive distortions and lens volume was calculated assuming rotational symmetry. The average change in lens volume was calculated and the relation between volume change and power change, and between volume change and stretching force, were quantified. Linear regressions of volume-power and volume-force plots were calculated. The mean (± SD) volume in the unstretched (accommodated) state was 97 ± 8 mm3. On average, there was a small but statistically significant (P = 0.002) increase in measured lens volume with stretching. The mean change in lens volume was +0.8 ± 1.3 mm3. The mean volume-power and volume-load slopes were -0.018 ± 0.058 mm3/D and +0.16 ± 0.40 mm3/g. Lens volume remains effectively constant during accommodation, with changes that are less than 1% on average. This result supports a hypothesis that the change in lens shape with accommodation is accompanied by a redistribution of tissue within the capsular bag without significant compression of the lens contents or fluid exchange through the capsule.

  15. [Representation and mathematical analysis of human crystalline lens].

    Science.gov (United States)

    Tălu, Stefan; Giovanzana, Stefano; Tălu, Mihai

    2011-01-01

    The surface of human crystalline lens can be described and analyzed using mathematical models based on parametric representations, used in biomechanical studies and 3D solid modeling of the lens. The mathematical models used in lens biomechanics allow the study and the behavior of crystalline lens on variables and complex dynamic loads. Also, the lens biomechanics has the potential to improve the results in the development of intraocular lenses and cataract surgery. The paper presents the most representative mathematical models currently used for the modeling of human crystalline lens, both optically and biomechanically.

  16. Development and Optical Testing of the Camera, Hand Lens, and Microscope Probe with Scannable Laser Spectroscopy (CHAMP-SLS)

    Science.gov (United States)

    Mungas, Greg S.; Gursel, Yekta; Sepulveda, Cesar A.; Anderson, Mark; La Baw, Clayton; Johnson, Kenneth R.; Deans, Matthew; Beegle, Luther; Boynton, John

    2008-01-01

    Conducting high resolution field microscopy with coupled laser spectroscopy that can be used to selectively analyze the surface chemistry of individual pixels in a scene is an enabling capability for next generation robotic and manned spaceflight missions, civil, and military applications. In the laboratory, we use a range of imaging and surface preparation tools that provide us with in-focus images, context imaging for identifying features that we want to investigate at high magnification, and surface-optical coupling that allows us to apply optical spectroscopic analysis techniques for analyzing surface chemistry particularly at high magnifications. The camera, hand lens, and microscope probe with scannable laser spectroscopy (CHAMP-SLS) is an imaging/spectroscopy instrument capable of imaging continuously from infinity down to high resolution microscopy (resolution of approx. 1 micron/pixel in a final camera format), the closer CHAMP-SLS is placed to a feature, the higher the resultant magnification. At hand lens to microscopic magnifications, the imaged scene can be selectively interrogated with point spectroscopic techniques such as Raman spectroscopy, microscopic Laser Induced Breakdown Spectroscopy (micro-LIBS), laser ablation mass-spectrometry, Fluorescence spectroscopy, and/or Reflectance spectroscopy. This paper summarizes the optical design, development, and testing of the CHAMP-SLS optics.

  17. Wide-field schematic eye models with gradient-index lens.

    Science.gov (United States)

    Goncharov, Alexander V; Dainty, Chris

    2007-08-01

    We propose a wide-field schematic eye model, which provides a more realistic description of the optical system of the eye in relation to its anatomical structure. The wide-field model incorporates a gradient-index (GRIN) lens, which enables it to fulfill properties of two well-known schematic eye models, namely, Navarro's model for off-axis aberrations and Thibos's chromatic on-axis model (the Indiana eye). These two models are based on extensive experimental data, which makes the derived wide-field eye model also consistent with that data. A mathematical method to construct a GRIN lens with its iso-indicial contours following the optical surfaces of given asphericity is presented. The efficiency of the method is demonstrated with three variants related to different age groups. The role of the GRIN structure in relation to the lens paradox is analyzed. The wide-field model with a GRIN lens can be used as a starting design for the eye inverse problem, i.e., reconstructing the optical structure of the eye from off-axis wavefront measurements. Anatomically more accurate age-dependent optical models of the eye could ultimately help an optical designer to improve wide-field retinal imaging.

  18. Optical aberrations in a spinning pipe gas lens

    CSIR Research Space (South Africa)

    Mafusire, C

    2008-06-01

    Full Text Available If a heated pipe is rotated about its axis, a density gradient is formed which results in the pipe acting as a graded index lens. In this study the authors revisit the concept of a spinning pipe gas lens and for the first time analyse both the wave...

  19. Compound refractive X-ray lens

    International Nuclear Information System (INIS)

    Nygren, D.R.; Cahn, R.; Cederstrom, B.; Danielsson, M.; Vestlund, J.

    2000-01-01

    An apparatus and method are disclosed for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point

  20. Compound refractive X-ray lens

    Science.gov (United States)

    Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  1. Conduit grinding apparatus

    Science.gov (United States)

    Nachbar, Henry D.; Korytkowski, Alfred S.

    1991-01-01

    A grinding apparatus for grinding the interior portion of a valve stem receiving area of a valve. The apparatus comprises a faceplate, a plurality of cams mounted to an interior face of the faceplate, a locking bolt to lock the faceplate at a predetermined position on the valve, a movable grinder and a guide tube for positioning an optical viewer proximate the area to be grinded. The apparatus can either be rotated about the valve for grinding an area of the inner diameter of a valve stem receiving area or locked at a predetermined position to grind a specific point in the receiving area.

  2. Intraocular Lens Calcification; a Clinicopathologic Report

    Directory of Open Access Journals (Sweden)

    Mozhgan Rezaei-Kanavi

    2009-04-01

    Full Text Available

    PURPOSE: To describe the clinical and pathological features of a case of hydrogel intraocular lens (IOL calcification. CASE REPORT: A 48-year-old man underwent explantation of a single-piece hydrophilic acrylic intraocular lens in his left eye because of decreased visual acuity and milky white opalescence of the IOL. The opacified lens was exchanged uneventfully with a hydrophobic acrylic IOL. Gross examination of the explanted IOL disclosed opacification of the optic and haptics. Full-thickness sections of the lens optic were stained with hematoxylin and eosin (H&E, von Kossa and Gram Tworts'. Microscopic examination of the sections revealed fine and diffuse basophilic granular deposits of variable size within the lens optic parallel to the lens curvature but separated from the surface by a moderately clear zone. The deposits were of high calcium content as evident by dark brown staining with von Kossa. Gram Tworts' staining disclosed no microorganisms. CONCLUSION: This report further contributes to the existing literature on hydrogel IOL calcification.

  3. Apparatus including concave reflectors and a line of optical fibers

    International Nuclear Information System (INIS)

    Dolan, J.T.

    1992-01-01

    This patent describes an apparatus including a radiation source which emits in a multiplicity of directions for focusing radiation on an object which may receive radiation within a certain solid angle. It comprises a first reflector and a second reflector, the first reflector being elliptical in cross section and having a first focus and a second focus, the second reflector being circular in cross section and having a center, and a radius equal to the distance between the second reflector and the first focus, the first reflector and the second reflector being arranged so that a concave reflecting surface of the first reflector faces a concave reflecting surface of the second reflector, and so arranged that the first focus of the first reflector corresponds to the center of the second reflector, the radiation source being an elongated discharge bulb, the object being a group of two or more optical fibers defining at least one line of optical fibers which are located at the second focus of the first reflector

  4. An all-silicone zoom lens in an optical imaging system

    Science.gov (United States)

    Zhao, Cun-Hua

    2013-09-01

    An all-silicone zoom lens is fabricated. A tunable metal ringer is fettered around the side edge of the lens. A nylon rope linking a motor is tied, encircling the notch in the metal ringer. While the motor is operating, the rope can shrink or release to change the focal length of the lens. A calculation method is developed to obtain the focal length and the zoom ratio. The testing is carried out in succession. The testing values are compared with the calculated ones, and they tally with each other well. Finally, the imaging performance of the all-silicone lens is demonstrated. The all-silicone lens has potential uses in cellphone cameras, notebook cameras, micro monitor lenses, etc.

  5. Hyperchromatic lens for recording time-resolved phenomena

    Science.gov (United States)

    Frayer, Daniel K.

    2017-07-11

    A method and apparatus for the capture of a high number of quasi-continuous effective frames of 2-D data from an event at very short time scales (from less than 10.sup.-12 to more than 10.sup.-8 seconds) is disclosed which allows for short recording windows and effective number of frames. Active illumination, from a chirped laser pulse directed to the event creates a reflection where wavelength is dependent upon time and spatial position is utilized to encode temporal phenomena onto wavelength. A hyperchromatic lens system receives the reflection and maps wavelength onto axial position. An image capture device, such as holography or plenoptic imaging device, captures the resultant focal stack from the hyperchromatic lens system in both spatial (imaging) and longitudinal (temporal) axes. The hyperchromatic lens system incorporates a combination of diffractive and refractive components to maximally separate focal position as a function of wavelength.

  6. Metasurface axicon lens design at visible wavelengths

    Science.gov (United States)

    Alyammahi, Saleimah; Zhan, Qiwen

    2017-08-01

    The emerging field of metasurfaces is promising to realize novel optical devices with miniaturized flat format and added functionalities. Metasurfaces have been demonstrated to exhibit full control of amplitude, phase and polarization of electromagnetic waves. Using the metasurface, the wavefront of light can be manipulated permitting new functionalities such as focusing and steering of the beams and imaging. One optical component which can be designed using metasurfaces is the axicon. Axicons are conical lenses used to convert Gaussian beams into nondiffraction Bessel beams. These unique devices are utilized in different applications ranging from optical trapping and manipulation, medical imaging, and surgery. In this work, we study axicon lens design comprising of planar metasurfaces which generate non-diffracting Bessel beams at visible wavelengths. Dielectric metasurfaces have been used to achieve high efficiency and low optical loss. We measured the spot size of the resulted beams at different planes to demonstrate the non-diffraction properties of the resulted beams. We also investigated how the spot size is influenced by the axicon aperture. Furthermore, we examined the achromatic properties of the designed axicon. Comparing with the conventional lens, the metasurface axicon lens design enables the creation of flat optical device with wide range of depth of focus along its optical axis.

  7. Refractive power and biometric properties of the nonhuman primate isolated crystalline lens.

    Science.gov (United States)

    Borja, David; Manns, Fabrice; Ho, Arthur; Ziebarth, Noel M; Acosta, Ana Carolina; Arrieta-Quintera, Esdras; Augusteyn, Robert C; Parel, Jean-Marie

    2010-04-01

    Purpose. To characterize the age dependence of shape, refractive power, and refractive index of isolated lenses from nonhuman primates. Methods. Measurements were performed on ex vivo lenses from cynomolgus monkeys (cyno: n = 120; age, 2.7-14.3 years), rhesus monkeys (n = 61; age, 0.7-13.3 years), and hamadryas baboons (baboon: n = 16; age, 1.7-27.3 years). Lens thickness, diameter, and surface curvatures were measured with an optical comparator. Lens refractive power was measured with a custom optical system based on the Scheiner principle. The refractive contributions of the gradient, the surfaces, and the equivalent refractive index were calculated with optical ray-tracing software. The age dependence of the optical and biometric parameters was assessed. Results. Over the measured age range isolated lens thickness decreased (baboon: -0.04, cyno: -0.05, and rhesus: -0.06 mm/y) and equatorial diameter increased (logarithmically for the baboon and rhesus, and linearly for cyno: 0.07 mm/y). The isolated lens surfaces flattened and the corresponding refractive power from the surfaces decreased with age (-0.33, -0.48, and -0.68 D/y). The isolated lens equivalent refractive index decreased (only significant for the baboon, -0.001 D/y), and as a result the total isolated lens refractive power decreased with age (baboon: -1.26, cyno: -0.97, and rhesus: -1.76 D/y). Conclusions. The age-dependent trends in the optical and biometric properties, growth, and aging, of nonhuman primate lenses are similar to those of the pre-presbyopic human lens. As the lens ages, the decrease in refractive contributions from the gradient refractive index causes a rapid age-dependent decrease in maximally accommodated lens refractive power.

  8. Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry.

    Science.gov (United States)

    Yamada, N; Nishikawa, T

    2010-06-21

    In this study, an evolutionary algorithm (EA), which consists of genetic and immune algorithms, is introduced to design the optical geometry of a nonimaging Fresnel lens; this lens generates the uniform flux concentration required for a photovoltaic cell. Herein, a design procedure that incorporates a ray-tracing technique in the EA is described, and the validity of the design is demonstrated. The results show that the EA automatically generated a unique geometry of the Fresnel lens; the use of this geometry resulted in better uniform flux concentration with high optical efficiency.

  9. Objective lens simultaneously optimized for pupil ghosting, wavefront delivery and pupil imaging

    Science.gov (United States)

    Olczak, Eugene G (Inventor)

    2011-01-01

    An objective lens includes multiple optical elements disposed between a first end and a second end, each optical element oriented along an optical axis. Each optical surface of the multiple optical elements provides an angle of incidence to a marginal ray that is above a minimum threshold angle. This threshold angle minimizes pupil ghosts that may enter an interferometer. The objective lens also optimizes wavefront delivery and pupil imaging onto an optical surface under test.

  10. Effects of photobleaching on selected advanced glycation end products in the human lens

    DEFF Research Database (Denmark)

    Holm, Thomas; Raghavan, Cibin T; Nahomi, Rooban

    2015-01-01

    at examining the optical and biochemical effects of the proposed treatment.MethodsHuman donor lenses were photobleaced using a 445 nm cw laser. Lens optical quality was assessed before and after photobleaching by light transmission and scattering. The concentration of the advanced glycation end products (AGEs...... of the photobleaching treatment on lens optical parameters but we could not associate the optical findings to a change in the concentration of the AGEs we measured. This finding suggests that other AGEs were responsible for the observed photobleaching of the human lens after laser treatment. The biochemical nature...

  11. Precision lens assembly with alignment turning system

    Science.gov (United States)

    Ho, Cheng-Fang; Huang, Chien-Yao; Lin, Yi-Hao; Kuo, Hui-Jean; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi

    2017-10-01

    The poker chip assembly with high precision lens barrels is widely applied to ultra-high performance optical system. ITRC applies the poker chip assembly technology to the high numerical aperture objective lenses and lithography projection lenses because of its high efficiency assembly process. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module is equipped with a non-contact displacement sensor (NCDS) and an autocollimator (ACM). The NCDS and ACM are used to measure centration errors of the top and the bottom surface of a lens respectively; then the amount of adjustment of displacement and tilt with respect to the rotational axis of the turning machine for the alignment module can be determined. After measurement, alignment and turning processes on the ATS, the centration error of a lens cell with 200 mm in diameter can be controlled within 10 arcsec. Furthermore, a poker chip assembly lens cell with three sub-cells is demonstrated, each sub-cells are measured and accomplished with alignment and turning processes. The lens assembly test for five times by each three technicians; the average transmission centration error of assembly lens is 12.45 arcsec. The results show that ATS can achieve high assembly efficiency for precision optical systems.

  12. The development of alignment turning system for precision len cells

    Science.gov (United States)

    Huang, Chien-Yao; Ho, Cheng-Fang; Wang, Jung-Hsing; Chung, Chien-Kai; Chen, Jun-Cheng; Chang, Keng-Shou; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi

    2017-08-01

    In general, the drop-in and cell-mounted assembly are used for standard and high performance optical system respectively. The optical performance is limited by the residual centration error and position accuracy of the conventional assembly. Recently, the poker chip assembly with high precision lens barrels that can overcome the limitation of conventional assembly is widely applied to ultra-high performance optical system. ITRC also develops the poker chip assembly solution for high numerical aperture objective lenses and lithography projection lenses. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module including a non-contact displacement sensor and an autocollimator can measure centration errors of the top and the bottom surface of a lens respectively. The alignment module comprising tilt and translation stages can align the optical axis of the lens to the rotating axis of the vertical lathe. The key specifications of the ATS are maximum lens diameter, 400mm, and radial and axial runout of the rotary table < 2 μm. The cutting performances of the ATS are surface roughness Ra < 1 μm, flatness < 2 μm, and parallelism < 5 μm. After measurement, alignment and turning processes on our ATS, the centration error of a lens cell with 200mm in diameter can be controlled in 10 arcsec. This paper also presents the thermal expansion of the hydrostatic rotating table. A poker chip assembly lens cell with three sub-cells is accomplished with average transmission centration error in 12.45 arcsec by fresh technicians. The results show that ATS can achieve high assembly efficiency for precision optical systems.

  13. All-optical microscope autofocus based on an electrically tunable lens and a totally internally reflected IR laser.

    Science.gov (United States)

    Bathe-Peters, M; Annibale, P; Lohse, M J

    2018-02-05

    Microscopic imaging at high spatial-temporal resolution over long time scales (minutes to hours) requires rapid and precise stabilization of the microscope focus. Conventional and commercial autofocus systems are largely based on piezoelectric stages or mechanical objective actuators. Objective to sample distance is either measured by image analysis approaches or by hardware modules measuring the intensity of reflected infrared light. We propose here a truly all-optical microscope autofocus taking advantage of an electrically tunable lens and a totally internally reflected infrared probe beam. We implement a feedback-loop based on the lateral position of a totally internally reflected infrared laser on a quadrant photodetector, as an indicator of the relative defocus. We show here how to treat the combined contributions due to mechanical defocus and deformation of the tunable lens. As a result, the sample can be kept in focus without any mechanical movement, at rates up to hundreds of Hertz. The device requires only reflective optics and can be implemented at a fraction of the cost required for a comparable piezo-based actuator.

  14. Transverse-structure electrostatic charged particle beam lens

    Science.gov (United States)

    Moran, M.J.

    1998-10-13

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility. 7 figs.

  15. Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System.

    Science.gov (United States)

    Ti, Chaoyang; Ho-Thanh, Minh-Tri; Wen, Qi; Liu, Yuxiang

    2017-10-13

    Position detection with high accuracy is crucial for force calibration of optical trapping systems. Most existing position detection methods require high-numerical-aperture objective lenses, which are bulky, expensive, and difficult to miniaturize. Here, we report an affordable objective-lens-free, fiber-based position detection scheme with 2 nm spatial resolution and 150 MHz bandwidth. This fiber based detection mechanism enables simultaneous trapping and force measurements in a compact fiber optical tweezers system. In addition, we achieved more reliable signal acquisition with less distortion compared with objective based position detection methods, thanks to the light guiding in optical fibers and small distance between the fiber tips and trapped particle. As a demonstration of the fiber based detection, we used the fiber optical tweezers to apply a force on a cell membrane and simultaneously measure the cellular response.

  16. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  17. Effects of a myosin light chain kinase inhibitor on the optics and accommodation of the avian crystalline lens.

    Science.gov (United States)

    Luck, Sara; Choh, Vivian

    2011-01-01

    While many studies investigate the cytoskeletal properties of the lens with respect to cataract development, examinations of how these molecular structures interact are few. Myosin light chain kinase (MLCK), actin, and myosin are present on the crystalline lenses of chickens. The purpose of this experiment was to determine whether contractile proteins found on the lens play a role in the optical functions of the lens at rest, and during accommodation. Eyes of 6-day old white Leghorn chicks (Gallus gallus domesticus) were enucleated, with the ciliary nerve intact. One eye was treated with the MLCK inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-7) and the other eye with vehicle only. Three concentrations of ML-7 were used: 1 µM, 10 µM, and 100 µM. The back vertex focal lengths (BVFLs) were measured before, during, and after accommodation using an optical laser scanning monitor (Scantox™). To further confirm ML-7 activity, western blotting was performed to detect whether MLCK was inhibited. Western blots confirmed that MLCK was inhibited at all three ML-7 concentrations. Ten µM ML-7 treatments led to longer BVFLs at rest (p=0.0338), while 100 µM treatments led to opposite changes, resulting in shorter BVFLs (p=0.0220). While 1 µM treatments did not lead to significant optical changes (p=0.4416), BVFLs were similar in pattern to those of the 10 µM group. ML-7 had no effects on accommodative amplitudes (p=0.7848). Inhibition of MLCK by ML-7 led to differential changes in BVFLs that presumably affected lenticular integrity. No apparent effect on accommodative amplitudes was observed.

  18. Effect of birefringence of lens material on polarization status and optical imaging characteristics

    Science.gov (United States)

    Kim, Wan-Chin; Park, No-Cheol

    2018-04-01

    In most cases of molding with glass or optical polymers, it is expected that there will be birefringence caused by the internal mechanical stresses remaining in the molding material. The distribution of the residual stress can be annealed by slow cooling, but this approach is disadvantageous with respect to the shape accuracy and manufacturing time. In this study, we propose an analytical model to calculate the diffracted field near the focal plane by considering two primary parameters, the orientation angle of the fast axis and the path difference. In order to verify the reliability of the analytical model, we compared the measured beam spot of the F-theta lens of the laser scanning unit (LSU) with the analytical result. In addition, we analyzed the calculated result from the perspective of the polarization status in the exit pupil. The proposed analysis method can be applied to enhance the image quality for cases in which birefringence occurs in a lens material by suitably modeling the amplitude and phase of the incident light flux.

  19. Handbook of optical design

    CERN Document Server

    Malacara-Hernández, Daniel

    2013-01-01

    Handbook of Optical Design, Third Edition covers the fundamental principles of geometric optics and their application to lens design in one volume. It incorporates classic aspects of lens design along with important modern methods, tools, and instruments, including contemporary astronomical telescopes, Gaussian beams, and computer lens design. Written by respected researchers, the book has been extensively classroom-tested and developed in their lens design courses. This well-illustrated handbook clearly and concisely explains the intricacies of optical system design and evaluation. It also di

  20. Terahertz lens made out of natural stone.

    Science.gov (United States)

    Han, Daehoon; Lee, Kanghee; Lim, Jongseok; Hong, Sei Sun; Kim, Young Kie; Ahn, Jaewook

    2013-12-20

    Terahertz (THz) time-domain spectroscopy probes the optical properties of naturally occurring solid aggregates of minerals, or stones, in the THz frequency range. Refractive index and extinction coefficient measurement reveals that most natural stones, including mudstone, sandstone, granite, tuff, gneiss, diorite, slate, marble, and dolomite, are fairly transparent for THz frequency waves. Dolomite in particular exhibits a nearly uniform refractive index of 2.7 over the broad frequency range from 0.1 to 1 THz. The high index of refraction allows flexibility in lens designing with a shorter accessible focal length or a thinner lens with a given focal length. Good agreement between the experiment and calculation for the THz beam profile confirms that dolomite has high homogeneity as a lens material, suggesting the possibility of using natural stones for THz optical elements.

  1. Invited review article: the electrostatic plasma lens.

    Science.gov (United States)

    Goncharov, Alexey

    2013-02-01

    The fundamental principles, experimental results, and potential applications of the electrostatic plasma lens for focusing and manipulating high-current, energetic, heavy ion beams are reviewed. First described almost 50 years ago, this optical beam device provides space charge neutralization of the ion beam within the lens volume, and thus provides an effective and unique tool for focusing high current beams where a high degree of neutralization is essential to prevent beam blow-up. Short and long lenses have been explored, and a lens in which the magnetic field is provided by rare-earth permanent magnets has been demonstrated. Applications include the use of this kind of optical tool for laboratory ion beam manipulation, high dose ion implantation, heavy ion accelerator injection, in heavy ion fusion, and other high technology.

  2. Voltage optimization of a 4-element injection lens on a hemispherical spectrograph with virtual entry aperture

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, G.; Fernández-Martín, M. [Dept. Física Aplicada III, Facultad de Física, UCM, 28040 Madrid (Spain); Sise, O. [Dept. of Science Education, Faculty of Education, Suleyman Demirel University, 32260 Isparta (Turkey); Madesis, I.; Dimitriou, A. [Dept. of Physics, University of Crete, P.O. Box 2208, GR 71003 Heraklion, Crete (Greece); Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR 15310 Agia Paraskevi (Greece); Laoutaris, A. [Dept. of Applied Physics, National Technical University of Athens, GR 15780 Zografou (Greece); Zouros, T.J.M. [Dept. of Physics, University of Crete, P.O. Box 2208, GR 71003 Heraklion, Crete (Greece); Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR 15310 Agia Paraskevi (Greece)

    2016-02-15

    We present simulation results for a biased paracentric hemispherical deflector analyzer equipped with a 4-element input lens and a position sensitive detector used in our zero-degree Auger projectile spectroscopy apparatus. Calculations of electron trajectories traversing the lens and analyzer fields were performed and cross checked using both boundary-element and finite-difference methods. The two middle lens electrode voltages were varied as free parameters, while various criteria were used to select their optimal values in an effort to obtain improved energy resolution.

  3. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  4. Radiography apparatus

    International Nuclear Information System (INIS)

    Sashin, D.; Sternglass, E.J.

    1982-01-01

    The apparatus of the present invention provides radiography apparatus wherein the use of a flat, generally rectangular beam or a fan-shaped beam of radiation in combination with a collimator, scintillator and device for optically coupling a self-scanning array of photodiodes to the scintillator means will permit production of images or image data with high contrast sensitivity and detail. It is contemplated that the self-scanning array of photodiodes may contain from about 60 to 2048, and preferably about 256 to 2048, individual photodiode elements per inch of object width, thereby permitting maximum data collection to produce a complete image or complete collection of image data

  5. Athermal design and analysis of glass-plastic hybrid lens

    Science.gov (United States)

    Yang, Jian; Cen, Zhaofeng; Li, Xiaotong

    2018-01-01

    With the rapid development of security market, the glass-plastic hybrid lens has gradually become a choice for the special requirements like high imaging quality in a wide temperature range and low cost. The reduction of spherical aberration is achieved by using aspherical surface instead of increasing the number of lenses. Obviously, plastic aspherical lens plays a great role in the cost reduction. However, the hybrid lens has a priority issue, which is the large thermal coefficient of expansion of plastic, causing focus shift and seriously affecting the imaging quality, so the hybrid lens is highly sensitive to the change of temperature. To ensure the system operates normally in a wide temperature range, it is necessary to eliminate the influence of temperature on the hybrid lens system. A practical design method named the Athermal Material Map is summarized and verified by an athermal design example according to the design index. It includes the distribution of optical power and selection of glass or plastic. The design result shows that the optical system has excellent imaging quality at a wide temperature range from -20 ° to 70 °. The method of athermal design in this paper has generality which could apply to optical system with plastic aspherical surface.

  6. TESS Lens-Bezel Assembly Modal Testing

    Science.gov (United States)

    Dilworth, Brandon J.; Karlicek, Alexandra

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) program, led by the Kavli Institute for Astrophysics and Space Research at the Massachusetts Institute of Technology (MIT) will be the first-ever spaceborne all-sky transit survey. MIT Lincoln Laboratory is responsible for the cameras, including the lens assemblies, detector assemblies, lens hoods, and camera mounts. TESS is scheduled to be launched in August of 2017 with the primary goal to detect small planets with bright host starts in the solar neighborhood, so that detailed characterizations of the planets and their atmospheres can be performed. The TESS payload consists of four identical cameras and a data handling unit. Each camera consists of a lens assembly with seven optical elements and a detector assembly with four charge-coupled devices (CCDs) including their associated electronics. The optical prescription requires that several of the lenses are in close proximity to a neighboring element. A finite element model (FEM) was developed to estimate the relative deflections between each lens-bezel assembly under launch loads to predict that there are adequate clearances preventing the lenses from making contact. Modal tests using non-contact response measurements were conducted to experimentally estimate the modal parameters of the lens-bezel assembly, and used to validate the initial FEM assumptions. Key Words Non-contact measurements, modal analysis, model validation

  7. Electron optics

    CERN Document Server

    Grivet, Pierre; Bertein, F; Castaing, R; Gauzit, M; Septier, Albert L

    1972-01-01

    Electron Optics, Second English Edition, Part I: Optics is a 10-chapter book that begins by elucidating the fundamental features and basic techniques of electron optics, as well as the distribution of potential and field in electrostatic lenses. This book then explains the field distribution in magnetic lenses; the optical properties of electrostatic and magnetic lenses; and the similarities and differences between glass optics and electron optics. Subsequent chapters focus on lens defects; some electrostatic lenses and triode guns; and magnetic lens models. The strong focusing lenses and pris

  8. Ion beam exposure apparatus using a liquid metal source

    International Nuclear Information System (INIS)

    Komuro, M.

    1982-01-01

    A field effect liquid metal ion source is described. The current-voltage characteristics, the angular intensity distribution and the total energy distribution were measured for gallium, gold and lead sources. The results are presented and the effect of space charge on the emission current is discussed. Optimum working conditions for the use of the ion sources in probe formation are derived. On the basis of the experimental results, an apparatus operating at 50 kV or less was designed. Details of the design, which includes a triode ion gun and an einzel lens, are given together with preliminary results of pattern delineation with the apparatus. (Auth.)

  9. Radiation absorbed dose to the lens in dacryoscintigraphy with /sup 99m/TcO4-1

    International Nuclear Information System (INIS)

    Robertson, J.S.; Brown, M.L.; Colvard, D.M.

    1979-01-01

    Calculations of the radiation dose to the lens for /sup 99m/TcO 4 - in dacryoscintigraphy are developed in some detail. The results indicate that the absorbed dose to the germinal epithelium of the lens is 2.2 x 10 -5 to 1.4 x 10 -4 rad/μCi (5.9 x 10 -12 to 3.8 x 10 -11 Gy/Bq) /sup 99m/TcO 4 - under physiological conditions. With blockage of the lacrimal drainage apparatus, the dose to the lens could increase to 4 x 10 -3 rad/μCi

  10. Lateral refraction and reflection of light polarized lenses principle. Coplanar lens systems

    International Nuclear Information System (INIS)

    Miranda, L.

    2012-01-01

    Studying the behavior of the linearly polarized light to impact a lens and in the lens itself, resulted in the discovery of a physical principle of optics, not mentioned or used so far. This phenomenon is very useful in practice. Perhaps the manifestation of the phenomenon occurs in the plane perpendicular to the road or optical axis, is due the reason that was not seen before, but it has always been there when polarized light passes through a lens. Known and mastered the principle has been manipulated for better research results, using for the first time a planar lens system, which according to the placement of the lens allows for accurate lags between the light beams ar the exits the system. (Author)

  11. Image forming apparatus

    DEFF Research Database (Denmark)

    2005-01-01

    (x, y) read out of the PALSLM is subjected to Fourier transform by a lens. A phase contrast filter gives a predetermined phase shift to only the zero-order light component of Fourier light image alpha f(x, y). The phase-shifted light image is subjected to inverse Fourier transform by a lens...... to project an output image O(x, y) to an output plane. A light image O'(x, y) branched by a beam sampler is picked up by a pickup device and an evaluation value calculating unit evaluates conformity between the image O(x, y) and the image G(x, y).; A control unit performs feedback control of optical...

  12. Improvement of optical imaging resolution by a negative refraction photonic crystal with a solid immersion lens

    International Nuclear Information System (INIS)

    Tseng, M.-C.; Chen, L.-W.; Liu, C.-Y.

    2008-01-01

    Photonic crystals (PCs) have many potential applications because of their ability to control light-wave propagation. We have investigated the solid immersion lens (SIL) technology in imaging system based on negative refraction PCs and analyzed the influence of refractive index and geometric parameters of SIL on imaging resolution. In the finite element method calculation, the resolution of our optical system has improved greatly. The high performance of imaging resolution was achieved with shorter radius and larger refractive index of SIL. Furthermore, the effects of the three kinds of SILs at the same radius were analyzed. Such a mechanism of negative refraction PCs and SILs should open up a new application for designing components in optical imaging systems

  13. Adjustable internal structure for reconstructing gradient index profile of crystalline lens.

    Science.gov (United States)

    Bahrami, Mehdi; Goncharov, Alexander V; Pierscionek, Barbara K

    2014-03-01

    Employing advanced technologies in studying the crystalline lens of the eye has improved our understanding of the refractive index gradient of the lens. Reconstructing and studying such a complex structure requires models with adaptable internal geometry that can be altered to simulate geometrical and optical changes of the lens with aging. In this Letter, we introduce an optically well-defined, geometrical structure for modeling the gradient refractive index profile of the crystalline lens with the advantage of an adjustable internal structure that is not available with existing models. The refractive index profile assigned to this rotationally symmetric geometry is calculated numerically, yet it is shown that this does not limit the model. The study provides a basis for developing lens models with sophisticated external and internal structures without the need for analytical solutions to calculate refractive index profiles.

  14. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    International Nuclear Information System (INIS)

    Shu, Deming; Shvyd’ko, Yuri V.; Stoupin, Stanislav; Kim, Kwang-Je

    2016-01-01

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  15. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming, E-mail: shu@aps.anl.gov; Shvyd’ko, Yuri V.; Stoupin, Stanislav; Kim, Kwang-Je [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, U.S.A (United States)

    2016-07-27

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  16. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.

    Science.gov (United States)

    Shen, Xin; Javidi, Bahram

    2018-03-01

    We have developed a three-dimensional (3D) dynamic integral-imaging (InIm)-system-based optical see-through augmented reality display with enhanced depth range of a 3D augmented image. A focus-tunable lens is adopted in the 3D display unit to relay the elemental images with various positions to the micro lens array. Based on resolution priority integral imaging, multiple lenslet image planes are generated to enhance the depth range of the 3D image. The depth range is further increased by utilizing both the real and virtual 3D imaging fields. The 3D reconstructed image and the real-world scene are overlaid using an optical see-through display for augmented reality. The proposed system can significantly enhance the depth range of a 3D reconstructed image with high image quality in the micro InIm unit. This approach provides enhanced functionality for augmented information and adjusts the vergence-accommodation conflict of a traditional augmented reality display.

  17. Method and apparatus for shape and end position determination using an optical fiber

    Science.gov (United States)

    Moore, Jason P. (Inventor)

    2010-01-01

    A method of determining the shape of an unbound optical fiber includes collecting strain data along a length of the fiber, calculating curvature and bending direction data of the fiber using the strain data, curve-fitting the curvature and bending direction data to derive curvature and bending direction functions, calculating a torsion function using the bending direction function, and determining the 3D shape from the curvature, bending direction, and torsion functions. An apparatus for determining the 3D shape of the fiber includes a fiber optic cable unbound with respect to a protective sleeve, strain sensors positioned along the cable, and a controller in communication with the sensors. The controller has an algorithm for determining a 3D shape and end position of the fiber by calculating a set of curvature and bending direction data, deriving curvature, bending, and torsion functions, and solving Frenet-Serret equations using these functions.

  18. Optimum design of nonimaging Fresnel lens; Hiketsuzo fureneru renzu no saiteki sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Leutz, R.; Komai, K.; Akisawa, A.; Kashiwagi, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan); Suzuki, A. [Unesco, Paris (France). Associations in Japan

    1999-11-25

    An optimum convex shaped nonimaging Fresnel lens is designed following the edge ray principle. The lens is evaluated by tracing rays and calculating a projective optical concentration ratio. This Fresnel lens can used as concentrator in photovoltaic and solar thermal applications. (author)

  19. Observation of Biological Tissues Using Common Path Optical Coherence Tomography with Gold Coated Conical Tip Lens Fiber

    International Nuclear Information System (INIS)

    Taguchi, K; Sugiyama, J; Totsuka, M; Imanaka, S

    2012-01-01

    In this paper, we proposed a high lateral resolution common-path Fourier domain optical coherence tomography(OCT) system with the use of a chemically etched single mode fiber. In our experiments, single mode optical fiber for 1310nm was used for preparing the tapered tips. Our system used a conical microlens that was chemically etched by selective chemical etching technique using an etching solution of buffered hydrofluoric acid (BHF). From experimental results, we verified that our proposed optical coherence tomography system could operate as a common-path Fourier domain OCT system and conical tip lens fiber was very useful for a high lateral resolution common-path Fourier domain OCT system. Furthermore, we could observe a surface of paramecium bursaria and symbiotic chlorella in the paramecium bursaria using gold coated conical-tip fiber in the water.

  20. Catadioptric aberration correction in cathode lens microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M. [IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 (United States); Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-04-15

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed.

  1. Design of a nonimaging Fresnel lens for solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Leutz, R.; Akisawa, Atushi; Kashiwagi, Takao [Tokyo University of Agriculture and Technology (Japan). Dept. of Mechanical Systems Engineering; Suzuki, Akio [UNESCO, Paris (France)

    1999-04-01

    An optimum convex shaped nonimaging Fresnel lens is designed following the edge ray principle. The lens is evaluated by tracing rays and calculating a projective optical concentration ratio. This Fresnel lens is intended for use in evacuated tube type solar concentrators, generating mid-temperature heat to drive sorption cycles, or provide industrial process heat. It can also be used along with a secondary concentrator in photovoltaic applications. (author)

  2. A novel optical probe for pH sensing in gastro-esophageal apparatus

    Science.gov (United States)

    Baldini, F.; Ghini, G.; Giannetti, A.; Senesi, F.; Trono, C.

    2011-03-01

    Monitoring gastric pH for long periods, usually 24 h, may be essential in analyzing the physiological pattern of acidity, in obtaining information on changes in activity during peptic ulcer disease, and in assessing the effect of antisecretory drugs. Gastro-esophageal reflux, which causes a pH decrease in the esophagus content from pH 7 even down to pH 2, can determine esophagitis with possible strictures and Barrett's esophagus. One of the difficulties of the optical measurement of pH in the gastro-esophageal apparatus lies in the required extended working range from 1 to 8 pH units. The present paper deals with a novel optical pH sensor, using methyl red as optical pH indicator. Contrary to all acidbase indicators characterized by working ranges limited to 2-3 pH units, methyl red, after its covalent immobilization on controlled pore glass (CPG), is characterized by a wide working range which fits with the clinical requirements. The novel probe design here described is suitable for gastro-esophageal applications and allows the optimization of the performances of the CPG with the immobilised indicator. This leads to a very simple configuration characterized by a very fast response time.

  3. Bifocal liquid lens zoom objective for mobile phone applications

    Science.gov (United States)

    Wippermann, F. C.; Schreiber, P.; Bräuer, A.; Craen, P.

    2007-02-01

    Miniaturized camera systems are an integral part of today's mobile phones which recently possess auto focus functionality. Commercially available solutions without moving parts have been developed using the electrowetting technology. Here, the contact angle of a drop of a conductive or polar liquid placed on an insulating substrate can be influenced by an electric field. Besides the compensation of the axial image shift due to different object distances, mobile phones with zoom functionality are desired as a next evolutionary step. In classical mechanically compensated zoom lenses two independently driven actuators combined with precision guides are needed leading to a delicate, space consuming and expansive opto-mechanical setup. Liquid lens technology based on the electrowetting effect gives the opportunity to built adaptive lenses without moving parts thus simplifying the mechanical setup. However, with the recent commercially available liquid lens products a completely motionless and continuously adaptive zoom system with market relevant optical performance is not feasible. This is due to the limited change in optical power the liquid lenses can provide and the dispersion of the used materials. As an intermediate step towards a continuously adjustable and motionless zoom lens we propose a bifocal system sufficient for toggling between two effective focal lengths without any moving parts. The system has its mechanical counterpart in a bifocal zoom lens where only one lens group has to be moved. In a liquid lens bifocal zoom two groups of adaptable liquid lenses are required for adjusting the effective focal length and keeping the image location constant. In order to overcome the difficulties in achromatizing the lens we propose a sequential image acquisition algorithm. Here, the full color image is obtained from a sequence of monochrome images (red, green, blue) leading to a simplified optical setup.

  4. Recent ion optics and mass spectrometers

    International Nuclear Information System (INIS)

    Matsuda, Hisashi

    1976-01-01

    The establishment of the third order approximation method for computing the orbit of the ion optical system for mass spectrometers and the completion of its computer program are reported. A feature of this orbit computation is in that the effect of the fringing field can be considered with the accuracy of third order approximation. Several new ion optical systems for mass spectrometers have been proposed by using such orbit computing programs. Brief explanation and the description on the future prospect and problems are made on the following items: the vertual image double focusing mass spectrometer, the second order double focusing mass spectrometer, the E x B superposed field mass spectrometer, and the apparatus with a cylindrical electric field and Q-lens. In the E x B superposed field with Matsuda plates, if the magnetic field is generated by an electromagnet instead of a permanent magnet, the dispersion of mass and energy can be changed at will. The Matsuda plates are known as the auxiliary electrodes positioned at the top and bottom of a cylindrical capacitor. Utilizing those characteristics, a zoom spectrometer can be made, with which only a necessary part of mass spectra can be investigated in detail, but the whole spectra are investigated roughly. In addition, the distribution of energy can be investigated simultaneously after the separation of ionic mass similarly to the parabola apparatus. (Iwakiri, K.)

  5. Bioinspired adaptive gradient refractive index distribution lens

    Science.gov (United States)

    Yin, Kezhen; Lai, Chuan-Yar; Wang, Jia; Ji, Shanzuo; Aldridge, James; Feng, Jingxing; Olah, Andrew; Baer, Eric; Ponting, Michael

    2018-02-01

    Inspired by the soft, deformable human eye lens, a synthetic polymer gradient refractive index distribution (GRIN) lens with an adaptive geometry and focal power has been demonstrated via multilayer coextrusion and thermoforming of nanolayered elastomeric polymer films. A set of 30 polymer nanolayered films comprised of two thermoplastic polyurethanes having a refractive index difference of 0.05 were coextruded via forced-assembly technique. The set of 30 nanolayered polymer films exhibited transmission near 90% with each film varying in refractive index by 0.0017. An adaptive GRIN lens was fabricated from a laminated stack of the variable refractive index films with a 0.05 spherical GRIN. This lens was subsequently deformed by mechanical ring compression of the lens. Variation in the optical properties of the deformable GRIN lens was determined, including 20% variation in focal length and reduced spherical aberration. These properties were measured and compared to simulated results by placido-cone topography and ANSYS methods. The demonstration of a solid-state, dynamic focal length, GRIN lens with improved aberration correction was discussed relative to the potential future use in implantable devices.

  6. Iris reconstruction combined with iris-claw intraocular lens implantation for the management of iris-lens injured patients.

    Science.gov (United States)

    Hu, Shufang; Wang, Mingling; Xiao, Tianlin; Zhao, Zhenquan

    2016-03-01

    To study the efficiency and safety of iris reconstruction combined with iris-claw intraocular lens (IOL) implantation in the patients with iris-lens injuries. Retrospective, noncomparable consecutive case series study. Eleven patients (11 eyes) following iris-lens injuries underwent iris reconstructions combined with iris-claw IOL implantations. Clinical data, such as cause and time of injury, visual acuity (VA), iris and lens injuries, surgical intervention, follow-up period, corneal endothelial cell count, and optical coherence tomography, were collected. Uncorrected VA (UCVA) in all injured eyes before combined surgery was equal to or iris returned to its natural round shape or smaller pupil, and the iris-claw IOLs in the 11 eyes were well-positioned on the anterior surface of reconstructed iris. No complications occurred in those patients. Iris reconstruction combined with iris-claw IOL implantation is a safe and efficient procedure for an eye with iris-lens injury in the absence of capsular support.

  7. Wide-range tunable magnetic lens for tabletop electron microscope

    International Nuclear Information System (INIS)

    Chang, Wei-Yu; Chen, Fu-Rong

    2016-01-01

    A tabletop scanning electron microscope (SEM) utilizes permanent magnets as condenser lenses to minimize its size, but this sacrifices the tunability of condenser lenses such that a tabletop system can only be operated with a fixed accelerating voltage. In contrast, the traditional condenser lens utilizes an electromagnetic coil to adjust the optical properties, but the size of the electromagnetic lens is inevitably larger. Here, we propose a tunable condenser lens for a tabletop SEM that uses a combination of permanent magnets and electromagnetic coils. The overall dimensions of the newly designed lens are the same as the original permanent magnet lens, but the new lens allows the tabletop SEM to be operated at different accelerating voltages between 1 kV and 15 kV. - Highlights: • A compact condenser lens combines both permanent magnet and coils. • A tunable lens is designed to keep the same focal point for voltage 1 to 15 kV. • A miniature tunable lens which can directly fit into tabletop SEM.

  8. Wide-range tunable magnetic lens for tabletop electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Wei-Yu; Chen, Fu-Rong, E-mail: fchen1@me.com

    2016-12-15

    A tabletop scanning electron microscope (SEM) utilizes permanent magnets as condenser lenses to minimize its size, but this sacrifices the tunability of condenser lenses such that a tabletop system can only be operated with a fixed accelerating voltage. In contrast, the traditional condenser lens utilizes an electromagnetic coil to adjust the optical properties, but the size of the electromagnetic lens is inevitably larger. Here, we propose a tunable condenser lens for a tabletop SEM that uses a combination of permanent magnets and electromagnetic coils. The overall dimensions of the newly designed lens are the same as the original permanent magnet lens, but the new lens allows the tabletop SEM to be operated at different accelerating voltages between 1 kV and 15 kV. - Highlights: • A compact condenser lens combines both permanent magnet and coils. • A tunable lens is designed to keep the same focal point for voltage 1 to 15 kV. • A miniature tunable lens which can directly fit into tabletop SEM.

  9. Transient anterior subcapsular vacuolar change of the crystalline lens in patients after posterior chamber phakic intraocular lens implantation.

    Science.gov (United States)

    Chung, Jin Kwon; Shin, Jin Hee; Lee, Sung Jin

    2013-10-25

    We present two cases of transient vacuolar changes in the anterior subcapsular space of the crystalline lens in patients after posterior chamber phakic intraocular lens implantation. Implantable collamer lenses (ICL) were implanted in healthy myopic patients. Vacuolar changes developed just after the irrigating procedure through the narrow space between the ICL and the crystalline lens. Slit-lamp examinations and spectral domain optical coherence tomography showed bleb-like lesions in the anterior subcapsular space of one eye in each case, though the lesions gradually improved without visual deterioration. Consequently, the lesions turned into a few anterior subcapsular small faint opacities. Direct irrigation of the narrow space confined by the ICL and the crystalline lens is at risk for the development of vacuolar changes in the crystalline lens. The observed spontaneous reversal indicates that surgeons should not rush to surgical intervention but rather opt for close follow over several weeks.

  10. Ray tracing package through a lens system and a spectrometer

    International Nuclear Information System (INIS)

    Zurro, B.; King, P.W.; Lazarus, E.A.

    1980-03-01

    To study the light collection optics of the ISX-B two-dimensional (2-D) Thomson scattering system, we have implemented in the Oak Ridge National Laboratory (ORNL) Fusion Energy Division (FED) PDP-10 two computer programs, LENS and SPECT, that trace rays through a lens system and a spectrometer, respectively. The lens package follows the path of any kind of ray (meridional or skew) through a centered optical system formed by an arbitrary number of spherical surfaces. The spectrometer package performs geometrical ray tracing through a Czerney-Turner spectrometer and can be easily modified for studying any other configuration. Contained herein is a description of the procedures followed and a listing of the computer programs

  11. Evolution and the Calcite Eye Lens

    OpenAIRE

    Williams, Vernon L.

    2013-01-01

    Calcite is a uniaxial, birefringent crystal, which in its optically transparent form, has been used for animal eye lenses, the trilobite being one such animal. Because of the calcite birefringence there is a difficulty in using calcite as a lens. When the propagation direction of incoming light is not exactly on the c-axis, the mages blur. In this paper, calcite blurring is evaluated, and the non-blurring by a crystallin eye lens is compared to a calcite one.

  12. Active liquid-crystal deflector and lens with Fresnel structure

    Science.gov (United States)

    Shibuya, Giichi; Yamano, Shohei; Yoshida, Hiroyuki; Ozaki, Masanori

    2017-02-01

    A new type of tunable Fresnel deflector and lens composed of liquid crystal was developed. Combined structure of multiple interdigitated electrodes and the high-resistivity (HR) layer implements the saw-tooth distribution of electrical potential with only the planar surfaces of the transparent substrates. According to the numerical calculation and design, experimental devices were manufactured with the liquid crystal (LC) material sealed into the sandwiched flat glass plates of 0.7 mm thickness with rubbed alignment layers set to an anti-parallel configuration. Fabricated beam deflector with no moving parts shows the maximum tilt angle of +/-1.3 deg which can apply for optical image stabilizer (OIS) of micro camera. We also discussed and verified their lens characteristics to be extended more advanced applications. Transparent interdigitated electrodes were concentrically aligned on the lens aperture with the insulator gaps under their boundary area. The diameter of the lens aperture was 30 mm and the total number of Fresnel zone was 100. Phase retardation of the beam wavefront irradiated from the LC lens device can be evaluated by polarizing microscope images with a monochromatic filter. Radial positions of each observed fringe are plotted and fitted with 2nd degree polynomial approximation. The number of appeared fringes is over 600 in whole lens aperture area and the correlation coefficients of all approximations are over 0.993 that seems enough ideal optical wavefront. The obtained maximum lens powers from the approximations are about +/-4 m-1 which was satisfied both convex and concave lens characteristics; and their practical use for the tunable lens grade eyeglasses became more prospective.

  13. Light Emitting, Photovoltaic or Other Electronic Apparatus and System

    Science.gov (United States)

    Ray, William Johnstone (Inventor); Lowenthal, Mark D. (Inventor); Shotton, Neil O. (Inventor); Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)

    2018-01-01

    The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.

  14. A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems.

    Science.gov (United States)

    Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu

    2014-02-13

    Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.

  15. The Role of Aquaporins in Ocular Lens Homeostasis

    Science.gov (United States)

    Schey, Kevin L.; Petrova, Rosica S.; Gletten, Romell B.; Donaldson, Paul J.

    2017-01-01

    Aquaporins (AQPs), by playing essential roles in the maintenance of ocular lens homeostasis, contribute to the establishment and maintenance of the overall optical properties of the lens over many decades of life. Three aquaporins, AQP0, AQP1 and AQP5, each with distinctly different functional properties, are abundantly and differentially expressed in the different regions of the ocular lens. Furthermore, the diversity of AQP functionality is increased in the absence of protein turnover by age-related modifications to lens AQPs that are proposed to alter AQP function in the different regions of the lens. These regional differences in AQP functionality are proposed to contribute to the generation and directionality of the lens internal microcirculation; a system of circulating ionic and fluid fluxes that delivers nutrients to and removes wastes from the lens faster than could be achieved by passive diffusion alone. In this review, we present how regional differences in lens AQP isoforms potentially contribute to this microcirculation system by highlighting current areas of investigation and emphasizing areas where future work is required. PMID:29231874

  16. Building scientific apparatus

    National Research Council Canada - National Science Library

    Moore, John H; Davis, Christopher C; Coplan, Michael A; Greer, Sandra C

    2009-01-01

    ... specification of the components of apparatus, many new to this edition. Data on the properties of materials and components used by manufacturers are included. Mechanical, optical, and electronic construction techniques carried out in the laboratory, as well as those let out to specialized shops, are also described. Step-by-step instruc...

  17. Optofluidic lens actuated by laser-induced solutocapillary forces

    Science.gov (United States)

    Malyuk, A. Yu.; Ivanova, N. A.

    2017-06-01

    We demonstrate an adaptive liquid lens controlled by laser-induced solutocapillary forces. The liquid droplet serving as a lens is formed in a thin layer of binary liquid mixture by surface tension driven flows caused by the thermal action of laser irradiation. The shape of droplet, its aperture and the focal length are reversibly changed without hysteresis by varying the intensity of the laser beam. The focal length variation range of the droplet-lens lies in between infinity (a flat layer) to 15 mm (a curved interface). The droplet-lens is capable to adjust the in-plane lateral position in response to a displacement of the laser beam. The proposed laser controlled droplet-lens will enable to develop smart liquid optical devices, which can imitate the accommodation reflex and pupillary light reflex of the eye.

  18. Lens Systems Incorporating A Zero Power Corrector Principle Of The Design And Its Application In Large Aperture, Moderate Field Of View Optical Systems

    Science.gov (United States)

    Klee, H. W.; McDowell, M. W.

    1986-02-01

    A new lens design concept, based on the use of a zero (or near zero) power corrector, will be described. The logical development of the design, based on the work of Schmidt', Houghton' and others will be discussed and examples will be given of moderate field of view lenses with apertures ranging from f/0.35 to f/2. It will also be shown that the lens configuration is relatively insensitive to the aperture stop location and that for less demanding applications only very basic optical glass types need be used.

  19. Multiplexing schemes for an achromatic programmable diffractive lens

    Energy Technology Data Exchange (ETDEWEB)

    Millan, M S; Perez-Cabre, E; Oton, J [Technical University of Catalonia, Dep. Optics and Optometry, Terrassa-Barcelona, 08222 (Spain)], E-mail: millan@oo.upc.edu

    2008-11-01

    A multiplexed programmable diffractive lens, displayed on a pixelated liquid crystal device under broadband illumination, is proposed to compensate for the severe chromatic aberration that affects diffractive elements. The proposed lens is based on multiplexing a set of sublenses with a common focal length for different wavelengths. We consider different types of integration of the optical information (spatial only, temporal only and hybrid spatial-temporal) combined with a proper selection of the spectral bandwidth. The properties and limits of the achromatic programmable multiplexed lens are described. Experimental results are presented and discussed.

  20. Multiplexing schemes for an achromatic programmable diffractive lens

    International Nuclear Information System (INIS)

    Millan, M S; Perez-Cabre, E; Oton, J

    2008-01-01

    A multiplexed programmable diffractive lens, displayed on a pixelated liquid crystal device under broadband illumination, is proposed to compensate for the severe chromatic aberration that affects diffractive elements. The proposed lens is based on multiplexing a set of sublenses with a common focal length for different wavelengths. We consider different types of integration of the optical information (spatial only, temporal only and hybrid spatial-temporal) combined with a proper selection of the spectral bandwidth. The properties and limits of the achromatic programmable multiplexed lens are described. Experimental results are presented and discussed.

  1. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.

    Science.gov (United States)

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V

    2015-08-24

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.

  2. DotLens smartphone microscopy for biological and biomedical applications (Conference Presentation)

    Science.gov (United States)

    Sung, Yu-Lung; Zhao, Fusheng; Shih, Wei-Chuan

    2017-02-01

    Recent advances in inkjet-printed optics have created a new class of lens fabrication technique. Lenses with a tunable geometry, magnification, and focal length can be fabricated by dispensing controlled amounts of liquid polymer onto a heated surface. This fabrication technique is highly cost-effective, and can achieve optically smooth surface finish. Dubbed DotLens, a single of which weighs less than 50 mg and occupies a volume less than 50 μL. DotLens can be attached onto any smartphone camera akin to a contact lens, and enable smartphones to obtain image resolution as fine as 1 µm. The surface curvature modifies the optical path of light to the image sensor, and enables the camera to focus as close as 2 mm. This enables microscopic imaging on a smartphone without any additional attachments, and has shown great potential in mobile point-of-care diagnostic systems, particularly for histology of tissue sections and cytology of blood cells. DotLens Smartphone Microscopy represents an innovative approach fundamentally different from other smartphone microscopes. In this paper, we describe the application and performance of DotLens smartphone microscopy in biological and biomedical research. In particular, we show recent results from images collected from pathology tissue slides with cancer features. In addition, we show performance in cytological analysis of blood smear. This tool has empowered Citizen Science investigators to collect microscopic images from various interesting objects.

  3. Perfect imaging of three object points with only two analytic lens surfaces in two dimensions

    Science.gov (United States)

    Duerr, Fabian; Benítez, Pablo; Miñano, Juan Carlos; Meuret, Youri; Thienpont, Hugo

    2012-06-01

    In this work, a new two-dimensional analytic optics design method is presented that enables the coupling of three ray sets with two lens profiles. This method is particularly promising for optical systems designed for wide field of view and with clearly separated optical surfaces. However, this coupling can only be achieved if different ray sets will use different portions of the second lens profile. Based on a very basic example of a single thick lens, the Simultaneous Multiple Surfaces design method in two dimensions (SMS2D) will help to provide a better understanding of the practical implications on the design process by an increased lens thickness and a wider field of view. Fermat's principle is used to deduce a set of functional differential equations fully describing the entire optical system. The transformation of these functional differential equations into an algebraic linear system of equations allows the successive calculation of the Taylor series coefficients up to an arbitrary order. The evaluation of the solution space reveals the wide range of possible lens configurations covered by this analytic design method. Ray tracing analysis for calculated 20th order Taylor polynomials demonstrate excellent performance and the versatility of this new analytical optics design concept.

  4. Division Multiplexing of 10 Gbit/s Ethernet Signals Synchronized by All-Optical Signal Processing Based on a Time-Lens

    DEFF Research Database (Denmark)

    Areal, Janaina Laguardia

    This Thesis presents 3 years work of an optical circuit that performs both pulse compression and frame synchronization and retiming. Our design aims at directly multiplexing several 10G Ethernet data packets (frames) to a high-speed OTDM link. This scheme is optically trans-parent and does not re...... coupler, completing the OTDM signal generation. We demonstrate the effectiveness of the design by laboratory experi-ments and simulations with VPI and MatLab....... not require clock recovery, resulting in a potentially very efficient solution. The scheme uses a time-lens, implemented through a sinusoidally driven optical phase modulation, combined with a linear dispersion element. As time-lenses are also used for pulse compression, we de-sign the circuit also to perform...

  5. Characteristics of soft X-ray lens

    International Nuclear Information System (INIS)

    Qin Yi

    2007-12-01

    A soft X-lens was devised with waveguide X-ray optics of total external reflection (TER). The lens consists of a stack of 1 387 TER waveguides with inner diameter of 0.45 mm and outer diameter of 0.60 mm. With the help of plasma sources of soft X-ray radiation, high density of pure soft X-ray radiation (without plasma expansion fragments) with broad-band spectral range can be obtained at the focus of the lens. As laser-plasma is considered, the radiation density of 1.3 x 10 5 W/cm 2 is obtained, the transmission coefficient is 18.6%, the ratio of the density at the focus with and without the lens is 1000 and the radiation capture is 28.9 degree. The density of 0.5 TW/cm 2 can be obtained as far as Qiang-Guang I facility is considered. (authors)

  6. Daylighting System Based on Novel Design of Linear Fresnel lens

    Directory of Open Access Journals (Sweden)

    Thanh Tuan Pham

    2017-10-01

    Full Text Available In this paper, we present a design and optical simulation of a daylighting system using a novel design of linear Fresnel lens, which is constructed based on the conservation of optical path length and edge ray theorem. The linear Fresnel lens can achieve a high uniformity by using a new idea of design in which each groove of the lens distributes sunlight uniformly over the receiver so that the whole lens also uniformly distributes sunlight over the receiver. In this daylighting system, the novel design of linear Fresnel lens significantly improves the uniformity of collector and distributor. Therefore, it can help to improve the performance of the daylighting system. The structure of the linear Fresnel lenses is designed by using Matlab. Then, the structure of lenses is appreciated by ray tracing in LightToolsTM to find out the optimum lens shape. In addition, the simulation is performed by using LightToolsTM to estimate the efficiency of the daylighting system. The results show that the designed collector can achieve the efficiency of ~80% with the tolerance of ~0.60 and the concentration ratio of 340 times, while the designed distributor can reach a high uniformity of >90%.

  7. Orbiting objective lens telescope system and method

    International Nuclear Information System (INIS)

    Crooks, J.W. Jr.

    1984-01-01

    A large objective lens is placed in a highly eccentric orbit about the earth. The orbit and orientation of the lens are carefully chosen so that it focuses light or other radiation from a preselected astronomical object into an image which slowly moves across the surface of the earth. A row of optical sensing units is located on the surface of the earth so that the image focused by the orbiting objective lens will travel substantially perpendicularly across the row during an observation. Output data generated from the sensing units may be multiplexed and fed to a real time processor which produces display signals. Each of the sensing units provides one scan line of the image being observed. The display signals are fed to a suitable display device which produces a picture of the preselected astronomical object. The objective lens may comprise a large flexible Fresnel zone plate or a flexible convex lens carried by a bicycle wheel-type supporting structure. The lens and supporting structure may be unfolded from compact cargo configurations and rotated after being placed into orbit

  8. Athermal design for mid-wave infrared lens with long EFFL

    Science.gov (United States)

    Bai, Yu; Xing, Tingwen

    2016-10-01

    When the environment temperature has changed, then each parameter in infrared lens has also changed, thus the image quality became bad, so athermal technology is one of key technology in designing infrared lens. The temperature influence of each parameter in infrared lens is analyzed in the paper. In the paper, an athermal mid-wave infrared optical system with long focal length by Code-v optical design software was presented. The parameters of the athermal infrared system are 4.0 f/number, 704mm effective focal length (EFL) , 1° field of view and 3.7-4.8 μm spectrum region 100% cold shield efficiency. When the spatial frequency is 16lp/mm, the Modulation Transfer Function (MTF) of all the field of view was above 0.5 from the working temperature range -40° to 60°. From the image quality and thermal analysis result, we knew that the lens had good athermal performance.

  9. The Multi-Element Electronstatic Lens Systems for Controlling and Focusing Charged Particle

    International Nuclear Information System (INIS)

    Sise, O.

    2004-01-01

    Particle optics are very close anolog of photon optics and most of the principles of an barged particle beam can be understood by thinking of the particles as rays of light. There are similar behaviours between particle and photon optics in controlling beams of light and charged particles, such as lenses and mirrors. Extensive information about the properties of charged particle optics, from which appropriate systems can be designed for any specific problem. In this way electrostatic lens systems are used to control beams of c/iarged particle with various energy and directions in several fields, for example electron microscopy, cathode ray tubes, ion accelerators and electron impact studies. In an electrostatic lens system quantative information is required over a wide energy range and a zoom-type of optics is needed. If the magnification is to remain constant over a wide range of energies, quite complicated electrostatic lens systems are required, .containing three, four, five, or even more lens elements. We firstly calculated the optical properties of three and four element cylinder electrostatic lenses with the help of the SIMION and LENSYS programs and developed the method for the calculation of the focal properties of five and more element lenses with afocal mode. In this method we used the combination of three and four element lenses to derive focal properties of multi-element lenses and presented this data over a wide range of energy

  10. Zone compensated multilayer laue lens and apparatus and method of fabricating the same

    Science.gov (United States)

    Conley, Raymond P.; Liu, Chian Qian; Macrander, Albert T.; Yan, Hanfei; Maser, Jorg; Kang, Hyon Chol; Stephenson, Gregory Brian

    2015-07-14

    A multilayer Laue Lens includes a compensation layer formed in between a first multilayer section and a second multilayer section. Each of the first and second multilayer sections includes a plurality of alternating layers made of a pair of different materials. Also, the thickness of layers of the first multilayer section is monotonically increased so that a layer adjacent the substrate has a minimum thickness, and the thickness of layers of the second multilayer section is monotonically decreased so that a layer adjacent the compensation layer has a maximum thickness. In particular, the compensation layer of the multilayer Laue lens has an in-plane thickness gradient laterally offset by 90.degree. as compared to other layers in the first and second multilayer sections, thereby eliminating the strict requirement of the placement error.

  11. Objective Lens Optimized for Wavefront Delivery, Pupil Imaging, and Pupil Ghosting

    Science.gov (United States)

    Olzcak, Gene

    2009-01-01

    An interferometer objective lens (or diverger) may be used to transform a collimated beam into a diverging or converging beam. This innovation provides an objective lens that has diffraction-limited optical performance that is optimized at two sets of conjugates: imaging to the objective focus and imaging to the pupil. The lens thus provides for simultaneous delivery of a high-quality beam and excellent pupil resolution properties.

  12. The Time Lens Concept Applied to Ultra-High-Speed OTDM Signal Processing

    DEFF Research Database (Denmark)

    Clausen, Anders; Palushani, Evarist; Mulvad, Hans Christian Hansen

    2013-01-01

    This survey paper presents some of the applications where the versatile time-lens concept successfully can be applied to ultra-high-speed serial systems by offering expected needed functionalities for future optical communication networks.......This survey paper presents some of the applications where the versatile time-lens concept successfully can be applied to ultra-high-speed serial systems by offering expected needed functionalities for future optical communication networks....

  13. A DETAILED GRAVITATIONAL LENS MODEL BASED ON SUBMILLIMETER ARRAY AND KECK ADAPTIVE OPTICS IMAGING OF A HERSCHEL-ATLAS SUBMILLIMETER GALAXY AT z = 4.243 {sup ,} {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, R. S.; Gurwell, M. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fu Hai; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Smith, D. J. B.; Bonfield, D.; Dunne, L. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Dye, S.; Eales, S. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Auld, R. [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, M.; Fritz, J. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Baker, A. J. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Cava, A. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Clements, D. L.; Dariush, A. [Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Coppin, K. [Department of Physics, McGill University, Ernest Rutherford Building, 3600 Rue University, Montreal, Quebec, H3A 2T8 (Canada); Dannerbauer, H. [Universitaet Wien, Institut fuer Astronomie, Tuerkenschanzstrasse 17, 1180 Wien, Oesterreich (Austria); De Zotti, G. [Universita di Padova, Dipto di Astronomia, Vicolo dell' Osservatorio 2, IT 35122, Padova (Italy); Hopwood, R., E-mail: rbussmann@cfa.harvard.edu [Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); and others

    2012-09-10

    We present high-spatial resolution imaging obtained with the Submillimeter Array (SMA) at 880 {mu}m and the Keck adaptive optics (AO) system at the K{sub S}-band of a gravitationally lensed submillimeter galaxy (SMG) at z = 4.243 discovered in the Herschel Astrophysical Terahertz Large Area Survey. The SMA data (angular resolution Almost-Equal-To 0.''6) resolve the dust emission into multiple lensed images, while the Keck AO K{sub S}-band data (angular resolution Almost-Equal-To 0.''1) resolve the lens into a pair of galaxies separated by 0.''3. We present an optical spectrum of the foreground lens obtained with the Gemini-South telescope that provides a lens redshift of z{sub lens} = 0.595 {+-} 0.005. We develop and apply a new lens modeling technique in the visibility plane that shows that the SMG is magnified by a factor of {mu} = 4.1 {+-} 0.2 and has an intrinsic infrared (IR) luminosity of L{sub IR} = (2.1 {+-} 0.2) Multiplication-Sign 10{sup 13} L{sub Sun }. We measure a half-light radius of the background source of r{sub s} = 4.4 {+-} 0.5 kpc which implies an IR luminosity surface density of {Sigma}{sub IR} (3.4 {+-} 0.9) Multiplication-Sign 10{sup 11} L{sub Sun} kpc{sup -2}, a value that is typical of z > 2 SMGs but significantly lower than IR luminous galaxies at z {approx} 0. The two lens galaxies are compact (r{sub lens} Almost-Equal-To 0.9 kpc) early-types with Einstein radii of {theta}{sub E1} 0.57 {+-} 0.01 and {theta}{sub E2} = 0.40 {+-} 0.01 that imply masses of M{sub lens1} = (7.4 {+-} 0.5) Multiplication-Sign 10{sup 10} M{sub Sun} and M{sub lens2} = (3.7 {+-} 0.3) Multiplication-Sign 10{sup 10} M{sub Sun }. The two lensing galaxies are likely about to undergo a dissipationless merger, and the mass and size of the resultant system should be similar to other early-type galaxies at z {approx} 0.6. This work highlights the importance of high spatial resolution imaging in developing models of strongly lensed galaxies

  14. Camera, handlens, and microscope optical system for imaging and coupled optical spectroscopy

    Science.gov (United States)

    Mungas, Greg S. (Inventor); Boynton, John (Inventor); Sepulveda, Cesar A. (Inventor); Nunes de Sepulveda, legal representative, Alicia (Inventor); Gursel, Yekta (Inventor)

    2012-01-01

    An optical system comprising two lens cells, each lens cell comprising multiple lens elements, to provide imaging over a very wide image distance and within a wide range of magnification by changing the distance between the two lens cells. An embodiment also provides scannable laser spectroscopic measurements within the field-of-view of the instrument.

  15. Design method of freeform light distribution lens for LED automotive headlamp based on DMD

    Science.gov (United States)

    Ma, Jianshe; Huang, Jianwei; Su, Ping; Cui, Yao

    2018-01-01

    We propose a new method to design freeform light distribution lens for light-emitting diode (LED) automotive headlamp based on digital micro mirror device (DMD). With the Parallel optical path architecture, the exit pupil of the illuminating system is set in infinity. Thus the principal incident rays of micro lens in DMD is parallel. DMD is made of high speed digital optical reflection array, the function of distribution lens is to distribute the emergent parallel rays from DMD and get a lighting pattern that fully comply with the national regulation GB 25991-2010.We use DLP 4500 to design the light distribution lens, mesh the target plane regulated by the national regulation GB 25991-2010 and correlate the mesh grids with the active mirror array of DLP4500. With the mapping relations and the refraction law, we can build the mathematics model and get the parameters of freeform light distribution lens. Then we import its parameter into the three-dimensional (3D) software CATIA to construct its 3D model. The ray tracing results using Tracepro demonstrate that the Illumination value of target plane is easily adjustable and fully comply with the requirement of the national regulation GB 25991-2010 by adjusting the exit brightness value of DMD. The theoretical optical efficiencies of the light distribution lens designed using this method could be up to 92% without any other auxiliary lens.

  16. Computational imaging using lightweight diffractive-refractive optics

    KAUST Repository

    Peng, Yifan

    2015-11-23

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  17. Computational imaging using lightweight diffractive-refractive optics

    KAUST Repository

    Peng, Yifan; Fu, Qiang; Amata, Hadi; Su, Shuochen; Heide, Felix; Heidrich, Wolfgang

    2015-01-01

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  18. Reconfigurable optical-to-optical frequency conversion method and apparatus

    Science.gov (United States)

    Zortman, William A.; Lentine, Anthony L.

    2017-04-18

    A photonic device is provided for impressing a modulation pattern on an optical carrier. The device includes a unit in which a photodetector and an optical microresonator are monolithically integrated. The device further includes an optical waveguide evanescently coupled to the optical microresonator and having at least an upstream portion configured to carry at least one optical carrier toward the microresonator. The optical microresonator is tunable so as to resonate with the optical carrier frequency. The optical microresonator and the photodetector are mutually coupled such that in operation, charge carriers photogenerated in the photodetector are injected into the microresonator, where the photocurrent changes the resonant conditions. In some embodiments the device is operable as an optical-to-optical frequency converter. In other embodiments the device is operable as an oscillator.

  19. Beam manipulating by metal–anisotropic–metal plasmonic lens

    International Nuclear Information System (INIS)

    Bahramipanah, M; Abrishamian, M S; Mirtaheri, S A

    2012-01-01

    Embedding anisotropic media in the slit region of a plasmonic nano-optic lens is proposed as a new method of actively modulating the output beam. The focal length can be controlled easily by exposing the plasmonic nano-optic lens to a constant external electric field. The physical principle of this phenomenon is evaluated from the phase of surface plasmon polaritons (SPPs) in the slits and the electro-optical effect of liquid crystals. Our numerical simulations using the finite-difference time-domain (FDTD) technique reveal that a large tuning range of the focal length up to 545 nm at the first communication window can be achieved. The special feature of the proposed structure gives it an opportunity to be used as an efficient element in ultrahigh nano-scale integrated photonic circuits for miniaturization and tuning purposes. (paper)

  20. Effects of resonator input power on Kerr lens mode-locked lasers

    Indian Academy of Sciences (India)

    lasers. S KAZEMPOUR, A KESHAVARZ∗ and G HONARASA. Department of Physics, Faculty of Sciences, Shiraz University of Technology, Shiraz, Iran ... Keywords. Femtosecond pulses; Kerr lens sensitivity; Kerr lens mode-locked laser. ... The optical lengths of Kerr medium with thickness d and refractive index n under.

  1. A framework of cloud supported collaborative design in glass lens moulds based on aspheric measurement

    Science.gov (United States)

    Zhu, Yongjian; Wang, Yu; Na, Jingxin; Zhi, Yanan; Fan, Yufeng

    2013-09-01

    Aspheric mould design includes the top-down design and reversal design. In this paper, a new framework of reversal design is proposed combining with cloud supported collaborative design (CSCD) based on aspheric measurement. The framework is a kind of collaborative platform, which is composed of eight modules, including the computerized aspheric precision measurement module (CAPM), computer-aided optical design of aspheric lens system (CAOD), computer-aided design of lens mould (CADLM), FEM(finite element method) simulation of lens molding module (FEMLM), computer-aided manufacture of lens and moulds (CAMLM), measurement data analysis module (MDAM), optical product lifecycle management module (OPLM) and cloud computing network module (CCNM). In this framework, the remote clients send an improved requirement or fabrication demand about optical lens system through CCNM, which transfers this signal to OPLM. In OPLM, one main server is in charge of the task distribution and collaborative work of other six modules. The first measurement data of aspheric lens are produced by clients or our proposed platform CAPM, then are sent to CAOD for optimization and the electronic drawings of lens moulds are generated in CADLM module. According the design drawings, the FEMLM could give the lens-molding simulation parameters through FEM software. The simulation data are used for the second design of moulds in CADLM module. In this case, the moulds could be fabricated in CAMLM by ultra-precision machine, and the aspheric lens could be also produced by lens-molding machine in CAMLM. At last, the final shape of aspheric lens could be measured in CAPM and the data analysis could be conducted in MDAM module. Through the proposed framework, all the work described above could be performed coordinately. And the optimum design data of lens mould could be realized and saved, then shared by all the work team.

  2. Gabor lens focusing of a negative ion beam

    International Nuclear Information System (INIS)

    Palkovic, J.A.; Mills, F.E.; Schmidt, C.; Young, D.E.

    1989-05-01

    Gabor or plasma lenses have previously been used to focus intense beams of positive ions at energies from 10 keV to 5 MeV. It is the large electrostatic field of the non-neutral plasma in the Gabor lens which is responsible for the focusing. Focusing an ion beam with a given sign of charge in a Gabor lens requires a non-neutral plasma with the opposite sign of charge as the beam. A Gabor lens constructed at Fermilab has been used to focus a 30 keV proton beam with good optical quality. We discuss studies of the action of a Gabor lens on a beam of negative ions. A Gabor lens has been considered for matching an H/sup /minus// beam into an RFQ in the redesign of the low energy section of the Fermilab linac. 9 refs., 3 figs., 1 tab

  3. A rheo-optical apparatus for real time kinetic studies on shear-induced alignment of self-assembled soft matter with small sample volumes

    Science.gov (United States)

    Laiho, Ari; Ikkala, Olli

    2007-01-01

    In soft materials, self-assembled nanoscale structures can allow new functionalities but a general problem is to align such local structures aiming at monodomain overall order. In order to achieve shear alignment in a controlled manner, a novel type of rheo-optical apparatus has here been developed that allows small sample volumes and in situ monitoring of the alignment process during the shear. Both the amplitude and orientation angles of low level linear birefringence and dichroism are measured while the sample is subjected to large amplitude oscillatory shear flow. The apparatus is based on a commercial rheometer where we have constructed a flow cell that consists of two quartz teeth. The lower tooth can be set in oscillatory motion whereas the upper one is connected to the force transducers of the rheometer. A custom made cylindrical oven allows the operation of the flow cell at elevated temperatures up to 200 °C. Only a small sample volume is needed (from 9 to 25 mm3), which makes the apparatus suitable especially for studying new materials which are usually obtainable only in small quantities. Using this apparatus the flow alignment kinetics of a lamellar polystyrene-b-polyisoprene diblock copolymer is studied during shear under two different conditions which lead to parallel and perpendicular alignment of the lamellae. The open device geometry allows even combined optical/x-ray in situ characterization of the alignment process by combining small-angle x-ray scattering using concepts shown by Polushkin et al. [Macromolecules 36, 1421 (2003)].

  4. Algorithm design of liquid lens inspection system

    Science.gov (United States)

    Hsieh, Lu-Lin; Wang, Chun-Chieh

    2008-08-01

    In mobile lens domain, the glass lens is often to be applied in high-resolution requirement situation; but the glass zoom lens needs to be collocated with movable machinery and voice-coil motor, which usually arises some space limits in minimum design. In high level molding component technology development, the appearance of liquid lens has become the focus of mobile phone and digital camera companies. The liquid lens sets with solid optical lens and driving circuit has replaced the original components. As a result, the volume requirement is decreased to merely 50% of the original design. Besides, with the high focus adjusting speed, low energy requirement, high durability, and low-cost manufacturing process, the liquid lens shows advantages in the competitive market. In the past, authors only need to inspect the scrape defect made by external force for the glass lens. As to the liquid lens, authors need to inspect the state of four different structural layers due to the different design and structure. In this paper, authors apply machine vision and digital image processing technology to administer inspections in the particular layer according to the needs of users. According to our experiment results, the algorithm proposed can automatically delete non-focus background, extract the region of interest, find out and analyze the defects efficiently in the particular layer. In the future, authors will combine the algorithm of the system with automatic-focus technology to implement the inside inspection based on the product inspective demands.

  5. Perform light and optic experiments in Augmented Reality

    Science.gov (United States)

    Wozniak, Peter; Vauderwange, Oliver; Curticapean, Dan; Javahiraly, Nicolas; Israel, Kai

    2015-10-01

    In many scientific studies lens experiments are part of the curriculum. The conducted experiments are meant to give the students a basic understanding for the laws of optics and its applications. Most of the experiments need special hardware like e.g. an optical bench, light sources, apertures and different lens types. Therefore it is not possible for the students to conduct any of the experiments outside of the university's laboratory. Simple optical software simulators enabling the students to virtually perform lens experiments already exist, but are mostly desktop or web browser based. Augmented Reality (AR) is a special case of mediated and mixed reality concepts, where computers are used to add, subtract or modify one's perception of reality. As a result of the success and widespread availability of handheld mobile devices, like e.g. tablet computers and smartphones, mobile augmented reality applications are easy to use. Augmented reality can be easily used to visualize a simulated optical bench. The students can interactively modify properties like e.g. lens type, lens curvature, lens diameter, lens refractive index and the positions of the instruments in space. Light rays can be visualized and promote an additional understanding of the laws of optics. An AR application like this is ideally suited to prepare the actual laboratory sessions and/or recap the teaching content. The authors will present their experience with handheld augmented reality applications and their possibilities for light and optic experiments without the needs for specialized optical hardware.

  6. High convergence efficiency design of flat Fresnel lens with large aperture

    Science.gov (United States)

    Ke, Jieyao; Zhao, Changming; Guan, Zhe

    2018-01-01

    This paper designed a circle-shaped Fresnel lens with large aperture as part of the solar pumped laser design project. The Fresnel lens designed in this paper simulate in size 1000mm×1000mm, focus length 1200mm and polymethyl methacrylate (PMMA) material in order to conduct high convergence efficiency. In the light of design requirement of concentric ring with same width of 0.3mm, this paper proposed an optimized Fresnel lens design based on previous sphere design and conduct light tracing simulation in Matlab. This paper also analyzed the effect of light spot size, light intensity distribution, optical efficiency under four conditions, monochromatic parallel light, parallel spectrum light, divergent monochromatic light and sunlight. Design by 550nm wavelength and under the condition of Fresnel reflection, the results indicated that the designed lens could convergent sunlight in diffraction limit of 11.8mm with a 78.7% optical efficiency, better than the sphere cutting design results of 30.4%.

  7. Achromatic triplet and athermalized lens assembly for both midwave and longwave infrared spectra

    Science.gov (United States)

    Kuo, Chih-Wei

    2014-02-01

    Analytic solutions for finding the achromatic triplet in the midwave and longwave infrared spectra simultaneously are explored. The relationship between the combination of promising refractive materials and the system's optical power is also formulated. The principles for stabilizing the effective focal length of an air-spaced lens group with respect to temperature are explored, and the thermal properties of the optical component and mechanical elements mutually counterbalanced. An optical design based on these achromatic and athermal theories is demonstrated, and the image quality of the lens assembly seems to approach the diffractive limitation.

  8. Night Vision Goggles Objectives Lens Focusing Methodology

    National Research Council Canada - National Science Library

    Pinkus, Alan; Task, H. L

    2000-01-01

    ...: interpupillary distance, tilt, eye relief, height, eyepiece and objective lens focus. Currently, aircrew use a Hoffman 20/20 test unit to pre-focus their NVG objective lenses at optical infinity before boarding their aircraft...

  9. Recent Developments In High Speed Lens Design At The NPRL

    Science.gov (United States)

    Mcdowell, M. W.; Klee, H. W.

    1987-09-01

    Although the lens provides the link between the high speed camera and the outside world, there has over the years been little evidence of co-operation between the optical design and high speed photography communities. It is still only too common for a manufacturer to develop a camera of improved performance and resolution and then to combine this with a standard camera lens. These lenses were often designed for a completely different recording medium and, more often than not, their use results in avoidable degradation of the overall system performance. There is a tendency to assume that a specialized lens would be too expensive and that pushing the aperture automatically implies more complex optical systems. In the present paper some recent South African developments in the design of large aperture lenses are described. The application of a new design principle, based on the work earlier this century of Bernhard Schmidt, shows that ultra-fast lenses need not be overly complex and a basic four-element lens configuration can be adapted to a wide variety of applications.

  10. The low-field permanent magnet electrostatic plasma lens

    International Nuclear Information System (INIS)

    Goncharov, A.; Gorshkov, V.; Maslov, V.; Zadorozhny, V.; Brown, I.

    2004-01-01

    We describe the status of ongoing research and development of the electrostatic plasma lens as used for the manipulation of high current broad beams of heavy ions of moderate energy. In some collaborative work at Lawrence Berkeley National Laboratory the lens was used to good effect for carrying out high dose ion implantation processing. In the process of this work a very narrow range of low magnetic field was found for which the ion-optical characteristics of the lens improved markedly. Subsequent theoretical analysis and computer modeling has led to an understanding of this phenomenon. These serendipitous results open up some attractive possibilities for the development of a new compact and low cost plasma lens based on permanent magnets rather than on current-driven field coils surrounding the lens volume. The development of this kind of lens, including both very low noise and minimal spherical aberration effects, may lead to a tool suitable for use in the injection beam lines of high current heavy ion linear accelerators. Here we briefly review the lens fundamentals, some characteristics of focusing heavy ion beams at low magnetic fields, and summarize recent theoretical and experimental developments, with emphasis on the relevance and suitability of the lens for accelerator injection application

  11. Signal-enhancement reflective pulse oximeter with Fresnel lens

    Science.gov (United States)

    Chung, Shuang-Chao; Sun, Ching-Cherng

    2016-09-01

    In this paper, a new reflective pulse oximeter is proposed and demonstrated with implanting a Fresnel lens, which enhances the reflected signal. An optical simulation model incorporated with human skin characteristics is presented to evaluate the capability of the Fresnel lens. In addition, the distance between the light emitting diode and the photodiode is optimized. Compared with the other reflective oximeters, the reflected signal light detected by the photodiode is enhanced to more than 140%.

  12. Flat dielectric metasurface lens array for three dimensional integral imaging

    Science.gov (United States)

    Zhang, Jianlei; Wang, Xiaorui; Yang, Yi; Yuan, Ying; Wu, Xiongxiong

    2018-05-01

    In conventional integral imaging, the singlet refractive lens array limits the imaging performance due to its prominent aberrations. Different from the refractive lens array relying on phase modulation via phase change accumulated along the optical paths, metasurfaces composed of nano-scatters can produce phase abrupt over the scale of wavelength. In this letter, we propose a novel lens array consisting of two neighboring flat dielectric metasurfaces for integral imaging system. The aspherical phase profiles of the metasurfaces are optimized to improve imaging performance. The simulation results show that our designed 5 × 5 metasurface-based lens array exhibits high image quality at designed wavelength 865 nm.

  13. Optical Synchronization of a 10-G Ethernet Packet and Time-Division Multiplexing to a 50-Gb/s Signal Using an Optical Time Lens

    DEFF Research Database (Denmark)

    Hu, Hao; Laguardia Areal, Janaina; Palushani, Evarist

    2010-01-01

    A 10-G Ethernet packet with maximum packet size of 1518 bytes is synchronized to a master clock with 200-kHz frequency offset using a time lens. The input 10-Gb/s non-return-to-zero packet is at the same time converted into a return-to-zero (RZ) packet with a pulsewidth of 10 ps and then time......-division multiplexed with four 10-Gb/s optical time-division-multiplexing (OTDM) channels, thus constituting a 50-Gb/s OTDM serial signal. Error-free performances of the synchronized RZ packet and demultiplexed packet from the aggregated 50-Gb/s OTDM signal are achieved....

  14. Design of LED projector based on gradient-index lens

    Science.gov (United States)

    Qian, Liyong; Zhu, Xiangbing; Cui, Haitian; Wang, Yuanhang

    2018-01-01

    In this study, a new type of projector light path is designed to eliminate the deficits of existing projection systems, such as complex structure and low collection efficiency. Using a three-color LED array as the lighting source, by means of the special optical properties of a gradient-index lens, the complex structure of the traditional projector is simplified. Traditional components, such as the color wheel, relay lens, and mirror, become unnecessary. In this way, traditional problems, such as low utilization of light energy and loss of light energy, are solved. With the help of Zemax software, the projection lens is optimized. The optimized projection lens, LED, gradient-index lens, and digital micromirror device are imported into Tracepro. The ray tracing results show that both the utilization of light energy and the uniformity are improved significantly.

  15. Comparison of two optical biometers in intraocular lens power calculation

    Directory of Open Access Journals (Sweden)

    Sheng Hui

    2014-01-01

    Full Text Available Aims: To compare the consistency and accuracy in ocular biometric measurements and intraocular lens (IOL power calculations using the new optical low-coherence reflectometry and partial coherence interferometry. Subjects and Methods: The clinical data of 122 eyes of 72 cataract patients were analyzed retrospectively. All patients were measured with a new optical low-coherence reflectometry system, using the LENSTAR LS 900 (Haag Streit AG/ALLEGRO BioGraph biometer (Wavelight., AG, and partial coherence interferometry (IOLMaster V.5.4 [Carl Zeiss., Meditec, AG] before phacoemulsification and IOL implantation. Repeated measurements, as recommended by the manufacturers, were performed by the same examiner with both devices. Using the parameters of axial length (AL, corneal refractive power (K1 and K2, and anterior chamber depth (ACD, power calculations for AcrySof SA60AT IOL were compared between the two devices using five formulas. The target was emmetropia. Statistical analysis was performed using Statistical Package for the Social Sciences software (SPSS 13.0 with t-test as well as linear regression. A P value < 0.05 was considered to be statistically significant. Results: The mean age of 72 cataract patients was 64.6 years ± 13.4 [standard deviation]. Of the biometry parameters, K1, K2 and [K1 + K2]/2 values were significantly different between the two devices (mean difference, K1: −0.05 ± 0.21 D; K2: −0.12 ± 0.20 D; [K1 + K2]/2: −0.08 ± 0.14 D. P <0.05. There was no statistically significant difference in AL and ACD between the two devices. The correlations of AL, K1, K2, and ACD between the two devices were high. The mean differences in IOL power calculations using the five formulas were not statistically significant between the two devices. Conclusions: New optical low-coherence reflectometry provides measurements that correlate well to those of partial coherence interferometry, thus it is a precise device that can be used for the

  16. Characteristic of laser diode beam propagation through a collimating lens.

    Science.gov (United States)

    Xu, Qiang; Han, Yiping; Cui, Zhiwei

    2010-01-20

    A mathematical model of a laser diode beam propagating through a collimating lens is presented. Wave propagation beyond the paraxial approximation is studied. The phase delay of the laser diode wave in passing through the lens is analyzed in detail. The propagation optical field after the lens is obtained from the diffraction integral by the stationary phase method. The model is employed to predict the light intensity at various beam cross sections, and the computed intensity distributions are in a good agreement with the corresponding measurements.

  17. Research progress on the measurement of human lens thickness in vivo

    Directory of Open Access Journals (Sweden)

    Yu-Huan Yang

    2017-05-01

    Full Text Available The precise measurement in lens thickness in vivo, provides great application value for intraocular accommodation and ametropia development mechanism research. And it has great clinical significance for the diagnosis and treatment of glaucoma and cataract. Currently, many ultrasonic methods and optical methods are used in measuring lens thickness. The measurement principles, advantages, disadvantages and the accuracy of the instruments are summarized in this paper. Among these methods, Orbscan II, Pentacam, Lenstar and AS-OCT can be used to measure lens thickness instead of A-scan. More important is the fact that UL-OCT can dynamically monitor the change of the lens thickness with intraocular accommodation. Choosing an instrument with higher measuring accuracy to examine the lens thickness, can provide more accurate and convincing lens thickness data for clinical and scientific research.

  18. Fabrication of an eyeball-like spherical micro-lens array using extrusion for optical fiber coupling

    International Nuclear Information System (INIS)

    Shen, S C; Huang, J C; Pan, C T; Chao, C H; Liu, K H

    2009-01-01

    Batch fabrication of an eyeball-like spherical micro-lens array (ESMA) not only can reduce micro assembly cost, but also can replace conventional ball lenses or costly gradient refractive index without sacrificing performance. Compared to the conventional half-spherical micro-lenses, the ESMA is an eyeball-like spherical lens which can focus light in all directions, thus providing application flexibility for optical purposes. The current ESMA is made of photoresist SU-8 using the extrusion process instead of the traditional thermal reflow process. For the process of an ESMA, this research develops a new process at ambient temperature by spin-coating SU-8 on a surface of a silicon wafer which serves as an extrusion plate and extruding it through a nozzle to form an ESMA. This nozzle consists of a nozzle orifice and nozzle cavity. The nozzle orifice is defined and made of SU-8 photoresist using ultra-violet lithography, which exhibits good mechanical property. The fabrication process of a nozzle cavity employs bulk micromachining to fabricate the cavities. Next, viscous SU-8 spun on the extrusion plate is extruded through the nozzle orifice to form an ESMA. Based on the effect of surface tension, by varying the amount of SU-8 on the plate extruded through different nozzle orifices, various diameters of ESMA can be fabricated. In this paper, a 4 × 4 ESMA with a numerical aperture of about 0.38 and diameters ranging from 60 to 550 µm is fabricated. Optical measurements indicate a diameter variance within 3% and the maximum coupling efficiency is approximately 62% when the single mode fiber is placed at a distance of 10 µm from the ESMA. The research has proved that the extrusion fabrication process of an ESMA is capable of enhancing the coupling efficiency

  19. Measurement accuracy of a stressed contact lens during its relaxation period

    Science.gov (United States)

    Compertore, David C.; Ignatovich, Filipp V.

    2018-02-01

    We examine the dioptric power and transmitted wavefront of a contact lens as it releases its handling stresses. Handling stresses are introduced as part of the contact lens loading process and are common across all contact lens measurement procedures and systems. The latest advances in vision correction require tighter quality control during the manufacturing of the contact lenses. The optical power of contact lenses is one of the critical characteristics for users. Power measurements are conducted in the hydrated state, where the lens is resting inside a solution-filled glass cuvette. In a typical approach, the contact lens must be subject to long settling times prior to any measurements. Alternatively, multiple measurements must be averaged. Apart from potential operator dependency of such approach, it is extremely time-consuming, and therefore it precludes higher rates of testing. Comprehensive knowledge about the settling process can be obtained by monitoring multiple parameters of the lens simultaneously. We have developed a system that combines co-aligned a Shack-Hartmann transmitted wavefront sensor and a time-domain low coherence interferometer to measure several optical and physical parameters (power, cylinder power, aberrations, center thickness, sagittal depth, and diameter) simultaneously. We monitor these parameters during the stress relaxation period and show correlations that can be used by manufacturers to devise methods for improved quality control procedures.

  20. Single lens to lens duplication: The missing link

    OpenAIRE

    Bhatt, Rupal; Jethani, Jitendra; Saluja, Praveen; Bharti, Vinay

    2008-01-01

    Congenital anomalies of the lens include a wide range from lens coloboma to primary aphakia and doubling of lens. There have been few case reports of double lens; the etiology suggested is metaplastic changes in the surface ectoderm that leads to formation of two lens vesicles and hence resulting in double lens. We report a case with bilobed lens, which raises the possibility of explaining the etiology of double lens.

  1. Playing with water drops: from wetting to optics through electrostatics

    International Nuclear Information System (INIS)

    Domps, A; Roques-Carmes, T

    2011-01-01

    We present a consistent series of activities, including experiments and basic computational studies, investigating the shape and optical properties of water drops in connection with novel technological devices. Most of the work can be carried out with simple teaching equipment and is well suited to undergraduate students. Firstly, we show how the mass variations of a sessile drop can be used to control its curvature and hence to produce lenses with tunable focal distance. Alternatively, the shape of the drop can be varied using electrowetting on dielectric (EWOD). We propose a simple pedagogical approach to this phenomenon in connection with historical electrostatic apparatus. A detailed process for the preparation of an EWOD device is given, together with a focimetric method allowing the analysis of electrowetting effects in practical exercises. Finally, the manipulations of a commercialized variable focus lens illustrate that EWOD is at the heart of most recent technological developments, making practical work in optics more attractive than traditional exercises using conventional lenses.

  2. Photon nanojet lens: design, fabrication and characterization

    International Nuclear Information System (INIS)

    Xu, Chen; Zhang, Sichao; Shao, Jinhai; Lu, Bing-Rui; Chen, Yifang; Mehfuz, Reyad; Drakeley, Stacey; Huang, Fumin

    2016-01-01

    In this paper, a novel nanolens with super resolution, based on the photon nanojet effect through dielectric nanostructures in visible wavelengths, is proposed. The nanolens is made from plastic SU-8, consisting of parallel semi-cylinders in an array. This paper focuses on the lens designed by numerical simulation with the finite-difference time domain method and nanofabrication of the lens by grayscale electron beam lithography combined with a casting/bonding/lift-off transfer process. Monte Carlo simulation for injected charge distribution and development modeling was applied to define the resultant 3D profile in PMMA as the template for the lens shape. After the casting/bonding/lift-off process, the fabricated nanolens in SU-8 has the desired lens shape, very close to that of PMMA, indicating that the pattern transfer process developed in this work can be reliably applied not only for the fabrication of the lens but also for other 3D nanopatterns in general. The light distribution through the lens near its surface was initially characterized by a scanning near-field optical microscope, showing a well defined focusing image of designed grating lines. Such focusing function supports the great prospects of developing a novel nanolithography based on the photon nanojet effect. (paper)

  3. Manufacturing PDMS micro lens array using spin coating under a multiphase system

    International Nuclear Information System (INIS)

    Sun, Rongrong; Yang, Hanry; Rock, D Mitchell; Danaei, Roozbeh; Panat, Rahul; Kessler, Michael R; Li, Lei

    2017-01-01

    The development of micro lens arrays has garnered much interest due to increased demand of miniaturized systems. Traditional methods for manufacturing micro lens arrays have several shortcomings. For example, they require expensive facilities and long lead time, and traditional lens materials (i.e. glass) are typically heavy, costly and difficult to manufacture. In this paper, we explore a method for manufacturing a polydimethylsiloxane (PDMS) micro lens array using a simple spin coating technique. The micro lens array, formed under an interfacial tension dominated system, and the influence of material properties and process parameters on the fabricated lens shape are examined. The lenses fabricated using this method show comparable optical properties—including surface finish and image quality—with a reduced cost and manufacturing lead time. (paper)

  4. An extraordinary tabletop speed of light apparatus

    Science.gov (United States)

    Pegna, Guido

    2017-09-01

    A compact, low-cost, pre-aligned apparatus of the modulation type is described. The apparatus allows accurate determination of the speed of light in free propagation with an accuracy on the order of one part in 104. Due to the 433.92 MHz radio frequency (rf) modulation of its laser diode, determination of the speed of light is possible within a sub-meter measuring base and in small volumes (some cm3) of transparent solids or liquids. No oscilloscope is necessary, while the required function generators, power supplies, and optical components are incorporated into the design of the apparatus and its receiver can slide along the optical bench while maintaining alignment with the laser beam. Measurement of the velocity factor of coaxial cables is also easily performed. The apparatus detects the phase difference between the rf modulation of the laser diode by further modulating the rf signal with an audio frequency signal; the phase difference between these signals is then observed as the loudness of the audio signal. In this way, the positions at which the minima of the audio signal are found determine where the rf signals are completely out of phase. This phase detection method yields a much increased sensitivity with respect to the display of coincidence of two signals of questionable arrival time and somewhat distorted shape on an oscilloscope. The displaying technique is also particularly suitable for large audiences as well as in unattended exhibits in museums and science centers. In addition, the apparatus can be set up in less than one minute.

  5. Projection-type X-ray microscope based on a spherical compound refractive X-ray lens

    OpenAIRE

    Dudchik, Yu. I.; Gary, C. K.; Park, H.; Pantell, R. H.; Piestrup, M. A.

    2007-01-01

    New projection- type X-ray microscope with a compound refractive lens as the optical element is presented. The microscope consists of an X-ray source that is 1-2 mm in diameter, compound X-ray lens and X-ray camera that are placed in-line to satisfy the lens formula. The lens forms an image of the X-ray source at camera sensitive plate. An object is placed between the X-ray source and the lens as close as possible to the source, and the camera shows a shadow image of the object. Spatial resol...

  6. Intraocular camera for retinal prostheses: Refractive and diffractive lens systems

    Science.gov (United States)

    Hauer, Michelle Christine

    The focus of this thesis is on the design and analysis of refractive, diffractive, and hybrid refractive/diffractive lens systems for a miniaturized camera that can be surgically implanted in the crystalline lens sac and is designed to work in conjunction with current and future generation retinal prostheses. The development of such an intraocular camera (IOC) would eliminate the need for an external head-mounted or eyeglass-mounted camera. Placing the camera inside the eye would allow subjects to use their natural eye movements for foveation (attention) instead of more cumbersome head tracking, would notably aid in personal navigation and mobility, and would also be significantly more psychologically appealing from the standpoint of personal appearances. The capability for accommodation with no moving parts or feedback control is incorporated by employing camera designs that exhibit nearly infinite depth of field. Such an ultracompact optical imaging system requires a unique combination of refractive and diffractive optical elements and relaxed system constraints derived from human psychophysics. This configuration necessitates an extremely compact, short focal-length lens system with an f-number close to unity. Initially, these constraints appear highly aggressive from an optical design perspective. However, after careful analysis of the unique imaging requirements of a camera intended to work in conjunction with the relatively low pixellation levels of a retinal microstimulator array, it becomes clear that such a design is not only feasible, but could possibly be implemented with a single lens system.

  7. Optical vortex scanning inside the Gaussian beam

    International Nuclear Information System (INIS)

    Masajada, J; Leniec, M; Augustyniak, I

    2011-01-01

    We discussed a new scanning method for optical vortex-based scanning microscopy. The optical vortex is introduced into the incident Gaussian beam by a vortex lens. Then the beam with the optical vortex is focused by an objective and illuminates the sample. By changing the position of the vortex lens we can shift the optical vortex position at the sample plane. By adjusting system parameters we can get 30 times smaller shift at the sample plane compared to the vortex lens shift. Moreover, if the range of vortex shifts is smaller than 3% of the beam radius in the sample plane the amplitude and phase distribution around the phase dislocation remains practically unchanged. Thus we can scan the sample topography precisely with an optical vortex

  8. Effect of contact lens use on Computer Vision Syndrome.

    Science.gov (United States)

    Tauste, Ana; Ronda, Elena; Molina, María-José; Seguí, Mar

    2016-03-01

    To analyse the relationship between Computer Vision Syndrome (CVS) in computer workers and contact lens use, according to lens materials. Cross-sectional study. The study included 426 civil-service office workers, of whom 22% were contact lens wearers. Workers completed the Computer Vision Syndrome Questionnaire (CVS-Q) and provided information on their contact lenses and exposure to video display terminals (VDT) at work. CVS was defined as a CVS-Q score of 6 or more. The covariates were age and sex. Logistic regression was used to calculate the association (crude and adjusted for age and sex) between CVS and individual and work-related factors, and between CVS and contact lens type. Contact lens wearers are more likely to suffer CVS than non-lens wearers, with a prevalence of 65% vs 50%. Workers who wear contact lenses and are exposed to the computer for more than 6 h day(-1) are more likely to suffer CVS than non-lens wearers working at the computer for the same amount of time (aOR = 4.85; 95% CI, 1.25-18.80; p = 0.02). Regular contact lens use increases CVS after 6 h of computer work. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  9. Engineering constraints and computer-aided optimization of electrostatic lens systems

    International Nuclear Information System (INIS)

    Steen, H.W.G. van der; Barth, J.E.; Adriaanse, J.P.

    1990-01-01

    An optimization tool for the design of electrostatic lens systems with axial symmetry is presented. This tool is based on the second-order electrode method combined with a multivariable numerical optimization procedure. The second-order electrode method makes a cubic spline approximation to the axial potential for a given electrode shape. With the help of this approximation, a numerical optimization can be done. To demonstrate this optimization tool, a lens system for Auger analyses is optimized. It is shown that variations in the practical constraints imposed on the design, like maximum electrode potential or maximum lens diameter, have strong effects on the obtainable lens quality. It is concluded that a numerical optimization does not take over the lens designer's job, but allows him to thoroughly examine the optical consequences of engineering choices by finding the optimum design for each set of constraints. (orig.)

  10. Apparatus for obtaining radiographs

    International Nuclear Information System (INIS)

    Frank, L.F.

    1977-01-01

    An apparatus for making x-ray pictures by imagewise exposing a cloud chamber containing a high atomic number gas mixed with a condensate vapor is described. The gas is under sufficiently high pressure to assure substantially complete absorption of the incident x-rays. Optical means are provided so that visible x-ray tracks are viewed from a direction aligned with the tracks

  11. Variable wide range of lens power and its improvement in a liquid-crystal lens using highly resistive films divided into two regions with different diameters

    Science.gov (United States)

    Kawamura, Marenori; Sato, Susumu

    2018-05-01

    The variable range of lens power of a liquid-crystal (LC) lens driven by two voltages is discussed on the basis of calculated and experimental results. The LC lens has two electrodes, which are a circularly hole-patterned electrode and a circular electrode, in addition to a common electrode, and highly resistive transparent films. The variable range of lens power increases with increasing driving voltage applied across the circularly hole-patterned electrode and the common electrode, and with decreasing diameter of highly resistive films. However, the optical-phase retardation profile tends to deviate from a parabolic curve in these cases. As a method to improve the trade-off properties, the highly resistive film is divided into two regions with different diameters, where the sheet resistance of an outer film is larger than that of an inner one. The improved LC lens has a lens power that varies in a wide range, and it exhibits a good parabolic phase retardation profile.

  12. Multiocular image sensor with on-chip beam-splitter and inner meta-micro-lens for single-main-lens stereo camera.

    Science.gov (United States)

    Koyama, Shinzo; Onozawa, Kazutoshi; Tanaka, Keisuke; Saito, Shigeru; Kourkouss, Sahim Mohamed; Kato, Yoshihisa

    2016-08-08

    We developed multiocular 1/3-inch 2.75-μm-pixel-size 2.1M- pixel image sensors by co-design of both on-chip beam-splitter and 100-nm-width 800-nm-depth patterned inner meta-micro-lens for single-main-lens stereo camera systems. A camera with the multiocular image sensor can capture horizontally one-dimensional light filed by both the on-chip beam-splitter horizontally dividing ray according to incident angle, and the inner meta-micro-lens collecting the divided ray into pixel with small optical loss. Cross-talks between adjacent light field images of a fabricated binocular image sensor and of a quad-ocular image sensor are as low as 6% and 7% respectively. With the selection of two images from one-dimensional light filed images, a selective baseline for stereo vision is realized to view close objects with single-main-lens. In addition, by adding multiple light field images with different ratios, baseline distance can be tuned within an aperture of a main lens. We suggest the electrically selective or tunable baseline stereo vision to reduce 3D fatigue of viewers.

  13. Compensating additional optical power in the central zone of a multifocal contact lens forminimization of the shrinkage error of the shell mold in the injection molding process.

    Science.gov (United States)

    Vu, Lien T; Chen, Chao-Chang A; Lee, Chia-Cheng; Yu, Chia-Wei

    2018-04-20

    This study aims to develop a compensating method to minimize the shrinkage error of the shell mold (SM) in the injection molding (IM) process to obtain uniform optical power in the central optical zone of soft axial symmetric multifocal contact lenses (CL). The Z-shrinkage error along the Z axis or axial axis of the anterior SM corresponding to the anterior surface of a dry contact lens in the IM process can be minimized by optimizing IM process parameters and then by compensating for additional (Add) powers in the central zone of the original lens design. First, the shrinkage error is minimized by optimizing three levels of four IM parameters, including mold temperature, injection velocity, packing pressure, and cooling time in 18 IM simulations based on an orthogonal array L 18 (2 1 ×3 4 ). Then, based on the Z-shrinkage error from IM simulation, three new contact lens designs are obtained by increasing the Add power in the central zone of the original multifocal CL design to compensate for the optical power errors. Results obtained from IM process simulations and the optical simulations show that the new CL design with 0.1 D increasing in Add power has the closest shrinkage profile to the original anterior SM profile with percentage of reduction in absolute Z-shrinkage error of 55% and more uniform power in the central zone than in the other two cases. Moreover, actual experiments of IM of SM for casting soft multifocal CLs have been performed. The final product of wet CLs has been completed for the original design and the new design. Results of the optical performance have verified the improvement of the compensated design of CLs. The feasibility of this compensating method has been proven based on the measurement results of the produced soft multifocal CLs of the new design. Results of this study can be further applied to predict or compensate for the total optical power errors of the soft multifocal CLs.

  14. Growth and optical development of the ocular lens of the squid (Sepioteuthis lessoniana).

    Science.gov (United States)

    Sivak, J G; West, J A; Campbell, M C

    1994-09-01

    Lens focal properties (spherical aberration), diameter and relative anterior/posterior proportions were measured photographically for Japanese squid (Sepioteuthis lessoniana) at ages 4-6 weeks, 7-9 weeks and 7-8 months. The measures involved photographing the refractive effects of lenses in a physiological solution, with and without an index matching fluid (polyvinylpyrroloidone solution), on a parallel array of fine helium-neon laser beams. Spherical aberration was determined from measurement of back vertex distance. Similar measurements were made on lenses from the eyes of cuttlefish (Sepia officinalis). The cephalopod lens develops as hemispheric halves from separate ectodermal sources. The posterior component contributes, on average, about 60% of axial lens diameter in S. lessoniana of all ages and 55% in S. officinalis. However, these proportions vary widely in both species. All lenses of both species show that spherical aberration is neutralized, although small variations in back vertex distance (positive and negative spherical aberration) were measured. Preliminary measures indicate that the refractive index distribution within the cephalopod lens varies in a manner reminiscent of teleost lenses. Squid lenses from animals 7-9 weeks of age were optimally corrected for spherical aberration. Some squid of this age, from a separate tank, showed a high incidence of cataract development. In each case, lens opacification was caused by deterioration of the posterior lens component.

  15. Construction of an apparatus for the magnetic capture of fermionic lithium atoms

    International Nuclear Information System (INIS)

    Jochim, S.

    2000-01-01

    This thesis reports on the construction of an apparatus for the magneto-optical trapping of the fermionic 6 Li-Isotope. This represents a first step towards experiments on the quantum degeneracy of dilute fermionic gases. The magneto-optical trap (MOT) will serve as a cold atom source for loading an optical trap. The apparatus consists of a laser system that excites the two 6 Li-D 2 -lines at 671 nm, an arrangement of coils generating the magnetic fields necessary to operate the MOT and a Zeeman slower, and a UHV-apparatus. The MOT is loaded from a thermal atomic beam. The Zeeman slower decelerates atoms with a velocity smaller than 600 m/s to about 40 m/s, so that they can be captured in the MOT. We expect to trap at least 10 8 atoms at a temperature of about 400 μK. (orig.)

  16. High resolution x-ray microscope

    OpenAIRE

    Gary, C. K.; Park, H.; Lombardo, L. W.; Piestrup, M. A.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I.

    2007-01-01

    The authors present x-ray images of grid meshes and biological material obtained using a microspot x-ray tube with a multilayer optic and a 92-element parabolic compound refractive lens CRL made of a plastic containing only hydrogen and carbon. Images obtained using this apparatus are compared with those using an area source with a spherical lens and a spherical lens with multilayer condenser. The authors found the best image quality using the multilayer condenser with a parabolic lens, com...

  17. Practical integrated design of a condenser-objective lens for transmission electron microscope

    International Nuclear Information System (INIS)

    Li Wenping; Wu Jian; Zhou Zhen; Gui Lijiang; Han Li

    2009-01-01

    A condenser-objective lens is designed through combination of separating and integrating to consider the effect of the front condenser field on its objective performance. A practical lens model including magnetic pole piece, magnetic circuit and coil windings is built to optimize its rear field. The front field can be integrated into the rear one by simply adjusting the position of the specimen and the excitation on the condenser-objective lens. Optical performance of the integrated lens is researched as both a condenser lens and an imaging one. The total aberrations at the specimen plane are 0.01nm under STEM operation mode and its spherical aberration coefficient is 1.5mm when being an imaging objective lens, which can meet for high resolution microanalysis and TEM imaging.

  18. Analytical calculation of geometric and chromatic aberrations in a bi-potential electrostatic and bell-shaped magnetic combined lens

    International Nuclear Information System (INIS)

    Ximen Jiye; Liu Zhixiong

    2000-01-01

    In the present paper, Gaussian optical property in the bi-potential electrostatic and the bell-shaped magnetic combined lens - a new theoretical model first proposed in electron optics - has been thoroughly studied. Meanwhile, based on electron optical canonical aberration theory, analytical formulas of third-order geometrical and first-order chromatic aberration coefficients and their computational results have first been derived for this bi-potential electrostatic and bell-shaped magnetic combined lens. It is to emphasized that this theoretical study can be used to estimate third-order geometric and first-order chromatic aberrations and to provide a theoretical criterion for numerical computation in a rotationally symmetric electromagnetic lens

  19. Visualization of femtosecond laser pulse-induced microincisions inside crystalline lens tissue.

    Science.gov (United States)

    Stachs, Oliver; Schumacher, Silvia; Hovakimyan, Marine; Fromm, Michael; Heisterkamp, Alexander; Lubatschowski, Holger; Guthoff, Rudolf

    2009-11-01

    To evaluate a new method for visualizing femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Laser Zentrum Hannover e.V., Hannover, Germany. Lenses removed from porcine eyes were modified ex vivo by femtosecond laser pulses (wavelength 1040 nm, pulse duration 306 femtoseconds, pulse energy 1.0 to 2.5 microJ, repetition rate 100 kHz) to create defined planes at which lens fibers separate. The femtosecond laser pulses were delivered by a 3-dimension (3-D) scanning unit and transmitted by focusing optics (numerical aperture 0.18) into the lens tissue. Lens fiber orientation and femtosecond laser-induced microincisions were examined using a confocal laser scanning microscope (CLSM) based on a Rostock Cornea Module attached to a Heidelberg Retina Tomograph II. Optical sections were analyzed in 3-D using Amira software (version 4.1.1). Normal lens fibers showed a parallel pattern with diameters between 3 microm and 9 microm, depending on scanning location. Microincision visualization showed different cutting effects depending on pulse energy of the femtosecond laser. The effects ranged from altered tissue-scattering properties with all fibers intact to definite fiber separation by a wide gap. Pulse energies that were too high or overlapped too tightly produced an incomplete cutting plane due to extensive microbubble generation. The 3-D CLSM method permitted visualization and analysis of femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Thus, 3-D CLSM may help optimize femtosecond laser-based procedures in the treatment of presbyopia.

  20. Design of Magnetic Charged Particle Lens Using Analytical Potential Formula

    Science.gov (United States)

    Al-Batat, A. H.; Yaseen, M. J.; Abbas, S. R.; Al-Amshani, M. S.; Hasan, H. S.

    2018-05-01

    In the current research was to benefit from the potential of the two cylindrical electric lenses to be used in the product a mathematical model from which, one can determine the magnetic field distribution of the charged particle objective lens. With aid of simulink in matlab environment, some simulink models have been building to determine the distribution of the target function and their related axial functions along the optical axis of the charged particle lens. The present study showed that the physical parameters (i.e., the maximum value, Bmax, and the half width W of the field distribution) and the objective properties of the charged particle lens have been affected by varying the main geometrical parameter of the lens named the bore radius R.

  1. Image forming apparatus

    DEFF Research Database (Denmark)

    2005-01-01

    An image H(x, y) for displaying a target image G(x, y) is displayed on a liquid-crystal display panel and illumination light from an illumination light source is made to pass therethrough to form an image on a PALSLM. Read light hv is radiated to the PALSLM and a phase-modulated light image alpha...... (x, y) read out of the PALSLM is subjected to Fourier transform by a lens. A phase contrast filter gives a predetermined phase shift to only the zero-order light component of Fourier light image alpha f(x, y). The phase-shifted light image is subjected to inverse Fourier transform by a lens...... to project an output image O(x, y) to an output plane. A light image O'(x, y) branched by a beam sampler is picked up by a pickup device and an evaluation value calculating unit evaluates conformity between the image O(x, y) and the image G(x, y).; A control unit performs feedback control of optical...

  2. Aberration design of zoom lens systems using thick lens modules.

    Science.gov (United States)

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-12-20

    A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.

  3. Photographic zoom fisheye lens design for DSLR cameras

    Science.gov (United States)

    Yan, Yufeng; Sasian, Jose

    2017-09-01

    Photographic fisheye lenses with fixed focal length for cameras with different sensor formats have been well developed for decades. However, photographic fisheye lenses with variable focal length are rare on the market due in part to the greater design difficulty. This paper presents a large aperture zoom fisheye lens for DSLR cameras that produces both circular and diagonal fisheye imaging for 35-mm sensors and diagonal fisheye imaging for APS-C sensors. The history and optical characteristics of fisheye lenses are briefly reviewed. Then, a 9.2- to 16.1-mm F/2.8 to F/3.5 zoom fisheye lens design is presented, including the design approach and aberration control. Image quality and tolerance performance analysis for this lens are also presented.

  4. THE APPARATUS FOR ALIGNMENT OF THE PHOTOMETRIC LAMP FILAMENT

    Directory of Open Access Journals (Sweden)

    V. A. Dlugunovich

    2015-01-01

    Full Text Available During photometric measurements involving the use of photometric lamps it is necessary that the filament of lamp takes a strictly predetermined position with respect to the photodetector and the optical axis of the photometric setup. The errors in positioning of alignment filament with respect to the optical axis of the measuring system lead to increase the uncertainty of measurement of the photometric characteristics of the light sources. A typical method for alignment of filament of photometric lamps is based on the use a diopter tubes (telescopes. Using this method, the mounting of filament to the required position is carried out by successive approximations, which requires special concentration and a lot of time. The aim of this work is to develop an apparatus for alignment which allows simultaneous alignment of the filament of lamps in two mutually perpendicular planes. The method and apparatus for alignment of the photometric lamp filament during measurements of the photometric characteristics of light sources based on two digital video cameras is described in this paper. The apparatus allows to simultaneously displaying the image of lamps filament on the computer screen in two mutually perpendicular planes. The apparatus eliminates a large number of functional units requiring elementwise alignment and reduces the time required to carry out the alignment. The apparatus also provides the imaging of lamps filament with opaque coated on the bulb. The apparatus is used at the National standard of light intensity and illuminance units of the Republic of Belarus. 

  5. Anterior segment and retinal OCT imaging with simplified sample arm using focus tunable lens technology (Conference Presentation)

    Science.gov (United States)

    Grulkowski, Ireneusz; Karnowski, Karol; Ruminski, Daniel; Wojtkowski, Maciej

    2016-03-01

    Availability of the long-depth-range OCT systems enables comprehensive structural imaging of the eye and extraction of biometric parameters characterizing the entire eye. Several approaches have been developed to perform OCT imaging with extended depth ranges. In particular, current SS-OCT technology seems to be suited to visualize both anterior and posterior eye in a single measurement. The aim of this study is to demonstrate integrated anterior segment and retinal SS-OCT imaging using a single instrument, in which the sample arm is equipped with the electrically tunable lens (ETL). ETL is composed of the optical liquid confined in the space by an elastic polymer membrane. The shape of the membrane, electrically controlled by a specific ring, defines the radius of curvature of the lens surface, thus it regulates the power of the lens. ETL can be also equipped with additional offset lens to adjust the tuning range of the optical power. We characterize the operation of the tunable lens using wavefront sensing. We develop the optimized optical set-up with two adaptive operational states of the ETL in order to focus the light either on the retina or on the anterior segment of the eye. We test the performance of the set-up by utilizing whole eye phantom as the object. Finally, we perform human eye in vivo imaging using the SS-OCT instrument with versatile imaging functionality that accounts for the optics of the eye and enables dynamic control of the optical beam focus.

  6. Image dissector photocathode solar damage test program. [solar radiation shielding using a fast optical lens

    Science.gov (United States)

    Smith, R. A.

    1977-01-01

    Image dissector sensors of the same type which will be used in the NASA shuttle star tracker were used in a series of tests directed towards obtaining solar radiation/time damage criteria. Data were evaluated to determine the predicted level of operability of the star tracker if tube damage became a reality. During the test series a technique for reducing the solar damage effect was conceived and verified. The damage concepts are outlined and the test methods and data obtained which were used for verification of the technique's feasibility are presented. The ability to operate an image dissector sensor with the solar image focussed on the photocathode by a fast optical lens under certain conditions is feasible and the elimination of a mechanical protection device is possible.

  7. Focusing properties of a square electrostatic rainbow lens

    International Nuclear Information System (INIS)

    Telečki, I.; Petrović, S.; Beličev, P.; Rađenović, B.; Balvanović, R.; Bojović, B.; Nešković, N.

    2012-01-01

    This paper is devoted to the focusing properties of a square electrostatic rainbow lens, which is a novel ion beam optical element. We consider the transmission of parallel and non-parallel proton beams of the initial kinetic energy of 10 keV through this lens. The potential of the electrodes of the lens is chosen to be 2 kV. The electrostatic potential and components of the electric field in the region of the lens are calculated using a three-dimensional finite element computer code. We investigate the spatial and angular distributions of protons propagating through the lens and in the drift space after it. It is confirmed that the evolutions of these distributions are determined by the evolutions of the corresponding rainbow lines, generated using the theory of crystal rainbows. The beam is separated into two components. One beam component, appearing as a beam core, is generated dominantly by the focused protons. Its boundary line in the transverse position plane can be very well approximated by a hypotrochoid. The other beam component is generated dominantly by the defocused protons. We present the focusing coefficient of the lens, the confining coefficients of the lens for the focused and defocused protons, the density of the beam core, the vertical or horizontal emittance of the beam core, and the brightness of the beam core.

  8. Design and evaluation of a freeform lens by using a method of luminous intensity mapping and a differential equation

    Science.gov (United States)

    Essameldin, Mahmoud; Fleischmann, Friedrich; Henning, Thomas; Lang, Walter

    2017-02-01

    Freeform optical systems are playing an important role in the field of illumination engineering for redistributing the light intensity, because of its capability of achieving accurate and efficient results. The authors have presented the basic idea of the freeform lens design method at the 117th annual meeting of the German Society of Applied Optics (DGAOProceedings). Now, we demonstrate the feasibility of the design method by designing and evaluating a freeform lens. The concepts of luminous intensity mapping, energy conservation and differential equation are combined in designing a lens for non-imaging applications. The required procedures to design a lens including the simulations are explained in detail. The optical performance is investigated by using a numerical simulation of optical ray tracing. For evaluation, the results are compared with another recently published design method, showing the accurate performance of the proposed method using a reduced number of mapping angles. As a part of the tolerance analyses of the fabrication processes, the influence of the light source misalignments (translation and orientation) on the beam-shaping performance is presented. Finally, the importance of considering the extended light source while designing a freeform lens using the proposed method is discussed.

  9. Electrically switchable holographic liquid crystal/polymer Fresnel lens using a Michelson interferometer.

    Science.gov (United States)

    Jashnsaz, Hossein; Mohajerani, Ezeddin; Nemati, Hossein; Razavi, Seyed Hossein; Alidokht, Isa Ahmad

    2011-06-10

    A holographic technique for fabricating an electrically switchable liquid crystal/polymer composite Fresnel lens is reported. A Michelson interferometer is used to produce the required Fresnel pattern, by placing a convex lens into one path of the interferometer. Simplicity of the method and the possibility of fabricating different focal length lenses in a single arrangement are advantages of the method. The performance of the fabricated lens was demonstrated and its electro-optical properties were investigated for its primary focal length.

  10. Simulating and optimizing compound refractive lens-based X-ray microscopes

    DEFF Research Database (Denmark)

    Simons, Hugh; Ahl, Sonja Rosenlund; Poulsen, Henning Friis

    2017-01-01

    A comprehensive optical description of compound refractive lenses (CRLs) in condensing and full-field X-ray microscopy applications is presented. The formalism extends ray-transfer matrix analysis by accounting for X-ray attenuation by the lens material. Closed analytical expressions for critical......-lens limit. This limit may be satisfied by a range of CRL geometries, suggesting alternative approaches to improving the resolution and efficiency of CRLs and X-ray microscopes....

  11. [Slit lamp optical coherence tomography study of anterior segment changes after phacoemulsification and foldable intraocular lens implantation].

    Science.gov (United States)

    Yan, Pi-song; Zhang, Zhen-ping; Lin, Hao-tian; Wu, Wen-jie; Bai, Ling

    2009-09-01

    To investigate quantitative changes of the anterior segment configuration after clear corneal incision phacoemulsification and foldable intraocular lens (IOL) implantation with slit-lamp-adapted optical coherence tomography (SL-OCT). In prospective consecutive case series, clear corneal incision phacoemulsification and foldable intraocular lens implantation were performed in 44 eyes of 40 patients. The changes of the anterior segment configuration were performed by SL-OCT before and 1 day, 1 week, 2 weeks and 1 month after surgery. SPSS 16.0 software was used to analyze statistical difference. For all patients, the central corneal thickness (CCT) and the incisional corneal thickness (ICT) increased significantly 1 day after surgery (CCT increased 99.59 microm, ICT increased 234.57 microm; P = 0.490). At 1 month, the CCT almost had returned to baseline, but the ICT had been thicker about 19.25 microm than baseline(P = 0.001). The measurements of ACD, AOD500, AOD750, TISA500, TISA750 also increased significantly 1 day after surgery. Although the ACD had no changes within 2 weeks (all P 0.05). The SL-OCT could impersonality and quantificationally evaluate the anterior segment changes induced by cataract surgery.

  12. Solutions on a high-speed wide-angle zoom lens with aspheric surfaces

    Science.gov (United States)

    Yamanashi, Takanori

    2012-10-01

    Recent development in CMOS and digital camera technology has accelerated the business and market share of digital cinematography. In terms of optical design, this technology has increased the need to carefully consider pixel pitch and characteristics of the imager. When the field angle at the wide end, zoom ratio, and F-number are specified, choosing an appropriate zoom lens type is crucial. In addition, appropriate power distributions and lens configurations are required. At points near the wide end of a zoom lens, it is known that an aspheric surface is an effective means to correct off-axis aberrations. On the other hand, optical designers have to focus on manufacturability of aspheric surfaces and perform required analysis with respect to the surface shape. Centration errors aside, it is also important to know the sensitivity to aspheric shape errors and their effect on image quality. In this paper, wide angle cine zoom lens design examples are introduced and their main characteristics are described. Moreover, technical challenges are pointed out and solutions are proposed.

  13. The Study Of Optometry Apparatus Of Laser Speckles

    Science.gov (United States)

    Bao-cheng, Wang; Kun, Yao; Xiu-qing, Wu; Chang-ying, Long; Jia-qi, Shi; Shi-zhong, Shi

    1988-01-01

    Based on the regularity of laser speckles movement the method of exam the uncorrected eyes is determined. The apparatus with micro-computer and optical transformation is made. Its practical function is excellent.

  14. Experience with the lathe cut Bausch & Lomb Soflens: Part II--Power and optics study.

    Science.gov (United States)

    Weissman, B A; Levinson, A

    1978-04-01

    Ten familiar spin cast and ten lathe cut Bausch & Lomb SOFLENS contact lenses were measured as to their power on a lensometer and on an eye. Both quality of the optics and quantitative measurements were considered. Lens flexure and the presence of a fluid lens between the posterior surface of the contact lens and the anterior cornea is indicated for both lenses to explain differences between power of the lens in air and on the eye. The spin cast lens design appears to create a quantitatively larger fluid lens, and one which will add positive optical power to the lens/eye system. Either from this and/or additional factors, the lathe cut lens appears to give improved optical performance both in air and on the eye.

  15. Correction of 157-nm lens based on phase ring aberration extraction method

    Science.gov (United States)

    Meute, Jeff; Rich, Georgia K.; Conley, Will; Smith, Bruce W.; Zavyalova, Lena V.; Cashmore, Julian S.; Ashworth, Dominic; Webb, James E.; Rich, Lisa

    2004-05-01

    Early manufacture and use of 157nm high NA lenses has presented significant challenges including: intrinsic birefringence correction, control of optical surface contamination, and the use of relatively unproven materials, coatings, and metrology. Many of these issues were addressed during the manufacture and use of International SEMATECH"s 0.85NA lens. Most significantly, we were the first to employ 157nm phase measurement interferometry (PMI) and birefringence modeling software for lens optimization. These efforts yielded significant wavefront improvement and produced one of the best wavefront-corrected 157nm lenses to date. After applying the best practices to the manufacture of the lens, we still had to overcome the difficulties of integrating the lens into the tool platform at International SEMATECH instead of at the supplier facility. After lens integration, alignment, and field optimization were complete, conventional lithography and phase ring aberration extraction techniques were used to characterize system performance. These techniques suggested a wavefront error of approximately 0.05 waves RMS--much larger than the 0.03 waves RMS predicted by 157nm PMI. In-situ wavefront correction was planned for in the early stages of this project to mitigate risks introduced by the use of development materials and techniques and field integration of the lens. In this publication, we document the development and use of a phase ring aberration extraction method for characterizing imaging performance and a technique for correcting aberrations with the addition of an optical compensation plate. Imaging results before and after the lens correction are presented and differences between actual and predicted results are discussed.

  16. Lens Ray Diagrams with a Spreadsheet

    Science.gov (United States)

    González, Manuel I.

    2018-01-01

    Physicists create spreadsheets customarily to carry out numerical calculations and to display their results in a meaningful, nice-looking way. Spreadsheets can also be used to display a vivid geometrical model of a physical system. This statement is illustrated with an example taken from geometrical optics: images formed by a thin lens. A careful…

  17. Lens Dk/t influences the clinical response in overnight orthokeratology.

    Science.gov (United States)

    Lum, Edward; Swarbrick, Helen A

    2011-04-01

    To investigate the influence of lens oxygen transmissibility (Dk/t) on the clinical response to overnight (ON) orthokeratology (OK) lens wear over 2 weeks. Eleven subjects (age, 20 to 39 years) were fitted with OK lenses (BE; Capricornia Contact Lens) in both eyes. Lenses in matched design/fitting but different materials (Boston EO and XO; nominal Dk/t: 26 and 46 ISO Fatt, respectively) were worn ON only in the two eyes over a 2-week period. Changes in logarithm of the minimum angle of resolution visual acuity, subjective refraction (spherical equivalent), corneal apical radius ro and asphericity Q (Medmont E300), and central stromal thickness (Holden-Payor optical pachometer) were measured. There were statistically significant differences in outcomes between the two lens materials (analysis of variance, p 0.05). An increase in lens Dk/t appears to increase the clinical effects of ON reverse-geometry lens wear over the medium term. This adds further support to the recommendation that high Dk materials should be used for ON OK not only to provide physiological advantages but also to optimize clinical outcomes.

  18. The effect of pipecol angles for the magnetic electron lens on the aberration coefficients

    International Nuclear Information System (INIS)

    Al-Khshab, A. M.; Al-Khshab, A. H.

    1997-01-01

    The symmetric mag etic objective lens of great importance for the electronic microscopes intended for hi g resolution. Such lens is determined, not only by its geometries structure and shape parameters, but also by the influence of the variation of the pole piece angles. the results show that the Objective lens having the pole piece angle of 55 a has a considerable effect on the electron optical Properties. When this pole piece is appropriately and highly saturated, the lens possesses low spherical and chromatic aberration coefficients. This hind of pole piece lens leads to more favourable design than other lenses. (authors). 14 refs., 7 figs.1 table

  19. Transglutaminase involvement in UV-A damage to the eye lens

    International Nuclear Information System (INIS)

    Weinreb, Orly; Dovrat, A.

    1996-01-01

    Solar radiation is believed to be one of the major environmental factors involved in lens cataractogenesis. The purpose of the study was to investigate the mechanisms by which UV-A at 365 nm causes damage to the eye lens. Bovine lenses were placed in special culture cells for pre-incubation of 24 hr. The lenses were positioned so that the anterior surface faced the incident UV-A radiation source and were maintained in the cells during irradiation. After irradiation, lens optical quality was monitored throughout the culture period and lens epithelium, cortex and nuclear samples were taken for biochemical analysis. Transglutaminase activity in the lens was affected by the radiation. The activity of transglutaminase in lens epithelium cortex and nucleus increased as a result of the irradiation and then declined towards control levels during the culture period, as the lens recovered from the UV-A damage. Specific lens proteins αB and βB1 crystallins (the enzyme substrates) were analyzed by SDS polyacrylamid gel electrophoreses and immunoblotting with specific antibodies. Seventy-two hours after irradiation of 44.8 J cm -2 UV-A, αB crystallins were affected as was shown by the appearance of aggregation and degradation products. Some protein changes seem to be reversible. It appears that transglutaminase may be involved in the mechanism by which UV-A causes damage to the eye lens. (Author)

  20. Enhanced depth-of-field of an integral imaging microscope using a bifocal holographic optical element-micro lens array.

    Science.gov (United States)

    Kwon, Ki-Chul; Lim, Young-Tae; Shin, Chang-Won; Erdenebat, Munkh-Uchral; Hwang, Jae-Moon; Kim, Nam

    2017-08-15

    We propose and implement an integral imaging microscope with extended depth-of-field (DoF) using a bifocal holographic micro lens array (MLA). The properties of the two MLAs are switched via peristrophic multiplexing, where different properties of the MLA are recorded onto the single holographic optical element (HOE). The recorded MLA properties are perpendicular to each other: after the first mode is recorded, the HOE is rotated by 90° clockwise, and the second mode is recorded. The experimental results confirm that the DoF of the integral imaging microscopy system is extended successfully by using the bifocal MLA.

  1. Thermal lens study of thermo-optical properties and concentration quenching of Er3+-doped lead pyrophosphate based glasses

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C. C. [Universidade Federal do Ceara, Ceara, Brazil; Rocha, U. [Grupo de Fotônica e Fluidos Complexos, Instituto de Física, Brazil; Guedes, Ilde [Universidade Federal do Ceara, Ceara, Brazil; Vermelho, M. V. D. [Instituto de Fisica, Universidade Federal de Alagoas, Brazil; Boatner, Lynn A [ORNL; Jacinto, C. [Instituto de Fisica, Universidade Federal de Alagoas, Brazil

    2012-01-01

    In this work, we have used the thermal lens technique combined with conventional spectroscopy to characterize the thermo-optical properties of Er3+-doped lead pyrophosphate-based glasses. More precisely, we have investigated and quantified experimentally the fluorescence quantum efficiencies of the Er3+ levels, and we describe the role of concentration quenching effects. The fluorescence quantum efficiency of the 4I13/2 level is very high when compared to other phosphate glasses, while that of the green-coupled levels is very small. Other important photonic materials parameters, such as the thermal diffusivity and temperature coefficient of the optical path length change, were obtained and compared with those of other glass systems. The cumulative results obtained here for the Er-doped lead pyrophosphate glass show that this material is a good candidate for photonic applications with a characteristic Er3+ infrared emission around 1550 nm.

  2. Freeform micromachining of an infrared Alvarez lens

    Science.gov (United States)

    Smilie, Paul J.; Dutterer, Brian S.; Lineberger, Jennifer L.; Davies, Matthew A.; Suleski, Thomas J.

    2011-02-01

    In 1967, Luis Alvarez introduced a novel concept for a focusing lens whereby two transmitting elements with cubic polynomial surfaces yield a composite lens of variable focal length with small lateral shifts. Computer simulations have demonstrated the behavior of these devices, but fabricating the refractive cubic surfaces of the types needed with adequate precision and depth modulation has proven to be challenging using standard methods, and, to the authors' knowledge, Alvarez lens elements have not been previously machined in infrared materials. Recent developments in freeform diamond machining capability have enabled the fabrication of such devices. In this paper, we discuss the fabrication of freeform refractive Alvarez elements in germanium using diamond micro-milling on a five-axis Moore Nanotech® 350FG Freeform Generator. Machining approaches are discussed, and measurements of surface figure and finish are presented. Initial experimental tests of optical performance are also discussed.

  3. [Pigment dispersion and Artisan implants: crystalline lens rise as a safety criterion].

    Science.gov (United States)

    Baikoff, G; Bourgeon, G; Jodai, H Jitsuo; Fontaine, A; Vieira Lellis, F; Trinquet, L

    2005-06-01

    To validate the theoretical notion of a crystalline lens rise as a safety criterion for ARTISAN implants in order to prevent the development of pigment dispersion in the implanted eye. Crystalline lens rise is defined by the distance between the crystalline lens's anterior pole and the horizontal plane joining the opposite iridocorneal recesses. We analyzed the biometric measurements of 87 eyes with an Artisan implant. A comparative analysis of the crystalline lens rise was carried out on the nine eyes having developed pigment dispersion and 78 eyes with no problems. Among the modern anterior segment imaging devices (Artemis, Scheimpflug photography, optical coherence tomography, radiology exploration, magnetic resonance imaging, TDM), an anterior chamber optical coherence tomography (AC-OCT) prototype was used. This working hypothesis was confirmed by this study: the crystalline lens rise must be considered as a new safety criterion for implanting Artisan phakic lenses. Indeed, the higher the crystalline lens's rise, the greater the risk of developing pigment dispersion in the pupil area. This complication is more frequent in hyperopes than in myopes. We can consider that there is little or no risk of pigment dispersion if the rise is below 600 microm; however, at 600 microm or greater, there is a 67% rate of pupillary pigment dispersion. In certain cases, when the implant was loosely fixed, there was no traction on the iris root. This is a complication that can be avoided or delayed. The crystalline lens rise must be part of new safety criteria to be taken into consideration when inserting an Artisan implant. This notion must also be applied to other types of phakic implants. The distance remaining between the crystalline lens rise and a 600-micromm theoretical safety level allows one to calculate a safety time interval.

  4. Ultrathin Alvarez lens system actuated by artificial muscles.

    Science.gov (United States)

    Petsch, S; Grewe, A; Köbele, L; Sinzinger, S; Zappe, H

    2016-04-01

    A key feature of Alvarez lenses is that they may be tuned in focal length using lateral rather than axial translation, thus reducing the overall length of a focus-tunable optical system. Nevertheless the bulk of classical microsystems actuators limits further miniaturization. We present here a new, ultrathin focus-tunable Alvarez lens fabricated using molding techniques and actuated using liquid crystal elastomer (LCE) artificial muscle actuators. The large deformation generated by the LCE actuators permits the integration of the actuators in-plane with the mechanical and optical system and thus reduces the device thickness to only 1.6 mm. Movement of the Alvarez lens pair of 178 μm results in a focal length change of 3.3 mm, based on an initial focal length of 28.4 mm. This design is of considerable interest for realization of ultraflat focus-tunable and zoom systems.

  5. Apoptosis generates mechanical forces that close the lens vesicle in the chick embryo

    Science.gov (United States)

    Oltean, Alina; Taber, Larry A.

    2018-03-01

    During the initial stages of eye development, optic vesicles grow laterally outward from both sides of the forebrain and come into contact with the surrounding surface ectoderm (SE). Within the region of contact, these layers then thicken locally to create placodes and invaginate to form the optic cup (primitive retina) and lens vesicle (LV), respectively. This paper examines the biophysical mechanisms involved in LV formation, which consists of three phases: (1) lens placode formation; (2) invagination to create the lens pit (LP); and (3) closure to form a complete ellipsoidally shaped LV. Previous studies have suggested that extracellular matrix deposited between the SE and optic vesicle causes the lens placode to form by locally constraining expansion of the SE as it grows, while actomyosin contraction causes this structure to invaginate. Here, using computational modeling and experiments on chick embryos, we confirm that these mechanisms for Phases 1 and 2 are physically plausible. Our results also suggest, however, that they are not sufficient to close the LP during Phase 3. We postulate that apoptosis provides an additional mechanism by removing cells near the LP opening, thereby decreasing its circumference and generating tension that closes the LP. This hypothesis is supported by staining that shows a ring of cell death located around the LP opening during closure. Inhibiting apoptosis in cultured embryos using caspase inhibitors significantly reduced LP closure, and results from a finite-element model indicate that closure driven by cell death is plausible. Taken together, our results suggest an important mechanical role for apoptosis in lens development.

  6. Optimized lens-sparing treatment of retinoblastoma with electron beams

    International Nuclear Information System (INIS)

    Steenbakkers, Roel J.H.M.; Altschuler, Martin D.; D'Angio, Giulio J.; Goldwein, Joel W.; Kassaee, Alireza

    1997-01-01

    Purpose: The ideal lens-sparing radiotherapy technique for retinoblastoma calls for 100% dose to the entire retina including the ora serrata and zero dose to the lens. Published techniques, most of which use photons, have not accomplished this ideal treatment. We describe here a technique that approaches this ideal configuration using electron beam therapy. Methods and Materials: Dose-modeling calculations were made using a computer program built around a proprietary algorithm. This program calculates 3D dose distribution for electrons and photons and uses the Cimmino feasibility method for the inverse problem of beam weighting to achieve the prescribed dose. The algorithm has been verified in the ocular region by measurements in a RANDO phantom. To search for an ideal lens-sparing beam setup, a stylized phantom of an 8-month-old infant was generated with built-in inhomogeneities, and a phantom of a 5-year-old child was generated from a patient CT series. Results: Of more than 100 different beam setups tested, two 9 MeV electron beams at gantry angles plus and minus 26 degrees from the optic nerve axis achieved the best distribution. Both fields have a lens block and an isocenter between the globe and origin of the optic nerve. When equal doses are given to both fields, the entire extent of the retina (including ora serrata) received 100%, while the lens received 10% or less. Conclusion: The two-oblique-electron-beam technique here described appears to meet most of the stringent dosimetry needed to treat retinoblastoma. It is suitable for a range of ages, from infancy to early childhood years

  7. Afocal viewport optics for underwater imaging

    Science.gov (United States)

    Slater, Dan

    2014-09-01

    A conventional camera can be adapted for underwater use by enclosing it in a sealed waterproof pressure housing with a viewport. The viewport, as an optical interface between water and air needs to consider both the camera and water optical characteristics while also providing a high pressure water seal. Limited hydrospace visibility drives a need for wide angle viewports. Practical optical interfaces between seawater and air vary from simple flat plate windows to complex water contact lenses. This paper first provides a brief overview of the physical and optical properties of the ocean environment along with suitable optical materials. This is followed by a discussion of the characteristics of various afocal underwater viewport types including flat windows, domes and the Ivanoff corrector lens, a derivative of a Galilean wide angle camera adapter. Several new and interesting optical designs derived from the Ivanoff corrector lens are presented including a pair of very compact afocal viewport lenses that are compatible with both in water and in air environments and an afocal underwater hyper-hemispherical fisheye lens.

  8. The effects of actomyosin disruptors on the mechanical integrity of the avian crystalline lens.

    Science.gov (United States)

    Won, Gah-Jone; Fudge, Douglas S; Choh, Vivian

    2015-01-01

    Actin and myosin within the crystalline lens maintain the structural integrity of lens fiber cells and form a hexagonal lattice cradling the posterior surface of the lens. The actomyosin network was pharmacologically disrupted to examine the effects on lenticular biomechanics and optical quality. One lens of 7-day-old White Leghorn chickens was treated with 10 µM of a disruptor and the other with 0.01% dimethyl sulfoxide (vehicle). Actin, myosin, and myosin light chain kinase (MLCK) disruptors were used. The stiffness and the optical quality of the control and treated lenses were measured. Western blotting and confocal imaging were used to confirm that treatment led to a disruption of the actomyosin network. The times for the lenses to recover stiffness to match the control values were also measured. Disruptor-treated lenses were significantly less stiff than their controls (p≤0.0274 for all disruptors). The disruptors led to changes in the relative protein amounts as well as the distributions of proteins within the lattice. However, the disruptors did not affect the clarity of the lenses (p≥0.4696 for all disruptors), nor did they affect spherical aberration (p = 0.02245). The effects of all three disruptors were reversible, with lenses recovering from treatment with actin, myosin, and MLCK disruptors after 4 h, 1 h, and 8 min, respectively. Cytoskeletal protein disruptors led to a decreased stiffness of the lens, and the effects were reversible. Optical quality was mostly unaffected, but the long-term consequences remain unclear. Our results raise the possibility that the mechanical properties of the avian lens may be actively regulated in vivo via adjustments to the actomyosin lattice.

  9. Light Optics for Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab

    2016-06-01

    In Optical Stochastic Cooling (OSC) radiation generated by a particle in a "pickup" undulator is amplified and transported to a downstream "kicker" undulator where it interacts with the same particle which radiated it. Fermilab plans to carry out both passive (no optical amplifier) and active (optical amplifier) tests of OSC at the Integrable Optics Test Accelerator (IOTA) currently in construction*. The performace of the optical system is analyzed with simulations in Synchrotron Radiation Workshop (SRW) accounting for the specific temporal and spectral properties of undulator radiation and being augmented to include dispersion of lens material.

  10. Changes in spherical aberration after lens refilling with a silicone oil

    NARCIS (Netherlands)

    Wong, Kwok-Hoi; Koopmans, Steven A.; Terwee, Thom; Kooijman, Aart C.

    PURPOSE. It may be possible to restore accommodation to presbyopic human eyes by refilling the lens capsular bag with a soft polymer. In the present study, optical changes were measured that occurred in a pig eye model after the refilling of the capsular bag. METHODS. The optical power and spherical

  11. The design of a liquid lithium lens for a muon collider

    International Nuclear Information System (INIS)

    Balbekov, V.; Geer, S.; Hassanein, A.; Holtkamp, N.; Lebrun, P.; Neuffer, D.; Norem, J.; Palmer, R.; Reed, C.; Silvestrov, G.; Spentzouris, P.; Tollestrup, A.; Vsevolozhskaya, T. A.

    1999-01-01

    The last stage of ionization cooling for the muon collider requires a multistage liquid lithium lens. This system uses a large (approximately0.5 MA) pulsed current through liquid lithium to focus the beam while energy loss in the lithium removes momentum which is replaced by linacs. The beam optics are designed to maximize the 6 dimensional transmission from one lens to the next while minimizing emittance growth. The mechanical design of the lithium vessel is constrained by a pressure pulse due to the sudden ohmic heating, and the stress on the Be window. The authors describe beam optics, the liquid lithium pressure vessel, pumping, power supplies, as well as the overall optimization of the system

  12. Candidate gravitational microlensing events for future direct lens imaging

    International Nuclear Information System (INIS)

    Henderson, C. B.; Gould, A.; Gaudi, B. S.; Park, H.; Han, C.; Sumi, T.; Koshimoto, N.; Udalski, A.; Tsapras, Y.; Bozza, V.; Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K.; Bennett, D. P.; Bond, I. A.; Ling, C. H.; Botzler, C. S.; Freeman, M.; Fukui, A.

    2014-01-01

    The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 to 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with μ ≳ 8 mas yr –1 . Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In ≲12 yr from the time of each event the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.

  13. Candidate gravitational microlensing events for future direct lens imaging

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. B.; Gould, A.; Gaudi, B. S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Park, H.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Sumi, T.; Koshimoto, N. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Tsapras, Y. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Bozza, V. [Department of Physics, University of Salerno, I-84084 Fisciano (Italy); Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Bond, I. A.; Ling, C. H. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland 0745 (New Zealand); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Fukui, A. [School of Chemical and Physical Sciences, Victoria University, Wellington 6140 (New Zealand); Collaboration: MOA Collaboration; OGLE Collaboration; μFUN Collaboration; RoboNet Collaboration; and others

    2014-10-10

    The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 to 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with μ ≳ 8 mas yr{sup –1}. Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In ≲12 yr from the time of each event the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.

  14. Apparatus for real-time size and speed measurements of blow-off particles from pulsed irradiation experiments

    International Nuclear Information System (INIS)

    Von Benken, C.; Johnson, E.A.; Nordberg, M.

    1989-01-01

    The authors present an apparatus capable of detecting micron sized particles traveling at speeds up to 10 6 cm/sec. The apparatus uses light scattering methods with automated data processing. Data generated by this apparatus should be extremely useful in radiation damage studies of components in contamination sensitive optical systems

  15. Multileaf collimator and related apparatus

    International Nuclear Information System (INIS)

    Brown, K.J.

    1989-01-01

    In radiotherapy apparatus using a multileaf collimator, the adjustment positions of the individual leaves can be determined optically by means of a video camera which observes the leaves via a radiation transparent mirror in the beam path. In order to overcome problems of low contrast and varying object brightness, the improvement comprises adding retroreflectors to the collimator leaves whose positions are known relative to the inner edge of the respective leaf. The retroreflectors can extend along the length of the leaf or they can be small. For setting up, corresponding manually adjustable optical diaphragm leaves can be used to project an optical simulation of the treatment area onto the patient, retroreflectors being similarly located relative to the shadow-casting edge of the leaves. (author)

  16. Electrostatic afocal-zoom lens design using computer optimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Sise, Omer, E-mail: omersise@gmail.com

    2014-12-15

    Highlights: • We describe the detailed design of a five-element electrostatic afocal-zoom lens. • The simplex optimization is used to optimize lens voltages. • The method can be applied to multi-element electrostatic lenses. - Abstract: Electron optics is the key to the successful operation of electron collision experiments where well designed electrostatic lenses are needed to drive electron beam before and after the collision. In this work, the imaging properties and aberration analysis of an electrostatic afocal-zoom lens design were investigated using a computer optimization technique. We have found a whole new range of voltage combinations that has gone unnoticed until now. A full range of voltage ratios and spherical and chromatic aberration coefficients were systematically analyzed with a range of magnifications between 0.3 and 3.2. The grid-shadow evaluation was also employed to show the effect of spherical aberration. The technique is found to be useful for searching the optimal configuration in a multi-element lens system.

  17. Implantable collamer lens and femtosecond laser for myopia: comparison using an adaptive optics visual simulator

    Directory of Open Access Journals (Sweden)

    Cari Pérez-Vives

    2014-04-01

    Full Text Available Purpose: To compare optical and visual quality of implantable collamer lens (ICL implantation and femtosecond laser in situ keratomileusis (F-LASIK for myopia. Methods: The CRX1 adaptive optics visual simulator (Imagine Eyes, Orsay, France was used to simulate the wavefront aberration pattern after the two surgical procedures for -3-diopter (D and -6-D myopia. Visual acuity at different contrasts and contrast sensitivities at 10, 20, and 25 cycles/degree (cpd were measured for 3-mm and 5-mm pupils. The modulation transfer function (MTF and point spread function (PSF were calculated for 5-mm pupils. Results: F-LASIK MTF was worse than ICL MTF, which was close to diffraction-limited MTF. ICL cases showed less spread out of PSF than F-LASIK cases. ICL cases showed better visual acuity values than F-LASIK cases for all pupils, contrasts, and myopic treatments (p0.05. For -6-D myopia, however, statistically significant differences in contrast sensitivities were found for both pupils for all evaluated spatial frequencies (p<0.05. Contrast sensitivities were better after ICL implantation than after F-LASIK. Conclusions: ICL implantation and F-LASIK provide good optical and visual quality, although the former provides better outcomes of MTF, PSF, visual acuity, and contrast sensitivity, especially for cases with large refractive errors and pupil sizes. These outcomes are related to the F-LASIK producing larger high-order aberrations.

  18. The use of contact lens telescopic systems in low vision rehabilitation.

    Science.gov (United States)

    Vincent, Stephen J

    2017-06-01

    Refracting telescopes are afocal compound optical systems consisting of two lenses that produce an apparent magnification of the retinal image. They are routinely used in visual rehabilitation in the form of monocular or binocular hand held low vision aids, and head or spectacle-mounted devices to improve distance visual acuity, and with slight modifications, to enhance acuity for near and intermediate tasks. Since the advent of ground glass haptic lenses in the 1930's, contact lenses have been employed as a useful refracting element of telescopic systems; primarily as a mobile ocular lens (the eyepiece), that moves with the eye. Telescopes which incorporate a contact lens eyepiece significantly improve the weight, comesis, and field of view compared to traditional spectacle-mounted telescopes, in addition to potential related psycho-social benefits. This review summarises the underlying optics and use of contact lenses to provide telescopic magnification from the era of Descartes, to Dallos, and the present day. The limitations and clinical challenges associated with such devices are discussed, along with the potential future use of reflecting telescopes incorporated within scleral lenses and tactile contact lens systems in low vision rehabilitation. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  19. Mechanically assisted liquid lens zoom system for mobile phone cameras

    Science.gov (United States)

    Wippermann, F. C.; Schreiber, P.; Bräuer, A.; Berge, B.

    2006-08-01

    Camera systems with small form factor are an integral part of today's mobile phones which recently feature auto focus functionality. Ready to market solutions without moving parts have been developed by using the electrowetting technology. Besides virtually no deterioration, easy control electronics and simple and therefore cost-effective fabrication, this type of liquid lenses enables extremely fast settling times compared to mechanical approaches. As a next evolutionary step mobile phone cameras will be equipped with zoom functionality. We present first order considerations for the optical design of a miniaturized zoom system based on liquid-lenses and compare it to its mechanical counterpart. We propose a design of a zoom lens with a zoom factor of 2.5 considering state-of-the-art commercially available liquid lens products. The lens possesses auto focus capability and is based on liquid lenses and one additional mechanical actuator. The combination of liquid lenses and a single mechanical actuator enables extremely short settling times of about 20ms for the auto focus and a simplified mechanical system design leading to lower production cost and longer life time. The camera system has a mechanical outline of 24mm in length and 8mm in diameter. The lens with f/# 3.5 provides market relevant optical performance and is designed for an image circle of 6.25mm (1/2.8" format sensor).

  20. A Model of the Effect of Lens Development on Refraction in Schoolchildren.

    Science.gov (United States)

    He, Ji C

    2017-12-01

    The study provides a new theory on the mechanism underlying myopia development, and it could be useful in clinical practice to control myopia development in schoolchildren. To model the effect of the crystalline lens on refractive development in schoolchildren. The Zemax 13 was used to calculate Zernike aberrations and refractions across 50° horizontal visual fields. Optical effects of the anterior chamber depth, lens thickness, and radii of curvature of the lens surfaces on refractions were modeled. Refractive changes induced by lens development in emmetropic and myopic eyes, based on a previous longitudinal study from literature, were calculated. A lens thickness reduction with an anterior chamber depth deepening caused a hyperopic shift over the visual fields and even more at the periphery. Opposite effects were found when the lens was thinned without any change of the anterior chamber depth. While a flattening of the anterior lens surface produced hyperopic refractions overall, a posterior lens flattening caused a myopic shift at the periphery, but a hyperopic shift of the central refraction. In the myopic eye, lens development induced refractive change toward more hyperopic over the visual fields and more at the periphery. Lens thinning and lens axial movement participate in peripheral refractive development in schoolchildren, and lens development with a deeper anterior chamber depth and a flatter lens surface in the myopic eye could generate extra hyperopia over visual fields. The myopic lens development could be due to a backward movement of the lens, driven by a backward growth of the ciliary process, which might be a causative factor of myopia development.

  1. Mechanical design of thin-film diamond crystal mounting apparatus with optimized thermal contact and crystal strain for coherence preservation x-ray optics

    Science.gov (United States)

    Shu, Deming; Shvydko, Yury; Stoupin, Stanislav; Kim, Kwang-Je

    2018-05-08

    A method and mechanical design for a thin-film diamond crystal mounting apparatus for coherence preservation x-ray optics with optimized thermal contact and minimized crystal strain are provided. The novel thin-film diamond crystal mounting apparatus mounts a thin-film diamond crystal supported by a thick chemical vapor deposition (CVD) diamond film spacer with a thickness slightly thicker than the thin-film diamond crystal, and two groups of thin film thermal conductors, such as thin CVD diamond film thermal conductor groups separated by the thick CVD diamond spacer. The two groups of thin CVD film thermal conductors provide thermal conducting interface media with the thin-film diamond crystal. A piezoelectric actuator is integrated into a flexural clamping mechanism generating clamping force from zero to an optimal level.

  2. Lens stem cells may reside outside the lens capsule: an hypothesis

    Directory of Open Access Journals (Sweden)

    Meyer Rita A

    2007-06-01

    Full Text Available Abstract In this paper, we consider the ocular lens in the context of contemporary developments in biological ideas. We attempt to reconcile lens biology with stem cell concepts and a dearth of lens tumors. Historically, the lens has been viewed as a closed system, in which cells at the periphery of the lens epithelium differentiate into fiber cells. Theoretical considerations led us to question whether the intracapsular lens is indeed self-contained. Since stem cells generate tumors and the lens does not naturally develop tumors, we reasoned that lens stem cells may not be present within the capsule. We hypothesize that lens stem cells reside outside the lens capsule, in the nearby ciliary body. Our ideas challenge the existing lens biology paradigm. We begin our discussion with lens background information, in order to describe our lens stem cell hypothesis in the context of published data. Then we present the ciliary body as a possible source for lens stem cells, and conclude by comparing the ocular lens with the corneal epithelium.

  3. New scanning technique for the optical vortex microscope.

    Science.gov (United States)

    Augustyniak, Ireneusz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Drobczyński, Sławomir

    2012-04-01

    In the optical vortex microscopy the focused Gaussian beam with optical vortex scans a sample. An optical vortex can be introduced into a laser beam with the use of a special optical element--a vortex lens. When moving the vortex lens, the optical vortex changes its position inside the spot formed by a focused laser beam. This effect can be used as a new precise scanning technique. In this paper, we study the optical vortex behavior at the sample plane. We also estimate if the new scanning technique results in observable effects that could be used for a phase object detection.

  4. Practical UAV Optical Sensor Bench with Minimal Adjustability

    Science.gov (United States)

    Pilgrim, Jeffrey; Gonzales, Paula

    2013-01-01

    A multiple-pass optical platform eliminates essentially all optical alignment degrees of freedom, save one. A four-pass absorption spectrometer architecture is made rigid by firmly mounting dielectric-coated mirror prisms with no alignment capability to the platform. The laser diode beam is collimated by a small, custom-developed lens, which has only a rotational degree of freedom along the standard optical "z" axis. This degree is itself eliminated by adhesive after laser collimation. Only one degree of freedom is preserved by allowing the laser diode chip and mount subassembly to move relative to the collimating lens by using over-sized mounting holes. This allows full 360 deg motion of a few millimeters relative to the lens, which, due to the high numerical aperture of the lens, provides wide directional steering of the collimated laser beam.

  5. Design and development of a zoom lens objective for the fast breeder test reactor periscope

    International Nuclear Information System (INIS)

    Das, N.C.; Udupa, D.V.; Shukla, R.P.

    2003-10-01

    A three lens optically compensated zoom lens useful for the 5 meter long periscope in the Fast Breeder Test Reactor (FBTR) has been designed, fabricated and tested. The zoom lens fabricated using radiation resistant glasses has a zoom ratio of 2.5 with a focal length range of l00 mm to 250 mm. The zoom lens objective has been designed for viewing the objects kept at a distance in the range of 1.5 m to 3 m from the objective lens. It is found that the zoom lens objective can be used for resolving objects with a linear resolution of 0.2 mm inside the reactor when viewed with an eye piece of focal length 50 mm. (author)

  6. Opto-mechatronics issues in solid immersion lens based near-field recording

    Science.gov (United States)

    Park, No-Cheol; Yoon, Yong-Joong; Lee, Yong-Hyun; Kim, Joong-Gon; Kim, Wan-Chin; Choi, Hyun; Lim, Seungho; Yang, Tae-Man; Choi, Moon-Ho; Yang, Hyunseok; Rhim, Yoon-Chul; Park, Young-Pil

    2007-06-01

    We analyzed the effects of an external shock on a collision problem in a solid immersion lens (SIL) based near-field recording (NFR) through a shock response analysis and proposed a possible solution to this problem with adopting a protector and safety mode. With this proposed method the collision between SIL and media can be avoided. We showed possible solution for contamination problem in SIL based NFR through a numerical air flow analysis. We also introduced possible solid immersion lens designs to increase the fabrication and assembly tolerances of an optical head with replicated lens. Potentially, these research results could advance NFR technology for commercial product.

  7. 'Yellow lens' eyes of a stomiatoid deep-sea fish, Malacosteus niger.

    Science.gov (United States)

    Somiya, H

    1982-07-22

    Bright yellow lenses were found in the eyes of the stomiatoid deep-sea fish, Malacosteus niger Ayres. The optical properties of the yellow lens and the retinal specializations in the eyes were examined. Absorption spectra of the yellow lens revealed two peaks at wavelengths 425 and 460 nm. The photoreceptors were all rods and were arranged in two superimposed layers. An astaxanthin-type retinal tapetum was observed in the pigment epithelium. Some chemical evidence is presented showing that the tapetal material is an astaxanthin ester. The ecological significance of the yellow lens is discussed in connection with that of Malacosteus' orbital light organ which has a reddish filter.

  8. ECTOPIC LENS EXTRACTION IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Vladimir Pfeifer

    2002-12-01

    Full Text Available Background. Ectopia lentis continues to be a therapeutic challenge for ophthalmologists. It can occur as an isolated condition, after ocular trauma, in association with other ocular disorders, as part of a systemic mesodermal disease or a complication of general metabolic disorders. Minimal subluxation of the lens may cause no visual symptoms, but in more advanced cases serious optical disturbances arise. The most important is amblyopia. Surgical treatment options include iris manipulation, lens discission, aspiration, intracapsular or extracapsular extraction, and pars plana lensectomy. The choice of surgical technique remains controversial, in part because of the historically poor visual results and high rate of perioperative complications, including vitreous loss and retinal detachment.Methods. We describe a surgical technique based on the use of the Cionni endocapsular tension ring, dry irrigation aspiration of lens material, centration of the capsular bag and foldable intraocular lens implantation into the bag. With mentioned surgical technique 8 patients were operated; 4 boys and 4 girls, together 11 eyes.Results. The final BCVA after follow up period improved in 9 eyes and it remained the same as before operation in one eye. Statistical comparison of preoperative and postoperative visual acuities showed significant improvement. On the other hand there was no correlation between preoperative and postoperative visual acuity.Conclusions. This surgical procedure is an alternative approach in solving this challenging cases of ectopia lentis with good postoperative visual rehabilitation.

  9. Examination of a duo-collection optics design for the Korea superconducting tokamak advanced research (KSTAR) Thomson scattering system

    International Nuclear Information System (INIS)

    Oh, Seungtae; Lee, Jong Ha

    2011-01-01

    The comparison of collective optic designs is described for the Thomson scattering system of the Korea superconducting tokamak advanced research (KSTAR) device. The optical systems collecting the light emission induced through the interaction between the plasma electrons and a laser beam are the key components for the Thomson scattering system. In the first conceptual design of the collection optics for the KSTAR Thomson scattering system, a duo-lens system covering individually the core and the edge regions of the KSTAR plasma with two optical lens modules was proposed. In optical designs, the number of optical modules is a great concern in the case of limited system space. Here, the duo-lens system is evaluated through a comparison with a uni-lens system covering the whole region of the plasma with a single optical module. The duo-lens system turned out to have 2.0 times and 4.73 times higher light collections of the plasma core and edge compared with the uni-lens system

  10. Optical and nanomechanical study of anti-scratch layers on polycarbonate lenses

    Science.gov (United States)

    Charitidis, C.; Laskarakis, A.; Kassavetis, S.; Gravalidis, C.; Logothetidis, S.

    2004-07-01

    In recent years, as the optical-electronic industry developed, polymeric materials were gradually increasing in importance. Polycarbonate (PC) is a good candidate for eyewear applications due to its low weight and transparency. In the case of PC lenses, the deposition of anti-scratch (AS) coatings on the polymer surface is essential for the improvement of the mechanical behavior of the lens. In this work, we present a detailed investigation of the optical and nanomechanical properties of a PC based optical lens and coated by an AS coating as a protective overcoat. The study of the effect of the AS coating on the optical response of the PC lens has been performed by the use of Spectroscopic Ellipsometry (SE) in the IR spectral region, where the characteristic features corresponding to the different bonding configuration of the PC lens and the AS coating were studied. Also, the nanomechanical study of the PC lens, before and after the deposition of the AS coating, performed by nanoindentation measurements revealed the significant enhancement of the mechanical response of the AS/PC lens. More specifically, the AS/PC lens is characterized by enhanced values of hardness and elastic modulus. Finally, the use of AS coating has found to lead to a better scratch resistance and to the reduction of the coefficient of friction (μ) of the PC lens.

  11. Modulation transfer function of a fish-eye lens based on the sixth-order wave aberration theory.

    Science.gov (United States)

    Jia, Han; Lu, Lijun; Cao, Yiqing

    2018-01-10

    A calculation program of the modulation transfer function (MTF) of a fish-eye lens is developed with the autocorrelation method, in which the sixth-order wave aberration theory of ultra-wide-angle optical systems is used to simulate the wave aberration distribution at the exit pupil of the optical systems. The autocorrelation integral is processed with the Gauss-Legendre integral, and the magnification chromatic aberration is discussed to calculate polychromatic MTF. The MTF calculation results of a given example are then compared with those previously obtained based on the fourth-order wave aberration theory of plane-symmetrical optical systems and with those from the Zemax program. The study shows that MTF based on the sixth-order wave aberration theory has satisfactory calculation accuracy even for a fish-eye lens with a large acceptance aperture. And the impacts of different types of aberrations on the MTF of a fish-eye lens are analyzed. Finally, we apply the self-adaptive and normalized real-coded genetic algorithm and the MTF developed in the paper to optimize the Nikon F/2.8 fish-eye lens; consequently, the optimized system shows better MTF performances than those of the original design.

  12. Lens of controllable optical field with thin film metallic glasses for UV-LEDs.

    Science.gov (United States)

    Pan, C T; Chen, Y C; Lin, Po-Hung; Hsieh, C C; Hsu, F T; Lin, Po-Hsun; Chang, C M; Hsu, J H; Huang, J C

    2014-06-16

    In the exposure process of photolithography, a free-form lens is designed and fabricated for UV-LED (Ultraviolet Light-Emitting Diode). Thin film metallic glasses (TFMG) are adopted as UV reflection layers to enhance the irradiance and uniformity. The Polydimethylsiloxane (PDMS) with high transmittance is used as the lens material. The 3-D fast printing is attempted to make the mold of the lens. The results show that the average irradiance can be enhanced by 6.5~6.7%, and high uniformity of 85~86% can be obtained. Exposure on commercial thick photoresist using this UV-LED system shows 3~5% dimensional deviation, lower than the 6~8% deviation for commercial mercury lamp system. This current system shows promising potential to replace the conventional mercury exposure systems.

  13. Life Science-Related Physics Laboratory on Geometrical Optics

    Science.gov (United States)

    Edwards, T. H.; And Others

    1975-01-01

    Describes a laboratory experiment on geometrical optics designed for life science majors in a noncalculus introductory physics course. The thin lens equation is used by the students to calculate the focal length of the lens necessary to correct a myopic condition in an optical bench simulation of a human eye. (Author/MLH)

  14. Next-generation fabrication technologies for optical pickup devices in high-density optical disk storage systems

    Science.gov (United States)

    Hosoe, Shigeru

    1999-05-01

    This paper shows a direction of friction technologies to make aspherical plastic objective lens with higher optical performance for high density optical disk storage systems. Specifically, a low birefringence and low water absorption (less than 0.1%) optical resin, low tool abrasion mold material, high circularity diamond tool which nose circularity is less than 30 nm, and 1 nm axis resolution precision lathe which tool position is stabilized against drift by environmental change are referred. Cut optical surface of a mold sample was constantly attained in less than 5 nmRtm surface roughness. Using these new technologies, aspherical plastic objective lens (NA0.6) for DVD which wave aberration is less than 35 m (lambda) rms was realized.

  15. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, T.V.; Ralchenko, V.G.; Ashkinazi, E.E.; Konov, V.I. [General Physics Institute of Russian Academy of Sciences, Moscow (Russian Federation); National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation); Polikarpov, M.; Ershov, P. [Immanuel Kant Baltic Federal University, Functional Nanomaterials, Kaliningrad (Russian Federation); Kuznetsov, S.; Yunkin, V. [Institute of Microelectronics Technology RAS, Chernogolovka, Moscow region (Russian Federation); Snigireva, I. [European Synchrotron Radiation Facility, Grenoble (France)

    2016-03-15

    X-ray planar compound refractive lenses were fabricated from a polycrystalline diamond plate grown by chemical vapor deposition, by precise through cutting with femtosecond laser pulses. The lens geometry and the surface morphology were investigated with optical and scanning electron microscopy, while the material structure modification was analyzed by Raman spectroscopy. The results of the preliminary lens test at 9.25-keV X-rays are presented. (orig.)

  16. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing

    International Nuclear Information System (INIS)

    Kononenko, T.V.; Ralchenko, V.G.; Ashkinazi, E.E.; Konov, V.I.; Polikarpov, M.; Ershov, P.; Kuznetsov, S.; Yunkin, V.; Snigireva, I.

    2016-01-01

    X-ray planar compound refractive lenses were fabricated from a polycrystalline diamond plate grown by chemical vapor deposition, by precise through cutting with femtosecond laser pulses. The lens geometry and the surface morphology were investigated with optical and scanning electron microscopy, while the material structure modification was analyzed by Raman spectroscopy. The results of the preliminary lens test at 9.25-keV X-rays are presented. (orig.)

  17. Application of optical lens of a CD writer for detecting the blood glucose semi-invasively

    Science.gov (United States)

    Meshram, N. D.; Dahikar, P. B.

    2014-10-01

    Recent technological advancements in the photonics industry have led to a resurgence of interest in optical glucose sensing and to realistic progress toward the development of an optical glucose sensor. Such a sensor has the potential to significantly improve the quality of life for the estimated 16 million diabetics in this country by making routine glucose measurements more convenient. Currently over 100 small companies and universities are working to develop noninvasive or minimally invasive glucose sensing technologies, and optical methods play a large role in these efforts. It has become overwhelmingly clear that frequent monitoring and tight control of blood sugar levels are requisite for effective management of Diabetes mellitus and reduction of the complications associated with this disease. The pain and trouble associated with current "finger-stick" methods for blood glucose monitoring result in decreased patient compliance and a failure to control blood sugar levels. Thus, the development of a convenient noninvasive blood glucose monitor holds the potential to significantly reduce the morbidity and mortality associated with Diabetes. A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on photodiode based laser operating at 632.8 nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively..

  18. Application of optical lens of a CD writer for detecting the blood glucose semi-invasively

    International Nuclear Information System (INIS)

    Meshram, N. D.; Dahikar, P. B.

    2014-01-01

    Recent technological advancements in the photonics industry have led to a resurgence of interest in optical glucose sensing and to realistic progress toward the development of an optical glucose sensor. Such a sensor has the potential to significantly improve the quality of life for the estimated 16 million diabetics in this country by making routine glucose measurements more convenient. Currently over 100 small companies and universities are working to develop noninvasive or minimally invasive glucose sensing technologies, and optical methods play a large role in these efforts. It has become overwhelmingly clear that frequent monitoring and tight control of blood sugar levels are requisite for effective management of Diabetes mellitus and reduction of the complications associated with this disease. The pain and trouble associated with current “finger-stick” methods for blood glucose monitoring result in decreased patient compliance and a failure to control blood sugar levels. Thus, the development of a convenient noninvasive blood glucose monitor holds the potential to significantly reduce the morbidity and mortality associated with Diabetes. A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on photodiode based laser operating at 632.8 nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively.

  19. Application of optical lens of a CD writer for detecting the blood glucose semi-invasively

    Energy Technology Data Exchange (ETDEWEB)

    Meshram, N. D., E-mail: meshramnileshsd@gmail.com [Mathuradas Mohota College of Sciences, Nagpur-440009 (India); Dahikar, P. B., E-mail: pbdahikar@rediffmail.com [Kamla Nehru Mahavidyalaya, Sakkardara Square, Nagpur-440009 (India)

    2014-10-15

    Recent technological advancements in the photonics industry have led to a resurgence of interest in optical glucose sensing and to realistic progress toward the development of an optical glucose sensor. Such a sensor has the potential to significantly improve the quality of life for the estimated 16 million diabetics in this country by making routine glucose measurements more convenient. Currently over 100 small companies and universities are working to develop noninvasive or minimally invasive glucose sensing technologies, and optical methods play a large role in these efforts. It has become overwhelmingly clear that frequent monitoring and tight control of blood sugar levels are requisite for effective management of Diabetes mellitus and reduction of the complications associated with this disease. The pain and trouble associated with current “finger-stick” methods for blood glucose monitoring result in decreased patient compliance and a failure to control blood sugar levels. Thus, the development of a convenient noninvasive blood glucose monitor holds the potential to significantly reduce the morbidity and mortality associated with Diabetes. A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on photodiode based laser operating at 632.8 nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively.

  20. Which soft lens power is better for piggyback in keratoconus? Part II.

    Science.gov (United States)

    Romero-Jiménez, Miguel; Santodomingo-Rubido, Jacinto; González-Meijóme, Jose-Manuel; Flores-Rodriguez, Patricia; Villa-Collar, Cesar

    2015-02-01

    To evaluate how soft lens power affects rigid gas-permeable (RGP) lens power and visual acuity (VA) in piggyback fittings for keratoconus. Sixteen keratoconus subjects (30 eyes) were included in the study. Piggyback contact lens fittings combining Senofilcon-A soft lenses of -6.00, -3.00, +3.00 and +6.00 D with Rose K2 RGP contact lenses were performed. Corneal topography was taken on the naked eye and over each soft contact lens before fitting RGP lenses. Mean central keratometry, over-refraction, RGP back optic zone radius (BOZR) and estimated final power as well as VA were recorded and analyzed. In comparison to the naked eye, the mean central keratometry flattened with both negative lens powers (psoft lens power (p=1.0); and steepened with the +6.00 soft lens power (p=0.02). Rigid gas-permeable over-refraction did not change significantly between different soft lens powers (all p>0.05). RGP's BOZR decreased significantly with both positive in comparison with both negative soft lens powers (all ppowers separately (both p>0.05). Estimated RGP's final power increased significantly with positive in comparison with negative lens powers (all ppowers separately (both p>0.05). Visual acuity did not change significantly between the different soft lens powers assessed (all p>0.05). The use of negative-powered soft lenses in piggyback fitting reduces RGP lens power without impacting VA in keratoconus subjects. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  1. The optical design of 3D ICs for smartphone and optro-electronics sensing module

    Science.gov (United States)

    Huang, Jiun-Woei

    2018-03-01

    Smartphone require limit space for image system, current lens, used in smartphones are refractive type, the effective focal length is limited the thickness of phone physical size. Other, such as optro-electronics sensing chips, proximity optical sensors, and UV indexer chips are integrated into smart phone with limit space. Due to the requirement of multiple lens in smartphone, proximity optical sensors, UV indexer and other optro-electronics sensing chips in a limited space of CPU board in future smart phone, optro-electronics 3D IC's integrated with optical lens or components may be a key technology for 3 C products. A design for reflective lens is fitted to CMOS, proximity optical sensors, UV indexer and other optro-electronics sensing chips based on 3-D IC. The reflective lens can be threes times of effective focal lens, and be able to resolve small object. The system will be assembled and integrated in one 3-D IC more easily.

  2. Spatial filter lens design for the main laser of the National Ignition Facility

    International Nuclear Information System (INIS)

    Korniski, R.J.

    1998-01-01

    The National Ignition Facility (NIF), being designed and constructed at Lawrence Livermore National Laboratory (LLNL), comprises 192 laser beams The lasing medium is neodymium in phosphate glass with a fundamental frequency (1ω) of 1 053microm Sum frequency generation in a pair of conversion crystals (KDP/KD*P) will produce 1 8 megajoules of the third harmonic light (3ω or λ=351microm) at the target The purpose of this paper is to provide the lens design community with the current lens design details of the large optics in the Main Laser This paper describes the lens design configuration and design considerations of the Main Laser The Main Laser is 123 meters long and includes two spatial filters one 13 5 meters and one 60 meters These spatial filters perform crucial beam filtering and relaying functions We shall describe the significant lens design aspects of these spatial filter lenses which allow them to successfully deliver the appropriate beam characteristic onto the target For an overview of NIF please see ''Optical system design of the National Ignition Facility,'' by R Edward English. et al also found in this volume

  3. Fully automated laser ray tracing system to measure changes in the crystalline lens GRIN profile.

    Science.gov (United States)

    Qiu, Chen; Maceo Heilman, Bianca; Kaipio, Jari; Donaldson, Paul; Vaghefi, Ehsan

    2017-11-01

    Measuring the lens gradient refractive index (GRIN) accurately and reliably has proven an extremely challenging technical problem. A fully automated laser ray tracing (LRT) system was built to address this issue. The LRT system captures images of multiple laser projections before and after traversing through an ex vivo lens. These LRT images, combined with accurate measurements of the lens geometry, are used to calculate the lens GRIN profile. Mathematically, this is an ill-conditioned problem; hence, it is essential to apply biologically relevant constraints to produce a feasible solution. The lens GRIN measurements were compared with previously published data. Our GRIN retrieval algorithm produces fast and accurate measurements of the lens GRIN profile. Experiments to study the optics of physiologically perturbed lenses are the future direction of this research.

  4. Scleral ultrastructure and biomechanical changes in rabbits after negative lens application

    Directory of Open Access Journals (Sweden)

    Xiao Lin

    2018-03-01

    Full Text Available AIM: To address the microstructure and biomechanical changes of the sclera of rabbits after negative lens application by spectacle frame apparatus. METHODS: Five New Zealand rabbits of seven weeks post-natal were treated with -8 D lens monocularly over the course of two weeks. Refractive errors and axial length (AXL were measured at the 1st, 7th and 14th days of the induction period. Ultrastructure of sclera was determined with electron microscopy. Biomechanical properties were tested by an Instron 5565 universal testing machine. RESULTS: Lens-induced (LI eyes elongated more rapidly compared with fellow eyes with AXL values of 15.56±0.14 and 15.21±0.14 mm (P<0.01. Fibril diameter was significantly smaller in the LI eyes compared with control ones in the inner, middle, and outer layers (inner layer, 63.533 vs 76.467 nm; middle layer, 92.647 vs 123.984 nm; outer layer, 86.999 vs 134.257 nm, P<0.01, respectively. In comparison with control eyes, macrophage-like cells that engulfed fibroblasts, dilated endoplasmic reticulum, and vacuoles in fibroblasts were observed in the inner and middle stroma in the LI eyes. Ultimate stress and Young’s modulus were lower in the LI eyes compared with those in the control eyes. CONCLUSION: Negative lens application alters eye growth, and results in axial elongation with changes in scleral ultrastructural and mechanical properties.

  5. Salvaging an Abused Lens or How a 4½ inch Brashear lens came unglued before I did!

    Science.gov (United States)

    Koester, Jack

    The author's newly-acquired Brashear telescope has a "fogged lens" that was stuck in its cell. After getting advice from several ATS members, the author visits Richard A. Buchroeder, the professional optical designer, who heats the mirror and cell in order to soften the binding substance by floating the cell in a pot filled with heated cooking oil. The process worked, and the two lenses were removed.

  6. Crystalline lens thickness determines the perceived chromatic difference in magnification.

    Science.gov (United States)

    Chen, Yun; Schaeffel, Frank

    2014-03-01

    Since the origin of the high interindividual variability of the chromatic difference in retinal image magnification (CDM) in the human eye is not well understood, optical parameters that might determine its magnitude were studied in 21 healthy subjects with ages ranging from 21 to 58 years. Two psychophysical procedures were used to quantify CDM. They produced highly correlated results. First, a red and a blue square, presented on a black screen, had to be matched in size by the subjects with their right eyes. Second, a filled red and blue square, flickering on top of each other at 2 Hz, had to be adjusted in perceived brightness and then in size to minimize the impression of flicker. CDM varied widely among subjects from 0.0% to 3.6%. Biometric ocular parameters were measured with low coherence interferometry and crystalline lens tilt and decentration with a custom-built Purkinjemeter. Correlations were studied between CDM and corneal power, anterior chamber depth, lens thickness, lens tilt and lens decentration, and vitreous chamber depths. Lens thickness was found significantly correlated with CDM and accounted for 64% of its variance. Vertical lens tilt and decentration were also significantly correlated. It was also found that CDM increased by 3.5% per year, and part of this change can be attributed to the age-related increase in lens thickness.

  7. Pigment dispersion syndrome associated with intraocular lens implantation: a new surgical technique

    Directory of Open Access Journals (Sweden)

    M Isabel Canut Jordana

    2010-11-01

    Full Text Available M Isabel Canut Jordana1, Daniel Pérez Formigó1, Rodrigo Abreu González2, Jeroni Nadal Reus11Barraquer Ophthalmology Centre, Barcelona, Spain; 2University Hospital of La Candelaria, Tenerife, SpainAims: We report the case of a myopic patient who, after intraocular lens transplant in the posterior chamber, suffered elevated intraocular pressure due to pigment dispersion, with recurrent episodes of blurred vision. The patient was treated with a new surgical technique that can avoid potential iridolenticular contact.Methods: Complete ophthalmologic examination and optical coherence tomography (OCT of the anterior segment were performed.Results: Contact between the pigmentary epithelium and the iris with an intraocular lens was revealed by utrasound biomicroscopy and OCT. In this case, Nd:YAG laser iridotomy and laser iridoplasty were not effective for iridolenticular separation and control of the pigment dispersion. We propose a new technique: stitches on the surface of the iris to obtain good iridolenticular separation and good intraocular pressure control.Conclusion: Stitches on the iris surface should be considered as optional therapy in pigmentary glaucoma secondary to intraocular lens implantation. This surgical technique can avoid potential iridolenticular contacts more definitively.Keywords: pigmentary glaucoma, intraocular lens, optical coherence tomography, laser

  8. Electrostatic lens to focus an ion beam to uniform density

    International Nuclear Information System (INIS)

    Johnson, C.H.

    1977-01-01

    A focusing lens for an ion beam having a gaussian or similar density profile is described. The lens is constructed to provide an inner zero electrostatic field, and an outer electrostatic field such that ions entering this outer field are deflected by an amount that is a function of their distance from the edge of the inner field. The result is a beam that focuses to uniform density in a manner analogous to that of an optical ring lens. In one embodiment, a conically-shaped network of fine wires is enclosed within a cylindrical anode. The wire net together with the anode produces a voltage field that re-directs the outer particles of the beam while the axial particles pass undeflected through a zero field inside the wire net. The result is a focused beam having a uniform intensity over a given target area and at a given distance from the lens

  9. Compressing and focusing a short laser pulse by a thin plasma lens

    International Nuclear Information System (INIS)

    Ren, C.; Duda, B. J.; Hemker, R. G.; Mori, W. B.; Katsouleas, T.; Antonsen, T. M.; Mora, P.

    2001-01-01

    We consider the possibility of using a thin plasma slab as an optical element to both focus and compress an intense laser pulse. By thin we mean that the focal length is larger than the lens thickness. We derive analytic formulas for the spot size and pulse length evolution of a short laser pulse propagating through a thin uniform plasma lens. The formulas are compared to simulation results from two types of particle-in-cell code. The simulations give a greater final spot size and a shorter focal length than the analytic formulas. The difference arises from spherical aberrations in the lens which lead to the generation of higher-order vacuum Gaussian modes. The simulations also show that Raman side scattering can develop. A thin lens experiment could provide unequivocal evidence of relativistic self-focusing

  10. Lens Coupled Quantum Cascade Laser

    Science.gov (United States)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor)

    2013-01-01

    Terahertz quantum cascade (QC) devices are disclosed that can operate, e.g., in a range of about 1 THz to about 10 THz. In some embodiments, QC lasers are disclosed in which an optical element (e.g., a lens) is coupled to an output facet of the laser's active region to enhance coupling of the lasing radiation from the active region to an external environment. In other embodiments, terahertz amplifier and tunable terahertz QC lasers are disclosed.

  11. Goldmann applanation tonometry over daily disposable contact lens: accuracy and safety of procedure.

    Science.gov (United States)

    Zeri, Fabrizio; Lupelli, Luigi; Formichella, Paolo; Masci, Carlo; Fletcher, Robert

    2007-09-01

    To study accuracy and safety, related to sensation (discomfort) and trauma, when using Goldmann applanation tonometry (GAT) on eyes wearing daily disposable soft contact lenses. The intra-ocular pressure (IOP) of 136 normal eyes of 68 subjects was measured by Goldmann tonometer. Measurements were made in one eye with a contact lens (hilafilcon A) without anaesthetic drops and then without the contact lens using one drop of 0.4% oxybuprocaine hydrochloride. Each contact lens used was identical as to back optic zone, back vertex power. Standard Goldmann procedure only was used for the fellow eye of each subject. Subjective sensation (discomfort) responses to both procedures were studied in a subgroup (66 eyes) using a scale of discomfort, from 1 (no sensation) to 5 (highest sensation). Epithelial staining after tonometry was evaluated for this subgroup. No significant differences were found for the IOP with and without contact lens (tcontact lens insertion, tonometry on contact lens and application of topical anaesthetic). Corneal epithelial staining following the standard tonometry procedure was significantly higher than following the procedure with a contact lens (pcontact lens is accurate, compared to the standard procedure and within the IOP's normal range studied here. Also using a contact lens results in less trauma whilst discomfort is similar.

  12. A comparative study with a 755 nm picosecond Alexandrite laser with a diffractive lens array and a 532 nm/1064 nm Nd:YAG with a holographic optic.

    Science.gov (United States)

    Tanghetti Md, Emil; Jennings, John

    2018-01-01

    This study was performed to better understand the cutaneous effects of using a fractional picosecond laser at 755 nm with a diffractive lens array and a picosecond Nd:YAG laser at 532 mn and 1064 nm with a holographic optic. We characterized the injuries created by these devices on skin clinically and histologically over 24 hours. With this information we modeled the effects of these devices on a cutaneous target. Eight patients, representing Fitzpatrick skin types I-VI, were treated on their backs with a picosecond Alexandrite laser with a diffractive lens array, as well as a picosecond Nd:YAG laser at 532 nm and 1064 nm with a holographic optic. Photographs were taken 15 minutes and 24 hours after treatments. Punch biopsies were obtained at 24 hours and examined histologically. Treatment with the picosecond Nd:YAG laser at both 532 nm and 1064 nm with the holographic optic revealed erythema and small scatted areas of petechial hemorrhage areas immediately and in many cases at 24 hours after treatment. The 755 nm picosecond Alexandrite laser with diffractive lens array produced erythema immediately after treatment, which largely dissipated 24 hours later. Histologies revealed intra-epidermal vacuoles with all three wavelengths. Fractional picosecond Nd:YAG laser at 532 nm and 1064 nm with the holographic optic showed focal areas of dermal and intra-epidermal hemorrhage with areas of vascular damage in some patients. This study demonstrates that both fractional picosecond devices produce vacuoles in the skin, which are most likely due to areas of laser induced optical breakdown (LIOB). In the patients (skin type II-IV) we observed scatter areas of hemorrhage in the skin, due to vascular damage with the 532 nm and 1064 nm, but not with 755 nm wavelengths. Lasers Surg. Med. 50:37-44, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Evolutionary optimization of compact dielectric lens for farfield sub-wavelength imaging

    DEFF Research Database (Denmark)

    Zhang, Jingjing

    2015-01-01

    The resolution of conventional optical lenses is limited by diffraction. For decades researchers have made various attempts to beat the diffraction limit and realize subwavelength imaging. Here we present the approach to design modified solid immersion lenses that deliver the subwavelength...... information of objects into the far field, yielding magnified images. The lens is composed of an isotropic dielectric core and anisotropic or isotropic dielectric matching layers. It is designed by combining a transformation optics forward design with an inverse design scheme, where an evolutionary...... optimization procedure is applied to find the material parameters for the matching layers. Notably, the total radius of the lens is only 2.5 wavelengths and the resolution can reach lambda/6. Compared to previous approaches based on the simple discretized approximation of a coordinate transformation design...

  14. Design and analysis of a curved cylindrical Fresnel lens that produces high irradiance uniformity on the solar cell.

    Science.gov (United States)

    González, Juan C

    2009-04-10

    A new type of convex Fresnel lens for linear photovoltaic concentration systems is presented. The lens designed with this method reaches 100% of geometrical optical efficiency, and the ratio (Aperture area)/(Receptor area) is up to 75% of the theoretical limit. The main goal of the design is high uniformity of the radiation on the cell surface for each input angle inside the acceptance. The ratio between the maximum and the minimum irradiance on points of the solar cell is less than 2. The lens has been designed with the simultaneous multiple surfaces (SMS) method of nonimaging optics, and ray tracing techniques have been used to characterize its performance for linear symmetry systems.

  15. Design of compact freeform lens for application specific Light-Emitting Diode packaging.

    Science.gov (United States)

    Wang, Kai; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing; Liu, Sheng

    2010-01-18

    Application specific LED packaging (ASLP) is an emerging technology for high performance LED lighting. We introduced a practical design method of compact freeform lens for extended sources used in ASLP. A new ASLP for road lighting was successfully obtained by integrating a polycarbonate compact freeform lens of small form factor with traditional LED packaging. Optical performance of the ASLP was investigated by both numerical simulation based on Monte Carlo ray tracing method and experiments. Results demonstrated that, comparing with traditional LED module integrated with secondary optics, the ASLP had advantages of much smaller size in volume (approximately 1/8), higher system lumen efficiency (approximately 8.1%), lower cost and more convenience for customers to design and assembly, enabling possible much wider applications of LED for general road lighting. Tolerance analyses were also conducted. Installation errors of horizontal and vertical deviations had more effects on the shape and uniformity of radiation pattern compared with rotational deviation. The tolerances of horizontal, vertical and rotational deviations of this lens were 0.11 mm, 0.14 mm and 2.4 degrees respectively, which were acceptable in engineering.

  16. Low-cost mobile phone microscopy with a reversed mobile phone camera lens.

    Directory of Open Access Journals (Sweden)

    Neil A Switz

    Full Text Available The increasing capabilities and ubiquity of mobile phones and their associated digital cameras offer the possibility of extending low-cost, portable diagnostic microscopy to underserved and low-resource areas. However, mobile phone microscopes created by adding magnifying optics to the phone's camera module have been unable to make use of the full image sensor due to the specialized design of the embedded camera lens, exacerbating the tradeoff between resolution and field of view inherent to optical systems. This tradeoff is acutely felt for diagnostic applications, where the speed and cost of image-based diagnosis is related to the area of the sample that can be viewed at sufficient resolution. Here we present a simple and low-cost approach to mobile phone microscopy that uses a reversed mobile phone camera lens added to an intact mobile phone to enable high quality imaging over a significantly larger field of view than standard microscopy. We demonstrate use of the reversed lens mobile phone microscope to identify red and white blood cells in blood smears and soil-transmitted helminth eggs in stool samples.

  17. Low-cost mobile phone microscopy with a reversed mobile phone camera lens.

    Science.gov (United States)

    Switz, Neil A; D'Ambrosio, Michael V; Fletcher, Daniel A

    2014-01-01

    The increasing capabilities and ubiquity of mobile phones and their associated digital cameras offer the possibility of extending low-cost, portable diagnostic microscopy to underserved and low-resource areas. However, mobile phone microscopes created by adding magnifying optics to the phone's camera module have been unable to make use of the full image sensor due to the specialized design of the embedded camera lens, exacerbating the tradeoff between resolution and field of view inherent to optical systems. This tradeoff is acutely felt for diagnostic applications, where the speed and cost of image-based diagnosis is related to the area of the sample that can be viewed at sufficient resolution. Here we present a simple and low-cost approach to mobile phone microscopy that uses a reversed mobile phone camera lens added to an intact mobile phone to enable high quality imaging over a significantly larger field of view than standard microscopy. We demonstrate use of the reversed lens mobile phone microscope to identify red and white blood cells in blood smears and soil-transmitted helminth eggs in stool samples.

  18. Gradient-Index Optics

    Science.gov (United States)

    2010-03-31

    nonimaging design capabilities to incorporate 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 12-04-2011 13. SUPPLEMENTARY NOTES The views, opinions...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Imaging Optics, Nonimaging Optics, Gradient Index Optics, Camera, Concentrator...imaging and nonimaging design capabilities to incorporate manufacturable GRIN lenses can provide imaging lens systems that are compact and

  19. Optical camera system for radiation field

    International Nuclear Information System (INIS)

    Maki, Koichi; Senoo, Makoto; Takahashi, Fuminobu; Shibata, Keiichiro; Honda, Takuro.

    1995-01-01

    An infrared-ray camera comprises a transmitting filter used exclusively for infrared-rays at a specific wavelength, such as far infrared-rays and a lens used exclusively for infrared rays. An infrared ray emitter-incorporated photoelectric image converter comprising an infrared ray emitting device, a focusing lens and a semiconductor image pick-up plate is disposed at a place of low gamma-ray dose rate. Infrared rays emitted from an objective member are passed through the lens system of the camera, and real images are formed by way of the filter. They are transferred by image fibers, introduced to the photoelectric image converter and focused on the image pick-up plate by the image-forming lens. Further, they are converted into electric signals and introduced to a display and monitored. With such a constitution, an optical material used exclusively for infrared rays, for example, ZnSe can be used for the lens system and the optical transmission system. Accordingly, it can be used in a radiation field of high gamma ray dose rate around the periphery of the reactor container. (I.N.)

  20. Method and apparatus for optical phase error correction

    Science.gov (United States)

    DeRose, Christopher; Bender, Daniel A.

    2014-09-02

    The phase value of a phase-sensitive optical device, which includes an optical transport region, is modified by laser processing. At least a portion of the optical transport region is exposed to a laser beam such that the phase value is changed from a first phase value to a second phase value, where the second phase value is different from the first phase value. The portion of the optical transport region that is exposed to the laser beam can be a surface of the optical transport region or a portion of the volume of the optical transport region. In an embodiment of the invention, the phase value of the optical device is corrected by laser processing. At least a portion of the optical transport region is exposed to a laser beam until the phase value of the optical device is within a specified tolerance of a target phase value.

  1. Fabricating customized hydrogel contact lens

    Science.gov (United States)

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-10-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies.

  2. Non-invasive bleaching of the human lens by femtosecond laser photolysis

    DEFF Research Database (Denmark)

    Kessel, L.; Eskildsen, Lars; Poel, Mike van der

    2010-01-01

    . Reducing blindness from cataract requires solutions that can be applied outside operating theatres. Cataract is a protein conformational disease characterized by accumulation of light absorbing, fluorescent and scattering protein aggregates. The aim of the study was to investigate whether these compounds...... by a non-invasive procedure based on femtosecond laser photolysis. Cataract is a disease associated with old age. At the current technological stage, lens aging is delayed but with a treatment covering the entire lens volume complete optical rejuvenation is expected. Thus, femtosecond photolysis has...

  3. A Correlation of Thin Lens Approximation to Thick Lens Design by Using Coddington Factors in Lens Design and Manufacturing

    OpenAIRE

    FARSAKOĞLU, Ö. Faruk

    2014-01-01

    The effect of Coddington factors on aberration functions has been analysed using thin lens approximation. Minimizing spherical aberrations of singlet lenses using Coddington factors in lens design depending on lens manufacturing is discussed. Notation of lens test plate pairs used in lens manufacturing is also presented in terms of Coddington shape factors.

  4. Development of the multiwavelength monolithic integrated fiber optics terminal

    Science.gov (United States)

    Chubb, C. R.; Bryan, D. A.; Powers, J. K.; Rice, R. R.; Nettle, V. H.; Dalke, E. A.; Reed, W. R.

    1982-01-01

    This paper describes the development of the Multiwavelength Monolithic Integrated Fiber Optic Terminal (MMIFOT) for the NASA Johnson Space Center. The program objective is to utilize guided wave optical technology to develop wavelength-multiplexing and -demultiplexing units, using a single mode optical fiber for transmission between terminals. Intensity modulated injection laser diodes, chirped diffraction gratings and thin film lenses are used to achieve the wavelength-multiplexing and -demultiplexing. The video and audio data transmission test of an integrated optical unit with a Luneburg collimation lens, waveguide diffraction grating and step index condensing lens is described.

  5. A planar lens based on the electrowetting of two immiscible liquids

    International Nuclear Information System (INIS)

    Liu Chaoxuan; Park, Jihwan; Choi, Jin-Woo

    2008-01-01

    This paper reports the development and characterization of a planar liquid lens based on electrowetting. The working concept of electrowetting two immiscible liquids is demonstrated with measurement and characterization of contact angles with regard to externally applied electric voltages. Consequently, a planar liquid lens is designed and implemented based on this competitive electrowetting. A droplet of silicone oil confined in an aqueous solution (1% KCl) works as a liquid lens. Electrowetting then controls the shape of the confined silicone oil and the focal length of the liquid lens varies depending upon an applied dc voltage. A unique feature of this lens design is the double-ring planar electrodes beneath the hydrophobic substrate. While an outer ring electrode provides an initial boundary for the silicone oil droplet, an inner ring works as the actuation electrode for the lens. Further, the planar electrodes, instead of vertical or out-of-plane wall electrodes, facilitate the integration of liquid lenses into microfluidic systems. With the voltage applied in the range of 50–250 V, the confined silicone oil droplet changed its shape and the optical magnification of a 3 mm-diameter liquid lens was clearly demonstrated. Moreover, focal lengths of liquid lenses with diameters of 2 mm, 3 mm and 4 mm were characterized, respectively. The obtained results suggest that a larger lens diameter yields a longer focal length and a wider range of focal length change in response to voltage. The demonstrated liquid lens has a simple structure and is easy to fabricate

  6. Optical Coherence Tomography Examination of the Anterior Segment in a Case of Corneal Perforation and Lens Trauma by Chestnut Burr

    Directory of Open Access Journals (Sweden)

    Takashi Ono

    2018-02-01

    Full Text Available Chestnut burrs, the thorny encapsulation of chestnut fruit, can sometimes cause corneal injuries and ulceration, with poor prognoses. We report a case of corneal perforation and damaged anterior lens capsule due to a chestnut burr, using anterior segment optical coherence tomography (AS-OCT. A 67-year-old woman with a chestnut burr injury in her right eye was referred to our hospital. Her right best-corrected visual acuity (BCVA was 0.8. Slit-lamp examination and AS-OCT showed perforation involving the endothelial layer at the center of the cornea. The iris and anterior lens capsule were damaged. Cell infiltration was observed around the wound. Bacterial examination showed gram-positive cocci but no fungi. The patient was diagnosed with a corneal perforation and bacterial keratitis. Levofloxacin 1.5% and cefmenoxime treatments were initiated and a soft contact lens was placed to seal the wound. On day 3, there was no improvement in the corneal cell infiltration, but AS-OCT suggested that the inner wound had closed. A culture test revealed the presence of Propionibacterium acnes, which was sensitive to both levofloxacin and cefmenoxime. Therefore, we continued the same antibiotic treatment. On day 26, the opacification and cell infiltration at the center of the cornea had improved. AS-OCT showed healing of the corneal wound with reduction in the central corneal thickness. Her BCVA improved to 1.0. AS-OCT was a valuable tool to noninvasively observe wound shape and detect the presence of any intracorneal foreign bodies.

  7. An OTDM-To-WDM Converter Using Optical Fourier Transformation

    OpenAIRE

    Khin Su Myat Min; Zaw Myo Lwin; Hla Myo Tun

    2015-01-01

    We demonstrate serial-to-parallel conversion of 40 Gbps optical time division multiplexed OTDM signal to 4x10 Gbps wavelength division-multiplexed WDM individual channels by using Optical Fourier Transformation OFT method. OFT is also called time lens technique and it is implemented by the combination of dispersive fiber and phase modulation. In this research electro-optic phase modulator EOM is used as time lens. As our investigations simulation results and bit error rate BER measurements ar...

  8. Retina-like sensor based on a lens array with a large field of view.

    Science.gov (United States)

    Fan, Fan; Hao, Qun; Cheng, Xuemin

    2015-12-20

    This paper puts forward a retina-like sensor based on a lens array, which can be used in conventional optical systems. This sensor achieves log-polar mapping by dividing the imaging optical system's image plane using a lens array. In this paper the mathematical model has been set up with the relative structural parameters. Also, the simulation experiments and parameter analysis have been discussed to verify the reliability of this system. From the experiment results, it can be seen that this sensor realized the log-polar mapping with the transformed image output. Each lens corresponded to a circular region in the image plane with no crossover between different fields of view of adjacent lenses. When the number of rings changed, the relative error did not significantly change, and this error could be reduced to 1% when the number of lenses in each ring was increased. The work widely enlarged the application of this kind of sensor, which will lay a theoretical foundation for retina-like sensors.

  9. Improved design of three-dimensional lens for low concentrator PV modules; Teishukogata taiyo denchiyo sanjigen lens no koseinoka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Goma, S; Yoshioka, K; Saito, T [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    Attention is paid to reduction in area required for solar cells by solar concentration as a means of solving cost limits of solar cells and unstable supply of Si materials. Low concentration solar cells are effective from the aspects of utilization of scattered light and unnecessary ray tracing. The optical concentration ratio was calculated of three-dimensional lens having design values of various north/south and east/west direction allowable incidence half angles. The three-dimensional lens are designed by cutting a rectangular parallelepiped by the two-dimensional composite elliptical plane designed by various allowable incidence half angles from two directions of north/south and east/west. Using Perez`s sky solar radiation models and meteorological data HASP, calculated were the annual accumulated global radiation ratio on an inclined surface and the optical efficiency. Calculated were the solar cell area ratio and solar concentration area ratio of the concentration type to obtain solar radiation the same as that of the planar type. From the optimization calculation, it was found that lens are optimal which have design values of north/south and east/west direction allowable incidence half angles of 30-70deg. The solar cell area ratio is 57% and the solar concentration area ratio is 1.2 times. It was found that by making the module area 1.2 times, more than 40% of the solar cells used can be saved. 5 refs., 8 figs.

  10. Improved illumination system of laparoscopes using an aspherical lens array.

    Science.gov (United States)

    Wu, Rengmao; Qin, Yi; Hua, Hong

    2016-06-01

    The current fiber-based illumination systems of laparoscopes are unable to uniformly illuminate a large enough area in abdomen due to the limited numerical aperture (NA) of the fiber bundle. Most energy is concentrated in a small region at the center of the illumination area. This limitation becomes problematic in laparoscopes which require capturing a wide field of view. In this paper, we propose an aspherical lens array which is used to direct the outgoing rays from the fiber bundle of laparoscope to produce a more uniformly illuminated, substantially larger field coverage than standalone fiber source. An intensity feedback method is developed to design the aspherical lens unit for extended non-Lambertian sources, which is the key to the design of this lens array. By this method, the lens unit is obtained after only one iteration, and the lens array is constructed by Boolean operation. Then, the ray-tracing technique is used to verify the design. Further, the lens array is fabricated and experimental tests are performed. The results clearly show that the well-illuminated area is increased to about 0.107m(2) from 0.02m(2) (about 5x larger than a standard fiber illumination source). More details of the internal organs can be clearly observed under this improved illumination condition, which also reflects the significant improvement in the optical performance of the laparoscope.

  11. Method and apparatus for bistable optical information storage for erasable optical disks

    Science.gov (United States)

    Land, Cecil E.; McKinney, Ira D.

    1990-01-01

    A method and an optical device for bistable storage of optical information, together with reading and erasure of the optical information, using a photoactivated shift in a field dependent phase transition between a metastable or a bias-stabilized ferroelectric (FE) phase and a stable antiferroelectric (AFE) phase in an lead lanthanum zirconate titanate (PLZT). An optical disk contains the PLZT. Writing and erasing of optical information can be accomplished by a light beam normal to the disk. Reading of optical information can be accomplished by a light beam at an incidence angle of 15 to 60 degrees to the normal of the disk.

  12. Spectral analysis and comparison of mineral deposits forming in opacified intraocular lens and senile cataractous lens

    Science.gov (United States)

    Lin, Shan-Yang; Chen, Ko-Hwa; Lin, Chih-Cheng; Cheng, Wen-Ting; Li, Mei-Jane

    2010-10-01

    This preliminary report was attempted to compare the chemical components of mineral deposits on the surfaces of an opacified intraocular lens (IOL) and a calcified senile cataractous lens (SCL) by vibrational spectral diagnosis. An opacified intraocular lens (IOL) was obtained from a 65-year-old male patient who had a significant decrease in visual acuity 2-years after an ocular IOL implantation. Another SCL with grayish white calcified plaque on the subcapsular cortex was isolated from a 79-year-old male patient with complicated cataract after cataract surgery. Optical light microscope was used to observe both samples and gross pictures were taken. Fourier transform infrared (FT-IR) and Raman microspectroscopic techniques were employed to analyze the calcified deposits. The curve-fitting algorithm using the Gaussian function was also used to quantitatively estimate the chemical components in each deposit. The preliminary results of spectral diagnosis indicate that the opacified IOL mainly consisted of the poorly crystalline, immature non-stoichiometric hydroxyapatite (HA) with higher content of type B carbonated apatites. However, the calcified plaque deposited on the SCL was comprised of a mature crystalline stoichiometric HA having higher contents of type A and type B carbonate apatites. More case studies should be examined in future.

  13. Spectroscopic Chemical Analysis Methods and Apparatus

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)

    2018-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  14. Two mode optical fiber in space optics communication

    Science.gov (United States)

    Hampl, Martin

    2017-11-01

    In our contribution we propose to use of a two-mode optical fiber as a primary source in a transmitting optical head instead of the laser diode. The distribution of the optical intensity and the complex degree of the coherence on the output aperture of the lens that is irradiated by a step-index weakly guiding optical fiber is investigated. In our treatment we take into account weakly guided modes with polarization corrections to the propagation constant and unified theory of second order coherence and polarization of electromagnetic beams.

  15. ASSESSMENT OF LENS THICKNESS IN ANGLE CLOSURE DISEASE

    Directory of Open Access Journals (Sweden)

    Nishat Sultana Khayoom

    2016-08-01

    Full Text Available BACKGROUND Anterior chamber depth and lens thickness have been considered as important biometric determinants in primary angle-closure glaucoma. Patients with primary narrow angle may be classified as a primary angle closure suspect (PACS, or as having primary angle closure (PAC or primary angle closure glaucoma (PACG. 23.9% of patients with primary angle closure disease are in India, which highlights the importance of understanding the disease, its natural history, and its underlying pathophysiology, so that we may try to establish effective methods of treatment and preventative measures to delay, or even arrest, disease progression, thereby reducing visual morbidity. AIM To determine the lens thickness using A-scan biometry and its significance in various stages of angle closure disease. MATERIALS AND METHODS Patients attending outpatient department at Minto Ophthalmic Hospital between October 2013 to May 2015 were screened for angle closure disease and subsequently evaluated at glaucoma department. In our study, lens thickness showed a direct correlation with shallowing of the anterior chamber by determining the LT/ ACD ratio. A decrease in anterior chamber depth is proportional to the narrowing of the angle which contributes to the progression of the angle closure disease from just apposition to occlusion enhancing the risk for optic nerve damage and visual field loss. Hence, if the lens thickness values are assessed earlier in the disease process, appropriate intervention can be planned. CONCLUSION Determination of lens changes along with anterior chamber depth and axial length morphometrically can aid in early detection of angle closure. The role of lens extraction for PACG is a subject of increased interest. Lens extraction promotes the benefits of anatomical opening of the angle, IOP reduction and improved vision. This potential intervention may be one among the armamentarium of approaches for PACG. Among the current treatment modalities

  16. Integrated Lens Antennas for Multi-Pixel Receivers

    Science.gov (United States)

    Lee, Choonsup; Chattopadhyay, Goutam

    2011-01-01

    Future astrophysics and planetary experiments are expected to require large focal plane arrays with thousands of detectors. Feedhorns have excellent performance, but their mass, size, fabrication challenges, and expense become prohibitive for very large focal plane arrays. Most planar antenna designs produce broad beam patterns, and therefore require additional elements for efficient coupling to the telescope optics, such as substrate lenses or micromachined horns. An antenna array with integrated silicon microlenses that can be fabricated photolithographically effectively addresses these issues. This approach eliminates manual assembly of arrays of lenses and reduces assembly errors and tolerances. Moreover, an antenna array without metallic horns will reduce mass of any planetary instrument significantly. The design has a monolithic array of lens-coupled, leaky-wave antennas operating in the millimeter- and submillimeter-wave frequencies. Electromagnetic simulations show that the electromagnetic fields in such lens-coupled antennas are mostly confined in approximately 12 15 . This means that one needs to design a small-angle sector lens that is much easier to fabricate using standard lithographic techniques, instead of a full hyper-hemispherical lens. Moreover, this small-angle sector lens can be easily integrated with the antennas in an array for multi-pixel imager and receiver implementation. The leaky antenna is designed using double-slot irises and fed with TE10 waveguide mode. The lens implementation starts with a silicon substrate. Photoresist with appropriate thickness (optimized for the lens size) is spun on the substrate and then reflowed to get the desired lens structure. An antenna array integrated with individual lenses for higher directivity and excellent beam profile will go a long way in realizing multi-pixel arrays and imagers. This technology will enable a new generation of compact, low-mass, and highly efficient antenna arrays for use in multi

  17. Comparison of optical quality after implantable collamer lens implantation and wavefront-guided laser in situ keratomileusis.

    Science.gov (United States)

    Liu, Hong-Ting; Zhou, Zhou; Luo, Wu-Qiang; He, Wen-Jing; Agbedia, Owhofasa; Wang, Jiang-Xia; Huang, Jian-Zhong; Gao, Xin; Kong, Min; Li, Min; Li, Li

    2018-01-01

    To compare the optical quality after implantation of implantable collamer lens (ICL) and wavefront-guided laser in situ keratomileusis (WG-LASIK). The study included 40 eyes of 22 patients with myopia who accepted ICL implantation and 40 eyes of 20 patients with myopia who received WG-LASIK. Before surgery and three months after surgery, the objective scattering index (OSI), the values of modulation transfer function (MTF) cutoff frequency, Strehl ratio, and the Optical Quality Analysis System (OQAS) values (OVs) were accessed. The higher order aberrations (HOAs) data including coma, trefoil, spherical, 2 nd astigmatism and tetrafoil were also obtained. For patients with pupil size LASIK group, significant improvements in visual acuities were found postoperatively, with a significant reduction in spherical equivalent ( P LASIK group, the OSI significantly increased from 0.68±0.43 preoperatively to 0.91±0.53 postoperatively (Wilcoxon signed ranks test, P =0.000). None of the mean MTF cutoff frequency, Strehl ratio, OVs showed statistically significant changes in both ICL and WG-LASIK groups. In the ICL group, there were no statistical differences in the total HOAs for either 4 mm-pupil or 6 mm-pupil. In the WG-LASIK group, the HOA parameters increased significantly at 4 mm-pupil. The total ocular HOAs, coma, spherical and 2 nd astigmatism were 0.12±0.06, 0.06±0.03, 0.00±0.03, 0.02±0.01, respectively. After the operation, these values were increased into 0.16±0.07, 0.08±0.05, -0.04±0.04, 0.03±0.01 respectively (Wilcoxon signed ranks test, all P LASIK group. ICL implantation has a less disturbance to optical quality than WG-LASIK. The OQAS is a valuable complementary measurement to the wavefront aberrometers in evaluating the optical quality.

  18. Gamma and x radiation and thermal neutrons effects in lens solutions and the relation with proteins concentration

    International Nuclear Information System (INIS)

    Ramirez A, M.; Alarcon C, A.

    1996-01-01

    Radiation effects have been studied irradiating porcine lens solutions with doses which range between 52 Gy to 1042 Gy in the case of x-rays (30 kVp), 631 Gy to 4001 Gy in the case of 60 Co gamma rays and 314 Gy to 7596 Gy for thermal neutrons. The optics density time variation of solutions was determined using a Spectronic-501 spectrophotometer, and with this data an equation which describes the behavior in the mentioned cases was found. A phenomenological model is postulated which connects the optical time variation density increment macroscopic effect with proteins concentration in the crystalline lens obtaining relative biological effectiveness using the supra-molecular aggregate formation due to the denaturalization and destruction of lens proteins by radiation criteria. (authors). 5 refs., 3 figs

  19. Immunohistochemical studies of lens crystallins in the dysgenetic lens (dyl) mutant mice

    NARCIS (Netherlands)

    Brahma, S.K.; Sanyal, S.

    1984-01-01

    The lens in the dyl mutant mice shows a persistent lens-ectodermal connection as well as degeneration and extrusion of lens materials after the initial differentiation of the fibres. Immunohistochemical investigation of the ontogeny of the lens crystallins in this developing mutant lens has been

  20. Lens-mount stability trade-off: a survey exemplified for DUV wafer inspection objectives

    Science.gov (United States)

    Bouazzam, Achmed; Erbe, Torsten; Fahr, Stephan; Werschnik, Jan

    2015-09-01

    The position stability of optical elements is an essential part of the tolerance budget of an optical system because its compensation would require an alignment step after the lens has left the factory. In order to achieve a given built performance the stability error contribution needs to be known and accounted for. Given a high-end lens touching the edge of technology not knowing, under- or overestimating this contribution becomes a serious cost and risk factor. If overestimated the remaining parts of the budget need to be tighter. If underestimated the total project might fail. For many mounting principles the stability benchmark is based on previous systems or information gathered by elaborated testing of complete optical systems. This renders the development of a new system into a risky endeavour, because these experiences are not sufficiently precise and tend to be not transferable when scaling of the optical elements is intended. This contribution discusses the influences of different optical mounting concepts on the position stability using the example of high numerical aperture (HNA) inspection lenses working in the deep ultraviolet (DUV) spectrum. A method to investigate the positional stability is presented for selected mounting examples typical for inspection lenses.

  1. Time-lens based synchronizer and retimer for 10 Gb/s Ethernet packets with up to ±1MHz frequency offset

    DEFF Research Database (Denmark)

    Laguardia Areal, Janaina; Hu, Hao; Palushani, Evarist

    2010-01-01

    We present a time-lens based all-optical 10 Gb/s frame synchronizer and retimer. Our scheme can work with a 4096-bit frame, with frequency offset up to 1MHz, which is demonstrated by experimental results.......We present a time-lens based all-optical 10 Gb/s frame synchronizer and retimer. Our scheme can work with a 4096-bit frame, with frequency offset up to 1MHz, which is demonstrated by experimental results....

  2. An OTDM-To-WDM Converter Using Optical Fourier Transformation

    Directory of Open Access Journals (Sweden)

    Khin Su Myat Min

    2015-08-01

    Full Text Available We demonstrate serial-to-parallel conversion of 40 Gbps optical time division multiplexed OTDM signal to 4x10 Gbps wavelength division-multiplexed WDM individual channels by using Optical Fourier Transformation OFT method. OFT is also called time lens technique and it is implemented by the combination of dispersive fiber and phase modulation. In this research electro-optic phase modulator EOM is used as time lens. As our investigations simulation results and bit error rate BER measurements are expressed.

  3. Sharing of secondary electrons by in-lens and out-lens detector in low-voltage scanning electron microscope equipped with immersion lens.

    Science.gov (United States)

    Kumagai, Kazuhiro; Sekiguchi, Takashi

    2009-03-01

    To understand secondary electron (SE) image formation with in-lens and out-lens detector in low-voltage scanning electron microscopy (LV-SEM), we have evaluated SE signals of an in-lens and an out-lens detector in LV-SEM. From the energy distribution spectra of SEs with various boosting voltages of the immersion lens system, we revealed that the electrostatic field of the immersion lens mainly collects electrons with energy lower than 40eV, acting as a low-pass filter. This effect is also observed as a contrast change in LV-SEM images taken by in-lens and out-lens detectors.

  4. Age-dependent Fourier model of the shape of the isolated ex vivo human crystalline lens.

    Science.gov (United States)

    Urs, Raksha; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie

    2010-06-01

    To develop an age-dependent mathematical model of the zero-order shape of the isolated ex vivo human crystalline lens, using one mathematical function, that can be subsequently used to facilitate the development of other models for specific purposes such as optical modeling and analytical and numerical modeling of the lens. Profiles of whole isolated human lenses (n=30) aged 20-69, were measured from shadow-photogrammetric images. The profiles were fit to a 10th-order Fourier series consisting of cosine functions in polar-co-ordinate system that included terms for tilt and decentration. The profiles were corrected using these terms and processed in two ways. In the first, each lens was fit to a 10th-order Fourier series to obtain thickness and diameter, while in the second, all lenses were simultaneously fit to a Fourier series equation that explicitly include linear terms for age to develop an age-dependent mathematical model for the whole lens shape. Thickness and diameter obtained from Fourier series fits exhibited high correlation with manual measurements made from shadow-photogrammetric images. The root-mean-squared-error of the age-dependent fit was 205 microm. The age-dependent equations provide a reliable lens model for ages 20-60 years. The contour of the whole human crystalline lens can be modeled with a Fourier series. Shape obtained from the age-dependent model described in this paper can be used to facilitate the development of other models for specific purposes such as optical modeling and analytical and numerical modeling of the lens. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. Crystalline lens paradoxes revisited: significance of age-related restructuring of the GRIN.

    Science.gov (United States)

    Sheil, Conor J; Goncharov, Alexander V

    2017-09-01

    The accommodating volume-constant age-dependent optical (AVOCADO) model of the crystalline lens is used to explore the age-related changes in ocular power and spherical aberration. The additional parameter m in the GRIN lens model allows decoupling of the axial and radial GRIN profiles, and is used to stabilise the age-related change in ocular power. Data for age-related changes in ocular geometry and lens parameter P in the axial GRIN profile were taken from published experimental data. In our age-dependent eye model, the ocular refractive power shows behaviour similar to the previously unexplained "lens paradox". Furthermore, ocular spherical aberration agrees with the data average, in contrast to the proposed "spherical aberration paradox". The additional flexibility afforded by parameter m , which controls the ratio of the axial and radial GRIN profile exponents, has allowed us to study the restructuring of the lens GRIN medium with age, resulting in a new interpretation of the origin of the power and spherical aberration paradoxes. Our findings also contradict the conceptual idea that the ageing eye is similar to the accommodating eye.

  6. Postoperative diffuse opacification of a hydrophilic acrylic intraocular lens: analysis of an explant.

    Science.gov (United States)

    Cavallini, Gian Maria; Volante, Veronica; Campi, Luca; De Maria, Michele; Fornasari, Elisa; Urso, Giancarlo

    2017-06-14

    We describe the clinicopathological and ultrastructural features of an opaque single-piece hydrophilic acrylic intraocular lens (IOL) explanted from a patient. The main outcome of this report is the documentation of calcium deposits confirmed by surface analysis. The decrease in visual acuity was due to the opacification of the IOL. The opacification involved both the optic plate and the haptics. The analysis at the scansion electron microscope revealed that the opacity was caused by the deposition of calcium and phosphate within the lens optic and haptics. This is the first case about the opacification of an Oculentis L-313. The opacification was characterized by calcium and phosphate deposition probably due to a morphological alteration of the posterior surface of the IOL.

  7. Wedged multilayer Laue lens

    International Nuclear Information System (INIS)

    Conley, Ray; Liu Chian; Qian Jun; Kewish, Cameron M.; Macrander, Albert T.; Yan Hanfei; Maser, Joerg; Kang, Hyon Chol; Stephenson, G. Brian

    2008-01-01

    A multilayer Laue lens (MLL) is an x-ray focusing optic fabricated from a multilayer structure consisting of thousands of layers of two different materials produced by thin-film deposition. The sequence of layer thicknesses is controlled to satisfy the Fresnel zone plate law and the multilayer is sectioned to form the optic. An improved MLL geometry can be created by growing each layer with an in-plane thickness gradient to form a wedge, so that every interface makes the correct angle with the incident beam for symmetric Bragg diffraction. The ultimate hard x-ray focusing performance of a wedged MLL has been predicted to be significantly better than that of a nonwedged MLL, giving subnanometer resolution with high efficiency. Here, we describe a method to deposit the multilayer structure needed for an ideal wedged MLL and report our initial deposition results to produce these structures

  8. Apparatus and method using a holographic optical element for converting a spectral distribution to image points

    Science.gov (United States)

    McGill, Matthew J. (Inventor); Scott, Vibart S. (Inventor); Marzouk, Marzouk (Inventor)

    2001-01-01

    A holographic optical element transforms a spectral distribution of light to image points. The element comprises areas, each of which acts as a separate lens to image the light incident in its area to an image point. Each area contains the recorded hologram of a point source object. The image points can be made to lie in a line in the same focal plane so as to align with a linear array detector. A version of the element has been developed that has concentric equal areas to match the circular fringe pattern of a Fabry-Perot interferometer. The element has high transmission efficiency, and when coupled with high quantum efficiency solid state detectors, provides an efficient photon-collecting detection system. The element may be used as part of the detection system in a direct detection Doppler lidar system or multiple field of view lidar system.

  9. Fault location in optical networks

    Science.gov (United States)

    Stevens, Rick C [Apple Valley, MN; Kryzak, Charles J [Mendota Heights, MN; Keeler, Gordon A [Albuquerque, NM; Serkland, Darwin K [Albuquerque, NM; Geib, Kent M [Tijeras, NM; Kornrumpf, William P [Schenectady, NY

    2008-07-01

    One apparatus embodiment includes an optical emitter and a photodetector. At least a portion of the optical emitter extends a radial distance from a center point. The photodetector provided around at least a portion of the optical emitter and positioned outside the radial distance of the portion of the optical emitter.

  10. Microscopic analysis of an opacified OFT CRYL® hydrophilic acrylic intraocular lens

    Directory of Open Access Journals (Sweden)

    Bruna Vieira Ventura

    Full Text Available ABSTRACT A 51-year-old patient underwent posterior vitrectomy with perfluoropropane gas injection, phacoemulsification, and implantation of an Oft Cryl® hydrophilic acrylic intraocular lens (IOL because of traumatic retinal detachment and cataract in the right eye. On the first postoperative day, gas was filling the anterior chamber because of patient's non-compliance in terms of head positioning, and was reabsorbed within one week. Eight months later, the patient returned complaining of a significant decrease in vision. IOL opacification was noticed by slit-lamp examination. The lens was explanted to undergo gross and light microscopic analysis. The lens was also stained with the alizarin red method for calcium identification. Light microscopic analysis confirmed the presence of granular deposits, densely distributed in an overall circular pattern in the central part of the lens optic. The granules stained positive for calcium. This is the first case of the opacification of this type of hydrophilic lens. Surgeons should be aware of this potential postoperative complication, and the use of hydrophilic IOLs should be avoided in procedures involving intracameral gas because of the risk of IOL opacification.

  11. Ion optics of RHIC EBIS

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2011-09-10

    RHIC EBIS has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  12. Thermal lens measurements in the cornea.

    Science.gov (United States)

    Venkatesh, S; Guthrie, S; Cruickshank, F R; Bailey, R T; Foulds, W S; Lee, W R

    1985-02-01

    Q-switched pulses from a neodymium/YAG (yttrium-aluminium-garnet) laser were passed through corneal discs taken from the enucleated eyes of three baboons and four rabbits. The time course of heat dissipation following absorption of laser energy by the tissue was studied with the use of a second continuous wave laser beam acting as a probe. It was found that the absorption of each neodymium/YAG pulse created a transient divergent lens within the cornea as theoretical considerations predicted. The relaxation time that characterised the decay of this thermal lens for a 1/e laser beam diameter of 2.0 mm was found to be 2.3 +/- 0.1 s (mean +/- standard error for 12 separate groups of measurements). Our results show that Q-switched laser pulses passing through apparently unaffected transparent tissues can induce thermal lens effects which persist for several seconds. The optical transfer of each pulse in a stream will be identical only if enough time is left between pulses for the tissues to return to their initial state. Therefore, when such laser pulses sharply focused to perform high precision intraocular surgery are used, thermal lensing in the transparent ocular media must limit the rate at which pulses can be usefully delivered.

  13. PNO-apparatus and its test use for neutron interferometry

    International Nuclear Information System (INIS)

    Tomimitsu, Hiroshi; Aizawa, Kazuya; Hasegawa, Yuji; Kikuta, Seishi.

    1993-01-01

    Special apparatus 'PNO' of multiutility in the so-called precise neutron optics, such as double or triple crystal diffractometry, interferometry, etc., including neutron diffraction topography, was settled at 3G beam hole in the JRR-3M. In the symposium, several applications of the PNO apparatus are presented as 1) very small angle neutron scattering tool with double crystal arrangement, 2) the characterization of the quality of artificial multilayer lattices made of Ti-Ni by a triple crystal arrangement, 3) the characterization of Ni-base superalloy single crystals by the diffraction topography, which are presented in individual sessions. Preliminary test of the neutron interferometry was also tried with the PNO apparatus. Usual monolithic Si LLL- type interferometer was used with an Al phase shifter in the neutron beam paths. The periodicity of the measured intensity curve was well corresponded to the expected one. The best contrast of the intensity curve was measured as high as 43%. The utility of the PNO-apparatus for neutron interferometry was, thus, approved. (author)

  14. Application of a LEED apparatus provided with a lens to the study of vicinal surfaces

    International Nuclear Information System (INIS)

    Laydevant, Louis; Dupuy, J.C.

    1979-01-01

    Steps presence on vicinal surfaces changes the low energy electron difraction (LEED) pattern: a system of regulary spaced steps is causing some spots to be splitted. Using a high voltage LEED apparatus allows an easy explanation of the patterns: the spot position does not depend about energy and so some cristallographic parameters can be easily measured [fr

  15. Method And Apparatus For Evaluatin Of High Temperature Superconductors

    Science.gov (United States)

    Fishman, Ilya M.; Kino, Gordon S.

    1996-11-12

    A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.

  16. Metasurface Enabled Wide-Angle Fourier Lens.

    Science.gov (United States)

    Liu, Wenwei; Li, Zhancheng; Cheng, Hua; Tang, Chengchun; Li, Junjie; Zhang, Shuang; Chen, Shuqi; Tian, Jianguo

    2018-06-01

    Fourier optics, the principle of using Fourier transformation to understand the functionalities of optical elements, lies at the heart of modern optics, and it has been widely applied to optical information processing, imaging, holography, etc. While a simple thin lens is capable of resolving Fourier components of an arbitrary optical wavefront, its operation is limited to near normal light incidence, i.e., the paraxial approximation, which puts a severe constraint on the resolvable Fourier domain. As a result, high-order Fourier components are lost, resulting in extinction of high-resolution information of an image. Other high numerical aperture Fourier lenses usually suffer from the bulky size and costly designs. Here, a dielectric metasurface consisting of high-aspect-ratio silicon waveguide array is demonstrated experimentally, which is capable of performing 1D Fourier transform for a large incident angle range and a broad operating bandwidth. Thus, the device significantly expands the operational Fourier space, benefitting from the large numerical aperture and negligible angular dispersion at large incident angles. The Fourier metasurface will not only facilitate efficient manipulation of spatial spectrum of free-space optical wavefront, but also be readily integrated into micro-optical platforms due to its compact size. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Miniaturized optical sensors based on lens arrays

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Jakobsen, M.L.; Larsen, H.E.

    2005-01-01

    A suite of optical sensors based on the use of lenticular arrays for probing mechanical deflections will be displayed. The optical systems are well suited for miniaturization, and utilize speckles as the information-carriers. This implementation allows for acquiring directional information...

  18. Application of fluidic lens technology to an adaptive holographic optical element see-through autophoropter

    Science.gov (United States)

    Chancy, Carl H.

    A device for performing an objective eye exam has been developed to automatically determine ophthalmic prescriptions. The closed loop fluidic auto-phoropter has been designed, modeled, fabricated and tested for the automatic measurement and correction of a patient's prescriptions. The adaptive phoropter is designed through the combination of a spherical-powered fluidic lens and two cylindrical fluidic lenses that are orientated 45o relative to each other. In addition, the system incorporates Shack-Hartmann wavefront sensing technology to identify the eye's wavefront error and corresponding prescription. Using the wavefront error information, the fluidic auto-phoropter nulls the eye's lower order wavefront error by applying the appropriate volumes to the fluidic lenses. The combination of the Shack-Hartmann wavefront sensor the fluidic auto-phoropter allows for the identification and control of spherical refractive error, as well as cylinder error and axis; thus, creating a truly automated refractometer and corrective system. The fluidic auto-phoropter is capable of correcting defocus error ranging from -20D to 20D and astigmatism from -10D to 10D. The transmissive see-through design allows for the observation of natural scenes through the system at varying object planes with no additional imaging optics in the patient's line of sight. In this research, two generations of the fluidic auto-phoropter are designed and tested; the first generation uses traditional glass optics for the measurement channel. The second generation of the fluidic auto-phoropter takes advantage of the progress in the development of holographic optical elements (HOEs) to replace all the traditional glass optics. The addition of the HOEs has enabled the development of a more compact, inexpensive and easily reproducible system without compromising its performance. Additionally, the fluidic lenses were tested during a National Aeronautics Space Administration (NASA) parabolic flight campaign, to

  19. Cylindrically symmetric Fresnel lens for high concentration photovoltaic

    Science.gov (United States)

    Hung, Yu-Ting; Su, Guo-Dung

    2009-08-01

    High concentration photovoltaic (HCPV) utilizes point-focus cost-effective plastic Fresnel lens. And a millimeter-sized Ill-V compound multi-junction solar cell is placed underneath focusing optics which can achieve cell efficiency potential of up to 40.7 %. The advantage of HCPV makes less solar cell area and higher efficiency; however, the acceptance angle of HCPV is about +/-1°, which is very small and the mechanical tracking of the sun is necessary. In order to reduce the power consumption and the angle tracking error of tracking systems, a light collector model with larger acceptance angle is designed with ZEMAX®. In this model, the original radially symmetric Fresnel lens of HCPV is replaced by cylindrically symmetric Fresnel lens and a parabolic reflective surface. Light is collected in two dimensions separately. And a couple of lenses and a light pipe are added before the solar cell chip in order to collect more light when sun light deviates from incident angle of 00. An acceptance angle of +/-10° is achieved with GCR 400.

  20. Method and apparatus of highly linear optical modulation

    Science.gov (United States)

    DeRose, Christopher; Watts, Michael R.

    2016-05-03

    In a new optical intensity modulator, a nonlinear change in refractive index is used to balance the nonlinearities in the optical transfer function in a way that leads to highly linear optical intensity modulation.

  1. Fiber optics spectrochemical emission sensors

    Science.gov (United States)

    Griffin, Jeffrey W.; Olsen, Khris B.

    1992-01-01

    A method of in situ monitoring of a body of a fluid stored in a tank or groundwater or vadose zone gases in a well for the presence of selected chemical species uses a probe insertable into the well or tank via a cable and having electrical apparatus for exciting selected chemical species in the body of fluid. The probe can have a pair of electrodes for initiating a spark or a plasma cell for maintaining a plasma to excite the selected chemical species. The probe also has optical apparatus for receiving optical emissions emitted by the excited species and optically transmitting the emissions via the cable to an analysis location outside the well. The analysis includes detecting a selected wavelength in the emissions indicative of the presence of the selected chemical species. A plurality of probes can be suspended at an end of a respective cable, with the transmitting and analyzing steps for each probe being synchronized sequentially for one set of support equipment and instrumentation to monitor at multiple test points. The optical apparatus is arranged about the light guide axis so that the selected chemical species are excited the fluid in alignment with the light guide axis and optical emissions are received from the excited chemical species along such axis.

  2. [Hyperopic Laser-in-situ-Keratomileusis after trifocal intraocular lens implantation : Aberration-free femto-Laser-in-situ-Keratomileusis treatment after implantation of a diffractive, multifocal, toric intraocular lens-case analysis].

    Science.gov (United States)

    Hemkeppler, E; Böhm, M; Kohnen, T

    2018-05-29

    A 52-year-old highly myopic female patient was implanted with a multifocal, diffractive, toric intraocular lens because of the wish to be independent of eyeglasses. Despite high-quality, extensive preoperative examinations, a hyperopic refractive error remained postoperatively, which led to the patient's dissatisfaction. This error was treated with Laser-in-situ-Keratomileusis (LASIK). After corneal LASIK treatment and implantation of a diffractive toric multifocal intraocular lens the patient showed a good postoperative visual result without optical phenomena.

  3. Determining spherical lens correction for astronaut training underwater.

    Science.gov (United States)

    Porter, Jason; Gibson, C Robert; Strauss, Samuel

    2011-09-01

    To develop a model that will accurately predict the distance spherical lens correction needed to be worn by National Aeronautics and Space Administration astronauts while training underwater. The replica space suit's helmet contains curved visors that induce refractive power when submersed in water. Anterior surface powers and thicknesses were measured for the helmet's protective and inside visors. The impact of each visor on the helmet's refractive power in water was analyzed using thick lens calculations and Zemax optical design software. Using geometrical optics approximations, a model was developed to determine the optimal distance spherical power needed to be worn underwater based on the helmet's total induced spherical power underwater and the astronaut's manifest spectacle plane correction in air. The validity of the model was tested using data from both eyes of 10 astronauts who trained underwater. The helmet's visors induced a total power of -2.737 D when placed underwater. The required underwater spherical correction (FW) was linearly related to the spectacle plane spherical correction in air (FAir): FW = FAir + 2.356 D. The mean magnitude of the difference between the actual correction worn underwater and the calculated underwater correction was 0.20 ± 0.11 D. The actual and calculated values were highly correlated (r = 0.971) with 70% of eyes having a difference in magnitude of astronauts. The model accurately predicts the actual values worn underwater and can be applied (more generally) to determine a suitable spectacle lens correction to be worn behind other types of masks when submerged underwater.

  4. LC-lens array with light field algorithm for 3D biomedical applications

    Science.gov (United States)

    Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Martinez, Manuel; Javidi, Bahram; Chu, Chao-Yu; Hsuan, Yun; Chu, Wen-Chun

    2016-03-01

    In this paper, liquid crystal lens (LC-lens) array was utilized in 3D bio-medical applications including 3D endoscope and light field microscope. Comparing with conventional plastic lens array, which was usually placed in 3D endoscope or light field microscope system to record image disparity, our LC-lens array has higher flexibility of electrically changing its focal length. By using LC-lens array, the working distance and image quality of 3D endoscope and microscope could be enhanced. Furthermore, the 2D/3D switching ability could be achieved if we turn off/on the electrical power on LClens array. In 3D endoscope case, a hexagonal micro LC-lens array with 350um diameter was placed at the front end of a 1mm diameter endoscope. With applying electric field on LC-lens array, the 3D specimen would be recorded as from seven micro-cameras with different disparity. We could calculate 3D construction of specimen with those micro images. In the other hand, if we turn off the electric field on LC-lens array, the conventional high resolution 2D endoscope image would be recorded. In light field microscope case, the LC-lens array was placed in front of the CMOS sensor. The main purpose of LC-lens array is to extend the refocusing distance of light field microscope, which is usually very narrow in focused light field microscope system, by montaging many light field images sequentially focusing on different depth. With adjusting focal length of LC-lens array from 2.4mm to 2.9mm, the refocusing distance was extended from 1mm to 11.3mm. Moreover, we could use a LC wedge to electrically shift the optics axis and increase the resolution of light field.

  5. The Optical Design of the Human Eye: a Critical Review

    Directory of Open Access Journals (Sweden)

    Rafael Navarro

    2009-01-01

    Full Text Available Cornea, lens and eye models are analyzed and compared to experimental findings to assess properties and eventually unveil optical design principles involved in the structure and function of the optical system of the eye. Models and data often show good match but also some paradoxes. The optical design seems to correspond to a wide angle lens. Compared to conventional optical systems, the eye presents a poor optical quality on axis, but a relatively good quality off-axis, thus yielding higher homogeneity for a wide visual field. This seems the result of an intriguing combination of the symmetry design principle with a total lack of rotational symmetry, decentrations and misalignments of the optical surfaces.

  6. Electro-optic control of photographic imaging quality through ‘Smart Glass’ windows in optics demonstrations

    Science.gov (United States)

    Ozolinsh, Maris; Paulins, Paulis

    2017-09-01

    An experimental setup allowing the modeling of conditions in optical devices and in the eye at various degrees of scattering such as cataract pathology in human eyes is presented. The scattering in cells of polymer-dispersed liquid crystals (PDLCs) and ‘Smart Glass’ windows is used in the modeling experiments. Both applications are used as optical obstacles placed in different positions of the optical information flow pathway either directly on the stimuli demonstration computer screen or mounted directly after the image-formation lens of a digital camera. The degree of scattering is changed continuously by applying an AC voltage of up to 30-80 V to the PDLC cell. The setup uses a camera with 14 bit depth and a 24 mm focal length lens. Light-emitting diodes and diode-pumped solid-state lasers emitting radiation of different wavelengths are used as portable small-divergence light sources in the experiments. Image formation, optical system point spread function, modulation transfer functions, and system resolution limits are determined for such sample optical systems in student optics and optometry experimental exercises.

  7. Electro-optic control of photographic imaging quality through ‘Smart Glass’ windows in optics demonstrations

    International Nuclear Information System (INIS)

    Ozolinsh, Maris; Paulins, Paulis

    2017-01-01

    An experimental setup allowing the modeling of conditions in optical devices and in the eye at various degrees of scattering such as cataract pathology in human eyes is presented. The scattering in cells of polymer-dispersed liquid crystals (PDLCs) and ‘Smart Glass’ windows is used in the modeling experiments. Both applications are used as optical obstacles placed in different positions of the optical information flow pathway either directly on the stimuli demonstration computer screen or mounted directly after the image-formation lens of a digital camera. The degree of scattering is changed continuously by applying an AC voltage of up to 30–80 V to the PDLC cell. The setup uses a camera with 14 bit depth and a 24 mm focal length lens. Light-emitting diodes and diode-pumped solid-state lasers emitting radiation of different wavelengths are used as portable small-divergence light sources in the experiments. Image formation, optical system point spread function, modulation transfer functions, and system resolution limits are determined for such sample optical systems in student optics and optometry experimental exercises. (paper)

  8. Optical spectroscopy for the detection of ischemic tissue injury

    Science.gov (United States)

    Demos, Stavros [Livermore, CA; Fitzgerald, Jason [Sacramento, CA; Troppmann, Christoph [Sacramento, CA; Michalopoulou, Andromachi [Athens, GR

    2009-09-08

    An optical method and apparatus is utilized to quantify ischemic tissue and/or organ injury. Such a method and apparatus is non-invasive, non-traumatic, portable, and can make measurements in a matter of seconds. Moreover, such a method and apparatus can be realized through optical fiber probes, making it possible to take measurements of target organs deep within a patient's body. Such a technology provides a means of detecting and quantifying tissue injury in its early stages, before it is clinically apparent and before irreversible damage has occurred.

  9. Intraocular pressure measurement over soft contact lens by rebound tonometer: a comparative study.

    Science.gov (United States)

    Nacaroglu, Senay Asik; Un, Emine Seker; Ersoz, Mehmet Giray; Tasci, Yelda

    2015-01-01

    To evaluate the intraocular pressure (IOP) measurements by Icare rebound tonometer over a contact lens in comparison with Goldmann applanation tonometry (GAT). Fifty patients using contact lens were included in this study. One of the eyes of the patients was selected randomly and their IOP were measured by rebound tonometer with and without contact lens (RTCL, RT respectively) and by GAT, as well as their central corneal thickness (CCT) by optical pachymeter. The results of both methods were compared by correlation analysis, general linear method repeated measure and Bland-Altman analysis. Mean IOP values measured by RTCL, RT and GAT were 15.68±3.7, 14.50±3.4 and 14.16±2.8 (Pcontact lens by rebound tonometer was found to be higher than what was measured by GAT. Although this difference is statistically significant, it may be clinically negligible in the normal population.

  10. Photonic crystal based polarization insensitive flat lens

    International Nuclear Information System (INIS)

    Turduev, M; Bor, E; Kurt, H

    2017-01-01

    The paper proposes a new design of an inhomogeneous artificially created photonic crystal lens structure consisting of annular dielectric rods to efficiently focus both transverse electric and transverse magnetic polarizations of light into the same focal point. The locations of each individual cell that contains the annular dielectric rods are determined according to a nonlinear distribution function. The inner and outer radii of the annular photonic dielectric rods are optimized with respect to the polarization insensitive frequency response of the transmission spectrum of the lens structure. The physical background of the polarization insensitive focusing mechanism is investigated in both spatial and frequency domains. Moreover, polarization independent wavefront transformation/focusing has been explored in detail by investigating the dispersion relation of the structure. Corresponding phase index distribution of the lens is attained for polarization insensitive normalized frequency range of a / λ   =  0.280 and a / λ   =  0.300, where a denotes the lattice constant of the designed structure and λ denotes the wavelength of the incident light. We show the wave transformation performance and focal point movement dynamics for both polarizations of the lens structure by specially adjusting the length of the structure. The 3D finite-difference time domain numerical analysis is also performed to verifiy that the proposed design is able to focus the wave regardless of polarization into approximately the same focal point (difference between focal distances of both polarizations stays below 0.25 λ ) with an operating bandwidth of 4.30% between 1476 nm and 1541 nm at telecom wavelengths. The main superiorities of the proposed lens structure are being all dielectric and compact, and having flat front and back surfaces, rendering the proposed lens design more practical in the photonic integration process in various applications such as optical switch

  11. Disinfection capacity of PuriLens contact lens cleaning unit against Acanthamoeba.

    Science.gov (United States)

    Hwang, Thomas S; Hyon, Joon Young; Song, Jae Kyung; Reviglio, Victor E; Spahr, Harry T; O'Brien, Terrence P

    2004-01-01

    The PuriLens contact lens system is indicated for cleaning and disinfection of soft (hydrophilic) contact lenses by means of subsonic agitation to remove lens deposits and microorganisms, and ultraviolet irradiation of the storage solution for disinfection. The capacity of the PuriLens system to disinfect storage solutions contaminated with known concentrations of Staphylococcus aureus, Pseudomonas aeruginosa, and Acanthamoeba species was evaluated. An in vitro assessment of the antibacterial and antiparasitic efficacy of the PuriLens system was performed. Separated batches of the storage solution for the cleansing system were contaminated with stock strains of S. aureus and P. aeruginosa. A comparison of the microbiologic content was made between the solution before and after the cycle. The PuriLens system effectively eradicated S. aureus and P. aeruginosa organisms after a 15-minute cycle. However, viable cysts of acanthamoeba were recovered in the solution after the 15-minute cycle. The PuriLens system is highly efficient in protecting against contamination with common bacterial ocular pathogens. Acanthamoeba cysts, however, can survive in the solution or contact lens bath undergoing integrated subsonic debridement and indirect ultraviolet light disinfection. Use of chemical disinfecting solutions that contain agents such as chlorhexidine or other cationic antiseptics may be advisable in conjunction with use of the PuriLens device, especially in high-risk settings.

  12. Portable apparatus for measurement of nuclear radiation

    International Nuclear Information System (INIS)

    Whitlock, G.D.

    1975-01-01

    The apparatus described is stated to be particularly applicable to the measurement of tritium contamination of a surface, although it may have other applications to the determination of radioactivity on surfaces. The mean range of a tritium β particle in air at normal atmospheric pressure is only 1.5 mm. and when monitoring such radiation with the apparatus it is necessary to exclude light. The apparatus comprises a plastic scintillator sheet located in the base of a housing, with a sealing ring mounted in the base so as to make a hermetic and light-tight seal between a support surface and the base of the housing. Photomultiplier means are optically coupled to the scintillator sheet to detect and amplify the scintillations, and a pump device is provided to reduce the air pressure in the vicinity of the sheet to below atmospheric pressure. The scintillator sheet and the photomultiplier means are movable as one unit within the housing, the unit being arranged to be acted upon by atmospheric pressure so as to move the unit into an operative position against a spring when the air pressure in the vicinity of the sheet is reduced to below atmospheric pressure. A shutter is provided to prevent exposure of the scintillator sheet to light when the apparatus is not in use. (U.K.)

  13. A lens-coupled scintillation counter in cryogenic environment

    International Nuclear Information System (INIS)

    Stoykov, A; Scheuermann, R; Amato, A; Bartkowiak, M; Konter, J A; Rodriguez, J; Sedlak, K

    2011-01-01

    In this work we present an elegant solution for a scintillation counter to be integrated into a cryogenic system. Its distinguishing feature is the absence of a continuous light guide coupling the scintillation and the photodetector parts, operating at cryogenic and room temperatures respectively. The prototype detector consists of a plastic scintillator with glued-in wavelength-shifting fiber located inside a cryostat, a Geiger-mode Avalanche Photodiode (G-APD) outside the cryostat, and a lens system guiding the scintillation light re-emitted by the fiber to the G-APD through optical windows in the cryostat shields. With a 0.8 mm diameter multiclad fiber and a 1 mm active area G-APD the coupling efficiency of the 'lens light guide' is about 50%. A reliable performance of the detector down to 3 K is demonstrated.

  14. Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot

    International Nuclear Information System (INIS)

    Jbara, Ahmed S; Othaman, Zulkafli; Saeed, M A

    2016-01-01

    Based on the Schrödinger equation for envelope function in the effective mass approximation, linear and nonlinear optical absorption coefficients in a multi-subband lens quantum dot are investigated. The effects of quantum dot size on the interband and intraband transitions energy are also analyzed. The finite element method is used to calculate the eigenvalues and eigenfunctions. Strain and In-mole-fraction effects are also studied, and the results reveal that with the decrease of the In-mole fraction, the amplitudes of linear and nonlinear absorption coefficients increase. The present computed results show that the absorption coefficients of transitions between the first excited states are stronger than those of the ground states. In addition, it has been found that the quantum dot size affects the amplitudes and peak positions of linear and nonlinear absorption coefficients while the incident optical intensity strongly affects the nonlinear absorption coefficients. (paper)

  15. Research on the processing technology of medium-caliber aspheric lens in the optoelectronic integrated test system

    Science.gov (United States)

    Liu, Dan; Yu, Xin-ying; Wang, Wei

    2016-10-01

    In the optoelectronic integrated test system, surface profile and finish of the optical element are put forward higher request. Taking an aspherical quartz glass lens with a diameter of 200mm as example, taking Preston hypothesis as the theoretical basis, analyze the influence of surface quality of various process parameters, including the workpiece and the tool axis spindle speed, wheel type, concentration polishing, polishing mold species, dwell time, polishing pressure and other parameters. Using CNC method for the surface profile and surface quality of the lens were investigated. Taking profilometer measurement results as a guide, by testing and simulation analysis, process parameters were improved constantly in the process of manufacturing. Mid and high frequency error were trimmed and improved so that the surface form gradually converged to the required accuracy. The experimental results show that the final accuracy of the surface is less than 2µm and the surface finish is, which fulfils the accuracy requirement of aspherical focusing lens in optical system.

  16. Development of ultrasonic heat transfer tube thickness measurement apparatus. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Toshihiro; Katoh, Chiaki; Yanagihara, Takao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Suetugu, Hidehiko; Yano, Masaya [Sumitomo Chemical Co., Ltd., Tokyo (Japan)

    2003-01-01

    The demonstration test for evaluating reliability of the acid recovery evaporator at Rokkasho Reprocessing Plant has been carried out at JAERI. For the nondestructive measurement of the thickness of heat transfer tubes of the acid recovery evaporator in corrosion test, we have developed thickness measurement apparatus for heat transfer tubes by ultrasonic immersion method with high resolution. The ultrasonic prove in a heat transfer tube can be moved vertically and radially. The results obtained by this apparatus coincident well with those obtained by a destructive method using an optical microscope. (author)

  17. FPscope: a field-portable high-resolution microscope using a cellphone lens.

    Science.gov (United States)

    Dong, Siyuan; Guo, Kaikai; Nanda, Pariksheet; Shiradkar, Radhika; Zheng, Guoan

    2014-10-01

    The large consumer market has made cellphone lens modules available at low-cost and in high-quality. In a conventional cellphone camera, the lens module is used to demagnify the scene onto the image plane of the camera, where image sensor is located. In this work, we report a 3D-printed high-resolution Fourier ptychographic microscope, termed FPscope, which uses a cellphone lens in a reverse manner. In our platform, we replace the image sensor with sample specimens, and use the cellphone lens to project the magnified image to the detector. To supersede the diffraction limit of the lens module, we use an LED array to illuminate the sample from different incident angles and synthesize the acquired images using the Fourier ptychographic algorithm. As a demonstration, we use the reported platform to acquire high-resolution images of resolution target and biological specimens, with a maximum synthetic numerical aperture (NA) of 0.5. We also show that, the depth-of-focus of the reported platform is about 0.1 mm, orders of magnitude longer than that of a conventional microscope objective with a similar NA. The reported platform may enable healthcare accesses in low-resource settings. It can also be used to demonstrate the concept of computational optics for educational purposes.

  18. Addressing challenges of modulation transfer function measurement with fisheye lens cameras

    Science.gov (United States)

    Deegan, Brian M.; Denny, Patrick E.; Zlokolica, Vladimir; Dever, Barry; Russell, Laura

    2015-03-01

    Modulation transfer function (MTF) is a well defined and accepted method of measuring image sharpness. The slanted edge test, as defined in ISO12233 is a standard method of calculating MTF, and is widely used for lens alignment and auto-focus algorithm verification. However, there are a number of challenges which should be considered when measuring MTF in cameras with fisheye lenses. Due to trade-offs related Petzval curvature, planarity of the optical plane is difficult to achieve in fisheye lenses. It is therefore critical to have the ability to accurately measure sharpness throughout the entire image, particularly for lens alignment. One challenge for fisheye lenses is that, because of the radial distortion, the slanted edges will have different angles, depending on the location within the image and on the distortion profile of the lens. Previous work in the literature indicates that MTF measurements are robust for angles between 2 and 10 degrees. Outside of this range, MTF measurements become unreliable. Also, the slanted edge itself will be curved by the lens distortion, causing further measurement problems. This study summarises the difficulties in the use of MTF for sharpness measurement in fisheye lens cameras, and proposes mitigations and alternative methods.

  19. Advanced optical signal processing of broadband parallel data signals

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Hu, Hao; Kjøller, Niels-Kristian

    2016-01-01

    Optical signal processing may aid in reducing the number of active components in communication systems with many parallel channels, by e.g. using telescopic time lens arrangements to perform format conversion and allow for WDM regeneration.......Optical signal processing may aid in reducing the number of active components in communication systems with many parallel channels, by e.g. using telescopic time lens arrangements to perform format conversion and allow for WDM regeneration....

  20. The Endocytic Recycling Regulatory Protein EHD1 Is Required for Ocular Lens Development

    Science.gov (United States)

    Arya, Priyanka; Rainey, Mark A.; Bhattacharyya, Sohinee; Mohapatra, Bhopal; George, Manju; Kuracha, Murali R; Storck, Matthew D.; Band, Vimla; Govindarajan, Venkatesh; Band, Hamid

    2015-01-01

    The C-terminal Eps15 homology domain-containing (EHD) proteins play a key role in endocytic recycling, a fundamental cellular process that ensures the return of endocytosed membrane components and receptors back to the cell surface. To define the in vivo biological functions of EHD1, we have generated Ehd1 knockout mice and previously reported a requirement of EHD1 for spermatogenesis. Here, we show that approximately 56% of the Ehd1-null mice displayed gross ocular abnormalities, including anophthalmia, aphakia, microphthalmia and congenital cataracts. Histological characterization of ocular abnormalities showed pleiotropic defects that include a smaller or absent lens, persistence of lens stalk and hyaloid vasculature, and deformed optic cups. To test whether these profound ocular defects resulted from the loss of EHD1 in the lens or in non-lenticular tissues, we deleted the Ehd1 gene selectively in the presumptive lens ectoderm using Le-Cre. Conditional Ehd1 deletion in the lens resulted in developmental defects that included thin epithelial layers, small lenses and absence of corneal endothelium. Ehd1 deletion in the lens also resulted in reduced lens epithelial proliferation, survival and expression of junctional proteins E-cadherin and ZO-1. Finally, Le-Cre-mediated deletion of Ehd1 in the lens led to defects in corneal endothelial differentiation. Taken together, these data reveal a unique role for EHD1 in early lens development and suggest a previously unknown link between the endocytic recycling pathway and regulation of key developmental processes including proliferation, differentiation and morphogenesis. PMID:26455409

  1. A compact spectrum splitting concentrator for high concentration photovoltaics based on the dispersion of a lens

    Science.gov (United States)

    He, J.; Flowers, C. A.; Yao, Y.; Atwater, H. A.; Rockett, A. A.; Nuzzo, R. G.

    2018-06-01

    Photovoltaic devices used in conjunction with functional optical elements for light concentration and spectrum splitting are known to be a viable approach for highly efficient photovoltaics. Conventional designs employ discrete optical elements, each with the task of either performing optical concentration or separating the solar spectrum. In the present work, we examine the performance of a compact photovoltaic architecture in which a single lens plays a dual role as both a concentrator and a spectrum splitter, the latter made possible by exploiting its intrinsic dispersion. A four-terminal two-junction InGaP/GaAs device is prepared to validate the concept and illustrates pathways for improvements. A spectral separation in the visible range is demonstrated at the focal point of a plano-convex lens with a geometric concentration ratio of 1104X with respect to the InGaP subcell.

  2. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.

    Science.gov (United States)

    Yan, Wei; Mortensen, N Asger; Wubs, Martijn

    2013-06-17

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.

  3. Optical design of a LED searchlight system

    Science.gov (United States)

    Gong, Chen; Xu, Haiping; Liang, Jinhua; Liu, Yunfei; Yuan, Zengquan

    2018-01-01

    A 1200m visible searchlight system is designed based on photometry and application of geometric optics. To generate intensity distribution of this relatively powerful light beam we propose to use a high power LED and several refractive optical elements, which are composed of two plane-convex lenses and a conventional Fresnel lens. Two plane-convex lenses enable refraction of the side rays from the LED to the front direction which incident on the Fresnel lens. Fresnel lens, in its turn, concentrate the light flux and provide a nearly collimated beam to meet the requirement of forming a well-illuminated area across the road in the far field. Simulation data shows that this searchlight allow generating an appropriate illumination distribution for the long range requirements. A proof-of-concept prototype producing acceptable illuminance is developed.

  4. Terahertz Harmonic Operation of Microwave Fresnel Zone Plate Lens and Antenna: Frequency Filtering and Space Resolution Properties

    Directory of Open Access Journals (Sweden)

    Hristo D. Hristov

    2011-01-01

    Full Text Available This paper examines the binary Fresnel zone plate (FZP lens frequency-harmonic and space-resolution focusing, and its application as a FZP lens antenna. A microwave FZP lens antenna (FZPA radiates both at design (90 GHz and terahertz (THz odd harmonic frequencies. Frequency and space domain antenna operation are studied analytically by use of the vector diffraction integral applied to a realistic printed FZPA. It is found that all harmonic gain peaks are roughly identical in form, bandwidth, and top values. At each harmonic frequency, the FZPA has a beamwidth that closely follows the Rayleigh resolution criterion. If the lens/antenna resolution is of prime importance and the small aperture efficiency is a secondary problem the microwave-design FZP lens antenna can be of great use at much higher terahertz frequencies. Important feature of the microwave FZP lens is its broader-zone construction compared to the equal in resolution terahertz-design FZP lens. Thus, unique and expensive microtechnology for the microwave FZP lens fabrication is not required. High-order harmonic operation of the FZP lens or lens antenna could find space resolution and frequency filtering applications in the terahertz and optical metrology, imaging tomography, short-range communications, spectral analysis, synchrotron facilities, and so on.

  5. Cine-servo lens technology for 4K broadcast and cinematography

    Science.gov (United States)

    Nurishi, Ryuji; Wakazono, Tsuyoshi; Usui, Fumiaki

    2015-09-01

    Central to the rapid evolution of 4K image capture technology in the past few years, deployment of large-format cameras with Super35mm Single Sensors is increasing in TV production for diverse shows such as dramas, documentaries, wildlife, and sports. While large format image capture has been the standard in the cinema world for quite some time, the recent experiences within the broadcast industry have revealed a variety of requirement differences for large format lenses compared to those of the cinema industry. A typical requirement for a broadcast lens is a considerably higher zoom ratio in order to avoid changing lenses in the middle of a live event, which is mostly not the case for traditional cinema productions. Another example is the need for compact size, light weight, and servo operability for a single camera operator shooting in a shoulder-mount ENG style. On the other hand, there are new requirements that are common to both worlds, such as smooth and seamless change in angle of view throughout the long zoom range, which potentially offers new image expression that never existed in the past. This paper will discuss the requirements from the two industries of cinema and broadcast, while at the same time introducing the new technologies and new optical design concepts applied to our latest "CINE-SERVO" lens series which presently consists of two models, CN7x17KAS-S and CN20x50IAS-H. It will further explain how Canon has realized 4K optical performance and fast servo control while simultaneously achieving compact size, light weight and high zoom ratio, by referring to patent-pending technologies such as the optical power layout, lens construction, and glass material combinations.

  6. Lens-free imaging of magnetic particles in DNA assays.

    Science.gov (United States)

    Colle, Frederik; Vercruysse, Dries; Peeters, Sara; Liu, Chengxun; Stakenborg, Tim; Lagae, Liesbet; Del-Favero, Jurgen

    2013-11-07

    We present a novel opto-magnetic system for the fast and sensitive detection of nucleic acids. The system is based on a lens-free imaging approach resulting in a compact and cheap optical readout of surface hybridized DNA fragments. In our system magnetic particles are attracted towards the detection surface thereby completing the labeling step in less than 1 min. An optimized surface functionalization combined with magnetic manipulation was used to remove all nonspecifically bound magnetic particles from the detection surface. A lens-free image of the specifically bound magnetic particles on the detection surface was recorded by a CMOS imager. This recorded interference pattern was reconstructed in software, to represent the particle image at the focal distance, using little computational power. As a result we were able to detect DNA concentrations down to 10 pM with single particle sensitivity. The possibility of integrated sample preparation by manipulation of magnetic particles, combined with the cheap and highly compact lens-free detection makes our system an ideal candidate for point-of-care diagnostic applications.

  7. Submicron Resolution Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki

    2013-11-14

    Apparatuses and systems for submicron resolution spectral-domain optical coherence tomography (OCT) are disclosed. The system may use white light sources having wavelengths within 400-1000 nanometers, and achieve resolution below 1 .mu.m. The apparatus is aggregated into a unitary piece, and a user can connect the apparatus to a user provided controller and/or light source. The light source may be a supercontinuum source.

  8. Design of a new two element OSLD Badge for eye lens monitoring

    International Nuclear Information System (INIS)

    Kulkarni, M.S.; Munish Kumar; Ratna, P.; Babu, D.A.R.; Muthe, K.P.; Biju, K.; Sunil, C.; Sharma, D.N.

    2014-01-01

    Normally the dose to the vicinity of the eye is received by the occupational radiation workers who handle radioisotopes or doctors who perform interventional radiographic procedures. The Eye dosimeters provide an estimate of the radiation dose to the lens of the eye. In the recent ICRP-2011 recommendations, the equivalent dose limit for the lens of the eye has been reduced from 150 mSv in a year to 20 mSv in a year for all the occupational workers. To ensure that the dose limit for the eye lens does not exceed the prescribed dose limits, various eye lens dosimeters have been designed and are being used internationally. All these eye dosimeters consist of one natural LiF based thermoluminescence dosimeter (TLD) element sealed in a plastic holder. The design of the eye dosimeter and place of wear (near the eye) plays an important role in correct estimation of the dose to the lens of the eye. It is generally seen that the eye dosimeter when worn with the head strap on the forehead near the eye, the dose the element receives can be easily correlated to the eye dose. This paper presents the design of a new Eye lens dosimeter based on optically stimulated luminescence (OSL) detectors for its possible use by the occupational workers covering the medical, industrial and nuclear facilities for assessing the Hp(3)

  9. ADVANTAGES OF DIFFRACTIVE OPTICAL ELEMENTS APPLICATION IN SIMPLE OPTICAL IMAGING SYSTEMS

    Directory of Open Access Journals (Sweden)

    N. D. Zoric

    2015-01-01

    Full Text Available The paper deals with the influence of diffractive optical elements on the optical aberrations. The correction of optical aberrations was investigated in the simple optical systems with one and two lenses (singlet and doublet. The advantages of diffractive optical elements are their ability to generate arbitrary complex wave fronts from a piece of optical material that is essentially flat. The optical systems consisting of the standard surfaces were designed and optimized by using the same starting points. Further, the diffractive and aspheric surfaces were introduced into the developed systems. The resulting hybrid systems were optimized. To compare the complicity of the development of narrow field systems and wide field optical systems, the optimization has been done separately for these two types of the instruments. The optical systems were designed by using special Optical Design Software. Тhe characteristics of designed diffractive surfaces were controlled in Software DIFSYS 2.30. Due to the application of diffractive optical elements the longitudinal chromatic aberration was 5 times reduced for the narrow field systems. The absolute value of Seidel coefficient related to the spherical aberration was reduced in the range of 0.03. Considering that diffractive optical elements have the known disadvantages, like possible parasitic diffraction orders and probable decrease of the transmission, we also developed and analyzed the optical systems with combined aspheric and diffractive surfaces. A combination of the aspheric and diffractive surfaces in the optical disk system of the disk reading lens, gave cutting down of the longitudinal color aberrations almost 15 times on-axis, comparing to the lens consisting of the aspherical and standard surfaces. All of the designed diffractive optical elements possess the parameters within the fabrication limits.

  10. Imaging properties of the light sword optical element used as a contact lens in a presbyopic eye model.

    Science.gov (United States)

    Petelczyc, K; Bará, S; Lopez, A Ciro; Jaroszewicz, Z; Kakarenko, K; Kolodziejczyk, A; Sypek, M

    2011-12-05

    The paper analyzes the imaging properties of the light sword optical element (LSOE) applied as a contact lens to the presbyopic human eye. We performed our studies with a human eye model based on the Gullstrand parameterization. In order to quantify the discussion concerning imaging with extended depth of focus, we introduced quantitative parameters characterizing output images of optotypes obtained in numerical simulations. The quality of the images formed by the LSOE were compared with those created by a presbyopic human eye, reading glasses and a quartic inverse axicon. Then we complemented the numerical results by an experiment where a 3D scene was imaged by means of the refractive LSOE correcting an artificial eye based on the Gullstrand model. According to performed simulations and experiments the LSOE exhibits abilities for presbyopia correction in a wide range of functional vision distances.

  11. The influence of electrode angle on the minimization of the aberration coefficients of the two electrodes electrostatic immersion lens

    International Nuclear Information System (INIS)

    Al-Khashab, M. A.; Ahmad, A. A.

    2012-01-01

    This paper deals with electron optical properties of a set asymmetrical electrostatic immersion lenses with two electrodes which have been designed using different angles (θ) of the outer lens electrodes as well as air gaps (S) between the electrodes of each lens. It was found that the angle of the outer electrode and the air gap have a clear effect on the electron optical performance of such lenses. In addition to that, it was noticed that the better electron optical properties occurred when the angle of the outer electrode equals (θ = O d egree) and the air gap equals (S = 11 mm). the results of the perferable design of the prsent work were compared with those in published papers in terms of the optical properties. It was found that results are in good agreement with each other. (authors).

  12. Foveated optics

    Science.gov (United States)

    Bryant, Kyle R.

    2016-05-01

    Foveated imaging can deliver two different resolutions on a single focal plane, which might inexpensively allow more capability for military systems. The following design study results provide starting examples, lessons learned, and helpful setup equations and pointers to aid the lens designer in any foveated lens design effort. Our goal is to put robust sensor in a small package with no moving parts, but still be able to perform some of the functions of a sensor in a moving gimbal. All of the elegant solutions are out (for various reasons). This study is an attempt to see if lens designs can solve this problem and realize some gains in performance versus cost for airborne sensors. We determined a series of design concepts to simultaneously deliver wide field of view and high foveal resolution without scanning or gimbals. Separate sensors for each field of view are easy and relatively inexpensive, but lead to bulky detectors and electronics. Folding and beam-combining of separate optical channels reduces sensor footprint, but induces image inversions and reduced transmission. Entirely common optics provide good resolution, but cannot provide a significant magnification increase in the foveal region. Offsetting the foveal region from the wide field center may not be physically realizable, but may be required for some applications. The design study revealed good general guidance for foveated optics designs with a cold stop. Key lessons learned involve managing distortion, telecentric imagers, matching image inversions and numerical apertures between channels, reimaging lenses, and creating clean resolution zone splits near internal focal planes.

  13. Optics for mobile phone imaging

    Science.gov (United States)

    Vigier-Blanc, Emmanuelle E.

    2004-02-01

    Micro cameras for mobile phones require specific opto electronic designs using high-resolution micro technologies for compromising optical, electronical and mechanical requirements. The purpose of this conference is to present the optical critical parameters for imaging optics embedded into mobile phones. We will overview the optics critical parameters involved into micro optical cameras, as seen from user point of view, and their interdependence and relative influence onto optical performances of the product, as: -Focal length, field of view and array size. -Lens speed and depth of field: what is hidden behind lens speed, how to compromise small aperture, production tolerances, sensitivity, good resolution in corners and great depth of field -Relative illumination, this smooth fall off of intensity toward edge of array -Resolution; how to measure it, the interaction of pixel size, small dimensions -Sensitivity, insuring same sensitivity as human being under both twilight and midday sunny conditions. -Mischievous effects, as flare, glare, ghost effects and how to avoid them -How to match sensor spectrum and photopic eye curve: IR filter, and color balancing. We will compromise above parameters and see how to match with market needs and productivity insurance.

  14. Laser Tweezer Controlled Solid Immersion Lens for High Resolution Imaging in Microfluidic and Biological Samples

    National Research Council Canada - National Science Library

    Birkbeck, Aaron L; Zlatanovic, Sanja; Ozkan, Mihrimah; Esener, Sadik C

    2005-01-01

    ...). Up to now, solid immersion lens imaging systems have relied upon cantilever-mounted SILs that are difficult to integrate into microfluidic systems and require an extra alignment step with external optics...

  15. Nanofocusing optics for synchrotron radiation made from polycrystalline diamond.

    Science.gov (United States)

    Fox, O J L; Alianelli, L; Malik, A M; Pape, I; May, P W; Sawhney, K J S

    2014-04-07

    Diamond possesses many extreme properties that make it an ideal material for fabricating nanofocusing x-ray optics. Refractive lenses made from diamond are able to focus x-ray radiation with high efficiency but without compromising the brilliance of the beam. Electron-beam lithography and deep reactive-ion etching of silicon substrates have been used in a transfer-molding technique to fabricate diamond optics with vertical and smooth sidewalls. Latest generation compound refractive lenses have seen an improvement in the quality and uniformity of the optical structures, resulting in an increase in their focusing ability. Synchrotron beamline tests of two recent lens arrays, corresponding to two different diamond morphologies, are described. Focal line-widths down to 210 nm, using a nanocrystalline diamond lens array and a beam energy of E = 11 keV, and 230 nm, using a microcrystalline diamond lens at E = 15 keV, have been measured using the Diamond Light Source Ltd. B16 beamline. This focusing prowess is combined with relatively high transmission through the lenses compared with silicon refractive designs and other diffractive optics.

  16. AutoLens: Automated Modeling of a Strong Lens's Light, Mass and Source

    Science.gov (United States)

    Nightingale, J. W.; Dye, S.; Massey, Richard J.

    2018-05-01

    This work presents AutoLens, the first entirely automated modeling suite for the analysis of galaxy-scale strong gravitational lenses. AutoLens simultaneously models the lens galaxy's light and mass whilst reconstructing the extended source galaxy on an adaptive pixel-grid. The method's approach to source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing AutoLens to cleanly deblend its light from the source. Single component mass models representing the lens's total mass density profile are demonstrated, which in conjunction with light modeling can detect central images using a centrally cored profile. Decomposed mass modeling is also shown, which can fully decouple a lens's light and dark matter and determine whether the two component are geometrically aligned. The complexity of the light and mass models are automatically chosen via Bayesian model comparison. These steps form AutoLens's automated analysis pipeline, such that all results in this work are generated without any user-intervention. This is rigorously tested on a large suite of simulated images, assessing its performance on a broad range of lens profiles, source morphologies and lensing geometries. The method's performance is excellent, with accurate light, mass and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.

  17. Scheimpflug camera combined with placido-disk corneal topography and optical biometry for intraocular lens power calculation.

    Science.gov (United States)

    Kirgiz, Ahmet; Atalay, Kurşat; Kaldirim, Havva; Cabuk, Kubra Serefoglu; Akdemir, Mehmet Orcun; Taskapili, Muhittin

    2017-08-01

    The purpose of this study was to compare the keratometry (K) values obtained by the Scheimpflug camera combined with placido-disk corneal topography (Sirius) and optical biometry (Lenstar) for intraocular lens (IOL) power calculation before the cataract surgery, and to evaluate the accuracy of postoperative refraction. 50 eyes of 40 patients were scheduled to have phacoemulsification with the implantation of a posterior chamber intraocular lens. The IOL power was calculated using the SRK/T formula with Lenstar K and K readings from Sirius. Simulated K (SimK), K at 3-, 5-, and 7-mm zones from Sirius were compared with Lenstar K readings. The accuracy of these parameters was determined by calculating the mean absolute error (MAE). The mean Lenstar K value was 44.05 diopters (D) ±1.93 (SD) and SimK, K at 3-, 5-, and 7-mm zones were 43.85 ± 1.91, 43.88 ± 1.9, 43.84 ± 1.9, 43.66 ± 1.85 D, respectively. There was no statistically significant difference between the K readings (P = 0.901). When Lenstar was used for the corneal power measurements, MAE was 0.42 ± 0.33 D, but when simK of Sirius was used, it was 0.37 ± 0.32 D (the lowest MAE (0.36 ± 0.32 D) was achieved as a result of 5 mm K measurement), but it was not statistically significant (P = 0.892). Of all the K readings of Sirius and Lenstar, Sirius 5-mm zone K readings were the best in predicting a more precise IOL power. The corneal power measurements with the Scheimpflug camera combined with placido-disk corneal topography can be safely used for IOL power calculation.

  18. Fabrication of polymer micro-lens array with pneumatically diaphragm-driven drop-on-demand inkjet technology.

    Science.gov (United States)

    Xie, Dan; Zhang, Honghai; Shu, Xiayun; Xiao, Junfeng

    2012-07-02

    The paper reports an effective method to fabricate micro-lens arrays with the ultraviolet-curable polymer, using an original pneumatically diaphragm-driven drop-on-demand inkjet system. An array of plano convex micro-lenses can be formed on the glass substrate due to surface tension and hydrophobic effect. The micro-lens arrays have uniform focusing function, smooth and real planar surface. The fabrication process showed good repeatability as well, fifty micro-lenses randomly selected form 9 × 9 miro-lens array with an average diameter of 333.28μm showed 1.1% variations. Also, the focal length, the surface roughness and optical property of the fabricated micro-lenses are measured, analyzed and proved satisfactory. The technique shows great potential for fabricating polymer micro-lens arrays with high flexibility, simple technological process and low production cost.

  19. Optical design of an athermalised dual field of view step zoom optical system in MWIR

    Science.gov (United States)

    Kucukcelebi, Doruk

    2017-08-01

    In this paper, the optical design of an athermalised dual field of view step zoom optical system in MWIR (3.7μm - 4.8μm) is described. The dual field of view infrared optical system is designed based on the principle of passive athermalization method not only to achieve athermal optical system but also to keep the high image quality within the working temperature between -40°C and +60°C. The infrared optical system used in this study had a 320 pixel x 256 pixel resolution, 20μm pixel pitch size cooled MWIR focal plane array detector. In this study, the step zoom mechanism, which has the axial motion due to consisting of a lens group, is considered to simplify mechanical structure. The optical design was based on moving a single lens along the optical axis for changing the optical system's field of view not only to reduce the number of moving parts but also to athermalize for the optical system. The optical design began with an optimization process using paraxial optics when first-order optics parameters are determined. During the optimization process, in order to reduce aberrations, such as coma, astigmatism, spherical and chromatic aberrations, aspherical surfaces were used. As a result, athermalised dual field of view step zoom optical design is proposed and the performance of the design using proposed method was verified by providing the focus shifts, spot diagrams and MTF analyzes' plots.

  20. Bacterial and fungal biofilm formation on contact lenses and their susceptibility to lens care solutions

    Directory of Open Access Journals (Sweden)

    Siddharth Kackar

    2017-01-01

    Full Text Available Background: Microbial biofilm formation on contact lenses and lens storage cases may be a risk factor for contact lens-associated corneal infections. Various types of contact lens care solutions are used to reduce microbial growths on lenses. Objectives: The present study aimed at comparing the growths of biofilms on the different contact lenses and lens cases. The study also aimed at determining the effect of lens care solutions and bacteriophage on these biofilms. Materials and Methods: One type of hard lens and two types of soft lenses were used for the study. The organisms used were Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 60193 and Escherichia coli ATCC 25922. Biofilm production was performed by modified O'Toole and Kolter method and effect of lens cleaning solutions and a crude coliphage on biofilms was also studied. Results were visualised using scanning electron microscopy and quantitated by colony counting method and spectrophotometric measurement of optical density (OD. Statistical analysis was done by SPSS 11.5, Kruskal–Wallis test and Chi-square test. Results: Soft lens cleaning solutions had a significant inhibitory effect (P = 0.020 on biofilm formation on soft lenses and also lens cases (P < 0.001. Soft lens cleaning solution 2 was more efficient than solution 1. However, no such inhibitory effect was observed with regard to hard lens cleaning solution, but for a significant reduction in the OD values (P < 0.001. There was no significant inhibitory effect by bacteriophages. Conclusion: This study showed the importance of selecting the appropriate lens cleaning solution to prevent biofilm production on contact lenses.

  1. Acanthamoeba keratitis in Scotland: risk factors for contact lens wearers.

    Science.gov (United States)

    Seal, D V; Kirkness, C M; Bennett, H G; Peterson, M

    1999-01-01

    To investigate risk factors for Acanthamoeba keratitis amongst contact lens wearers in Scotland. Patients with Acanthamoeba keratitis in the Scottish study, all of whom wore contact lenses, were compared with 46 healthy asymptomatic contact lens-wearing controls. They were all visited at home for contact lens and environmental microbiological sampling. In addition, all 288 optical practices in the West of Scotland were polled for contact lens types and disinfecting solutions sold in 1995, and a sample, each of whom fitted more than 500 contact lenses per year, were polled for a second time. Independently, a poll was commissioned by the Eyecare Information Service in July/August 1995 to estimate the numbers of contact lens wearers in Scotland and the UK. Industry was polled for numbers of each contact lens disinfecting regimen sold in Scotland in 1995. West of Scotland, UK. All contact lens wearers among the 3 million population of the West of Scotland Health Board Areas. Risk factors for Acanthamoeba infection and recommendations for its prevention. When Acanthamoeba infection occurred, patients' home water systems were frequently (54%) found to be colonised by this amoeba. Patients more frequently washed their storage cases in tap water than controls (Pmethods (chlorine tablets or no disinfection). However further investigation showed that these methods were associated with an increased probability of rinsing the storage case in tap water, so that these two behaviours are confounded in the group studied. Failure to disinfect contact lenses, non-compliant use of chlorine tablets and/or introduction of tap water rinsing of storage cases were associated with increased risk of Acanthamoeba infection. New multipurpose solutions and hydrogen peroxide gave the lowest risk of Acanthamoeba infection, with no statistically significant difference between them. Ionic high-water content (FDA group 4) contact lenses were at increased risk of being associated with Acanthamoeba

  2. Converging or Diverging Lens?

    Science.gov (United States)

    Branca, Mario

    2013-01-01

    Why does a lens magnify? Why does it shrink objects? Why does this happen? The activities that we propose here are useful in helping us to understand how lenses work, and they show that the same lens can have different magnification capabilities. A converging lens can also act as a diverging lens. (Contains 4 figures.)

  3. Advanced pigment dispersion glaucoma secondary to phakic intraocular collamer lens implant

    Directory of Open Access Journals (Sweden)

    Clara Ye

    2018-06-01

    Full Text Available Purpose: We report a case of pigment dispersion glaucoma secondary to uncomplicated phakic intraocular collamer lens (ICL (Visian ICL™, Staar Inc., Monrovia, CA implant that resulted in advanced visual field loss. Observations: A 50-year-old man presented for routine follow-up status post bilateral phakic intraocular collamer lens (ICL placement 8 years earlier. He was incidentally found to have a decline in visual acuity from an anterior subcapsular cataract and elevated intraocular pressure (IOP in the left eye. There were signs of pigment dispersion and no evidence of angle closure. Diffuse optic nerve thinning was consistent with advanced glaucomatous visual field defects. Pigment dispersion was also present in the patient's right eye, but without elevated IOP or visual field defects. The patient was treated with topical glaucoma medications and the phakic ICL in the left eye was removed concurrently with cataract surgery to prevent further visual field loss. Conclusions and importance: Pigment dispersion glaucoma is a serious adverse outcome after phakic ICL implantation and regular post-operative monitoring may prevent advanced visual field loss. Keywords: Phakic intraocular lens, Intraocular collamer lens, Pigment dispersion, Glaucoma

  4. A method of LED free-form tilted lens rapid modeling based on scheme language

    Science.gov (United States)

    Dai, Yidan

    2017-10-01

    According to nonimaging optical principle and traditional LED free-form surface lens, a new kind of LED free-form tilted lens was designed. And a method of rapid modeling based on Scheme language was proposed. The mesh division method was applied to obtain the corresponding surface configuration according to the character of the light source and the desired energy distribution on the illumination plane. Then 3D modeling software and the Scheme language programming are used to generate lens model respectively. With the help of optical simulation software, a light source with the size of 1mm*1mm*1mm in volume is used in experiment, and the lateral migration distance of illumination area is 0.5m, in which total one million rays are computed. We could acquire the simulated results of both models. The simulated output result shows that the Scheme language can prevent the model deformation problems caused by the process of the model transfer, and the degree of illumination uniformity is reached to 82%, and the offset angle is 26°. Also, the efficiency of modeling process is greatly increased by using Scheme language.

  5. Fabrication and Performance of a Lithium X-Ray Lens

    Science.gov (United States)

    Young, Kristina; Khounsary, Ali; Jansen, Andrew N.; Dufresne, Eric M.; Nash, Philip

    2007-01-01

    Compound refractive lenses (CRLs) are arrays of concave lenses whose simple design and ease in implementation and alignment make them an attractive optic to focus x-rays. Factors considered in designing CRLs include lens material, fabrication, and assembly. Lithium is a desirable material because it provides the largest index of refraction decrement per unit absorption length of any solid elements. Lithium is a difficult material to handle and fabricate because it is rather malleable and more importantly, it reacts with moisture, and to a lesser extent, with oxygen and nitrogen in air. It also tends to adhere to molds and dies. We report on the fabrication and performance of a parabolic lithium lens consisting of 32 lenslets. Lenslets are fabricated in a precision press using an indenter with a parabolic profile and a 100 μm tip radius. The indenter is made of stainless steel and is figured using a computer numerically controlled (CNC) machine. The lens is designed to have a 1.7 m focal length at 10 keV energy. In an experiment conducted at the Advanced Photon Source (APS), a 0.5 mm × 0.5 mm monochromatic undulator beam strikes the lens. A focal length of 1.71, a focal spot size of 24 μm × 34 μm, and a peak intensity gain of over 18 are obtained.

  6. Fabrication and Performance of a Lithium X-Ray Lens

    International Nuclear Information System (INIS)

    Young, Kristina; Khounsary, Ali; Jansen, Andrew N.; Dufresne, Eric M.; Nash, Philip

    2007-01-01

    Compound refractive lenses (CRLs) are arrays of concave lenses whose simple design and ease in implementation and alignment make them an attractive optic to focus x-rays. Factors considered in designing CRLs include lens material, fabrication, and assembly. Lithium is a desirable material because it provides the largest index of refraction decrement per unit absorption length of any solid elements. Lithium is a difficult material to handle and fabricate because it is rather malleable and more importantly, it reacts with moisture, and to a lesser extent, with oxygen and nitrogen in air. It also tends to adhere to molds and dies.We report on the fabrication and performance of a parabolic lithium lens consisting of 32 lenslets. Lenslets are fabricated in a precision press using an indenter with a parabolic profile and a 100 μm tip radius. The indenter is made of stainless steel and is figured using a computer numerically controlled (CNC) machine. The lens is designed to have a 1.7 m focal length at 10 keV energy. In an experiment conducted at the Advanced Photon Source (APS), a 0.5 mm x 0.5 mm monochromatic undulator beam strikes the lens. A focal length of 1.71, a focal spot size of 24 μm x 34 μm, and a peak intensity gain of over 18 are obtained

  7. Embossing of optical document security devices

    Science.gov (United States)

    Muke, Sani

    2004-06-01

    Embossing in the transparent window area of polymer banknotes, such as those seen on the Australian, New Zealand and Romanian currencies, have enormous potential for the development of novel optical security devices. The intaglio printing process can provide an efficient means for embossing of optical security structures such as micro lenses. Embossed micro lens arrays in the transparent window of a polymer banknote can be folded over a corresponding printed image array elsewhere on the note to reveal a series of moire magnified images. Analysis of samples of embossed micro lenses showed that the engraving side and impression side had a similar embossed profile. The embossed micro lens profiles were modelled using Optalix-LX commercial optical ray tracing software in order to determine the focal length of the lenses and compare with the focal length of desired embossed lenses. A fundamental understanding of how the polymer deforms during the embossing process is critical towards developing a micro lens embossing tool which can achieve the desired embossed micro lenses. This work also looks at extending the early research of the Intaglio Research Group (IRG) to better understand the embossibility of polymer substrates such as biaxially oriented polypropylene (BOPP).

  8. Development of a Laue lens for nuclear astrophysics

    International Nuclear Information System (INIS)

    Rousselle, Julien

    2011-01-01

    In this work, a new type of gamma-ray telescope is presented. It features a crystal diffraction lens that concentrates photons from a large photon collecting area onto a small detector. In such a Laue lens, a large number of crystals are disposed on concentric rings; each crystal can be considered as a little mirror which deviates gamma-rays through Bragg diffraction from the incident beam onto a common focal spot. The principle of the Laue lens for astrophysics was demonstrated with the balloon mission CLAIRE. The objective of this work was to develop the Laue Lens concept into a sensitive, space qualified optics for a future satellite mission. This contribution consisted of two main facets: a) finding appropriate crystal materials and improving the performance of the diffracting crystals, and b) develop a prototype segment for a space qualified lens. Exploring new diffracting media and improving the performance of individual crystals implied the development of numerical simulations of the diffraction process for various types of mosaic and CDP (Curved Diffraction Plane) crystals. These simulations were used to select suitable crystals to be grown and to be tested. Two different X-ray facilities were used to probe the crystalline quality of candidate materials: the European Synchrotron Radiation Facility (ESRF, France) and the high neutron flux reactor at ILL (France). During 10 beam-runs (and a total of 3 months of measurement), a large number of samples were tested, including Ag, Ir, Pt, Au, Pb, Rh, AsGa, SiGe, and Cu crystals. Outstanding performances were established for gold and silver crystals (>500 keV), Cu and Ge (300-500 keV) crystals and SiGe CDP (<300 keV) crystal. The second facet of this work consisted of designing, manufacturing and characterizing a prototype lens segment. This R and D program was completed in collaboration with the CNES and Thales Alenia Space. For a representative sample of metal and semiconductor crystals that were mounted on the

  9. High-contrast 3D image acquisition using HiLo microscopy with an electrically tunable lens

    Science.gov (United States)

    Philipp, Katrin; Smolarski, André; Fischer, Andreas; Koukourakis, Nektarios; Stürmer, Moritz; Wallrabe, Ulricke; Czarske, Jürgen

    2016-04-01

    We present a HiLo microscope with an electrically tunable lens for high-contrast three-dimensional image acquisition. HiLo microscopy combines wide field and speckled illumination images to create optically sectioned images. Additionally, the depth-of-field is not fixed, but can be adjusted between wide field and confocal-like axial resolution. We incorporate an electrically tunable lens in the HiLo microscope for axial scanning, to obtain three-dimensional data without the need of moving neither the sample nor the objective. The used adaptive lens consists of a transparent polydimethylsiloxane (PDMS) membrane into which an annular piezo bending actuator is embedded. A transparent fluid is filled between the membrane and the glass substrate. When actuated, the piezo generates a pressure in the lens which deflects the membrane and thus changes the refractive power. This technique enables a large tuning range of the refractive power between 1/f = (-24 . . . 25) 1/m. As the NA of the adaptive lens is only about 0.05, a fixed high-NA lens is included in the setup to provide high resolution. In this contribution, the scan properties and capabilities of the tunable lens in the HiLo microscope are analyzed. Eventually, exemplary measurements are presented and discussed.

  10. Optical engineering at Los Alamos: a history

    International Nuclear Information System (INIS)

    Brixner, B.

    1983-01-01

    Optical engineering at Los Alamos, which began in 1943, has continued because scientific researchers usually want more resolving power than commercially available optical instruments provide. In addition, in-house engineering is often advantageous - when the technology for designing and making improved instrumentation is available locally - because of our remote location and the frequent need for accurate data. As a consequence, a number of improved research cameras and lens systems have been developed locally - especially for explosion and implosion photography, but even for oscilloscope photography. The development of high-speed cameras led to the ultimate in practical high-speed rotating mirrors and to the invention of a rapid, precise, and effective lens design procedure that has produced more than a hundred lens system that gives improved imaging in special conditions of use. Representative examples of this work are described

  11. Diamond turning of small Fresnel lens array in single crystal InSb

    International Nuclear Information System (INIS)

    Jasinevicius, R G; Duduch, J G; Cirino, G A; Pizani, P S

    2013-01-01

    A small Fresnel lens array was diamond turned in a single crystal (0 0 1) InSb wafer using a half-radius negative rake angle (−25°) single-point diamond tool. The machined array consisted of three concave Fresnel lenses cut under different machining sequences. The Fresnel lens profiles were designed to operate in the paraxial domain having a quadratic phase distribution. The sample was examined by scanning electron microscopy and an optical profilometer. Optical profilometry was also used to measure the surface roughness of the machined surface. Ductile ribbon-like chips were observed on the cutting tool rake face. No signs of cutting edge wear was observed on the diamond tool. The machined surface presented an amorphous phase probed by micro Raman spectroscopy. A successful heat treatment of annealing was carried out to recover the crystalline phase on the machined surface. The results indicated that it is possible to perform a ‘mechanical lithography’ process in single crystal semiconductors. (paper)

  12. Optics in the United kingdom.

    Science.gov (United States)

    Ditchburn, R W

    1969-10-01

    Optics is interpreted to include x-ray optics, electronic optics, and short wave radiooptics as well as the more conventional visible, uv, and ir optics. Recent work in Britain on x-ray optics (applied to molecular biology), on scanning electron microscopy, and in radioastronomy (discovery of pulsars) is mentioned. In the optics of the visible and ir there is an increasing interest in over-all systems design. .The formation of large industrial units capable of carrying through major design program, requiring advanced mechanical and electronic design associated with new lens systems, is welcomed.

  13. Menadione degrades the optical quality and mitochondrial integrity of bovine crystalline lenses.

    Science.gov (United States)

    Olsen, Kenneth W; Bantseev, Vladimir; Choh, Vivan

    2011-01-26

    The crystalline lens is a unique cellular organ that performs metabolic processes while maintaining transparency for optical functionality. Mitochondria play a role in providing cells with aerobic respiration necessary for these metabolic processes. Using menadione, a mitochondria-specific inhibitor of the quinone family, and bovine lenses in vitro, this study was undertaken to determine whether a relationship exists between mitochondrial function and optical function. Bovine lenses were treated with 50 μM, 200 μM, 600 μM, and 1,000 μM menadione and lens optical function, assessed as optical quality, was observed over 9 days. Confocal micrographs of mitochondria in superficial secondary fiber cells were also analyzed in 50 μM, 200 μM, and 600 μM menadione-treated lenses over 48 h. A decrease in lens optical quality was observed in a dose-dependent manner within 24 h for the 200 µM- (p=0.0422), 600 µM- (pmenadione. The data show that menadione has a detrimental effect on mitochondrial integrity and this change is associated with degradation of optical quality, suggesting a possible link between mitochondrial function and optical function.

  14. 21 CFR 886.5915 - Optical vision aid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Optical vision aid. 886.5915 Section 886.5915 Food... DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5915 Optical vision aid. (a) Identification. An optical vision aid is a device that consists of a magnifying lens with an accompanying AC-powered or...

  15. The ionoluminescence apparatus at the LABEC external microbeam facility

    International Nuclear Information System (INIS)

    Calusi, S.; Colombo, E.; Giuntini, L.; Giudice, A. Lo; Manfredotti, C.; Massi, M.; Pratesi, G.; Vittone, E.

    2008-01-01

    In this paper, we describe the main features of the ionoluminescence (IL) apparatus recently installed at the external scanning microbeam facility of the 3 MV Tandetron accelerator of the INFN LABEC Laboratory in Firenze. The peculiarity of this IL set-up resides in the fact that the light produced by the ion irradiation of the specimen is collected by a bifurcated optical fiber, so that photons are shunted both to a CCD spectrometer, working in the 200-900 nm wavelength range, and to a photomultiplier (PMT). The accurate focusing of the optical system allows high photon collection efficiency and this results in rapid acquisition of luminescence spectra with low ion currents on luminescent materials; simultaneously, luminescence maps with a spatial resolution of 10 μm can be acquired through the synchronization of PMT photon detection with the position of the scanning focused ion beam. An optical filter with a narrow passband facing the photomultiplier allows chromatic selectivity of the luminescence centres. The IL apparatus is synergistically integrated into the existing set-up for ion beam analyses (IBA). The upgraded system permits simultaneous IL and PIXE/PIGE/BS measurements. With our integrated system, we have been studying raw lapis lazuli samples of different known origins and precious lapis lazuli artworks of the Collezione Medicea of Museum of Natural History, University of Firenze, aiming at characterising their composition and provenance

  16. The ionoluminescence apparatus at the LABEC external microbeam facility

    Energy Technology Data Exchange (ETDEWEB)

    Calusi, S.; Colombo, E. [INFN Sezione di Torino, Via P.Giuria 1, 10125 Torino (Italy); Dipartimento di Fisica Sperimentale and NIS Excellence Centre, Universita di Torino, Via P. Giuria 1, 10125 Torino (Italy); Giuntini, L. [Dipartimento di Fisica, Universita and INFN Sezione di Firenze, Via Sansone 1, 50019, Sesto Fiorentino, Firenze (Italy)], E-mail: giuntini@fi.infn.it; Giudice, A. Lo [Dipartimento di Fisica Sperimentale and NIS Excellence Centre, Universita di Torino, Via P. Giuria 1, 10125 Torino (Italy); Manfredotti, C. [INFN Sezione di Torino, Via P.Giuria 1, 10125 Torino (Italy); Dipartimento di Fisica Sperimentale and NIS Excellence Centre, Universita di Torino, Via P. Giuria 1, 10125 Torino (Italy); Massi, M. [Dipartimento di Fisica, Universita and INFN Sezione di Firenze, Via Sansone 1, 50019, Sesto Fiorentino, Firenze (Italy); Pratesi, G. [Dipartimento di Scienze della Terra and Museo di Storia Naturale, Universita di Firenze, Via G. La Pira 4, 50121 Firenze (Italy); Vittone, E. [INFN Sezione di Torino, Via P.Giuria 1, 10125 Torino (Italy); Dipartimento di Fisica Sperimentale and NIS Excellence Centre, Universita di Torino, Via P. Giuria 1, 10125 Torino (Italy)

    2008-05-15

    In this paper, we describe the main features of the ionoluminescence (IL) apparatus recently installed at the external scanning microbeam facility of the 3 MV Tandetron accelerator of the INFN LABEC Laboratory in Firenze. The peculiarity of this IL set-up resides in the fact that the light produced by the ion irradiation of the specimen is collected by a bifurcated optical fiber, so that photons are shunted both to a CCD spectrometer, working in the 200-900 nm wavelength range, and to a photomultiplier (PMT). The accurate focusing of the optical system allows high photon collection efficiency and this results in rapid acquisition of luminescence spectra with low ion currents on luminescent materials; simultaneously, luminescence maps with a spatial resolution of 10 {mu}m can be acquired through the synchronization of PMT photon detection with the position of the scanning focused ion beam. An optical filter with a narrow passband facing the photomultiplier allows chromatic selectivity of the luminescence centres. The IL apparatus is synergistically integrated into the existing set-up for ion beam analyses (IBA). The upgraded system permits simultaneous IL and PIXE/PIGE/BS measurements. With our integrated system, we have been studying raw lapis lazuli samples of different known origins and precious lapis lazuli artworks of the Collezione Medicea of Museum of Natural History, University of Firenze, aiming at characterising their composition and provenance.

  17. Anatomically accurate, finite model eye for optical modeling.

    Science.gov (United States)

    Liou, H L; Brennan, N A

    1997-08-01

    There is a need for a schematic eye that models vision accurately under various conditions such as refractive surgical procedures, contact lens and spectacle wear, and near vision. Here we propose a new model eye close to anatomical, biometric, and optical realities. This is a finite model with four aspheric refracting surfaces and a gradient-index lens. It has an equivalent power of 60.35 D and an axial length of 23.95 mm. The new model eye provides spherical aberration values within the limits of empirical results and predicts chromatic aberration for wavelengths between 380 and 750 nm. It provides a model for calculating optical transfer functions and predicting optical performance of the eye.

  18. A study of optical design and optimization of laser optics

    Science.gov (United States)

    Tsai, C.-M.; Fang, Yi-Chin

    2013-09-01

    This paper propose a study of optical design of laser beam shaping optics with aspheric surface and application of genetic algorithm (GA) to find the optimal results. Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using collimated laser beam light, aspheric lenses in order to achieve best results.

  19. Jell-O Optics: Edibly Exploring Snell's Law and Optical Power

    Science.gov (United States)

    Hendryx, Jennifer; Reynolds, Mathias

    2012-03-01

    This presentation details a laboratory exercise and/or demonstration of refraction with an inexpensive, simple set-up: a pan of Jell-O, protractors, and laser pointers. This activity is presented from the perspective of an optical sciences graduate student who has spent the school year team-teaching high school math and physics (through Academic Decathlon). The goal is to present some of the fundamentals of optics with an enjoyable and affordable approach. The concepts include Snell's law, index of refraction, and optical power/focal length as they relate to the curvature of a lens.

  20. Semiconductor apparatus and method of fabrication for a semiconductor apparatus

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a semiconductor apparatus (1) and a method of fabrication for a semiconductor apparatus (1), wherein the semiconductor apparatus (1) comprises a semiconductor layer (2) and a passivation layer (3), arranged on a surface of the semiconductor layer (2), for passivating the

  1. Investigation of uniformity field generated from freeform lens with UV LED exposure system

    Science.gov (United States)

    Ciou, F. Y.; Chen, Y. C.; Pan, C. T.; Lin, P. H.; Lin, P. H.; Hsu, F. T.

    2015-03-01

    In the exposure process, the intensity and uniformity of light in the exposure area directly influenced the precision of products. UV-LED (Ultraviolet Light-Emitting Diode) exposure system was established to reduce the radiation leakage and increase the energy efficiency for energy saving. It is a trend that conventional mercury lamp could be replaced with UV-LED exposure system. This study was based on the law of conservation of energy and law of refraction of optical field distributing on the target plane. With these, a freeform lens with uniform light field of main exposure area could be designed. The light outside the exposure area could be concentrated into the area to improve the intensity of light. The refraction index and UV transmittance of Polydimethylsiloxane (PDMS) is 1.43 at 385 nm wavelength and 85-90%, respectively. The PDMS was used to fabricate the optics lens for UV-LEDs. The average illumination and the uniformity could be obtained by increasing the number of UV-LEDs and the spacing of different arrangement modes. After exposure process with PDMS lens, about 5% inaccuracy was obtained. Comparing to 10% inaccuracy of general exposure system, it shows that it is available to replace conventional exposure lamp with using UV-LEDs.

  2. The voltage optimization of a four-element lens used on a hemispherical spectrograph with virtual entry for highest energy resolution

    International Nuclear Information System (INIS)

    Sise, O.; Martínez, G.; Madesis, I.; Laoutaris, A.; Dimitriou, A.; Fernández-Martín, M.; Zouros, T.J.M.

    2016-01-01

    Highlights: • We investigate the voltage settings for the four-element injection lens of an HDA. • The two well-known approaches, BEM and FDM, in charged particle optics were used. • We tested optimal lens voltages from simulation on the actual experimental setup. • The measured FWHM were well modeled using realistic source parameters. • The results are helpful to experimenters. - Abstract: The methodology and results of a detailed four-element lens optimization analysis based on electron trajectory numerical simulations are presented for a hemispherical deflector analyzer (HDA), whose entry aperture size is determined by the injection lens itself and is therefore virtual. Trajectory calculations were performed using both the boundary-element method (BEM) and the finite-difference method (FDM) and results from these two different approaches were benchmarked against each other, to probe and confirm the accuracy of our results. Since the first and last electrode are held at fixed potentials, the two intermediate adjustable lens electrode voltages were varied over the entire available voltage space in a direct, systematic, brute-force approach, while minima in beam spot size on the 2-D position sensitive detector (PSD) at the exit of the HDA were investigated using a beam shaping approach. Lens voltages demonstrating improved energy resolution for the combined lens/HDA/PSD spectrograph system were sought with and without pre-retardation. The optimal voltages were then tested experimentally on the modeled HDA system using a hot-wire electron gun. The measured energy resolution was found to be in good overall agreement with our simulations, particularly at the highest resolution (∼0.05%) working conditions. These simulations also provide a detailed insight to the distinctive trajectory optics and positions of the first and second image planes, when the PSD has to be placed some distance away from the HDA exit plane, and is therefore not at the ideal optics

  3. The voltage optimization of a four-element lens used on a hemispherical spectrograph with virtual entry for highest energy resolution

    Energy Technology Data Exchange (ETDEWEB)

    Sise, O., E-mail: omersise@sdu.edu.tr [Department of Science Education, Faculty of Education, Suleyman Demirel University, 32260 Isparta (Turkey); Martínez, G. [Departamento de Física Aplicada III, Facultad de Física, UCM, 28040 Madrid (Spain); Madesis, I. [Department of Physics, University of Crete, P.O. Box 2208, GR, 71003 Heraklion (Greece); Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR, 15310 Ag Paraskevi (Greece); Laoutaris, A. [Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR, 15310 Ag Paraskevi (Greece); Department of Applied Physics, National Technical University of Athens, GR, 15780 Athens (Greece); Dimitriou, A. [Department of Physics, University of Crete, P.O. Box 2208, GR, 71003 Heraklion (Greece); Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR, 15310 Ag Paraskevi (Greece); Fernández-Martín, M. [Departamento de Física Aplicada III, Facultad de Física, UCM, 28040 Madrid (Spain); Zouros, T.J.M. [Department of Physics, University of Crete, P.O. Box 2208, GR, 71003 Heraklion (Greece); Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR, 15310 Ag Paraskevi (Greece)

    2016-08-15

    Highlights: • We investigate the voltage settings for the four-element injection lens of an HDA. • The two well-known approaches, BEM and FDM, in charged particle optics were used. • We tested optimal lens voltages from simulation on the actual experimental setup. • The measured FWHM were well modeled using realistic source parameters. • The results are helpful to experimenters. - Abstract: The methodology and results of a detailed four-element lens optimization analysis based on electron trajectory numerical simulations are presented for a hemispherical deflector analyzer (HDA), whose entry aperture size is determined by the injection lens itself and is therefore virtual. Trajectory calculations were performed using both the boundary-element method (BEM) and the finite-difference method (FDM) and results from these two different approaches were benchmarked against each other, to probe and confirm the accuracy of our results. Since the first and last electrode are held at fixed potentials, the two intermediate adjustable lens electrode voltages were varied over the entire available voltage space in a direct, systematic, brute-force approach, while minima in beam spot size on the 2-D position sensitive detector (PSD) at the exit of the HDA were investigated using a beam shaping approach. Lens voltages demonstrating improved energy resolution for the combined lens/HDA/PSD spectrograph system were sought with and without pre-retardation. The optimal voltages were then tested experimentally on the modeled HDA system using a hot-wire electron gun. The measured energy resolution was found to be in good overall agreement with our simulations, particularly at the highest resolution (∼0.05%) working conditions. These simulations also provide a detailed insight to the distinctive trajectory optics and positions of the first and second image planes, when the PSD has to be placed some distance away from the HDA exit plane, and is therefore not at the ideal optics

  4. Exchange of tears under a contact lens is driven by distortions of the contact lens.

    Science.gov (United States)

    Maki, Kara L; Ross, David S

    2014-12-01

    We studied the flow of the post-lens tear film under a soft contact lens to understand how the design parameters of contact lenses can affect ocular health. When a soft contact lens is inserted, the blinking eyelid causes the lens to stretch in order to conform to the shape of the eye. The deformed contact lens acts to assume its un-deformed shape and thus generates a suction pressure in the post-lens tear film. In consequence, the post-lens tear fluid moves; it responds to the suction pressure. The suction pressure may draw in fresh fluid from the edge of the lens, or it may eject fluid there, as the lens reassumes its un-deformed shape. In this article, we develop a mathematical model of the flow of the post-lens tear fluid in response to the mechanical suction pressure of a deformed contact lens. We predict the amount of exchange of fluid exchange under a contact lens and we explore the influence of the eye's shape on the rate of exchange of fluid. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  5. [Crystalline lens photodisruption using femtosecond laser: experimental study].

    Science.gov (United States)

    Chatoux, O; Touboul, D; Buestel, C; Balcou, P; Colin, J

    2010-09-01

    The aim of this study was to analyze the interactions during femtosecond (fs) laser photodisruption in ex vivo porcine crystalline lenses and to study the parameters for laser interaction optimization. An experimental femtosecond laser was used. The laser characteristics were: 1030 nm wavelength; pulse duration, 400 fs; and numerical aperture, 0.13. Specific software was created to custom and monitor any type of photoablation pattern for treatment purposes. Porcine crystalline lenses were placed in an open sky holder filled with physiological liquid (BSS) covered by a glass plate. A numerical camera was associated with metrological software in order to magnify and quantify the results. Transmission electron microscopy (TEM) was performed on some samples to identify the microscopic plasma interactions with the lens. The optimization of parameters was investigated in terms of the optical breakdown threshold, the sizing of interactions, and the best pattern for alignments. More than 150 crystalline lenses of freshly enucleated pigs were treated. The optical breakdown threshold (OBT) was defined as the minimal energy level per pulse necessary to observe a physical interaction. In our study, the OBT varied according to the following parameters: the crystalline lens itself, varying from 4.2 to 7.6 μJ (mean, 5.1 μJ), and the depth of laser focus, varying up to 1 μJ, increasing in the depth of the tissue. Analyzing the distance between impacts, we observed that the closer the impacts were the less power was needed to create a clear well-drawn defect pattern (lines), i.e., with a 4-μJ optimized OBT, when the impacts were placed every 2 μm for the x,y directions and 60 μm for the z direction. Coalescent bubbles created by plasma formation always disappeared in less than 24h. The nonthermal effect of plasma and the innocuousness on surrounding tissues were proven by the TEM results. The crystalline lens photodisruption by the femtosecond laser seems an innovative

  6. Dislocation of polyfocal full-optics accommodative intraocular lens after neodymium-doped yttrium aluminum garnet capsulotomy in vitrectomized eye

    Directory of Open Access Journals (Sweden)

    Kyung Tae Kang

    2013-01-01

    Full Text Available We report a case of dislocation of WIOL-CF® polyfocal full-optics intraocular lens (IOL after neodymium-doped yttrium aluminum garnet (Nd: YAG laser capsulotomy in the vitrectomized eye. At 22 months before the dislocation of the IOL, a 55-year-old male patient underwent phacoemulsification with WIOL-CF® IOL implantation in a local clinic and 10 months after the cataract surgery the patient underwent pars plana vitrectomy, endolaser photocoagulation and 14% C 3 F 8 gas tamponade for the treatment of rhegmatogenous retinal detachment. At 9 months after the vitrectomy, the patient visited our clinic for a sudden decrease of vision after Nd: YAG capsulotomy in the local clinic. On fundus examination, the dislocated IOL was identified and the Nd: YAG capsulotomy site and the larger break, which is suspected to have been a route of the dislocation were observed in the posterior capsule.

  7. New optical architecture for holographic data storage system compatible with Blu-ray Disc™ system

    Science.gov (United States)

    Shimada, Ken-ichi; Ide, Tatsuro; Shimano, Takeshi; Anderson, Ken; Curtis, Kevin

    2014-02-01

    A new optical architecture for holographic data storage system which is compatible with a Blu-ray Disc™ (BD) system is proposed. In the architecture, both signal and reference beams pass through a single objective lens with numerical aperture (NA) 0.85 for realizing angularly multiplexed recording. The geometry of the architecture brings a high affinity with an optical architecture in the BD system because the objective lens can be placed parallel to a holographic medium. Through the comparison of experimental results with theory, the validity of the optical architecture was verified and demonstrated that the conventional objective lens motion technique in the BD system is available for angularly multiplexed recording. The test-bed composed of a blue laser system and an objective lens of the NA 0.85 was designed. The feasibility of its compatibility with BD is examined through the designed test-bed.

  8. Compliance among soft contact lens wearers.

    Science.gov (United States)

    Kuzman, Tomislav; Kutija, Marija Barisić; Masnec, Sanja; Jandroković, Sonja; Mrazovac, Danijela; Jurisić, Darija; Skegro, Ivan; Kalauz, Miro; Kordić, Rajko

    2014-12-01

    Contact lens compliance is proven to be crucial for preventing lens wear-related complications because of the interdependence of the steps in lens care regime and their influence on lens system microbial contamination. Awareness of the patients' lens handling compliance as well as correct recognition of non-compliant behaviours is the basis for creating more targeted strategies for patient education. The aim of this study was to investigate compliance among soft contact lens (SCL) wearers in different aspects of lens care handling and wearing habits. In our research 50 asymptomatic lens wearers filled out a questionnaire containing demographic data, lens type, hygiene and wearing habits, lenses and lens care system replacement schedule and self-evaluation of contact lens handling hygiene. We established criteria of compliance according to available manufacturer's recommendations, prior literature and our clinical experience. Only 2 (4%) of patients were fully compliant SCL wearers. The most common non-compliant behaviours were insufficient lens solution soaking time (62%), followed by failure to daily exchange lens case solution and showering while wearing lenses. 44% of patients reported storing lenses in saline solution. Mean lens storage case replacement was 3.6 months, with up to 78% patients replacing lens case at least once in 3 months. Average grade in self evaluating level of compliance was very good (4 +/- 0.78) (from 1-poor level of hygiene to 5-great level of hygiene). Lens wearers who reported excessive daily lens wear and more than 10 years of lens wearing experience were also found to be less compliant with other lens system care procedures. (t = -2.99, df=47, p rate, self grading was relatively high. Therefore, these results indicate the need for patient education and encouragement of better lens wearing habits and all of the lens maintenance steps at each patient visit.

  9. Comparison of clear lens extraction and collamer lens implantation in high myopia

    Directory of Open Access Journals (Sweden)

    Ahmed M Emarah

    2010-05-01

    Full Text Available Ahmed M Emarah, Mostafa A El-Helw, Hazem M YassinCairo University, Cairo, EgyptAim: To compare the outcomes of clear lens extraction and collamer lens implantation in high myopia.Patients and methods: Myopic patients younger than 40 years old with more than 12 diopters of myopia or who were not fit for laser-assisted in situ keratomileusis were included. Group 1 comprised patients undergoing clear lens extraction and Group 2 patients received the Visian implantable collamer lens. Outcome and complications were evaluated.Results: Postoperative best corrected visual acuity was -0.61 ± 0.18 in Group 1 and 0.79 ± 0.16 in Group 2. In Group 1, 71.4% achieved a postoperative uncorrected visual acuity better than the preoperative best corrected visual acuity, while only 51.8% patients achieved this in Group 2. Intraocular pressure decreased by 12.55% in Group 1, and increased by 15.11% in Group 2. Corneal endothelial cell density decreased by 4.47% in Group 1 and decreased by 5.67% in Group 2. Posterior capsule opacification occurred in Group 1. In Group 2, lens opacification occurred in 11.11%, significant pigment dispersion in 3.7%, and pupillary block glaucoma in 3.7%.Conclusion: Clear lens extraction presents less of a financial load up front, and less likelihood of the need for a secondary intervention in the future. Clear lens extraction is a more viable solution in developing countries with limited financial resources.Keywords: clear lens extraction, implantable collamer lens, myopia

  10. Testing of quality of welded joints using heavy-current pulse X-ray apparatuses

    International Nuclear Information System (INIS)

    Gusev, E.A.; Firstov, V.G.

    1988-01-01

    The possibilities of carrying out of radiographic and electroradiographic testing of quality of welded joints using heavy-current pulse X-ray apparatuses under the mode of single pulses are shown. Basic quantitative characteristics of radiographic testing permitting to detect the focus distance, sensitivity behaviour and optical density of image are presented. Peculiarities of electroradiographic image formation under the mode of single pulses of nanosecond range are analysed. The outlook of heavy-current pulse X-ray apparatus application under the mode of single pulses in industry is estimated

  11. Antireflective glass nanoholes on optical lenses.

    Science.gov (United States)

    Lee, Youngseop; Bae, Sang-In; Eom, Jaehyeon; Suh, Ho-Cheol; Jeong, Ki-Hun

    2018-05-28

    Antireflective structures, inspired from moth eyes, are still reserved for practical use due to their large-area nanofabrication and mechanical stability. Here we report an antireflective optical lens with large-area glass nanoholes. The nanoholes increase light transmission due to the antireflective effect, depending on geometric parameters such as fill factor and height. The glass nanoholes of low effective refractive index are achieved by using solid-state dewetting of ultrathin silver film, reactive ion etching, and wet etching. An ultrathin silver film is transformed into nanoholes for an etch mask in reactive ion etching after thermal annealing at a low temperature. Unlike conventional nanopillars, nanoholes exhibit high light transmittance with enhancement of ~4% over the full visible range as well as high mechanical hardness. Also, an antireflective glass lens is achieved by directly employing nanoholes on the lens surface. Glass nanoholes of highly enhanced optical and mechanical performance can be directly utilized for commercial glass lenses in various imaging and lighting applications.

  12. Changes in lens stiffness due to capsular opacification in accommodative lens refilling

    NARCIS (Netherlands)

    Nibourg, Lisanne M.; Sharma, Prashant K.; van Kooten, Theo G.; Koopmans, Steven A.

    Accommodation may be restored to presbyopic lenses by refilling the lens capsular bag with a soft polymer. After this accommodative lens refilling prevention of capsular opacification is a requirement, since capsular opacification leads to a decreased clarity of the refilled lens. It has been

  13. Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster.

    Science.gov (United States)

    Olsen, Thomas

    2007-02-01

    This study aimed to demonstrate how the level of accuracy in intraocular lens (IOL) power calculation can be improved with optical biometry using partial optical coherence interferometry (PCI) (Zeiss IOLMaster) and current anterior chamber depth (ACD) prediction algorithms. Intraocular lens power in 461 consecutive cataract operations was calculated using both PCI and ultrasound and the accuracy of the results of each technique were compared. To illustrate the importance of ACD prediction per se, predictions were calculated using both a recently published 5-variable method and the Haigis 2-variable method and the results compared. All calculations were optimized in retrospect to account for systematic errors, including IOL constants and other off-set errors. The average absolute IOL prediction error (observed minus expected refraction) was 0.65 dioptres with ultrasound and 0.43 D with PCI using the 5-variable ACD prediction method (p ultrasound, respectively (p power calculation can be significantly improved using calibrated axial length readings obtained with PCI and modern IOL power calculation formulas incorporating the latest generation ACD prediction algorithms.

  14. METHOD AND APPARATUS FOR CHARACTERIZATION OF A SOLAR CELL

    DEFF Research Database (Denmark)

    2017-01-01

    ; and estimating variations in the solar cell, thereby electrically characterizing the solar cell. The disclosure further relates to a solar cell characterization apparatus for characterization of a solar cell, comprising: a light source for generating an optical probe light; a modulation unit, configured...... to produce modulated probe light by modulating the optical probe light with a modulation frequency of between 100 kHz and 0 MHz; a light scanning unit for scanning the modulated probe light such that said modulated probe light is incident on at least a part of the surface of the solar cell; and a 1 signal...

  15. Methods and apparatus for use with extreme ultraviolet light having contamination protection

    Science.gov (United States)

    Chilese, Francis C.; Torczynski, John R.; Garcia, Rudy; Klebanoff, Leonard E.; Delgado, Gildardo R.; Rader, Daniel J.; Geller, Anthony S.; Gallis, Michail A.

    2016-07-12

    An apparatus for use with extreme ultraviolet (EUV) light comprising A) a duct having a first end opening, a second end opening and an intermediate opening intermediate the first end opening the second end opening, B) an optical component disposed to receive EUV light from the second end opening or to send light through the second end opening, and C) a source of low pressure gas at a first pressure to flow through the duct, the gas having a high transmission of EUV light, fluidly coupled to the intermediate opening. In addition to or rather than gas flow the apparatus may have A) a low pressure gas with a heat control unit thermally coupled to at least one of the duct and the optical component and/or B) a voltage device to generate voltage between a first portion and a second portion of the duet with a grounded insulative portion therebetween.

  16. Multiparallel Three-Dimensional Optical Microscopy

    Science.gov (United States)

    Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel

    2010-01-01

    Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

  17. Optimal operation of a 4-element injection lens in a hemispherical spectrograph: FDM/BEM simulation and experimental demonstration

    International Nuclear Information System (INIS)

    Martínez, G; Madesis, I; Dimitriou, A; Zouros, T J M; Laoutaris, A; Sise, O

    2015-01-01

    We have investigated the voltage settings for the 4-element injection lens of a biased paracentric hemispherical deflection analyzer (HDA) with virtual entry aperture using numerical methods. The two lens electrode voltages were varied as free parameters while the electron optical properties of the analyzer were calculated from trajectories with test initial distributions for different pre-retardation factors in an effort to obtain improved energy resolution. The resulting lens voltages were then also tested on the existing HDA spectrometer at the Tandem Accelerator Laboratory, while simulated and measured line profile characteristics were compared, particularly at the best resolution working points. (paper)

  18. Anterior Lens Capsule and Iris Thicknesses in Pseudoexfoliation Syndrome.

    Science.gov (United States)

    Batur, Muhammed; Seven, Erbil; Tekin, Serek; Yasar, Tekin

    2017-11-01

    The aim of this study was to evaluate anatomic properties of the lens capsule and iris by anterior segment optical coherence tomography (AS-OCT) in patients with pseudoexfoliation (PEX). This prospective study included 62 eyes of 62 patients with PEX syndrome and 43 eyes of 43 age- and gender-matched controls. All subjects underwent full ophthalmologic examinations including AS-OCT. Pupillary diameter, midperipheral stromal iris thickness, central and temporal lens capsule thicknesses, and peripheral pseudoexfoliation material thickness on the anterior lens capsule surface were measured and recorded. Mean age was 66.8 ± 9.3 years in the PEX group and 65.5 ± 8.9 years in the control group (p = 0.44). The PEX group consisted of 62 patients: 38 men (61.3%) and 24 women (38.7%); the control group included 43 subjects: 25 men (58.1%) and 18 women (41.9%). Pupillary diameter after pharmacologic mydriasis was 21% smaller in the PEX group than controls. Mean midperipheral iris thickness was 36 ± 7.2 μm (7.8%) thinner in the PEX group than that of control group (p = 0.047). The central anterior capsule was a mean of 3.40 ± 0.51 μm (18%) thicker in the PEX group compared to the control group (p = 0.0001). The temporal anterior lens capsule was a mean of 0.17 ± 0.15 μm thicker in the PEX group compared to the control group (p = 0.81). With high-resolution OCT imaging, it has become possible to evaluate the anterior lens capsule without histologic examination and demonstrate that it is thicker than normal in PEX patients.

  19. Chemical and physical properties of the normal and aging lens: spectroscopic (UV, fluorescence, phosphorescence, and NMR) analyses

    International Nuclear Information System (INIS)

    Lerman, S.

    1987-01-01

    In vitro [UV absorption, fluorescence, phosphorescence, and nuclear magnetic resonance (NMR)] spectroscopic studies on the normal human lens demonstrate age-related changes which can be correlated with biochemical and photobiologic mechanisms occurring during our lifetime. Chronic cumulative UV exposure results in an age-related increase of photochemically induced chromophores and in color of the lens nucleus. This enables the lens to filter the incident UV radiation, thereby protecting the underlying aging retina from UV photodamage. We have measured the age-related increase in lens fluorescence in vivo on more than 300 normal subjects (1st to 9th decade) by UV slitlamp densitography. These data show a good correlation with the in vitro lens fluorescence studies reported previously and demonstrate that molecular photodamage can be monitored in the lens. In vitro NMR (human and animal lenses) and in vivo experiments currently in progress are rapidly elucidating the physicochemical basis for transparency and the development of light scattering areas. Surface scanning NMR can monitor organophosphate metabolism in the ocular lens in vivo as well as in vitro. These studies demonstrate the feasibility of using biophysical methods (optical spectroscopy and NMR analyses) to delineate age-related parameters in the lens, in vivo as well as in vitro. 46 references

  20. TU-E-201-03: Eye Lens Dosimetry in Radiotherapy Using Contact Lens-Shaped Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. [Seoul National University Hospital (Korea, Republic of)

    2015-06-15

    Madan M. Rehani, Massachusetts General Hospital and Harvard Medical School, Boston Methods for Eye Lens Dosimetry and Studies On Lens Opacities with Interventionalists Radiation induced cataract is a major threat among staff working in interventional suites. Nearly 16 million interventional procedures are performed annually in USA. Recent studies by the principal investigator’s group, primarily among interventional cardiologists, on behalf of the International Atomic Energy Agency, show posterior subcapsular (PSC) changes in the eye lens in 38–53% of main operators and 21–45% of support staff. These changes have potential to lead to cataract in future years, as per information from A-Bomb survivors. The International Commission on Radiological Protection has reduced dose limit for staff by a factor of 7.5 (from 150 mSv/y to 20 mSv/y). With increasing emphasis on radiation induced cataracts and reduction in threshold dose for eye lens, there is a need to implement strategies for estimating eye lens dose. Unfortunately eye lens dosimetry is at infancy when it comes to routine application. Various approaches are being tried namely direct measurement using active or passive dosimeters kept close to eyes, retrospective estimations and lastly correlating patient dose in interventional procedures with staff eye dose. The talk will review all approaches available and ongoing active research in this area, as well as data from surveys done in Europe on status of eye dose monitoring in interventional radiology and nuclear medicine. The talk will provide update on how good is Hp(10) against Hp(3), estimations from CTDI values, Monte Carlo based simulations and current status of eye lens dosimetry in USA and Europe. The cataract risk among patients is in CT examinations of the head. Since radiation induced cataract predominantly occurs in posterior sub-capsular (PSC) region and is thus distinguishable from age or drug related cataracts and is also preventable, actions on

  1. TU-E-201-03: Eye Lens Dosimetry in Radiotherapy Using Contact Lens-Shaped Applicator

    International Nuclear Information System (INIS)

    Park, J.

    2015-01-01

    Madan M. Rehani, Massachusetts General Hospital and Harvard Medical School, Boston Methods for Eye Lens Dosimetry and Studies On Lens Opacities with Interventionalists Radiation induced cataract is a major threat among staff working in interventional suites. Nearly 16 million interventional procedures are performed annually in USA. Recent studies by the principal investigator’s group, primarily among interventional cardiologists, on behalf of the International Atomic Energy Agency, show posterior subcapsular (PSC) changes in the eye lens in 38–53% of main operators and 21–45% of support staff. These changes have potential to lead to cataract in future years, as per information from A-Bomb survivors. The International Commission on Radiological Protection has reduced dose limit for staff by a factor of 7.5 (from 150 mSv/y to 20 mSv/y). With increasing emphasis on radiation induced cataracts and reduction in threshold dose for eye lens, there is a need to implement strategies for estimating eye lens dose. Unfortunately eye lens dosimetry is at infancy when it comes to routine application. Various approaches are being tried namely direct measurement using active or passive dosimeters kept close to eyes, retrospective estimations and lastly correlating patient dose in interventional procedures with staff eye dose. The talk will review all approaches available and ongoing active research in this area, as well as data from surveys done in Europe on status of eye dose monitoring in interventional radiology and nuclear medicine. The talk will provide update on how good is Hp(10) against Hp(3), estimations from CTDI values, Monte Carlo based simulations and current status of eye lens dosimetry in USA and Europe. The cataract risk among patients is in CT examinations of the head. Since radiation induced cataract predominantly occurs in posterior sub-capsular (PSC) region and is thus distinguishable from age or drug related cataracts and is also preventable, actions on

  2. Contact Lens-Related Eye Infections

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Contact Lens-Related Eye Infections Sections Contact Lens-Related Eye ... Six Steps to Avoid Contact Lens Infections Contact Lens-Related Eye Infections Leer en Español: Infecciones relacionadas ...

  3. Pigment dispersion and Artisan phakic intraocular lenses: crystalline lens rise as a safety criterion.

    Science.gov (United States)

    Baïkoff, Georges; Bourgeon, Grégoire; Jodai, Horacio Jitsuo; Fontaine, Aline; Lellis, Fernando Viera; Trinquet, Laure

    2005-04-01

    To validate the theory that crystalline lens rise can be used as a safety criterion to prevent pigment dispersion in eyes with an Artisan phakic intraocular lens (IOL) (Ophtec BV). Monticelli Clinic, Marseilles, France. A comparative analysis of crystalline lens rise in 9 eyes with pigment dispersion and 78 eyes without dispersion was performed. All eyes had previous implantation of an Artisan IOL. Anterior segment imaging was done using an anterior chamber optical coherence tomography (AC OCT) prototype. Crystalline lens rise was defined by the distance between the anterior pole of the crystalline lens and the horizontal plane joining the opposite iridocorneal recesses. The study confirmed that crystalline lens rise can be considered a safety criterion for implantation of Artisan-type phakic IOLs. The higher the crystalline lens rise, the greater the risk for developing pigment dispersion in the area of the pupil. This complication occurred more frequently in hyperopic eyes than in myopic eyes. Results indicate there is little or no risk for pigment dispersion if the rise is less than 600 microm; 67% of eyes with a rise of 600 microm or more developed pupillary pigment dispersion. In some cases in which the IOL was loosely fixated, there was no traction on the iris root and dispersion was prevented or delayed. Crystalline lens rise should be considered a new safety criterion for Artisan phakic IOL implantation and should also be applied to other types of phakic IOLs. The distance remaining between the crystalline lens rise and a 600 microm theoretical safety level allows one to calculate how long the IOL can safely remain in the eye.

  4. A Simple Model of the Accommodating Lens of the Human Eye

    Science.gov (United States)

    Oommen, Vinay; Kanthakumar, Praghalathan

    2014-01-01

    The human eye is often discussed as optically equivalent to a photographic camera. The iris is compared with the shutter, the pupil to the aperture, and the retina to the film, and both have lens systems to focus rays of light. Although many similarities exist, a major difference between the two systems is the mechanism involved in focusing an…

  5. Electromagnetic numerical characterization of the laser-induced liquid crystal lens by finite-difference time domain method

    International Nuclear Information System (INIS)

    Morisaki, T.; Ono, H.

    2005-01-01

    A laser-induced liquid-crystal lens is formed by large optical non-linearity and anisotropic complex refractive indices in guest-host liquid crystals. We obtained light wave propagation characteristics of the laser-induced LC lens. Three analytical methods were used to obtain light wave propagation characteristics. Analysis by 3-dimensional heat conduction was applied to determine the refractive index in the liquid-crystal layer. Another method used was to determine light wave propagation characteristics in the laser-induced lens by means of the finite-difference tune domain (FDTD) method and diffraction theory. In this study, we draw a parallel between the experimental results and FDTD. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  6. High-Density Near-Field Optical Disc Recording

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Ishimoto, Tsutomu; Kondo, Takao; Nakaoki, Ariyoshi; Ide, Naoki; Furuki, Motohiro; Takeda, Minoru; Akiyama, Yuji; Shimouma, Takashi; Yamamoto, Masanobu

    2005-05-01

    We developed a high-density near-field optical recording disc system using a solid immersion lens. The near-field optical pick-up consists of a solid immersion lens with a numerical aperture of 1.84. The laser wavelength for recording is 405 nm. In order to realize the near-field optical recording disc, we used a phase-change recording media and a molded polycarbonate substrate. A clear eye pattern of 112 GB capacity with 160 nm track pitch and 50 nm bit length was observed. The equivalent areal density is 80.6 Gbit/in2. The bottom bit error rate of 3 tracks-write was 4.5× 10-5. The readout power margin and the recording power margin were ± 30.4% and ± 11.2%, respectively.

  7. Vortex gas lens

    Science.gov (United States)

    Bogdanoff, David W.; Berschauer, Andrew; Parker, Timothy W.; Vickers, Jesse E.

    1989-01-01

    A vortex gas lens concept is presented. Such a lens has a potential power density capability of 10 to the 9th - 10 to the 10th w/sq cm. An experimental prototype was constructed, and the divergence half angle of the exiting beam was measured as a function of the lens operating parameters. Reasonably good agreement is found between the experimental results and theoretical calculations. The expanded beam was observed to be steady, and no strong, potentially beam-degrading jets were found to issue from the ends of the lens. Estimates of random beam deflection angles to be expected due to boundary layer noise are presented; these angles are very small.

  8. Effects of hyperbaric oxygen on crystalline lens and retina in nicotine-exposed rats.

    Science.gov (United States)

    Ari, Seyhmus; Nergiz, Yusuf; Cingü, Abdullah Kürşat; Atay, Ahmet Engin; Sahin, Alparslan; Cinar, Yasin; Caca, Ihsan

    2013-03-01

    To determine histopathological changes on crystalline lens and retina of rats after subcutaneous injection of nicotine and to examine the effects of hyperbaric oxygen (HBO) on these changes related to nicotine exposure. Twenty-eight female Sprague-Dawley rats were enrolled in the study and the rats were divided into four equal sized groups randomly (Group N: the rats exposed only to nicotine, group HB: the rats received only HBO, group N+HB: the rats that underwent to nicotine injection and subsequently received HBO, group C: the control group that neither exposed to nicotine nor received HBO). The rats were sacrificed by decapitation method and all were enucleated immediately after scarification. Tissue samples from crystalline lens, lens capsule, and the retina from the right eyes of the rats were examined by light microscopy. While the histological appearances of the retina and the lens was similar in group HB, group N+HB, and the control group; group N showed some pathological changes like decrement in the retinal ganglion cell density, atrophy of the retinal nerve fiber layer, congestion of the vessels in the optic nerve head, thinning of the internal plexiform layer, thinning of the lens capsule, and transformation of the anterior subcapsular epithelium into squamous epithelia. Subcutaneous injection of nicotine was found to be related with some pathological changes in the retina and lens of the Sprague-Dawley rats. However HBO caused no significant negative effect. Furthermore, the histopathological changes related to nicotine exposure in the lens and retina of the rats recovered by the application of HBO.

  9. Optical system design, analysis, and production for advanced technology systems; Proceedings of the Meeting, Innsbruck, Austria, Apr. 15-17, 1986

    Science.gov (United States)

    Fischer, Robert E. (Editor); Rogers, Philip J. (Editor)

    1986-01-01

    The present conference considers topics in the fields of optical systems design software, the design and analysis of optical systems, illustrative cases of advanced optical system design, the integration of optical designs into greater systems, and optical fabrication and testing techniques. Attention is given to an extended range diffraction-based merit function for lens design optimization, an assessment of technologies for stray light control and evaluation, the automated characterization of IR systems' spatial resolution, a spectrum of design techniques based on aberration theory, a three-field IR telescope, a large aperture zoom lens for 16-mm motion picture cameras, and the use of concave holographic gratings as monochomators. Also discussed are the use of aspherics in optical systems, glass choice procedures for periscope design, the fabrication and testing of unconventional optics, low mass mirrors for large optics, and the diamond grinding of optical surfaces on aspheric lens molds.

  10. Optical system design, analysis, and production; Proceedings of the Meeting, Geneva, Switzerland, April 19-22, 1983

    Science.gov (United States)

    Rogers, P. J.; Fischer, R. E.

    1983-01-01

    Topics considered include: optical system requirements, analysis, and system engineering; optical system design using microcomputers and minicomputers; optical design theory and computer programs; optical design methods and computer programs; optical design methods and philosophy; unconventional optical design; diffractive and gradient index optical system design; optical production and system integration; and optical systems engineering. Particular attention is given to: stray light control as an integral part of optical design; current and future directions of lens design software; thin-film technology in the design and production of optical systems; aspherical lenses in optical scanning systems; the application of volume phase holograms to avionic displays; the effect of lens defects on thermal imager performance; and a wide angle zoom for the Space Shuttle.

  11. Optical polymers for laser medical applications

    Science.gov (United States)

    Sultanova, Nina G.; Kasarova, Stefka N.; Nikolov, Ivan D.

    2016-01-01

    In medicine, optical polymers are used not only in ophthalmology but in many laser surgical, diagnostic and therapeutic systems. The application in lens design is determined by their refractive and dispersive properties in the considered spectral region. We have used different measuring techniques to obtain precise refractometric data in the visible and near-infrared spectral regions. Dispersive, thermal and other important optical characteristics of polymers have been studied. Design of a plastic achromatic objective, used in a surgical stereo-microscope at 1064 nm laser wavelength, is accomplished. Geometrical and wavefront aberrations are calculated. Another example of application of polymers is the designed all-mirror apochromatic micro-lens, intended for superluminescent diode fiber coupling in medical systems.

  12. Optical antenna for a visible light communications receiver

    Science.gov (United States)

    Valencia-Estrada, Juan Camilo; García-Márquez, Jorge; Topsu, Suat; Chassagne, Luc

    2018-01-01

    Visible Light Communications (VLC) receivers adapted to be used in high transmission rates will eventually use either, high aperture lenses or non-linear optical elements capable of converting light arriving to the receiver into an electric signal. The high aperture lens case, reveals a challenge from an optical designers point-of-view. As a matter of fact, the lens must collect a wide aperture intensity flux using a limited aperture as its use is intended to portable devices. This last also limits both, lens thickness and its focal length. Here, we show a first design to be adapted to a VLC receiver that take these constraints into account. This paper describes a method to design catadioptric and monolithic lenses to be used as an optical collector of light entering from a near point light source as a spherical fan L with a wide acceptance angle α° and high efficiency. These lenses can be mass produced and therefore one can find many practical applications in VLC equipped devices. We show a first design for a near light source without magnification, and second one with a detector's magnification in a meridional section. We utilize rigorous geometric optics, vector analysis and ordinary differential equations.

  13. Shrinking optical devices

    International Nuclear Information System (INIS)

    Wee, W H; Pendry, J B

    2009-01-01

    Much of optics depends on objects being much larger than the wavelength of light: shadows of opaque objects are sharp only if free of diffraction effects, and 'cat's eye' retroreflectors function only if they are large. Here, we show how to make theoretically arbitrarily small versions of these devices by exploiting the power of a negatively refracting lens to magnify objects that are smaller than the wavelength, thus creating the effect of a large object while keeping all physical dimensions small. We also give a new perspective on the 'perfect lens theorem' on which the paper is based.

  14. Pigment dispersion syndrome associated with intraocular lens implantation: a new surgical technique.

    Science.gov (United States)

    Canut Jordana, M Isabel; Pérez Formigó, Daniel; Abreu González, Rodrigo; Nadal Reus, Jeroni

    2010-11-11

    We report the case of a myopic patient who, after intraocular lens transplant in the posterior chamber, suffered elevated intraocular pressure due to pigment dispersion, with recurrent episodes of blurred vision. The patient was treated with a new surgical technique that can avoid potential iridolenticular contact. Complete ophthalmologic examination and optical coherence tomography (OCT) of the anterior segment were performed. Contact between the pigmentary epithelium and the iris with an intraocular lens was revealed by utrasound biomicroscopy and OCT. In this case, Nd:YAG laser iridotomy and laser iridoplasty were not effective for iridolenticular separation and control of the pigment dispersion. We propose a new technique: stitches on the surface of the iris to obtain good iridolenticular separation and good intraocular pressure control. Stitches on the iris surface should be considered as optional therapy in pigmentary glaucoma secondary to intraocular lens implantation. This surgical technique can avoid potential iridolenticular contacts more definitively.

  15. Near-field microscopy with a microfabricated solid immersion lens

    Science.gov (United States)

    Fletcher, Daniel Alden

    2001-07-01

    Diffraction of focused light prevents optical microscopes from resolving features in air smaller than half the wavelength, λ Spatial resolution can be improved by passing light through a sub-wavelength metal aperture scanned close to a sample, but aperture-based probes suffer from low optical throughput, typically below 10-4. An alternate and more efficient technique is solid immersion microscopy in which light is focused through a high refractive index Solid Immersion Lens (SIL). This work describes the fabrication, modeling, and use of a microfabricated SIL to obtain spatial resolution better than the diffraction limit in air with high optical throughput for infrared applications. SILs on the order of 10 μm in diameter are fabricated from single-crystal silicon and integrated onto silicon cantilevers with tips for scanning. We measure a focused spot size of λ/5 with optical throughput better than 10-1 at a wavelength of λ = 9.3 μm. Spatial resolution is improved to λ/10 with metal apertures fabricated directly on the tip of the silicon SIL. Microlenses have reduced spherical aberration and better transparency than large lenses but cannot be made arbitrarily small and still focus. We model the advantages and limitations of focusing in lenses close to the wavelength in diameter using an extension of Mie theory. We also investigate a new contrast mechanism unique to microlenses resulting from the decrease in field-of-view with lens diameter. This technique is shown to achieve λ/4 spatial resolution. We explore applications of the microfabricated silicon SIL for high spatial resolution thermal microscopy and biological spectroscopy. Thermal radiation is collected through the SIL from a heated surface with spatial resolution four times better than that of a diffraction- limited infrared microscope. Using a Fourier-transform infrared spectrometer, we observe absorption peaks in bacteria cells positioned at the focus of the silicon SIL.

  16. Capsular 'pits' in the human lens.

    OpenAIRE

    Harris, M. L.; Brown, N. A.; Shun-Shin, G. A.; Smith, G. T.

    1992-01-01

    The lens capsule is an atypical basement membrane surrounding the lens epithelial cells and lens fibres which make up the remainder of the human lens. A seemingly unreported morphological change visible in the lens capsule with the biomicroscope is described.

  17. ROLLER FILTRATION APPARATUS

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to the field of filtering, more precisely the present invention concerns an apparatus and a method for the separation of dry matter from a medium and the use of said apparatus. One embodiment discloses an apparatus for the separation of dry matter and liquid from a m...

  18. Apparatus, system, and method for laser-induced breakdown spectroscopy

    Science.gov (United States)

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  19. Multipactor discharge apparatus

    International Nuclear Information System (INIS)

    1976-01-01

    The invention deals with a multipactor discharge apparatus which can be used for tuning microwave organs such as magnetron oscillators and other cavity resonators. This apparatus is suitable for delivering an improved tuning effect in a resonation organ wherefrom the working frequency must be set. This apparatus is equipped with two multipactor discharge electrodes set in a configuration such to that a net current flows from one electrode to another. These electrodes are parallel and flat. The apparatus can be used in magnetron devices as well for continuous waves as for impulses

  20. Gamma tomography apparatus

    International Nuclear Information System (INIS)

    Span, F.J.

    1988-01-01

    The patent concerns a gamma tomography apparatus for medical diagnosis. The apparatus comprises a gamma scintillation camera head and a suspension system for supporting and positioning the camera head with respect for the patient. Both total body scanning and single photon emission tomography can be carried out with the apparatus. (U.K.)

  1. Component and prototype panel testing of the mini-dome Fresnel lens photovoltaic concentrator array

    Science.gov (United States)

    Piszczor, Michael F.; Swartz, Clifford K.; O'Neill, Mark J.

    1990-01-01

    The mini-dome Fresnel lens concentrator array, a high-efficiency, lightweight space photovoltaic array concept, is described. The three critical elements of the array concept are the Fresnel lens concentrator, the prismatic cell power cover, and the photovoltaic cell. Prototype concentrator lenses have been fabricated and tested, with optical efficiencies reaching 90 percent. Work is progressing on the design and fabrication of the panel structure. The impact of recent advances in 30 percent-efficient multijunction photovoltaic cells on array performance is also discussed. Near-term performance goals of 300 w/sq m and 100 w/kg are now feasible.

  2. Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry

    Directory of Open Access Journals (Sweden)

    H.Cabrera

    2006-01-01

    Full Text Available We use an optimized pump-probe mode-mismatched thermal lens scheme to determine the optical absorption coefficient and thermal diffusivity of ethanol, benzene, acetone, methanol, toluene and chloroform. In this scheme the excitation beam is focused in the presence of a collimated probe beam. The agreement between experimentally obtained results and values reported in the literature is good.

  3. The current status of eye lens dose measurement in interventional cardiology personnel in Thailand.

    Science.gov (United States)

    Krisanachinda, Anchali; Srimahachota, Suphot; Matsubara, Kosuke

    2017-06-01

    Workers involved in interventional cardiology procedures receive high eye lens doses if radiation protection tools are not properly utilized. Currently, there is no suitable method for routine measurement of eye dose. In Thailand, the eye lens equivalent doses in terms of Hp(3) of the interventional cardiologists, nurses, and radiographers participating in interventional cardiology procedures have been measured at 12 centers since 2015 in the pilot study. The optically stimulated luminescence (OSL) dosimeter was used for measurement of the occupational exposure and the eye lens dose of 42 interventional cardiology personnel at King Chulalongkorn Memorial Hospital as one of the pilot centers. For all personnel, it is recommended that a first In Light OSL badge is placed at waist level and under the lead apron for determination of Hp(10); a second badge is placed at the collar for determination of Hp(0.07) and estimation of Hp(3). Nano Dots OSL dosimeter has been used as an eye lens dosimeter for 16 interventional cardiology personnel, both with and without lead-glass eyewear. The mean effective dose at the body, equivalent dose at the collar, and estimated eye lens dose were 0.801, 5.88, and 5.70 mSv per year, respectively. The mean eye lens dose measured by the Nano Dots dosimeter was 8.059 mSv per year on the left eye and 3.552 mSv per year on the right eye. Two of 16 interventional cardiologists received annual eye lens doses on the left side without lead glass that were higher than 20 mSv per year, the new eye lens dose limit as recommended by ICRP with the risk of eye lens opacity and cataract.

  4. Contact Lens Care

    Science.gov (United States)

    ... Consumers Consumer Information by Audience For Women Contact Lens Care Share Tweet Linkedin Pin it More sharing ... www.fda.gov/medwatch Learn More about Contact Lens Care Other Tips on Contact Lenses Decorative Contact ...

  5. Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology

    Directory of Open Access Journals (Sweden)

    Mohendra Roy

    2016-05-01

    Full Text Available Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al., we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, and HepG2, HeLa, and MCF7 cells. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings.

  6. Effect of pupillary dilation on Haigis formula-calculated intraocular lens power measurement by using optical biometry

    Directory of Open Access Journals (Sweden)

    Khambhiphant B

    2016-07-01

    formula, intraocular lens, IOLMaster, optical biometry, pupillary dilation

  7. Self-interference digital holography with a geometric-phase hologram lens.

    Science.gov (United States)

    Choi, KiHong; Yim, Junkyu; Yoo, Seunghwi; Min, Sung-Wook

    2017-10-01

    Self-interference digital holography (SIDH) is actively studied because the hologram acquisition under the incoherent illumination condition is available. The key component in this system is wavefront modulating optics, which modulates an incoming object wave into two different wavefront curvatures. In this Letter, the geometric-phase hologram lens is introduced in the SIDH system to perform as a polarization-sensitive wavefront modulator and a single-path beam splitter. This special optics has several features, such as high transparency, a modulation efficiency up to 99%, a thinness of a few millimeters, and a flat structure. The demonstration system is devised, and the numerical reconstruction results from an acquired complex hologram are presented.

  8. A compact combined ultrahigh vacuum scanning tunnelling microscope (UHV STM) and near-field optical microscope

    International Nuclear Information System (INIS)

    Woolley, R A J; Hayton, J A; Cavill, S; Ma, Jin; Beton, P H; Moriarty, P

    2008-01-01

    We have designed and constructed a hybrid scanning near-field optical microscope (SNOM)–scanning tunnelling microscope (STM) instrument which operates under ultrahigh vacuum (UHV) conditions. Indium tin oxide (ITO)-coated fibre-optic tips capable of high quality STM imaging and tunnelling spectroscopy are fabricated using a simple and reliable method which foregoes the electroless plating strategy previously employed by other groups. The fabrication process is reproducible, producing robust tips which may be exchanged under UHV conditions. We show that controlled contact with metal surfaces considerably enhances the STM imaging capabilities of fibre-optic tips. Light collection (from the cleaved back face of the ITO-coated fibre-optic tip) and optical alignment are facilitated by a simple two-lens arrangement where the in-vacuum collimation/collection lens may be adjusted using a slip-stick motor. A second in-air lens focuses the light (which emerges from the UHV system as a parallel beam) onto a cooled CCD spectrograph or photomultiplier tube. The application of the instrument to combined optical and electronic spectroscopy of Au and GaAs surfaces is discussed

  9. Two families of astrophysical diverging lens models

    Science.gov (United States)

    Er, Xinzhong; Rogers, Adam

    2018-03-01

    In the standard gravitational lensing scenario, rays from a background source are bent in the direction of a foreground lensing mass distribution. Diverging lens behaviour produces deflections in the opposite sense to gravitational lensing, and is also of astrophysical interest. In fact, diverging lensing due to compact distributions of plasma has been proposed as an explanation for the extreme scattering events that produce frequency-dependent dimming of extragalactic radio sources, and may also be related to the refractive radio wave phenomena observed to affect the flux density of pulsars. In this work we study the behaviour of two families of astrophysical diverging lenses in the geometric optics limit, the power law, and the exponential plasma lenses. Generally, the members of these model families show distinct behaviour in terms of image formation and magnification, however the inclusion of a finite core for certain power-law lenses can produce a caustic and critical curve morphology that is similar to the well-studied Gaussian plasma lens. Both model families can produce dual radial critical curves, a novel distinction from the tangential distortion usually produced by gravitational (converging) lenses. The deflection angle and magnification of a plasma lens vary with the observational frequency, producing wavelength-dependent magnifications that alter the amplitudes and the shape of the light curves. Thus, multiwavelength observations can be used to physically constrain the distribution of the electron density in such lenses.

  10. Sensitivity of the corneal-plane refractive compensation to change in power and axial position of an intraocular lens

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2009-12-01

    Full Text Available If an intraocular lens is displaced or if its power is changed what are the consequences for the refractive compensation of the eye?  Gaussian optics is used to obtain explicit formulae for the sensitivityof the corneal-plane refractive compensation (also called the refraction, refractive state, etc to change in power and axial displacement of a thin intraocular lens implanted in a simple eye.  In particular, for a pseudophakic Gullstrand simplified eye with intraocular lens placed 5 mm behind the cornea the sensitivity to errors in the power of the intraocular lens is about  71 . 0 − 71 for an intraocular lens of power   for an intraocular lens of power 20 D, that is, the refractive compensation decreases by about 0.71 dioptres per dioptre increase in the power of the intraocular lens.  More generally the sensitivity is approximately  ( m   0037 . 0 63 . 0 F − − 0.63 ( 003 . 0 63 . 0 − − (0.0037mF where FI is the power of the intraocular lens.  Also for Gullstrand’s simplified eye the sensitivity of refractive compensation to axial displacement of the intraocular lens is approximately linear in FI about  (64D FI, in fact.  That is, for each dioptre of the power of the intraocular lens the refractive compensation increases by about 0.064 dioptres per millimetre of axial displacement towards the retina. 

  11. Design and analysis of all-dielectric subwavelength focusing flat lens

    Science.gov (United States)

    Turduev, M.; Bor, E.; Kurt, H.

    2017-09-01

    In this letter, we numerically designed and experimentally demonstrated a compact photonic structure for the subwavelength focusing of light using all-dielectric absorption-free and nonmagnetic scattering objects distributed in an air medium. In order to design the subwavelength focusing flat lens, an evolutionary algorithm is combined with the finite-difference time-domain method for determining the locations of cylindrical scatterers. During the multi-objective optimization process, a specific objective function is defined to reduce the full width at half maximum (FWHM) and diminish side lobe level (SLL) values of light at the focal point. The time-domain response of the optimized flat lens exhibits subwavelength light focusing with an FWHM value of 0.19λ and an SLL value of 0.23, where λ denotes the operating wavelength of light. Experimental analysis of the proposed flat lens is conducted in a microwave regime and findings exactly verify the numerical results with an FWHM of 0.192λ and an SLL value of 0.311 at the operating frequency of 5.42 GHz. Moreover, the designed flat lens provides a broadband subwavelength focusing effect with a 9% bandwidth covering frequency range of 5.10 GHz-5.58 GHz, where corresponding FWHM values remain under 0.21λ. Also, it is important to note that the designed flat lens structure performs a line focusing effect. Possible applications of the designed structure in telecom wavelengths are speculated upon for future perspectives. Namely, the designed structure can perform well in photonic integrated circuits for different fields of applications such as high efficiency light coupling, imaging and optical microscopy, with its compact size and ability for strong focusing.

  12. Optical analysis of a compound quasi-microscope for planetary landers

    Science.gov (United States)

    Wall, S. D.; Burcher, E. E.; Huck, F. O.

    1974-01-01

    A quasi-microscope concept, consisting of facsimile camera augmented with an auxiliary lens as a magnifier, was introduced and analyzed. The performance achievable with this concept was primarily limited by a trade-off between resolution and object field; this approach leads to a limiting resolution of 20 microns when used with the Viking lander camera (which has an angular resolution of 0.04 deg). An optical system is analyzed which includes a field lens between camera and auxiliary lens to overcome this limitation. It is found that this system, referred to as a compound quasi-microscope, can provide improved resolution (to about 2 microns ) and a larger object field. However, this improvement is at the expense of increased complexity, special camera design requirements, and tighter tolerances on the distances between optical components.

  13. Flat Optical Fiber Daylighting System with Lateral Displacement Sun-Tracking Mechanism for Indoor Lighting

    Directory of Open Access Journals (Sweden)

    Ngoc Hai Vu

    2017-10-01

    Full Text Available An essential impact which can improve the indoor environment and save on power consumption for artificial lighting is utilization of daylight. Optical fiber daylighting technology offers a way to use direct daylight for remote spaces in a building. However, the existing paradigm based on the precise orientation of sunlight concentrator toward the Sun is very costly and difficult to install on the roof of buildings. Here, we explore an alternative approach using mirror-coated lens array and planar waveguide to develop a flat optical fiber daylighting system (optical fiber daylighting panel with lateral displacement Sun-tracking mechanism. Sunlight collected and reflected by each mirror-coated lens in a rectangular lens array is coupled into a planar waveguide using cone prisms placed at each lens focus. This geometry yields a thin, flat profile for Sunlight concentrator. Our proposed concentrating panel can be achieved with 35 mm thickness while the concentrator’s width and length are 500 mm × 500 mm. The commercial optical simulation tool (LightToolsTM was used to develop the simulation models and analyze the system performance. Simulation results based on the designed system demonstrated an optical efficiency of 51.4% at a concentration ratio of 125. The system can support utilizing a lateral displacement Sun-tracking system, which allows for replacing bulky and robust conventional rotational Sun-tracking systems. This study shows a feasibility of a compact and inexpensive optical fiber daylighting system to be installed on the roof of buildings.

  14. Mechatronic design of a fully integrated camera for mini-invasive surgery.

    Science.gov (United States)

    Zazzarini, C C; Patete, P; Baroni, G; Cerveri, P

    2013-06-01

    This paper describes the design features of an innovative fully integrated camera candidate for mini-invasive abdominal surgery with single port or transluminal access. The apparatus includes a CMOS imaging sensor, a light-emitting diode (LED)-based unit for scene illumination, a photodiode for luminance detection, an optical system designed according to the mechanical compensation paradigm, an actuation unit for enabling autofocus and optical zoom, and a control logics based on microcontroller. The bulk of the apparatus is characterized by a tubular shape with a diameter of 10 mm and a length of 35 mm. The optical system, composed of four lens groups, of which two are mobile, has a total length of 13.46 mm and an effective focal length ranging from 1.61 to 4.44 mm with a zoom factor of 2.75×, with a corresponding angular field of view ranging from 16° to 40°. The mechatronics unit, devoted to move the zoom and the focus lens groups, is implemented adopting miniature piezoelectric motors. The control logics implements a closed-loop mechanism, between the LEDs and photodiode, to attain automatic control light. Bottlenecks of the design and some potential issues of the realization are discussed. A potential clinical scenario is introduced.

  15. Tool Releases Optical Elements From Spring Brackets

    Science.gov (United States)

    Gum, J. S.

    1984-01-01

    Threaded hooks retract bracket arms holding element. Tool uses three hooks with threaded shanks mounted in ring-shaped holder to pull on tabs to release optical element. One person can easily insert or remove optical element (such as prism or lens) from spring holder or bracket with minimal risk of damage.

  16. Method and apparatus for implementing material thermal property measurement by flash thermal imaging

    Science.gov (United States)

    Sun, Jiangang

    2017-11-14

    A method and apparatus are provided for implementing measurement of material thermal properties including measurement of thermal effusivity of a coating and/or film or a bulk material of uniform property. The test apparatus includes an infrared camera, a data acquisition and processing computer coupled to the infrared camera for acquiring and processing thermal image data, a flash lamp providing an input of heat onto the surface of a two-layer sample with an enhanced optical filter covering the flash lamp attenuating an entire infrared wavelength range with a series of thermal images is taken of the surface of the two-layer sample.

  17. Crystalline lens power and refractive error.

    Science.gov (United States)

    Iribarren, Rafael; Morgan, Ian G; Nangia, Vinay; Jonas, Jost B

    2012-02-01

    To study the relationships between the refractive power of the crystalline lens, overall refractive error of the eye, and degree of nuclear cataract. All phakic participants of the population-based Central India Eye and Medical Study with an age of 50+ years were included. Calculation of the refractive lens power was based on distance noncycloplegic refractive error, corneal refractive power, anterior chamber depth, lens thickness, and axial length according to Bennett's formula. The study included 1885 subjects. Mean refractive lens power was 25.5 ± 3.0 D (range, 13.9-36.6). After adjustment for age and sex, the standardized correlation coefficients (β) of the association with the ocular refractive error were highest for crystalline lens power (β = -0.41; P lens opacity grade (β = -0.42; P lens power (β = -0.95), lower corneal refractive power (β = -0.76), higher lens thickness (β = 0.30), deeper anterior chamber (β = 0.28), and less marked nuclear lens opacity (β = -0.05). Lens thickness was significantly lower in eyes with greater nuclear opacity. Variations in refractive error in adults aged 50+ years were mostly influenced by variations in axial length and in crystalline lens refractive power, followed by variations in corneal refractive power, and, to a minor degree, by variations in lens thickness and anterior chamber depth.

  18. The Role of Type IV Collagen in Developing Lens in Mouse Fetuses

    Directory of Open Access Journals (Sweden)

    Mehdi Jalali

    2009-09-01

    Full Text Available Objective(sExtracellular matrix (ECM and basement membrane (BM play important roles in many developmental processes during development and after birth. Among the components of the BM, collagen fibers specially type IV are the most important parts. The aim of this study was to determine the time when collagen type IV appears in the BM of lens structure during mouse embryonic development.Materials and MethodsIn this experimental study, 22 female Balb/C mice were randomly selected and were kept under normal condition, finding vaginal plug was assumed as day zero of pregnancy. From embryonic day 10 to 20, all specimens were sacrificed by cervical dislocation and their heads were fixed, serially sectioned and immunohistochemistry study for tracing collagen type IV in lens were carried out.ResultsOur data revealed that collagen type IV appeared at the early stage of gestation day 12 in BM of anterior epithelial lens cells and the amount of this protein gradually increased until days 15-17 in ECM and posterior capsule epithelium. After this period, severe reaction was not observed in any part of the lens.ConclusionThese findings establish the important role of collagen IV in developing optic cup and any changes during critical period of pregnancy may be result in severe visual system defect

  19. Thermal and ghost reflection modeling for a 180-deg. field-of-view long-wave infrared lens

    Science.gov (United States)

    Shi, Weimin; Couture, Michael E.

    2001-03-01

    Optics 1, Inc. has successfully designed and developed a 180 degree(s) field of view long wave infrared lens for USAF/AFRL under SBIR phase I and II funded projects in support of the multi-national Programmable Integrated Ordinance Suite (PIOS) program. In this paper, a procedure is presented on how to evaluate image degradation caused by asymmetric aerodynamic dome heating. In addition, a thermal gradient model is proposed to evaluate degradation caused by axial temperature gradient throughout the entire PIOS lens. Finally, a ghost reflection analysis is demonstrated with non-sequential model.

  20. Variations in retinal nerve fiber layer measurements on optical coherence tomography after implantation of trifocal intraocular lens.

    Science.gov (United States)

    García-Bella, Javier; Martínez de la Casa, José M; Talavero González, Paula; Fernández-Vigo, José I; Valcarce Rial, Laura; García-Feijóo, Julián

    2018-01-01

    To establish the changes produced after implantation of a trifocal intraocular lens (IOL) on retinal nerve fiber layer measurements performed with Fourier-domain optical coherence tomography (OCT). This prospective study included 100 eyes of 50 patients with bilateral cataract in surgical range, no other associated ocular involvement, refractive errors between +5 and -5 spherical diopters, and less than 1.5 D of corneal astigmatism. The eyes were operated by phacoemulsification with implantation of 2 different trifocal IOLs (FineVision and AT LISA tri 839MP) in randomized equal groups. Cirrus OCT and Spectralis OCT were performed before surgery and 3 months later. Both analyzed the thickness of the nerve fiber layer and thickness divided by quadrants (6 in case of Spectralis and 4 in case of Cirrus HD). The mean age of patients was 67.5 ± 5.8 years. The global nerve fiber layer thickness measured with Spectralis OCT was 96.77 μm before surgery and 99.55 μm after. With Cirrus OCT, the global thickness was 85.29 μm before surgery and 89.77 μm after. Statistically significant differences in global thickness measurements between preimplantation and postimplantation of the IOL were found with both OCT in the 2 groups. Statistically significant differences were also found in temporal and superior quadrants. The implantation of a diffractive trifocal IOL alters the results of the optic nerve fiber layer on Fourier-domain OCT in these patients, which should be taken into account in the posterior study of these patients.