Chemical Potential of a Lennard Jones Fluid
Directory of Open Access Journals (Sweden)
Celebonovic, V.
2010-12-01
Full Text Available The aim of this paper is to present results of analytical calculation of chemical potential of a Lennard Jones (LJ fluid performed in two ways: by using the thermodynamical formalism and the formalism of statistical mechanics. The integration range is divided into two regions. In the small distance region, which is $rleqsigma$ in the usual notation, the integration range had to be cut off in order to avoid the occurence of divergences. In the large distance region, the calculation is technically simpler. The calculation reported here will be useful in all kinds of studies concerning phase equilibrium in a LJ fluid. Interesting kinds of such systems are the giant planets and the icy satellites in various planetary systems, but also the (so far hypothetical quark stars.
Chemical potential of a Lennard Jones fluid
Directory of Open Access Journals (Sweden)
Čelebonović V.
2010-01-01
Full Text Available The aim of this paper is to present results of analytical calculation of chemical potential of a Lennard Jones (LJ fluid performed in two ways: by using the thermodynamical formalism and the formalism of statistical mechanics. The integration range is divided into two regions. In the small distance region, which is r ≤ σ in the usual notation, the integration range had to be cut off in order to avoid the occurrence of divergences. In the large distance region, the calculation is technically simpler. The calculation reported here will be useful in all kinds of studies concerning phase equilibrium in a LJ fluid. Interesting kinds of such systems are the giant planets and the icy satellites in various planetary systems, but also the (so far hypothetical quark stars.
Thermal conductivity of the Lennard-Jones chain fluid model.
Galliero, Guillaume; Boned, Christian
2009-12-01
Nonequilibrium molecular dynamics simulations have been performed to estimate, analyze, and correlate the thermal conductivity of a fluid composed of short Lennard-Jones chains (up to 16 segments) over a large range of thermodynamic conditions. It is shown that the dilute gas contribution to the thermal conductivity decreases when the chain length increases for a given temperature. In dense states, simulation results indicate that the residual thermal conductivity of the monomer increases strongly with density, but is weakly dependent on the temperature. Compared to the monomer value, it has been noted that the residual thermal conductivity of the chain was slightly decreasing with its length. Using these results, an empirical relation, including a contribution due to the critical enhancement, is proposed to provide an accurate estimation of the thermal conductivity of the Lennard-Jones chain fluid model (up to 16 segments) over the domain 0.8values of the Lennard-Jones chain fluid model merge on the same "universal" curve when plotted as a function of the excess entropy. Furthermore, it is shown that the reduced configurational thermal conductivity of the Lennard-Jones chain fluid model is approximately proportional to the reduced excess entropy for all fluid states and all chain lengths.
Lennard-Jones fluids in a nanochannel
Hartkamp, Remco; Luding, Stefan; Nuernberg Messe GmbH,
2010-01-01
During the past few decades molecular dynamics has been a widely applied tool to simulate fluid confined in micro/nano geometries. What makes interfacial fluids fundamentally different from the bulk fluid is the fact that their density varies considerably over microscopic distances. A class of such
Goujon, Florent; Ghoufi, Aziz; Malfreyt, Patrice
2018-02-01
We report Monte Carlo (MC) simulations of the Lennard-Jones (LJ) fluid at the liquid-vapor interface in the critical region. A slab-based tail method is associated with the MC simulations to approach as close as possible the critical point (T∗ = 0.98 TC∗) . We investigate then the impact of system-sizes on the surface tension and coexisting densities by considering very large box dimensions for which the surface tension is independent of system-sizes at low temperatures.
Modified Benedict-Webb-Rubin Equation of State for the Modified Lennard-Jones Fluid
Asano, Yuta; Fuchizaki, Kazuhiro
2014-03-01
We have proposed a modified Lennard-Jones (mLJ) potential to deal with problems, such as the accurate determination of the melting condition, in which an attractive interaction plays an essential role, but its range need not necessarily extend to infinity. An accurate phase diagram, including the triple and the critical points of the system characterized by the mLJ potential, has been investigated using mainly thermodynamic integration. To predict the thermodynamic behavior of the system, it is further desired to construct the equation of state (EOS) as accurately as possible. The modified Benedict-Webb-Rubin EOS was employed to this end. The 33 parameters involved in the equation were carefully determined in order for the EOS to be compatible with the temperature dependences of the virial coefficients as well as with an extremely large set of thermodynamic data obtained from our own molecular dynamics simulation performed over a wide fluid region. The resultant EOS was found to be not only sufficiently accurate at temperatures up to twenty times as high as the critical-point temperature but also effective in practical use.
Nonlinear transport processes and fluid dynamics: Cylindrical Couette flow of Lennard-Jones fluids
International Nuclear Information System (INIS)
Khayat, R.E.; Eu, B.C.
1988-01-01
In this paper we report on calculations of flow profiles for cylindrical Couette flow of a Lennard-Jones fluid. The flow is subjected to a temperature gradient and thermoviscous effects are taken into consideration. We apply the generalized fluid dynamic equations which are provided by the modified moment method for the Boltzmann equation reported previously. The results of calculations are in good agreement with the Monte Carlo direct simulation method by K. Nanbu [Phys. Fluids 27, 2632 (1984)] for most of Knudsen numbers for which the simulation data are available
Energy Technology Data Exchange (ETDEWEB)
Barbante, Paolo [Dipartimento di Matematica, Politecnico di Milano - Piazza Leonardo da Vinci 32 - 20133 Milano (Italy); Frezzotti, Aldo; Gibelli, Livio [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano - Via La Masa 34 - 20156 Milano (Italy)
2014-12-09
The unsteady evaporation of a thin planar liquid film is studied by molecular dynamics simulations of Lennard-Jones fluid. The obtained results are compared with the predictions of a diffuse interface model in which capillary Korteweg contributions are added to hydrodynamic equations, in order to obtain a unified description of the liquid bulk, liquid-vapor interface and vapor region. Particular care has been taken in constructing a diffuse interface model matching the thermodynamic and transport properties of the Lennard-Jones fluid. The comparison of diffuse interface model and molecular dynamics results shows that, although good agreement is obtained in equilibrium conditions, remarkable deviations of diffuse interface model predictions from the reference molecular dynamics results are observed in the simulation of liquid film evaporation. It is also observed that molecular dynamics results are in good agreement with preliminary results obtained from a composite model which describes the liquid film by a standard hydrodynamic model and the vapor by the Boltzmann equation. The two mathematical model models are connected by kinetic boundary conditions assuming unit evaporation coefficient.
An equation of state for two-center Lennard-Jones fluids
Mecke, M.; Müller, A.; Winkelmann, J.; Fischer, J.
1997-05-01
A new equation of state (EOS) is proposed for the Helmholzt energy F of two-center Lennard-Jones fluids. The EOS is written in the form of a generalized van der Waals equation, F=F H + F A , where F H accounts for the hard-body interaction and F A for the attractive dispersion forces. The equation is constructed on the basis of previously published data sets and results from new extensive computer simulation studies. It correlates pressures and internal energies over a wide fluid range for two-center model fluids with elongations up to 0.67 in reduced units with a high accuracy and shows an excellent description of the vapor-liquid coexistence properties. Comparisons of results from the new EOS with other data sets and recently published VLE from the NpT plus test particle method show very good agreement.
Oh, Inrok; Choi, Saehyun; Jung, YounJoon; Kim, Jun Soo
2015-08-28
Phase separation in a biological cell nucleus occurs in a heterogeneous environment filled with a high density of chromatins and thus it is inevitably influenced by interactions with chromatins. As a model system of nuclear body formation in a cell nucleus filled with chromatins, we simulate the phase separation of a low-density Lennard-Jones (LJ) fluid interacting with a long, condensed polymer chain. The influence of the density variation of LJ particles above and below the phase boundary and the role of attractive interactions between LJ particles and polymer segments are investigated at a fixed value of strong self-interaction between LJ particles. For a density of LJ particles above the phase boundary, phase separation occurs and a dense domain of LJ particles forms irrespective of interactions with the condensed polymer chain whereas its localization relative to the polymer chain is determined by the LJ-polymer attraction strength. Especially, in the case of moderately weak attractions, the domain forms separately from the polymer chain and subsequently associates with the polymer chain. When the density is below the phase boundary, however, the formation of a dense domain is possible only when the LJ-polymer attraction is strong enough, for which the domain grows in direct contact with the interacting polymer chain. In this work, different growth behaviors of LJ particles result from the differences in the density of LJ particles and in the LJ-polymer interaction, and this work suggests that the distinct formation of activity-dependent and activity-independent nuclear bodies (NBs) in a cell nucleus may originate from the differences in the concentrations of body-specific NB components and in their interaction with chromatins.
Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory
Evans, Robert; Stewart, Maria C.; Wilding, Nigel B.
2017-07-01
We report a theoretical and simulation study of the drying and wetting phase transitions of a truncated Lennard-Jones fluid at a flat structureless wall. Binding potential calculations predict that the nature of these transitions depends on whether the wall-fluid attraction has a long ranged (LR) power law decay or is instead truncated, rendering it short ranged (SR). Using grand canonical Monte Carlo simulation and classical density functional theory, we examine both cases in detail. We find that for the LR case wetting is first order, while drying is continuous (critical) and occurs exactly at zero attractive wall strength, i.e., in the limit of a hard wall. In the SR case, drying is also critical but the order of the wetting transition depends on the truncation range of the wall-fluid potential. We characterize the approach to critical drying and wetting in terms of the density and local compressibility profiles and via the finite-size scaling properties of the probability distribution of the overall density. For the LR case, where the drying point is known exactly, this analysis allows us to estimate the exponent ν∥, which controls the parallel correlation length, i.e., the extent of vapor bubbles at the wall. Surprisingly, the value we obtain is over twice that predicted by mean field and renormalization group calculations, despite the fact that our three dimensional system is at the upper critical dimension where mean field theory for critical exponents is expected to hold. Possible reasons for this discrepancy are discussed in the light of fresh insights into the nature of near critical finite-size effects.
Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory.
Evans, Robert; Stewart, Maria C; Wilding, Nigel B
2017-07-28
We report a theoretical and simulation study of the drying and wetting phase transitions of a truncated Lennard-Jones fluid at a flat structureless wall. Binding potential calculations predict that the nature of these transitions depends on whether the wall-fluid attraction has a long ranged (LR) power law decay or is instead truncated, rendering it short ranged (SR). Using grand canonical Monte Carlo simulation and classical density functional theory, we examine both cases in detail. We find that for the LR case wetting is first order, while drying is continuous (critical) and occurs exactly at zero attractive wall strength, i.e., in the limit of a hard wall. In the SR case, drying is also critical but the order of the wetting transition depends on the truncation range of the wall-fluid potential. We characterize the approach to critical drying and wetting in terms of the density and local compressibility profiles and via the finite-size scaling properties of the probability distribution of the overall density. For the LR case, where the drying point is known exactly, this analysis allows us to estimate the exponent ν ∥ , which controls the parallel correlation length, i.e., the extent of vapor bubbles at the wall. Surprisingly, the value we obtain is over twice that predicted by mean field and renormalization group calculations, despite the fact that our three dimensional system is at the upper critical dimension where mean field theory for critical exponents is expected to hold. Possible reasons for this discrepancy are discussed in the light of fresh insights into the nature of near critical finite-size effects.
Köster, Andreas; Mausbach, Peter; Vrabec, Jadran
2017-10-01
The Lennard-Jones potential is used to study the high density fluid and face centered cubic solid state region, including solid-fluid equilibria. Numerous thermodynamic properties are considered, elucidating the behavior of matter in this poorly studied region. The present molecular simulation results are extensively compared to the latest and most accurate equation of state models for fluid and solid phases. It is shown that current models do not cover the thermodynamics of the system adequately near the solid-fluid phase transition. Furthermore, thermodynamic stability is analyzed, indicating that published solid-fluid coexistence data may not be correct at high temperatures. Particular attention is paid to the premelting zone, a range of states close to the melting line, which is characterized by strong variations of several thermodynamic properties. Because the underlying microscopic mechanisms are not yet fully understood, it is hoped that these data may contribute to the development of a theoretical framework for describing premelting effects.
Vapour-liquid equilibria of two-centre Lennard-Jones fluids from the NpT plus test particle method
Kriebel, Christian; Müller, Andreas; Winkelmann, Jochen; Fischer, Johann
Vapour-liquid phase equilibria (VLE) are determined from the NpT plus test particle method for two-centre Lennard-Jones fluids of elongations L* = 0·22, 0·3292, 0·505, and 0·67. The resulting vapour pressures as well as the saturated vapour and liquid densities are correlated by simple equations. The thermodynamic consistency of the VLE data is confirmed on the basis of the Clausius-Clapeyron equation. Comparison is made with results from previous simulations, and from perturbation theory.
Kronome, Gergely; Liszi, Janos; Szalai, Istvan
The vapour pressures, saturated liquid and vapour densities, enthalpies of vaporization, isobaric, and saturation heat capacities are calculated for ethane and ethylene along their vapour-liquid equilibrium (VLE) curves from Monte Carlo simulations using the extended NpT plus test particle (XNpT + TP) method (Boda, D., Liszi, J., and Szalai, I., 1995, Chem. Phys. Lett. , 235, 140). The substances are modelled by two-centre Lennard-Jones molecules of elongations L * = 0.67 for ethane and L * = 0.74 for ethylene. Simulation results are compared with correlated experimental data. In the case of ethylene new values are required for the model parameters to obtain a good agreement with experimental data along the VLE curve. Our results show that the XNpT + TP method is appropriate for the simulation of caloric properties of molecular fluids along the VLE curve.
Thermodynamic equivalence between the Lennard-Jones and hard-core attractive Yukawa systems
International Nuclear Information System (INIS)
Kadiri, Y.; Albaki, R.; Bretonnet, J.L.
2008-01-01
The investigation of the thermodynamic properties of the Lennard-Jones (LJ) fluid is made by means of a system of particles interacting with a potential of hard-core plus attractive Yukawa tail (HCY). Due to the similarity between the LJ potential and the HCY potential in its overall form, it is worthwhile seeking to approximate the LJ potential in much the same way that the hard-sphere reference potential has been so used. The study consists in describing the thermodynamics of the LJ fluid in terms of the equivalent HCY system, whose the properties are known accurately, by means of mapping the thermodynamic quantities for the HCY potential parameters. The method is feasible owing to a convenient analytical expression of the Helmholtz free energy from the mean-spherical approximation expanded in power of the inverse temperature. Two different procedures are used to determine the parameters of the HCY potential as a function of the thermodynamic states: one is based on the simultaneous fits of pressure and internal energy of the LJ system and the other uses the concept of collision frequency. The reasonable homogeneity of the results in both procedures of mapping makes that the HCY potential is a very good reference system, whose the proposed theoretical expressions can be used confidently to predict the thermodynamic properties of more realistic potentials
Effect of Energy Polydispersity on the Nature of Lennard-Jones Liquids
Ingebrigtsen, Trond S.; Tanaka, Hajime
2016-01-01
In the companion paper [T. S. Ingebrigtsen and H. Tanaka, J. Phys. Chem. B 119, 11052 (2015)] the effect of size polydispersity on the nature of Lennard-Jones (LJ) liquids, which represent most molecular liquids without hydrogen bonds, was studied. More specifically, it was shown that even highly size polydisperse LJ liquids are Roskilde-simple (RS) liquids. RS liquids are liquids with strong correlation between constant volume equilibrium fluctuations of virial and potential energy and are s...
Mapping the magic numbers in binary Lennard-Jones clusters.
Doye, Jonathan P K; Meyer, Lars
2005-08-05
Using a global optimization approach that directly searches for the composition of greatest stability, we have been able to find the particularly stable structures for binary Lennard-Jones clusters with up to 100 atoms for a range of Lennard-Jones parameters. In particular, we have shown that just having atoms of different sizes leads to a remarkable stabilization of polytetrahedral structures, including both polyicosahedral clusters and at larger sizes structures with disclination lines.
Formation of global energy minimim structures in the growth process of Lennard-Jones clusters
DEFF Research Database (Denmark)
Solov'yov, Ilia; Koshelev, Andrey; Shutovich, Andrey
2003-01-01
that in this way all known global minimum structures of the Lennard-Jones (LJ) clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic numbers sequence for the clusters of noble gases atoms and compare...... for the clusters of noble gases atoms. Our method serves an efficient alternative to the global optimization techniques based on the Monte-Carlo simulations and it can be applied for the solution of a broad variety of problems in which atomic cluster structure is important....
DEFF Research Database (Denmark)
Cotterill, Rodney M J; Madsen, J.
1986-01-01
Sections of configuration space for Lennard-Jones matter were obtained by probing all the normal-mode energy profiles, following diagonalization of the dynamical matrix for a 240-particle system. For the crystal and sufficiently cold glass, these are single welled, whereas increasing numbers...... of double wells occur as the glass is warmed toward the fluid. This indicates that there might be a fundamental difference between the topologies of the constant-potential-energy hypersurfaces of crystalline and noncrystalline Lennard-Jones matter....
Cluster fusion algorithm: application to Lennard-Jones clusters
DEFF Research Database (Denmark)
Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter
2008-01-01
We present a new general theoretical framework for modelling the cluster structure and apply it to description of the Lennard-Jones clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing...... paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the Lennard-Jones clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence...... for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the Lennard-Jones clusters based on the icosahedral symmetry...
Cluster fusion algorithm: application to Lennard-Jones clusters
DEFF Research Database (Denmark)
Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter
2006-01-01
We present a new general theoretical framework for modelling the cluster structure and apply it to description of the Lennard-Jones clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing ...
Origin of line tension for a Lennard-Jones nanodroplet
Weijs, Joost; Weijs, Joost H.; Marchand, Antonin; Andreotti, Bruno; Lohse, Detlef; Snoeijer, Jacobus Hendrikus
2011-01-01
The existence and origin of line tension has remained controversial in literature. To address this issue, we compute the shape of Lennard-Jones nanodrops using molecular dynamics and compare them to density functional theory in the approximation of the sharp kink interface. We show that the
Free energy of the Lennard-Jones solid
van der Hoef, Martin Anton
2000-01-01
We have determined a simple expression for the absolute Helmholtz free energy of the fcc Lennard-Jones solid from molecular dynamics simulations. The pressure and energy data from these simulations have been fitted to a simple functional form (18 parameters) for densities ranging from around
Gas-solid coexistence of the Lennard-Jones system
van der Hoef, Martin Anton
2002-01-01
Recently, the absolute free energies of the Lennard-Jones system at solid–liquid and solid–gas coexistence were computed from Monte Carlo simulations [J. Chem. Phys. 116, 7145 (2002)]. In this note, we show that the values along the sublimation line are in good agreement with the results from an
Solitons in a One-Dimensional Lennard-Jones Lattice
Yuji, ISHIMORI; Department of Applied Mathematics and Physics Kyoto University
1982-01-01
Nonlinear waves in a one-dimensional lattice with (2n, n) Lennard-Jones potential are studied in small-amplitude and long-wavelength approximations. Equations derived are classified into three types according to the value of the force-range parameter n. For n=2 and ≧4, we get the Benjamin-Ono equation and the Korteweg-de Vries equation, respectively.
Single-site Lennard-Jones models via polynomial chaos surrogates of Monte Carlo molecular simulation
Kadoura, Ahmad Salim
2016-06-01
In this work, two Polynomial Chaos (PC) surrogates were generated to reproduce Monte Carlo (MC) molecular simulation results of the canonical (single-phase) and the NVT-Gibbs (two-phase) ensembles for a system of normalized structureless Lennard-Jones (LJ) particles. The main advantage of such surrogates, once generated, is the capability of accurately computing the needed thermodynamic quantities in a few seconds, thus efficiently replacing the computationally expensive MC molecular simulations. Benefiting from the tremendous computational time reduction, the PC surrogates were used to conduct large-scale optimization in order to propose single-site LJ models for several simple molecules. Experimental data, a set of supercritical isotherms, and part of the two-phase envelope, of several pure components were used for tuning the LJ parameters (ε, σ). Based on the conducted optimization, excellent fit was obtained for different noble gases (Ar, Kr, and Xe) and other small molecules (CH4, N2, and CO). On the other hand, due to the simplicity of the LJ model used, dramatic deviations between simulation and experimental data were observed, especially in the two-phase region, for more complex molecules such as CO2 and C2 H6.
Origin of line tension for a Lennard-Jones nanodroplet
Weijs, Joost H.; Marchand, Antonin; Andreotti, Bruno; Lohse, Detlef; Snoeijer, Jacco H.
2011-02-01
The existence and origin of line tension has remained controversial in literature. To address this issue, we compute the shape of Lennard-Jones nanodrops using molecular dynamics and compare them to density functional theory in the approximation of the sharp kink interface. We show that the deviation from Young's law is very small and would correspond to a typical line tension length scale (defined as line tension divided by surface tension) similar to the molecular size and decreasing with Young's angle. We propose an alternative interpretation based on the geometry of the interface at the molecular scale.
Melting of 2D monatomic solids: Lennard-Jones system
International Nuclear Information System (INIS)
Yi, Y.M.; Guo, Z.C.
1987-09-01
The Lennard-Jones interaction has been introduced into the Collins mix lattice of 2D liquids. By means of rigorous calculation of the total potential and the free area, the Gibbs functions for 2D liquid and solid have been derived. The melting line obtained from the phase transition equation agrees quite well with the result of recent computer simulation experiments. The obtained reduced temperature of the triple point T* t =0.438 agrees with the data measured in experiments of some inert gas monolayers adsorbed on graphite as well as in computer simulation experiments. (author). 11 refs, 7 figs, 3 tabs
Kaukonen, M; Gulans, A; Havu, P; Kauppinen, E
2012-03-05
Lennard-Jones (LJ) parameters are derived for classical nonpolarizable force fields for carbon nanotubes (CNTs) and for CNT-water interaction from van der Waals (vdW) enhanced density functional calculations. The new LJ parameters for carbon-carbon interactions are of the same order as those previously used in the literature but differ significantly for CNT-water interactions. This may partially originate from the fact that in addition to pure vdW interactions the polarization and other quantum mechanics effects are embedded into the LJ-potential. Copyright © 2012 Wiley Periodicals, Inc.
Sumi, Tomonari; Maruyama, Yutaka; Mitsutake, Ayori; Koga, Kenichiro
2016-06-14
In the conventional classical density functional theory (DFT) for simple fluids, an ideal gas is usually chosen as the reference system because there is a one-to-one correspondence between the external field and the density distribution function, and the exact intrinsic free-energy functional is available for the ideal gas. In this case, the second-order density functional Taylor series expansion of the excess intrinsic free-energy functional provides the hypernetted-chain (HNC) approximation. Recently, it has been shown that the HNC approximation significantly overestimates the solvation free energy (SFE) for an infinitely dilute Lennard-Jones (LJ) solution, especially when the solute particles are several times larger than the solvent particles [T. Miyata and J. Thapa, Chem. Phys. Lett. 604, 122 (2014)]. In the present study, we propose a reference-modified density functional theory as a systematic approach to improve the SFE functional as well as the pair distribution functions. The second-order density functional Taylor series expansion for the excess part of the intrinsic free-energy functional in which a hard-sphere fluid is introduced as the reference system instead of an ideal gas is applied to the LJ pure and infinitely dilute solution systems and is proved to remarkably improve the drawbacks of the HNC approximation. Furthermore, the third-order density functional expansion approximation in which a factorization approximation is applied to the triplet direct correlation function is examined for the LJ systems. We also show that the third-order contribution can yield further refinements for both the pair distribution function and the excess chemical potential for the pure LJ liquids.
DEFF Research Database (Denmark)
Friisberg, Ida Marie; Costigliola, Lorenzo; Dyre, Jeppe C.
2017-01-01
This paper investigates the relation between the density-scaling exponent γ and the virial potentialenergy coefficient R at several thermodynamic state points in three dimensions for the generalized (2n, n) Lennard-Jones (LJ) system for n = 4, 9, 12, 18, as well as for the standard n = 6 LJ system...... in two, three, and four dimensions. The state points studied include many low-density states at which the virial potentialenergy correlations are not strong. For these state points we find the roughly linear relation γ ∼= 3n R/d in d dimensions. This result is discussed in light of the approximate...... → 1, a limit that is approached at high densities and/or high temperatures at which the repulsive r−2n term dominates the physics....
Scaling of the dynamics of flexible Lennard-Jones chains
DEFF Research Database (Denmark)
Veldhorst, Arno; Dyre, J. C.; Schrøder, Thomas
2014-01-01
S/T , where ρ is density, T is temperature, and γ S is a material specific scaling exponent) is an approximation to a more general scaling predicted by the isomorph theory. Furthermore, the isomorph theory provides an explanation for Rosenfeld scaling (relaxation times and transport coefficients being...... functions of excess entropy) which has been observed in simulations of both molecular and polymeric systems. Doing molecular dynamics simulations of flexible Lennard-Jones chains (LJC) with rigid bonds, we here provide the first detailed test of the isomorph theory applied to flexible chain molecules. We...... confirm the existence of isomorphs, which are curves in the phase diagram along which the dynamics is invariant in the appropriate reduced units. This holds not only for the relaxation times but also for the full time dependence of the dynamics, including chain specific dynamics such as the end...
More on the melting of Lennard-Jones clusters
International Nuclear Information System (INIS)
Garzon, I.L.; Avalos-Borja, M.; Blaisten-Barojas, E.
1989-01-01
The melting of 13-atom clusters interacting via Lennard-Jones potentials has been revisited using molecular dynamics coupled to steepest descent quenches. A procedure was devised to account for the fraction of times the global and local minima of the potential energy surface are accessed during a long trajectory. This quantity presents a sigmoid shape. A phenomenological model of melting is given in terms of a correlated walk that maps the short time excursions among the global and local minima in configuration space. Comparison between the simulation results and the theoretical model shows that the melting transition is well described in terms of the temperature changes of the fraction of high energy minima accessed during the cluster trajectory. Cooperativity is clear from the S shape of this quantity, i.e., the access to a local minimum favours the access to other local minima. (orig.)
Van Westen, T.; Vlugt, T.J.H.; Gross, J.
2015-01-01
We study the isotropic (vapor and liquid) phase behavior of attractive chain fluids. Special emphasis is placed on the role of molecular flexibility, which is studied by means of a rod-coil model. Two new equations of state (EoSs) are developed for square-well- (SW) and Lennard-Jones (LJ) chain
Pieprzyk, S.; Brańka, A. C.; Maćkowiak, Sz.; Heyes, D. M.
2018-03-01
The equation of state (EoS) of the Lennard-Jones fluid is calculated using a new set of molecular dynamics data which extends to higher temperature than in previous studies. The modified Benedict-Webb-Rubin (MBWR) equation, which goes up to ca. T ˜ 6, is reparametrized with new simulation data. A new analytic form for the EoS, which breaks the fluid range into two regions with different analytic forms and goes up to ca. T ≃ 35, is also proposed. The accuracy of the new formulas is at least as good as the MBWR fit and goes to much higher temperature allowing it to now encompass the Amagat line. The fitted formula extends into the high temperature range where the system can be well represented by inverse power potential scaling, which means that our specification of the equation of state covers the entire (ρ, T) plane. Accurate analytic fit formulas for the Boyle, Amagat, and inversion curves are presented. Parametrizations of the extrema loci of the isochoric, CV, and isobaric, CP, heat capacities are given. As found by others, a line maxima of CP terminates in the critical point region, and a line of minima of CP terminates on the freezing line. The line of maxima of CV terminates close to or at the critical point, and a line of minima of CV terminates to the right of the critical point. No evidence for a divergence in CV in the critical region is found.
Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles
Paliwal, Siddharth; Prymidis, Vasileios; Filion, Laura; Dijkstra, Marjolein
2017-01-01
We study a three-dimensional system of self-propelled Brownian particles interacting via the Lennard-Jones potential. Using Brownian dynamics simulations in an elongated simulation box, we investigate the steady states of vapour-liquid phase coexistence of active Lennard-Jones particles with planar
Sun, Rui; Dubessy, Jean
2010-04-01
Molecular based equations of state (EOS) are attractive because they can take into account the energetic contribution of the main types of molecular interactions. This study models vapor-liquid equilibrium (VLE) and PVTx properties of the H 2O-CO 2 binary system using a Lennard-Jones (LJ) referenced SAFT (Statistical Associating Fluid Theory) EOS. The improved SAFT-LJ EOS is defined in terms of the residual molar Helmholtz energy, which is a sum of four terms representing the contributions from LJ segment-segment interactions, chain-forming among the LJ segments, short-range associations and long-range multi-polar interactions. CO 2 is modeled as a linear chain molecule with a constant quadrupole moment, and H 2O is modeled as a spherical molecule with four association sites and a dipole moment. The multi-polar contribution to Helmholtz energy, including the dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole contribution for H 2O-CO 2 system, is calculated using the theory of Gubbins and Twu (1978). Six parameters for pure H 2O and four parameters for pure CO 2 are needed in our model. The Van der Waals one-fluid mixing rule is used to calculate the Lennard-Jones energy parameter and volume parameter for the mixture. Two or three binary parameters are needed for CO 2-H 2O mixtures, which are evaluated from phase equilibrium data of the binary system. Comparison with the experimental data shows that our model represents the PVT properties of CO 2 better than other SAFT EOS without a quadrupole contribution. For the CO 2-H 2O system, our model agrees well with the vapor-liquid equilibrium data from 323-623 K. The average relative deviation for CO 2 solubility (expressed in mole fraction) in water is within 6%. Our model can also predict the PVTx properties of CO 2-H 2O mixtures up to 1073 K and 3000 bar. The good performance of this model indicates that: (1) taking account of the multi-polar contribution explicitly improves the agreement of calculated
Collision kernels in the eikonal approximation for Lennard-Jones interaction potential
International Nuclear Information System (INIS)
Zielinska, S.
1985-03-01
The velocity changing collisions are conveniently described by collisional kernels. These kernels depend on an interaction potential and there is a necessity for evaluating them for realistic interatomic potentials. Using the collision kernels, we are able to investigate the redistribution of atomic population's caused by the laser light and velocity changing collisions. In this paper we present the method of evaluating the collision kernels in the eikonal approximation. We discuss the influence of the potential parameters Rsub(o)sup(i), epsilonsub(o)sup(i) on kernel width for a given atomic state. It turns out that unlike the collision kernel for the hard sphere model of scattering the Lennard-Jones kernel is not so sensitive to changes of Rsub(o)sup(i) as the previous one. Contrary to the general tendency of approximating collisional kernels by the Gaussian curve, kernels for the Lennard-Jones potential do not exhibit such a behaviour. (author)
Fluctuations and thermodynamic response functions in a Lennard-Jones solid
International Nuclear Information System (INIS)
Li, M.; Johnson, W.L.
1992-01-01
Thermodynamic response functions of a nearest-neighbor Lennard-Jones solid--heat capacity, thermal-expansion coefficient, compressibility, and elastic constants--are calculated directly from fluctuations using molecular-dynamics simulations. The algorithm used is the earlier Parrinello-Rahman molecular dynamics modified to take into account symmetry and rotation invariance of the system under investigation. The convergence is very fast and results are in good agreement with existing Monte Carlo and molecular-dynamics results
Melting in Two-Dimensional Lennard-Jones Systems: Observation of a Metastable Hexatic Phase
International Nuclear Information System (INIS)
Chen, K.; Kaplan, T.; Mostoller, M.
1995-01-01
Large scale molecular dynamics simulations of two-dimensional melting have been carried out using a recently revised Parrinello-Rahman scheme on massively parallel supercomputers. A metastable state is observed between the solid and liquid phases in Lennard-Jones systems of 36 864 and 102 400 atoms. This intermediate state shows the characteristics of the hexatic phase predicted by the theory of Kosterlitz, Thouless, Halperin, Nelson, and Young
Metastability, spectrum, and eigencurrents of the Lennard-Jones-38 network
International Nuclear Information System (INIS)
Cameron, Maria K.
2014-01-01
We develop computational tools for spectral analysis of stochastic networks representing energy landscapes of atomic and molecular clusters. Physical meaning and some properties of eigenvalues, left and right eigenvectors, and eigencurrents are discussed. We propose an approach to compute a collection of eigenpairs and corresponding eigencurrents describing the most important relaxation processes taking place in the system on its way to the equilibrium. It is suitable for large and complex stochastic networks where pairwise transition rates, given by the Arrhenius law, vary by orders of magnitude. The proposed methodology is applied to the network representing the Lennard-Jones-38 cluster created by Wales's group. Its energy landscape has a double funnel structure with a deep and narrow face-centered cubic funnel and a shallower and wider icosahedral funnel. However, the complete spectrum of the generator matrix of the Lennard-Jones-38 network has no appreciable spectral gap separating the eigenvalue corresponding to the escape from the icosahedral funnel. We provide a detailed description of the escape process from the icosahedral funnel using the eigencurrent and demonstrate a superexponential growth of the corresponding eigenvalue. The proposed spectral approach is compared to the methodology of the Transition Path Theory. Finally, we discuss whether the Lennard-Jones-38 cluster is metastable from the points of view of a mathematician and a chemical physicist, and make a connection with experimental works
Mirzaeinia, Ali; Feyzi, Farzaneh; Hashemianzadeh, Seyed Majid
2017-12-07
Simple and accurate expressions are presented for the equation of state (EOS) and absolute Helmholtz free energy of a system composed of simple atomic particles interacting through the repulsive Lennard-Jones potential model in the fluid and solid phases. The introduced EOS has 17 and 22 coefficients for fluid and solid phases, respectively, which are regressed to the Monte Carlo (MC) simulation data over the reduced temperature range of 0.6≤T * ≤6.0 and the packing fraction range of 0.1 ≤ η ≤ 0.72. The average absolute relative percent deviation in fitting the EOS parameters to the MC data is 0.06 and 0.14 for the fluid and solid phases, respectively. The thermodynamic integration method is used to calculate the free energy using the MC simulation results. The Helmholtz free energy of the ideal gas is employed as the reference state for the fluid phase. For the solid phase, the values of the free energy at the reduced density equivalent to the close-packed of a hard sphere are used as the reference state. To check the validity of the predicted values of the Helmholtz free energy, the Widom particle insertion method and the Einstein crystal technique of Frenkel and Ladd are employed. The results obtained from the MC simulation approaches are well agreed to the EOS results, which show that the proposed model can reliably be utilized in the framework of thermodynamic theories.
Evidence of hexatic phase formation in two-dimensional Lennard-Jones binary arrays
International Nuclear Information System (INIS)
Li, M.; Johnson, W.L.; Goddard, W.A. III
1996-01-01
We report evidence of the hexatic phase formation in Lennard-Jones binary substitutional random arrays from isothermal-isobaric molecular-dynamics simulations. The hexatic phase is analogous to those predicted in Kosterlitz-Thouless theory of melting that is characterized by short-range translational order and quasi-long-range orientational order. At the crystal to hexatic phase transition, dislocation pairs are observed to unbind into isolated dislocations. Further disordering of the hexatic phase, however, does not lead to dissociation of dislocations into disclinations. Instead, the dislocations become clustered and form dislocation networks which results in formation of amorphous phases. copyright 1996 The American Physical Society
Doi, Hideo; Yasuoka, Kenji
2017-05-01
Confined systems exhibit interesting properties that are applied to the fields of lubrication, adhesion and nanotechnology. The replica exchange molecular simulation method was applied to calculate the phase equilibrium points of Lennard-Jones particles in a two-dimensional confined system. The liquid-solid phase equilibrium points and the solid structure with a dependency of the slit width were determined and the order parameter of the solid structure was analyzed. Such confined systems are shown to be favorable for manipulation of the phase equilibrium points.
Numerical simulation of pool boiling of a Lennard-Jones liquid
Inaoka, Hajime
2013-09-01
We performed a numerical simulation of pool boiling by a molecular dynamics model. In the simulation, a liquid composed of Lennard-Jones particles in a uniform gravitational field is heated by a heat source at the bottom of the system. The model successfully reproduces the change in regimes of boiling from nucleate boiling to film boiling with the increase of the heat source temperature. We present the pool boiling curve by the model, whose general behavior is consistent with those observed in experiments of pool boiling. © 2013 Elsevier B.V. All rights reserved.
Self-diffusion coefficients of the metastable Lennard-Jones vapor
Energy Technology Data Exchange (ETDEWEB)
Nie Chu; Zhou Youhua [School of Physics and Information Engineering, Jianghan University, Wuhan 430056 (China); Marlow, W H; Hassan, Y A [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States)], E-mail: yhzhou@jhun.edu.cn
2008-10-15
Self-diffusion coefficients of a metastable Lennard-Jones vapor were obtained using the memory function formalism and the frequency moments of the velocity autocorrelation function at reduced temperatures from 0.75 to 1.0. The radial density distribution functions used to evaluate the second, fourth and sixth frequency moments of the velocity autocorrelation function were obtained from the restricted canonical ensemble Monte Carlo simulation (Corti and Debenedetti 1994 Chem. Eng. Sci. 49 2717). The self-diffusion coefficients at reduced temperature 0.75 do not vary monotonically as the density increases, and for the other three temperatures the self-diffusion coefficients vary normally.
Stability limits for the supercooled liquid and superheated crystal of Lennard-Jones particles.
Loscar, Ernesto S; Martin, Daniel A; Grigera, Tomás S
2017-07-21
We have studied the limits of stability in the first order liquid-solid phase transition in a Lennard-Jones system by means of the short-time relaxation method and using the bond-orientational order parameter Q 6 . These limits are compared with the melting line. We have paid special attention to the supercooled liquid, comparing our results with the point where the free energy cost of forming a nucleating droplet goes to zero. We also indirectly estimate the dimension associated to the critical nucleus at the spinodal, expected to be fractal according to mean field theories of nucleation.
Glass transitions in one-, two-, three-, and four-dimensional binary Lennard-Jones systems
Energy Technology Data Exchange (ETDEWEB)
Bruening, Ralf; St-Onge, Denis A; Patterson, Steve [Physics Department, Mount Allison University, Sackville, NB, E4L 1E6 (Canada); Kob, Walter [Laboratoire des Colloides, Verres et Nanomateriaux, UMR5587, Universite Montpellier II and CNRS, 34095 Montpellier Cedex (France)], E-mail: rbruening@mta.ca
2009-01-21
We investigate the calorimetric liquid-glass transition by performing simulations of a binary Lennard-Jones mixture in one through four dimensions. Starting at a high temperature, the systems are cooled to T = 0 and heated back to the ergodic liquid state at constant rates. Glass transitions are observed in two, three and four dimensions as a hysteresis between the cooling and heating curves. This hysteresis appears in the energy and pressure diagrams, and the scanning rate dependence of the area and height of the hysteresis can be described using power laws. The one-dimensional system does not experience a glass transition but its specific heat curve resembles the shape of the D{>=}2 results in the supercooled liquid regime above the glass transition. As D increases, the radial distribution functions reflect reduced geometric constraints. Nearest neighbor distances become smaller with increasing D due to interactions between nearest and next-nearest neighbors. Simulation data for the glasses are compared with crystal and melting data obtained with a Lennard-Jones system with only one type of particle and we find that with increasing D crystallization becomes increasingly more difficult.
Phase Diagram of Kob-Andersen-Type Binary Lennard-Jones Mixtures
Pedersen, Ulf R.; Schrøder, Thomas B.; Dyre, Jeppe C.
2018-04-01
The binary Kob-Andersen (KA) Lennard-Jones mixture is the standard model for computational studies of viscous liquids and the glass transition. For very long simulations, the viscous KA system crystallizes, however, by phase separating into a pure A particle phase forming a fcc crystal. We present the thermodynamic phase diagram for KA-type mixtures consisting of up to 50% small (B ) particles showing, in particular, that the melting temperature of the standard KA system at liquid density 1.2 is 1.028(3) in A particle Lennard-Jones units. At large B particle concentrations, the system crystallizes into the CsCl crystal structure. The eutectic corresponding to the fcc and CsCl structures is cutoff in a narrow interval of B particle concentrations around 26% at which the bipyramidal orthorhombic PuBr3 structure is the thermodynamically stable phase. The melting temperature's variation with B particle concentration at two constant pressures, as well as at the constant density 1.2, is estimated from simulations at pressure 10.19 using isomorph theory. Our data demonstrate approximate identity between the melting temperature and the onset temperature below which viscous dynamics appears. Finally, the nature of the solid-liquid interface is briefly discussed.
Phase diagram and universality of the Lennard-Jones gas-liquid system
Watanabe, Hiroshi
2012-01-01
The gas-liquid phase transition of the three-dimensional Lennard-Jones particles system is studied by molecular dynamics simulations. The gas and liquid densities in the coexisting state are determined with high accuracy. The critical point is determined by the block density analysis of the Binder parameter with the aid of the law of rectilinear diameter. From the critical behavior of the gas-liquid coexisting density, the critical exponent of the order parameter is estimated to be β = 0.3285(7). Surface tension is estimated from interface broadening behavior due to capillary waves. From the critical behavior of the surface tension, the critical exponent of the correlation length is estimated to be ν = 0.63(4). The obtained values of β and ν are consistent with those of the Ising universality class. © 2012 American Institute of Physics.
Geada, Isidro Lorenzo; Ramezani-Dakhel, Hadi; Jamil, Tariq; Sulpizi, Marialore; Heinz, Hendrik
2018-02-19
Metallic nanostructures have become popular for applications in therapeutics, catalysts, imaging, and gene delivery. Molecular dynamics simulations are gaining influence to predict nanostructure assembly and performance; however, instantaneous polarization effects due to induced charges in the free electron gas are not routinely included. Here we present a simple, compatible, and accurate polarizable potential for gold that consists of a Lennard-Jones potential and a harmonically coupled core-shell charge pair for every metal atom. The model reproduces the classical image potential of adsorbed ions as well as surface, bulk, and aqueous interfacial properties in excellent agreement with experiment. Induced charges affect the adsorption of ions onto gold surfaces in the gas phase at a strength similar to chemical bonds while ions and charged peptides in solution are influenced at a strength similar to intermolecular bonds. The proposed model can be applied to complex gold interfaces, electrode processes, and extended to other metals.
Viscoelastic crack propagation and closing with Lennard-Jones surface forces
International Nuclear Information System (INIS)
Greenwood, J A
2007-01-01
An analysis of the opening and closing of a crack in a viscoelastic solid has been made assuming a Lennard-Jones law of force acting between the crack faces. The results are compared with those of an earlier analysis in which a simple Dugdale model of the surface forces was assumed. The approximate 'reciprocal rule' between the apparent surface energies for opening and closing cracks is confirmed. At low speeds a linear relation between the apparent surface energy and the crack speed is found. The lengths of the process zone for opening and closing cracks are found to be very similar and so presumably are not responsible for the very different values of the apparent surface energy
Viscoelastic crack propagation and closing with Lennard-Jones surface forces
Energy Technology Data Exchange (ETDEWEB)
Greenwood, J A [Department of Engineering, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)
2007-03-21
An analysis of the opening and closing of a crack in a viscoelastic solid has been made assuming a Lennard-Jones law of force acting between the crack faces. The results are compared with those of an earlier analysis in which a simple Dugdale model of the surface forces was assumed. The approximate 'reciprocal rule' between the apparent surface energies for opening and closing cracks is confirmed. At low speeds a linear relation between the apparent surface energy and the crack speed is found. The lengths of the process zone for opening and closing cracks are found to be very similar and so presumably are not responsible for the very different values of the apparent surface energy.
Dynamics of vacancies in two-dimensional Lennard-Jones crystals
Yao, Zhenwei; Olvera de La Cruz, Monica
2015-03-01
Vacancies represent an important class of crystallographic defects, and their behaviors can be strongly coupled with relevant material properties. We report the rich dynamics of vacancies in two-dimensional Lennard-Jones crystals in several thermodynamic states. Specifically, we numerically observe significantly faster diffusion of the 2-point vacancy with two missing particles in comparison with other types of vacancies; it opens the possibility of doping 2-point vacancies into atomic materials to enhance atomic migration. In addition, the resulting dislocations in the healing of a long vacancy suggest the intimate connection between vacancies and topological defects that may provide an extra dimension in the engineering of defects in extensive crystalline materials for desired properties. We thank the financial support from the U.S. Department of Commerce, National Institute of Standards and Technology, the Office of the Director of Defense Research and Engineering (DDR&E) and the Air Force Office of Scientific Research.
Viscous Growth in Spinodal Decomposition of the Two-component Lennard-Jones Model in Two Dimensions
DEFF Research Database (Denmark)
Laradji, M.; Toxvaerd, S.; Mouritsen, Ole G.
1997-01-01
The dynamics of phase separation of a two-component Lennard-Jones model in three dimensions is investigated by means of large scale molecular dynamics simulation. A systematic study over a wide range of quench temperatures within the coexistence region shows that the binary system reaches...
DEFF Research Database (Denmark)
D'ovidio, Francesco; Bohr, Henrik; Lindgård, Per-Anker
2005-01-01
We study the propagation of solitons along the hydrogen bonds of an alpha helix. Modeling the hydrogen and peptide bonds with Lennard-Jones potentials, we show that the solitons can appear spontaneously and have long lifetimes. Remarkably, even if no explicit solution is known for the Lennard-Jon...
International Nuclear Information System (INIS)
Ohtori, Norikazu; Ishii, Yoshiki
2015-01-01
Explicit expressions of the self-diffusion coefficient, D i , and shear viscosity, η sv , are presented for Lennard-Jones (LJ) binary mixtures in the liquid states along the saturated vapor line. The variables necessary for the expressions were derived from dimensional analysis of the properties: atomic mass, number density, packing fraction, temperature, and the size and energy parameters used in the LJ potential. The unknown dependence of the properties on each variable was determined by molecular dynamics (MD) calculations for an equimolar mixture of Ar and Kr at the temperature of 140 K and density of 1676 kg m −3 . The scaling equations obtained by multiplying all the single-variable dependences can well express D i and η sv evaluated by the MD simulation for a whole range of compositions and temperatures without any significant coupling between the variables. The equation for D i can also explain the dual atomic-mass dependence, i.e., the average-mass and the individual-mass dependence; the latter accounts for the “isotope effect” on D i . The Stokes-Einstein (SE) relation obtained from these equations is fully consistent with the SE relation for pure LJ liquids and that for infinitely dilute solutions. The main differences from the original SE relation are the presence of dependence on the individual mass and on the individual energy parameter. In addition, the packing-fraction dependence turned out to bridge another gap between the present and original SE relations as well as unifying the SE relation between pure liquids and infinitely dilute solutions
Energy Technology Data Exchange (ETDEWEB)
Ohtori, Norikazu, E-mail: ohtori@chem.sc.niigata-u.ac.jp [Department of Chemistry, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Ishii, Yoshiki [Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan)
2015-10-28
Explicit expressions of the self-diffusion coefficient, D{sub i}, and shear viscosity, η{sub sv}, are presented for Lennard-Jones (LJ) binary mixtures in the liquid states along the saturated vapor line. The variables necessary for the expressions were derived from dimensional analysis of the properties: atomic mass, number density, packing fraction, temperature, and the size and energy parameters used in the LJ potential. The unknown dependence of the properties on each variable was determined by molecular dynamics (MD) calculations for an equimolar mixture of Ar and Kr at the temperature of 140 K and density of 1676 kg m{sup −3}. The scaling equations obtained by multiplying all the single-variable dependences can well express D{sub i} and η{sub sv} evaluated by the MD simulation for a whole range of compositions and temperatures without any significant coupling between the variables. The equation for D{sub i} can also explain the dual atomic-mass dependence, i.e., the average-mass and the individual-mass dependence; the latter accounts for the “isotope effect” on D{sub i}. The Stokes-Einstein (SE) relation obtained from these equations is fully consistent with the SE relation for pure LJ liquids and that for infinitely dilute solutions. The main differences from the original SE relation are the presence of dependence on the individual mass and on the individual energy parameter. In addition, the packing-fraction dependence turned out to bridge another gap between the present and original SE relations as well as unifying the SE relation between pure liquids and infinitely dilute solutions.
Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles
Paliwal, Siddharth; Prymidis, Vasileios; Filion, Laura; Dijkstra, Marjolein
2017-08-01
We study a three-dimensional system of self-propelled Brownian particles interacting via the Lennard-Jones potential. Using Brownian dynamics simulations in an elongated simulation box, we investigate the steady states of vapour-liquid phase coexistence of active Lennard-Jones particles with planar interfaces. We measure the normal and tangential components of the pressure tensor along the direction perpendicular to the interface and verify mechanical equilibrium of the two coexisting phases. In addition, we determine the non-equilibrium interfacial tension by integrating the difference of the normal and tangential components of the pressure tensor and show that the surface tension as a function of strength of particle attractions is well fitted by simple power laws. Finally, we measure the interfacial stiffness using capillary wave theory and the equipartition theorem and find a simple linear relation between surface tension and interfacial stiffness with a proportionality constant characterized by an effective temperature.
Enhancement of the droplet nucleation in a dense supersaturated Lennard-Jones vapor
Energy Technology Data Exchange (ETDEWEB)
Zhukhovitskii, D. I., E-mail: dmr@ihed.ras.ru [Joint Institute of High Temperatures, Russian Academy of Sciences, Izhorskaya 13, Bd. 2, 125412 Moscow (Russian Federation)
2016-05-14
The vapor–liquid nucleation in a dense Lennard-Jones system is studied analytically and numerically. A solution of the nucleation kinetic equations, which includes the elementary processes of condensation/evaporation involving the lightest clusters, is obtained, and the nucleation rate is calculated. Based on the equation of state for the cluster vapor, the pre-exponential factor is obtained. The latter diverges as a spinodal is reached, which results in the nucleation enhancement. The work of critical cluster formation is calculated using the previously developed two-parameter model (TPM) of small clusters. A simple expression for the nucleation rate is deduced and it is shown that the work of cluster formation is reduced for a dense vapor. This results in the nucleation enhancement as well. To verify the TPM, a simulation is performed that mimics a steady-state nucleation experiments in the thermal diffusion cloud chamber. The nucleating vapor with and without a carrier gas is simulated using two different thermostats for the monomers and clusters. The TPM proves to match the simulation results of this work and of other studies.
Efficient Implementations of Molecular Dynamics Simulations for Lennard-Jones Systems
Watanabe, H.
2011-08-01
Efficient implementations of the classical molecular dynamics (MD) method for Lennard-Jones particle systems are considered. Not only general algorithms but also techniques that are efficient for some specific CPU architectures are also explained. A simple spatialdecomposition-based strategy is adopted for parallelization. By utilizing the developed code, benchmark simulations are performed on a HITACHI SR16000/J2 system consisting of IBM POWER6 processors which are 4.7 GHz at the National Institute for Fusion Science (NIFS) and an SGI Altix ICE 8400EX system consisting of Intel Xeon processors which are 2.93 GHz at the Institute for Solid State Physics (ISSP), the University of Tokyo. The parallelization efficiency of the largest run, consisting of 4.1 billion particles with 8192 MPI processes, is about 73% relative to that of the smallest run with 128 MPI processes at NIFS, and it is about 66% relative to that of the smallest run with 4 MPI processes at ISSP. The factors causing the parallel overhead are investigated. It is found that fluctuations of the execution time of each process degrade the parallel efficiency. These fluctuations may be due to the interference of the operating system, which is known as OS Jitter.
Spray flow-network flow transition of binary Lennard-Jones particle system
Inaoka, Hajime
2010-07-01
We simulate gas-liquid flows caused by rapid depressurization using a molecular dynamics model. The model consists of two types of Lennard-Jones particles, which we call liquid particles and gas particles. These two types of particles are distinguished by their mass and strength of interaction: a liquid particle has heavier mass and stronger interaction than a gas particle. By simulations with various initial number densities of these particles, we found that there is a transition from a spray flow to a network flow with an increase of the number density of the liquid particles. At the transition point, the size of the liquid droplets follows a power-law distribution, while it follows an exponential distribution when the number density of the liquid particles is lower than the critical value. The comparison between the transition of the model and that of models of percolation is discussed. The change of the average droplet size with the initial number density of the gas particles is also presented. © 2010 Elsevier B.V. All rights reserved.
Ab initio study of the atomic motion in liquid metal surfaces: comparison with Lennard-Jones systems
International Nuclear Information System (INIS)
Gonzalez, Luis E; Gonzalez, David J
2006-01-01
It is established that liquid metals exhibit surface layering at the liquid-vapour interface, while dielectric simple systems, like those interacting through Lennard-Jones potentials, show a monotonic decay from the liquid density to that of the vapour. First principles molecular dynamics simulations of the free liquid surface of several liquid metals (Li, Na, K, Rb, Cs, Mg, Ba, Al, Tl and Si), and the Na 3 K 7 alloy near their triple points have been performed in order to study the atomic motion at the interface, mainly at the outer layer. Comparison with the results of classical molecular dynamics simulations of a Lennard-Jones system shows interesting differences and similarities. The probability distribution function of the time of residence in a layer shows a peak at very short times and a long-lasting tail. The mean residence time in a layer increases when approaching the interfacial region, slightly in the Lennard-Jones system but strongly in the metallic systems. The motion within the layers, parallel to the interface, can be described as diffusion enhanced (strongly in the case of the outermost layer) with respect to the bulk, for both types of systems, despite its reduced dimensionality in metals
Chemical potential and solid-solid equilibrium of near-spherical Lennard-Jones dumbbell crystal
International Nuclear Information System (INIS)
Lee, Sangwon; Kim, Minkyu; Chang, Jaeeon
2016-01-01
We studied the orientational order-disorder transition of crystals made up of near-spherical Lennard-Jones dumbbells, of which reduced bond lengths are 0.225, 0.250 and 0.275. Various techniques of Monte Carlo (MC) simulations are used to calculate the chemical potentials of ordered and disordered crystals, and thereby to predict order disorder phase transition. First, we performed NPT MC simulations to determine crystal structure, equilibrium positions and orientations of the molecules. We then calculated the free energies of the crystals using the expanded ensemble MC simulations combined with the Einstein-molecule method and the thermodynamic integration method. The solid-solid phase equilibrium is determined from the free energy profiles of the individual phases by equating the chemical potential. The predictions of phase transition obtained from the conventional NPT MC simulation and the free energy simulation were in excellent agreement with each other, which confirms the validity of the present method of calculating the chemical potential of crystal. In addition, the Gibbs-Duhem integration was performed to obtain a complete coexistence curve between the two crystal phases. Orientational probability distributions of molecular axes were analyzed to find the characteristic behavior of rotational motion of molecule in the crystal. At sufficiently low temperature, flipping rotation of molecule in the ordered crystal is suppressed. In contrast, the flipping rotation occurs at higher temperature close to the transition while orientationally ordered structure is still maintained. In the free energy calculation, such a unique rotational behavior requires to use a suitable form of external rotational potential with proper symmetry number. The present study demonstrates how one can judiciously choose a correct simulation scheme for the calculation of chemical potentials of molecular crystals.
Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture
Energy Technology Data Exchange (ETDEWEB)
Martínez-Ruiz, F. J.; Blas, F. J., E-mail: felipe@uhu.es [Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Física Aplicada, Universidad de Huelva, 21007 Huelva (Spain); Moreno-Ventas Bravo, A. I. [Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Geología, Universidad de Huelva, 21007 Huelva (Spain)
2015-09-14
We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ{sub 11} = σ{sub 22}, with the same dispersive energy between like species, ϵ{sub 11} = ϵ{sub 22}, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janecek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances r{sub c} and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance r{sub c} is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related
Sweatman, Martin B; Atamas, Alexander; Leyssale, Jean-Marc
2009-01-14
The self-referential (SR) method incorporating thermodynamic integration (TI) [Sweatman et al., J. Chem. Phys. 128, 064102 (2008)] is extended to treat systems of rigid linear bodies. The method is then applied to obtain the canonical ensemble Helmholtz free energy of the alpha-N(2) and plastic face centered cubic phases of systems of hard and Lennard-Jones dumbbells using Monte Carlo simulations. Generally good agreement with reference literature data is obtained, which indicates that the SR-TI method is potentially very general and robust.
Fusion process of Lennard-Jones clusters: global minima and magic numbers formation
DEFF Research Database (Denmark)
Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter
2004-01-01
measured for the clusters of noble gas atoms. Our method serves as an efficient alternative to the global optimization techniques based on the Monte-Carlo simulations and it can be applied for the solutions of a broad variety of problems in which atomic cluster structure is important.......We present a new theoretical framework for modeling the fusion process of Lennard–Jones (LJ) clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing paths up to the cluster size of 150 atoms....... We demonstrate that in this way all known global minima structures of the (LJ)-clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence for the clusters of noble gas atoms and compare...
Zimmerman, Paul M; Head-Gordon, Martin; Bell, Alexis T
2011-06-14
Quantum mechanics/molecular mechanics (QM/MM) models are an appealing method for performing zeolite simulations. In QM/MM, a small cluster chosen to encompass the active center is described by QM, while the rest of the zeolite is described by MM. In the present study, we demonstrate that the charges and Lennard-Jones parameters on Si and O must be chosen properly for QM/MM calculations of adsorption energies and activation energies to agree closely with full QM calculations. The selection of parameters for Si and O is based on using the ωB97X-D functional for DFT calculations of the QM region, which is effective in capturing the effects of van der Waals interactions. A comparison of the heats of adsorption for a variety of adsorbates and activation energies for the cracking of propane and butane reveals that energies derived from QM/MM calculation carried out with appropriately selected MM parameters agree to within an rms error of ∼1.5 kcal/mol with QM calculations. To avoid reparametrization for new substrates, Lennard-Jones zeolite parameters are chosen to be compatible with existing CHARMM parameters. Transferability of these parameters is demonstrated by tests utilizing the B3LYP density functional and simulations of MFI and FAU zeolites. Moreover, the computational time for QM/MM calculations is considerably lower than that for QM calculations, and the ratio of computational times decreases rapidly with increasing size of the cluster used to represent the zeolite.
Separdar, L.; Davatolhagh, S.
2016-12-01
Molecular dynamics simulations at constant (N , V , T) are used to study the mutual effects of gold nanoparticles on the structure and dynamics of Kob-Andersen binary Lennard-Jones (BLJ) liquid within the framework of mode coupling theory of dynamic glass transition in the reciprocal space. The results show the 'softening' effect of the gold nanoparticles on the liquid dynamics in terms of (i) reducing the mode coupling crossover temperature Tc with respect to that of the bulk BLJ (i.e. BLJ without nanoparticles), (ii) decreasing the time interval of β-relaxation, and (iii) decreasing the exponent γ characterizing the power-law behavior of the α-relaxation time. This softening effect is explained in terms of the van der Waals attraction between the gold atoms comprising the nanoparticle and the BLJ host atoms, such that adsorption of host atoms onto the nanoparticle surface creates more space or free-volume for the other atoms to diffuse. By the same token interactions of purely excluded-volume-type are expected to result in the opposite effect. It is also noted that, much unlike BLJ host particles, the dynamics of gold nanoparticles is much less dependent on the wave-vector and that it exhibits a nearly exponential behavior in the α-relaxation regime.
Ikeshoji, T; Torchet, G; de Feraudy, M F; Koga, K
2001-03-01
We studied finite-temperature ensembles of solid clusters produced by cooling liquid droplets either by evaporation or by a thermostat through a molecular dynamics calculation using the Lennard-Jones potential. The ensembles consist of either single or binary component clusters with 25% of the atoms 8% smaller in diameter than the other 75%. These clusters (380 clusters in total) exhibit various structures in the size range of n=160-2200, where n is the number of atoms in a cluster. For increasing size, the clusters show a gradual transition from icosahedral to a variety of structures: decahedral, face centered cubic, a small amount of hexagonal, and some icosahedral structures. They are asymmetrical or faulted. Electron diffraction patterns calculated with average structure factors of clusters after grouping them into several size regions are very similar to those experimentally observed. The size transition is around n=450 for single component clusters whatever the cooling process, evaporation or thermostat. This size is smaller than the experimental transition size estimated for argon clusters formed in a supersonic expansion. The transition size for binary component clusters is around n=600 for evaporative cooling, and larger for thermostatic cooling. The larger transition size found for the binary component clusters is consistent with the large icosahedral Au-Fe and Au-Cu alloy clusters observed experimentally.
International Nuclear Information System (INIS)
Saeidi, Mohammadreza; Vaezzadeh, Majid; Badakhshan, Farzaneh
2011-01-01
Influence of DC electric field on carbon nanotube (CNT) growth in chemical vapor deposition is studied. Investigation of electric field effect in van der Waals interaction shows that increase in DC electric field raises the magnitude of attractive term of the Lennard-Jones potential. By using a theoretical model based on phonon vibrations of CNT on catalyst, it is shown that there is an optimum field for growth. Also it is observed that CNT under optimum electric field is longer than CNT in the absence of field. Finally, the relation between optimum DC electric field and type of catalyst is investigated and for some intervals of electric field, the best catalyst is introduced, which is very useful for experimental researches. -- Research highlights: → Influence of DC electric field on CNT growth in CVD. → Effect of electric field on van der Waals interaction between CNT and its catalyst. → Applying DC electric field increases attractive term of Lennard-Jonespotential. → There is an optimum DC field for CNT growth. → For catalyst with stronger van der Waals interaction, optimum field is smaller.
International Nuclear Information System (INIS)
Garcia, N.
1976-01-01
This paper considers the effect of the attractive part of the interaction potential on the scattering of He atoms from a LiF(001) surface. We calculate, in particular, the Lennard-Jones resonances on the intensities and the phases of the scattered amplitudes, using a square well in the front of a hard corrugated surface model. We show that the amplitudes for incident energies smaller than the depth of the well are dominated by the resonances
Scaling relation and regime map of explosive gas–liquid flow of binary Lennard-Jones particle system
Inaoka, Hajime
2012-02-01
We study explosive gasliquid flows caused by rapid depressurization using a molecular dynamics model of Lennard-Jones particle systems. A unique feature of our model is that it consists of two types of particles: liquid particles, which tend to form liquid droplets, and gas particles, which remain supercritical gaseous states under the depressurization realized by simulations. The system has a pipe-like structure similar to the model of a shock tube. We observed physical quantities and flow regimes in systems with various combinations of initial particle number densities and initial temperatures. It is observed that a physical quantity Q, such as pressure, at position z measured along a pipe-like system at time t follows a scaling relation Q(z,t)=Q(zt) with a scaling function Q(ζ). A similar scaling relation holds for time evolution of flow regimes in a system. These scaling relations lead to a regime map of explosive flows in parameter spaces of local physical quantities. The validity of the scaling relations of physical quantities means that physics of equilibrium systems, such as an equation of state, is applicable to explosive flows in our simulations, though the explosive flows involve highly nonequilibrium processes. In other words, if the breaking of the scaling relations is observed, it means that the explosive flows cannot be fully described by physics of equilibrium systems. We show the possibility of breaking of the scaling relations and discuss its implications in the last section. © 2011 Elsevier B.V. All rights reserved.
van Westen, Thijs; Vlugt, Thijs J. H.; Gross, Joachim
2015-06-01
We study the isotropic (vapor and liquid) phase behavior of attractive chain fluids. Special emphasis is placed on the role of molecular flexibility, which is studied by means of a rod-coil model. Two new equations of state (EoSs) are developed for square-well- (SW) and Lennard-Jones (LJ) chain fluids. The EoSs are developed by applying the perturbation theory of Barker and Henderson (BH) to a reference fluid of hard chain molecules. The novelty of the approach is based on (1) the use of a recently developed hard-chain reference EoS that explicitly incorporates the effects of molecular flexibility, (2) the use of recent molecular simulation data for the radial distribution function of hard-chain fluids, and (3) a newly developed effective segment size, which effectively accounts for the soft repulsion between segments of LJ chains. It is shown that the effective segment size needs to be temperature-, density-, and chain-length dependent. To obtain a simplified analytical EoS, the perturbation terms are fitted by polynomials in density (SW and LJ), chain length (SW and LJ), and temperature (only for LJ). It is shown that the equations of state result in an accurate description of molecular simulation data for vapor-liquid equilibria (VLE) and isotherms of fully flexible SW- and LJ chain fluids and their mixtures. To evaluate the performance of the equations of state in describing the effects of molecular flexibility on VLE, we present new Monte Carlo simulation results for the VLE of rigid linear- and partially flexible SW- and LJ chain fluids. For SW chains, the developed EoS is in a good agreement with simulation results. For increased rigidity of the chains, both theory and simulations predict an increase of the VL density difference and a slight increase of the VL critical temperature. For LJ chains, the EoS proves incapable of reproducing part of these trends.
Thermodynamic properties of confined square-well fluids with multiple associating sites
Trejos, Víctor M.; Quintana-H, Jacqueline
2018-02-01
In this work, a molecular simulation study of confined hard-spheres particles with square-well (SW) attractive interactions with two and four associating SW sites based on the first-order perturbation form of Wertheim's theory is presented. An extended version of the Gibbs ensemble technique for inhomogeneous fluids [A. Z. Panagiotopoulos, Mol. Phys. 62, 701 (1987)] is used to predict the adsorption density profiles for associating fluids confined between opposite parallel walls. The fluid is confined in four kinds of walls: hard-wall, SW wall, Lennard-Jones (LJ) 12-6 wall potential, and LJ 10-4 wall potential. We analyze the behavior of the confined system for several supercritical temperatures as a function of variation of molecular parameters: potential range λ, bulk densities ρb*, pore width H, cutoff range interaction rc*, and range of the potential and depth of the particle-wall (λw, ɛw*). Additionally, we include predictions for liquid-vapor coexistence of bulk associative particles and how their critical properties are modified by the presence of associative sites in the molecule. The molecular simulation data presented in this work are of prime importance to the development of theoretical approaches for inhomogeneous fluids as classical density functional theory. The simulation results presented here are resourceful for predicting adsorption isotherms of real associating fluids such as water.
Energy Technology Data Exchange (ETDEWEB)
Martínez-Ruiz, F. J.; Blas, F. J., E-mail: felipe@uhu.es [Departamento de Física Aplicada, Universidad de Huelva, 21071 Huelva (Spain); Centro de Investigación de Física Teórica y Matemática, Universidad de Huelva, 21071 Huelva (Spain); Mendiboure, B. [Laboratoire des Fluides Complexes et leurs Réservoirs, UMR5150, Université de Pau et des Pays de l’Adour, B. P. 1155, Pau Cedex 64014 (France); Moreno-Ventas Bravo, A. I. [Centro de Investigación de Física Teórica y Matemática, Universidad de Huelva, 21071 Huelva (Spain); Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva (Spain)
2014-11-14
We propose an extension of the improved version of the inhomogeneous long-range corrections of Janeček [J. Phys. Chem. B 110, 6264–6269 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] to account for the intermolecular potential energy of spherical, rigid, and flexible molecular systems, to deal with the contributions to the microscopic components of the pressure tensor due to the dispersive long-range corrections. We have performed Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of spherical Lennard-Jones molecules with different cutoff distances, r{sub c} = 2.5, 3, 4, and 5σ. In addition, we have also considered cutoff distances r{sub c} = 2.5 and 3σ in combination with the inhomogeneous long-range corrections proposed in this work. The normal and tangential microscopic components of the pressure tensor are obtained using the mechanical or virial route in combination with the recipe of Irving and Kirkwood, while the macroscopic components are calculated using the Volume Perturbation thermodynamic route proposed by de Miguel and Jackson [J. Chem. Phys. 125, 164109 (2006)]. The vapour-liquid interfacial tension is evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the Test-Area methodology. In addition to the pressure tensor and the surface tension, we also obtain density profiles, coexistence densities, vapour pressure, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the cutoff distance and the long-range corrections on these properties. According to our results, the main effect of increasing the cutoff distance (at fixed temperature) is to sharpen the vapour-liquid interface, to decrease the vapour pressure, and to increase the width of the biphasic coexistence region. As a result, the interfacial
Computer simulation of liquid-vapor coexistence of confined quantum fluids.
Trejos, Víctor M; Gil-Villegas, Alejandro; Martinez, Alejandro
2013-11-14
The liquid-vapor coexistence (LV) of bulk and confined quantum fluids has been studied by Monte Carlo computer simulation for particles interacting via a semiclassical effective pair potential Veff(r) = VLJ + VQ, where VLJ is the Lennard-Jones 12-6 potential (LJ) and VQ is the first-order Wigner-Kirkwood (WK-1) quantum potential, that depends on β = 1∕kT and de Boer's quantumness parameter Λ=h/σ√mε, where k and h are the Boltzmann's and Planck's constants, respectively, m is the particle's mass, T is the temperature of the system, and σ and ε are the LJ potential parameters. The non-conformal properties of the system of particles interacting via the effective pair potential Veff(r) are due to Λ, since the LV phase diagram is modified by varying Λ. We found that the WK-1 system gives an accurate description of the LV coexistence for bulk phases of several quantum fluids, obtained by the Gibbs Ensemble Monte Carlo method (GEMC). Confinement effects were introduced using the Canonical Ensemble (NVT) to simulate quantum fluids contained within parallel hard walls separated by a distance Lp, within the range 2σ ≤ Lp ≤ 6σ. The critical temperature of the system is reduced by decreasing Lp and increasing Λ, and the liquid-vapor transition is not longer observed for Lp∕σ < 2, in contrast to what has been observed for the classical system.
Computer simulation of liquid-vapor coexistence of confined quantum fluids
Trejos, Víctor M.; Gil-Villegas, Alejandro; Martinez, Alejandro
2013-11-01
The liquid-vapor coexistence (LV) of bulk and confined quantum fluids has been studied by Monte Carlo computer simulation for particles interacting via a semiclassical effective pair potential Veff(r) = VLJ + VQ, where VLJ is the Lennard-Jones 12-6 potential (LJ) and VQ is the first-order Wigner-Kirkwood (WK-1) quantum potential, that depends on β = 1/kT and de Boer's quantumness parameter Λ = h/σ √{mɛ }, where k and h are the Boltzmann's and Planck's constants, respectively, m is the particle's mass, T is the temperature of the system, and σ and ɛ are the LJ potential parameters. The non-conformal properties of the system of particles interacting via the effective pair potential Veff(r) are due to Λ, since the LV phase diagram is modified by varying Λ. We found that the WK-1 system gives an accurate description of the LV coexistence for bulk phases of several quantum fluids, obtained by the Gibbs Ensemble Monte Carlo method (GEMC). Confinement effects were introduced using the Canonical Ensemble (NVT) to simulate quantum fluids contained within parallel hard walls separated by a distance Lp, within the range 2σ ⩽ Lp ⩽ 6σ. The critical temperature of the system is reduced by decreasing Lp and increasing Λ, and the liquid-vapor transition is not longer observed for Lp/σ < 2, in contrast to what has been observed for the classical system.
Effective particle size from molecular dynamics simulations in fluids
Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.
2018-04-01
We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.
Effective particle size from molecular dynamics simulations in fluids
Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.
2017-12-01
We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.
Molecular Dynamics Simulation of Spinodal Decomposition in Three-Dimensional Binary Fluids
DEFF Research Database (Denmark)
Laradji, Mohamed; Toxvaerd, Søren; Mouritsen, Ole G.
1996-01-01
Using large-scale molecular dynamics simulations of a two-component Lennard-Jones model in three dimensions, we show that the late-time dynamics of spinodal decomposition in concentrated binary fluids reaches a viscous scaling regime with a growth exponent n = 1, in agreement with experiments...
The Voronoi volume and molecular representation of molar volume: equilibrium simple fluids.
Hunjan, Jagtar Singh; Eu, Byung Chan
2010-04-07
The Voronoi volume of simple fluids was previously made use of in connection with volume transport phenomena in nonequilibrium simple fluids. To investigate volume transport phenomena, it is important to develop a method to compute the Voronoi volume of fluids in nonequilibrium. In this work, as a first step to this goal, we investigate the equilibrium limit of the nonequilibrium Voronoi volume together with its attendant related molar (molal) and specific volumes. It is proved that the equilibrium Voronoi volume is equivalent to the molar (molal) volume. The latter, in turn, is proved equivalent to the specific volume. This chain of equivalences provides an alternative procedure of computing the equilibrium Voronoi volume from the molar volume/specific volume. We also show approximate methods of computing the Voronoi and molar volumes from the information on the pair correlation function. These methods may be employed for their quick estimation, but also provide some aspects of the fluid structure and its relation to the Voronoi volume. The Voronoi volume obtained from computer simulations is fitted to a function of temperature and pressure in the region above the triple point but below the critical point. Since the fitting function is given in terms of reduced variables for the Lennard-Jones (LJ) model and the kindred volumes (i.e., specific and molar volumes) are in essence equivalent to the equation of state, the formula obtained is a reduced equation state for simple fluids obeying the LJ model potential in the range of temperature and pressure examined and hence can be used for other simple fluids.
Effective diameters and corresponding states of fluids
Del Río, Fernando
Effective hard-sphere diameters of fluids with purely repulsive interactions are derived from a generalized corresponding-states principle of Leland, Rowlinson and coworkers. Various alternative definitions are discussed and related. Virial expansions of the effective diameters and their corresponding volumes are obtained and compared with results of perturbation theory. Applications are made to inverse-power potentials, the repulsive part of the Lennard-Jones potential and hard spherocylinders and dumbells.
SIMPLE FLUID IN AN ATTRACTIVE, DISORDERED POLYDISPERSE MATRIX
Directory of Open Access Journals (Sweden)
T.Patsahan
2004-01-01
Full Text Available The extension of the replica Ornstein-Zernike (ROZ equations is applied to the study of the structural properties of a Lennard-Jones fluid confined in an attractive polydisperse disordered matrix. The ROZ equations in combination with the orthogonal polynomial expansions for the correlation functions are used. The radial distribution functions are calculated for the adsorbed fluid at different temperatures. The effect of matrix polydispersity on the excess internal energy is considered in our study as well.
Reif, Maria M.; Hünenberger, Philippe H.
2011-04-01
The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Hünenberger, J. Chem. Phys. 124, 224501 (2006), 10.1529/biophysj.106.083667; M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li+, Na+, K+, Rb+, Cs+) and halide (F-, Cl-, Br-, I-) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998), 10.1021/jp982638r; Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, Δ G_hyd^{ominus }[H+] = -1100, -1075 or -1050 kJ mol-1, resulting in three sets L, M, and H for the SPC water model and three sets LE, ME, and HE for the SPC/E water model (alternative sets can easily be interpolated to intermediate Δ G_hyd^{ominus }[H+] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective ionic radius entering into the calculation of the correction terms is
Intermolecular interactions and the thermodynamic properties of supercritical fluids.
Yigzawe, Tesfaye M; Sadus, Richard J
2013-05-21
The role of different contributions to intermolecular interactions on the thermodynamic properties of supercritical fluids is investigated. Molecular dynamics simulation results are reported for the energy, pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound of fluids interacting via both the Lennard-Jones and Weeks-Chandler-Andersen potentials. These properties were obtained for a wide range of temperatures, pressures, and densities. For each thermodynamic property, an excess value is determined to distinguish between attraction and repulsion. It is found that the contributions of intermolecular interactions have varying effects depending on the thermodynamic property. The maxima exhibited by the isochoric and isobaric heat capacities, isothermal compressibilities, and thermal expansion coefficient are attributed to interactions in the Lennard-Jones well. Repulsion is required to obtain physically realistic speeds of sound and both repulsion and attraction are necessary to observe a Joule-Thomson inversion curve. Significantly, both maxima and minima are observed for the isobaric and isochoric heat capacities of the supercritical Lennard-Jones fluid. It is postulated that the loci of these maxima and minima converge to a common point via the same power law relationship as the phase coexistence curve with an exponent of β = 0.32. This provides an explanation for the terminal isobaric heat capacity maximum in supercritical fluids.
Kuzyk, Raya
2011-01-01
This article presents a list of the best audiobooks of 2010. Among the past year's most memorable audiobooks, all recipients of starred "Library Journal" reviews, are four "LJ" Best Books, two postapocalyptic trilogy starters, two nonfiction tracts on marriage, a baseball novella, an adult/YA crossover novel, and an Obama biography.
International Nuclear Information System (INIS)
Jakubov, T.S.; Mainwaring, D.E.
2006-01-01
In the present work a generalized Kelvin equation for a fluid confined in thick-walled cylindrical capillary is developed. This has been accomplished by including the potential energy function for interaction between a solid wall of a capillary and a confined fluid into the Kelvin equation. Using the Lennard-Jones 12-6 potential, an explicit form of the potential energy functions as expressed by hypergeometrical functions have been derived-firstly, for the interaction between a solid wall and a test atom placed at an arbitrary point in a long open-end capillary, and thereafter for the body-body interaction between the solid wall and a confined Lennard-Jones fluid. Further, this generalized Kelvin equation has been applied to detailed description hysteresis phenomena in such capillaries. All numerical calculations have been carried out for the model argon-graphite system at 90 K
Structural behavior of supercritical fluids under confinement
Ghosh, Kanka; Krishnamurthy, C. V.
2018-01-01
The existence of the Frenkel line in the supercritical regime of a Lennard-Jones (LJ) fluid shown through molecular dynamics (MD) simulations initially and later corroborated by experiments on argon opens up possibilities of understanding the structure and dynamics of supercritical fluids in general and of the Frenkel line in particular. The location of the Frenkel line, which demarcates two distinct physical states, liquidlike and gaslike within the supercritical regime, has been established through MD simulations of the velocity autocorrelation (VACF) and radial distribution function (RDF). We, in this article, explore the changes in the structural features of supercritical LJ fluid under partial confinement using atomistic walls. The study is carried out across the Frenkel line through a series of MD simulations considering a set of thermodynamics states in the supercritical regime (P =5000 bar, 240 K ≤T ≤1500 K ) of argon well above the critical point. Confinement is partial, with atomistic walls located normal to z and extending to "infinity" along the x and y directions. In the "liquidlike" regime of the supercritical phase, particles are found to be distributed in distinct layers along the z axis with layer spacing less than one atomic diameter and the lateral RDF showing amorphous-like structure for specific spacings (packing frustration) and non-amorphous-like structure for other spacings. Increasing the rigidity of the atomistic walls is found to lead to stronger layering and increased structural order. For confinement with reflective walls, layers are found to form with one atomic diameter spacing and the lateral RDF showing close-packed structure for the smaller confinements. Translational order parameter and excess entropy assessment confirms the ordering taking place for atomistic wall and reflective wall confinements. In the "gaslike" regime of the supercritical phase, particle distribution along the spacing and the lateral RDF exhibit features
Molecular simulation of adsorption and transport diffusion of model fluids in carbon nanotubes
Düren, Tina; Keil, Frerich J.; Seaton, Nigel A.
Grand canonical Monte Carlo (GCMC) and dual-control-volume grand canonical molecular dynamics (DCV-GCMD) simulations were carried out with Lennard-Jones model fluids in carbon nanotubes, with the objective of investigating the effect of varying molecular properties on adsorption and diffusion. The influence of the molecular weight, and the Lennard Jones parameters σ (a measure of the molecule size) and ɛ (a measure of the interaction strength) on adsorption isotherms, fluxes, and transport diffusivities was studied. For these simulations, the properties of component 1 in the mixture were held constant and one of the properties of component 2 was changed systematically. Furthermore, the validity of Graham's law, which relates the fluxes of two counter diffusing species to their molecular weight, was investigated on a molecular level. Graham's law is fulfilled for the whole range of molecular weights and Lennard-Jones parameters σ investigated. However, large deviations were observed for large values of ɛ2. Here, the interaction of the two components in the mixture becomes so strong that component 1 is dragged along by component 2.
African Journals Online (AJOL)
containing bisphosphonates including alendronate inhibit prenylation.'" They act directly on the osteoclast by causing apoptosis via Mstl kinase cleavage and the activation of caspases, and these effects can be mimicked by lovastatin and reversed by ...
African Journals Online (AJOL)
has provided many new insights into cellular biology and opened up new and novel therapeutic possibilities. ... to endocrinology and bone mineral metabolism is briefly reviewed. Numerous reviews and articles have been ... prenylation in endocrinology and bone and mineral metabolism are briefly discussed. The potential ...
Hopping in a supercooled binary Lennard-Jones liquid
DEFF Research Database (Denmark)
Schrøder, Thomas; Dyre, Jeppe
1998-01-01
A binary LennardJones liquid has been investigated by molecular dynamics at equilibrium supercooled conditions. At the lowest temperature investigated, hopping is present in the system as indicated by a secondary peak in 4r2Gs(r,t), where Gs(r,t) is the van Hove self correlation function...
Hopping in a supercooled binary Lennard-Jones liquid
DEFF Research Database (Denmark)
Schrøder, Thomas; Dyre, Jeppe
1998-01-01
A binary LennardJones liquid has been investigated by molecular dynamics at equilibrium supercooled conditions. At the lowest temperature investigated, hopping is present in the system as indicated by a secondary peak in 4r2Gs(r,t), where Gs(r,t) is the van Hove self correlation function......", as often argued, and that the system has a single-peaked distribution of hopping-distances centered around the characteristic intermolecular distance....
Equilibrium fluctuations of the Lennard-Jones cluster surface
Zhukhovitskii, D. I.
2008-11-01
Spectra of the cluster surface equilibrium fluctuations are treated by decomposition into the bulk and net capillary ones. The bulk fluctuations without capillary ones are simulated by the surface of a cluster truncated by a sphere. The bulk fluctuation spectrum is shown to be generated primarily by the discontinuity in the spatial distribution of cluster internal particles. The net capillary fluctuation slice spectrum is obtained in molecular dynamics simulation by subtraction of the bulk fluctuation spectrum from the total one. This net spectrum is in the best agreement with a theoretical estimation if we assume the intrinsic surface tension to be independent of the wave number. The wave number cutoff is brought in balance with the intrinsic surface tension and excess surface area induced by the capillary fluctuations. It is shown that the ratio of the ordinary surface tension to the intrinsic one can be considered as a universal constant independent of the temperature and cluster size.
Test of a new heat-flow equation for dense-fluid shock waves
Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon
2010-09-01
Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.
Test of a new heat-flow equation for dense-fluid shock waves.
Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon
2010-09-21
Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.
O'Keeffe, C J; Ren, Ruichao; Orkoulas, G
2007-11-21
Spatial updating grand canonical Monte Carlo algorithms are generalizations of random and sequential updating algorithms for lattice systems to continuum fluid models. The elementary steps, insertions or removals, are constructed by generating points in space either at random (random updating) or in a prescribed order (sequential updating). These algorithms have previously been developed only for systems of impenetrable spheres for which no particle overlap occurs. In this work, spatial updating grand canonical algorithms are generalized to continuous, soft-core potentials to account for overlapping configurations. Results on two- and three-dimensional Lennard-Jones fluids indicate that spatial updating grand canonical algorithms, both random and sequential, converge faster than standard grand canonical algorithms. Spatial algorithms based on sequential updating not only exhibit the fastest convergence but also are ideal for parallel implementation due to the absence of strict detailed balance and the nature of the updating that minimizes interprocessor communication. Parallel simulation results for three-dimensional Lennard-Jones fluids show a substantial reduction of simulation time for systems of moderate and large size. The efficiency improvement by parallel processing through domain decomposition is always in addition to the efficiency improvement by sequential updating.
Thermodynamic properties of non-conformal soft-sphere fluids with effective hard-sphere diameters.
Rodríguez-López, Tonalli; del Río, Fernando
2012-01-28
In this work we study a set of soft-sphere systems characterised by a well-defined variation of their softness. These systems represent an extension of the repulsive Lennard-Jones potential widely used in statistical mechanics of fluids. This type of soft spheres is of interest because they represent quite accurately the effective intermolecular repulsion in fluid substances and also because they exhibit interesting properties. The thermodynamics of the soft-sphere fluids is obtained via an effective hard-sphere diameter approach that leads to a compact and accurate equation of state. The virial coefficients of soft spheres are shown to follow quite simple relationships that are incorporated into the equation of state. The approach followed exhibits the rescaling of the density that produces a unique equation for all systems and temperatures. The scaling is carried through to the level of the structure of the fluids.
Local elastic properties of nano-confined fluids: A density functional study
International Nuclear Information System (INIS)
Sun, Zongli; Kang, Yanshuang
2014-01-01
The understanding of mechanical properties of confined fluids is essential for modeling and manipulating of nano-scaled systems. Unlike the uniform phase, the confined fluids usually display different features in structure and related properties. Due to the presence of the confining geometry, the density profile and many physical and chemical properties may be position-dependent. The aim of our research is to derive an expression for the local elastic property by using the classical elastic theory. Both the bulk and shear moduli are expressed as functional of density of particle. The theoretical result derived is applied to the Lennard-Jones fluids confined in nano-cavity. Comparison of our numerical result and the simulation result is made and qualitative agreement is observed. Further, influence of bulk density, temperature and external potential on moduli is calculated and the physical mechanism is analyzed. Relationship between contact modulus and the interfacial tension is also calculated. Their opposite trend with temperature is observed.
Multilayer approximation for a confined fluid in a slit pore
Directory of Open Access Journals (Sweden)
V. A. Kuz
2010-02-01
Full Text Available A simple Lennard-Jones fluid confined in a slit nanopore with hard walls is studied on the basis of a multilayer structured model. Each layer is homogeneous and parallel to the walls of the pore. The Helmholtz energy of this system is constructed following van der Waals-like approximations, with the advantage that the model geometry permits to obtain analytical expressions for the integrals involved. Being the multilayer system in thermodynamic equilibrium, a system of non-linear equations is obtained for the densities and widths of the layers. A numerical solution of the equations gives the density profile and the longitudinal pressures. The results are compared with Monte Carlo simulations and with experimental data for Nitrogen, showing very good agreement.Received: 23 December 2009, Accepted: 24 February 2010; Edited by: D. A. Stariolo; DOI: 10.4279/PIP.020002
Simulation of wetting and drying at solid-fluid interfaces on the Delft molecular dynamics processor
International Nuclear Information System (INIS)
Sikkenk, J.H.; Indekeu, J.O.; van Leeuwen, J.M.J.; Vossnack, E.O.; Bakker, A.F.
1988-01-01
The adsorption is studied of a fluid at a structured solid substrate by means of computer simulations on the Delft Molecular Dynamics Processor. Two types of particles are present, 2904 of one type for building a three-layer substrate and about 8500 of another type for composing the fluid. Interactions between like and unlike atoms are modeled by pair potentials of Lennard-Jones form cut off at 2.5σ. Simulations are performed at constant temperature and variable ratio of substrate-adsorbate to adsorbate-adsorbate attraction. On the basis of measurements of density profiles, coverages, surface tensions, and contact angles, a wetting as well as a drying phase transition have been identified. Both transitions are of first order
Phase equilibria of binary mixtures by molecular simulation and cubic equations of state
Directory of Open Access Journals (Sweden)
Cabral V.F.
2001-01-01
Full Text Available Molecular simulation data were used to study the performance of equations of state (EoS and combining rules usually employed in thermodynamic property calculations. The Monte Carlo method and the Gibbs ensemble technique were used for determining composition and densities of vapor and liquid phases in equilibrium for binary mixtures of Lennard-Jones fluids. Simulation results are compared to data in the literature and to those calculated by the t-PR-LJ EoS. The use of adequate combining rules has been shown to be very important for the satisfactory representation of molecular simulation data.
Phase equilibria of binary mixtures by molecular simulation and cubic equations of state
Cabral,V.F.; Pinto,R.R.C.; Tavares,F.W.; Castier,M.
2001-01-01
Molecular simulation data were used to study the performance of equations of state (EoS) and combining rules usually employed in thermodynamic property calculations. The Monte Carlo method and the Gibbs ensemble technique were used for determining composition and densities of vapor and liquid phases in equilibrium for binary mixtures of Lennard-Jones fluids. Simulation results are compared to data in the literature and to those calculated by the t-PR-LJ EoS. The use of adequate combining rule...
Pramana – Journal of Physics | Indian Academy of Sciences
Indian Academy of Sciences (India)
We have carried out Monte Carlo simulations in Gibbs ensemble for two-and three-dimensional double Yukawa fluid. We have compared liquid–vapour equilibrium curve with that of Lennard-Jones, when parameters occurring in double Yukawa potential are chosen to fit Lennard-Jones potential. The results are in good ...
Vapour–liquid equilibria of the two-and three-dimensional ...
Indian Academy of Sciences (India)
We have carried out Monte Carlo simulations in Gibbs ensemble for two-and three-dimensional double Yukawa fluid. We have compared liquid–vapour equilibrium curve with that of Lennard-Jones, when parameters occurring in double Yukawa potential are chosen to fit Lennard-Jones potential. The results are in good ...
L-J phase in a Cu2.2Mn0.8Al alloy
Jeng, S. C.; Liu, T. F.
1995-06-01
A new type of precipitate (designated L-J phase) with two variants was observed within the (DO3 + L21) matrix in a Cu2.2Mn0.8Al alloy. Transmission electron microscopy examinations indicated that the L-J phase has an orthorhombic structure with lattice parameters a = 0.413 nm, b = 0.254 nm and c = 0.728 nm. The orientation relationship between the L-J phase and the matrix is (100)L-J//(011) m , (010)L-J//(111) m and (001)L-J//(211) m . The rotation axis and rotation angle between two variants of the L-J phase are [021] and 90 deg. The L-J phase has never been observed in various Cu-Al, Cu-Mn, and Cu-Al-Mn alloy systems before.
Li, Jun
2013-09-01
We present a single-particle Lennard-Jones (L-J) model for CO2 and N2. Simplified L-J models for other small polyatomic molecules can be obtained following the methodology described herein. The phase-coexistence diagrams of single-component systems computed using the proposed single-particle models for CO2 and N2 agree well with experimental data over a wide range of temperatures. These diagrams are computed using the Markov Chain Monte Carlo method based on the Gibbs-NVT ensemble. This good agreement validates the proposed simplified models. That is, with properly selected parameters, the single-particle models have similar accuracy in predicting gas-phase properties as more complex, state-of-the-art molecular models. To further test these single-particle models, three binary mixtures of CH4, CO2 and N2 are studied using a Gibbs-NPT ensemble. These results are compared against experimental data over a wide range of pressures. The single-particle model has similar accuracy in the gas phase as traditional models although its deviation in the liquid phase is greater. Since the single-particle model reduces the particle number and avoids the time-consuming Ewald summation used to evaluate Coulomb interactions, the proposed model improves the computational efficiency significantly, particularly in the case of high liquid density where the acceptance rate of the particle-swap trial move increases. We compare, at constant temperature and pressure, the Gibbs-NPT and Gibbs-NVT ensembles to analyze their performance differences and results consistency. As theoretically predicted, the agreement between the simulations implies that Gibbs-NVT can be used to validate Gibbs-NPT predictions when experimental data is not available. © 2013 Elsevier Inc.
Stokes-Einstein relation for pure simple fluids
Cappelezzo, M.; Capellari, C. A.; Pezzin, S. H.; Coelho, L. A. F.
2007-06-01
The authors employed the equilibrium molecular dynamics technique to calculate the self-diffusion coefficient and the shear viscosity for simple fluids that obey the Lennard-Jones 6-12 potential in order to investigate the validity of the Stokes-Einstein (SE) relation for pure simple fluids. They performed calculations in a broad range of density and temperature in order to test the SE relation. The main goal of this work is to exactly calculate the constant, here denominated by α, present in the SE relation. Also, a modified SE relation where a fluid density is raised to a power in the usual expression is compared to the classical expression. According to the authors' simulations slip boundary conditions (α=4) can be satisfied in some state points. An intermediate value of α =5 was found in some regions of the phase diagram confirming the mode coupling theory. In addition depending on the phase diagram point and the definition of hydrodynamics radius, stick boundary condition (α=6) can be reproduced. The authors investigated the role of the hydrodynamic radius in the SE relation using three different definitions. The authors also present calculations for α in a hard-sphere system showing that the slip boundary conditions hold at very high density. They discuss possible explanations for their results and the role of the hydrodynamic radius for different definitions in the SE relation.
The structure of a fluid confined by permeable walls
Margaritis, Nikolaos; Rickayzen, Gerald
Osmosis has been studied using the methods of molecular dynamics and for several different models of a semi-permeable barrier. One of these models has also been used in theoretical and Monte Carlo investigations of the effect of such a barrier on the structure of a hard sphere fluid (Marsh, P., Rickayzen, G., and Calleja, M., 1995, Molec. Phys., 84, 799 ; Kim, S.-C., Calleja, M., and Rickayzen, G., 1995, J. Phys.: condens. Matter, 7, 8053). Results presented in these papers showed that this problem also provides a sensitive test for the validity of various density functional theories. In order to bring the theory to bear on the problem of osmosis, this earlier study is extended to the hard core Lennard-Jones fluid. At the same time a new sum rule for the density of a fluid in a periodic potential, which provides a useful check on the computations, is derived. It is again found that the agreement between the computed and the simulated density profiles is good except at the centre of the barrier and when the bulk density and pressure are close to the critical.
Density functional theory formulation for fluid adsorption on correlated random surfaces
Aslyamov, Timur; Khlyupin, Aleksey
2017-10-01
We provide novel random surface density functional theory (RSDFT) formulation in the case of geometric heterogeneous surfaces of solid media which is essential for the description of thermodynamic properties of confined fluids. The major difference of our theoretical approach from the existing ones is a stochastic model of solid surfaces which takes into account the correlation properties of geometry. The main building blocks are effective fluid-solid potentials developed in the work of Khlyupin and Aslyamov [J. Stat. Phys. 167, 1519 (2017)] and geometry-based modification of the Helmholtz free energy for Lennard-Jones fluids. The efficiency of RSDFT is demonstrated in the calculation of argon and nitrogen low temperature adsorption on real heterogeneous surfaces (BP280 carbon black). These results are in good agreement with experimental data published in the literature. Also several models of corrugated materials are developed in the framework of RSDFT. Numerical analysis demonstrates a strong influence of surface roughness characteristics on adsorption isotherms. Thus the developed formalism provides a connection between a rigorous description of the stochastic surface and confined fluid thermodynamics.
Ho, Yen-Ching; Wang, Yi-Siang; Chao, Sheng D
2017-08-14
Modeling fluid cycloalkanes with molecular dynamics simulations has proven to be a very challenging task partly because of lacking a reliable force field based on quantum chemistry calculations. In this paper, we construct an ab initio force field for fluid cyclopropane using the second-order Møller-Plesset perturbation theory. We consider 15 conformers of the cyclopropane dimer for the orientation sampling. Single-point energies at important geometries are calibrated by the coupled cluster with single, double, and perturbative triple excitation method. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) are used in extrapolating the interaction energies at the complete basis set limit. The force field parameters in a 9-site Lennard-Jones model are regressed by the calculated interaction energies without using empirical data. With this ab initio force field, we perform molecular dynamics simulations of fluid cyclopropane and calculate both the structural and dynamical properties. We compare the simulation results with those using an empirical force field and obtain a quantitative agreement for the detailed atom-wise radial distribution functions. The experimentally observed gross radial distribution function (extracted from the neutron scattering measurements) is well reproduced in our simulation. Moreover, the calculated self-diffusion coefficients and shear viscosities are in good agreement with the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with empirical force fields for simulating fluid cyclopropane.
Husowitz, B; Talanquer, V
2007-02-07
Density functional theory is used to explore the solvation properties of a spherical solute immersed in a supercritical diatomic fluid. The solute is modeled as a hard core Yukawa particle surrounded by a diatomic Lennard-Jones fluid represented by two fused tangent spheres using an interaction site approximation. The authors' approach is particularly suitable for thoroughly exploring the effect of different interaction parameters, such as solute-solvent interaction strength and range, solvent-solvent long-range interactions, and particle size, on the local solvent structure and the solvation free energy under supercritical conditions. Their results indicate that the behavior of the local coordination number in homonuclear diatomic fluids follows trends similar to those reported in previous studies for monatomic fluids. The local density augmentation is particularly sensitive to changes in solute size and is affected to a lesser degree by variations in the solute-solvent interaction strength and range. The associated solvation free energies exhibit a nonmonotonous behavior as a function of density for systems with weak solute-solvent interactions. The authors' results suggest that solute-solvent interaction anisotropies have a major influence on the nature and extent of local solvent density inhomogeneities and on the value of the solvation free energies in supercritical solutions of heteronuclear molecules.
Density-scaling exponents and virial potential-energy correlation ...
Indian Academy of Sciences (India)
This paper investigates the relation between the density-scaling exponent γ and the virial potential energy correlation coefficient R at several thermodynamic state points in three dimensions for the generalized (2n, n) Lennard-Jones (LJ) system for n = 4, 9, 12, 18, as well as for the standard n = 6 LJ system in two,three, and ...
Rodríguez-López, Tonalli; Moreno-Razo, J Antonio; del Río, Fernando
2013-03-21
In this work, we explore transport properties of a special type of repulsive spheres that exhibit remarkable scaling of their thermodynamic properties. In order to accomplish that we propose a new way to derive and express effective hard-sphere diameters for transport properties of simple fluids. The procedure relies on mapping the system's transport properties, in the low density limit, to the hard-sphere fluid. We have chosen a set of soft-sphere systems characterised by a well-defined variation of their softness. These systems represent an extension of the repulsive Lennard-Jones potential widely used in statistical mechanics of fluids and are an accurate representation of the effective repulsive potentials of real systems. The self-diffusion coefficient of the soft-sphere fluids is obtained by equilibrium molecular dynamics. The soft-sphere collision integrals of different systems are shown to follow quite simple relationships between each other. These collision integrals are incorporated, through the definition of the effective hard-sphere diameter, in the resulting equation for the self-diffusion coefficient. The approach followed exhibits a density rescaling that leads to a single master curve for all systems and temperatures. The scaling is carried through to the level of the mean-squared displacement.
Nayak, Bishnupriya; Menon, S. V. G.
2018-01-01
Enthalpy-based equation of state based on a modified soft sphere model for the fluid phase, which includes vaporization and ionization effects, is formulated for highly porous materials. Earlier developments and applications of enthalpy-based approach had not accounted for the fact that shocked states of materials with high porosity (e.g., porosity more than two for Cu) are in the expanded fluid region. We supplement the well known soft sphere model with a generalized Lennard-Jones formula for the zero temperature isotherm, with parameters determined from cohesive energy, specific volume and bulk modulus of the solid at normal condition. Specific heats at constant pressure, ionic and electronic enthalpy parameters and thermal excitation effects are calculated using the modified approach and used in the enthalpy-based equation of state. We also incorporate energy loss from the shock due to expansion of shocked material in calculating porous Hugoniot. Results obtained for Cu, even up to initial porosities ten, show good agreement with experimental data.
Anion inhibition studies of two α-carbonic anhydrases from Lotus japonicus, LjCAA1 and LjCAA2.
Vullo, Daniela; Flemetakis, Emmanouil; Scozzafava, Andrea; Capasso, Clemente; Supuran, Claudiu T
2014-07-01
The model organism for the investigation of symbiotic nitrogen fixation in legumes Lotus japonicus encodes two carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-class, LjCAA1 and LjCAA2. Here we report the kinetic characterization and inhibition of these two CAs with inorganic and complex anions and other molecules interacting with zinc proteins, such as sulfamide, sulfamic acid, and phenylboronic/arsonic acids. LjCAA1 showed a high catalytic activity for the CO2 hydration reaction, with a k(cat) of 7.4∗10(5) s(-1) and a k(cat)/K(m) of 9.6∗10(7) M(-1) s(-1) and was inhibited in the low micromolar range by N,N-diethyldithiocarbamate, sulfamide, sulfamic acid, phenylboronic/arsonic acid (K(I)s of 4-62 μM). LjCAA2 showed a moderate catalytic activity for the physiologic reaction, with a k(cat) of 4.0∗10(5) s(-1) and a k(cat)/K(m) of 4.9∗10(7) M(-1) s(-1). The same anions mentioned above for the inhibition of LjCAA1 showed the best activity against LjCAA2 (K(I)s of 7-29 μM). Nitrate and nitrite, anions involved in nitrogen fixation, showed lower affinity for the two enzymes, with inhibition constants in the range of 3.7-7.0 mM. Halides and sulfate also behaved in a distinct manner towards the two enzymes investigated here. As LjCAA1/2 participate in the pH regulation processes and CO2 metabolism within the nitrogen-fixing nodules of the plant, our studies may shed some light regarding these complex biochemical processes. Copyright © 2014 Elsevier Inc. All rights reserved.
Alternative Hamiltonian for molecular dynamics simulations in the grand canonical ensemble
International Nuclear Information System (INIS)
Lo, C.; Palmer, B.
1995-01-01
An alternative to the Hamiltonian of Cagin and Pettitt for performing molecular dynamics simulations in the grand canonical ensemble is presented and used as the basis for a new algorithm. The algorithm is tested on the ideal gas and the truncated and shifted Lennard-Jones fluid. Simulations are used to calculate the vapor--liquid coexistence points for the Lennard-Jones system and are found to be in agreement with previous calculations using Gibbs ensemble calculations and with the Nicolas equation of state. Simulations are also performed on the Lennard-Jones solid
Oulebsir, Fouad; Vermorel, Romain; Galliero, Guillaume
2018-01-16
With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading
Effect of surface tension on the behavior of adhesive contact based on Lennard-Jones potential law
Zhu, Xinyao; Xu, Wei
2018-02-01
The present study explores the effect of surface tension on adhesive contact behavior where the adhesion is interpreted by long-range intermolecular forces. The adhesive contact is analyzed using the equivalent system of a rigid sphere and an elastic half space covered by a membrane with surface tension. The long-range intermolecular forces are modeled with the Lennard‒Jones (L‒J) potential law. The current adhesive contact issue can be represented by a nonlinear integral equation, which can be solved by Newton‒Raphson method. In contrast to previous studies which consider intermolecular forces as short-range, the present study reveals more details of the features of adhesive contact with surface tension, in terms of jump instabilities, pull-off forces, pressure distribution within the contact area, etc. The transition of the pull-off force is not only consistent with previous studies, but also presents some new interesting characteristics in the current situation.
Kazachenko, Sergey; Giovinazzo, Mark; Hall, Kyle Wm; Cann, Natalie M
2015-09-15
A custom code for molecular dynamics simulations has been designed to run on CUDA-enabled NVIDIA graphics processing units (GPUs). The double-precision code simulates multicomponent fluids, with intramolecular and intermolecular forces, coarse-grained and atomistic models, holonomic constraints, Nosé-Hoover thermostats, and the generation of distribution functions. Algorithms to compute Lennard-Jones and Gay-Berne interactions, and the electrostatic force using Ewald summations, are discussed. A neighbor list is introduced to improve scaling with respect to system size. Three test systems are examined: SPC/E water; an n-hexane/2-propanol mixture; and a liquid crystal mesogen, 2-(4-butyloxyphenyl)-5-octyloxypyrimidine. Code performance is analyzed for each system. With one GPU, a 33-119 fold increase in performance is achieved compared with the serial code while the use of two GPUs leads to a 69-287 fold improvement and three GPUs yield a 101-377 fold speedup. © 2015 Wiley Periodicals, Inc.
Fuentes-Herrera, M; Moreno-Razo, J A; Guzmán, O; López-Lemus, J; Ibarra-Tandi, B
2016-06-07
Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.
Validity of the Rosenfeld relationship: A comparative study of the ...
Indian Academy of Sciences (India)
In this paper we explore the validity of the Rosenfeld and the Dzugutov relation for the Lennard- Jones (LJ) system, its repulsive counterpart, the WCA system and a network forming liquid, the NTW model. We find that for all the systems both the relations are valid at high temperature regime with an universalexponent close ...
From Dimer to Crystal: Calculating the Cohesive Energy of Rare Gas Solids
Halpern, Arthur M.
2012-01-01
An upper-level undergraduate project is described in which students perform high-level ab initio computational scans of the potential energy curves for Ne[subscript 2] and Ar[subscript 2] and obtain the respective Lennard-Jones (LJ) potential parameters [sigma] and [epsilon] for the dimers. Using this information, along with the summation of…
Nonpolar solvation dynamics for a nonpolar solute in room ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Chemical Sciences; Volume 130; Issue 1. Nonpolar solvation ... Frank-Condon type excitation of the solute, previously in equilibrium inRTIL solvent, has been modelled by abruptly changing the Lennard-Jones(LJ) diameter of the solute atoms and thereby disrupting the equilibrium situation.
Cluster growing process and a sequence of magic numbers
DEFF Research Database (Denmark)
Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter
2003-01-01
demonstrate that in this way all known global minimum structures of the Lennard-Jones (LJ) clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence for the clusters of noble gas atoms...
Energy Technology Data Exchange (ETDEWEB)
Calado, J.C.G.; Saramago, B.J.V. [Instituto Superior Tecnico, Lisbon (Portugal). Centro de Quimica Estrutural; Santos Mendonca, A.F.S. dos; Soares, V.A.M. [Univ. de Lisboa, Lisbon (Portugal). Centro de Ciencia e Tecnologia de Materiais
1997-01-01
The authors report a study of the surface tension of three binary liquid mixtures of molecular fluids. A microscopic mean field theory (MFT) has been used to calculate the theoretical results enabling the comparison with the experimental data. The mean field theory has been successfully used in the prediction of the surface properties of simple systems composed by quasi-spherical molecules. In the present study the MFT was able to reproduce the essential features of the interfacial properties of the systems CH{sub 4} + Kr, Kr + NO and CH{sub 4} + NO. The pure components were modeled by Lennard-Jones potentials with a set of intermolecular parameters taken from the literature for Kr and calculated from the fitting of the energy parameters to the surface tension, for CH{sub 4} and NO. In the case of the mixtures, it was found that reasonable agreement with experiment can only be obtained by allowing deviations from the Lorentz-Berthelot combining rules. For the CH{sub 4} + Kr system the authors used the binary energy parameter {xi} obtained through a fitting to the bulk properties; for the Kr + NO and CH{sub 4} + NO systems the binary parameter was adjusted to the interfacial properties.
Calado; Mendonca; Saramago; Soares
1997-01-01
We report a study of the surface tension of three binary liquid mixtures of molecular fluids. A microscopic mean field theory (MFT) has been used to calculate the theoretical results enabling the comparison with the experimental data. The mean field theory has been successfully used in the prediction of the surface properties of simple systems composed by quasi-spherical molecules. In the present study the MFT was able to reproduce the essential features of the interfacial properties of the systems CH4 + Kr, Kr + NO and CH4 + NO. The pure components were modeled by Lennard-Jones potentials with a set of intermolecular parameters taken from the literature for Kr and calculated from the fitting of the energy parameters (epsilon) to the surface tension, for CH4 and NO. In the case of the mixtures, it was found that reasonable agreement with experiment can only be obtained by allowing deviations from the Lorentz-Berthelot combining rules. For the CH4 + Kr system we used the binary energy parameter xi obtained through a fitting to the bulk properties; for the Kr + NO and CH4 + NO systems the binary parameter was adjusted to the interfacial properties.
Stochastic characteristics and Second Law violations of atomic fluids in Couette flow
Raghavan, Bharath V.; Karimi, Pouyan; Ostoja-Starzewski, Martin
2018-04-01
Using Non-equilibrium Molecular Dynamics (NEMD) simulations, we study the statistical properties of an atomic fluid undergoing planar Couette flow, in which particles interact via a Lennard-Jones potential. We draw a connection between local density contrast and temporal fluctuations in the shear stress, which arise naturally through the equivalence between the dissipation function and entropy production according to the fluctuation theorem. We focus on the shear stress and the spatio-temporal density fluctuations and study the autocorrelations and spectral densities of the shear stress. The bispectral density of the shear stress is used to measure the degree of departure from a Gaussian model and the degree of nonlinearity induced in the system owing to the applied strain rate. More evidence is provided by the probability density function of the shear stress. We use the Information Theory to account for the departure from Gaussian statistics and to develop a more general probability distribution function that captures this broad range of effects. By accounting for negative shear stress increments, we show how this distribution preserves the violations of the Second Law of Thermodynamics observed in planar Couette flow of atomic fluids, and also how it captures the non-Gaussian nature of the system by allowing for non-zero higher moments. We also demonstrate how the temperature affects the band-width of the shear-stress and how the density affects its Power Spectral Density, thus determining the conditions under which the shear-stress acts is a narrow-band or wide-band random process. We show that changes in the statistical characteristics of the parameters of interest occur at a critical strain rate at which an ordering transition occurs in the fluid causing shear thinning and affecting its stability. A critical strain rate of this kind is also predicted by the Loose-Hess stability criterion.
Flexible equation of state for a hard sphere and Lennard–Jones fluid ...
Indian Academy of Sciences (India)
Equation of state; Lennard–Jones potential; hard-sphere potential; liquid mixture; computer simulation. ... deviation than Barker–Henderson BH2 for LJ fluids, and results are much closer to molecular dynamics (MD) simulations than expectations and reproduce the existing simulation data and present EoS for LJ potential, ...
Okumura, Hisashi; Heyes, David M
2006-12-01
We compare the results of three-dimensional molecular-dynamics (MD) simulations of a Lennard-Jones (LJ) liquid with a hydrostatic (HS) solution of a high temperature liquid channel which is surrounded by a fluid at lower temperature. The maximum temperature gradient, dT/dx , between the two temperature regions ranged from infinity (step function) to dT/dx=0.1 (in the usual LJ units). Because the systems were in stationary-nonequilibrium states with no fluid flow, both MD simulation and the HS solution gave flat profiles for the normal pressure in all temperature-gradient cases. However, the other quantities showed differences between the two methods. The MD-derived density was found to oscillate over the length of ca. 8 LJ particle diameters from the boundary plane in the system with the infinite temperature gradient, while the HS-derived density showed simply a stepwise profile. The MD simulation also showed another anomaly near the boundary in potential energy. We have found systems in which the HS treatment works well and those where the HS approach breaks down, and therefore established the minimum length scale for the HS treatment to be valid. We also compare the kinetic temperature and the configurational temperature in these systems, and show that these can differ in the transition zone between the two temperatures.
Heyes, D. M.; Nuevo, M. J.; Morales, J. J.
Following on from our previous study (Heyes, D. M., Nuevo, M. J, and Morales, J. J., 1996, Molec. Phys., 88, 1503), molecular dynamics simulations have been carried out of translational and rotational diffusion of atomistically rough near-spherical solid Lennard-Jones (LJ) clusters immersed in a Weeks-Chandler-Andersen liquid solvent. A single cluster consisting of up to about 100LJ particles as part of an 8000 atom fluid system was considered in each case. The translational and rotational diffusion coefficients decrease with increasing cluster size and solvent density (roughly in proportion to the molar volume of the solvent). The simulations reveal that for clusters in excess of about 30LJ atoms there is a clear separation of timescales between angular velocity and orientation relaxation which adhere well to the small-step diffusion model encapsulated in Hubbard's relationship. For 100 atom clusters both the StokesEinstein (translation) and Stokes-Einstein-Debye (rotation) equations apply approximately. The small departures from these reference solutions indicate that the translational relaxation experiences a local viscosity in excess of the bulk value (typically by ~ 30%), whereas rotational relaxation experiences a smaller viscosity than the bulk (typically by ~ 30%) reasonably in accord with the Gierer-Wirtz model. Both of these observations are consistent with an observed layering of the liquid molecules next to the cluster observed in our previous study.
Tretyakov, Nikita; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen; Dünweg, Burkhard; Daoulas, Kostas Ch
2016-10-07
Classical density functional theory is applied to investigate the validity of a phenomenological force-balance description of the stability of the Cassie state of liquids on substrates with nanoscale corrugation. A bulk free-energy functional of third order in local density is combined with a square-gradient term, describing the liquid-vapor interface. The bulk free energy is parameterized to reproduce the liquid density and the compressibility of water. The square-gradient term is adjusted to model the width of the water-vapor interface. The substrate is modeled by an external potential, based upon the Lennard-Jones interactions. The three-dimensional calculation focuses on substrates patterned with nanostripes and square-shaped nanopillars. Using both the force-balance relation and density-functional theory, we locate the Cassie-to-Wenzel transition as a function of the corrugation parameters. We demonstrate that the force-balance relation gives a qualitatively reasonable description of the transition even on the nanoscale. The force balance utilizes an effective contact angle between the fluid and the vertical wall of the corrugation to parameterize the impalement pressure. This effective angle is found to have values smaller than the Young contact angle. This observation corresponds to an impalement pressure that is smaller than the value predicted by macroscopic theory. Therefore, this effective angle embodies effects specific to nanoscopically corrugated surfaces, including the finite range of the liquid-solid potential (which has both repulsive and attractive parts), line tension, and the finite interface thickness. Consistently with this picture, both patterns (stripes and pillars) yield the same effective contact angles for large periods of corrugation.
Functional domain analysis of the Remorin protein LjSYMREM1 in Lotus japonicus
DEFF Research Database (Denmark)
Tóth, Katalin; Stratil, Thomas F; Madsen, Esben B
2012-01-01
In legumes rhizobial infection during root nodule symbiosis (RNS) is controlled by a conserved set of receptor proteins and downstream components. MtSYMREM1, a protein of the Remorin family in Medicago truncatula, was shown to interact with at least three receptor-like kinases (RLKs) that are ess......In legumes rhizobial infection during root nodule symbiosis (RNS) is controlled by a conserved set of receptor proteins and downstream components. MtSYMREM1, a protein of the Remorin family in Medicago truncatula, was shown to interact with at least three receptor-like kinases (RLKs...... by the Remorin C-terminal region with its coiled-coil domain while the RLK kinase domains transiently interact in vivo and phosphorylate a residue in the N-terminal region of the LjSYMREM1 protein in vitro. These data provide novel insights into the mechanism of this putative molecular scaffold protein...
A dynamic lattice searching method with rotation operation for optimization of large clusters
International Nuclear Information System (INIS)
Wu Xia; Cai Wensheng; Shao Xueguang
2009-01-01
Global optimization of large clusters has been a difficult task, though much effort has been paid and many efficient methods have been proposed. During our works, a rotation operation (RO) is designed to realize the structural transformation from decahedra to icosahedra for the optimization of large clusters, by rotating the atoms below the center atom with a definite degree around the fivefold axis. Based on the RO, a development of the previous dynamic lattice searching with constructed core (DLSc), named as DLSc-RO, is presented. With an investigation of the method for the optimization of Lennard-Jones (LJ) clusters, i.e., LJ 500 , LJ 561 , LJ 600 , LJ 665-667 , LJ 670 , LJ 685 , and LJ 923 , Morse clusters, silver clusters by Gupta potential, and aluminum clusters by NP-B potential, it was found that both the global minima with icosahedral and decahedral motifs can be obtained, and the method is proved to be efficient and universal.
Molecular dynamics simulation of supercritical fluids
Branam, Richard D.
Axisymmetric injectors appear in a multitude of applications ranging from rocket engines to biotechnology. While experimentation is limited to larger injectors, much interest has been shown in the micro- and nano-scales as well. Experimentation at these scales can be cost prohibitive if even possible. Often, the operating regime involves supercritical fluids or complex geometries. Molecular dynamics modeling provides a unique way to explore these flow regimes, calculate hard to measure flow parameters accurately, and determine the value of potential improvements before investing in costly experiments or manufacturing. This research effort modeled sub- and supercritical fluid flow in a cylindrical tube being injected into a quiescent chamber. The ability of four wall models to provide an accurate simulation was compared. The simplest model, the diffuse wall, proved useful in getting results quickly but the results for the higher density cases are questionable, especially with respect to velocity profiles and density distributions. The one zone model, three layers of an fcc solid tethered to the lattice sites with a spring, proved very useful for this research primarily because it did not need as many CPU hours to equilibrate. The two zone wall uses springs as a two body potential and has a second stationary zone to hold the wall in place. The most complicated, the three zone wall, employed a reactionary zone, a stochastic zone and a stationary zone using a Lennard-Jones two body potential. Jet simulations were conducted on argon and nitrogen for liquid tube diameters from 20 to 65 A at both sub and supercritical temperatures (Ar: 130 K and 160 K, N2: 120 K and 130 K). The simulations focused on pressures above the critical pressure (Ar: 6 MPa, N2: 4 MPa). The diffusive wall showed some variation from the analytical velocity profile in the tube while the atomistically modeled walls performed very well. The walls were all able to maintain system temperature to reach
Substellar fragmentation in self-gravitating fluids with a major phase transition
Füglistaler, A.; Pfenniger, D.
2015-06-01
Context. The observation of various ices in cold molecular clouds, the existence of ubiquitous substellar, cold H2 globules in planetary nebulae and supernova remnants, or the mere existence of comets suggest that the physics of very cold interstellar gas might be much richer than usually envisioned. At the extreme of low temperatures (≲10 K), H2 itself is subject to a phase transition crossing the entire cosmic gas density scale. Aims: This well-known, laboratory-based fact motivates us to study the ideal case of a cold neutral gaseous medium in interstellar conditions for which the bulk of the mass, instead of trace elements, is subject to a gas-liquid or gas-solid phase transition. Methods: On the one hand, the equilibrium of general non-ideal fluids is studied using the virial theorem and linear stability analysis. On the other hand, the non-linear dynamics is studied using computer simulations to characterize the expected formation of solid bodies analogous to comets. The simulations are run with a state-of-the-art molecular dynamics code (LAMMPS) using the Lennard-Jones inter-molecular potential. The long-range gravitational forces can be taken into account together with short-range molecular forces with finite limited computational resources, using super-molecules, provided the right scaling is followed. Results: The concept of super-molecule, where the phase transition conditions are preserved by the proper choice of the particle parameters, is tested with computer simulations, allowing us to correctly satisfy the Jeans instability criterion for one-phase fluids. The simulations show that fluids presenting a phase transition are gravitationally unstable as well, independent of the strength of the gravitational potential, producing two distinct kinds of substellar bodies, those dominated by gravity (planetoids) and those dominated by molecular attractive force (comets). Conclusions: Observations, formal analysis, and computer simulations suggest the
2012-02-07
..., and the FAA must issue a finding of regulatory adequacy pursuant to Sec. 611 of Public Law 92-574, the ``Noise Control Act of 1972.'' The FAA issues special conditions, as defined in 14 CFR 11.19, in... novel or unusual design features: The Model LJ-200-1A10 airplane flight deck design incorporates a...
Results of the radiological survey at 10 Long Valley Road, Lodi, New Jersey (LJ055)
International Nuclear Information System (INIS)
Foley, R.D.; Floyd, L.M.; Carrier, R.F.
1989-11-01
Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally 232 Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 10 Long Valley Road, Lodi, New Jersey (LJ055), was conducted during 1985 and 1986. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area. 4 refs., 5 figs., 3 tabs
Results of the radiological survey at 104 Avenue E, Lodi, New Jersey (LJ086)
International Nuclear Information System (INIS)
Foley, R.D.; Floyd, L.M.
1989-12-01
Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally 232 Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 104 Avenue E, Lodi, New Jersey (LJ086), was conducted during 1988. 5 refs., 2 figs., 3 tabs
Results of the radiological survey at 15 John Street, Lodi, New Jersey (LJ087)
International Nuclear Information System (INIS)
Foley, R.D.; Floyd, L.M.
1989-12-01
Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally 232 Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 15 John Street, Lodi, New Jersey (LJ087), was conducted during 1988. 5 refs., 3 figs., 3 tabs
Results of the radiological survey at 105 Garibaldi Avenue, Lodi, New Jersey (LJ065)
International Nuclear Information System (INIS)
Foley, R.D.; Floyd, L.M.; Carrier, R.F.
1989-11-01
Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally 232 Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 105 Garibaldi Avenue, Lodi, New Jersey (LJ065), was conducted during 1987. 4 refs., 4 figs., 3 tabs
Results of the radiological survey at 90 C Avenue, Lodi, New Jersey (LJ079)
International Nuclear Information System (INIS)
Foley, R.D.; Floyd, L.M.
1989-06-01
Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducted an investigative radiological survey during 1988 at 90 C Avenue, Lodi, New Jersey (LJ079), one of the properties in the vicinity of the MCW site. The survey included a gamma radiation scan of the surface and at one meter above the surface, as well as radionuclide sampling of surface and subsurface soil. The survey objective was to determine whether this site was contaminated with radioactive residues derived from MCW, principally 232 Th. Results of the survey demonstrated radionuclide concentrations in excess of DOE remedial action criteria, primarily from the 232 Th decay chain, with some contamination from 226 Ra. The radionuclide distributions are typical of the type of material originating from the MCW site. 5 refs., 3 figs., 3 tabs
Results of the radiological survey at 9 Redstone Lane, Lodi, New Jersey (LJ069)
International Nuclear Information System (INIS)
Foley, R.D.; Carrier, R.F.
1989-07-01
Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process waste and residues associated with the production and refining of thorium and thorium compounds from monozite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Areas residents used the sandlike waste from this thorium extraction process mixed with teas and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigate radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally 232 Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 9 Redstone Lane, Lodi, New Jersey (LJ069), was conducted during 1987. Measurements at the private property located at 9 Redstone Lane indicate slightly elevated gamma exposure rates in association with cinder-like material observed in logging holes. These elevated levels result from naturally occurring radioactivity present in such substances as ashes and cinders. They are not related to the deposit of residues from processing operations at the MCW site. All other radiological findings conform to the guidelines established by the DOE for the Maywood, New Jersey, area remedial action plan. 4 refs., 3 figs., 3 tabs
Weijs, Joost; Snoeijer, Jacobus Hendrikus; Lohse, Detlef
2012-01-01
We study surface nanobubbles using molecular dynamics simulation of ternary (gas, liquid, solid) systems of Lennard-Jones fluids. They form for a sufficiently low gas solubility in the liquid, i.e., for a large relative gas concentration. For a strong enough gas-solid attraction, the surface
Indian Academy of Sciences (India)
Structures and autocorrelation functions of liquid Al and Mg modelled via Lennard-Jones potential from molecular dynamics simulation ... Collision frequency of Lennard–Jones fluids at high densities by equilibrium molecular dynamics simulation ... Adhesion energy, surface traction and surface tension in liquid xenon.
Webbaserad pedagogisk meritportfölj - från idé till verklighet
Directory of Open Access Journals (Sweden)
Jakob Johansson
2011-03-01
åväl sökanden som bedömare. Det finns behov av redovisning av pedagogiska meriter även för andra ändamål än vid tjänstetillsättningar. Många medarbetare (som inte avser att söka akademisk tjänst gör betydande insatser i undervisningen exempelvis i form av administration, föreläsningar, seminarieledning samt klinisk handledning, och dessa prestationer bör användas som underlag för exempelvis planeringssamtal, löneförhandlingar och kompetensutveckling. Många finner det svårt att redovisa dessa undervisningsinsatser. Orsaken till detta är sannolikt delvis bristen på tradition att bokföra pedagogiskt arbetet (i kontrast till vetenskapligt arbete, men också bristen på ett användarvänligt verktyg för bokföring. Detta var startskottet för ett projekt som syftade till att framställa en personlig webbaserad pedagogisk meritportfölj som skulle kunna överbrygga det praktiska bekymret och ge medarbetarna ett smidigt verktyg för dokumentation av och reflektion runt pedagogiska meriter. Detta samtidigt som det skulle vara acceptabelt som instrument för sökande av akademisk tjänst genom att bygga på Uppsala universitets pedagogiska program och riktlinjer för meritvärdering. Denna artikel beskriver processen från idé till färdig webbaserad pedagogisk meritportfölj för vetenskapsområdet för medicin och farmaci vid Uppsala universitet. Även om det sannolikt existerar liknande webb-verktyg för bokföring av pedagogiska meriter så är detta o
Predicting the Function of 4-Coumarate:CoA Ligase (LJ4CL1 in Lonicera japonica
Directory of Open Access Journals (Sweden)
Yuan Yuan
2014-02-01
Full Text Available 4-Coumarate:CoA ligases (4CLs are a group of essential enzymes involved in the pathway of phenylpropanoid-derived compound metabolisms; however it is still difficult to identify orthologs and paralogs of these important enzymes just based on sequence similarity of the conserved domains. Using sequence data of 20 plant species from the public databases and sequences from Lonicera japonica, we define 1252 adenosine monophosphate (AMP-dependent synthetase/ligase sequences and classify them into three phylogenetic clades. 4CLs are in one of the four subgroups, according to their partitioning, with known proteins characterized in A. thaliana and Oryza sativa. We also defined 184 non-redundant sequences that encode proteins containing the GEICIRG motif and the taxonomic distribution of these GEICIRG-containing proteins suggests unique catalytic activities in plants. We further analyzed their transcription levels in L. japonica and L. japonica. var. chinensis flowers and chose the highest expressed genes representing the subgroups for structure and binding site predictions. Coupled with liquid chromatography-mass spectrometry (LC-MS analysis of the L. japonica flowers, the structural study on putative substrate binding amino acid residues, ferulate, and 4-coumaric acid of the conserved binding-site of LJ4CL1 leads to a conclusion that this highly expressed protein group in the flowers may process 4-coumarate that represents 90% of the known phenylpropanoid-derived compounds. The activity of purified crude LJ4CL1 protein was analyzed using 4-coumarate as template and high activity indicating that 4-coumarate is one of the substrates of LJ4CL1.
A practical law to predict the appearance sizes of multiply charged rare-gas and molecular clusters
Bonhommeau, David A.
2017-10-01
A dimensionless law depending on cluster size N is derived from the Rayleigh limit expressed in reduced Lennard-Jones (LJ) units to predict the critical sizes nc (z) of clusters carrying z positive charges. This relationship provides suitable estimates of nc (z) (z = 2 - 4) for rare-gas clusters, including neon clusters whose predicted critical sizes deviate from experimental expectations by less than 12% for different choices of LJ parameters. An extension to 11 nonpolar and 15 polar molecular clusters, from dimers to aromatic hydrocarbons, is achieved that demonstrates the broad applicability of the formula despite inaccuracies for highly polar systems.
Thermal conductivity of simple liquids: temperature and packing-fraction dependence.
Ohtori, Norikazu; Ishii, Yoshiki; Togawa, Yoshinori; Oono, Takuya; Takase, Keiichi
2014-02-01
The thermal conductivity of rare gases in liquid and dense fluid states has been evaluated using molecular dynamics simulation with the Lennard-Jones (LJ) potentials and the Green-Kubo (GK) formula. All the calculated thermal conductivities are in very good agreement with experimental results for a wide range of temperature and density. Special attention was paid to temperature and packing-fraction dependence which is nontrivial from dimensional analysis on the LJ potentials and the GK formula. First, the temperature dependence of T(1/4) was determined from the calculations at constant densities. Secondly, in order to obtain the dependence on packing fraction from that on number density separately, a scaling method of particle and/or cell size was introduced. The number density dependence of (N/V)(2/3) which is expected from the dimensional analysis of the GK formulas was confirmed and the packing-fraction dependence of η(3/2) was determined by using the scaling method. It turned out that the summarized functional form of m(-1/2)(N/V)(2/3)η(3/2)T(1/4) can well express both the calculated and experimental thermal conductivities for Ar, Kr, and Xe, where m is the atomic mass. The scaling method has also been applied to molten NaCl and KCl so that it has been found that the thermal conductivity has the packing-fraction dependence of η(2/3) which is much weaker than that of the simple LJ liquids.
Brownian dynamics simulations of lipid bilayer membrane with hydrodynamic interactions in LAMMPS
Fu, Szu-Pei; Young, Yuan-Nan; Peng, Zhangli; Yuan, Hongyan
Lipid bilayer membranes have been extensively studied by coarse-grained molecular dynamics simulations. Numerical efficiency has been reported in the cases of aggressive coarse-graining, where several lipids are coarse-grained into a particle of size 4 6 nm so that there is only one particle in the thickness direction. Yuan et al. proposed a pair-potential between these one-particle-thick coarse-grained lipid particles to capture the mechanical properties of a lipid bilayer membrane (such as gel-fluid-gas phase transitions of lipids, diffusion, and bending rigidity). In this work we implement such interaction potential in LAMMPS to simulate large-scale lipid systems such as vesicles and red blood cells (RBCs). We also consider the effect of cytoskeleton on the lipid membrane dynamics as a model for red blood cell (RBC) dynamics, and incorporate coarse-grained water molecules to account for hydrodynamic interactions. The interaction between the coarse-grained water molecules (explicit solvent molecules) is modeled as a Lennard-Jones (L-J) potential. We focus on two sets of LAMMPS simulations: 1. Vesicle shape transitions with varying enclosed volume; 2. RBC shape transitions with different enclosed volume.
Monte Carlo Molecular Simulation with Isobaric-Isothermal and Gibbs-NPT Ensembles
Du, Shouhong
2012-05-01
This thesis presents Monte Carlo methods for simulations of phase behaviors of Lennard-Jones fluids. The isobaric-isothermal (NPT) ensemble and Gibbs-NPT ensemble are introduced in detail. NPT ensemble is employed to determine the phase diagram of pure component. The reduced simulation results are verified by comparison with the equation of state by by Johnson et al. and results with L-J parameters of methane agree considerably with the experiment measurements. We adopt the blocking method for variance estimation and error analysis of the simulation results. The relationship between variance and number of Monte Carlo cycles, error propagation and Random Number Generator performance are also investigated. We review the Gibbs-NPT ensemble employed for phase equilibrium of binary mixture. The phase equilibrium is achieved by performing three types of trial move: particle displacement, volume rearrangement and particle transfer. The simulation models and the simulation details are introduced. The simulation results of phase coexistence for methane and ethane are reported with comparison of the experimental data. Good agreement is found for a wide range of pressures. The contribution of this thesis work lies in the study of the error analysis with respect to the Monte Carlo cycles and number of particles in some interesting aspects.
Similarity Laws for the Lines of Ideal Free Energy and Chemical Potential in Supercritical Fluids.
Apfelbaum, E M; Vorob'ev, V S
2017-09-21
We have found the curves on the density-temperature plane, along which the values of free energy and chemical potential correspond to ideal gas quantities. At first, we have applied the van der Waals equation to construct them and to derive their equations. Then we have shown that the same lines for real substances (Ar, N 2 , CH 4 , SF 6 , H 2 , H 2 O) and for the model Lennard-Jones system constructed on the basis of the measurements data and calculations are well matched with the derived equations. The validity and deviations from the obtained similarity laws are discussed.
Amir, Sahar Z.
2013-05-01
We introduce an efficient thermodynamically consistent technique to extrapolate and interpolate normalized Canonical NVT ensemble averages like pressure and energy for Lennard-Jones (L-J) fluids. Preliminary results show promising applicability in oil and gas modeling, where accurate determination of thermodynamic properties in reservoirs is challenging. The thermodynamic interpolation and thermodynamic extrapolation schemes predict ensemble averages at different thermodynamic conditions from expensively simulated data points. The methods reweight and reconstruct previously generated database values of Markov chains at neighboring temperature and density conditions. To investigate the efficiency of these methods, two databases corresponding to different combinations of normalized density and temperature are generated. One contains 175 Markov chains with 10,000,000 MC cycles each and the other contains 3000 Markov chains with 61,000,000 MC cycles each. For such massive database creation, two algorithms to parallelize the computations have been investigated. The accuracy of the thermodynamic extrapolation scheme is investigated with respect to classical interpolation and extrapolation. Finally, thermodynamic interpolation benefiting from four neighboring Markov chains points is implemented and compared with previous schemes. The thermodynamic interpolation scheme using knowledge from the four neighboring points proves to be more accurate than the thermodynamic extrapolation from the closest point only, while both thermodynamic extrapolation and thermodynamic interpolation are more accurate than the classical interpolation and extrapolation. The investigated extrapolation scheme has great potential in oil and gas reservoir modeling.That is, such a scheme has the potential to speed up the MCMC thermodynamic computation to be comparable with conventional Equation of State approaches in efficiency. In particular, this makes it applicable to large-scale optimization of L-J
Free energy evaluation in polymer translocation via Jarzynski equality
Energy Technology Data Exchange (ETDEWEB)
Mondaini, Felipe, E-mail: fmondaini@if.ufrj.br [Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Petrópolis, 25.620-003, RJ (Brazil); Moriconi, L., E-mail: moriconi@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21945-970, Rio de Janeiro, RJ (Brazil)
2014-05-01
We perform, with the help of cloud computing resources, extensive Langevin simulations, which provide free energy estimates for unbiased three-dimensional polymer translocation. We employ the Jarzynski equality in its rigorous setting, to compute the variation of the free energy in single monomer translocation events. In our three-dimensional Langevin simulations, the excluded-volume and van der Waals interactions between beads (monomers and membrane atoms) are modeled through a repulsive Lennard-Jones (LJ) potential and consecutive monomers are subject to the Finite-Extension Nonlinear Elastic (FENE) potential. Analysing data for polymers with different lengths, the free energy profile is noted to have interesting finite-size scaling properties.
African Journals Online (AJOL)
Scand. Supp\\. 25, 9. MILLER, E.L. & 0RSKOV, E.R., 1986. Degradabilityof protein and its prediction. Bulletin of the International. Dairy Federation No. 196/1986. Brussels, Belgium. NRC, 1985. Ruminant nitrogen usage. US National Academy of Science, Washington, DC. ROHR, 1987. Present situation of the modern protein.
African Journals Online (AJOL)
1974-06-15
Jun 15, 1974 ... congenital cataracts, macular degeneration and tapeto- retinal degeneration. ... especially important in the diagnosis of tapetoretinal degeneration. Macular degeneration may be noted, or the cherry-red spot in Tay-Sachs disease. Optokinetic ... Persistence of a particular abnormality necessitates treatment.
Czech Academy of Sciences Publication Activity Database
Moučka, F.; Nezbeda, Ivo; Smith, W. R.
2013-01-01
Roč. 9, č. 11 (2013), s. 5076-5085 ISSN 1549-9618 Grant - others:GA MŠMT(CZ) LH12019; NSERCC(CA) OGP1041; UJEP(CZ) GAP208/12/0105 Institutional support: RVO:67985858 Keywords : sodium-chloride * ionic hydration * free-energy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013
Directory of Open Access Journals (Sweden)
Janeček J.
2013-03-01
Full Text Available The components of pair distribution function in different directions with respect to the coordinate system defined by the simulation box are determined for Lennard-Jones fluid simulated using the Monte Carlo technique in cubic boxes of various size. The approach of Pratt and Haan is employed to analyze the distortion of isotropic fluid structure due to the periodic boundary conditions and qualitative agreement is found between the theoretical and simulated course of particular angular components of distribution function. The relation between the anisotropy of correlation functions and the system size dependency of residual energy and compressibility factor is analyzed. The finite size effects become significantly pronounced in systems with size lower than 5 particle diameters, especially if the length of the box-edge is equal to a non-integer multiple of molecular diameter. With increasing temperature the implicit finite size effects on fluid structure as well as on the thermodynamic properties become less important. The primary cause of the structure deformation lies in the short-range interparticle correlations and the long-range interactions are not important; therefore, the implicit finite size effects influence all kinds of atomistic simulations, including those using the interactions of finite range and in the molecular dynamics simulations. However, at present the simulated systems are usually of sufficiently large size and ignoring the implicit finite size does not lead to serious problems, except for the determination of surface properties using the inhomogeneous simulations which are more sensitive to the lateral dimension of simulation box. Nous avons déterminé les contributions directionnelles de la fonction de distribution par paire du fluide de Lennard-Jones, par simulation moléculaire de Monte Carlo dans des boîtes cubiques de différentes tailles. L’approche de Pratt et Haan est utilisée pour analyser la distorsion de la
Jackson, Isabel L; Zodda, Andrew; Gurung, Ganga; Pavlovic, Radmila; Kaytor, Michael D; Kuskowski, Michael A; Vujaskovic, Zeljko
2017-12-01
BIO 300 nanosuspension (Humanetics Corporation) is being developed as a medical countermeasure (MCM) for the mitigation of the delayed effects of acute radiation exposure, specifically pneumonitis and fibrosis of the lung. The objective of this study was to determine the best dose and treatment duration of BIO 300 to mitigate lung injury and improve the likelihood for survival in C57L/J mice exposed to whole thorax lung irradiation (WTLI). Age- and sex-matched C57L/J mice received a single dose of 11.0 or 12.5 Gy WTLI. BIO 300 (200 or 400 mg·kg -1 , oral gavage) was administered daily starting 24 h post-exposure for a duration of 2, 4, 6 or, in some cases, 10 weeks. Non-treated controls were included for comparison in both sexes. Animals were observed daily for signs of major morbidity. Respiratory function was assessed biweekly. Lungs were collected, weighed and paraffin embedded for histological evaluation post mortem. BIO 300 administered at an oral dose of 400 mg·kg -1 for 4 to 6 weeks starting 24 h post-WTLI reduced morbidity associated with WTLI. The improvement in survival correlated with reduced respiratory frequency and enhanced pause. The irradiated lungs of mice treated with BIO 300 (400 mg·kg -1 ) for 4 to 6 weeks displayed less morphological damage and airway loss due to oedema, congestion and fibrotic scarring than the untreated, irradiated controls. BIO 300 is a promising MCM candidate to mitigate pneumonitis/fibrosis when administered daily for 4-6 weeks starting 24 h post-exposure. © 2017 The British Pharmacological Society.
Inman, Matthew Clay
A novel, open-cathode direct methanol fuel cell (DMFC ) has been designed and built by researchers at the University of North Florida and University of Florida. Foremost among the advances of this system over previous DMFC architectures is a passive water recovery system which allows product water to replenish that consumed at the anode. This is enabled by a specially-designed water pathway combined with a liquid barrier layer (LBL ). The LBL membrane is positioned between the cathode catalyst layer and the cathode gas diffusion layer, and must exhibit high permeability and low diffusive resistance to both oxygen and water vapor, bulk hydrophobicity to hold back the product liquid water, and must remain electrically conductive. Maintaining water balance at optimum operating temperatures is problematic with the current LBL design, forcing the system to run at lower temperatures decreasing the overall system efficiency. This research presents a novel approach to nanoporous membrane design whereby flux of a given species is determined based upon the molecular properties of said species and those of the diffusing medium, the pore geometry, and the membrane thickness. A molecular dynamics (MD ) model is developed for tracking Knudsen regime flows of a Lennard-Jones (LJ ) fluid through an atomistic pore structure, hundreds of thousands of wall collision simulations are performed on the University of Florida HiPerGator supercomputer, and the generated trajectory information is used to develop number density and axial velocity profiles for use in a rigorous approach to total flux calculation absent in previously attempted MD models. Results are compared to other published approaches and diffusion data available in the literature. The impact of this study on various applications of membrane design is discussed and additional simulations and model improvements are outlined for future consideration.
Coslovich, Daniele; Kahl, Gerhard; Krakoviack, Vincent
2011-06-01
T Fischer and R L C Vink Lennard-Jones binary mixture in disordered matrices: exploring the mode coupling scenario at increasing confinement P Gallo and M Rovere Static and dynamic contributions to anomalous chain dynamics in polymer blends Marco Bernabei, Angel J Moreno and J Colmenero Anomalous transport of a tracer on percolating clusters Markus Spanner, Felix Höfling, Gerd E Schröder-Turk, Klaus Mecke and Thomas Franosch Long-wavelength anomalies in the asymptotic behavior of mode-coupling theory S K Schnyder, F Höfling, T Franosch and Th Voigtmann Dynamic arrest of colloids in porous environments: disentangling crowding and confinement Jan Kurzidim, Daniele Coslovich and Gerhard Kahl Slow dynamics, dynamic heterogeneities, and fragility of supercooled liquids confined in random media Kang Kim, Kunimasa Miyazaki and Shinji Saito
International Nuclear Information System (INIS)
Foley, R.D.; Floyd, L.M.; Crutcher, J.W.
1989-08-01
Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally 232 Th, derived from the MCW site. The survey typically includes direct measurement of the gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, the Firemen's Memorial Park and Fire Hall number sign 2, Garibaldi Avenue and Kennedy Drive, Lodi, New Jersey (LJ066) was conducted during 1987. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 4 refs., 10 figs., 3 tabs
Berim, Gersh O.; Ruckenstein, Eli
2011-02-01
The dependence of the contact angles of nanodrops of Lennard-Jones type fluids in nanocavities on their sizes are calculated using a nonlocal density functional theory in a canonical ensemble. Cavities of various radii and depths, various temperatures, as well as various values of the energy parameter of the fluid-solid interactions were considered. It is argued that this dependence might affect strongly, for instance, the rate of heterogeneous nucleation on rough surfaces, which is usually calculated under the assumption of constant contact angle.
Chemical potential calculations in dense liquids using metadynamics
Perego, C.; Giberti, F.; Parrinello, M.
2016-10-01
The calculation of chemical potential has traditionally been a challenge in atomistic simulations. One of the most used approaches is Widom's insertion method in which the chemical potential is calculated by periodically attempting to insert an extra particle in the system. In dense systems this method fails since the insertion probability is very low. In this paper we show that in a homogeneous fluid the insertion probability can be increased using metadynamics. We test our method on a supercooled high density binary Lennard-Jones fluid. We find that we can obtain efficiently converged results even when Widom's method fails.
Equilibrium properties in the thermodynamic limit from small-sized molecular dynamics simulations
Cortes-Huerto, Robinson; Kremer, Kurt; Potestio, Raffaello
We present an accurate and efficient method to obtain equilibrium thermodynamic properties of bulk systems from small-sized molecular dynamics simulations by introducing finite size effects into integral equations of statistical mechanics. We validate the method by calculating thermodynamic properties of prototypical complex mixtures such as the activity coefficients of aqueous urea mixtures and the Kirkwood-Buff integrals of Lennard-Jones fluids. Moreover, our results demonstrate how to identify simulation conditions under which computer simulations reach the thermodynamic limit. Alexander von Humboldt Foundation.
Variation along liquid isomorphs of the driving force for crystallization
DEFF Research Database (Denmark)
Pedersen, Ulf Rørbæk; Adrjanowicz, Karolina; Niss, Kristine
2017-01-01
at a reference temperature. More general analysis allows interpretation of experimental data for molecular liquids such as dimethyl phthalate and indomethacin, and suggests that the isomorph scaling exponent γ in these cases is an increasing function of density, although this cannot be seen in measurements......We investigate the variation of the driving force for crystallization of a supercooled liquid along isomorphs, curves along which structure and dynamics are invariant. The variation is weak, and can be predicted accurately for the Lennard-Jones fluid using a recently developed formalism and data...
Communication: Simple liquids' high-density viscosity.
Costigliola, Lorenzo; Pedersen, Ulf R; Heyes, David M; Schrøder, Thomas B; Dyre, Jeppe C
2018-02-28
This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.
Communication: Simple liquids' high-density viscosity
Costigliola, Lorenzo; Pedersen, Ulf R.; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C.
2018-02-01
This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.
Partial structure factors and orientational correlations in liquid HI
International Nuclear Information System (INIS)
Andreani, C.; Nardone, M.; Ricci, F.P.
1993-01-01
The three atomic partial structure factors of orthobaric liquid HI at 253 K derived from neutron diffraction experiments are presented. The analysis of these structure factors and of the corresponding pair distribution functions indicates that the molecular center of mass distribution function is essentially that of a monoatomic Lennard-Jones fluid and that the anisotropic part of the intermolecular potential is able to build up orientational correlations between molecular axes without however giving rise to well defined correlations between the intermolecular axis and the molecular axis. These findings are consistent with an anisotropic part of the intermolecular potential due essentially to electric multipoles. (authors). 4 figs., 4 refs
Drazin, Philip
1987-01-01
Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)
DEFF Research Database (Denmark)
Hansen, Klaus Marius
2001-01-01
Fluid interaction, interaction by the user with the system that causes few breakdowns, is essential to many user interfaces. We present two concrete software systems that try to support fluid interaction for different work practices. Furthermore, we present specificity, generality, and minimality...... as design goals for fluid interfaces....
Energy Technology Data Exchange (ETDEWEB)
Baer, M.R.; Hobbs, M.L.; McGee, B.C.
1998-11-03
Exponential-13,6 (EXP-13,6) potential pammeters for 750 gases composed of 48 elements were determined and assembled in a database, referred to as the JCZS database, for use with the Jacobs Cowperthwaite Zwisler equation of state (JCZ3-EOS)~l) The EXP- 13,6 force constants were obtained by using literature values of Lennard-Jones (LJ) potential functions, by using corresponding states (CS) theory, by matching pure liquid shock Hugoniot data, and by using molecular volume to determine the approach radii with the well depth estimated from high-pressure isen- tropes. The JCZS database was used to accurately predict detonation velocity, pressure, and temperature for 50 dif- 3 Accurate predictions were also ferent explosives with initial densities ranging from 0.25 glcm3 to 1.97 g/cm . obtained for pure liquid shock Hugoniots, static properties of nitrogen, and gas detonations at high initial pressures.
New Aspects of Collective Phenomena at Nanoscales in Quantum Plasmas
Shukla, P. K.; Eliasson, B.
We present two novel collective effects is quantum plasmas. First, we discuss novel attractive force between ions that are shielded by the degenerate electrons in quantum plasmas. Here we show that the electric potential around an isolated ion has a hard core negative part that resembles the Lennard-Jones (LJ)-type potential. Second, we present theory for stimulated scattering instabilities of electromagnetic waves off quantum plasma modes. Our studies are based on the quantum hydrodynamical description of degenerate electrons that are greatly influenced by electromagnetic and quantum forces. The relevance of our investigation to bringing ions closer for fusion in high-energy solid density plasmas at atomic dimensions, and for producing coherent short wavelength radiation in the x-ray regime at nanoscales are discussed.
Prakash, Muthuramalingam; Lemaire, Thibault; Di Tommaso, Devis; de Leeuw, Nora; Lewerenz, Marius; Caruel, Matthieu; Naili, Salah
2017-10-01
Water diffusion in the vicinity of hydroxyapatite (HAP) crystals is a key issue to describe biomineralization process. In this study, a configuration of parallel HAP platelets mimicking bone nanopores is proposed to characterize the nanoscopic transport properties of water molecules at HAP-water surface and interfaces using various potential models such as combination of the Core-Shell (CS) model, Lennard-Jones (LJ) potentials with SPC or SPC/E water models. When comparing all these potentials models, it appears that the core-shell potential for HAP together with the SPC/E water model more accurately predicts the diffusion properties of water near HAP surface. Moreover, we have been able to put into relief the possibility of observing hydroxyl (OH-) ion dissociation that modifies the water structure near the HAP surface.
Fluid dynamics of dilatant fluid
DEFF Research Database (Denmark)
Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko
2012-01-01
A dense mixture of granules and liquid often shows a severe shear thickening and is called a dilatant fluid. We construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a local state of dispersed particles. With simple assumptions for an equation...
International Nuclear Information System (INIS)
Anon.
1991-01-01
Fluids engineering has played an important role in many applications, from ancient flood control to the design of high-speed compact turbomachinery. New applications of fluids engineering, such as in high-technology materials processing, biotechnology, and advanced combustion systems, have kept up unwaining interest in the subject. More accurate and sophisticated computational and measurement techniques are also constantly being developed and refined. On a more fundamental level, nonlinear dynamics and chaotic behavior of fluid flow are no longer an intellectual curiosity and fluid engineers are increasingly interested in finding practical applications for these emerging sciences. Applications of fluid technology to new areas, as well as the need to improve the design and to enhance the flexibility and reliability of flow-related machines and devices will continue to spur interest in fluids engineering. The objectives of the present seminar were: to exchange current information on arts, science, and technology of fluids engineering; to promote scientific cooperation between the fluids engineering communities of both nations, and to provide an opportunity for the participants and their colleagues to explore possible joint research programs in topics of high priority and mutual interest to both countries. The Seminar provided an excellent forum for reviewing the current state and future needs of fluids engineering for the two nations. With the Seminar ear-marking the first formal scientific exchange between Korea and the United States in the area of fluids engineering, the scope was deliberately left broad and general
Optimization of long range potential interaction parameters in ion mobility spectrometry
Wu, Tianyang; Derrick, Joseph; Nahin, Minal; Chen, Xi; Larriba-Andaluz, Carlos
2018-02-01
The problem of optimizing Lennard-Jones (L-J) potential parameters to perform collision cross section (CCS) calculations in ion mobility spectrometry has been undertaken. The experimental CCS of 16 small organic molecules containing carbon, hydrogen, oxygen, nitrogen, and fluoride in N2 was compared to numerical calculations using Density Functional Theory (DFT). CCS calculations were performed using the momentum transfer algorithm IMoS and a 4-6-12 potential without incorporating the ion-quadrupole potential. A ceteris paribus optimization method was used to optimize the intercept σ and potential well-depth ɛ for the given atoms. This method yields important information that otherwise would remain concealed. Results show that the optimized L-J parameters are not necessarily unique with intercept and well-depth following an exponential relation at an existing line of minimums. Similarly, the method shows that some molecules containing atoms of interest may be ill-conditioned candidates to perform optimizations of the L-J parameters. The final calculated CCSs for the chosen parameters differ 1% on average from their experimental counterparts. This result conveys the notion that DFT calculations can indeed be used as potential candidates for CCS calculations and that effects, such as the ion-quadrupole potential or diffuse scattering, can be embedded into the L-J parameters without loss of accuracy but with a large increase in computational efficiency.
International Nuclear Information System (INIS)
Ha, Jae Hyeon; Son, Byeong Jin
2001-04-01
This book tells of definition and classification of fluid machinery, energy equation of incompressible fluid, principle of momentum, classification and structure of pump, size, safety of centrifugal pump, theory and operation of contraction pump, reciprocating pump, rotary pump, special pump, using of water power, classification of water turbine, impulse water turbine, reaction water turbine, pump water turbine, liquid movement apparatus, fluid type control machinery and solid and gas type pneumatic machine.
International Nuclear Information System (INIS)
Kan, K.K.
1983-01-01
The relationship of nuclear internal flow and collective inertia, the difference of this flow from that of a classical fluid, and the approach of this flow to rigid flow in independent-particle model rotation are elucidated by reviewing the theory of Schroedinger fluid and its implications for collective vibration and rotation. (author)
DEFF Research Database (Denmark)
Brorsen, Michael
These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University.......These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University....
Comparison of potentials for polymeric liquids
International Nuclear Information System (INIS)
Jung, Hae Young
2002-01-01
Many theories for polymeric liquids are based on the concepts of cell, hole, free volume of lattice etc. In this theories, van der Waals potential, Lennard-Jones 6-12 potential and their modified potentials are commonly used. In this work, Mie(p,6)potential was applied to the Continuous Lattice Fluid Theory (which extends the discrete lattices of Lattice Fluid Theory to classically continuous lattices) and Dee-Walsch's Cell Theory (which modifies Flory's Equation of State Theory). Both of them are known to be successful theories for polymeric liquids. Thus, PVT values changing with p (the exponent in the repulsion potential) were calculated and compared with experimental values. And, calculated values of Lattice Fluid theory, Flory's Equation of State Theory and Cho-Sanchez Theory using perturbation method were also compared. Through the calculated results, van der Waals potential, Lennard-Jones 6-12 potential and Mie(p,6) potential for polymeric liquids were compared with each other
Droplet spreading driven by van der Waals force: a molecular dynamics study
Wu, Congmin
2010-07-07
The dynamics of droplet spreading is investigated by molecular dynamics simulations for two immiscible fluids of equal density and viscosity. All the molecular interactions are modeled by truncated Lennard-Jones potentials and a long-range van der Waals force is introduced to act on the wetting fluid. By gradually increasing the coupling constant in the attractive van der Waals interaction between the wetting fluid and the substrate, we observe a transition in the initial stage of spreading. There exists a critical value of the coupling constant, above which the spreading is pioneered by a precursor film. In particular, the dynamically determined critical value quantitatively agrees with that determined by the energy criterion that the spreading coefficient equals zero. The latter separates partial wetting from complete wetting. In the regime of complete wetting, the radius of the spreading droplet varies with time as R(t) ∼ √t, a behavior also found in molecular dynamics simulations where the wetting dynamics is driven by the short-range Lennard-Jones interaction between liquid and solid. © 2010 IOP Publishing Ltd.
Droplet spreading driven by van der Waals force: a molecular dynamics study
International Nuclear Information System (INIS)
Wu Congmin; Qian Tiezheng; Sheng Ping
2010-01-01
The dynamics of droplet spreading is investigated by molecular dynamics simulations for two immiscible fluids of equal density and viscosity. All the molecular interactions are modeled by truncated Lennard-Jones potentials and a long-range van der Waals force is introduced to act on the wetting fluid. By gradually increasing the coupling constant in the attractive van der Waals interaction between the wetting fluid and the substrate, we observe a transition in the initial stage of spreading. There exists a critical value of the coupling constant, above which the spreading is pioneered by a precursor film. In particular, the dynamically determined critical value quantitatively agrees with that determined by the energy criterion that the spreading coefficient equals zero. The latter separates partial wetting from complete wetting. In the regime of complete wetting, the radius of the spreading droplet varies with time as R(t)∼√t, a behavior also found in molecular dynamics simulations where the wetting dynamics is driven by the short-range Lennard-Jones interaction between liquid and solid.
Kadoura, Ahmad Salim
2014-08-01
Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system\\'s potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (ε, σ) for single site models were proposed for methane, nitrogen and carbon monoxide. © 2014 Elsevier Inc.
Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.;
2017-01-01
Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid
A simple extrapolation of thermodynamic perturbation theory to infinite order.
Ghobadi, Ahmadreza F; Elliott, J Richard
2015-09-21
Recent analyses of the third and fourth order perturbation contributions to the equations of state for square well spheres and Lennard-Jones chains show trends that persist across orders and molecular models. In particular, the ratio between orders (e.g., A3/A2, where A(i) is the ith order perturbation contribution) exhibits a peak when plotted with respect to density. The trend resembles a Gaussian curve with the peak near the critical density. This observation can form the basis for a simple recursion and extrapolation from the highest available order to infinite order. The resulting extrapolation is analytic and therefore cannot fully characterize the critical region, but it remarkably improves accuracy, especially for the binodal curve. Whereas a second order theory is typically accurate for the binodal at temperatures within 90% of the critical temperature, the extrapolated result is accurate to within 99% of the critical temperature. In addition to square well spheres and Lennard-Jones chains, we demonstrate how the method can be applied semi-empirically to the Perturbed Chain - Statistical Associating Fluid Theory (PC-SAFT).
Pnueli, David; Gutfinger, Chaim
1997-01-01
This text is intended for the study of fluid mechanics at an intermediate level. The presentation starts with basic concepts, in order to form a sound conceptual structure that can support engineering applications and encourage further learning. The presentation is exact, incorporating both the mathematics involved and the physics needed to understand the various phenomena in fluid mechanics. Where a didactical choice must be made between the two, the physics prevails. Throughout the book the authors have tried to reach a balance between exact presentation, intuitive grasp of new ideas, and creative applications of concepts. This approach is reflected in the examples presented in the text and in the exercises given at the end of each chapter. Subjects treated are hydrostatics, viscous flow, similitude and order of magnitude, creeping flow, potential flow, boundary layer flow, turbulent flow, compressible flow, and non-Newtonian flows. This book is ideal for advanced undergraduate students in mechanical, chemical, aerospace, and civil engineering. Solutions manual available.
Ruban, Anatoly I
This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...
International Nuclear Information System (INIS)
Paraschivoiu, I.; Prud'homme, M.; Robillard, L.; Vasseur, P.
2003-01-01
This book constitutes at the same time theoretical and practical base relating to the phenomena associated with fluid mechanics. The concept of continuum is at the base of the approach developed in this work. The general advance proceeds of simple balances of forces as into hydrostatic to more complex situations or inertias, the internal stresses and the constraints of Reynolds are taken into account. This advance is not only theoretical but contains many applications in the form of solved problems, each chapter ending in a series of suggested problems. The major part of the applications relates to the incompressible flows
DEFF Research Database (Denmark)
and in architectural design. Aesthetics, psychoacoustics, perception, and cognition are all present in this expanding field embracing such categories as soundscape composition, sound art, sonic art, sound design, sound studies and auditory culture. Of greatest significance to the overall field is the investigation...... of sound, site and the social, and how the spatial, the visual, and the bodily interact in sonic environments, how they are constructed and how they are entangled in other practices. With the Seismograf special issue Fluid Sounds, we bring this knowledge into the dissemination of audio research itself...
International Nuclear Information System (INIS)
Kreider, J.F.
1985-01-01
This book is an introduction on fluid mechanics incorporating computer applications. Topics covered are as follows: brief history; what is a fluid; two classes of fluids: liquids and gases; the continuum model of a fluid; methods of analyzing fluid flows; important characteristics of fluids; fundamentals and equations of motion; fluid statics; dimensional analysis and the similarity principle; laminar internal flows; ideal flow; external laminar and channel flows; turbulent flow; compressible flow; fluid flow measurements
Molecular simulation of thermodynamic and transport properties for the H{sub 2}O+NaCl system
Energy Technology Data Exchange (ETDEWEB)
Orozco, Gustavo A.; Jiang, Hao; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Moultos, Othonas A.; Economou, Ioannis G. [Chemical Engineering Program, Texas A and M University at Qatar, P.O. Box 23874, Doha (Qatar)
2014-12-21
Molecular dynamics and Monte Carlo simulations have been carried out to obtain thermodynamic and transport properties of the binary mixture H{sub 2}O+NaCl at temperatures from T = 298 to 473 K. In particular, vapor pressures, liquid densities, viscosities, and vapor-liquid interfacial tensions have been obtained as functions of pressure and salt concentration. Several previously proposed fixed-point-charge models that include either Lennard-Jones (LJ) 12-6 or exponential-6 (Exp6) functional forms to describe non-Coulombic interactions were studied. In particular, for water we used the SPC and SPC/E (LJ) models in their rigid forms, a semiflexible version of the SPC/E (LJ) model, and the Errington-Panagiotopoulos Exp6 model; for NaCl, we used the Smith-Dang and Joung-Cheatham (LJ) parameterizations as well as the Tosi-Fumi (Exp6) model. While none of the model combinations are able to reproduce simultaneously all target properties, vapor pressures are well represented using the SPC plus Joung-Cheathem model combination, and all LJ models do well for the liquid density, with the semiflexible SPC/E plus Joung-Cheatham combination being the most accurate. For viscosities, the combination of rigid SPC/E plus Smith-Dang is the best alternative. For interfacial tensions, the combination of the semiflexible SPC/E plus Smith-Dang or Joung-Cheatham gives the best results. Inclusion of water flexibility improves the mixture densities and interfacial tensions, at the cost of larger deviations for the vapor pressures and viscosities. The Exp6 water plus Tosi-Fumi salt model combination was found to perform poorly for most of the properties of interest, in particular being unable to describe the experimental trend for the vapor pressure as a function of salt concentration.
Energy Technology Data Exchange (ETDEWEB)
Kerbel, G.D.
1981-01-20
A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch.
International Nuclear Information System (INIS)
Kerbel, G.D.
1981-01-01
A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch
Thermophysical Properties of Fluids and Fluid Mixtures
Energy Technology Data Exchange (ETDEWEB)
Sengers, Jan V.; Anisimov, Mikhail A.
2004-05-03
The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.
Sakellaris, P. C. (Inventor)
1977-01-01
Fluid automatically flows to individual dispensing units at predetermined times from a fluid supply and is available only for a predetermined interval of time after which an automatic control causes the fluid to drain from the individual dispensing units. Fluid deprivation continues until the beginning of a new cycle when the fluid is once again automatically made available at the individual dispensing units.
Fluid Mechanics and Fluid Power (FMFP)
Indian Academy of Sciences (India)
Amitabh Bhattacharya
decades, mainly due to the rapid improvement in computational efficiency, cameras, optics and instrumentation, both computational and experimental techniques have improved significantly, allowing researchers in Fluid Mechanics to build better mechanistic and analytical models for processes involving dynamics of fluids.
Equation of state of matter irradiated by short laser pulse and geometry of spalled cupola
Petrov, Yu. V.; Zhakhovskii, V. V.; Inogamov, N. A.; Ashitkov, S. I.; Khokhlov, V. A.; Upadhyay, A. K.; Agranat, M. B.; Anisimov, S. I.; Nishihara, K.; Rethfeld, B.; Urbassek, H. M.
2008-05-01
The motion of both Lennard-Jones solids and metals induced by ultrashort laser irradiation near the ablation threshold is investigated by molecular dynamics simulation. The universality of the ablation threshold fluence with respect to the cohesion energy of solids irradiated by femtosecond laser pulses is demonstrated for Lennard-Jones solid and metals simulated by many-body EAM potentials.
The impact range for smooth wall–liquid interactions in nanoconfined liquids
DEFF Research Database (Denmark)
Ingebrigtsen, Trond; Dyre, J. C.
2014-01-01
decade. Inspired by these observations, we present results from molecular dynamics computer simulations of four nanoconfined liquids (the single-component Lennard-Jones liquid, the Kob–Andersen binary Lennard-Jones mixture, an asymmetric dumbbell model, and the Dzugutov liquid) demonstrating also...
Ghorbanzadeh Ahangari, Morteza; Fereidoon, A.; Hamed Mashhadzadeh, Amin
2017-12-01
In present study, we investigated mechanical, electronic and interlayer properties of mono, bi and 3layer of Boron-Nitride (B-N), Aluminum-Nitride (Al-N) and Gallium-Nitride (Ga-N) graphene sheets and compared these results with results obtained from carbonic graphenes (C-graphenes). For reaching this purpose, first we optimized the geometrical parameters of these graphenes by using density functional theory (DFT) method. Then we calculated Young's modulus of graphene sheet by compressing and then elongating these sheets in small increment. Our results indicates that Young's modulus of graphenes didn't changed obviously by increasing the number of layer sheet. We also found that carbonic graphene has greatest Young's modulus among another mentioned sheets because of smallest equilibrium distance between its elements. Next we modeled the van der Waals interfacial interaction exist between two sheets with classical spring model by using general form of Lennard-Jones (L-J) potential for all of mentioned graphenes. For calculating L-J parameters (ε and σ), the potential energy between layers of mentioned graphene as a function of the separation distance was plotted. Moreover, the density of states (DOS) are calculated to understand the electronic properties of these systems better.
Morse index for figure-eight choreographies of the planar equal mass three-body problem
Fukuda, Hiroshi; Fujiwara, Toshiaki; Ozaki, Hiroshi
2018-04-01
We report on numerical calculations of the Morse index for figure-eight choreographic solutions to a system of three identical bodies in a plane interacting through the homogeneous potential, -1/r a , or through the Lennard-Jones-type (LJ) potential, 1/r12 - 1/r6 , where r is a distance between the bodies. The Morse index is a number of independent variational functions giving negative second variation S (2) of action functional S. We calculated three kinds of Morse indices, N, N c and N e, in the domain of the periodic, the choreographic and the figure-eight choreographic function, respectively. For the homogeneous system, we obtain N = 4 for 0 ≤slant a periodic solution found by Simó through S (2). For the LJ system, we calculated the index for the solution tending to the figure-eight solution of the a = 6 homogeneous system for the period T \\to ∞ . We obtain N, N c and N e as monotonically increasing functions of T from T \\to ∞ , which start with N=N_c=N_e=0 , jump at the smallest T by 1, and reach N = 12, N_c=4 , and N_e=1 for T \\to ∞ in the other branch.
Rare events in many-body systems: reactive paths and reaction constants for structural transitions
International Nuclear Information System (INIS)
Picciani, M.
2012-01-01
This PhD thesis deals with the study of fundamental physics phenomena, with applications to nuclear materials of interest. We have developed methods for the study of rare events related to thermally activated structural transitions in many body systems. The first method involves the numerical simulation of the probability current associated with reactive paths. After deriving the evolution equations for the probability current, a Diffusion Monte Carlo algorithm is implemented in order to sample this current. This technique, called Transition Current Sampling was applied to the study of structural transitions in a cluster of 38 atoms with Lennard-Jones potential (LJ-38). A second algorithm, called Transition Path Sampling with local Lyapunov bias (LyTPS), was then developed. LyTPS calculates reaction rates at finite temperature by following the transition state theory. A statistical bias based on the maximum local Lyapunov exponents is introduced to accelerate the sampling of reactive trajectories. To extract the value of the equilibrium reaction constants obtained from LyTPS, we use the Multistate Bennett Acceptance Ratio. We again validate this method on the LJ-38 cluster. LyTPS is then used to calculate migration constants for vacancies and divacancies in the α-Iron, and the associated migration entropy. These constants are used as input parameter for codes modeling the kinetic evolution after irradiation (First Passage Kinetic Monte Carlo) to reproduce numerically resistivity recovery experiments in α-Iron. (author) [fr
Zheng, Zheng; Merz, Kenneth M
2013-05-24
We describe a novel knowledge-based protein-ligand scoring function that employs a new definition for the reference state, allowing us to relate a statistical potential to a Lennard-Jones (LJ) potential. In this way, the LJ potential parameters were generated from protein-ligand complex structural data contained in the Protein Databank (PDB). Forty-nine (49) types of atomic pairwise interactions were derived using this method, which we call the knowledge-based and empirical combined scoring algorithm (KECSA). Two validation benchmarks were introduced to test the performance of KECSA. The first validation benchmark included two test sets that address the training set and enthalpy/entropy of KECSA. The second validation benchmark suite included two large-scale and five small-scale test sets, to compare the reproducibility of KECSA, with respect to two empirical score functions previously developed in our laboratory (LISA and LISA+), as well as to other well-known scoring methods. Validation results illustrate that KECSA shows improved performance in all test sets when compared with other scoring methods, especially in its ability to minimize the root mean square error (RMSE). LISA and LISA+ displayed similar performance using the correlation coefficient and Kendall τ as the metric of quality for some of the small test sets. Further pathways for improvement are discussed for which would allow KECSA to be more sensitive to subtle changes in ligand structure.
Microscopic structure of the hydrogen-xenon mixture
Senesi, R.; Nardone, M.; Ricci, F. P.; Ricci, M. A.; Soper, A. K.
1997-09-01
We report a neutron-diffraction study of the microscopic structure of the H2-Xe binary mixture in the Xe-rich phase, xXe=0.78, at T=283 K and P=170 bars, i.e., in the vicinity of the second-type gas-gas demixing surface. The site-site distribution functions are extracted employing the H-D isotopic substitution technique. We report also molecular-dynamics simulations for a mixture of equivalent Lennard-Jones (LJ) atoms. The experimental results are compared with previous ones obtained for the He-Xe and Ne-Xe mixtures, which show a first- and a second-type gas-gas transition, respectively. The general picture already suggested by the other two mixtures agrees also with the present results, although in this case the center-center distribution functions H2-H2 and H2-Xe are clearly modulated by the Xe-Xe correlations. In particular the features found in the distribution functions of the mixture suggest that the LJ potential model is not able to reproduce at a satisfactory level the H2-H2 and the H2-Xe correlation functions and that a (XeH4) chemical complex is present.
Fluid Mechanics and Fluid Power (FMFP)
Indian Academy of Sciences (India)
Amitabh Bhattacharya
of renewable energy (e.g., via wind, hydrokinetic generators), creating low-cost healthcare (e.g., via point-of-care medical testing) and improvement of energy efficiency of fluid power systems, depends on improving our understanding of Fluid. Mechanics. Fluids are ubiquitous in both nature and technological applications, ...
International Nuclear Information System (INIS)
Farquhar, N.G.; Schwab, J.A.
1977-01-01
A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid
Fluid mechanics in fluids at rest.
Brenner, Howard
2012-07-01
Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.
DEFF Research Database (Denmark)
Toxværd, Søren; Dyre, J. C.
2011-01-01
. Lett. 103, 170601 (2009);10.1103/PhysRevLett.103.170601 J. Chem. Phys. 134, 214503 (2011)10.1063/1.3592709] . We present simulations of the standard Lennard-Jones liquid at several condensed-fluid state points, including a fairly low density state and a very high density state, as well as simulations......The traditional view that the physical properties of a simple liquid are determined primarily by its repulsive forces was recently challenged by Berthier and Tarjus, who showed that in some cases ignoring the attractions leads to large errors in the dynamics [L. Berthier and G. Tarjus, Phys. Rev...... are included in the simulations. What matters is whether or not interactions are included from all particles within the first coordination shell – the attractive forces can thus be ignored, but only at extremely high densities. The recognition of the importance of a local shell in condensed fluids goes back...
Videotapes and Movies on Fluid Dynamics and Fluid Machines
Carr, Bobbie; Young, Virginia E.
1996-01-01
Chapter 17 of Handbook of Fluid Dynamics and Fluid Machinery: Experimental and Computational Fluid Dynamics, Volume 11. A list of videorecordings and 16mm motion pictures about Fluid Dynamics and Fluid Machines.
Do, D D; Do, H D
2004-08-17
In this paper, we studied vapor-liquid equilibria (VLE) and adsorption of ethylene on graphitized thermal carbon black and in slit pores whose walls are composed of graphene layers. Simple models of a one-center Lennard-Jones (LJ) potential and a two-center united atom (UA)-LJ potential are investigated to study the impact of the choice of potential models in the description of VLE and adsorption behavior. Here, we used a Monte Carlo simulation method with grand canonical Monte Carlo (GCMC) and Gibbs ensemble Monte Carlo ensembles. The one-center potential model cannot describe adequately the VLE over the practical range of temperature from the triple point to the critical point. On the other hand, the two-center potential model (Wick et al. J. Phys. Chem. B 2000, 104, 8008-8016) performs well in the description of VLE (saturated vapor and liquid densities and vapor pressure) over the wide range of temperature. This UA-LJ model is then used in the study of adsorption of ethylene on graphitized thermal carbon black and in slit pores. Agreement between the GCMC simulation results and the experimental data on graphitized thermal carbon black for moderate temperatures is excellent, demonstrating that the potential of the GCMC method and the proper choice of potential model are essential to investigate adsorption. For slit pores of various sizes, we have found that the behavior of ethylene exhibits a number of features that are not manifested in the study of spherical LJ particles. In particular, the singlet density distribution versus distance across the pore and the angle between the molecular axis and the z direction provide rich information about the way molecules arrange themselves when the pore width is varied. Such an arrangement has been found to be very sensitive to the pore width.
FOREWORD Fluid Mechanics and Fluid Power (FMFP)
Indian Academy of Sciences (India)
This section of the Special Issue carries selected articles from the Fluid Mechanics and Fluid. Power Conference held during 12–14 December 2013 at the National Institute of Technology,. Hamirpur (HP). The section includes three review articles and nine original research articles. These were selected on the basis of their ...
Wilhelmsen, Øivind; Trinh, Thuat T.; Lervik, Anders
2018-01-01
Density gradient theory for fluids has played a key role in the study of interfacial phenomena for a century. In this work, we revisit its fundamentals by examining the vapor-liquid interface of argon, represented by the cut and shifted Lennard-Jones fluid. The starting point has traditionally been a Helmholtz energy functional using mass densities as arguments. By using rather the internal energy as starting point and including the entropy density as an additional argument, following thereby the phenomenological approach from classical thermodynamics, the extended theory suggests that the configurational part of the temperature has different contributions from the parallel and perpendicular directions at the interface, even at equilibrium. We find a similar anisotropy by examining the configurational temperature in molecular dynamics simulations and obtain a qualitative agreement between theory and simulations. The extended theory shows that the temperature anisotropy originates in nonlocal entropic contributions, which are currently missing from the classical theory. The nonlocal entropic contributions discussed in this work are likely to play a role in the description of both equilibrium and nonequilibrium properties of interfaces. At equilibrium, they influence the temperature- and curvature-dependence of the surface tension. Across the vapor-liquid interface of the Lennard Jones fluid, we find that the maximum in the temperature anisotropy coincides precisely with the maximum in the thermal resistivity relative to the equimolar surface, where the integral of the thermal resistivity gives the Kapitza resistance. This links the temperature anisotropy at equilibrium to the Kapitza resistance of the vapor-liquid interface at nonequilibrium.
Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun
2015-09-29
An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.
A hydraulic brake fluid consisting of diethylene glycol , monoethyl ether of diethylene glycol , and castor oil has been improved as described in the patent by adding the fluid tributyl ether of orthophosphoric acid.
Shinbrot, Marvin
2012-01-01
Readable and user-friendly, this high-level introduction explores the derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids. 1973 edition.
Gram stain of pleural fluid ... mixing it with a violet stain (called a Gram stain). A laboratory specialist uses a microscope to ... reveals an abnormal collection of pleural fluid. The Gram stain can help identify the bacteria that might ...
International Nuclear Information System (INIS)
Myeong, Hyeon Guk
1999-06-01
This book deals with computational fluid dynamics with basic and history of numerical fluid dynamics, introduction of finite volume method using one-dimensional heat conduction equation, solution of two-dimensional heat conduction equation, solution of Navier-Stokes equation, fluid with heat transport, turbulent flow and turbulent model, Navier-Stokes solution by generalized coordinate system such as coordinate conversion, conversion of basic equation, program and example of calculation, application of abnormal problem and high speed solution of numerical fluid dynamics.
Nonequilibrium thermodynamics of an interface
Schweizer, Marco; Öttinger, Hans Christian; Savin, Thierry
2016-05-01
Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the "dividing surface," as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular-dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a "thermometer," and it can be significantly different from the temperatures of the adjacent phases. Our findings lay foundations for nonequilibrium interfacial thermodynamics.
Hatch, Harold W.; Jiao, Sally; Mahynski, Nathan A.; Blanco, Marco A.; Shen, Vincent K.
2017-12-01
Virial coefficients are predicted over a large range of both temperatures and model parameter values (i.e., alchemical transformation) from an individual Mayer-sampling Monte Carlo simulation by statistical mechanical extrapolation with minimal increase in computational cost. With this extrapolation method, a Mayer-sampling Monte Carlo simulation of the SPC/E (extended simple point charge) water model quantitatively predicted the second virial coefficient as a continuous function spanning over four orders of magnitude in value and over three orders of magnitude in temperature with less than a 2% deviation. In addition, the same simulation predicted the second virial coefficient if the site charges were scaled by a constant factor, from an increase of 40% down to zero charge. This method is also shown to perform well for the third virial coefficient and the exponential parameter for a Lennard-Jones fluid.
The effect of system boundaries on the mean free path for confined gases
Directory of Open Access Journals (Sweden)
Sooraj K. Prabha
2013-10-01
Full Text Available The mean free path of rarefied gases is accurately determined using Molecular Dynamics simulations. The simulations are carried out on isothermal argon gas (Lennard-Jones fluid over a range of rarefaction levels under various confinements (unbounded gas, parallel reflective wall and explicit solid platinum wall bounded gas in a nanoscale domain. The system is also analyzed independently in constitutive sub-systems to calculate the corresponding local mean free paths. Our studies which predominate in the transition regime substantiate the boundary limiting effect on mean free paths owing to the sharp diminution in molecular free paths near the planar boundaries. These studies provide insight to the transport phenomena of rarefied gases through nanochannels which have established their potential in microscale and nanoscale heat transfer applications.
Coarse graining from variationally enhanced sampling applied to the Ginzburg-Landau model
Invernizzi, Michele; Valsson, Omar; Parrinello, Michele
2017-03-01
A powerful way to deal with a complex system is to build a coarse-grained model capable of catching its main physical features, while being computationally affordable. Inevitably, such coarse-grained models introduce a set of phenomenological parameters, which are often not easily deducible from the underlying atomistic system. We present a unique approach to the calculation of these parameters, based on the recently introduced variationally enhanced sampling method. It allows us to obtain the parameters from atomistic simulations, providing thus a direct connection between the microscopic and the mesoscopic scale. The coarse-grained model we consider is that of Ginzburg-Landau, valid around a second-order critical point. In particular, we use it to describe a Lennard-Jones fluid in the region close to the liquid-vapor critical point. The procedure is general and can be adapted to other coarse-grained models.
Anomalous diffusion and diffusion anomaly in confined Janus dumbbells.
B Krott, Leandro; Gavazzoni, Cristina; Bordin, José Rafael
2016-12-28
Self-assembly and dynamical properties of Janus nanoparticles have been studied by molecular dynamic simulations. The nanoparticles are modeled as dimers and they are confined between two flat parallel plates to simulate a thin film. One monomer from the dumbbells interacts by a standard Lennard-Jones potential and the other by a two-length scales shoulder potential, typically used for anomalous fluids. Here, we study the effects of removing the Brownian effects, typical from colloidal systems immersed in aqueous solution, and consider a molecular system, without the drag force and the random collisions from the Brownian motion. Self-assembly and diffusion anomaly are preserved in relation to the Brownian system. Additionally, a superdiffusive regime associated to a collective reorientation in a highly structured phase is observed. Diffusion anomaly and anomalous diffusion are explained in the two length scale framework.
Anomalous diffusion and diffusion anomaly in confined Janus dumbbells
Krott, Leandro B.; Gavazzoni, Cristina; Bordin, José Rafael
2016-12-01
Self-assembly and dynamical properties of Janus nanoparticles have been studied by molecular dynamic simulations. The nanoparticles are modeled as dimers and they are confined between two flat parallel plates to simulate a thin film. One monomer from the dumbbells interacts by a standard Lennard-Jones potential and the other by a two-length scales shoulder potential, typically used for anomalous fluids. Here, we study the effects of removing the Brownian effects, typical from colloidal systems immersed in aqueous solution, and consider a molecular system, without the drag force and the random collisions from the Brownian motion. Self-assembly and diffusion anomaly are preserved in relation to the Brownian system. Additionally, a superdiffusive regime associated to a collective reorientation in a highly structured phase is observed. Diffusion anomaly and anomalous diffusion are explained in the two length scale framework.
A New Simplified Local Density Model for Adsorption of Pure Gases and Binary Mixtures
Hasanzadeh, M.; Dehghani, M. R.; Feyzi, F.; Behzadi, B.
2010-12-01
Adsorption modeling is an important tool for process simulation and design. Many theoretical models have been developed to describe adsorption data for pure and multicomponent gases. The simplified local density (SLD) approach is a thermodynamic model that can be used with any equation of state and offers some predictive capability with adjustable parameters for modeling of slit-shaped pores. In previous studies, the SLD model has been utilized with the Lennard-Jones potential function for modeling of fluid-solid interactions. In this article, we have focused on application of the Sutherland potential function in an SLD-Peng-Robinson model. The advantages and disadvantages of using the new potential function for adsorption of methane, ethane, carbon dioxide, nitrogen, and three binary mixtures on two types of activated carbon are illustrated. The results have been compared with previous models. It is shown that the new SLD model can correlate adsorption data for different pressures and temperatures with minimum error.
Fluid dynamic transient analysis
International Nuclear Information System (INIS)
Vilhena Reigosa, R. de
1992-01-01
This paper describes the methodology adopted at NUCLEN for the fluid dynamic analyses for ANGRA 2. The fluid dynamic analysis allows, through computer codes to simulate and quantify the loads resulting from fluid dynamic transients caused by postulated ruptures or operational transients, in the piping of the safety systems and of the important operational systems. (author)
Beall, M. H.; van den Wijngaard, J. P. H. M.; van Gemert, M. J. C.; Ross, M. G.
2007-01-01
Water arrives in the mammalian gestation from the maternal circulation across the placenta. It then circulates between the fetal water compartments, including the fetal body compartments, the placenta and the amniotic fluid. Amniotic fluid is created by the flow of fluid from the fetal lung and
Indian Academy of Sciences (India)
BOOK I REVIEW. Fundamental Fluid. Mechanics. Good Text Book Material. V H Arakeri. Fluid Mechanics for Engineers. P N Chatterjee. MacMillan India Limited. Vol. 1, pp. 367. RS.143. Vo1.2, pp.306. RS.130. Fluid Mechanics for Engineers in two vol- umes by P N Chatterjee contains standard material for a first level ...
Michell, S J
2013-01-01
Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of th
Fluid inclusion geothermometry
Cunningham, C.G.
1977-01-01
Fluid inclusions trapped within crystals either during growth or at a later time provide many clues to the histories of rocks and ores. Estimates of fluid-inclusion homogenization temperature and density can be obtained using a petrographic microscope with thin sections, and they can be refined using heating and freezing stages. Fluid inclusion studies, used in conjunction with paragenetic studies, can provide direct data on the time and space variations of parameters such as temperature, pressure, density, and composition of fluids in geologic environments. Changes in these parameters directly affect the fugacity, composition, and pH of fluids, thus directly influencing localization of ore metals. ?? 1977 Ferdinand Enke Verlag Stuttgart.
Miller, Jan D; Hupka, Jan; Aranowski, Robert
2012-11-20
A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.
Intravenous fluids: balancing solutions.
Hoorn, Ewout J
2017-08-01
The topic of intravenous (IV) fluids may be regarded as "reverse nephrology", because nephrologists usually treat to remove fluids rather than to infuse them. However, because nephrology is deeply rooted in fluid, electrolyte, and acid-base balance, IV fluids belong in the realm of our specialty. The field of IV fluid therapy is in motion due to the increasing use of balanced crystalloids, partly fueled by the advent of new solutions. This review aims to capture these recent developments by critically evaluating the current evidence base. It will review both indications and complications of IV fluid therapy, including the characteristics of the currently available solutions. It will also cover the use of IV fluids in specific settings such as kidney transplantation and pediatrics. Finally, this review will address the pathogenesis of saline-induced hyperchloremic acidosis, its potential effect on outcomes, and the question if this should lead to a definitive switch to balanced solutions.
Angel, S. Michael
1989-01-01
Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.
Metalworking and machining fluids
Erdemir, Ali; Sykora, Frank; Dorbeck, Mark
2010-10-12
Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.
Electrorheological fluids and methods
Green, Peter F.; McIntyre, Ernest C.
2015-06-02
Electrorheological fluids and methods include changes in liquid-like materials that can flow like milk and subsequently form solid-like structures under applied electric fields; e.g., about 1 kV/mm. Such fluids can be used in various ways as smart suspensions, including uses in automotive, defense, and civil engineering applications. Electrorheological fluids and methods include one or more polar molecule substituted polyhedral silsesquioxanes (e.g., sulfonated polyhedral silsesquioxanes) and one or more oils (e.g., silicone oil), where the fluid can be subjected to an electric field.
International Nuclear Information System (INIS)
Anon.
1986-01-01
Plasma and fluid physics includes the fields of fusion research and space investigation. This book discusses the most important advances in these areas over the past decade and recommends a stronger commitment to basic research in plasma and fluid physics. The book recommends that plasma and fluid physics be included in physics curriculums because of their increasing importance in energy and defense. The book also lists recent accomplishments in the fields of general plasma physics, fusion plasma confinement and heating, space and astrophysical plasmas, and fluid physics and lists research opportunities in these areas. A funding summary explains how research monies are allocated and suggests ways to improve their effectiveness
Nedyalkov, Ivaylo
2016-11-01
After fifteen years of experience in rap, and ten in fluid mechanics, "I am coming here with high-Reynolds-number stamina; I can beat these rap folks whose flows are... laminar." The rap relates fluid flows to rap flows. The fluid concepts presented in the song have varying complexity and the listeners/viewers will be encouraged to read the explanations on a site dedicated to the rap. The music video will provide an opportunity to share high-quality fluid visualizations with a general audience. This talk will present the rap lyrics, the vision for the video, and the strategy for outreach. Suggestions and comments will be welcomed.
Fiszdon, W
1965-01-01
Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co
Elleman, Daniel D. (Inventor); Wang, Taylor G. (Inventor)
1989-01-01
Systems are described for using multiple closely-packed spheres. In one system for passing fluid, a multiplicity of spheres lie within a container, with all of the spheres having the same outside diameter and with the spheres being closely nested in one another to create multiple interstitial passages of a known size and configuration and smooth walls. The container has an inlet and outlet for passing fluid through the interstitial passages formed between the nested spheres. The small interstitial passages can be used to filter out material, especially biological material such as cells in a fluid, where the cells can be easily destroyed if passed across sharp edges. The outer surface of the spheres can contain a material that absorbs a constitutent in the flowing fluid, such as a particular contamination gas, or can contain a catalyst to chemically react the fluid passing therethrough, the use of multiple small spheres assuring a large area of contact of these surfaces of the spheres with the fluid. In a system for storing and releasing a fluid such as hydrogen as a fuel, the spheres can include a hollow shell containing the fluid to be stored, and located within a compressable container that can be compressed to break the shells and release the stored fluid.
Shivamoggi, Bhimsen K
1998-01-01
"Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition. Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses
Energy Technology Data Exchange (ETDEWEB)
Liu, T.K.
1980-03-01
The thermogravimetric method was used to study high temperature corrosion under SO/sub 2//O/sub 2/ atmosphere applied to Armco 18SR alloys with different heat treatment histories, Armco T310 and pure chromium between 750 and 1100/sup 0/C. The weight gain follows the parabolic rate law. The volatilization of the protective Cr/sub 2/O/sub 3/ layer via formation of CrO/sub 3/ was taken into account above 900/sup 0/C for long time runs. The parabolic rate and the volatilization rate, derived from fitting the experimental data to the modified Tedmon's non-linear model, were correlated using the Arrhenius equation. Armco 18SR-C has the best corrosion resistance of the Armco 18SR alloys. Armco T310 is not protective at high temperatures. The available rate data on the oxidation of chromium oxide, chlorination of chromium, oxidation-chlorination of chromium oxide, chlorination of nickel and chlorination of iron were found to be predictable. The calculation of high temperature volatilization rate was performed using the available fluid correlation equations and the Lennard-Jones parameters derived from the molecule with similar structure and from the low temperature viscosity measurement. The lower predicted volatilization rate is due to the use of the Chapman-Enskog equation with the Lennard-Jones parameters mostly derived from the low temperature viscosity measurement. This was substantiated by comparing the reliable high temperature diffusion rate in the literature with the above mentioned calculational method. The experimental volatilization rates of this study are compared with the other related studies and the mass transfer predictions.
International Nuclear Information System (INIS)
Bayly, B.
1991-01-01
Fluids are basically very simple things. The fluids encountered all the time - air, water, milk, coffee, etc. - are undramatic. One blob of a given fluid looks much like any other, except for such gross properties as volume or mass. Of course, blobs of fluid come in different shapes. However, it's easy to change the shape of a blob of fluid, with the result that we rarely think of the shape of a fluid blob as a defining property. In fact, a blob that starts with one shape can be deformed into almost any other shape, with arbitrarily small input of energy. When one talks about lumps of a solid, in contrast, shape is important. This is because it takes work, i.e., energy, to change the shape of a solid. Making a small deformation from some rest configuration takes a small amount of energy, and a large deformation takes a lot of energy. Sometimes, as in idealized elastic systems, the required energy goes to infinity as the deformation becomes unbounded. Real solids usually break if you deform them enough; all subsequent deformations cost no energy. Basically, a finite deformation requires finite energy. Complexity arises in fluid systems because the shape of a blob of fluid is indeterminate. Nothing prevents an initially simple fluid blob from deforming into the weirdest shape imaginable. It is the absence of any kind of blob-shape constraint that allows complexity to enter fluid science. During these lectures the author briefly describes a few areas in which complexity arises and has to be dealt with. These lectures will be roughly divided as follows: (1) physical and mathematical description of fluids and flows; (2) flow transport and ergodic theory; (3) magnetic dynamos and related problems; (4) flow instabilities; (5) turbulence
Geerts, Bart
2011-01-01
Patients in the intensive care unit (ICU) and in the peri-operative phase are dependent on physicians and nurses for their fluid intake. Volume status optimization is required to maximize oxygen delivery to vital organs. Unnecessary fluid administration can, however, lead to general and pulmonary
Indian Academy of Sciences (India)
stationary fluid only normal stress (pressure) is present and tangential stresses are absent. In this article we ... delayed the discovery of the principle by a few centuries! Archimedes formulated his laws on buoyancy ... stress in the study of mechanics of solids and fluids (see Boxl). Just as temperature and density, stress can ...
Applications of fluid dynamics
International Nuclear Information System (INIS)
Round, G.R.; Garg, V.K.
1986-01-01
This book describes flexible and practical approach to learning the basics of fluid dynamics. Each chapter is a self-contained work session and includes a fluid dynamics concept, an explanation of the principles involved, an illustration of their application and references on where more detailed discussions can be found
DEFF Research Database (Denmark)
Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J.
2013-01-01
Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical secr...
Culture - peritoneal fluid ... sent to the laboratory for Gram stain and culture. The sample is checked to see if bacteria ... The peritoneal fluid culture may be negative, even if you have ... diagnosis of peritonitis is based on other factors, in addition ...
Collyer, A. A.
1973-01-01
Discusses theories underlying Newtonian and non-Newtonian fluids by explaining flow curves exhibited by plastic, shear-thining, and shear-thickening fluids and Bingham plastic materials. Indicates that the exact mechanism governing shear-thickening behaviors is a problem of further study. (CC)
Relativistic thermodynamics of fluids
International Nuclear Information System (INIS)
Souriau, J.-M.
1977-05-01
The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr
International Nuclear Information System (INIS)
Einzel, D.; Parpia, J.M.
1997-01-01
In this review the authors describe theoretical and experimental investigations of general slip phenomena in context with the flow of the quantum liquids 3 He, 4 He and their mixtures at low temperatures. The phenomena of slip is related to a boundary effect. It occurs when sufficiently dilute gases flow along the wall of an experimental cell. A fluid is said to exhibit slip when the fluid velocity at the wall is not equal to the wall's velocity. Such a situation occurs whenever the wall reflects the fluid particles in a specular-like manner, and/or if the fluid is describable in terms of a dilute ordinary gas (classical fluid) or a dilute gas of thermal excitations (quantum fluid). The slip effect in quantum fluids is discussed theoretically on the basis of generalized Landau-Boltzmann transport equations and generalized to apply to a regime of ballistic motion of the quasiparticles in the fluid. The central result is that the transport coefficient of bulk shear viscosity, which typically enters in the Poiseuille flow resistance and the transverse acoustic impedance, has to be replaced by geometry dependent effective viscosity, which depends on the details of the interaction of the fluid particles with the cell walls. The theoretical results are compared with various experimental data obtained in different geometries and for both Bose and Fermi quantum fluids. Good agreement between experiment and theory is found particularly in the case of pure normal and superfluid 3 He, with discrepancies probably arising because of deficiencies in characterization of the experimental surfaces
An Analytical Model for Adsorption and Diffusion of Atoms/Ions on Graphene Surface
Directory of Open Access Journals (Sweden)
Yan-Zi Yu
2015-01-01
Full Text Available Theoretical investigations are made on adsorption and diffusion of atoms/ions on graphene surface based on an analytical continuous model. An atom/ion interacts with every carbon atom of graphene through a pairwise potential which can be approximated by the Lennard-Jones (L-J potential. Using the Fourier expansion of the interaction potential, the total interaction energy between the adsorption atom/ion and a monolayer graphene is derived. The energy-distance relationships in the normal and lateral directions for varied atoms/ions, including gold atom (Au, platinum atom (Pt, manganese ion (Mn2+, sodium ion (Na1+, and lithium-ion (Li1+, on monolayer graphene surface are analyzed. The equilibrium position and binding energy of the atoms/ions at three particular adsorption sites (hollow, bridge, and top are calculated, and the adsorption stability is discussed. The results show that H-site is the most stable adsorption site, which is in agreement with the results of other literatures. What is more, the periodic interaction energy and interaction forces of lithium-ion diffusing along specific paths on graphene surface are also obtained and analyzed. The minimum energy barrier for diffusion is calculated. The possible applications of present study include drug delivery system (DDS, atomic scale friction, rechargeable lithium-ion graphene battery, and energy storage in carbon materials.
Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects
Directory of Open Access Journals (Sweden)
Jie-Yu Chen
2009-05-01
Full Text Available In Atomic force microscope (AFM examination of a vibrating microcantilever, the nonlinear tip-sample interaction would greatly influence the dynamics of the cantilever. In this paper, the nonlinear dynamics and chaos of a tip-sample dynamic system being run in the tapping mode (TM were investigated by considering the effects of hydrodynamic loading and squeeze film damping. The microcantilever was modeled as a spring-mass-damping system and the interaction between the tip and the sample was described by the Lennard-Jones (LJ potential. The fundamental frequency and quality factor were calculated from the transient oscillations of the microcantilever vibrating in air. Numerical simulations were carried out to study the coupled nonlinear dynamic system using the bifurcation diagram, Poincaré maps, largest Lyapunov exponent, phase portraits and time histories. Results indicated the occurrence of periodic and chaotic motions and provided a comprehensive understanding of the hydrodynamic loading of microcantilevers. It was demonstrated that the coupled dynamic system will experience complex nonlinear oscillation as the system parameters change and the effect of squeeze film damping is not negligible on the micro-scale.
Lushnikov, A. A.; Kulmala, M.
1998-09-01
The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersaturation of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the particle formation-growth process is studied starting with the definition of dimers as bound states of two associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor over all classical bound states, and the equilibrium population of dimers is found for two types of intermolecular forces: the Lennard-Jones (LJ) and rectangular well+hard core (RW) potentials. The principle of detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation-growth process is then investigated under the assumption that the trimers are stable with respect to evaporation and that the condensation rate is a power function of the particle mass. If the power exponent λ=n/(n+1) (n is a non-negative integer), the kinetics of the process is described by a finite set of moments of particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter than that of the condensational growth, n+2 universal functions of a nondimensional time define the kinetic process. These functions are calculated for λ=2/3 (gas-to-particle conversion in the free molecular regime) and λ=1/2 (formation of islands on surfaces).
Thermodynamics of confined gallium clusters.
Chandrachud, Prachi
2015-11-11
We report the results of ab initio molecular dynamics simulations of Ga13 and Ga17 clusters confined inside carbon nanotubes with different diameters. The cluster-tube interaction is simulated by the Lennard-Jones (LJ) potential. We discuss the geometries, the nature of the bonding and the thermodynamics under confinement. The geometries as well as the isomer spectra of both the clusters are significantly affected. The degree of confinement decides the dimensionality of the clusters. We observe that a number of low-energy isomers appear under moderate confinement while some isomers seen in the free space disappear. Our finite-temperature simulations bring out interesting aspects, namely that the heat capacity curve is flat, even though the ground state is symmetric. Such a flat nature indicates that the phase change is continuous. This effect is due to the restricted phase space available to the system. These observations are supported by the mean square displacement of individual atoms, which are significantly smaller than in free space. The nature of the bonding is found to be approximately jellium-like. Finally we note the relevance of the work to the problem of single file diffusion for the case of the highest confinement.
Stability of surface nanobubbles
Maheshwari, Shantanu; van der Hoef, Martin; Zhang, Xuehua; Lohse, Detlef
2015-11-01
We have studied the stability and dissolution of surface nanobubbles on the chemical heterogenous surface by performing Molecular Dynamics (MD) simulations of binary mixture consists of Lennard-Jones (LJ) particles. Recently our group has derived the exact expression for equilibrium contact angle of surface nanobubbles as a function of oversaturation of the gas concentration in bulk liquid and the lateral length of bubble. It has been showed that the contact line pinning and the oversaturation of gas concentration in bulk liquid is crucial in the stability of surface nanobubbles. Our simulations showed that how pinning of the three-phase contact line on the chemical heterogenous surface lead to the stability of the nanobubble. We have calculated the equilibrium contact angle by varying the gas concentration in bulk liquid and the lateral length of the bubble. Our results showed that the equilibrium contact angle follows the expression derived analytically by our group. We have also studied the bubble dissolution dynamics and showed the ''stick-jump'' mechanism which was also observed experimentally in case of dissolution of nanodrops.
Li, Yongliang; Jiang, Tao; Lin, Shaoliang; Lin, Jiaping; Cai, Chunhua; Zhu, Xingyu
2015-05-01
Self-assembly behavior of a mixture system containing rod-coil block copolymers and rigid homopolymers was investigated by using Brownian dynamics simulations. The morphologies of formed hierarchical self-assemblies were found to be dependent on the Lennard-Jones (LJ) interaction ɛRR between rod blocks, lengths of rod and coil blocks in copolymer, and mixture ratio of block copolymers to homopolymers. As the ɛRR value decreases, the self-assembled structures of mixtures are transformed from an abacus-like structure to a helical structure, to a plain fiber, and finally are broken into unimers. The order parameter of rod blocks was calculated to confirm the structure transition. Through varying the length of rod and coil blocks, the regions of thermodynamic stability of abacus, helix, plain fiber, and unimers were mapped. Moreover, it was discovered that two levels of rod block ordering exist in the helices. The block copolymers are helically wrapped on the homopolymer bundles to form helical string, while the rod blocks are twistingly packed inside the string. In addition, the simulation results are in good agreement with experimental observations. The present work reveals the mechanism behind the formation of helical (experimentally super-helical) structures and may provide useful information for design and preparation of the complex structures.
Macriss, R. A.; Zawacki, T. S.
Development of improved data for the thermodynamic, transport and physical properties of absorption fluids were studied. A specific objective of this phase of the study is to compile, catalog and coarse screen the available US data of known absorption fluid systems and publish it as a first edition document to be distributed to manufacturers, researchers and others active in absorption heat pump activities. The methodology and findings of the compilation, cataloguing and coarse screening of the available US data on absorption fluid properties and presents current status and future work on this project are summarized. Both in house file and literature searches were undertaken to obtain available US publications with pertinent physical, thermodynamic and transport properties data for absorption fluids. Cross checks of literature searches were also made, using available published bibliographies and literature review articles, to eliminate secondary sources for the data and include only original sources and manuscripts. The properties of these fluids relate to the liquid and/or vapor state, as encountered in normal operation of absorption equipment employing such fluids, and to the crystallization boundary of the liquid phase, where applicable. The actual data were systematically classified according to the type of fluid and property, as well as temperature, pressure and concentration ranges over which data were available. Data were sought for 14 different properties: Vapor-Liquid Equilibria, Crystallization Temperature, Corrosion Characteristics, Heat of Mixing, Liquid-Phase-Densities, Vapor-Liquid-Phase Enthalpies, Specific Heat, Stability, Viscosity, Mass Transfer Rate, Heat Transfer Rate, Thermal Conductivity, Flammability, and Toxicity.
FRACTURING FLUID CHARACTERIZATION FACILITY
Energy Technology Data Exchange (ETDEWEB)
Subhash Shah
2000-08-01
Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.
Bloodworth, Robert; Wendt, Eckhard
Recent improvements in the physical understanding of ER fluids have led to the rational design of new ER materials with improved properties. This paper gives an overview of several recent developments in the formulation of ER fluids, concentrating on new particulate phases for ER dispersions. Examples of homogeneous ER fluids are also discussed. The trend leading to designed ER dispersions is demonstrated by a new class of electrorheological fluids based on non-aqueous polyurethane dispersions. The fluids exhibit an attractive combination of properties: low viscosity, high ER effect, and low conductivity. The dispersed phase consists of a specially developed polyurethane elastomer which solvates and stabilizes metal salts. The polymer network density influences the mobility of the dissolved ions, allowing a surprising degree of control over the ER effect. Properties such as the field strength dependence of the ER-effect, switching response, and conductivity of these fluids correlate directly with changes in the polymer structure. Electrorheological measurements in a couette viscometer (shear-mode) and in a model shock absorber (flow-mode) using a commercial polyurethane-based fluid show that the ER effect is also dependent upon the shearing geometry.
Cerebral spinal fluid (CSF) collection
... ency/article/003428.htm Cerebral spinal fluid (CSF) collection To use the sharing features on this page, please enable JavaScript. Cerebrospinal fluid (CSF) collection is a test to look at the fluid ...
Fluid movement and creativity.
Slepian, Michael L; Ambady, Nalini
2012-11-01
Cognitive scientists describe creativity as fluid thought. Drawing from findings on gesture and embodied cognition, we hypothesized that the physical experience of fluidity, relative to nonfluidity, would lead to more fluid, creative thought. Across 3 experiments, fluid arm movement led to enhanced creativity in 3 domains: creative generation, cognitive flexibility, and remote associations. Alternative mechanisms such as enhanced mood and motivation were also examined. These results suggest that creativity can be influenced by certain types of physical movement. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
Fundamentals of fluid lubrication
Hamrock, Bernard J.
1991-01-01
The aim is to coordinate the topics of design, engineering dynamics, and fluid dynamics in order to aid researchers in the area of fluid film lubrication. The lubrication principles that are covered can serve as a basis for the engineering design of machine elements. The fundamentals of fluid film lubrication are presented clearly so that students that use the book will have confidence in their ability to apply these principles to a wide range of lubrication situations. Some guidance on applying these fundamentals to the solution of engineering problems is also provided.
Brown, M.; Fotheringham, J. D.; Hoyes, T. J.; Mortier, R. M.; Orszulik, S. T.; Randles, S. J.; Stroud, P. M.
The chemical nature and technology of the main synthetic lubricant base fluids is described, covering polyalphaolefins, alkylated aromatics, gas-to-liquid (GTL) base fluids, polybutenes, aliphatic diesters, polyolesters, polyalkylene glycols or PAGs and phosphate esters.Other synthetic lubricant base oils such as the silicones, borate esters, perfluoroethers and polyphenylene ethers are considered to have restricted applications due to either high cost or performance limitations and are not considered here.Each of the main synthetic base fluids is described for their chemical and physical properties, manufacture and production, their chemistry, key properties, applications and their implications when used in the environment.
... to identify organisms that cause infection. Pericardial fluid gram stain is a related topic. How the Test is ... member of Hi-Ethics and subscribes to the principles of the Health on the Net Foundation (www. ...
Bird, R. Byron
1980-01-01
Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)
Modeling Fluid Structure Interaction
National Research Council Canada - National Science Library
Benaroya, Haym
2000-01-01
The principal goal of this program is on integrating experiments with analytical modeling to develop physics-based reduced-order analytical models of nonlinear fluid-structure interactions in articulated naval platforms...
... fluid is a brightly colored liquid made of methanol, a poisonous alcohol. Sometimes, small amounts of other toxic alcohols, such as ethylene glycol, are added to the mixture. Some young children ...
Amniotic fluid inflammatory cytokines
DEFF Research Database (Denmark)
Abdallah, Morsi; Larsen, Nanna; Grove, Jakob
2013-01-01
The aim of the study was to analyze cytokine profiles in amniotic fluid (AF) samples of children developing autism spectrum disorders (ASD) and controls, adjusting for maternal autoimmune disorders and maternal infections during pregnancy.......The aim of the study was to analyze cytokine profiles in amniotic fluid (AF) samples of children developing autism spectrum disorders (ASD) and controls, adjusting for maternal autoimmune disorders and maternal infections during pregnancy....
[Diagnosis: synovial fluid analysis].
Gallo Vallejo, Francisco Javier; Giner Ruiz, Vicente
2014-01-01
Synovial fluid analysis in rheumatological diseases allows a more accurate diagnosis in some entities, mainly infectious and microcrystalline arthritis. Examination of synovial fluid in patients with osteoarthritis is useful if a differential diagnosis will be performed with other processes and to distinguish between inflammatory and non-inflammatory forms. Joint aspiration is a diagnostic and sometimes therapeutic procedure that is available to primary care physicians. Copyright © 2014 Elsevier España, S.L. All rights reserved.
Fernandes, Nikhil
2010-01-01
We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like). © 2010 The Royal Society of Chemistry.
Thermostating highly confined fluids.
Bernardi, Stefano; Todd, B D; Searles, Debra J
2010-06-28
In this work we show how different use of thermostating devices and modeling of walls influence the mechanical and dynamical properties of confined nanofluids. We consider a two dimensional fluid undergoing Couette flow using nonequilibrium molecular dynamics simulations. Because the system is highly inhomogeneous, the density shows strong fluctuations across the channel. We compare the dynamics produced by applying a thermostating device directly to the fluid with that obtained when the wall is thermostated, considering also the effects of using rigid walls. This comparison involves an analysis of the chaoticity of the fluid and evaluation of mechanical properties across the channel. We look at two thermostating devices with either rigid or vibrating atomic walls and compare them with a system only thermostated by conduction through vibrating atomic walls. Sensitive changes are observed in the xy component of the pressure tensor, streaming velocity, and density across the pore and the Lyapunov localization of the fluid. We also find that the fluid slip can be significantly reduced by rigid walls. Our results suggest caution in interpreting the results of systems in which fluid atoms are thermostated and/or wall atoms are constrained to be rigid, such as, for example, water inside carbon nanotubes.
statistical fluid theory for associating fluids containing alternating ...
Indian Academy of Sciences (India)
Abstract. Statistical associating fluid theory of homonuclear dimerized chain fluids and homonuclear monomer-dimer mixture chain fluids are extended to fluids containing al- ternating heteronuclear chain molecules separately. The proposed models account for the appropriate site-site correlation functions at contact.
Two-phase cooling fluids; Les fluides frigoporteurs diphasiques
Energy Technology Data Exchange (ETDEWEB)
Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)
1997-12-31
In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry
Viscous Flow with Large Fluid-Fluid Interface Displacement
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz; Hassager, Ole; Saasen, Arild
1998-01-01
The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3D transient finite element program to simulate multiple fluid flows with fluid-fluid interface or surface displacements. The description of fluid interfaces includes variable interfacial tension, and the formulation...... is useful in the simulation of low and intermediate Reynolds number viscous flow. The displacement of two immiscible Newtonian fluids in a vertical (concentric and eccentric) annulus and a (vertical and inclined)tube is simulated....
Pramana – Journal of Physics | Indian Academy of Sciences
Indian Academy of Sciences (India)
dimensional spatial inhomogeneity is parallel to the direction of propagation. pp 269-279 Research Articles. Structures and autocorrelation functions of liquid Al and Mg modelled via Lennard-Jones potential from molecular dynamics simulation.
A free energy study of the liquid-liquid phase transition of the Jagla ...
Indian Academy of Sciences (India)
Appendix” preliminary free energy surface calculations for select parameterizations of the generalized family of Jagla potentials spanning from the original (anomalous,water-like) Jagla model to the Lennard-Jones model. These calculations ...
Gray, Harold E.; McLaurin, Felder M.; Ortiz, Monico; Huth, William A.
1996-01-01
A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.
Saintillan, David
2018-01-01
An active fluid denotes a viscous suspension of particles, cells, or macromolecules able to convert chemical energy into mechanical work by generating stresses on the microscale. By virtue of this internal energy conversion, these systems display unusual macroscopic rheological signatures, including a curious transition to an apparent superfluid-like state where internal activity exactly compensates viscous dissipation. These behaviors are unlike those of classical complex fluids and result from the coupling of particle configurations with both externally applied flows and internally generated fluid disturbances. Focusing on the well-studied example of a suspension of microswimmers, this review summarizes recent experiments, models, and simulations in this area and highlights the critical role played by the rheological response of these active materials in a multitude of phenomena, from the enhanced transport of passive suspended objects to the emergence of spontaneous flows and collective motion.
Magoules, Frederic
2011-01-01
Exploring new variations of classical methods as well as recent approaches appearing in the field, Computational Fluid Dynamics demonstrates the extensive use of numerical techniques and mathematical models in fluid mechanics. It presents various numerical methods, including finite volume, finite difference, finite element, spectral, smoothed particle hydrodynamics (SPH), mixed-element-volume, and free surface flow.Taking a unified point of view, the book first introduces the basis of finite volume, weighted residual, and spectral approaches. The contributors present the SPH method, a novel ap
International Nuclear Information System (INIS)
Straumann, N.
1976-01-01
The Thomas calculation of the energy-momentum tensor of radiation quanta, which are nearly in thermal equilibrium with a relativistically moving material medium, is simplified and extended to more general transport equations. It is shown that the fluid (matter plus radiation) behaves, independently of the detailed form of the Boltzmann equation, like a relativistic imperfect fluid (in the formulation of Eckart). General expressions for the coefficients of heat conduction, shear viscosity and bulk viscosity are given. Published formulae for these coefficients in special cases are corrected. (Auth.)
Basniev, Kaplan S; Chilingar, George V 0
2012-01-01
The mechanics of fluid flow is a fundamental engineering discipline explaining both natural phenomena and human-induced processes, and a thorough understanding of it is central to the operations of the oil and gas industry. This book, written by some of the world's best-known and respected petroleum engineers, covers the concepts, theories, and applications of the mechanics of fluid flow for the veteran engineer working in the field and the student, alike. It is a must-have for any engineer working in the oil and gas industry.
Marques, Jorge M C; Pereira, Francisco B
2013-03-05
We performed a global minimum search of mixed rare-gas clusters by applying an evolutionary algorithm (EA), which was recently proposed for binary atomic systems (Marques and Pereira, Chem. Phys. Lett. 2010, 485, 211). Before being applied to the potentials used in this work, the EA was further tested against results previously reported for the Ar(N)Xe(38-N) clusters and several new putative global minima were discovered. We employed either simple Lennard-Jones (LJ) potentials or more realistic functions to describe pair interactions in Ar(N)Kr(38-N), Ar(N)Xe(38-N), and Kr(N)Xe(38-N) clusters. The long-range tail of the pair-potentials shows some influence on the energetic features and shape of the structure of clusters. In turn, core-shell type structures are mostly observed for global minima of the binary rare-gas clusters, for both accurate and LJ potentials. However, the long-range tail of the potential may have influence on the type of atoms that segregate on the surface or form the core of the cluster. While relevant differences for the preferential site occupancy occur between the two potentials for Ar(N)Kr(38-N) (for N > 21), the type of atoms that segregate on the surface for Ar(N)Xe(38-N) and Kr(N)Xe(38-N) clusters is unaffected by the accuracy of the long-range part of the interaction in almost all cases. Moreover, the global minimum search for model-potentials in binary systems reveals that the surface-site occupancy is mainly determined by the combination of two parameters: the size ratio of the two types of particles forming the cluster and the minimum-energy ratio corresponding to the pair-interactions between unlike atoms. Copyright © 2012 Wiley Periodicals, Inc.
A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water
Energy Technology Data Exchange (ETDEWEB)
Schwörer, Magnus; Wichmann, Christoph; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)
2016-03-21
The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As QM approach to NMA we choose grid-based density functional theory (DFT). For the surrounding MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM) model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole, five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding GP6P liquid with reference data obtained from a “first-principles” DFT-MD simulation. Finally, IR spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific frequency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD simulations with GP6P and with the optimized LJ parameters then excellently predict the effects of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous solution are now at hand.
A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water.
Schwörer, Magnus; Wichmann, Christoph; Tavan, Paul
2016-03-21
The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As QM approach to NMA we choose grid-based density functional theory (DFT). For the surrounding MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM) model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole, five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding GP6P liquid with reference data obtained from a "first-principles" DFT-MD simulation. Finally, IR spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific frequency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD simulations with GP6P and with the optimized LJ parameters then excellently predict the effects of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous solution are now at hand.
Indian Academy of Sciences (India)
umes by P N Chatterjee contains standard material for a first level course in fluid me- chanics for Civil, Mechanical, Aeronautical and Chemical Engineering students. It is however not suitable for Applied Science students like those majoring in Physics or. Mathematics and is not a good reference book for practising ...
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Incompressible ionized fluid mixtures
Czech Academy of Sciences Publication Activity Database
Roubíček, Tomáš
2006-01-01
Roč. 17, č. 7 (2006), s. 493-509 ISSN 0935-1175 Institutional research plan: CEZ:AV0Z10750506 Keywords : chemically reacting fluids * Navier-Stokes * Nernst-Planck * Possion equation s * heat equation s Subject RIV: BA - General Mathematics Impact factor: 0.954, year: 2006
Wadhwa, Navish; Jung, Sunghwan; Vlachos, Pavlos
2012-11-01
Contrary to intuition, free fluid jets can sometimes ``bounce'' off each other upon collision, due to an entrained air film that keeps them separated. So far, there have only been a few descriptive studies of bouncing jets, since the first recorded observation by Rayleigh more than a century ago. We present a quantitative investigation of non-coalescence in jets of same fluid upon an oblique collision. Using a simple experimental set-up, we carried out a parametric study of the bouncing jets by varying the jet diameter, velocity, angle of inclination and fluid viscosity. Our results reveal a scaling law for the contact time of bouncing jets. We further investigate the transition of colliding jets from non-coalescence to coalescence, which seems to be caused by instability of the fluid interface. A dimensionless parameter, which is a function of the Normal Weber Number, Normal Reynolds Number and the angle of inclination of the jets, quantitatively dictates the transition. Presently at Department of Physics, Danish Technical University, Denmark.
Relativistic viscoelastic fluid mechanics
International Nuclear Information System (INIS)
Fukuma, Masafumi; Sakatani, Yuho
2011-01-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Cryogenic Fluid Management Facility
Eberhardt, R. N.; Bailey, W. J.
1985-01-01
The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).
Touret, J.L.R.
2001-01-01
Basic principles for the study of fluid inclusions in metamorphic rocks are reviewed and illustrated. A major problem relates to the number of inclusions, possibly formed on a wide range of P-T conditions, having also suffered, in most cases, extensive changes after initial trapping. The
Charged fluids with symmetries
Indian Academy of Sciences (India)
metric tensor field and generate constants of the motion along null geodesics for massless particles. Conformal symmetries arise in various physical applications. The existence of conformal symmetries in relativistic cosmological models, with restrictions on the matter content and fluid four-velocity, have been extensively ...
Editorial Special Issue on Fluid Mechanics and Fluid Power (FMFP ...
Indian Academy of Sciences (India)
This special issue of Sadhana contains selected papers from two conferences related to fluid mechanics held in India recently, Fluid Mechanics and Fluid Power conference at NIT, Hamirpur, and an International Union of Theoretical and Applied Mechanics (IUTAM) symposium held at. Jawaharlal Nehru Centre for ...
Directory of Open Access Journals (Sweden)
Caimmi R.
2007-01-01
Full Text Available The current paper is aimed at getting more insight on three main points concerning large-scale astrophysical systems, namely: (i formulation of tensor virial equations from the standpoint of analytical mechanics; (ii investigation on the role of systematic and random motions with respect to virial equilibrium configurations; (iii determination of extent to which systematic and random motions are equivalent in flattening or elongating the shape of a mass distribution. The tensor virial equations are formulated regardless of the nature of the system and its constituents, by generalizing and extending a procedure used for the scalar virial equations in presence of discrete subunits (Landau and Lifchitz 1966. In particular, the self potential-energy tensor is shown to be symmetric with respect to the exchange of the indices, (Epotpq = (Epotqp. Then the results are extended to continuous mass distributions. The role of systematic and random motions in collisionless, ideal, self-gravitating fluids is analysed in detail including radial and tangential velocity dispersion on the equatorial plane, and the related mean angular velocity, Ω, is conceived as a figure rotation. R3 fluids are defined as ideal, self-gravitating fluids in virial equilibrium, with systematic rotation around a principal axis of inertia, taken to be x3. The related virial equations are written in terms of the moment of inertia tensor, Ipq, the self potential-energy tensor, (Epotpq, and the generalized anisotropy tensor, ζpq (Caimmi and Marmo 2005, Caimmi 2006a. Additional effort is devoted to the investigation of the properties of axisymmetric and triaxial configurations. A unified theory of systematic and random motions is developed for R3 fluids, taking into consideration imaginary rotation (Caimmi 1996b, 2006a, and a number of theorems previously stated for homeoidally striated Jacobi ellipsoids (Caimmi 2006a are extended to the more general case of R3 fluids. The effect of
Microgravity Fluids for Biology, Workshop
Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.
2013-01-01
Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.
Handbook of hydraulic fluid technology
Totten, George E
2011-01-01
""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h
Recording fluid currents by holography
Heflinger, L. O.; Wuerker, R. F.
1980-01-01
Convection in fluids can be studied with aid of holographic apparatus that reveals three-dimensional motion of liquid. Apparatus eliminates images of fixed particles such as dust on windows and lenses, which might mask behavior of moving fluid particles. Holographic apparatus was developed for experiments on fluid convection cells under zero gravity. Principle is adaptable to study of fluid processes-for example, electrochemical plating and combustion in automotive engines.
Oscillating fluid power generator
Morris, David C
2014-02-25
A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.
COUPLED CHEMOTAXIS FLUID MODEL
LORZ, ALEXANDER
2010-06-01
We consider a model system for the collective behavior of oxygen-driven swimming bacteria in an aquatic fluid. In certain parameter regimes, such suspensions of bacteria feature large-scale convection patterns as a result of the hydrodynamic interaction between bacteria. The presented model consist of a parabolicparabolic chemotaxis system for the oxygen concentration and the bacteria density coupled to an incompressible Stokes equation for the fluid driven by a gravitational force of the heavier bacteria. We show local existence of weak solutions in a bounded domain in d, d = 2, 3 with no-flux boundary condition and in 2 in the case of inhomogeneous Dirichlet conditions for the oxygen. © 2010 World Scientific Publishing Company.
Fluid dynamics an introduction
Rieutord, Michel
2015-01-01
This book is dedicated to readers who want to learn fluid dynamics from the beginning. It assumes a basic level of mathematics knowledge that would correspond to that of most second-year undergraduate physics students and examines fluid dynamics from a physicist’s perspective. As such, the examples used primarily come from our environment on Earth and, where possible, from astrophysics. The text is arranged in a progressive and educational format, aimed at leading readers from the simplest basics to more complex matters like turbulence and magnetohydrodynamics. Exercises at the end of each chapter help readers to test their understanding of the subject (solutions are provided at the end of the book), and a special chapter is devoted to introducing selected aspects of mathematics that beginners may not be familiar with, so as to make the book self-contained.
Electrorheologic fluids; Fluidos electroreologicos
Energy Technology Data Exchange (ETDEWEB)
Rejon G, Leonardo; Lopez G, Francisco; Montoya T, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Manero B, Octavio [Instituto de Investigaciones en Materiales, UNAM.(Mexico)
2003-07-01
The present article has as an objective to offer a review of the research work made in the Instituto de Investigaciones Electricas (IIE) on the study of the electrorheologic fluids whose flow properties can abruptly change in the presence of an electric field when this is induced by a direct current. The electrorheologic fluids have their main application in the manufacture of self-controlling damping systems. [Spanish] El presente articulo tiene por objetivo ofrecer una resena de los trabajos de investigacion realizados en el Instituto de Investigaciones Electricas (IIE) sobre el estudio de los fluidos electroreologicos cuyas propiedades de flujo pueden cambiar abruptamente en presencia de un campo electrico cuando este es inducido por una corriente directa. Los fluidos electroreologicos tienen su principal aplicacion en la fabricacion de sistemas de amortiguamiento autocontrolables.
Fürthauer, S; Strempel, M; Grill, S W; Jülicher, F
2012-09-01
Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological microswimmers. Here, we derive constitutive material equations for active fluids which account for the effects of active chiral processes. We identify active contributions to the antisymmetric part of the stress as well as active angular momentum fluxes. We discuss four types of elementary chiral motors and their effects on a surrounding fluid. We show that large-scale chiral flows can result from the collective behavior of such motors even in cases where isolated motors do not create a hydrodynamic far field.
Magnetorheological Fluids and Elastomers
Ginder, John
2002-03-01
Magnetorheological (MR) materials possess mechanical or rheological properties that can be controlled by magnetic fields. MR fluids, perhaps the prototypical MR materials, comprise magnetically soft particles dispersed in polar or nonpolar liquids. The particles in these fluids align to form chains or more complex structures when a magnetic field is applied; these structures resist mechanical deformation, reversibly transforming the fluid into a weak viscoelastic solid. Other MR materials include magnetic powders, in which the magnetic particles are dispersed in air and which also become weak solids in an applied field. MR elastomers, a third class of these materials, contain magnetizable particles dispersed in elastomeric solids. These elastomers are magnetostrictive, possessing substantial field-induced modulus increases and elongations. The fascinating behavior of these materials, together with their many potential uses in the automobile and elsewhere, has motivated considerable scientific and technological progress over the last decade. While magnetic powders have been used in industrial applications for decades, the first components using MR fluids were marketed in the mid-1990s, and the first commercial automotive applications are imminent. In this presentation, I will survey the physical properties of MR materials and sketch our understanding of their origins, paying particular attention to the central role of field-induced interparticle magnetic forces and the nature and dynamics of the resulting microstructure. I will describe some possible automotive applications based on these materials, focusing on the material properties and component performance that is required. Finally, I will identify some of the open scientific and technical issues in this growing field.
Fluid circulation control device
International Nuclear Information System (INIS)
Benard, Henri; Henocque, Jean.
1982-01-01
Horizontal fluid circulation control device, of the type having a pivoting flap. This device is intended for being fitted in the pipes of hydraulic installation, particularly in a bleed and venting system of a nuclear power station shifting radioactive or contaminated liquids. The characteristic of this device is the cut-out at the top of the flap to allow the air contained in the pipes to flow freely [fr
International Nuclear Information System (INIS)
Lee, A.S.
1978-01-01
A method and apparatus are described for measuring the pressure of a fluid having characteristics that make it unsuitable for connection directly to a pressure gauge. The method is particularly suitable for the periodic measurement of the pressure of a supply of liquid Na to Na-lubricated bearings of pumps for pumping Na from a reservoir to the bearing via a filter, the reservoir being contained in a closed vessel containing an inert blanket gas, such as Ar, above the Na. (UK)
International Nuclear Information System (INIS)
Ottino, J.M.
1989-01-01
What do the eruption of Krakatau, the manufacture of puff pastry and the brightness of stars have in common? Each involves some aspect of mixing. Mixing also plays a critical role in modern technology. Chemical engineers rely on mixing to ensure that substances react properly, to produce polymer blends that exhibit unique properties and to disperse drag-reducing agents in pipelines. Yet in spite of its of its ubiquity in nature and industry, mixing is only imperfectly under-stood. Indeed, investigators cannot even settle on a common terminology: mixing is often referred to as stirring by oceanographers and geophysicists, as blending by polymer engineers and as agitation by process engineers. Regardless of what the process is called, there is little doubt that it is exceedingly complex and is found in a great variety of systems. In constructing a theory of fluid mixing, for example, one has to take into account fluids that can be miscible or partially miscible and reactive or inert, and flows that are slow and orderly or very fast and turbulent. It is therefore not surprising that no single theory can explain all aspect of mixing in fluids and that straightforward computations usually fail to capture all the important details. Still, both physical experiments and computer simulations can provide insight into the mixing process. Over the past several years the authors and his colleague have taken both approaches in an effort to increase understanding of various aspect of the process-particularly of mixing involving slow flows and viscous fluids such as oils
Downhole Fluid Analyzer Development
Energy Technology Data Exchange (ETDEWEB)
Bill Turner
2006-11-28
A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.
Pedlosky, Joseph
1979-01-01
The content of this book is based, largely, on the core curriculum in geophys ical fluid dynamics which I and my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same ti...
Pedlosky, Joseph
1982-01-01
The content of this book is based, largely, on the core curriculum in geophys ical fluid dynamics which land my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same tim...
Ogilvie, Gordon I.
2016-06-01
> These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.
International Nuclear Information System (INIS)
Mihalas, D.; Weaver, R.
1982-01-01
The purpose of this paper is to give an overview of the role of radiation in the transport of energy and momentum in a combined matter-radiation fluid. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangian formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each frame, and between frames, to 0(v/c). A detailed analysis is made to show that in situations of broad interest, terms that are formally of 0(v/c) actually dominate the solution, demonstrating that it is essential (1) to pay scrupulous attention to the question of the frame dependence in formulating the equations, and (2) to solve the equations to 0(v/c) in quite general circumstances. These points are illustrated in the context of the nonequilibrium radiation diffusion limit, and a sketch of how the Lagrangian equations are to be solved is presented
Energy Technology Data Exchange (ETDEWEB)
Butner, S.; Hjeresen, D.; Silva, L.; Spall, D.; Stephenson, R.
1991-01-01
This paper discusses a proposed multi-party research and development program which seeks to develop supercritical fluid cleaning technology as an alternative to existing solvent cleaning applications. While SCF extraction technology has been in commercial use for several years, the use of these fluids as cleaning agents poses several new technical challenges. Problems inherent in the commercialization of SCF technology include: the cleaning efficacy and compatibility of supercritical working fluids with the parts to be cleaned must be assessed for a variety of materials and components; process parameters and equipment design Have been optimized for extractive applications and must be reconsidered for application to cleaning; and co-solvents and entrainers must be identified to facilitate the removal of polar inorganic and organic contaminants, which are often not well solvated in supercritical systems. The proposed research and development program would address these issues and lead to the development and commercialization of viable SCF-based technology for precision cleaning applications. This paper provides the technical background, program scope, and delineates the responsibilities of each principal participant in the program.
Fluid transport due to nonlinear fluid-structure interaction
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
1997-01-01
This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating unidirectional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness...... of the pipe. The behavior of the system in response to lateral resonant base excitation is analysed numerically and by the use of a perturbation method (multiple scales). Exciting the pipe in the fundamental mode of vibration seems to be most effective for transferring energy from the shaker to the fluid......, whereas higher modes of vibration can be used to transport fluid with pipe vibrations of smaller amplitude. The effect of the nonlinear geometrical terms is analysed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement...
Supercritical fluid reverse micelle separation
Fulton, J.L.; Smith, R.D.
1993-11-30
A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.
Supercritical fluid reverse micelle separation
Fulton, John L.; Smith, Richard D.
1993-01-01
A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.
Hazards of organic working fluids
International Nuclear Information System (INIS)
Silberstein, S.
1977-08-01
We present several brief reviews on working fluids proposed for use in organic Rankine and bi-phase bottoming cycles. There are several general problems with many organic working fluids: flammability, toxicity, and a tendency to leak through seals. Besides, two of the proposed working fluids are to be used at temperatures above the manufacturer's maximum recommended temperature, and one is to be used in a way different from its customary usage. It may, in some cases, be more profitable to first seek alternative working fluids before committing large amounts of time and money to research projects on unsafe working fluids
Heat transfer fluids containing nanoparticles
Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.
2016-05-17
A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.
Hazards of organic working fluids
Energy Technology Data Exchange (ETDEWEB)
Silberstein, S
1977-08-01
We present several brief reviews on working fluids proposed for use in organic Rankine and bi-phase bottoming cycles. There are several general problems with many organic working fluids: flammability, toxicity, and a tendency to leak through seals. Besides, two of the proposed working fluids are to be used at temperatures above the manufacturer's maximum recommended temperature, and one is to be used in a way different from its customary usage. It may, in some cases, be more profitable to first seek alternative working fluids before committing large amounts of time and money to research projects on unsafe working fluids.
Plane waves in noncommutative fluids
Energy Technology Data Exchange (ETDEWEB)
Abdalla, M.C.B., E-mail: mabdalla@ift.unesp.br [Instituto de Física Teórica, UNESP, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271, Bloco 2, Barra-Funda, Caixa Postal 70532-2, 01156-970, São Paulo, SP (Brazil); Holender, L., E-mail: holender@ufrrj.br [Grupo de Física Teórica e Matemática Física, Departamento de Física, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Cx. Postal 23851, BR 465 Km 7, 23890-000 Seropédica, RJ (Brazil); Santos, M.A., E-mail: masantos@cce.ufes.br [Departamento de Física e Química, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferarri S/N, Goiabeiras, 29060-900 Vitória, ES (Brazil); Vancea, I.V., E-mail: ionvancea@ufrrj.br [Grupo de Física Teórica e Matemática Física, Departamento de Física, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Cx. Postal 23851, BR 465 Km 7, 23890-000 Seropédica, RJ (Brazil)
2013-08-01
We study the dynamics of the noncommutative fluid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monochromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy–momentum tensor of the plane waves is calculated.
Jollrnal of EAEA, VoL lJ, 1996
African Journals Online (AJOL)
course in the Electrical Engineering Department of the Faculty of Technology, Addis Ababa University. A list of ... important senior courses in any electrical engineering. cwTiculum. The coverage of the course, however, ... miaoprocessor fundamentals and communication systems. With reference to the outline of the first ...
Jollrnal of EAEA, VoL lJ, 1996
African Journals Online (AJOL)
OICh are also given [4-7). Most of the reference books in the sccood group, however, do not concentrate on electrical-electronic aspects of imtnmeotltioo systems. Besides, the relatively new coocq>ts of intelligent instrumentation and intelligent.
Steven MacCall: Winner of LJ's 2010 Teaching Award
Berry, John N., III
2010-01-01
This article profiles Steven L. MacCall, winner of "Library Journal's" 2010 Teaching Award. An associate professor at the School of Library and Information Studies (SLIS) at the University of Alabama, Tuscaloosa, MacCall was nominated by Kathie Popadin, known as "Kpop" to the members of her cohort in the online MLIS program at SLIS. Sixteen of…
Magnetic power piston fluid compressor
Gasser, Max G. (Inventor)
1994-01-01
A compressor with no moving parts in the traditional sense having a housing having an inlet end allowing a low pressure fluid to enter and an outlet end allowing a high pressure fluid to exit is described. Within the compressor housing is at least one compression stage to increase the pressure of the fluid within the housing. The compression stage has a quantity of magnetic powder within the housing, is supported by a screen that allows passage of the fluid, and a coil for selectively providing a magnetic field across the magnetic powder such that when the magnetic field is not present the individual particles of the powder are separated allowing the fluid to flow through the powder and when the magnetic field is present the individual particles of the powder pack together causing the powder mass to expand preventing the fluid from flowing through the powder and causing a pressure pulse to compress the fluid.
FLUID- THERMODYNAMIC AND TRANSPORT PROPERTIES OF FLUIDS (IBM PC VERSION)
Fessler, T. E.
1994-01-01
The accurate computation of the thermodynamic and transport properties of fluids is a necessity for many engineering calculations. The FLUID program was developed to calculate the thermodynamic and transport properties of pure fluids in both the liquid and gas phases. Fluid properties are calculated using a simple gas model, empirical corrections, and an efficient numerical interpolation scheme. FLUID produces results that are in very good agreement with measured values, while being much faster than older more complex programs developed for the same purpose. A Van der Waals equation of state model is used to obtain approximate state values. These values are corrected for real-gas effects by model correction factors obtained from tables based on experimental data. These tables also accurately compensate for the special circumstances which arise whenever phase conditions occur. Viscosity and thermal conductivity values are computed directly from tables. Interpolation within tables is based on Lagrange's three point formula. A set of tables must be generated for each fluid implemented. FLUID currently contains tables for nine fluids including dry air and steam. The user can add tables for any fluid for which adequate thermal property data is available. The FLUID routine is structured so that it may easily be incorporated into engineering programs. The IBM 360 version of FLUID was developed in 1977. It is written in FORTRAN IV and has been implemented on an IBM 360 with a central memory requirement of approximately 222K of 8 bit bytes. The IBM PC version of FLUID is written in Microsoft FORTRAN 77 and has been implemented on an IBM PC with a memory requirement of 128K of 8 bit bytes. The IBM PC version of FLUID was developed in 1986.
FLUID- THERMODYNAMIC AND TRANSPORT PROPERTIES OF FLUIDS (IBM VERSION)
Fessler, T. E.
1994-01-01
The accurate computation of the thermodynamic and transport properties of fluids is a necessity for many engineering calculations. The FLUID program was developed to calculate the thermodynamic and transport properties of pure fluids in both the liquid and gas phases. Fluid properties are calculated using a simple gas model, empirical corrections, and an efficient numerical interpolation scheme. FLUID produces results that are in very good agreement with measured values, while being much faster than older more complex programs developed for the same purpose. A Van der Waals equation of state model is used to obtain approximate state values. These values are corrected for real-gas effects by model correction factors obtained from tables based on experimental data. These tables also accurately compensate for the special circumstances which arise whenever phase conditions occur. Viscosity and thermal conductivity values are computed directly from tables. Interpolation within tables is based on Lagrange's three point formula. A set of tables must be generated for each fluid implemented. FLUID currently contains tables for nine fluids including dry air and steam. The user can add tables for any fluid for which adequate thermal property data is available. The FLUID routine is structured so that it may easily be incorporated into engineering programs. The IBM 360 version of FLUID was developed in 1977. It is written in FORTRAN IV and has been implemented on an IBM 360 with a central memory requirement of approximately 222K of 8 bit bytes. The IBM PC version of FLUID is written in Microsoft FORTRAN 77 and has been implemented on an IBM PC with a memory requirement of 128K of 8 bit bytes. The IBM PC version of FLUID was developed in 1986.
Acoustic concentration of particles in fluid flow
Ward, Michael D.; Kaduchak, Gregory
2010-11-23
An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
Acoustic concentration of particles in fluid flow
Ward, Michael W.; Kaduchak, Gregory
2017-08-15
Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
Directory of Open Access Journals (Sweden)
Kopáček Jaroslav
2016-01-01
Full Text Available This paper focuses on the importance of detection reliability, especially in complex fluid systems for demanding production technology. The initial criterion for assessing the reliability is the failure of object (element, which is seen as a random variable and their data (values can be processed using by the mathematical methods of theory probability and statistics. They are defined the basic indicators of reliability and their applications in calculations of serial, parallel and backed-up systems. For illustration, there are calculation examples of indicators of reliability for various elements of the system and for the selected pneumatic circuit.
Essential Computational Fluid Dynamics
Zikanov, Oleg
2011-01-01
This book serves as a complete and self-contained introduction to the principles of Computational Fluid Dynamic (CFD) analysis. It is deliberately short (at approximately 300 pages) and can be used as a text for the first part of the course of applied CFD followed by a software tutorial. The main objectives of this non-traditional format are: 1) To introduce and explain, using simple examples where possible, the principles and methods of CFD analysis and to demystify the `black box’ of a CFD software tool, and 2) To provide a basic understanding of how CFD problems are set and
Transport Coefficients of Fluids
Eu, Byung Chan
2006-01-01
Until recently the formal statistical mechanical approach offered no practicable method for computing the transport coefficients of liquids, and so most practitioners had to resort to empirical fitting formulas. This has now changed, as demonstrated in this innovative monograph. The author presents and applies new methods based on statistical mechanics for calculating the transport coefficients of simple and complex liquids over wide ranges of density and temperature. These molecular theories enable the transport coefficients to be calculated in terms of equilibrium thermodynamic properties, and the results are shown to account satisfactorily for experimental observations, including even the non-Newtonian behavior of fluids far from equilibrium.
Füglistaler, A.; Pfenniger, D.
2016-06-01
Context. Molecular clouds typically consist of 3/4 H2, 1/4 He and traces of heavier elements. In an earlier work we showed that at very low temperatures and high densities, H2 can be in a phase transition leading to the formation of ice clumps as large as comets or even planets. However, He has very different chemical properties and no phase transition is expected before H2 in dense interstellar medium conditions. The gravitational stability of fluid mixtures has been studied before, but these studies did not include a phase transition. Aims: We study the gravitational stability of binary fluid mixtures with special emphasis on when one component is in a phase transition. The numerical results are aimed at applications in molecular cloud conditions, but the theoretical results are more general. Methods: First, we study the gravitational stability of van der Waals fluid mixtures using linearized analysis and examine virial equilibrium conditions using the Lennard-Jones intermolecular potential. Then, combining the Lennard-Jones and gravitational potentials, the non-linear dynamics of fluid mixtures are studied via computer simulations using the molecular dynamics code LAMMPS. Results: Along with the classical, ideal-gas Jeans instability criterion, a fluid mixture is always gravitationally unstable if it is in a phase transition because compression does not increase pressure. However, the condensed phase fraction increases. In unstable situations the species can separate: in some conditions He precipitates faster than H2, while in other conditions the converse occurs. Also, for an initial gas phase collapse the geometry is essential. Contrary to spherical or filamentary collapses, sheet-like collapses starting below 15 K easily reach H2 condensation conditions because then they are fastest and both the increase of heating and opacity are limited. Conclusions: Depending on density, temperature and mass, either rocky H2 planetoids, or gaseous He planetoids form. H2
Stick-Slip Motion of Moving Contact Line on Chemically Patterned Surfaces
Wu, Congmin
2009-01-01
Based on our continuum hydrodynamic model for immiscible two-phase flows at solid surfaces, the stick-slip motion has been predicted for moving contact line at chemically patterned surfaces [Wang et al., J. Fluid Mech., 605 (2008), pp. 59-78]. In this paper we show that the continuum predictions can be quantitatively verified by molecular dynamics (MD) simulations. Our MD simulations are carried out for two immiscible Lennard-Jones fluids confined by two planar solid walls in Poiseuille flow geometry. In particular, one solid surface is chemically patterned with alternating stripes. For comparison, the continuum model is numerically solved using material parameters directly measured in MD simulations. From oscillatory fluid-fluid interface to intermittent stick-slip motion of moving contact line, we have quantitative agreement between the continuum and MD results. This agreement is attributed to the accurate description down to molecular scale by the generalized Navier boundary condition in our continuum model. Numerical results are also presented for the relaxational dynamics of fluid-fluid interface, in agreement with a theoretical analysis based on the Onsager principle of minimum energy dissipation. © 2010 Global-Science Press.
Berim, Gersh O.; Ruckenstein, Eli
2009-01-01
The density distributions and contact angles of nanodrops on smooth solid surfaces are calculated on the basis of a nonlocal density functional theory in wide ranges of temperature and parameters of the Lennard-Jones potentials representing the fluid-fluid and fluid-solid interactions. A simple linear dependence of the contact angle on the fluid-solid energy parameter ɛfs was found for various temperatures, hard core fluid-solid parameters σfs, and average fluid density of the system. A simple expression is suggested which represents all the above results in a unified form that relates the contact angle θ to the parameters of the interaction potentials and temperature. The most intriguing feature was that for each considered σfs there is a value ɛfs0 of ɛfs for which the contact angle θ=θ0 can be considered independent of temperature and of σfs. It is shown that ɛfs=ɛfs0 divides the materials for which θ increases from those for which θ decreases with increasing temperature. The results obtained for the dependence of the contact angle on the parameters of the model are in qualitative agreement with known molecular dynamics results.
Grimshaw, RHJ
2007-01-01
After the initial observation by John Scott Russell of a solitary wave in a canal, his insightful laboratory experiments and the subsequent theoretical work of Boussinesq, Rayleigh and Korteweg and de Vries, interest in solitary waves in fluids lapsed until the mid 1960's with the seminal paper of Zabusky and Kruskal describing the discovery of the soliton. This was followed by the rapid development of the theory of solitons and integrable systems. At the same time came the realization that solitary waves occur naturally in many physical systems, and play a fundamental role in many circumstances. The aim of this text is to describe the role that soliton theory plays in fluids in several contexts. After an historical introduction, the book is divided five chapters covering the basic theory of the Korteweg-de Vries equation, and the subsequent application to free-surface solitary waves in water to internal solitary waves in the coastal ocean and the atmospheric boundary layer, solitary waves in rotating flows, ...
Squirming through shear thinning fluids
Datt, Charu; Zhu, Lailai; Elfring, Gwynn J.; Pak, On Shun
2015-11-01
Many microorganisms find themselves surrounded by fluids which are non-Newtonian in nature; human spermatozoa in female reproductive tract and motile bacteria in mucosa of animals are common examples. These biological fluids can display shear-thinning rheology whose effects on the locomotion of microorganisms remain largely unexplored. Here we study the self-propulsion of a squirmer in shear-thinning fluids described by the Carreau-Yasuda model. The squirmer undergoes surface distortions and utilizes apparent slip-velocities around its surface to swim through a fluid medium. In this talk, we will discuss how the nonlinear rheological properties of a shear-thinning fluid affect the propulsion of a swimmer compared with swimming in Newtonian fluids.
[Fluid therapy in acute pancreatitis].
de-Madaria, Enrique
2013-12-01
Severe acute pancreatitis (AP) is associated with an increased need for fluids due to fluid sequestration and, in the most severe cases, with decreased peripheral vascular tone. For several decades, clinical practice guidelines have recommended aggressive fluid therapy to improve the prognosis of AP. This recommendation is based on theoretical models, animal studies, and retrospective studies in humans. Recent studies suggest that aggressive fluid administration in all patients with AP could have a neutral or harmful effect. Fluid therapy based on Ringer's lactate could improve the course of the disease, although further studies are needed to confirm this possibility. Most patients with AP do not require invasive monitoring of hemodynamic parameters to guide fluid therapy administration. Moreover, the ability of these parameters to improve prognosis has not been demonstrated. Copyright © 2013 Elsevier España, S.L. and AEEH y AEG. All rights reserved.
Fluid mechanics fundamentals and applications
Cengel, Yunus
2013-01-01
Cengel and Cimbala's Fluid Mechanics Fundamentals and Applications, communicates directly with tomorrow's engineers in a simple yet precise manner. The text covers the basic principles and equations of fluid mechanics in the context of numerous and diverse real-world engineering examples. The text helps students develop an intuitive understanding of fluid mechanics by emphasizing the physics, using figures, numerous photographs and visual aids to reinforce the physics. The highly visual approach enhances the learning of Fluid mechanics by students. This text distinguishes itself from others by the way the material is presented - in a progressive order from simple to more difficult, building each chapter upon foundations laid down in previous chapters. In this way, even the traditionally challenging aspects of fluid mechanics can be learned effectively. McGraw-Hill is also proud to offer ConnectPlus powered by Maple with the third edition of Cengel/Cimbabla, Fluid Mechanics. This innovative and powerful new sy...
Supercritical fluids processing: emerging opportunities
International Nuclear Information System (INIS)
Kovaly, K.A.
1985-01-01
This publication on the emerging opportunities of supercritical fluids processing reveals the latest research findings and development trends in this field. These findings and development trends are highlighted, and the results of applications of technology to the business of supercritical fluids are reported. Applications of supercritical fluids to chemical intermediates, environmental applications, chemical reactions, food and biochemistry processing, and fuels processing are discussed in some detail
Chemokines in tumor proximal fluids.
Kotyza, Jaromir
2017-03-01
Chemokines are chemotactic cytokines produced by leukocytes and other types of cells including tumor cells. Their action is determined by the expression of cognate receptors and subsequent signaling in target cells, followed by the modulation of cytoskeletal proteins and the induction of other responses. In tumors, chemokines produced by neoplastic/stroma cells control the leukocyte infiltrate influencing tumor growth and progression. Tumor cells also express functional chemokine receptors responding to chemokine signals, promoting cell survival, proliferation and metastasis formation. Chemokines may be detected in serum of cancer patients, but due to the paracrine nature of these molecules, more significant concentrations are found in the tumor adjacent, non-vascular fluids, collectively called tumor proximal fluids. This review summarizes the expression of CC and CXC chemokines in these fluids, namely in interstitial fluid, pleural, ascitic, and cyst fluids, but also in urine, saliva, cerebrospinal fluid, cervical secretions and bronchoalveolar lavage fluid. Most comparative clinical studies reveal increased chemokine levels in high-grade tumor proximal fluids rather than in low-grade tumors and benign conditions, indicating shorter survival periods. The data confirm peritumoral fluid chemokines as sensitive diagnostic and prognostic markers, as well as offer support for chemokines and their receptors as potential targets for antitumor therapy.
Palazzi, Elisa; Fraedrich, Klaus
2016-01-01
This volume provides an overview of the fluid aspects of the climate system, focusing on basic aspects as well as recent research developments. It will bring together contributions from diverse fields of the physical, mathematical and engineering sciences. The volume will be useful to doctorate students, postdocs and researchers working on different aspects of atmospheric, oceanic and environmental fluid dynamics. It will also be of interest to researchers interested in quantitatively understanding how fluid dynamics can be applied to the climate system, and to climate scientists willing to gain a deeper insight into the fluid mechanics underlying climate processes.
CISM Course on Rotating Fluids
1992-01-01
The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.
Kröger, M; Hess, S
2003-01-01
We review, apply and compare diverse approaches to the theoretical understanding of the dynamical and rheological behaviour of ferrofluids and magnetorheological (MR) fluids subject to external magnetic and flow fields. Simple models are introduced which are directly solvable by nonequilibrium Brownian or molecular dynamics computer simulation. In particular, the numerical results for ferrofluids quantify the domain of validity of uniaxial alignment of magnetic moments (in and) out of equilibrium. A Fokker-Planck equation for the dynamics of the magnetic moments - corresponding to the Brownian dynamics approach - and its implications are analysed under this approximation. The basic approach considers the effect of external fields on the dynamics of ellipsoid shaped permanent ferromagnetic domains (aggregates), whose size should depend on the strength of flow and magnetic field, the magnetic interaction parameter and concentration (or packing fraction). Results from analytic calculations and from simulation ar...
Noel, Alexis; Bhatia, Nitesh; Carter, Taren; Hu, David
2015-11-01
Saliva plays a key role in digestion, speech and tactile sensation. Lack of saliva, also known as dry mouth syndrome, increases risk of tooth decay and alters sense of taste; nearly 10% of the general population suffer from this syndrome. In this experimental study, we investigate the spreading of water drops on wet and dry tongues of pigs and cows. We find that drops spread faster on a wet tongue than a dry tongue. We rationalize the spreading rate by consideration of the tongue microstructure, such as as papillae, in promoting wicking. By investigating how tongue microstructure affects spreading of fluids, we may begin to how understand taste receptors are activated by eating and drinking.
International Nuclear Information System (INIS)
Salesi, G.
1995-07-01
Starting from the Pauli current the decomposition of the non-relativistic local velocity has been obtained in two parts (in the ordinary tensorial language): one parallel and the other orthogonal to the impulse. The former is recognized to be the classical part, that is, the center-of-mass (CM) velocity, and the latter the quantum one, that is, the velocity of the motion in the CM frame (namely, the internal spin motion or Zitterbewegung). Inserting this complete, composite expression of the velocity into the kinetic energy term of the classical non-relativistic (i.e. Newtonian) Lagrangian, the author straightforwardly get the appearance of the so called quantum potential associates as it is known, to the Madelung fluid. In such a way, the quantum mechanical behaviour of particles appears to be strictly correlated to the existence of spin and Zitterbewegung
Fluid dynamics and vibration of tube banks in fluid flow
International Nuclear Information System (INIS)
Zukauskas, A.; Ulinskas, R.; Katinas, V.
1988-01-01
This work presents results derived in fluid dynamics, hydraulic drag and flow-induced vibrations within transverse and yawed tube banks. The studies encompass banks of smooth, rough and finned tubes at Reynolds numbers from 1 to 2x10/sup 6/. Highlighted in the text are fluid dynamic parameters of tube banks measured at inter-tube spaces and tube surfaces
Dynamic fluid loss characteristics of foam fracturing fluids
Energy Technology Data Exchange (ETDEWEB)
Harris, P.C.
1982-09-01
Dynamic fluid loss measurements were conducted on core samples ranging in permeability between 0.02 to 140 md. These tests were run to measure the effect of several parameters on the foam fluid loss coefficients. The parameters tested were: core permeability, gel concentration in the liquid phase, foam quality, temperature, core length and differential test pressure. The type of foam that is used in most conventional fracturing treatments is a wall building fluid. Although this foam has excellent inherent fluid loss properties, the fluid loss values reported in this paper more closely resemble those of conventional fracturing fluids than reported earlier. These values have been used in the successful design of field fracturing treatments. These data support the mechanism of two phase flow in porous media suggested by Holm. The fluid passing through the cores was rich in liquid phase with composition proportional to the viscosity of the liquid phase. The broad range of fluid loss coefficients for foam calculated in these tests are intermediate in value to those reported in similar tests by Blauer and Kohlhaas, who obtained lower values, and King, who obtained higher values.
Thermophysical properties of supercritical fluids and fluid mixtures
International Nuclear Information System (INIS)
Sengers, J.V.
1989-08-01
The purpose of the research is to extend the theory of critical phenomena in fluids and fluid mixtures to obtain scientifically based equations that include the crossover from the asymptotic singular behavior of the thermophysical properties close to the critical point to the regular behavior of these properties far away from the critical point
Fluid Flow at Branching Junctions
Sochi, Taha
2013-01-01
The flow of fluids at branching junctions plays important kinematic and dynamic roles in most biological and industrial flow systems. The present paper highlights some key issues related to the flow of fluids at these junctions with special emphasis on the biological flow networks particularly blood transportation vasculature.
Intraoperative fluid therapy in neonates
African Journals Online (AJOL)
The evidence base for the administration of intraoperative fluids in neonates is poor and extrapolated from adults and children. Differences from adults and children in physiology and anatomy of neonates inform our practice. Keywords: fluid ..... compromise lung function and wound healing. The EGL develops early in ...
Applied Fluid Mechanics. Lecture Notes.
Gregg, Newton D.
This set of lecture notes is used as a supplemental text for the teaching of fluid dynamics, as one component of a thermodynamics course for engineering technologists. The major text for the course covered basic fluids concepts such as pressure, mass flow, and specific weight. The objective of this document was to present additional fluids…
Viscoelastic Fluid-Structure Interactions
Dey, Anita; Rothstein, Jonathan; Modarres-Sadeghi, Yahya
2015-11-01
When a flexible object such as an elastic sheet is placed perpendicular to the flow of a Newtonian fluid, the structure can oscillate due to the shedding of separated vortices at high Reynolds numbers. If the same flexible object is placed in non-Newtonian flows, however, the structure's response is still unknown. Unlike Newtonian fluids, the flow of viscoelastic fluids can become unstable at infinitesimal Reynolds numbers due to a purely elastic flow instability. In this talk, we will discuss the fluid-structure interaction between a wormlike micelle solution at high Weissenberg number and a flexible elastic sheet in cross flow. Elastic flow instabilities have been observed for wormlike micelle solutions in a number of flows. Here we will study what happens when elastic flow instabilities occur in the vicinity of a thin flexible polymer sheet. We will show that the time varying fluid forces exerted on the structure can grow large enough to cause a structural motion which can in turn feed back into the flow to modify the flow instability. The static and dynamic responses of the flexible sheet will be presented for a series of flexible sheets oriented at different angles to the flow direction, for varying fluid flow rates, and for varying fluid compositions and properties. In addition, measurements of velocity profiles and flow-induced birefringence will be presented in order to quantify the time variation of the flow field and the state of stress in the fluid.
Fluid simulation for computer graphics
Bridson, Robert
2008-01-01
Animating fluids like water, smoke, and fire using physics-based simulation is increasingly important in visual effects, in particular in movies, like The Day After Tomorrow, and in computer games. This book provides a practical introduction to fluid simulation for graphics. The focus is on animating fully three-dimensional incompressible flow, from understanding the math and the algorithms to the actual implementation.
Materials processing using supercritical fluids
Directory of Open Access Journals (Sweden)
Orlović Aleksandar M.
2005-01-01
Full Text Available One of the most interesting areas of supercritical fluids applications is the processing of novel materials. These new materials are designed to meet specific requirements and to make possible new applications in Pharmaceuticals design, heterogeneous catalysis, micro- and nano-particles with unique structures, special insulating materials, super capacitors and other special technical materials. Two distinct possibilities to apply supercritical fluids in processing of materials: synthesis of materials in supercritical fluid environment and/or further processing of already obtained materials with the help of supercritical fluids. By adjusting synthesis parameters the properties of supercritical fluids can be significantly altered which further results in the materials with different structures. Unique materials can be also obtained by conducting synthesis in quite specific environments like reversed micelles. This paper is mainly devoted to processing of previously synthesized materials which are further processed using supercritical fluids. Several new methods have been developed to produce micro- and nano-particles with the use of supercritical fluids. The following methods: rapid expansion of supercritical solutions (RESS supercritical anti-solvent (SAS, materials synthesis under supercritical conditions and encapsulation and coating using supercritical fluids were recently developed.
Performance Testing of Cutting Fluids
DEFF Research Database (Denmark)
Belluco, Walter
The importance of cutting fluid performance testing has increased with documentation requirements of new cutting fluid formulations based on more sustainable products, as well as cutting with minimum quantity of lubrication and dry cutting. Two sub-problems have to be solved: i) which machining...... tests feature repeatability, reproducibility and sensitivity to cutting fluids, and ii) to what extent results of one test ensure relevance to a wider set of machining situations. The present work is aimed at assessing the range of validity of the different testing methods, investigating correlation...... within the whole range of operations, materials, cutting fluids, operating conditions, etc. Cutting fluid performance was evaluated in turning, drilling, reaming and tapping, and with respect to tool life, cutting forces, chip formation and product quality (dimensional accuracy and surface integrity...
Fluid Dynamics of Bottle Filling
McGough, Patrick; Gao, Haijing; Appathurai, Santosh; Basaran, Osman
2011-11-01
Filling of bottles is a widely practiced operation in a large number of industries. Well known examples include filling of ``large'' bottles with shampoos and cleaners in the household products and beauty care industries and filling of ``small'' bottles in the pharmaceutical industry. Some bottle filling operations have recently drawn much attention from the fluid mechanics community because of the occurrence of a multitude of complex flow regimes, transitions, and instabilities such as mounding and coiling that occur as a bottle is filled with a fluid. In this talk, we present a primarily computational study of the fluid dynamical challenges that can arise during the rapid filling of bottles. Given the diversity of fluids used in filling applications, we consider four representative classes of fluids that exhibit Newtonian, shear-thinning, viscoelastic, and yield-stress rheologies. The equations governing the dynamics of bottle filling are solved either in their full 3D but axisymmetric form or using the slender-jet approximation.
Fluid simulation with articulated bodies.
Kwatra, Nipun; Wojtan, Chris; Carlson, Mark; Essa, Irfan; Mucha, Peter J; Turk, Greg
2010-01-01
We present an algorithm for creating realistic animations of characters that are swimming through fluids. Our approach combines dynamic simulation with data-driven kinematic motions (motion capture data) to produce realistic animation in a fluid. The interaction of the articulated body with the fluid is performed by incorporating joint constraints with rigid animation and by extending a solid/fluid coupling method to handle articulated chains. Our solver takes as input the current state of the simulation and calculates the angular and linear accelerations of the connected bodies needed to match a particular motion sequence for the articulated body. These accelerations are used to estimate the forces and torques that are then applied to each joint. Based on this approach, we demonstrate simulated swimming results for a variety of different strokes, including crawl, backstroke, breaststroke, and butterfly. The ability to have articulated bodies interact with fluids also allows us to generate simulations of simple water creatures that are driven by simple controllers.
Revisiting the Landau fluid closure.
Hunana, P.; Zank, G. P.; Webb, G. M.; Adhikari, L.
2017-12-01
Advanced fluid models that are much closer to the full kinetic description than the usual magnetohydrodynamic description are a very useful tool for studying astrophysical plasmas and for interpreting solar wind observational data. The development of advanced fluid models that contain certain kinetic effects is complicated and has attracted much attention over the past years. Here we focus on fluid models that incorporate the simplest possible forms of Landau damping, derived from linear kinetic theory expanded about a leading-order (gyrotropic) bi-Maxwellian distribution function f_0, under the approximation that the perturbed distribution function f_1 is gyrotropic as well. Specifically, we focus on various Pade approximants to the usual plasma response function (and to the plasma dispersion function) and examine possibilities that lead to a closure of the linear kinetic hierarchy of fluid moments. We present re-examination of the simplest Landau fluid closures.
Heating production fluids in a wellbore
Orrego, Yamila; Jankowski, Todd A.
2016-07-12
A method for heating a production fluid in a wellbore. The method can include heating, using a packer fluid, a working fluid flowing through a first medium disposed in a first section of the wellbore, where the first medium transfers heat from the packer fluid to the working fluid. The method can also include circulating the working fluid into a second section of the wellbore through a second medium, where the second medium transfers heat from the working fluid to the production fluid. The method can further include returning the working fluid to the first section of the wellbore through the first medium.
Condensation and evaporation transitions in deep capillary grooves.
Malijevský, Alexandr; Parry, Andrew O
2014-09-03
We study the order of capillary condensation and evaporation transitions of a simple fluid adsorbed in a deep capillary groove using a fundamental measure density functional theory (DFT). The walls of the capillary interact with the fluid particles via long-ranged, dispersion, forces while the fluid-fluid interaction is modelled as a truncated Lennard-Jones-like potential. We find that below the wetting temperature Tw condensation is first-order and evaporation is continuous with the metastability of the condensation being well described by the complementary Kelvin equation. In contrast above Tw both phase transitions are continuous and their critical singularities are determined. In addition we show that for the evaporation transition above Tw there is an elegant mapping, or covariance, with the complete wetting transition occurring at a planar wall. Our numerical DFT studies are complemented by analytical slab model calculations which explain how the asymmetry between condensation and evaporation arises out of the combination of long-ranged forces and substrate geometry.
Energy Technology Data Exchange (ETDEWEB)
Michael C. Adams; Greg Nash
2004-03-01
Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.
Computational fluid dynamic applications
Energy Technology Data Exchange (ETDEWEB)
Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.
2000-04-03
The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.
Hydrodynamic instabilities in miscible fluids
Truzzolillo, Domenico; Cipelletti, Luca
2018-01-01
Hydrodynamic instabilities in miscible fluids are ubiquitous, from natural phenomena up to geological scales, to industrial and technological applications, where they represent the only way to control and promote mixing at low Reynolds numbers, well below the transition from laminar to turbulent flow. As for immiscible fluids, the onset of hydrodynamic instabilities in miscible fluids is directly related to the physics of their interfaces. The focus of this review is therefore on the general mechanisms driving the growth of disturbances at the boundary between miscible fluids, under a variety of forcing conditions. In the absence of a regularizing mechanism, these disturbances would grow indefinitely. For immiscible fluids, interfacial tension provides such a regularizing mechanism, because of the energy cost associated to the creation of new interface by a growing disturbance. For miscible fluids, however, the very existence of interfacial stresses that mimic an effective surface tension is debated. Other mechanisms, however, may also be relevant, such as viscous dissipation. We shall review the stabilizing mechanisms that control the most common hydrodynamic instabilities, highlighting those cases for which the lack of an effective interfacial tension poses deep conceptual problems in the mathematical formulation of a linear stability analysis. Finally, we provide a short overview on the ongoing research on the effective, out of equilibrium interfacial tension between miscible fluids.
Hydrodynamic instabilities in miscible fluids.
Truzzolillo, Domenico; Cipelletti, Luca
2018-01-24
Hydrodynamic instabilities in miscible fluids are ubiquitous, from natural phenomena up to geological scales, to industrial and technological applications, where they represent the only way to control and promote mixing at low Reynolds numbers, well below the transition from laminar to turbulent flow. As for immiscible fluids, the onset of hydrodynamic instabilities in miscible fluids is directly related to the physics of their interfaces. The focus of this review is therefore on the general mechanisms driving the growth of disturbances at the boundary between miscible fluids, under a variety of forcing conditions. In the absence of a regularizing mechanism, these disturbances would grow indefinitely. For immiscible fluids, interfacial tension provides such a regularizing mechanism, because of the energy cost associated to the creation of new interface by a growing disturbance. For miscible fluids, however, the very existence of interfacial stresses that mimic an effective surface tension is debated. Other mechanisms, however, may also be relevant, such as viscous dissipation. We shall review the stabilizing mechanisms that control the most common hydrodynamic instabilities, highlighting those cases for which the lack of an effective interfacial tension poses deep conceptual problems in the mathematical formulation of a linear stability analysis. Finally, we provide a short overview on the ongoing research on the effective, out of equilibrium interfacial tension between miscible fluids.
Noncommutative geometry and fluid dynamics
International Nuclear Information System (INIS)
Das, Praloy; Ghosh, Subir
2016-01-01
In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)
Fluid Dynamics with Cryogenic Fluid Transfer in Space Project
National Aeronautics and Space Administration — During chilldown of cryogenic fluid tanks and lines, the interface between the liquid and vapor rapidly changes. Understanding these rapid changes is key...
Boundary effect in electrorheological fluids.
Gong, X L; Yang, F; Xuan, S H; Zong, L H; Zhu, W; Jiang, W Q
2011-12-01
The effect of the boundary friction coefficient on the rheological properties of the electrorheological (ER) fluids in quasistatic and dynamic states is investigated by computer simulation. The relation between the shear stress and the boundary friction coefficient in quasistatic and dynamic states is discussed qualitatively and quantitatively, and the trend matches the previously reported experimental results well. The flow curves of ER fluids, under different friction coefficients, are calculated, and it is found that the friction coefficient affects the flow curves. In two dimensions, the transitions in structure corresponding to the shear stress variations are presented to understand the mechanism of ER fluids.
Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
Fluid intelligence: A brief history.
Kent, Phillip
2017-01-01
The concept of fluid and crystallized intelligence was introduced to the psychological community approximately 75 years ago by Raymond B. Cattell, and it continues to be an area of active research and controversy. The purpose of this paper is to provide a brief overview of the origin of the concept, early efforts to define intelligence and uses of intelligence tests to address pressing social issues, and the ongoing controversies associated with fluid intelligence and the structure of intelligence. The putative neuropsychological underpinnings and neurological substrates of fluid intelligence are discussed.
Molecular thermodynamics of nonideal fluids
Lee, Lloyd L
2013-01-01
Molecular Thermodynamics of Nonideal Fluids serves as an introductory presentation for engineers to the concepts and principles behind and the advances in molecular thermodynamics of nonideal fluids. The book covers related topics such as the laws of thermodynamics; entropy; its ensembles; the different properties of the ideal gas; and the structure of liquids. Also covered in the book are topics such as integral equation theories; theories for polar fluids; solution thermodynamics; and molecular dynamics. The text is recommended for engineers who would like to be familiarized with the concept
Basic developments in fluid dynamics
Holt, Maurice
2012-01-01
Basic Developments in Fluid Dynamics, Volume 2 focuses on the developments, approaches, methodologies, reactions, and processes involved in fluid dynamics, including sea motion, wave interactions, and motion of spheres in a viscous fluid.The selection first offers information on inviscid cavity and wake flows and weak-interaction theory of ocean waves. Discussions focus on steady and unsteady cavity flows, radiation balance, theory of weak interactions in random fields, interactions between gravity waves and the atmosphere, and interactions within the ocean. The text then examines low Reynolds
Spinning fluids in general relativity
Ray, J. R.; Smalley, L. L.
1982-01-01
General relativity field equations are employed to examine a continuous medium with internal spin. A variational principle formerly applied in the special relativity case is extended to the general relativity case, using a tetrad to express the spin density and the four-velocity of the fluid. An energy-momentum tensor is subsequently defined for a spinning fluid. The equations of motion of the fluid are suggested to be useful in analytical studies of galaxies, for anisotropic Bianchi universes, and for turbulent eddies.
Advances in Environmental Fluid Mechanics
Mihailovic, Dragutin T
2010-01-01
Environmental fluid mechanics (EFM) is the scientific study of transport, dispersion and transformation processes in natural fluid flows on our planet Earth, from the microscale to the planetary scale. This book brings together scientists and engineers working in research institutions, universities and academia, who engage in the study of theoretical, modeling, measuring and software aspects in environmental fluid mechanics. It provides a forum for the participants, and exchanges new ideas and expertise through the presentations of up-to-date and recent overall achievements in this field.
Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Energy Technology Data Exchange (ETDEWEB)
Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael
2009-09-01
This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.
Blanks, Robert F.
1979-01-01
A humanistic approach to teaching fluid mechanics is described which minimizes lecturing, increases professor-student interaction, uses group and individual problem solving sessions, and allows for student response. (BB)
Electrokinetic effects and fluid permeability
International Nuclear Information System (INIS)
Berryman, J.G.
2003-01-01
Fluid permeability of porous media depends mainly on connectivity of the pore space and two physical parameters: porosity and a pertinent length-scale parameter. Electrical imaging methods typically establish connectivity and directly measure electrical conductivity, which can then often be related to porosity by Archie's law. When electrical phase measurements are made in addition to the amplitude measurements, information about the pertinent length scale can then be obtained. Since fluid permeability controls the ability to flush unwanted fluid contaminants from the subsurface, inexpensive maps of permeability could improve planning strategies for remediation efforts. Detailed knowledge of fluid permeability is also important for oil field exploitation, where knowledge of permeability distribution in three dimensions is a common requirement for petroleum reservoir simulation and analysis, as well as for estimates on the economics of recovery
Heart failure - fluids and diuretics
... page: //medlineplus.gov/ency/patientinstructions/000112.htm Heart failure - fluids and diuretics To use the sharing features on this page, please enable JavaScript. Heart failure is a condition in which the heart is ...
Thermodynamic properties of cryogenic fluids
Leachman, Jacob; Lemmon, Eric; Penoncello, Steven
2017-01-01
This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...
Mesoscopic model for binary fluids
Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.
2017-10-01
We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.
Closed Loop Fluid Delivery System
2014-02-28
loop fluid delivery system (CLFDS) will integrate a vital signs monitor ( VSM ) and high speed infusion pump (Pump) to respond quickly to drops in...Interface (GUI) shows VSM data, allows the user to select from several injury types (head, uncontrolled hemorrhage, controlled hemorrhage, and three total...the bedrock for future Closed Loop Fluid System Pre-Market Approval application(s) to FDA. 6. Major Issues Clinical study testing revealed a
Diamond growth in mantle fluids
Bureau, Hélène; Frost, Daniel J.; Bolfan-casanova, Nathalie; Leroy, Clémence; Esteve, Imène; Cordier, Patrick
2016-01-01
International audience; In the upper mantle, diamonds can potentially grow from various forms of media (solid, gas, fluid) with a range of compositions (e.g. graphite, C–O–H fluids, silicate or carbonate melts). Inclusions trapped in diamonds are one of the few diagnostic tools that can constrain diamond growth conditions in the Earth's mantle. In this study, inclusion-bearing diamonds have been synthesized to understand the growth conditions of natural diamonds in the upper mantle. Diamonds ...
International Nuclear Information System (INIS)
Choi, Young Joon; Djilali, Ned
2016-01-01
Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jones potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified
Nuclear fluid dynamics and TDHF
International Nuclear Information System (INIS)
Koehler, H.S.
1982-01-01
In some previous reports a modified TDHF (Time Dependent Hartree-Fock) equation including a collision term was introduced. The collisions were included in the relaxation-time approximation familiar in classical transport theory. In plasma-physics it is often referred to as the Krook-model. The author explores the approximate nature of, and the possible computational advantage of revamping the modified TDHF-equation into fluid-equations, by truncating the moment-expansion of the Wigner-function. In the fluid-equations that are derived the mean field and the relaxation time are both maintained explicitly. The pressure tensor is allowed to be anisotropic, i.e., the fluid is viscous. Only in the limit of a very short relaxation time (approximately 10 -23 s) may the isotropic (non-viscous) approximation be acceptable. The fluid-equations are tested by comparing computed results with those obtained with the modified TDHF. It is concluded that the fluid-equations are a viable alternative. Some differences can be attributed to the neglect of the higher moments of the momentum-distribution in the fluid-equations. Others are due to other approximations necessary in the truncation. (Auth.)
International Nuclear Information System (INIS)
Yilmaz, C.; Akkas, N.
1979-01-01
In previous studies a fluid element is incorporated in the widely used general purpose finite element program SAPIV. This type of problem is of interest in the design of nuclear components involving geometric complexities and nonlinearities. The elasticity matrix of a general-purpose finite element program is modified in such a way that it becomes possible to idealize fluid as a structural finite element with zero shear modulus and a given bulk modules. Using the modified version of SAPIV, several solid-fluid interactions problems are solved. The numerical solutions are compared with the available analytical solutions. They are shown to be in reasonable aggrement. It is also shown that by solving an exterior-fluid interaction problem, the pressure wave propagation in the acoustic medium can be solved with the same approach. In this study, two of the problem not studied in the previous work will be presented. These problems are namely the effects of the link elements used at solid-fluid interfaces and of the concentrated loads on the response of the fluid medium. Truss elements are used as the link elements. After these investigations, it is decided that general purpose finite element programs with slight modifications can be used in the safety analysis of nuclear reactor plants. By this procedure it is possible to handle two-dimensional plane strain and tridimensional axisymmetric problems of this type. (orig.)
Thermophysical properties of supercritical fluids and fluid mixtures
International Nuclear Information System (INIS)
Sengers, J.V.
1991-07-01
This research is concerned with the development of a quantitative scientific description of the thermodynamic and transport properties of supercritical and subcritical fluids and fluid mixtures. It is known that the thermophysical properties of fluids and fluid mixtures asymptotically close to the critical point satisfy scaling laws with universal critical exponents and universal scaling functions. However, the range of validity of these asymptotic scaling laws is quite small. As a consequence, the impact of the modern theory of critical phenomena on chemical engineering has been limited. On the other hand, an a priori estimate of the range of temperatures and densities, where critical fluctuations become significant, can be made on the basis of the so-called Ginzburg criterion. A recent analysis of this criterion suggests that this range is actually quite large and for a fluid like carbon dioxide can easily extend to 100 degrees or so above the critical temperature. Hence, the use of traditional engineering equations like cubic equations is not scientifically justified in a very wide range of temperatures and densities around the critical point. We have therefore embarked on a scientific approach to deal with the global effects of critical fluctuations on the thermophysical properties of fluids and fluid mixtures. For this purpose it is not sufficient to consider the asymptotic critical fluctuations but we need to deal also with the nonasymptotic critical fluctuations. The goal is to develop scientifically based questions that account for the crossover of the thermophysical properties from their asymptotic singular behavior in the near vicinity of the critical point to their regular behavior very far away from the critical point
Sadeghi, F.; Ansari, R.; Darvizeh, M.
2016-02-01
Research concerning the fabrication of nano-oscillators with operating frequency in the gigahertz (GHz) range has become a focal point in recent years. In this paper, a new type of GHz oscillators is introduced based on a C60 fullerene inside a cyclic peptide nanotube (CPN). To study the dynamic behavior of such nano-oscillators, using the continuum approximation in conjunction with the 6-12 Lennard-Jones (LJ) potential function, analytical expressions are derived to determine the van der Waals (vdW) potential energy and interaction force between the two interacting molecules. Employing Newton's second law, the equation of motion is solved numerically to arrive at the telescopic oscillatory motion of a C60 fullerene inside CPNs. It is shown that the fullerene molecule exhibits different kinds of oscillation inside peptide nanotubes which are sensitive to the system parameters. Furthermore, for the precise evaluation of the oscillation frequency, a novel semi-analytical expression is proposed based on the conservation of the mechanical energy principle. Numerical results are presented to comprehensively study the effects of the number of peptide units and initial conditions (initial separation distance and velocity) on the oscillatory behavior of C60 -CPN oscillators. It is found out that for peptide nanotubes comprised of one unit, the maximum achievable frequency is obtained when the inner core oscillates with respect to its preferred positions located outside the tube, while for other numbers of peptide units, such frequency is obtained when the inner core oscillates with respect to the preferred positions situated in the space between the two first or the two last units. It is further found out that four peptide units are sufficient to obtain the optimal frequency.
Nanoscale colloids in a freely adsorbing polymer solution: a Monte Carlo simulation study.
Marla, Krishna Tej; Meredith, J Carson
2004-02-17
A key issue in nanoscale materials and chemical processing is the need for thermodynamic and kinetic models covering colloid-polymer systems over the mesoscopic length scale (approximately 1-100 nm). We have applied Monte Carlo simulations to attractive nanoscale colloid-polymer mixtures toward developing a molecular basis for models of these complex systems. The expanded ensemble Monte Carlo simulation method is applied to calculate colloid chemical potentials (micro(c)) and polymer adsorption (gamma) in the presence of freely adsorbing Lennard-Jones (LJ) homopolymers (surface modifiers). gamma and micro(c) are studied as a function of nanoparticle diameter (sigma(c)), modifier chain length (n) and concentration, and colloid-polymer attractive strength over 0.3 attractive regime, nanocolloid chemical potential decreases and adsorbed amount increases as sigma(c), or n is increased. The scaling of gamma with n from the simulations agrees with the theory of Aubouy and Raphael (Macromolecules 1998, 31, 4357) in the extreme limits of Rg/sigma(c). When Rg/sigma(c) is large, the "colloid" approaches a molecular size and interacts only locally with a few polymer segments and gamma approximately n. When Rg/sigma(c) is small, the system approaches the conventional colloid-polymer size regime where multiple chains interact with a single particle, and gamma approximately sigma(c)2, independent of n. In contrast, adsorption in the mesoscopic range of Rg/sigma(c) investigated here is represented well by a power law gamma approximately n(p), with 0 attractive strength. Likewise, the chemical potential from our results is fitted well with micro(c) approximately n(q)sigma(c)3, where the cubic term results from the sigma(c) dependence of particle surface area (approximately sigma(c)2) and LJ attractive magnitude (approximately sigma(c)). The q-exponent for micro(c) (micro(c) approximately n(q)) varies with composition and LJ attractive strength but is always very close to the power
Orabi, Esam A; Lamoureux, Guillaume
2014-08-12
A polarizable model for hydrogen sulfide (H2S) is optimized based on the experimental properties of the monomer and of the bulk liquid. The model is characterized by rigid SH bonds but flexible HSH angle and the polarizability is based on the Drude oscillator model. Bonded parameters and atomic charges are based on the experimental properties of the gaseous monomer. Atomic Lennard-Jones (LJ) parameters are adjusted based on the density of H2S around the critical point (in the temperature range 363-393 K and pressure range 8.023-10.013 MPa). The model gives binding energies for H2S dimers, trimers, and tetramers in good agreement with ab initio MP2(full)/6-311++G(d,p) results. It shows a liquid structure in very good agreement with neutron diffraction data. The model also gives density, self-diffusion coefficient, heat of vaporization, and dielectric constant of liquid hydrogen sulfide at the normal boiling point in good agreement with experimental data. In addition, the model is transferable to high temperature and pressure conditions, as evidenced from simulations up to 542.2 K and 40 MPa. The model is used in combination with the SWM4-NDP water model, with LJ parameters between the S and O atoms adjusted to reproduce the experimental hydration free energy of H2S. Simulations suggest that, in its first solvation shell, a single H2O molecule is solvated by 10 H2S molecules while a single H2S molecule is solvated by 20.5 H2O molecules. Pair-specific LJ parameters between alkali ions (Li(+), Na(+), K(+), Rb(+), Cs(+)) and the S atom are adjusted to reproduce ab initio binding energies of the ion-H2S pairs at the CCSD(T) level. Simulations based on these parameters show that alkali ions have higher coordination numbers and lower solvation free energies in liquid H2S than in liquid water or liquid ammonia. The model is also used to investigate the preferential solvation of the ions in aqueous solutions with a 10% H2S mole fraction. Results show that the ions are
Fluid Mechanics An Introduction to the Theory of Fluid Flows
Durst, Franz
2008-01-01
Advancements of fluid flow measuring techniques and of computational methods have led to new ways to treat laminar and turbulent flows. These methods are extensively used these days in research and engineering practise. This also requires new ways to teach the subject to students at higher educational institutions in an introductory manner. The book provides the knowledge to students in engineering and natural science needed to enter fluid mechanics applications in various fields. Analytical treatments are provided, based on the Navier-Stokes equations. Introductions are also given into numerical and experimental methods applied to flows. The main benefit the reader will derive from the book is a sound introduction into all aspects of fluid mechanics covering all relevant subfields.
14 CFR 25.1185 - Flammable fluids.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluids. 25.1185 Section 25.1185... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1185 Flammable fluids. (a... system containing flammable fluids or gases may be in a designated fire zone unless the fluid contained...
7 CFR 2902.41 - Metalworking fluids.
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Metalworking fluids. 2902.41 Section 2902.41... Items § 2902.41 Metalworking fluids. (a) Definition. (1) Fluids that are designed to provide cooling... operations such as cutting, drilling, grinding, machining, and tapping. (2) Metalworking fluids for which...
14 CFR 125.153 - Flammable fluids.
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flammable fluids. 125.153 Section 125.153....153 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in designated fire zones, except where the fluid contained, the design of...
Yang-Mills Magneto-Fluid Unification
Bambah, Bindu A.; Mahajan, Swadesh M.; Mukku, Chandrasekher
2006-01-01
We generalize the hybrid magneto-fluid model of a charged fluid interacting with an electromagnetic field to the dynamics of a relativistic hot fluid interacting with a non-Abelian field. The fluid itself is endowed with a non-Abelian charge and the consequences of this generalization are worked out. Applications of this formalism to the Quark Gluon Plasma are suggested.
Fluid Behavior and Fluid-Solid Interactions in Nanoporous Media
Xu, H.
2015-12-01
Although shale oil/gas production in the US has increased exponentially, the low energy recovery is a daunting problem needed to be solved for its sustainability and continued growth, especially in light of the recent oil/gas price decline. This is apparently related to the small porosity (a few to a few hundred nm) and low permeability (10-16-10-20 m2) of tight shale formations. The fundamental question lies in the anomalous behavior of fluids in nanopores due to confinement effects, which, however, remains poorly understood. In this study, we combined experimental characterization and observations, particularly using small-angle neutron scattering (SANS), with pore-scale modeling using lattice Boltzmann method (LBM), to examine the fluid behavior and fluid-solid interactions in nanopores at reservoir conditions. Experimentally, we characterized the compositions and microstructures of a shale sample from Wolfcamp, Texas, using a variety of analytical techniques. Our analyses reveal that the shale sample is made of organic-matter (OM)-lean and OM-rich layers that exhibit different chemical and mineral compositions, and microstructural characteristics. Using the hydrostatic pressure system and gas-mixing setup we developed, in-situ SANS measurements were conducted at pressures up to 20 kpsi on shale samples imbibed with water or water-methane solutions. The obtained results indicate that capillary effect plays a significant role in fluid-nanopore interactions and the associated changes in nanopore structures vary with pore size and pressure. Computationally, we performed LBM modeling to simulate the flow behavior of methane in kerogen nanoporous structure. The correction factor, which is the ratio of apparent permeability to intrinsic permeability, was calculated. Our results show that the correction factor is always greater than one (non-continuum/non-Darcy effects) and increases with decreasing nanopore size, intrinsic permeability and pressure. Hence, the
Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS
Motil, Brian; Urban, David
2012-01-01
From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center both Combustion, Fluid Physics, and Acceleration Measurement GRC has led the successful implementation of an Acceleration Measurement systems, the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion fire detection fire extinguishment soot phenomena flame liftoff and stability and material flammability. The fluids experiments have studied capillary flow magneto-rheological fluids colloidal systems extensional rheology pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years. We also provide a look to the future development. Experiments presented in combustion include areas such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes. In fluid physics, experiments are discussed in
Chlamydia trachomatis in hydrocele fluid.
Satpathy, G; Mohanty, S; Pani, S P; Panda, S K
1997-01-01
OBJECTIVE: To determine the presence of Chlamydia trachomatis in hydrocele fluid. METHODS: 90 male patients with hydrocele of tunica vaginalis from an endemic area for bancroftian filariasis were investigated for the presence of Chlamydia trachomatis in their hydrocele fluids. C trachomatis antigen detection tests-a direct immunofluorescence assay and an enzyme immunoassay along with polymerase chain reaction assay for amplification of a 517 bp fragment of C trachomatis endogenous plasmid-were used in this study. The patients were also tested for the presence of microfilaria in their hydrocele fluids and night blood. Histopathological examination was carried out to detect adult filarial worm in tunica vaginalis testes. RESULTS: Eight (8.88%) patients had chlamydia antigen in the hydrocele fluids; C trachomatis plasmid sequences could be amplified from five of these. Seven (7.77%) patients had microfilaria in the hydrocele fluids, three of them having adult worm in tunica vaginalis. CONCLUSION: C trachomatis infection might be associated with hydrocele in some of these patients. PMID:9582470
Ultrasonic techniques for fluids characterization
Povey, Malcolm J W
1997-01-01
This book is a comprehensive and practical guide to the use of ultrasonic techniques for the characterization of fluids. Focusing on ultrasonic velocimetry, the author covers the basic topics and techniques necessaryfor successful ultrasound measurements on emulsions, dispersions, multiphase media, and viscoelastic/viscoplastic materials. Advanced techniques such as scattering, particle sizing, and automation are also presented. As a handbook for industrial and scientific use, Ultrasonic Techniques for Fluids Characterization is an indispensable guide to chemists and chemical engineers using ultrasound for research or process monitoring in the chemical, food processing, pharmaceutical, cosmetic, biotechnology,and fuels industries. Key Features * Appeals to anyone using ultrasound to study fluids * Provides the first detailed description of the ultrasound profiling technique for dispersions * Describes new techniques for measuring phase transitions and nucleation, such as water/ice and oil/fat * Presents the l...
Coulombic Fluids Bulk and Interfaces
Freyland, Werner
2011-01-01
Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.
Rotational superradiance in fluid laboratories
Cardoso, Vitor; Richartz, Mauricio; Weinfurtner, Silke
2016-01-01
Rotational superradiance has been predicted theoretically decades ago, and is the chief responsible for a number of important effects and phenomenology in black hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behaviour of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. By confining the superradiant modes near the rotating cylinder, an instability sets in. Our findings are experimentally testable in existing fluid laboratories and hence offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.
Visualization of Computational Fluid Dynamics
Gerald-Yamasaki, Michael; Hultquist, Jeff; Bryson, Steve; Kenwright, David; Lane, David; Walatka, Pamela; Clucas, Jean; Watson, Velvin; Lasinski, T. A. (Technical Monitor)
1995-01-01
Scientific visualization serves the dual purpose of exploration and exposition of the results of numerical simulations of fluid flow. Along with the basic visualization process which transforms source data into images, there are four additional components to a complete visualization system: Source Data Processing, User Interface and Control, Presentation, and Information Management. The requirements imposed by the desired mode of operation (i.e. real-time, interactive, or batch) and the source data have their effect on each of these visualization system components. The special requirements imposed by the wide variety and size of the source data provided by the numerical simulation of fluid flow presents an enormous challenge to the visualization system designer. We describe the visualization system components including specific visualization techniques and how the mode of operation and source data requirements effect the construction of computational fluid dynamics visualization systems.
Non-equilibrium phase stabilization versus bubble nucleation at a nanoscale-curved Interface
Schiffbauer, Jarrod; Luo, Tengfei
Using continuum dynamic van der Waals theory in a radial 1D geometry with a Lennard-Jones fluid model, we investigate the nature of vapor bubble nucleation near a heated, nanoscale-curved convex interface. Vapor bubble nucleation and growth are observed for interfaces with sufficiently large radius of curvature while phase stabilization of a superheated fluid layer occurs at interfaces with smaller radius. The hypothesis that the high Laplace pressure required for stable equilibrium of very small bubbles is responsible for phase stability is tested by effectively varying the parameter which controls liquid-vapor surface tension. In doing so, the liquid-vapor surface tension- hence Laplace pressure-is shown to have limited effect on phase stabilization vs. bubble nucleation. However, the strong dependence of nucleation on leading-order momentum transport, i.e. viscous dissipation, near the heated inner surface is demonstrated. We gratefully acknowledge ND Energy for support through the ND Energy Postdoctoral Fellowship program and the Army Research Office, Grant No. W911NF-16-1-0267, managed by Dr. Chakrapani Venanasi.
Bailey, Nicholas P; Bøhling, Lasse; Veldhorst, Arno A; Schrøder, Thomas B; Dyre, Jeppe C
2013-11-14
We derive exact results for the rate of change of thermodynamic quantities, in particular, the configurational specific heat at constant volume, CV, along configurational adiabats (curves of constant excess entropy Sex). Such curves are designated isomorphs for so-called Roskilde liquids, in view of the invariance of various structural and dynamical quantities along them. The slope of the isomorphs in a double logarithmic representation of the density-temperature phase diagram, γ, can be interpreted as one third of an effective inverse power-law potential exponent. We show that in liquids where γ increases (decreases) with density, the contours of CV have smaller (larger) slope than configurational adiabats. We clarify also the connection between γ and the pair potential. A fluctuation formula for the slope of the CV-contours is derived. The theoretical results are supported with data from computer simulations of two systems, the Lennard-Jones fluid, and the Girifalco fluid. The sign of dγ∕dρ is thus a third key parameter in characterizing Roskilde liquids, after γ and the virial-potential energy correlation coefficient R. To go beyond isomorph theory we compare invariance of a dynamical quantity, the self-diffusion coefficient, along adiabats and CV-contours, finding it more invariant along adiabats.
Speeding up Monte Carlo molecular simulation by a non-conservative early rejection scheme
Kadoura, Ahmad Salim
2015-04-23
Monte Carlo (MC) molecular simulation describes fluid systems with rich information, and it is capable of predicting many fluid properties of engineering interest. In general, it is more accurate and representative than equations of state. On the other hand, it requires much more computational effort and simulation time. For that purpose, several techniques have been developed in order to speed up MC molecular simulations while preserving their precision. In particular, early rejection schemes are capable of reducing computational cost by reaching the rejection decision for the undesired MC trials at an earlier stage in comparison to the conventional scheme. In a recent work, we have introduced a ‘conservative’ early rejection scheme as a method to accelerate MC simulations while producing exactly the same results as the conventional algorithm. In this paper, we introduce a ‘non-conservative’ early rejection scheme, which is much faster than the conservative scheme, yet it preserves the precision of the method. The proposed scheme is tested for systems of structureless Lennard-Jones particles in both canonical and NVT-Gibbs ensembles. Numerical experiments were conducted at several thermodynamic conditions for different number of particles. Results show that at certain thermodynamic conditions, the non-conservative method is capable of doubling the speed of the MC molecular simulations in both canonical and NVT-Gibbs ensembles. © 2015 Taylor & Francis
Turbulent resuspension of small nondeformable particles
International Nuclear Information System (INIS)
Lazaridis, M.; Drossinos, Y.
1998-01-01
An energy-balance resuspension model is modified and applied to the resuspension of a monolayer of nondeformable spherical particles. The particle-surface adhesive force is calculated from a microscopic model based on the Lennard-Jones intermolecular potential. Pairwise additivity of intermolecular interactions is assumed and elastic flattening of the particles is neglected. From the resulting particle-surface interaction potential the natural frequency of vibration of a particle on a surface and the depth of the potential well are calculated. The particle resuspension rate is calculated using the results of a previously developed energy-balance model, where the influence of fluid flow on the bound particle motion is recognized. The effect of surface roughness is included by introducing an effective particle radius that results in log-normally distributed adhesive forces. The predictions of the model are compared with experimental results for the resuspension of Al 2 O 3 particles from stainless steel surfaces. Particle resuspension due to turbulent fluid flow is important in the interaction of the atmosphere with various surfaces and in numerous industrial processes. For example, in the nuclear industry, fission-product aerosols released during a postulated severe accident in a Light Water Reactor may deposit and resuspend repeatedly in the vessel circuit and containment
Yuen, Po Ki
2013-05-07
This article presents a simple method for controlling fluid in microfluidic devices without the need for valves or pumps. A fluid conveyance extension is fluidly coupled to the enclosed outlet chamber of a microfluidic device. After a fluid is introduced into the microfluidic device and saturates the fluid conveyance extension, a fluid flow in the microfluidic device is generated by contacting an absorbent microfluidic flow modulator with the fluid conveyance extension to absorb the fluid from the fluid conveyance extension through capillary action. Since the fluid in the microfluidic device is fluidly coupled with the fluid conveyance extension and the fluid conveyance extension is fluidly coupled with the absorbent microfluidic flow modulator, the absorption rate of the absorbent microfluidic flow modulator, which is the rate at which the absorbent microfluidic flow modulator absorbs fluid, matches the fluid flow rate in the microfluidic device. Thus, the fluid flow rate in the microfluidic device is set by the absorption rate of the absorbent microfluidic flow modulator. Sheath flow and fluid switching applications are demonstrated using this simple fluid control method without the need for valves or pumps. Also, the ability to control the fluid flow rate in the microfluidic device is demonstrated using absorbent microfluidic flow modulators with various absorbent characteristics and dimensions.
Nonlinear rheology of complex fluid-fluid interfaces
Sagis, L.M.C.; Fischer, P.
2014-01-01
Fluid–fluid interfaces stabilized by proteins, protein aggregates, polymers, or colloidal particles, tend to have a complex microstructure. Their response to an applied deformation is often highly nonlinear, even at small deformation (rates). The nonlinearity of the response is a result of changes
Editorial Special Issue on Fluid Mechanics and Fluid Power (FMFP ...
Indian Academy of Sciences (India)
Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore. Fluid mechanics touches almost all aspects of the natural and engineering ... lence which distorts electromagnetic waves; an earth scientist may simulate convection in the earth's mantle to understand plate tectonics or convection in the atmosphere to ...
Erler, Scott R. (Inventor); Dills, Michael H. (Inventor); Rodriguez, Jose L. (Inventor); Tepool, John Eric (Inventor)
2010-01-01
A fluid pump assembly includes a rotatable component that can be rotated about an axis and a static vane assembly located adjacent to the rotatable component. The static vane assembly includes a circumferential surface axially spaced from the rotatable component, and one or more vanes extending from the circumferential surface toward the rotatable component. The one or more vanes are configured to produce a radial load on the rotatable component when the rotatable component is rotating about the axis and a fluid is present between the static vane assembly and the rotatable component.
Wellbottom fluid implosion treatment system
Brieger, Emmet F.
2001-01-01
A system for inducing implosion shock forces on perforation traversing earth formations with fluid pressure where an implosion tool is selected relative to a shut in well pressure and a tubing pressure to have a large and small area piston relationship in a well tool so that at a predetermined tubing pressure the pistons move a sufficient distance to open an implosion valve which permits a sudden release of well fluid pressure into the tubing string and produces an implosion force on the perforations. A pressure gauge on the well tool records tubing pressure and well pressure as a function of time.
Fluid mechanics problems and solutions
Spurk, Joseph H
1997-01-01
his collection of over 200 detailed worked exercises adds to and complements the textbook Fluid Mechanics by the same author, and illustrates the teaching material through examples. In the exercises the fundamental concepts of Fluid Mechanics are applied to obtaining the solution of diverse concrete problems, and in doing this the student's skill in the mathematical modeling of practical problems is developed. In addition, 30 challenging questions without detailed solutions have been included, and while lecturers will find these questions suitable for examinations and tests, the student himself can use them to check his understanding of the subject.
Analysis of giant electrorheological fluids.
Seo, Youngwook P; Seo, Yongsok
2013-07-15
The yield stress dependence on electric field strength for giant electrorheological (GER) fluids over the full range of electric fields was examined using Seo's scaling function which incorporated both the polarization and the conductivity models. If a proper scaling was applied to the yield stress data to collapse them onto a single curve, the Seo's scaling function could correctly fit the yield stress behavior of GER suspensions, even at very high electric field strengths. The model predictions were also compared with recently proposed Choi et al.'s model to allow a consideration of the universal framework of ER fluids. Copyright © 2013 Elsevier Inc. All rights reserved.
Fluid systems for RICH detectors
Ullaland, O
2005-01-01
The optical properties of the radiator media are of prime importance in Ring Imaging Cherenkov detectors. The main requirements for the radiator fluid are a stable refractive index and a photon absorption as low as possible. We will in this note cover some of the cleaning procedures which are required together with distillation and similar separation procedures. Thin film membranes have been introduced during the last decade. They have proven particularly interesting in separating air from some Cherenkov fluids. We will also discuss the use of molecular sieves.
Microbial Metabolism in Serpentinite Fluids
Crespo-Medina, M.; Brazelton, W. J.; Twing, K. I.; Kubo, M.; Hoehler, T. M.; Schrenk, M. O.
2013-12-01
Serpentinization is the process in which ultramafic rocks, characteristic of the upper mantle, react with water liberating mantle carbon and reducing power to potenially support chemosynthetic microbial communities. These communities may be important mediators of carbon and energy exchange between the deep Earth and the surface biosphere. Our work focuses on the Coast Range Ophiolite Microbial Observatory (CROMO) in Northern California where subsurface fluids are accessible through a series of wells. Preliminary analyses indicate that the highly basic fluids (pH 9-12) have low microbial diversity, but there is limited knowledge about the metabolic capabilities of these communties. Metagenomic data from similar serpentine environments [1] have identified Betaproteobacteria belonging to the order Burkholderiales and Gram-positive bacteria from the order Clostridiales as key components of the serpentine microbiome. In an effort to better characterize the microbial community, metabolism, and geochemistry at CROMO, fluids from two representative wells (N08B and CSWold) were sampled during recent field campaigns. Geochemical characterization of the fluids includes measurements of dissolved gases (H2, CO, CH4), dissolved inorganic and organic carbon, volatile fatty acids, and nutrients. The wells selected can be differentiated in that N08B had higher pH (10-11), lower dissolved oxygen, and cell counts ranging from 105-106 cells mL-1 of fluid, with an abundance of the betaproteobacterium Hydrogenophaga. In contrast, fluids from CSWold have slightly lower pH (9-9.5), DO, and conductivity, as well as higher TDN and TDP. CSWold fluid is also characterized for having lower cell counts (~103 cells mL-1) and an abundance of Dethiobacter, a taxon within the phylum Clostridiales. Microcosm experiments were conducted with the purpose of monitoring carbon fixation, methanotrophy and metabolism of small organic compounds, such as acetate and formate, while tracing changes in fluid
Piezooptic behavior of certain fluids
International Nuclear Information System (INIS)
Weiss, J.D.
1985-01-01
In this paper we present an analysis of pressure--volume data for certain optical fluids, which characterizes them by two parameters: their bulk moduli and the pressure derivative of their bulk moduli, both evaluated at zero pressure. We then relate their refractive-index changes to density and pressure using this analysis and the Lorentz-Lorenz equation with a density-dependent polarizability. An example of the use of such fluids in a fiber-optic pressure gauge being developed at Sandia is also discussed
Effects of fluid dynamics on cleaning efficacy of supercritical fluids
Energy Technology Data Exchange (ETDEWEB)
Phelps, M.R.; Willcox, W.A.; Silva, L.J.; Butner, R.S.
1993-03-01
Pacific Northwest Laboratory (PNL) and Boeing Aerospace Company are developing a process to clean metal parts using a supercritical solvent. This work is part of an effort to address issues inhibiting the rapid commercialization of Supercritical Fluid Parts Cleaning (SFPC). PNL assembled a SFPC test stand to observe the relationship between the fluid dynamics of the system and the mass transfer of a contaminant from the surface of a contaminated metal coupon into the bulk fluid. The bench-scale test stand consists of a Berty'' autoclave modified for these tests and supporting hardware to achieve supercritical fluids parts cleaning. Three separate sets of tests were conducted using supercritical carbon dioxide. For the first two tests, a single stainless steel coupon was cleaned with organic solvents to remove surface residue, doped with a single contaminant, and then cleaned in the SFPC test stand. Contaminants studied were Dow Corning 200 fluid (dimethylpolysiloxane) and Castle/Sybron X-448 High-temperature Oil (a polybutane/mineral oil mixture). A set of 5-minute cleaning runs was conducted for each dopant at various autoclave impeller speeds. Test results from the first two sets of experiments indicate that precision cleaning for difficult-to-remove contaminants can be dramatically improved by introducing and increasing turbulence within the system. Metal coupons that had been previously doped with aircraft oil were used in a third set of tests. The coupons were placed in the SFPC test stand and subjected to different temperatures, pressures, and run times at a constant impeller speed. The cleanliness of each part was measured by Optically Stimulated Electron Emission. The third set of tests show that levels of cleanliness attained with supercritical carbon dioxide compare favorably with solvent and aqueous cleaning levels.
Effects of fluid dynamics on cleaning efficacy of supercritical fluids
Energy Technology Data Exchange (ETDEWEB)
Phelps, M.R.; Willcox, W.A.; Silva, L.J.; Butner, R.S.
1993-03-01
Pacific Northwest Laboratory (PNL) and Boeing Aerospace Company are developing a process to clean metal parts using a supercritical solvent. This work is part of an effort to address issues inhibiting the rapid commercialization of Supercritical Fluid Parts Cleaning (SFPC). PNL assembled a SFPC test stand to observe the relationship between the fluid dynamics of the system and the mass transfer of a contaminant from the surface of a contaminated metal coupon into the bulk fluid. The bench-scale test stand consists of a ``Berty`` autoclave modified for these tests and supporting hardware to achieve supercritical fluids parts cleaning. Three separate sets of tests were conducted using supercritical carbon dioxide. For the first two tests, a single stainless steel coupon was cleaned with organic solvents to remove surface residue, doped with a single contaminant, and then cleaned in the SFPC test stand. Contaminants studied were Dow Corning 200 fluid (dimethylpolysiloxane) and Castle/Sybron X-448 High-temperature Oil (a polybutane/mineral oil mixture). A set of 5-minute cleaning runs was conducted for each dopant at various autoclave impeller speeds. Test results from the first two sets of experiments indicate that precision cleaning for difficult-to-remove contaminants can be dramatically improved by introducing and increasing turbulence within the system. Metal coupons that had been previously doped with aircraft oil were used in a third set of tests. The coupons were placed in the SFPC test stand and subjected to different temperatures, pressures, and run times at a constant impeller speed. The cleanliness of each part was measured by Optically Stimulated Electron Emission. The third set of tests show that levels of cleanliness attained with supercritical carbon dioxide compare favorably with solvent and aqueous cleaning levels.
Rheology and non-Newtonian fluids
Irgens, Fridtjov
2014-01-01
This book gives a brief but thorough introduction to the fascinating subject of non-Newtonian fluids, their behavior and mechanical properties. After a brief introduction of what characterizes non-Newtonian fluids in Chapter 1 some phenomena characteristic of non-Newtonian fluids are presented in Chapter 2. The basic equations in fluid mechanics are discussed in Chapter 3. Deformation kinematics, the kinematics of shear flows, viscometric flows, and extensional flows are the topics in Chapter 4. Material functions characterizing the behavior of fluids in special flows are defined in Chapter 5. Generalized Newtonian fluids are the most common types of non-Newtonian fluids and are the subject in Chapter 6. Some linearly viscoelastic fluid models are presented in Chapter 7. In Chapter 8 the concept of tensors is utilized and advanced fluid models are introduced. The book is concluded with a variety of 26 problems. Solutions to the problems are ready for instructors.
Somatomedin activity in synovial fluid.
Coates, C L; Burwell, R G; Buttery, P J; Walker, G; Woodward, P M
1977-01-01
Abnormalities of synovial fluid, as a lubricant and nutrient, may have relevance to the causation of certain articular diseases. The somatomedin activity in normal synovial fluid obtained from the knee joint of the ox has been studied and compared with the activity in serum from the same animal. The porcine costal cartilage bioassay of Van den Brande and Du Caju (1974) has been used with the isotopes 35S-sulphate and 3H-thymidine. The mean potency ratio of ox synovial fluid in terms of ox serum for 35S-sulphate incorporation was 0-28 (range 0-19-0-47) and for 3H-thymidine incorporation 0-35 (range 0-21-0-63). A significant correlation was found between the somatomedin activity (as measured by 35S-sulphate incorporation) and the total protein and albumin concentrations in the ox synovial fluids and the ox sera, but there was no significant relationship between the somatomedin potency ratios and the globulin concentrations. The possible relevance of these findings to injury and disease in synovial joint is discussed. PMID:843111
Computational Fluid Dynamics in Ventilation
DEFF Research Database (Denmark)
Nielsen, Peter V.; Allard, Francis; Awbi, Hazim B.
2008-01-01
Computational Fluid Dynamics in Ventilation Design is a new title in the is a new title in the REHVA guidebook series. The guidebook is written for people who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD...
Protein profiling of cerebrospinal fluid
DEFF Research Database (Denmark)
Simonsen, Anja H
2012-01-01
The cerebrospinal fluid (CSF) perfuses the brain and spinal cord. CSF contains proteins and peptides important for brain physiology and potentially also relevant for brain pathology. Hence, CSF is the perfect source to search for new biomarkers to improve diagnosis of neurological diseases as well...
Free Falling in Stratified Fluids
Lam, Try; Vincent, Lionel; Kanso, Eva
2017-11-01
Leaves falling in air and discs falling in water are examples of unsteady descents due to complex interaction between gravitational and aerodynamic forces. Understanding these descent modes is relevant to many branches of engineering and science such as estimating the behavior of re-entry space vehicles to studying biomechanics of seed dispersion. For regularly shaped objects falling in homogenous fluids, the motion is relatively well understood. However, less is known about how density stratification of the fluid medium affects the falling behavior. Here, we experimentally investigate the descent of discs in both pure water and in stable linearly stratified fluids for Froude numbers Fr 1 and Reynolds numbers Re between 1000 -2000. We found that stable stratification (1) enhances the radial dispersion of the disc at landing, (2) increases the descent time, (3) decreases the inclination (or nutation) angle, and (4) decreases the fluttering amplitude while falling. We conclude by commenting on how the corresponding information can be used as a predictive model for objects free falling in stratified fluids.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 8. The Challenge of Fluid Flow - The Diversity of Flow Phenomena. Roddam Narasimha. General Article Volume 10 Issue 8 August 2005 pp 67-79. Fulltext. Click here to view fulltext PDF. Permanent link:
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 9. The Challenge of Fluid Flow - What One Can and Cannot Do. Roddam Narasimha. General Article Volume 10 Issue 9 September 2005 pp 6-22. Fulltext. Click here to view fulltext PDF. Permanent link:
Observing magnetic objects in fluids
Hageman, Tijmen Antoon Geert
2018-01-01
This thesis describes two topics dealing with objects moving through fluids. The first project considers centimetre-sized magnetic particles submerged in a turbulent water flow. We have studied how these particles interact with each other and self-assemble into clusters. By investigating their
Fundamentals of Geophysical Fluid Dynamics
McWilliams, James C.
2006-07-01
Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. These patterns combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion. This textbook is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. The book was developed from the author's many years of teaching a first-year graduate course at the University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations. Covers the essential GFD required for atmospheric science and oceanography courses Mathematically rigorous, concise coverage of basic theory and applications to both oceans and atmospheres Author is a world expert; this book is based on the course he has taught for many years Exercises are included, with solutions available to instructors from solutions@cambridge.org
Fluid Mechanics of Fish Swimming
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 1. Fluid Mechanics of Fish Swimming - Lift-based Propulsion. Jaywant H Arakeri. General Article Volume 14 Issue 1 January 2009 pp 32-46. Fulltext. Click here to view fulltext PDF. Permanent link:
Mixed Fluid Conditions: Capillary Phenomena
Santamarina, Carlos
2017-07-06
Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.
Fluid Mechanics in Sommerfeld's School
Eckert, Michael
2015-01-01
Sommerfeld's affiliation with fluid mechanics started when he began his career as an assistant of the mathematician Felix Klein at Göttingen. He always regarded fluid mechanics as a particular challenge. In 1904, he published a theory of hydrodynamic lubrication. Four years later, he conceived an approach for the analysis of flow instability (the Orr-Sommerfeld approach) as an attempt to account for the transition from laminar to turbulent flow. The onset of turbulence also became a major challenge for some of his pupils, in particular Ludwig Hopf and Fritz Noether. Both contributed considerably to elaborate the Orr-Sommerfeld theory. Heisenberg's doctoral work was another attempt in this quest. When Sommerfeld published his lectures on theoretical physics during World War II, he dedicated one of the six volumes to the mechanics of continuous media. With chapters on boundary layer theory and turbulence, it exceeded the scope of contemporary theoretical physics—revealing Sommerfeld's persistent appreciation of fluid mechanics. He resorted to Prandtl's Göttingen school of fluid mechanics in order to stay abreast of the rapid development of these specialties.
Supercritical fluids in chemical processes
International Nuclear Information System (INIS)
Hertz, A.; Charton, F.
2011-01-01
When the pressure and temperature of a fluid are simultaneously higher than their critical point values, the fluid is said to be supercritical. Supercritical fluids have unique physico-chemical properties, in particular they have specific gravity close to that of liquids and viscosity close to that of gases. Carbon dioxide CO 2 (P c = 73.8 bars, T c = 31 C. degrees) is the most widely used compound in supercritical processes. In the nuclear field, chemistry inspired by liquid phase extraction has been developed for the supercritical CO 2 used as a diluent in association with extractant systems such as organo-phosphorus compounds or β-dike-tones. The Japanese Super-DIREX (Supercritical fluid Direct Extraction) process exploits the supercritical CO 2 - tri-n-butyl phosphate - nitric acid chemical system to extract actinides from spent fuel. In the United States, the same chemical system is utilized in an industrial facility to recover enriched uranium from incineration ash. Supercritical water H 2 O (P c = 221 bars, T c = 374 C. degrees) exhibits solvation properties close to those of organic solvents and can solubilise organic compounds that are insoluble in liquid water. In the nuclear field, CEA is studying oxidation in supercritical water, also called hydrothermal oxidation, for the mineralization of contaminated organic solvents. (A.C.)
Fluid involvement in normal faulting
Sibson, Richard H.
2000-04-01
Evidence of fluid interaction with normal faults comes from their varied role as flow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous fluids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clay-rich) → cataclasites → phyllonites → mylonite → mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic fluid pressures over the depth range 3-5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low effective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic fluid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical σ1 trajectories is only likely if
Compressor bleed cooling fluid feed system
Donahoo, Eric E; Ross, Christopher W
2014-11-25
A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.
Instrumentation, measurements, and experiments in fluids
Rathakrishnan, E
2007-01-01
NEED AND OBJECTIVE OF EXPERIMENTAL STUDY Some Fluid Mechanics MeasurementsMeasurement SystemsSome of the Important Quantities Associated with FluidFlow MeasurementsFUNDAMENTALS OF FLUID MECHANICSProperties of FluidsThermodynamic PropertiesSurface TensionAnalysis of Fluid FlowBasic and Subsidiary Laws for Continuous MediaKinematics of Fluid FlowStreamlinesPotential FlowViscous FlowsGas DynamicsWIND TUNNELSLow-Speed Wind TunnelsPower Losses in a Wind TunnelHigh-Speed Wind TunnelsHypersonic TunnelsInstrume
Fundamental Processes of Atomization in Fluid-Fluid Flows
McCready, M. J.; Chang, H.-C.; Leighton, D. T.
2001-01-01
This report outlines the major results of the grant "Fundamental Processes of Atomization in Fluid-Fluid Flows." These include: 1) the demonstration that atomization in liquid/liquid shear flow is driven by a viscous shear instability that triggers the formation of a long thin sheet; 2) discovery of a new mode of interfacial instability for oscillatory two-layer systems whereby a mode that originates within the less viscous liquid phase causes interfacial deformation as the oscillation proceeds; 3) the demonstration that rivulet formation from gravity front occurs because the local front shape specified by gravity and surface tension changes from a nose to a wedge geometry, thus triggering a large increase in viscous resistance; and 4) extension of the studies on nonlinear wave evolution on falling films and in stratified flow, particularly the evolution towards large-amplitude solitary waves that tend to generate drops.
Fluid-fluid interfacial mobility from random walks
Barclay, Paul L.; Lukes, Jennifer R.
2017-12-01
Dual control volume grand canonical molecular dynamics is used to perform the first calculation of fluid-fluid interfacial mobilities. The mobility is calculated from one-dimensional random walks of the interface by relating the diffusion coefficient to the interfacial mobility. Three different calculation methods are employed: one using the interfacial position variance as a function of time, one using the mean-squared interfacial displacement, and one using the time-autocorrelation of the interfacial velocity. The mobility is calculated for two liquid-liquid interfaces and one liquid-vapor interface to examine the robustness of the methods. Excellent agreement between the three calculation methods is shown for all the three interfaces, indicating that any of them could be used to calculate the interfacial mobility.
Fundamental Issues of Nano-fluid Behavior
International Nuclear Information System (INIS)
Williams, Wesley C.
2006-01-01
This paper will elucidate some of the behaviors of nano-fluids other than the abnormal conductivity enhancement, which are of importance to the experimental and engineering use of nano-fluids. Nano-fluid is the common name of any sol colloid involving nano-scale (less than 100 nm) sized particles dispersed within a base fluid. It has been shown previously that the dispersion of nano-particulate metallic oxides into water can increase thermal conductivity up to 30-40% over that of the base fluid and anomalously more than the mere weighed average of the colloid. There is a great potential for the use of nano-fluids as a way to enhance fluid/thermal energy transfer systems. Due to the recentness of nano-fluid science, there are still many issues which have not been fully investigated. This paper should act as a primer for the basic understanding of nano-fluid behavior. Particle size and colloid stability are of key importance to the functionality of nano-fluids. The pH and concentration/loading of nano-fluids can alter the size of the nano-particles and also the stability of the fluids. It will be shown through experiment and colloid theory the importance of these parameters. Furthermore, most of the existing literature uses volume percentage as the measure of particle loading, which can often be misleading. There will be discussion of this and other misleading ideas in nano-fluid science. (author)
On the efficiency of a fluid-fluid centrifugal separation
International Nuclear Information System (INIS)
Apazidis, N.
1984-05-01
Efficiency of a separation process of two immiscible incompressible fluids of different densities occuring under the influence of a combined centrifugal and gravitational force field is investigated. The analysis is based on the set of equations for a rotating two-phase flow of a mixture as presented by Greenspan (1983). The geometry of the separation process is considered and the total flow of the separated phases evaluated. (author)
Generating perfect fluid spheres in general relativity
International Nuclear Information System (INIS)
Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke
2005-01-01
Ever since Karl Schwarzschild's 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star--a static spherically symmetric blob of fluid with position-independent density--the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres
Fluid Flow Experiment for Undergraduate Laboratory.
Vilimpochapornkul, Viroj; Obot, Nsima T.
1986-01-01
The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)
CEE3500 - Fluid Mechanics, Spring 2006
Urroz, Gilberto E.
2006-01-01
Explores fluid properties, hydrostatics, fluid dynamics, similitude, energy and momentum principles, closed conduit flow, open channel flow, and flow measurement. Includes laboratory exercises in flow measurement, open channel flow, pipe friction, physical modeling, and data collection.
Ultrasonic fluid densitometer for process control
Greenwood, Margaret S.
2000-01-01
The present invention is an ultrasonic fluid densitometer that uses at least one pair of transducers for transmitting and receiving ultrasonic signals internally reflected within a material wedge. A temperature sensor is provided to monitor the temperature of the wedge material. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface and comparing a transducer voltage and wedge material temperature to a tabulation as a function of density.
Gel Evolution in Oil Based Drilling Fluids
Sandvold, Ida
2012-01-01
Drilling fluids make up an essential part of the drilling operation. Successful drilling operations rely on adequate drilling fluid quality. With the development of new drilling techniques such as long deviated sections and drilling in ultra-deep waters, the standard of required performance of the drilling fluids continue to increase. Narrow pressure margins and low tolerance for barite sag requires accurate prediction of the gel evolution in drilling fluids. Increased knowledge of how dri...
Enhanced active swimming in viscoelastic fluids
Riley, Emily E; Lauga, Eric Jean-Marie
2014-01-01
Swimming microorganisms often self propel in fluids with complex rheology. While past theoretical work indicates that fluid viscoelasticity should hinder their locomotion, recent experiments on waving swimmers suggest a possible non-Newtonian enhancement of locomotion. We suggest a physical mechanism, based on fluid-structure interaction, leading to swimming in a viscoelastic fluid at a higher speed than in a Newtonian one. Using Taylor's two-dimensional swimming sheet model, we solve for the...
Body fluids and salt metabolism - Part II
Directory of Open Access Journals (Sweden)
Bettinelli Alberto
2010-12-01
Full Text Available Abstract There is a high frequency of diarrhea and vomiting in childhood. As a consequence the focus of the present review is to recognize the different body fluid compartments, to clinically assess the degree of dehydration, to know how the equilibrium between extracellular fluid and intracellular fluid is maintained, to calculate the effective blood osmolality and discuss both parenteral fluid maintenance and replacement.
Cosmological model with macroscopic spin fluid
Szydlowski, Marek; Krawiec, Adam
2003-01-01
We consider a Friedmann-Robertson-Walker cosmological model with some exotic perfect fluid with spin known as the Weyssenhoff fluid. The possibility that the dark energy may be described in part by the Weyssenhoff fluid is discussed. The observational constraint coming from supernovae type Ia observations is established. This result indicates that, whereas the cosmological constant is still needed to explain current observations, the model with spin fluid is admissible. For high redshifts $z ...
Fluid Annotations in a Open World
DEFF Research Database (Denmark)
Zellweger, Polle Trescott; Bouvin, Niels Olof; Jehøj, Henning
2001-01-01
Fluid Documents use animated typographical changes to provide a novel and appealing user experience for hypertext browsing and for viewing document annotations in context. This paper describes an effort to broaden the utility of Fluid Documents by using the open hypermedia Arakne Environment...... to layer fluid annotations and links on top of abitrary HTML pages on the World Wide Web. Changes to both Fluid Documents and Arakne are required....
Flow of Jeffrey Fluid through Narrow Tubes
Nallapu, Santhosh; Radhakrishnamacharya, G.
2014-01-01
The present paper deals with a two-fluid model for the flow of Jeffrey fluid in tubes of small diameters. It is assumed that the core region consists of Jeffrey fluid and Newtonian fluid in the peripheral region. Analytical expressions for velocity, effective viscosity, core hematocrit and mean hematocrit have been derived. The effects of various parameters, namely, Jeffrey parameter ({\\lambda}1), tube hematocrit (H0) and tube radius (a) on effective viscosity, core hematocrit and mean hemato...
Advanced working fluids: Thermodynamic properties
Lee, Lloyd L.; Gering, Kevin L.
1990-10-01
Electrolytes are used as working fluids in gas fired heat pump chiller engine cycles. To find out which molecular parameters of the electrolytes impact on cycle performance, a molecular theory is developed for calculating solution properties, enthalpies, vapor-liquid equilibria, and engine cycle performance. Aqueous and ammoniac single and mixed salt solutions in single and multisolvent systems are investigated. An accurate correlation is developed to evaluate properties for concentrated electrolyte solutions. Sensitivity analysis is used to determine the impact of molecular parameters on the thermodynamic properties and cycle performance. The preferred electrolytes are of 1-1 valence type, small ion size, high molecular weight, and in strongly colligative cosolvent. The operating windows are determined for a number of absorption fluids of industrial importance.
Topology of helical fluid flow
DEFF Research Database (Denmark)
Andersen, Morten; Brøns, Morten
2014-01-01
Phys. Fluids 25, 1949–1952) contains an infinite sum of modified Bessel functions. Using the approach by Okulov (Okulov, V. L. 1995 Russ. J. Eng. Thermophys. 5, 63–75) we obtain a closed-form approximation which is considerably easier to analyse. Critical points of the stream function can be found from...... function for the topology of the streamline pattern in incompressible flows. On this basis, we perform a comprehensive study of the topology of the flow field generated by a helical vortex filament in an ideal fluid. The classical expression for the stream function obtained by Hardin (Hardin, J. C. 1982...... the zeroes of a single real function of one variable, and we show that three different flow topologies can occur, depending on a single dimensionless parameter. By including the self-induced velocity on the vortex filament by a localised induction approximation, the stream function is slightly modified...
Lipidomics by Supercritical Fluid Chromatography
Laboureur, Laurent; Ollero, Mario; Touboul, David
2015-01-01
This review enlightens the role of supercritical fluid chromatography (SFC) in the field of lipid analysis. SFC has been popular in the late 1980s and 1990s before almost disappearing due to the commercial success of liquid chromatography (LC). It is only 20 years later that a regain of interest appeared when new commercial instruments were introduced. As SFC is fully compatible with the injection of extracts in pure organic solvent, this technique is perfectly suitable for lipid analysis and can be coupled with either highly universal (UV or evaporative light scattering) or highly specific (mass spectrometry) detection methods. A short history of the use of supercritical fluids as mobile phase for the separation oflipids will be introduced first. Then, the advantages and drawbacks of SFC are discussed for each class of lipids (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, prenols, polyketides) defined by the LIPID MAPS consortium. PMID:26090714
Sensors for Fluid Leak Detection
Martinsanz, Gonzalo Pajares
2015-01-01
Fluid leak detection represents a problem that has attracted the interest of researchers, but not exclusively because in industries and services leaks are frequently common. Indeed, in water or gas supplies, chemical or thermal plants, sea-lines or cooling/heating systems leakage rates can cause important economic losses and sometimes, what it is more relevant, environmental pollution with human, animal or plant lives at risk. This last issue has led to increased national and international re...
Computational modelling in fluid mechanics
International Nuclear Information System (INIS)
Hauguel, A.
1985-01-01
The modelling of the greatest part of environmental or industrial flow problems gives very similar types of equations. The considerable increase in computing capacity over the last ten years consequently allowed numerical models of growing complexity to be processed. The varied group of computer codes presented are now a complementary tool of experimental facilities to achieve studies in the field of fluid mechanics. Several codes applied in the nuclear field (reactors, cooling towers, exchangers, plumes...) are presented among others [fr
Fluid mechanics of environmental interfaces
Gualtieri, Carlo
2008-01-01
Fluid Mechanics of Environmental Interfaces describes the concept of the environmental interface, defined as a surface between two either abiotic or biotic systems. These are in relative motion and exchange mass, heat and momentum through biophysical and/or chemical processes. These processes are fluctuating temporally and spatially.The book will be of interest to graduate students, PhD students as well as researchers in environmental sciences, civil engineering and environmental engineering, (geo)physics and applied mathematics.
Simulation of cerebrospinal fluid transport
Czech Academy of Sciences Publication Activity Database
Otáhal, Jakub; Štěpáník, Z.; Kaczmarská, A.; Maršík, František; Brož, Z.; Otáhal, S.
2007-01-01
Roč. 38, 11-12 (2007), s. 802-809 ISSN 0965-9978 Grant - others:GA UK(CZ) 112/2005; GA UK(CZ) 114/2005; GA ČR(CZ) GA106/03/0958 Program:GA Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z20760514 Keywords : cerebrospinal fluid * pulsation * mathematical modeling Subject RIV: BO - Biophysics Impact factor: 0.529, year: 2007
International Nuclear Information System (INIS)
Shaner, J.W.; Hixson, R.S.; Winkler, M.A.; Boness, D.A.; Brown, J.M.
1987-01-01
By comparing acoustic velocities in fluid metals over a very wide range of densities we have established Birch's Law as an approximate representation over the entire liquid range. For a given liquid metal the acoustic velocity is close to linear in density, with a slope determined by the atomic weight. The measurements include isobaric expansion to less than half normal density, ultrasonics on molten metals at 1 atmosphere, and shock melted metals to greater than twice normal density
Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes
Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt; Stuehn, Torsten
2017-11-01
Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach, the theoretical modeling and scaling laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. These two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.
Sun, Shuyu
2013-06-01
This paper introduces an efficient technique to generate new molecular simulation Markov chains for different temperature and density conditions, which allow for rapid extrapolation of canonical ensemble averages at a range of temperatures and densities different from the original conditions where a single simulation is conducted. Obtained information from the original simulation are reweighted and even reconstructed in order to extrapolate our knowledge to the new conditions. Our technique allows not only the extrapolation to a new temperature or density, but also the double extrapolation to both new temperature and density. The method was implemented for Lennard-Jones fluid with structureless particles in single-gas phase region. Extrapolation behaviors as functions of extrapolation ranges were studied. Limits of extrapolation ranges showed a remarkable capability especially along isochors where only reweighting is required. Various factors that could affect the limits of extrapolation ranges were investigated and compared. In particular, these limits were shown to be sensitive to the number of particles used and starting point where the simulation was originally conducted.
Computer simulation of liquid crystals
International Nuclear Information System (INIS)
McBride, C.
1999-01-01
Molecular dynamics simulation performed on modern computer workstations provides a powerful tool for the investigation of the static and dynamic characteristics of liquid crystal phases. In this thesis molecular dynamics computer simulations have been performed for two model systems. Simulations of 4,4'-di-n-pentyl-bibicyclo[2.2.2]octane demonstrate the growth of a structurally ordered phase directly from an isotropic fluid. This is the first time that this has been achieved for an atomistic model. The results demonstrate a strong coupling between orientational ordering and molecular shape, but indicate that the coupling between molecular conformational changes and molecular reorientation is relatively weak. Simulations have also been performed for a hybrid Gay-Berne/Lennard-Jones model resulting in thermodynamically stable nematic and smectic phases. Frank elastic constants have been calculated for the nematic phase formed by the hybrid model through analysis of the fluctuations of the nematic director, giving results comparable with those found experimentally. Work presented in this thesis also describes the parameterization of the torsional potential of a fragment of a dimethyl siloxane polymer chain, disiloxane diol (HOMe 2 Si) 2 O, using ab initio quantum mechanical calculations. (author)
Local order and crystallization of dense polydisperse hard spheres
Coslovich, Daniele; Ozawa, Misaki; Berthier, Ludovic
2018-04-01
Computer simulations give precious insight into the microscopic behavior of supercooled liquids and glasses, but their typical time scales are orders of magnitude shorter than the experimentally relevant ones. We recently closed this gap for a class of models of size polydisperse fluids, which we successfully equilibrate beyond laboratory time scales by means of the swap Monte Carlo algorithm. In this contribution, we study the interplay between compositional and geometric local orders in a model of polydisperse hard spheres equilibrated with this algorithm. Local compositional order has a weak state dependence, while local geometric order associated to icosahedral arrangements grows more markedly but only at very high density. We quantify the correlation lengths and the degree of sphericity associated to icosahedral structures and compare these results to those for the Wahnström Lennard-Jones mixture. Finally, we analyze the structure of very dense samples that partially crystallized following a pattern incompatible with conventional fractionation scenarios. The crystal structure has the symmetry of aluminum diboride and involves a subset of small and large particles with size ratio approximately equal to 0.5.
The barrier to ice nucleation in monatomic water
Prestipino, Santi
2018-03-01
Crystallization from a supercooled liquid initially proceeds via the formation of a small solid embryo (nucleus), which requires surmounting an activation barrier. This phenomenon is most easily studied by numerical simulation, using specialized biased-sampling techniques to overcome the limitations imposed by the rarity of nucleation events. Here, I focus on the barrier to homogeneous ice nucleation in supercooled water, as represented by the monatomic-water model, which in the bulk exhibits a complex interplay between different ice structures. I consider various protocols to identify solidlike particles on a computer, which perform well enough for the Lennard-Jones model, and compare their respective impact on the shape and height of the nucleation barrier. It turns out that the effect is stronger on the nucleus size than on the barrier height. As a by-product of the analysis, I determine the structure of the nucleation cluster, finding that the relative amount of ice phases in the cluster heavily depends on the method used for classifying solidlike particles. Moreover, the phase which is most favored during the earlier stages of crystallization may happen, depending on the nucleation coordinate adopted, to be different from the stable polymorph. Therefore, the quality of a reaction coordinate cannot be assessed simply on the basis of the barrier height obtained. I explain how this outcome is possible and why it just points out the shortcoming of collective variables appropriate to simple fluids in providing a robust method of particle classification for monatomic water.
Parametric sensitivity analysis for stochastic molecular systems using information theoretic metrics
Energy Technology Data Exchange (ETDEWEB)
Tsourtis, Anastasios, E-mail: tsourtis@uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete, Crete (Greece); Pantazis, Yannis, E-mail: pantazis@math.umass.edu; Katsoulakis, Markos A., E-mail: markos@math.umass.edu [Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Harmandaris, Vagelis, E-mail: harman@uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete, and Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-70013 Heraklion, Crete (Greece)
2015-07-07
In this paper, we present a parametric sensitivity analysis (SA) methodology for continuous time and continuous space Markov processes represented by stochastic differential equations. Particularly, we focus on stochastic molecular dynamics as described by the Langevin equation. The utilized SA method is based on the computation of the information-theoretic (and thermodynamic) quantity of relative entropy rate (RER) and the associated Fisher information matrix (FIM) between path distributions, and it is an extension of the work proposed by Y. Pantazis and M. A. Katsoulakis [J. Chem. Phys. 138, 054115 (2013)]. A major advantage of the pathwise SA method is that both RER and pathwise FIM depend only on averages of the force field; therefore, they are tractable and computable as ergodic averages from a single run of the molecular dynamics simulation both in equilibrium and in non-equilibrium steady state regimes. We validate the performance of the extended SA method to two different molecular stochastic systems, a standard Lennard-Jones fluid and an all-atom methane liquid, and compare the obtained parameter sensitivities with parameter sensitivities on three popular and well-studied observable functions, namely, the radial distribution function, the mean squared displacement, and the pressure. Results show that the RER-based sensitivities are highly correlated with the observable-based sensitivities.
Analysis of the static properties of cluster formations in symmetric linear multiblock copolymers
International Nuclear Information System (INIS)
Fytas, N G; Theodorakis, P E
2011-01-01
We use molecular dynamics simulations to study the static properties of a single linear multiblock copolymer chain under poor solvent conditions varying the block length N, the number of blocks n, and the solvent quality by variation of the temperature T. We study the most symmetrical case, where the number of blocks of monomers of type A, n A , equals that of monomers B, n B (n A = n B = n/2), the length of all blocks is the same irrespective of their type, and the potential parameters are also chosen symmetrically, as for a standard Lennard-Jones fluid. Under poor solvent conditions the chains collapse and blocks with monomers of the same type form clusters, which are phase separated from the clusters with monomers of the other type. We study the dependence of the size of the clusters formed on n, N and T. Furthermore, we discuss our results with respect to recent simulation data on the phase behaviour of such macromolecules, providing a complete picture for the cluster formations in single multiblock copolymer chains under poor solvent conditions.
Density functional theory for adsorption of gas mixtures in metal-organic frameworks.
Liu, Yu; Liu, Honglai; Hu, Ying; Jiang, Jianwen
2010-03-04
In this work, a recently developed density functional theory in three-dimensional space was extended to the adsorption of gas mixtures. Weighted density approximations to the excess free energy with different weighting functions were adopted for both repulsive and attractive contributions. An equation of state for hard-sphere mixtures and a modified Benedict-Webb-Rubin equation for Lennard-Jones mixtures were used to estimate the excess free energy of a uniform fluid. The theory was applied to the adsorption of CO(2)/CH(4) and CO(2)/N(2) mixtures in two metal-organic frameworks: ZIF-8 and Zn(2)(BDC)(2)(ted). To validate the theoretical predictions, grand canonical Monte Carlo simulations were also conducted. The predicted adsorption and selectivity from DFT were found to agree well with the simulation results. CO(2) has stronger adsorption than CH(4) and N(2), particularly in Zn(2)(BDC)(2)(ted). The selectivity of CO(2) over CH(4) or N(2) increases with increasing pressure as attributed to the cooperative interactions of adsorbed CO(2) molecules. The composition of the gas mixture exhibits a significant effect on adsorption but not on selectivity.
Surface impacts and collisions of particle-laden nanodrops
Koplik, Joel
2015-08-01
The surface impact and collisions of particle-laden nanodrops are studied using molecular dynamics computer simulations. The drops are composed of Lennard-Jones dimers and the particles are rigid spherical sections of a cubic lattice, with radii about 11 nm and 0.6 nm, respectively. Uniform suspensions of 21% and 42% particle concentrations and particle-coated drops are studied, and their behavior is compared to that of pure fluid drops of the same size. The relative velocities studied span the transition to splashing, and both wetting/miscible and non-wetting/immiscible cases are considered. Impacts normal to the surface and head-on collisions are studied and compared. In surface impact, the behavior of low-density suspensions and liquid marble drops is qualitatively similar to that of pure liquid, while the concentrated drops are solid-like on impact. Collisions produce a splash only at velocities significantly higher than in impact, but the resulting drop morphology shows a similar dependence on solid concentration as in impact. In all cases, the collision or impact produces a strong local enhancement in the kinetic energy density and temperature but not in the particle or potential energy densities. Mixing of the two colliding species is not enhanced by collisions, unless the velocity is so high as to cause drop disintegration.
Kadoura, Ahmad Salim
2014-03-17
Molecular simulation could provide detailed description of fluid systems when compared to experimental techniques. They can also replace equations of state; however, molecular simulation usually costs considerable computational efforts. Several techniques have been developed to overcome such high computational costs. In this paper, two early rejection schemes, a conservative and a hybrid one, are introduced. In these two methods, undesired configurations generated by the Monte Carlo trials are rejected earlier than it would when using conventional algorithms. The methods are tested for structureless single-component Lennard-Jones particles in both canonical and NVT-Gibbs ensembles. The computational time reduction for both ensembles is observed at a wide range of thermodynamic conditions. Results show that computational time savings are directly proportional to the rejection rate of Monte Carlo trials. The proposed conservative scheme has shown to be successful in saving up to 40% of the computational time in the canonical ensemble and up to 30% in the NVT-Gibbs ensemble when compared to standard algorithms. In addition, it preserves the exact Markov chains produced by the Metropolis scheme. Further enhancement for NVT-Gibbs ensemble is achieved by combining this technique with the bond formation early rejection one. The hybrid method achieves more than 50% saving of the central processing unit (CPU) time.
Equilibrium sampling by reweighting nonequilibrium simulation trajectories.
Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin
2016-03-01
Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.
14 CFR 27.1185 - Flammable fluids.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluids. 27.1185 Section 27.1185... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 27.1185 Flammable fluids. (a..., other than a fuel tank, that is part of a system containing flammable fluids or gases must be isolated...
14 CFR 29.1185 - Flammable fluids.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluids. 29.1185 Section 29.1185... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 29.1185 Flammable fluids. (a) No tank or reservoir that is part of a system containing flammable fluids or gases may be in a...
14 CFR 121.255 - Flammable fluids.
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flammable fluids. 121.255 Section 121.255..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.255 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in...
Transient flows of a Burgers' fluid
International Nuclear Information System (INIS)
Khan, M.
2005-12-01
An analysis is performed to develop the analytical solutions for some unsteady magnetohydrodynamic (MHD) flows of a Burgers' fluid between two plates. A uniform magnetic field is applied transversely to the fluid motion. The exact solutions are given for three problems. Results for the velocity fields are discussed and compared with the flows of Oldroyd-B, Maxwell, second grade and Newtonian fluids. (author)
Optimal composition of fluid-replacement beverages.
Baker, Lindsay B; Jeukendrup, Asker E
2014-04-01
The objective of this article is to provide a review of the fundamental aspects of body fluid balance and the physiological consequences of water imbalances, as well as discuss considerations for the optimal composition of a fluid replacement beverage across a broad range of applications. Early pioneering research involving fluid replacement in persons suffering from diarrheal disease and in military, occupational, and athlete populations incurring exercise- and/or heat-induced sweat losses has provided much of the insight regarding basic principles on beverage palatability, voluntary fluid intake, fluid absorption, and fluid retention. We review this work and also discuss more recent advances in the understanding of fluid replacement as it applies to various populations (military, athletes, occupational, men, women, children, and older adults) and situations (pathophysiological factors, spaceflight, bed rest, long plane flights, heat stress, altitude/cold exposure, and recreational exercise). We discuss how beverage carbohydrate and electrolytes impact fluid replacement. We also discuss nutrients and compounds that are often included in fluid-replacement beverages to augment physiological functions unrelated to hydration, such as the provision of energy. The optimal composition of a fluid-replacement beverage depends upon the source of the fluid loss, whether from sweat, urine, respiration, or diarrhea/vomiting. It is also apparent that the optimal fluid-replacement beverage is one that is customized according to specific physiological needs, environmental conditions, desired benefits, and individual characteristics and taste preferences.
Thanatochemistry: Study of synovial fluid potassium | Tumram ...
African Journals Online (AJOL)
The purpose of this paper is to test previously developed regression formulae for estimating death interval based on synovial fluid potassium and to assess its reliability in estimating death interval. Synovial fluid potassium was measured on a sample of 308 individuals. Death interval was regressed on synovial fluid ...
Self-lubricating fluid bearing assembly
International Nuclear Information System (INIS)
Kapich, D.D.
1981-01-01
A sealed self-lubricating fluid bearing assembly is described for circulating fluid in the form of a gas coolant in a nuclear reactor, the power for the circulator being provided by a shaft located within the primary containment vessel. In such a system the reactor coolant is isolated from the fluid region at the far end of the drive shaft. (U.K.)
Fluid Power/Basic Hydraulics. Instructor's Guide.
Stanbery, Richard
This guide is designed to assist industrial vocational instructors in teaching a course on fluid power and basic hydraulics. Covered in the unit on the basics of fluid power and hydraulics are the following topics: the fundamentals of fluid power and hydraulics, basic hydraulic circuits, and servicing a hydraulic jack. The second unit, consisting…
Thanatochemistry: Study of synovial fluid potassium
African Journals Online (AJOL)
Nilesh Keshav Tumram
2014-03-28
Mar 28, 2014 ... tion of various body fluids immediately after death.2 Several investigators have tried to find the relation between death interval and postmortem biochemical changes in various body fluids such as blood, serum, cerebrospinal, vitreous, and syno- vial fluid.3 Various studies conducted till now have well estab-.
Markov-modulated and feedback fluid queues
Scheinhardt, Willem R.W.
1998-01-01
In the last twenty years the field of Markov-modulated fluid queues has received considerable attention. In these models a fluid reservoir receives and/or releases fluid at rates which depend on the actual state of a background Markov chain. In the first chapter of this thesis we give a short
Method of drilling with magnetorheological fluid
Zitha, P.L.J.
2003-01-01
A method of drilling a bore hole into a stratum, wherein via the drill hole drilling fluid is introduced and fed to the drill head. In order to avoid dilution or leak-off of the drilling fluid the same is in accordance with the invention a magnetorheological drilling fluid, and when an undesirable
Consistency argued students of fluid
Viyanti; Cari; Suparmi; Winarti; Slamet Budiarti, Indah; Handika, Jeffry; Widyastuti, Fatma
2017-01-01
Problem solving for physics concepts through consistency arguments can improve thinking skills of students and it is an important thing in science. The study aims to assess the consistency of the material Fluid student argmentation. The population of this study are College students PGRI Madiun, UIN Sunan Kalijaga Yogyakarta and Lampung University. Samples using cluster random sampling, 145 samples obtained by the number of students. The study used a descriptive survey method. Data obtained through multiple-choice test and interview reasoned. Problem fluid modified from [9] and [1]. The results of the study gained an average consistency argmentation for the right consistency, consistency is wrong, and inconsistent respectively 4.85%; 29.93%; and 65.23%. Data from the study have an impact on the lack of understanding of the fluid material which is ideally in full consistency argued affect the expansion of understanding of the concept. The results of the study as a reference in making improvements in future studies is to obtain a positive change in the consistency of argumentations.
Pleural fluid exchange in rabbits.
Stashenko, Gregg J; Robichaux, Amy; Lee, Y C Gary; Sanders, Jonathan R; Roselli, Robert J; Light, Richard W
2007-07-01
The study was designed to better characterize pleural fluid absorption in rabbits with the following two objectives: to determine the relative absorption of saline versus high-protein solutions, and to identify the relative rates of absorption of dextran molecules of varying sizes. Twenty New Zealand white rabbits received a 12-mL intrapleural injection of saline solution and a 10% protein solution on opposite sides, each solution containing dextran molecules with varying MWs. At sacrifice at 1, 4, 8, 18 and 24 h, the volume of pleural fluid and the concentrations of the dextran molecules were determined. Saline was absorbed faster than the high-protein fluid (P higher than those in the protein solution at all times after injection (P = 0.005; P higher-MW dextrans were cleared more slowly than the lower-MW dextrans in a continuously graded manner. Saline was absorbed faster than a solution with a high protein content. There was a continuous spectrum in the rate of absorption of the dextran molecules, with the larger molecules being absorbed more slowly.
Selected topics of fluid mechanics
Kindsvater, Carl E.
1958-01-01
The fundamental equations of fluid mechanics are specific expressions of the principles of motion which are ascribed to Isaac Newton. Thus, the equations which form the framework of applied fluid mechanics or hydraulics are, in addition to the equation of continuity, the Newtonian equations of energy and momentum. These basic relationships are also the foundations of river hydraulics. The fundamental equations are developed in this report with sufficient rigor to support critical examinations of their applicability to most problems met by hydraulic engineers of the Water Resources Division of the United States Geological Survey. Physical concepts are emphasized, and mathematical procedures are the simplest consistent with the specific requirements of the derivations. In lieu of numerical examples, analogies, and alternative procedures, this treatment stresses a brief methodical exposition of the essential principles. An important objective of this report is to prepare the user to read the literature of the science. Thus, it begins With a basic vocabulary of technical symbols, terms, and concepts. Throughout, emphasis is placed on the language of modern fluid mechanics as it pertains to hydraulic engineering. The basic differential and integral equations of simple fluid motion are derived, and these equations are, in turn, used to describe the essential characteristics of hydrostatics and piezometry. The one-dimensional equations of continuity and motion are defined and are used to derive the general discharge equation. The flow net is described as a means of demonstrating significant characteristics of two-dimensional irrotational flow patterns. A typical flow net is examined in detail. The influence of fluid viscosity is described as an obstacle to the derivation of general, integral equations of motion. It is observed that the part played by viscosity is one which is usually dependent on experimental evaluation. It follows that the dimensionless ratios known as
Euler's fluid equations: Optimal control vs optimization
International Nuclear Information System (INIS)
Holm, Darryl D.
2009-01-01
An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.
Coding coarse grained polymer model for LAMMPS and its application to polymer crystallization
Luo, Chuanfu; Sommer, Jens-Uwe
2009-08-01
We present a patch code for LAMMPS to implement a coarse grained (CG) model of poly(vinyl alcohol) (PVA). LAMMPS is a powerful molecular dynamics (MD) simulator developed at Sandia National Laboratories. Our patch code implements tabulated angular potential and Lennard-Jones-9-6 (LJ96) style interaction for PVA. Benefited from the excellent parallel efficiency of LAMMPS, our patch code is suitable for large-scale simulations. This CG-PVA code is used to study polymer crystallization, which is a long-standing unsolved problem in polymer physics. By using parallel computing, cooling and heating processes for long chains are simulated. The results show that chain-folded structures resembling the lamellae of polymer crystals are formed during the cooling process. The evolution of the static structure factor during the crystallization transition indicates that long-range density order appears before local crystalline packing. This is consistent with some experimental observations by small/wide angle X-ray scattering (SAXS/WAXS). During the heating process, it is found that the crystalline regions are still growing until they are fully melted, which can be confirmed by the evolution both of the static structure factor and average stem length formed by the chains. This two-stage behavior indicates that melting of polymer crystals is far from thermodynamic equilibrium. Our results concur with various experiments. It is the first time that such growth/reorganization behavior is clearly observed by MD simulations. Our code can be easily used to model other type of polymers by providing a file containing the tabulated angle potential data and a set of appropriate parameters. Program summaryProgram title: lammps-cgpva Catalogue identifier: AEDE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU's GPL No. of lines in distributed program
In vitro comparison of output fluid temperatures for room temperature and prewarmed fluids.
Soto, N; Towle Millard, H A; Lee, R A; Weng, H Y
2014-08-01
To determine if prewarmed intravenous fluids produce superior fluid output temperatures compared with room temperature fluids at common anaesthetic fluid rates for small animal patients. A prospective, randomised, in vitro fluid line test-vein study was performed. Nine flow rates were analysed (10, 20, 60, 100, 140, 180, 220, 260 and 300 mL/hour) for room temperature fluids (21°C) and for five prewarmed fluids (40, 45, 50, 55 and 60°C). For each flow rate tested, room temperature fluids never exceeded 25°C at any time point for each trial (range 18 to 25°C). For each flow rate tested, prewarmed fluids never exceeded 25 · 5°C at any time point for each trial (range 18 to 25 · 5°C). The mean output fluid temperature of prewarmed fluids was significantly warmer than room temperature fluids only at 300 mL/hour for 40°C (P = 0 · 0012), 45°C (P = 0 · 004), 50°C (P = 0 · 0002), 55°C (P = 0 · 0001) and 60°C (P fluids (up to 60°C) compared with room temperature intravenous fluids at common anaesthetic fluid rates for small animals. © 2014 British Small Animal Veterinary Association.
Leg fluid accumulation during prolonged sitting.
Vena, Daniel; Rubianto, Jonathan; Popovic, Milos; Yadollahi, Azadeh
2016-08-01
The accumulation of fluid in the legs due to sedentariness can be a health risk in extreme cases. Negative health impacts associated with leg fluid accumulation include leg edema and risk of blood clots. Furthermore, fluid accumulating in the legs is accompanied by fluid shift into the upper body which is also associated with health risks such as: increased blood pressure when lying down, respiratory problems in people with heart failure, and increased sleep apnea. Understanding the pattern by which fluid accumulates in the legs can aid in the development of devices for reducing leg fluid accumulation. The purpose of this study was to characterize the time course of fluid accumulation over a two-and-half-hour seated period. Non-obese participants with sleep apnea and no other co-morbidities were included in the sample as part of a larger study. Leg fluid was measured continuously using a method of bioelectrical impedance. Participants were first asked to lie supine for 30 minutes as a washout, and then sat with their legs still for two and a half hours. The main finding of this study is that the pattern of leg fluid accumulation differed in the first 45 minutes compared to the latter 105 minutes. In the first 45 minutes, fluid accumulated according to first order exponential function. In the latter period, fluid accumulated according to a linear function. The initial exponential accumulation is likely due to the large increase in capillary pressure caused by rapid blood flow into the legs due to gravity, leading to substantial filtration of blood plasma into the tissue spaces. The latter linear portion likely represents continued slow filtration of fluid out of the vasculature and into the tissue spaces. This is the first study to show that fluid accumulation in the legs is a combination of an exponential and linear functions. The linear increase identifies that there is no foreseeable point in which leg fluid stops accumulating while sitting for prolonged periods.
Pore fluid pressure and the seismic cycle
French, M. E.; Zhu, W.; Hirth, G.; Belzer, B.
2017-12-01
In the brittle crust, the critical shear stress required for fault slip decreases with increasing pore fluid pressures according to the effective stress criterion. As a result, higher pore fluid pressures are thought to promote fault slip and seismogenesis, consistent with observations that increasing fluid pressure as a result of wastewater injection is correlated with increased seismicity. On the other hand, elevated pore fluid pressure is also proposed to promote slow stable failure rather than seismicity along some fault zones, including during slow slip in subduction zones. Here we review recent experimental evidence for the roles that pore fluid pressure and the effective stress play in controlling fault slip behavior. Using two sets of experiments on serpentine fault gouge, we show that increasing fluid pressure does decrease the shear stress for reactivation under brittle conditions. However, under semi-brittle conditions as expected near the base of the seismogenic zone, high pore fluid pressures are much less effective at reducing the shear stress of reactivation even though deformation is localized and frictional. We use an additional study on serpentinite to show that cohesive fault rocks, potentially the product of healing and cementation, experience an increase in fracture energy during faulting as fluid pressures approach lithostatic, which can lead to more stable failure. Structural observations show that the increased fracture energy is associated with a greater intensity of transgranular fracturing and delocalization of deformation. Experiments on several lithologies indicate that the stabilizing effect of fluid pressure occurs independent of rock composition and hydraulic properties. Thus, high pore fluid pressures have the potential to either enhance seismicity or promote stable faulting depending on pressure, temperature, and fluid pressure conditions. Together, the results of these studies indicate that pore fluid pressure promotes
A Four-Site Molecular Model for Simulations of Liquid Methanol and Water-Methanol Mixtures: MeOH-4P.
Martínez-Jiménez, Manuel; Saint-Martin, Humberto
2018-04-17
In this work, we present a new four-site potential for methanol, MeOH-4P, fitted to reproduce the dielectric constant ε, the surface tension γ s , and the liquid density ρ of the pure liquid at T = 298.15 K and p = 1 bar. The partial charges on each site were taken from the OPLS/2016 model with the only difference of putting the negative charge on the fourth site ( M) instead of on the O atom, as done in four-site water models. The original Lennard-Jones (LJ) parameters of OPLS/2016 for the methyl moiety (Me) were modified for the fitting of ρ and γ s , whereas the parameters of the TIP4P-FB water model were used for the O atom without change. Taking into account the energetic cost of the enhanced dipole relative to the isolated molecule, the results from simulations with this model showed good agreement with experiments for ρ, α p , κ T , C p , and Δ H v- l . Also, the temperature dependence of γ s and ε is satisfactory in the interval between 260 and 360 K, and the critical point description is similar to that of OPLS/2016. It is shown that orientational correlations, described by the Kirkwood factor G k , play a prominent role in the appropriate description of dielectric constants in existing models; unfortunately, the enhancement of the dipole moment produced a low diffusion coefficient D MeOH ; thus, a compromise was required between a good reproduction of ε and an acceptable D MeOH . The use of a fourth site resulted in a significant improvement for water-methanol mixtures described with TIP4P-FB and MeOH-4P, respectively, but required the modification of the LJ geometric combination rule to allow a good description of the methanol molar-fraction dependence of ρ, ε, and methanol (water) diffusion coefficients D MeOH ( D H 2 O ) and excess volume of mixing Δ V mix in the entire range of composition. The resulting free energy of hydration Δ G hyd shows excellent agreement with experiments in the interval between 280 and 360 K.
Scintigraphy of the cerebrospinal fluid
International Nuclear Information System (INIS)
Touya, E.; Perillo, W.; Paez, A.; Osorio, A.; Ferrando, R.; Lago, G.; Garcia Guelfi, A.; Ferrari, M.
1977-01-01
Eight years of experience in scintigraphy of cerebrospinal fluid (CSF) with 113 Insup(m)-colloid is reported. Two hundred cases are discussed. On the basis of the clinical diagnosis, the cases are divided into five groups: (1) spinal cord compression; (2) hydrocephalus of the adult and child; (3) control of extracranial CSF shunts; (4) CSF fistula; and (5) brain tumour. It is concluded that the radiopharmaceutical used has no limitations except in the study of the hydrocephalus of the adult. For those services remote from the production centres, it is a convenient option for CSF scintigraphy. (author)
Ferroelectric Fluid Flow Control Valve
Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)
1999-01-01
An active valve is controlled and driven by external electrical actuation of a ferroelectric actuator to provide for improved passage of the fluid during certain time periods and to provide positive closure of the valve during other time periods. The valve provides improved passage in the direction of flow and positive closure in the direction against the flow. The actuator is a dome shaped internally prestressed ferroelectric actuator having a curvature, said dome shaped actuator having a rim and an apex. and a dome height measured from a plane through said rim said apex that varies with an electric voltage applied between an inside and an outside surface of said dome shaped actuator.
Scattering methods in complex fluids
Chen, Sow-Hsin
2015-01-01
Summarising recent research on the physics of complex liquids, this in-depth analysis examines the topic of complex liquids from a modern perspective, addressing experimental, computational and theoretical aspects of the field. Selecting only the most interesting contemporary developments in this rich field of research, the authors present multiple examples including aggregation, gel formation and glass transition, in systems undergoing percolation, at criticality, or in supercooled states. Connecting experiments and simulation with key theoretical principles, and covering numerous systems including micelles, micro-emulsions, biological systems, and cement pastes, this unique text is an invaluable resource for graduate students and researchers looking to explore and understand the expanding field of complex fluids.
Fundamental fluid mechanics and magnetohydrodynamics
Hosking, Roger J
2016-01-01
This book is primarily intended to enable postgraduate research students to enhance their understanding and expertise in Fluid Mechanics and Magnetohydrodynamics (MHD), subjects no longer treated in isolation. The exercises throughout the book often serve to provide additional and quite significant knowledge or to develop selected mathematical skills, and may also fill in certain details or enhance readers’ understanding of essential concepts. A previous background or some preliminary reading in either of the two core subjects would be advantageous, and prior knowledge of multivariate calculus and differential equations is expected.
Black holes from fluid mechanics
Lahiri, Subhaneil
2009-12-01
We use the AdS/CFT correspondence in a regime where the field theory is well described by fluid mechanics to study large black holes in asymptotically locally anti de Sitter spaces. In particular, we use the fluid description to study the thermodynamics of the black holes and the existence of exotic horizon topologies in higher dimensions. First we test this method by comparing large rotating black holes in global AdSD spaces to stationary solutions of the relativistic Navier-Stokes equations on SD-2. Reading off the equation of state of this fluid from the thermodynamics of non-rotating black holes, we proceed to construct the nonlinear spinning solutions of fluid mechanics that are dual to rotating black holes. In all known examples, the thermodynamics and the local stress tensor of our solutions are in precise agreement with the thermodynamics and boundary stress tensor of the spinning black holes. Our results yield predictions for the thermodynamics of all large black holes in all theories of gravity on AdS spaces, for example, IIB string theory on AdS5 x S 5 and M theory on AdS4 x S7 and AdS7 x S 4. We then construct solutions to the relativistic Navier-Stokes equations that describe the long wavelength collective dynamics of the deconfined plasma phase of N = 4 Yang Mills theory compactified down to d = 3 on a Scherk-Schwarz circle. Our solutions are stationary, axially symmetric spinning balls and rings of plasma. These solutions, which are dual to (yet to be constructed) rotating black holes and black rings in Scherk-Schwarz compactified AdS 5, and have properties that are qualitatively similar to those of black holes and black rings in flat five dimensional gravity. We also study the stability of these solutions to small fluctuations, which provides an indirect method for studying Gregory-Laflamme instabilities. We also extend the construction to higher dimensions, allowing one to study the existence of new black hole topologies and their phase diagram.
Complex fluids modeling and algorithms
Saramito, Pierre
2016-01-01
This book presents a comprehensive overview of the modeling of complex fluids, including many common substances, such as toothpaste, hair gel, mayonnaise, liquid foam, cement and blood, which cannot be described by Navier-Stokes equations. It also offers an up-to-date mathematical and numerical analysis of the corresponding equations, as well as several practical numerical algorithms and software solutions for the approximation of the solutions. It discusses industrial (molten plastics, forming process), geophysical (mud flows, volcanic lava, glaciers and snow avalanches), and biological (blood flows, tissues) modeling applications. This book is a valuable resource for undergraduate students and researchers in applied mathematics, mechanical engineering and physics.
ICFD - Interdisciplinary Computational Fluid Dynamics
International Nuclear Information System (INIS)
Hankey, W.L.
1985-01-01
Interdisciplinary Computational Fluid Dynamics is that field in which the Navier-Stokes equations are coupled to another set of equations for the solution of interaction problems. Although it is currently possible to apply numerical algorithms and grid generation methods to such problems, together with the conservation form for governing equations and arrangements of field data which exploit vector processor hardwares, novel technology is called for in the modeling of complex interface boundary conditions and the incorporation of constitutive relationships for state variables and transport processes. It is also necessary to model such subgrid scale phenomena as turbulence, evaporation, atomization, devolatization, nucleation, chemical reactions, surface tension, and surface roughness. 33 references
Computational Fluid Dynamics in Ventilation
DEFF Research Database (Denmark)
Nielsen, Peter V.; Allard, Francis; Awbi, Hazim B.
2008-01-01
Computational Fluid Dynamics in Ventilation Design is a new title in the is a new title in the REHVA guidebook series. The guidebook is written for people who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD....... The guidebook is also written for people working with CFD which have to be more aware of how this numerical method is applied in the area of ventilation. The guidebook has, for example, chapters that are very important for CFD quality control in general and for the quality control of ventilation related...
Fluid mechanics. 5. enlarged ed.
International Nuclear Information System (INIS)
Kalide, W.
1980-01-01
Originally written for students in the field of engineering, this book may also be of use in the engineering practice. The subject is presented with a view to practice. Fundamental theorems of fluid mechanics are presented without going too much into theory. The chapter on supersonic flow has been extended in the fifth edition as this is a field of great importance in engineering. The new chapter on gas dynamics takes account of these processes in turbine and compressure construction and aeronautical engineering. There is an appendix with material data, characteristic values, flow resistance coefficients, diagrams and two tables with rated pressure loss values for pipeline flow. (orig./GL)
Experimental Approach to Teaching Fluids
Stern, Catalina
2015-11-01
For the last 15 years we have promoted experimental work even in the theoretical courses. Fluids appear in the Physics curriculum of the National University of Mexico in two courses: Collective Phenomena in their sophomore year and Continuum Mechanics in their senior year. In both, students are asked for a final project. Surprisingly, at least 85% choose an experimental subject even though this means working extra hours every week. Some of the experiments were shown in this congress two years ago. This time we present some new results and the methodology we use in the classroom. I acknowledge support from the Physics Department, Facultad de Ciencias, UNAM.
Sensors for Fluid Leak Detection
Directory of Open Access Journals (Sweden)
Gonzalo Pajares Martinsanz
2015-02-01
Full Text Available Fluid leak detection represents a problem that has attracted the interest of researchers, but not exclusively because in industries and services leaks are frequently common. Indeed, in water or gas supplies, chemical or thermal plants, sea-lines or cooling/heating systems leakage rates can cause important economic losses and sometimes, what it is more relevant, environmental pollution with human, animal or plant lives at risk. This last issue has led to increased national and international regulations with different degrees of severity regarding environmental conservation.[...
International Nuclear Information System (INIS)
Olson, L.G.; Bathe, K.J.
1983-01-01
The widely-used displacement-based finite element formulation for inviscid, compressible, small displacement fluid motions is examined, with the specific objective of calculating fluid-structure frequencies. It is shown that the formulation can be employed with confidence to predict the static response of fluids. Also the resonant frequencies of fluids in rigid cavities and the frequencies of fluids in flexible boundaries are solved successfully if a penalty on rotations is included in the formulation. However, the reason for writing this paper is that problems involving structures moving through fluids that behave almost incompressibly - such as an ellipse vibrating on a spring in water - could not be solved satisfactorily, for which a general explanation is given. (orig.)
Fluid discrimination based on rock physics templates
International Nuclear Information System (INIS)
Liu, Qian; Yin, Xingyao; Li, Chao
2015-01-01
Reservoir fluid discrimination is an indispensable part of seismic exploration. Reliable fluid discrimination helps to decrease the risk of exploration and to increase the success ratio of drilling. There are many kinds of fluid indicators that are used in fluid discriminations, most of which are single indicators. But single indicators do not always work well under complicated reservoir conditions. Therefore, combined fluid indicators are needed to increase accuracies of discriminations. In this paper, we have proposed an alternative strategy for the combination of fluid indicators. An alternative fluid indicator, the rock physics template-based indicator (RPTI) has been derived to combine the advantages of two single indicators. The RPTI is more sensitive to the contents of fluid than traditional indicators. The combination is implemented based on the characteristic of the fluid trend in the rock physics template, which means few subjective factors are involved. We also propose an inversion method to assure the accuracy of the RPTI input data. The RPTI profile is an intuitionistic interpretation of fluid content. Real data tests demonstrate the applicability and validity. (paper)
Fluid-fluid level on MR image: significance in Musculoskeletal diseases
Energy Technology Data Exchange (ETDEWEB)
Chung, Hye Won; Lee, Kyung Won [Seoul Naitonal University, Seoul (Korea, Republic of). Coll. of Medicine; Song, Chi Sung [Seoul City Boramae Hospital, Seoul (Korea, Republic of); Han, Sang Wook; Kang, Heung Sik [Seoul Naitonal University, Seoul (Korea, Republic of). Coll. of Medicine
1998-01-01
To evaluate the frequency, number and signal intensity of fluid-fluid levels of musculoskeletal diseases on MR images, and to determine the usefulness of this information for the differentiation of musculoskeletal diseases. MR images revealed fluid-fluid levels in the following diseases : giant cell tumor(6), telangiectatic osteosarcoma(4), aneurysmal bone cyst(3), synovial sarcoma(3), chondroblastoma(2), soft tissue tuberculous abscess(2), hematoma(2), hemangioma (1), neurilemmoma(1), metastasis(1), malignant fibrous histiocytoma(1), bursitis(1), pyogenic abscess(1), and epidermoid inclusion cyst(1). Fourteen benign tumors and ten malignant, three abscesses, and the epidermoid inclusion cyst showed only one fluid-fluid level in a unilocular cyst. On T1-weighted images, the signal intensities of fluid varied, but on T2-weighted images, superior layers were in most cases more hyperintense than inferior layers. Because fluid-fluid layers are a nonspecific finding, it is difficult to specifically diagnose each disease according to the number of fluid-fluid levels or signal intensity of fluid. In spite of the nonspecificity of fluid-fluid levels, they were frequently seen in cases of giant cell tumor, telangiectatic osteosarcoma, aneurysmal bone cycle, and synovial sarcoma. Nontumorous diseases such abscesses and hematomas also demonstrated this finding. (author). 11 refs., 1 tab., 4 figs.
Fluid-fluid level on MR image: significance in Musculoskeletal diseases
International Nuclear Information System (INIS)
Chung, Hye Won; Lee, Kyung Won; Han, Sang Wook; Kang, Heung Sik
1998-01-01
To evaluate the frequency, number and signal intensity of fluid-fluid levels of musculoskeletal diseases on MR images, and to determine the usefulness of this information for the differentiation of musculoskeletal diseases. MR images revealed fluid-fluid levels in the following diseases : giant cell tumor(6), telangiectatic osteosarcoma(4), aneurysmal bone cyst(3), synovial sarcoma(3), chondroblastoma(2), soft tissue tuberculous abscess(2), hematoma(2), hemangioma (1), neurilemmoma(1), metastasis(1), malignant fibrous histiocytoma(1), bursitis(1), pyogenic abscess(1), and epidermoid inclusion cyst(1). Fourteen benign tumors and ten malignant, three abscesses, and the epidermoid inclusion cyst showed only one fluid-fluid level in a unilocular cyst. On T1-weighted images, the signal intensities of fluid varied, but on T2-weighted images, superior layers were in most cases more hyperintense than inferior layers. Because fluid-fluid layers are a nonspecific finding, it is difficult to specifically diagnose each disease according to the number of fluid-fluid levels or signal intensity of fluid. In spite of the nonspecificity of fluid-fluid levels, they were frequently seen in cases of giant cell tumor, telangiectatic osteosarcoma, aneurysmal bone cycle, and synovial sarcoma. Nontumorous diseases such abscesses and hematomas also demonstrated this finding. (author). 11 refs., 1 tab., 4 figs