WorldWideScience

Sample records for lengths mathematically unique

  1. On the non-uniqueness of the nodal mathematical adjoint

    International Nuclear Information System (INIS)

    Müller, Erwin

    2014-01-01

    Highlights: • We evaluate three CMFD schemes for computing the nodal mathematical adjoint. • The nodal mathematical adjoint is not unique and can be non-positive (nonphysical). • Adjoint and forward eigenmodes are compatible if produced by the same CMFD method. • In nodal applications the excited eigenmodes are purely mathematical entities. - Abstract: Computation of the neutron adjoint flux within the framework of modern nodal diffusion methods is often facilitated by reducing the nodal equation system for the forward flux into a simpler coarse-mesh finite-difference form and then transposing the resultant matrix equations. The solution to the transposed problem is known as the nodal mathematical adjoint. Since the coarse-mesh finite-difference reduction of a given nodal formulation can be obtained in a number of ways, different nodal mathematical adjoint solutions can be computed. This non-uniqueness of the nodal mathematical adjoint challenges the credibility of the reduction strategy and demands a verdict as to its suitability in practical applications. This is the matter under consideration in this paper. A selected number of coarse-mesh finite-difference reduction schemes are described and compared. Numerical calculations are utilised to illustrate the differences in the adjoint solutions as well as to appraise the impact on such common applications as the computation of core point kinetics parameters. Recommendations are made for the proper application of the coarse-mesh finite-difference reduction approach to the nodal mathematical adjoint problem

  2. Creativity in Unique Problem-Solving in Mathematics and Its Influence on Motivation for Learning

    Science.gov (United States)

    Bishara, Saied

    2016-01-01

    This research study investigates the ability of students to tackle the solving of unique mathematical problems in the domain of numerical series, verbal and formal, and its influence on the motivation of junior high students with learning disabilities in the Arab sector. Two instruments were used to collect the data: mathematical series were…

  3. The unique and shared contributions of arithmetic operation understanding and numerical magnitude representation to children's mathematics achievement.

    Science.gov (United States)

    Wong, Terry Tin-Yau

    2017-12-01

    The current study examined the unique and shared contributions of arithmetic operation understanding and numerical magnitude representation to children's mathematics achievement. A sample of 124 fourth graders was tested on their arithmetic operation understanding (as reflected by their understanding of arithmetic principles and the knowledge about the application of arithmetic operations) and their precision of rational number magnitude representation. They were also tested on their mathematics achievement and arithmetic computation performance as well as the potential confounding factors. The findings suggested that both arithmetic operation understanding and numerical magnitude representation uniquely predicted children's mathematics achievement. The findings highlight the significance of arithmetic operation understanding in mathematics learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, Vinod M. [Institutefor Chemical Technology and Polymer Chemistry, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe (Germany); Heuveline, Vincent; Deutschmann, Olaf [Institute for Applied and Numerical Mathematics, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe (Germany)

    2008-03-15

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution. (author)

  5. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    Science.gov (United States)

    Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.

  6. A Unique Mathematical Derivation of the Fundamental Laws of Nature Based on a New Algebraic-Axiomatic (Matrix Approach ‡

    Directory of Open Access Journals (Sweden)

    Ramin Zahedi

    2017-09-01

    Full Text Available In this article, as a new mathematical approach to origin of the laws of nature, using a new basic algebraic axiomatic (matrix formalism based on the ring theory and Clifford algebras (presented in Section 2, “it is shown that certain mathematical forms of fundamental laws of nature, including laws governing the fundamental forces of nature (represented by a set of two definite classes of general covariant massive field equations, with new matrix formalisms, are derived uniquely from only a very few axioms.” In agreement with the rational Lorentz group, it is also basically assumed that the components of relativistic energy-momentum can only take rational values. In essence, the main scheme of this new mathematical axiomatic approach to the fundamental laws of nature is as follows: First, based on the assumption of the rationality of D-momentum and by linearization (along with a parameterization procedure of the Lorentz invariant energy-momentum quadratic relation, a unique set of Lorentz invariant systems of homogeneous linear equations (with matrix formalisms compatible with certain Clifford and symmetric algebras is derived. Then by an initial quantization (followed by a basic procedure of minimal coupling to space-time geometry of these determined systems of linear equations, a set of two classes of general covariant massive (tensor field equations (with matrix formalisms compatible with certain Clifford, and Weyl algebras is derived uniquely as well.

  7. The unique contribution of the nursing intervention pain management on length of stay in older patients undergoing hip procedures.

    Science.gov (United States)

    Kerr, Peg; Shever, Leah; Titler, Marita G; Qin, Rui; Kim, Taikyoung; Picone, Debra M

    2010-02-01

    The purpose of this study was to examine the unique contribution of the nursing intervention pain management on length of stay (LOS) for 568 older patients hospitalized for hip procedures. Propensity-score-adjusted analysis was used to determine the effect of pain management on LOS. The LOS for hospitalizations that received pain management was 0.78 day longer than that for hospitalizations that did not receive pain management. Other variables that were predictors of LOS included several context-of-care variables (e.g., time spent in the intensive care unit, registered nurse skill mix, etc.), number of medical procedures and unique medications, and several other nursing interventions. Copyright 2010 Elsevier Inc. All rights reserved.

  8. A history of folding in mathematics mathematizing the margins

    CERN Document Server

    Friedman, Michael

    2018-01-01

    While it is well known that the Delian problems are impossible to solve with a straightedge and compass – for example, it is impossible to construct a segment whose length is ∛2 with these instruments – the Italian mathematician Margherita Beloch Piazzolla's discovery in 1934 that one can in fact construct a segment of length ∛2 with a single paper fold was completely ignored (till the end of the 1980s). This comes as no surprise, since with few exceptions paper folding was seldom considered as a mathematical practice, let alone as a mathematical procedure of inference or proof that could prompt novel mathematical discoveries. A few question immediately arise: Why did paper folding become a non-instrument? What caused the marginalisation of this technique? And how was the mathematical knowledge, which was nevertheless transmitted and prompted by paper folding, later treated and conceptualised? Aiming to answer these questions, this volume provides, for the first time, an extensive historical study...

  9. Mathematics everywhere

    CERN Document Server

    Aigner, Martin; Spain, Philip G

    2010-01-01

    Mathematics is all around us. Often we do not realize it, though. Mathematics Everywhere is a collection of presentations on the role of mathematics in everyday life, through science, technology, and culture. The common theme is the unique position of mathematics as the art of pure thought and at the same time as a universally applicable science. The authors are renowned mathematicians; their presentations cover a wide range of topics. From compact discs to the stock exchange, from computer tomography to traffic routing, from electronic money to climate change, they make the "math inside" unde

  10. The Uniqueness of Milton Friedman

    OpenAIRE

    J. Daniel Hammond

    2013-01-01

    That there is no Milton Friedman today is not a mystery; the mystery is how Milton Friedman could have been. The facts of Friedman’s biography make him unique among twentieth-century public figures. He had extensive knowledge and expertise in mathematics and statistics. Yet he became a critic of ‘formal’ theory, exemplified by mathematical economics, that failed to engage with real-world facts and data, and of econometric modeling that presumed more knowledge of economic structure than Friedm...

  11. Mathematical physics applied mathematics for scientists and engineers

    CERN Document Server

    Kusse, Bruce R

    2006-01-01

    What sets this volume apart from other mathematics texts is its emphasis on mathematical tools commonly used by scientists and engineers to solve real-world problems. Using a unique approach, it covers intermediate and advanced material in a manner appropriate for undergraduate students. Based on author Bruce Kusse's course at the Department of Applied and Engineering Physics at Cornell University, Mathematical Physics begins with essentials such as vector and tensor algebra, curvilinear coordinate systems, complex variables, Fourier series, Fourier and Laplace transforms, differential and integral equations, and solutions to Laplace's equations

  12. Philosophical dimensions in mathematics education

    CERN Document Server

    Francois, Karen

    2007-01-01

    This book brings together diverse recent developments exploring the philosophy of mathematics in education. The unique combination of ethnomathematics, philosophy, history, education, statistics and mathematics offers a variety of different perspectives from which existing boundaries in mathematics education can be extended. The ten chapters in this book offer a balance between philosophy of and philosophy in mathematics education. Attention is paid to the implementation of a philosophy of mathematics within the mathematics curriculum.

  13. Persian architecture and mathematics

    CERN Document Server

    2012-01-01

    This volulme features eight original papers dedicated to the theme “Persian Architecture and Mathematics,” guest edited by Reza Sarhangi. All papers were approved through a rigorous process of blind peer review and edited by an interdisciplinary scientific editorial committee. Topics range from symmetry in ancient Persian architecture to the elaborate geometric patterns and complex three-dimensional structures of standing monuments of historical periods, from the expression of mathematical ideas to architectonic structures, and from decorative ornament to the representation of modern group theory and quasi-crystalline patterns. The articles discuss unique monuments Persia, including domed structures and two-dimensional patterns, which have received significant scholarly attention in recent years. This book is a unique contribution to studies of Persian architecture in relation to mathematics.

  14. Finite mathematics models and applications

    CERN Document Server

    Morris, Carla C

    2015-01-01

    Features step-by-step examples based on actual data and connects fundamental mathematical modeling skills and decision making concepts to everyday applicability Featuring key linear programming, matrix, and probability concepts, Finite Mathematics: Models and Applications emphasizes cross-disciplinary applications that relate mathematics to everyday life. The book provides a unique combination of practical mathematical applications to illustrate the wide use of mathematics in fields ranging from business, economics, finance, management, operations research, and the life and social sciences.

  15. Uniqueness of solutions for a mathematical model for magneto-viscoelastic flows

    Science.gov (United States)

    Schlömerkemper, A.; Žabenský, J.

    2018-06-01

    We investigate uniqueness of weak solutions for a system of partial differential equations capturing behavior of magnetoelastic materials. This system couples the Navier–Stokes equations with evolutionary equations for the deformation gradient and for the magnetization obtained from a special case of the micromagnetic energy. It turns out that the conditions on uniqueness coincide with those for the well-known Navier–Stokes equations in bounded domains: weak solutions are unique in two spatial dimensions, and weak solutions satisfying the Prodi–Serrin conditions are unique among all weak solutions in three dimensions. That is, we obtain the so-called weak-strong uniqueness result in three spatial dimensions.

  16. Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving

    Directory of Open Access Journals (Sweden)

    María F. Ayllón

    2016-04-01

    Full Text Available This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas, flexibility (range of ideas, novelty (unique idea and elaboration (idea development. These factors contribute, among others, to the fact that schoolchildren are competent in mathematics. The problem solving and posing are a very powerful evaluation tool that shows the mathematical reasoning and creative level of a person. Creativity is part of the mathematics education and is a necessary ingredient to perform mathematical assignments. This contribution presents some important research works about problem posing and solving related to the development of mathematical knowledge and creativity. To that end, it is based on various beliefs reflected in the literature with respect to notions of creativity, problem solving and posing.

  17. Mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1979-01-01

    Mathematics Revealed focuses on the principles, processes, operations, and exercises in mathematics.The book first offers information on whole numbers, fractions, and decimals and percents. Discussions focus on measuring length, percent, decimals, numbers as products, addition and subtraction of fractions, mixed numbers and ratios, division of fractions, addition, subtraction, multiplication, and division. The text then examines positive and negative numbers and powers and computation. Topics include division and averages, multiplication, ratios, and measurements, scientific notation and estim

  18. A statistical approach designed for finding mathematically defined repeats in shotgun data and determining the length distribution of clone-inserts

    DEFF Research Database (Denmark)

    Zhong, Lan; Zhang, Kunlin; Huang, Xiangang

    2003-01-01

    that repeats of different copy number have different probabilities of appearance in shotgun data, so based on this principle, we constructed a statistical model and inferred criteria for mathematically defined repeats (MDRs) at different shotgun coverages. According to these criteria, we developed software...... MDRmasker to identify and mask MDRs in shotgun data. With repeats masked prior to assembly, the speed of assembly was increased with lower error probability. In addition, clone-insert size affect the accuracy of repeat assembly and scaffold construction, we also designed length distribution of clone...

  19. Physical mathematics

    CERN Document Server

    Cahill, Kevin

    2013-01-01

    Unique in its clarity, examples and range, Physical Mathematics explains as simply as possible the mathematics that graduate students and professional physicists need in their courses and research. The author illustrates the mathematics with numerous physical examples drawn from contemporary research. In addition to basic subjects such as linear algebra, Fourier analysis, complex variables, differential equations and Bessel functions, this textbook covers topics such as the singular-value decomposition, Lie algebras, the tensors and forms of general relativity, the central limit theorem and Kolmogorov test of statistics, the Monte Carlo methods of experimental and theoretical physics, the renormalization group of condensed-matter physics and the functional derivatives and Feynman path integrals of quantum field theory.

  20. On uniqueness in evolution quasivariational inequalities

    Czech Academy of Sciences Publication Activity Database

    Brokate, M.; Krejčí, Pavel; Schnabel, H.

    2004-01-01

    Roč. 11, č. 1 (2004), s. 111-130 ISSN 0944-6532 Institutional research plan: CEZ:AV0Z1019905 Keywords : evolution quasivariational inequality * uniqueness * sweeping process Subject RIV: BA - General Mathematics Impact factor: 0.425, year: 2004 http://www.heldermann-verlag.de/jca/jca11/jca0386.pdf

  1. Novel criteria of uniqueness for signal reconstruction from phase

    NARCIS (Netherlands)

    Ma, C.

    1991-01-01

    An approach for ascertaining whether a signal is uniquely determined by its Fourier transform phase is proposed. It is shown that uniqueness corresponds to the nonsingularity of a matrix which can be formed from the finite-length real sequence. The criterion of uniqueness for reconstructing a

  2. Novice Mathematics Teachers Create Themselves

    Science.gov (United States)

    Schatz Oppenheimer, Orna; Dvir, Nurit

    2018-01-01

    This study presents a qualitative research based on three narratives written by novice mathematics teachers. We examine their unique professional world during their first year of work. The methodology of narrative framework, on which this article is based, helps to gain better understanding of the need for novice mathematics teachers to have…

  3. Lattices with unique complements

    CERN Document Server

    Saliĭ, V N

    1988-01-01

    The class of uniquely complemented lattices properly contains all Boolean lattices. However, no explicit example of a non-Boolean lattice of this class has been found. In addition, the question of whether this class contains any complete non-Boolean lattices remains unanswered. This book focuses on these classical problems of lattice theory and the various attempts to solve them. Requiring no specialized knowledge, the book is directed at researchers and students interested in general algebra and mathematical logic.

  4. Mathematical psychology.

    Science.gov (United States)

    Batchelder, William H

    2010-09-01

    Mathematical psychology is a sub-field of psychology that started in the 1950s and has continued to grow as an important contributor to formal psychological theory, especially in the cognitive areas of psychology such as learning, memory, classification, choice response time, decision making, attention, and problem solving. In addition, there are several scientific sub-areas that were originated by mathematical psychologists such as the foundations of measurement, stochastic memory models, and psychologically motivated reformulations of expected utility theory. Mathematical psychology does not include all uses of mathematics and statistics in psychology, and indeed there is a long history of such uses especially in the areas of perception and psychometrics. What is most unique about mathematical psychology is its approach to theory construction. While accepting the behaviorist dictum that the data in psychology must be observable and replicable, mathematical models are specified in terms of unobservable formal constructs that can predict detailed aspects of data across multiple experimental and natural settings. By now almost all the substantive areas of cognitive and experimental psychology have formal mathematical models and theories, and many of these are due to researchers that identify with mathematical psychology. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  5. Existence and uniqueness of solution for a system of equations of ...

    African Journals Online (AJOL)

    The existence and uniqueness of solution for a system of equations of microwave heating of biologic issue is discussed. Using the Green function approach we establish the existence and uniqueness of solution. Journal of the Nigerian Association of Mathematical Physics Vol. 8 2004: pp. 177-180 ...

  6. Mathematical people profiles and interviews

    CERN Document Server

    Albers, Donald

    2008-01-01

    This unique collection contains extensive and in-depth interviews with mathematicians who have shaped the field of mathematics in the twentieth century. Collected by two mathematicians respected in the community for their skill in communicating mathematical topics to a broader audience, the book is also rich with photographs and includes an introduction by Philip J. Davis.

  7. Mathematical Adventures with Harry Potter

    Science.gov (United States)

    Wagner, Meaghan M.; Lachance, Andrea

    2004-01-01

    The current popularity of the Harry Potter books (Rowling 1998, 1999a, 1999b, 2000, 2003) gives teachers a new and unique opportunity to integrate literature with mathematics. Often, books that are connected to mathematical explorations are picture books, which teachers can read easily in one sitting to a group of children. The books in the Harry…

  8. Mathematical quantization

    CERN Document Server

    Weaver, Nik

    2001-01-01

    With a unique approach and presenting an array of new and intriguing topics, Mathematical Quantization offers a survey of operator algebras and related structures from the point of view that these objects are quantizations of classical mathematical structures. This approach makes possible, with minimal mathematical detail, a unified treatment of a variety of topics.Detailed here for the first time, the fundamental idea of mathematical quantization is that sets are replaced by Hilbert spaces. Building on this idea, and most importantly on the fact that scalar-valued functions on a set correspond to operators on a Hilbert space, one can determine quantum analogs of a variety of classical structures. In particular, because topologies and measure classes on a set can be treated in terms of scalar-valued functions, we can transfer these constructions to the quantum realm, giving rise to C*- and von Neumann algebras.In the first half of the book, the author quickly builds the operator algebra setting. He uses this ...

  9. Open problems in mathematics

    CERN Document Server

    Nash, Jr, John Forbes

    2016-01-01

    The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer sc...

  10. A mathematics sampler topics for the liberal arts

    CERN Document Server

    Berlinghoff, William P; Skrien, Dale

    2001-01-01

    Now in its fifth edition, A Mathematics Sampler presents mathematics as both science and art, focusing on the historical role of mathematics in our culture. It uses selected topics from modern mathematics-including computers, perfect numbers, and four-dimensional geometry-to exemplify the distinctive features of mathematics as an intellectual endeavor, a problem-solving tool, and a way of thinking about the rapidly changing world in which we live. A Mathematics Sampler also includes unique LINK sections throughout the book, each of which connects mathematical concepts with areas of interest th

  11. The Language of Mathematics Utilizing Math in Practice

    CERN Document Server

    Baber, Robert L

    2011-01-01

    A new and unique way of understanding the translation of concepts and natural language into mathematical expressions Transforming a body of text into corresponding mathematical expressions and models is traditionally viewed and taught as a mathematical problem; it is also a task that most find difficult. The Language of Mathematics: Utilizing Math in Practice reveals a new way to view this process-not as a mathematical problem, but as a translation, or language, problem. By presenting the language of mathematics explicitly and systematically, this book helps readers to learn mathematics¿and i

  12. Imprisonment length and post-prison employment prospects

    NARCIS (Netherlands)

    Ramakers, Anke; Apel, Robert; Nieuwbeerta, Paul; Dirkzwager, Anja; Van Wilsem, Johan

    2014-01-01

    This study considers the relationship between imprisonment length and employment outcomes. The data are a unique prospective, longitudinal study of Dutch pretrial detainees (N = 702). All subjects thus experience prison confinement of varying lengths, although the durations are relatively short

  13. Mathematics for physicists

    CERN Document Server

    Dennery, Philippe

    1967-01-01

    ""A fine example of how to present 'classical' physical mathematics."" - American ScientistWritten for advanced undergraduate and graduate students, this volume provides a thorough background in the mathematics needed to understand today's more advanced topics in physics and engineering. Without sacrificing rigor, the authors develop the theoretical material at length, in a highly readable, and, wherever possible, in an intuitive manner. Each abstract idea is accompanied by a very simple, concrete example, showing the student that the abstraction is merely a generalization from easily understo

  14. Quantum Gravity Mathematical Models and Experimental Bounds

    CERN Document Server

    Fauser, Bertfried; Zeidler, Eberhard

    2007-01-01

    The construction of a quantum theory of gravity is the most fundamental challenge confronting contemporary theoretical physics. The different physical ideas which evolved while developing a theory of quantum gravity require highly advanced mathematical methods. This book presents different mathematical approaches to formulate a theory of quantum gravity. It represents a carefully selected cross-section of lively discussions about the issue of quantum gravity which took place at the second workshop "Mathematical and Physical Aspects of Quantum Gravity" in Blaubeuren, Germany. This collection covers in a unique way aspects of various competing approaches. A unique feature of the book is the presentation of different approaches to quantum gravity making comparison feasible. This feature is supported by an extensive index. The book is mainly addressed to mathematicians and physicists who are interested in questions related to mathematical physics. It allows the reader to obtain a broad and up-to-date overview on ...

  15. Understanding engineering mathematics

    CERN Document Server

    Cox, Bill

    2001-01-01

    * Unique interactive style enables students to diagnose their strengths and weaknesses and focus their efforts where needed* Ideal for self-study and tutorial work, building from an initially supportive approach to the development of independent learning skills * Free website includes solutions to all exercises, additional topics and applications, guide to learning mathematics, and practice materialStudents today enter engineering courses with a wide range of mathematical skills, due to the many different pre-university qualifications studied. Bill Cox''s aim is for students to gain a thorough understanding of the maths they are studying, by first strengthening their background in the essentials of each topic. His approach allows a unique self-paced study style, in which students Review their strengths and weaknesses through self-administered diagnostic tests, then focus on Revision where they need it, to finally Reinforce the skills required.The book is structured around a highly successful ''transition'' ma...

  16. Number sense in infancy predicts mathematical abilities in childhood.

    Science.gov (United States)

    Starr, Ariel; Libertus, Melissa E; Brannon, Elizabeth M

    2013-11-05

    Human infants in the first year of life possess an intuitive sense of number. This preverbal number sense may serve as a developmental building block for the uniquely human capacity for mathematics. In support of this idea, several studies have demonstrated that nonverbal number sense is correlated with mathematical abilities in children and adults. However, there has been no direct evidence that infant numerical abilities are related to mathematical abilities later in childhood. Here, we provide evidence that preverbal number sense in infancy predicts mathematical abilities in preschool-aged children. Numerical preference scores at 6 months of age correlated with both standardized math test scores and nonsymbolic number comparison scores at 3.5 years of age, suggesting that preverbal number sense facilitates the acquisition of numerical symbols and mathematical abilities. This relationship held even after controlling for general intelligence, indicating that preverbal number sense imparts a unique contribution to mathematical ability. These results validate the many prior studies purporting to show number sense in infancy and support the hypothesis that mathematics is built upon an intuitive sense of number that predates language.

  17. Accounting for primitive terms in mathematics

    Directory of Open Access Journals (Sweden)

    D.F.M. Strauss

    2005-07-01

    Full Text Available The philosophical problem of unity and diversity entails a challenge to the rationalist aim to define everything. Definitions of this kind surface in various academic disciplines in formulations like uniqueness, irreducibility, and what has acquired the designation “primitive terms”. Not even the most “exact” disciplines, such as mathematics, can avoid the implications entailed in giving an account of such primitive terms. A mere look at the historical development of mathematics highlights the fact that alternative perspectives prevailed – from the arithmeticism of Pythagoreanism, the eventual geometrisation of mathematics after the discovery of incommensurability up to the revival of arithmeticism in the mathematics of Cauchy, Weierstrass, Dedekind and Cantor (with the later orientation of Frege, who completed the circle by returning to the view that mathematics essentially is geometry. An assessment of logicism and axiomatic formalism is followed by looking at the primitive meaning of wholeness (and the whole-parts relation. With reference to the views of Hilbert, Weyl and Bernays the article concludes by suggesting that in opposition to arithmeticism and geometricism an alternative option ought to be pursued – one in which both the uniqueness and mutual coherence between the aspects of number and space are acknowledged.

  18. Third international handbook of mathematics education

    CERN Document Server

    Bishop, Alan; Keitel, Christine; Kilpatrick, Jeremy; Leung, Frederick

    2013-01-01

    This entirely new Third International Handbook of Mathematics Education comprises 31 chapters which have been written by a total of 84 different authors representing 26 nations, each a recognized expert in the field.   Comprised of four sections: Social, Political and Cultural Dimensions in Mathematics Education; Mathematics Education as a Field of Study; Technology in the Mathematics Curriculum; and International Perspectives on Mathematics Education, this Third Handbook offers essential reading for all persons interested in the future of mathematics education. The authors present challenging international perspectives on the history of mathematics education, current issues, and future directions.   What makes this Handbook unique is its structure. Each section covers past, present and future aspects of mathematics education.   The first chapter in each section identifies and analyzes historical antecedents The “middle” chapters draw attention to present-day key issues and themes The final chapter in ...

  19. Mathematical problems in meteorological modelling

    CERN Document Server

    Csomós, Petra; Faragó, István; Horányi, András; Szépszó, Gabriella

    2016-01-01

    This book deals with mathematical problems arising in the context of meteorological modelling. It gathers and presents some of the most interesting and important issues from the interaction of mathematics and meteorology. It is unique in that it features contributions on topics like data assimilation, ensemble prediction, numerical methods, and transport modelling, from both mathematical and meteorological perspectives. The derivation and solution of all kinds of numerical prediction models require the application of results from various mathematical fields. The present volume is divided into three parts, moving from mathematical and numerical problems through air quality modelling, to advanced applications in data assimilation and probabilistic forecasting. The book arose from the workshop “Mathematical Problems in Meteorological Modelling” held in Budapest in May 2014 and organized by the ECMI Special Interest Group on Numerical Weather Prediction. Its main objective is to highlight the beauty of the de...

  20. Discrete or continuous? the quest for fundamental length in modern physics

    CERN Document Server

    Hagar, Amit

    2014-01-01

    The idea of infinity plays a crucial role in our understanding of the universe, with the infinite spacetime continuum perhaps the best-known example - but is spacetime really continuous? Throughout the history of science, many have felt that the continuum model is an unphysical idealization, and that spacetime should be thought of as 'quantized' at the smallest of scales. Combining novel conceptual analysis, a fresh historical perspective, and concrete physical examples, this unique book tells the story of the search for the fundamental unit of length in modern physics, from early classical electrodynamics to current approaches to quantum gravity. Novel philosophical theses, with direct implications for theoretical physics research, are presented and defended in an accessible format that avoids complex mathematics. Blending history, philosophy, and theoretical physics, this refreshing outlook on the nature of spacetime sheds light on one of the most thought-provoking topics in modern physics.

  1. Ethnomathematics: the cultural aspects of mathematics

    Directory of Open Access Journals (Sweden)

    Milton Rosa

    2011-01-01

    Full Text Available Ethnomathematics studies the cultural aspects of mathematics. It presents mathematical concepts of the school curriculum in a way in which these concepts are related to the students¿ cultural and daily experiences, thereby enhancing their abilities to elaborate meaningful connections and deepening their understanding of mathematics. Ethnomathematical approaches to mathematics curriculum are intended to make school mathematics more relevant and meaningful for students and to promote the overall quality of their education. In this context, the implementation of an ethnomathematical perspective in the school mathematics curriculum helps to develop students' intellectual, social, emotional, and political learning by using their own unique cultural referents to impart their knowledge, skills, and attitudes. This kind of curriculum provides ways for students to maintain their identity while succeeding academically.

  2. Topological analysis of polymeric melts: chain-length effects and fast-converging estimators for entanglement length.

    Science.gov (United States)

    Hoy, Robert S; Foteinopoulou, Katerina; Kröger, Martin

    2009-09-01

    Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead spring and atomistic polyethylene polymer melts. Estimators for the entanglement length N_{e} which operate on results for a single chain length N are shown to produce systematic O(1/N) errors. The mathematical roots of these errors are identified as (a) treating chain ends as entanglements and (b) neglecting non-Gaussian corrections to chain and primitive path dimensions. The prefactors for the O(1/N) errors may be large; in general their magnitude depends both on the polymer model and the method used to obtain primitive paths. We propose, derive, and test new estimators which eliminate these systematic errors using information obtainable from the variation in entanglement characteristics with chain length. The new estimators produce accurate results for N_{e} from marginally entangled systems. Formulas based on direct enumeration of entanglements appear to converge faster and are simpler to apply.

  3. Is Life Unique?

    Science.gov (United States)

    Abel, David L.

    2011-01-01

    Is life physicochemically unique? No. Is life unique? Yes. Life manifests innumerable formalisms that cannot be generated or explained by physicodynamics alone. Life pursues thousands of biofunctional goals, not the least of which is staying alive. Neither physicodynamics, nor evolution, pursue goals. Life is largely directed by linear digital programming and by the Prescriptive Information (PI) instantiated particularly into physicodynamically indeterminate nucleotide sequencing. Epigenomic controls only compound the sophistication of these formalisms. Life employs representationalism through the use of symbol systems. Life manifests autonomy, homeostasis far from equilibrium in the harshest of environments, positive and negative feedback mechanisms, prevention and correction of its own errors, and organization of its components into Sustained Functional Systems (SFS). Chance and necessity—heat agitation and the cause-and-effect determinism of nature’s orderliness—cannot spawn formalisms such as mathematics, language, symbol systems, coding, decoding, logic, organization (not to be confused with mere self-ordering), integration of circuits, computational success, and the pursuit of functionality. All of these characteristics of life are formal, not physical. PMID:25382119

  4. A beginner's guide to mathematical logic

    CERN Document Server

    Smullyan, Raymond M

    2014-01-01

    Combining stories of great philosophers, quotations, and riddles with the fundamentals of mathematical logic, this new textbook for first courses in mathematical logic was written by the subject's creative master. Raymond Smullyan offers clear, incremental presentations of difficult logic concepts with creative explanations and unique problems related to proofs, propositional logic and first-order logic, undecidability, recursion theory, and other topics.

  5. European Success Stories in Industrial Mathematics

    CERN Document Server

    Esteban, Maria J; Lery, Thibaut; Maday, Yvon

    2011-01-01

    This unique book presents real world success stories of collaboration between mathematicians and industrial partners, showcasing first-hand case studies, and lessons learned from the experiences, technologies, and business challenges that led to the successful development of industrial solutions based on mathematics. It shows the crucial contribution of mathematics to innovation and to the industrial creation of value, and the key position of mathematics in the handling of complex systems, amplifying innovation. Each story describes the challenge that led to the industrial cooperation, how the

  6. Ethnomathematics study: uncovering units of length, area, and volume in Kampung Naga Society

    Science.gov (United States)

    Septianawati, T.; Turmudi; Puspita, E.

    2017-02-01

    During this time, mathematics is considered as something neutral and not associated with culture. It can be seen from mathematics learning in the school which adopt many of foreign mathematics learning are considered more advanced (western). In fact, Indonesia is a rich country in cultural diversity. In the cultural activities, there are mathematical ideas that were considered a important thing in the mathematics learning. A study that examines the idea or mathematical practices in a variety of cultural activities are known as ethnomathematics. In Indonesia, there are some ethnic maintain their ancestral traditions, one of them is Kampung Naga. Therefore, this study was conducted in Kampung Naga. This study aims to uncover units of length, area, and volume used by Kampung Naga society. This study used a qualitative approach and ethnography methods. In this research, data collection is done through the principles of ethnography such as observation, interviews, documentation, and field notes. The results of this study are units of length, area, and volume used by Kampung Naga society and its conversion into standard units. This research is expected to give information to the public that mathematics has a relationship with culture and become recommendation to mathematics curriculum in Indonesia.

  7. Mathematical analysis of the normal anatomy of the aging fovea.

    Science.gov (United States)

    Nesmith, Brooke; Gupta, Akash; Strange, Taylor; Schaal, Yuval; Schaal, Shlomit

    2014-08-28

    To mathematically analyze anatomical changes that occur in the normal fovea during aging. A total of 2912 spectral-domain optical coherence tomography (SD-OCT) normal foveal scans were analyzed. Subjects were healthy individuals, aged 13 to 97 years, with visual acuity ≥20/40 and without evidence of foveal pathology. Using automated symbolic regression software Eureqa (version 0.98), foveal thickness maps of 390 eyes were analyzed using several measurements: parafoveal retinal thickness at 50 μm consecutive intervals, parafoveal maximum retinal thickness at two points lateral to central foveal depression, distance between two points of maximum retinal thickness, maximal foveal slope at two intervals lateral to central foveal depression, and central length of foveal depression. A unique mathematical equation representing the mathematical analog of foveal anatomy was derived for every decade, between 10 and 100 years. The mathematical regression function for normal fovea followed first order sine curve of level 10 complexity for the second decade of life. The mathematical regression function became more complex with normal aging, up to level 43 complexity (0.085 fit; P < 0.05). Young foveas had higher symmetry (0.92 ± 0.10) along midline, whereas aged foveas had significantly less symmetry (0.76 ± 0.27, P < 0.01) along midline and steeper maximal slopes (29 ± 32°, P < 0.01). Normal foveal anatomical configuration changes with age. Normal aged foveas are less symmetric along midline with steeper slopes. Differentiating between normal aging and pathologic changes using SD-OCT scans may allow early diagnosis, follow-up, and better management of the aging population. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  8. Content Area Literacy in the Mathematics Classroom

    Science.gov (United States)

    Armstrong, Abbigail; Ming, Kavin; Helf, Shawnna

    2018-01-01

    Content area literacy has an important role in helping students understand content in specific disciplines, such as mathematics. Although the strategies are not unique to each individual content area, they are often adapted for use in a specific discipline. For example, mathematicians use mathematical language to make sense of new ideas and…

  9. What do mathematics teachers and teacher trainees know about the history of mathematics?

    Science.gov (United States)

    Gazit, Avikam

    2013-06-01

    The aim of this study is to present the findings of a study that examined the knowledge of mathematics teachers and teacher trainees, in different tracks, about the concepts, topics and characters from the history of mathematics. The findings indicate a lack of knowledge concerning most of the topics examined. Only about 40% of the participants knew about the origin of our counting system and the only item that reached above 50% was the item relating to the man who edited the book which is the basis for the plane geometry - Euclid (about 83%). Another meaningful finding was that the group with the highest score was that of mathematics teacher trainees in the accelerated track - a unique training scheme for middle school teachers (65.7%). The group with the lowest score was that of the elementary school mathematics student teachers (19.3%). One obvious conclusion is that we need to strengthen the knowledge of the history of mathematics in teacher training and in-service teachers' advanced studies.

  10. Ethnomathematics: the cultural aspects of mathematics

    Directory of Open Access Journals (Sweden)

    Milton Rosa

    2011-09-01

    Full Text Available Ethnomathematics studies the cultural aspects of mathematics. It presents mathematical concepts of the school curriculum in a way in which these concepts are related to the students’ cultural and daily experiences, thereby enhancing their abilities to elaborate meaningful connections and deepening their understanding ofmathematics. Ethnomathematical approaches to mathematics curriculum are intended to make school mathematics more relevant and meaningful for students and to promote the overall quality of their education.In this context, the implementation of an ethnomathematical perspective in the school mathematics curriculum helps to develop students’ intellectual, social, emotional, and political learning by using their own unique cultural referents to impart their knowledge, skills, and attitudes. This kind of curriculum providesways for students to maintain their identity while succeeding academically.

  11. Early predictors of high school mathematics achievement.

    Science.gov (United States)

    Siegler, Robert S; Duncan, Greg J; Davis-Kean, Pamela E; Duckworth, Kathryn; Claessens, Amy; Engel, Mimi; Susperreguy, Maria Ines; Chen, Meichu

    2012-07-01

    Identifying the types of mathematics content knowledge that are most predictive of students' long-term learning is essential for improving both theories of mathematical development and mathematics education. To identify these types of knowledge, we examined long-term predictors of high school students' knowledge of algebra and overall mathematics achievement. Analyses of large, nationally representative, longitudinal data sets from the United States and the United Kingdom revealed that elementary school students' knowledge of fractions and of division uniquely predicts those students' knowledge of algebra and overall mathematics achievement in high school, 5 or 6 years later, even after statistically controlling for other types of mathematical knowledge, general intellectual ability, working memory, and family income and education. Implications of these findings for understanding and improving mathematics learning are discussed.

  12. Thermal significance of fission-track length distributions

    International Nuclear Information System (INIS)

    Crowley, K.D.

    1985-01-01

    The semi-analytical solution of an equation describing the production and shortening of fission tracks in apatite suggests that certain thermal histories have unique length-distribution 'signatures'. Isothermal-heating histories should be characterized by flattened, length-shortened distributions; step-heating histories should be characterized by bimodal track length distributions; and linear-cooling histories should be characterized by negatively skewed, length-shortened distributions. The model formulated here to investigate track length distributions can be used to constrain the thermal histories of natural samples for which unbiased track length data are available - provided that the geologic history of the system of interest can be used to partially constrain one of the unknowns in the model equations, time or temperature. (author)

  13. Students Use Graphic Organizers to Improve Mathematical Problem-Solving Communications

    Science.gov (United States)

    Zollman, Alan

    2009-01-01

    Improving students' problem-solving abilities is a major, if not the major, goal of middle grades mathematics. To address this goal, the author, who is a university mathematics educator, and nine inner-city middle school teachers developed a math/science action research project. This article describes their unique approach to mathematical problem…

  14. A mathematical approach to research problems of science and technology theoretical basis and developments in mathematical modeling

    CERN Document Server

    Ei, Shin-ichiro; Koiso, Miyuki; Ochiai, Hiroyuki; Okada, Kanzo; Saito, Shingo; Shirai, Tomoyuki

    2014-01-01

    This book deals with one of the most novel advances in mathematical modeling for applied scientific technology, including computer graphics, public-key encryption, data visualization, statistical data analysis, symbolic calculation, encryption, error correcting codes, and risk management. It also shows that mathematics can be used to solve problems from nature, e.g., slime mold algorithms. One of the unique features of this book is that it shows readers how to use pure and applied mathematics, especially those mathematical theory/techniques developed in the twentieth century, and developing now, to solve applied problems in several fields of industry. Each chapter includes clues on how to use "mathematics" to solve concrete problems faced in industry as well as practical applications. The target audience is not limited to researchers working in applied mathematics and includes those in engineering, material sciences, economics, and life sciences.

  15. Modeling wildland fire containment with uncertain flame length and fireline width

    Science.gov (United States)

    Romain Mees; David Strauss; Richard Chase

    1993-01-01

    We describe a mathematical model for the probability that a fireline succeeds in containing a fire. The probability increases as the fireline width increases, and also as the fire's flame length decreases. More interestingly, uncertainties in width and flame length affect the computed containment probabilities, and can thus indirectly affect the optimum allocation...

  16. Mathematics from the birth of numbers

    CERN Document Server

    Gullberg, Jan

    1997-01-01

    This extraordinary work takes the reader on a long and fascinating journey--from the dual invention of numbers and language, through the major realms of arithmetic, algebra, geometry, trigonometry, and calculus, to the final destination of differential equations, with excursions into mathematical logic, set theory, topology, fractals, probability, and assorted other mathematical byways. The book is unique among popular books on mathematics in combining an engaging, easy-to-read history of the subject with a comprehensive mathematical survey text. Intended, in the author's words, "for the benefit of those who never studied the subject, those who think they have forgotten what they once learned, or those with a sincere desire for more knowledge," it links mathematics to the humanities, linguistics, the natural sciences, and technology. Contains more than 1000 original technical illustrations, a multitude of reproductions from mathematical classics and other relevant works, and a generous sprinkling of humorous...

  17. Didactital design of mathematics teaching in primary school

    Science.gov (United States)

    Nur’aeni, E.; Muharram, M. R. W.

    2018-05-01

    The fact that the low ability of geometrical understanding of primary school students is what triggers this study to be conducted. Thus, this research aimed to find out how to create a didactical design of students' mathematical understanding, particularly on one of geometry materials that is unit of length. A qualitative approach promoting Didactical Design Research (DDR) was administered in this study. Participants of the study were primary school students in Tasikmalaya, an city in West Java Province, Indonesia. The results show that there was a learning design based on learning obstacles found in the mathematics teaching and learning processes. The learning obstacles comprised students' difficulties in memorizing, relating, and operating the standards of unit of lengths. It has been proven that the most influential factor in the success of mathematics teaching and learning processes is the use of creative media.

  18. Mathematical modelling of the growth of human fetus anatomical structures.

    Science.gov (United States)

    Dudek, Krzysztof; Kędzia, Wojciech; Kędzia, Emilia; Kędzia, Alicja; Derkowski, Wojciech

    2017-09-01

    The goal of this study was to present a procedure that would enable mathematical analysis of the increase of linear sizes of human anatomical structures, estimate mathematical model parameters and evaluate their adequacy. Section material consisted of 67 foetuses-rectus abdominis muscle and 75 foetuses- biceps femoris muscle. The following methods were incorporated to the study: preparation and anthropologic methods, image digital acquisition, Image J computer system measurements and statistical analysis method. We used an anthropologic method based on age determination with the use of crown-rump length-CRL (V-TUB) by Scammon and Calkins. The choice of mathematical function should be based on a real course of the curve presenting growth of anatomical structure linear size Ύ in subsequent weeks t of pregnancy. Size changes can be described with a segmental-linear model or one-function model with accuracy adequate enough for clinical purposes. The interdependence of size-age is described with many functions. However, the following functions are most often considered: linear, polynomial, spline, logarithmic, power, exponential, power-exponential, log-logistic I and II, Gompertz's I and II and von Bertalanffy's function. With the use of the procedures described above, mathematical models parameters were assessed for V-PL (the total length of body) and CRL body length increases, rectus abdominis total length h, its segments hI, hII, hIII, hIV, as well as biceps femoris length and width of long head (LHL and LHW) and of short head (SHL and SHW). The best adjustments to measurement results were observed in the exponential and Gompertz's models.

  19. Dimensional analysis yields the general second-order differential equation underlying many natural phenomena: the mathematical properties of a phenomenon's data plot then specify a unique differential equation for it.

    Science.gov (United States)

    Kepner, Gordon R

    2014-08-27

    This study uses dimensional analysis to derive the general second-order differential equation that underlies numerous physical and natural phenomena described by common mathematical functions. It eschews assumptions about empirical constants and mechanisms. It relies only on the data plot's mathematical properties to provide the conditions and constraints needed to specify a second-order differential equation that is free of empirical constants for each phenomenon. A practical example of each function is analyzed using the general form of the underlying differential equation and the observable unique mathematical properties of each data plot, including boundary conditions. This yields a differential equation that describes the relationship among the physical variables governing the phenomenon's behavior. Complex phenomena such as the Standard Normal Distribution, the Logistic Growth Function, and Hill Ligand binding, which are characterized by data plots of distinctly different sigmoidal character, are readily analyzed by this approach. It provides an alternative, simple, unifying basis for analyzing each of these varied phenomena from a common perspective that ties them together and offers new insights into the appropriate empirical constants for describing each phenomenon.

  20. Mathematics and the real world

    Directory of Open Access Journals (Sweden)

    D.F.M. Strauss

    2000-03-01

    Full Text Available In this article the initial discussion of the untenability of the distinction between “pure” and “applied" mathematics is followed by looking at alternative approaches regarding the relationship between mathematics and the “real world” - with intuitionism and Platonism representing the two opposite positions. The notions of infinity as well as the totality character of spatial continuity (and its implied infinite divisibility turned out to occupy a central position in this context. In the final section brief attention is given - against the background of some perspectives on the history of mathematics - to an alternative approach in which both the uniqueness and the mutual irreducibility of number and space are conjectured.

  1. Unity and disunity and other mathematical essays

    CERN Document Server

    Davis, Philip J

    2015-01-01

    This book is a mathematical potpourri. Its material originated in classroom presentations, formal lectures, sections of earlier books, book reviews, or just things written by the author for his own pleasure. Written in a nontechnical fashion, this book expresses the unique vision and attitude of the author towards the role of mathematics in society. It contains observations or incidental remarks on mathematics, its nature, its impacts on education and science and technology, its personalities and philosophies. The book is directed towards the math buffs of the world and, more generally, toward

  2. Special Educators and Mathematics Phobia: An Initial Qualitative Investigation

    Science.gov (United States)

    Humphrey, Michael; Hourcade, Jack J.

    2010-01-01

    Special educators are uniquely challenged to be content experts in all curricular areas, including mathematics, because students in their caseloads may require academic instruction in any area. However, special educators with math phobia may be limited in their ability to provide effective instruction to their students with mathematical deficits…

  3. Matriculation Mathematics, Pure Mathematics - Test Papers. Circular of Information to Secondary Schools.

    Science.gov (United States)

    Victoria Education Dept. (Australia).

    This document consists of test questions used in three state high schools teaching the new Matriculation pure mathematics course (approximately grade 12). This material was circulated to all schools teaching this course as a teacher resource. The questions are arranged in 14 papers of varying structure and length. Most questions are of the essay…

  4. Reassessing the Economic Value of Advanced Level Mathematics

    Science.gov (United States)

    Adkins, Michael; Noyes, Andrew

    2016-01-01

    In the late 1990s, the economic return to Advanced level (A-level) mathematics was examined. The analysis was based upon a series of log-linear models of earnings in the 1958 National Child Development Survey (NCDS) and the National Survey of 1980 Graduates and Diplomates. The core finding was that A-level mathematics had a unique earnings premium…

  5. Shared and unique risk factors underlying mathematical disability and reading and spelling disability

    NARCIS (Netherlands)

    Slot, Esther M.; Viersen, Sietske van; de Bree, Elise H.; Kroesbergen, Evelyn H.

    2016-01-01

    High comorbidity rates have been reported between mathematical learning disabilities (MD) and reading and spelling disabilities (RSD). Research has identified skills related to math, such as number sense (NS) and visuospatial working memory (visuospatial WM), as well as to literacy, such as

  6. The analysis of projected fission track lengths

    International Nuclear Information System (INIS)

    Laslett, G.M.; Galbraith, R.F.; Green, P.F.

    1994-01-01

    This article deals with the question of how features of the thermal history can be estimated from projected track length measurements, i.e. lengths of the remaining parts of tracks that have intersected a surface, projected onto that surface. The appropriate mathematical theory is described and used to provide a sound basis both for understanding the nature of projected length measurements and for analysing observed data. The estimation of thermal history parameters corresponding to the current temperature, the maximum palaeotemperature and the time since cooling, is studied using laboratory data and simulations. In general the information contained in projected track lengths and angles is fairly limited, compared, for example, with that from a much smaller number of confined tracks, though we identify some circumstances when such measurements may be useful. Also it is not straightforward to extract the information and simple ad hoc estimation methods are generally inadequate. (author)

  7. Uniqueness of inverse scattering problem in local quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: schroer@cbpf.br

    2001-06-01

    It is shown that the a Bisognano-Wichmann-Unruh inspired formulation of local quantum physics which starts from wedge-localized algebras, leads to a uniqueness proof for the scattering problem. The important mathematical tool is the thermal KMS aspect of localization and its strengthening by the requirement of crossing symmetry for generalized formfactors. (author)

  8. Robotic Toys as a Catalyst for Mathematical Problem Solving

    Science.gov (United States)

    Highfield, Kate

    2010-01-01

    Robotic toys present unique opportunities for teachers of young children to integrate mathematics learning with engaging problem-solving tasks. This article describes a series of tasks using Bee-bots and Pro-bots, developed as part a larger project examining young children's use of robotic toys as tools in developing mathematical and metacognitive…

  9. Mathematical tools for physicists

    International Nuclear Information System (INIS)

    Trigg, G.L.

    2005-01-01

    Mathematical Tools for Physisists is a unique collection of 18 review articles, each one written by a renowned expert of its field. Their professional style will be beneficial for advanced students as well as for the scientist at work. The first may find a comprehensive introduction while the latter use it as a quick reference. Great attention was paid to ensuring fast access to the information, and each carefully reviewed article includes a glossary of terms and a guide to further reading. The contributions range from fundamental methods right up to the latest applications, including: - Algebraic Methods - Analytic Methods - Fourier and Other Mathematical Transforms - Fractal Geometry - Geometrical Methods - Green's Functions - Group Theory - Mathematical Modeling - Monte Carlo Methods - Numerical Methods - Perturbation Methods - Quantum Computation - Quantum Logic - Special Functions - Stochastic Processes - Symmetries and Conservation Laws - Topology - Variational Methods. (orig.)

  10. Construction Process of the Length of [cube root of 2] by Paper Folding

    Science.gov (United States)

    Guler, Hatice Kubra; Gurbuz, Mustafa Cagri

    2018-01-01

    The main purpose of this study is to investigate mathematics teachers' mathematical thinking process while they are constructing the length of [cube root of 2] by paper folding. To carry out this aim, two teachers--who are PhD. students--were interviewed one by one. During the construction, it was possible to observe the consolidation process of…

  11. Cognitive correlates of performance in advanced mathematics.

    Science.gov (United States)

    Wei, Wei; Yuan, Hongbo; Chen, Chuansheng; Zhou, Xinlin

    2012-03-01

    Much research has been devoted to understanding cognitive correlates of elementary mathematics performance, but little such research has been done for advanced mathematics (e.g., modern algebra, statistics, and mathematical logic). To promote mathematical knowledge among college students, it is necessary to understand what factors (including cognitive factors) are important for acquiring advanced mathematics. We recruited 80 undergraduates from four universities in Beijing. The current study investigated the associations between students' performance on a test of advanced mathematics and a battery of 17 cognitive tasks on basic numerical processing, complex numerical processing, spatial abilities, language abilities, and general cognitive processing. The results showed that spatial abilities were significantly correlated with performance in advanced mathematics after controlling for other factors. In addition, certain language abilities (i.e., comprehension of words and sentences) also made unique contributions. In contrast, basic numerical processing and computation were generally not correlated with performance in advanced mathematics. Results suggest that spatial abilities and language comprehension, but not basic numerical processing, may play an important role in advanced mathematics. These results are discussed in terms of their theoretical significance and practical implications. ©2011 The British Psychological Society.

  12. Mathematics for natural scientists fundamentals and basics

    CERN Document Server

    Kantorovich, Lev

    2016-01-01

    This book, the first in a two part series, covers a course of mathematics tailored specifically for physics, engineering and chemistry students at the undergraduate level. It is unique in that it begins with logical concepts of mathematics first encountered at A-level and covers them in thorough detail, filling in the gaps in students' knowledge and reasoning. Then the book aids the leap between A-level and university-level mathematics, with complete proofs provided throughout and all complex mathematical concepts and techniques presented in a clear and transparent manner. Numerous examples and problems (with answers) are given for each section and, where appropriate, mathematical concepts are illustrated in a physics context. This text gives an invaluable foundation to students and a comprehensive aid to lecturers. Mathematics for Natural Scientists: Fundamentals and Basics is the first of two volumes. Advanced topics and their applications in physics are covered in the second volume.

  13. Uniqueness of rarefaction waves in multidimensional compressible Euler system

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Kreml, Ondřej

    2015-01-01

    Roč. 12, č. 3 (2015), s. 489-499 ISSN 0219-8916 R&D Projects: GA ČR GA13-00522S EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : compressible Euler system * uniqueness * rarefaction wave * Riemann problem Subject RIV: BA - General Mathematics Impact factor: 0.556, year: 2015 http://www.worldscientific.com/doi/abs/10.1142/S0219891615500149

  14. Non-uniqueness of admissible weak solutions to the Riemann problem for the isentropic Euler equations

    Czech Academy of Sciences Publication Activity Database

    Chiodaroli, E.; Kreml, Ondřej

    2018-01-01

    Roč. 31, č. 4 (2018), s. 1441-1460 ISSN 0951-7715 R&D Projects: GA ČR(CZ) GJ17-01694Y Institutional support: RVO:67985840 Keywords : Riemann problem * non-uniqueness * weak solutions Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.767, year: 2016 http://iopscience.iop.org/ article /10.1088/1361-6544/aaa10d/meta

  15. Non-uniqueness of admissible weak solutions to the Riemann problem for the isentropic Euler equations

    Czech Academy of Sciences Publication Activity Database

    Chiodaroli, E.; Kreml, Ondřej

    2018-01-01

    Roč. 31, č. 4 (2018), s. 1441-1460 ISSN 0951-7715 R&D Projects: GA ČR(CZ) GJ17-01694Y Institutional support: RVO:67985840 Keywords : Riemann problem * non-uniqueness * weak solutions Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.767, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6544/aaa10d/meta

  16. Type classes for mathematics in type theory

    OpenAIRE

    Spitters, Bas; Van der Weegen, Eelis

    2011-01-01

    The introduction of first-class type classes in the Coq system calls for re-examination of the basic interfaces used for mathematical formalization in type theory. We present a new set of type classes for mathematics and take full advantage of their unique features to make practical a particularly flexible approach formerly thought infeasible. Thus, we address both traditional proof engineering challenges as well as new ones resulting from our ambition to build upon this development a library...

  17. Engaging Life-Sciences Students with Mathematical Models: Does Authenticity Help?

    Science.gov (United States)

    Poladian, Leon

    2013-01-01

    Compulsory mathematics service units for the life sciences present unique challenges: even students who learn some specific skills maintain a negative attitude to mathematics and do not see the relevance of the unit towards their degree. The focus on authentic content and the presentation and teaching of global or qualitative methods before…

  18. Disentangling the effects of alternation rate and maximum run length on judgments of randomness

    Directory of Open Access Journals (Sweden)

    Sabine G. Scholl

    2011-08-01

    Full Text Available Binary sequences are characterized by various features. Two of these characteristics---alternation rate and run length---have repeatedly been shown to influence judgments of randomness. The two characteristics, however, have usually been investigated separately, without controlling for the other feature. Because the two features are correlated but not identical, it seems critical to analyze their unique impact, as well as their interaction, so as to understand more clearly what influences judgments of randomness. To this end, two experiments on the perception of binary sequences orthogonally manipulated alternation rate and maximum run length (i.e., length of the longest run within the sequence. Results show that alternation rate consistently exerts a unique effect on judgments of randomness, but that the effect of alternation rate is contingent on the length of the longest run within the sequence. The effect of maximum run length was found to be small and less consistent. Together, these findings extend prior randomness research by integrating literature from the realms of perception, categorization, and prediction, as well as by showing the unique and joint effects of alternation rate and maximum run length on judgments of randomness.

  19. A practical course in differential equations and mathematical modeling

    CERN Document Server

    Ibragimov , Nail H

    2009-01-01

    A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book which aims to present new mathematical curricula based on symmetry and invariance principles is tailored to develop analytic skills and working knowledge in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundame

  20. The elementary school teachers’ ability in the length measurement

    Science.gov (United States)

    Julie, Hongki

    2017-09-01

    The purpose of this study was to describe the elementary school teachers' mathematical ability (1) to develop students’ activities which constructed longer than, shorter than, and as long as concepts, (2) to develop students’ activities which constructed standard unit on the length measurement, and (3) to develop a problem which used by student to construct why a conversion activity on the unit of the length was useful in the daily life after they have participated in the Realistic Mathematics Education (RME) workshops. Curry and Outhread said if teachers knew more about the growth of students’ conceptual understanding of the length, they would be better able to teach that topic [4]. Therefore, in the workshop, teachers were asked to learn more on the stages of the measurement teaching and learning process and why each stage was important. This capability was described by the results of a test which was content of four problems given to teachers after they have attended the workshop. Research subjects in this study were 14 elementary school teachers at Yogyakarta. The results of the study were as follows: (1) only four of 14 teachers who had the first ability; (2) all teachers had the second ability; and (3) all the teachers did not have the third ability.

  1. 18th European Conference on Mathematics for Industry

    CERN Document Server

    Capasso, Vincenzo; Nicosia, Giuseppe; Romano, Vittorio

    2016-01-01

    This book presents a collection of papers emphasizing applications of mathematical models and methods to real-world problems of relevance for industry, life science, environment, finance, and so on. The biannual Conference of ECMI (the European Consortium of Mathematics in Industry) held in 2014 focused on various aspects of industrial and applied mathematics. The five main topics addressed at the conference were mathematical models in life science, material science and semiconductors, mathematical methods in the environment, design automation and industrial applications, and computational finance. Several other topics have been treated, such as, among others, optimization and inverse problems, education, numerical methods for stiff pdes, model reduction, imaging processing, multi physics simulation, mathematical models in textile industry. The conference, which brought together applied mathematicians and experts from industry, provided a unique opportunity to exchange ideas, problems and methodologies...

  2. Matemáticas y juego = Mathematics and games

    OpenAIRE

    Alsina, Angel

    2001-01-01

    In this article we try to look at the learning of mathematics through games in the first years of schooling. The use of game resources in the class should not be carried out in a uniquely intuitive way but rather in a manner that contains some preliminary reflections such as, what do we understand by games? Why use games as a resource in the Mathematics classroom? And what does its use imply?

  3. An introduction to mathematical modeling a course in mechanics

    CERN Document Server

    Oden, Tinsley J

    2011-01-01

    A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equation...

  4. Easy as π? an introduction to higher mathematics

    CERN Document Server

    Ivanov, O A

    1999-01-01

    The present book is rare, even unique of its kind, at least among mathematics texts published in Russian. You have before you neither a textbook nor a monograph, although these selected chapters from elementary mathematics certainly constitute a fine educational tool. It is my opinion that this is more than just another book about mathematics and the art of teaching that subject. Without considering the actual topics treated (the author himself has described these in sufficient detail in of the book as a whole, the Introduction), I shall attempt to convey a general idea and describe the impressions it makes on the reader. Almost every chapter begins by considering well-known problems of elementary mathematics. Now, every worthwhile elementary problem has hidden behind its diverting formulation what might be called "higher mathematics," or, more simply, mathematics, and it is this that the author demonstrates to the reader in this book. It is thus to be expected that every chapter should contain subject matter...

  5. Students’ Mathematical Literacy in Solving PISA Problems Based on Keirsey Personality Theory

    Science.gov (United States)

    Masriyah; Firmansyah, M. H.

    2018-01-01

    This research is descriptive-qualitative research. The purpose is to describe students’ mathematical literacy in solving PISA on space and shape content based on Keirsey personality theory. The subjects are four junior high school students grade eight with guardian, artisan, rational or idealist personality. Data collecting methods used test and interview. Data of Keirsey Personality test, PISA test, and interview were analysed. Profile of mathematical literacy of each subject are described as follows. In formulating, guardian subject identified mathematical aspects are formula of rectangle area and sides length; significant variables are terms/conditions in problem and formula of ever encountered question; translated into mathematical language those are measurement and arithmetic operations. In employing, he devised and implemented strategies using ease of calculation on area-subtraction principle; declared truth of result but the reason was less correct; didn’t use and switch between different representations. In interpreting, he declared result as area of house floor; declared reasonableness according measurement estimation. In formulating, artisan subject identified mathematical aspects are plane and sides length; significant variables are solution procedure on both of daily problem and ever encountered question; translated into mathematical language those are measurement, variables, and arithmetic operations as well as symbol representation. In employing, he devised and implemented strategies using two design comparison; declared truth of result without reason; used symbol representation only. In interpreting, he expressed result as floor area of house; declared reasonableness according measurement estimation. In formulating, rational subject identified mathematical aspects are scale and sides length; significant variables are solution strategy on ever encountered question; translated into mathematical language those are measurement, variable, arithmetic

  6. The Ellipse A Historical and Mathematical Journey

    CERN Document Server

    Mazer, Arthur

    2011-01-01

    Explores the development of the ellipse and presents mathematical concepts within a rich, historical context The Ellipse features a unique, narrative approach when presenting the development of this mathematical fixture, revealing its parallels to mankind's advancement from the Counter-Reformation to the Enlightenment. Incorporating illuminating historical background and examples, the author brings together basic concepts from geometry, algebra, trigonometry, and calculus to uncover the ellipse as the shape of a planet's orbit around the sun. The book begins with a discussion that tells the st

  7. Global existence and uniqueness result for the diffusive Peterlin viscoelastic model

    Czech Academy of Sciences Publication Activity Database

    Medviďová-Lukáčová, M.; Mizerová, H.; Nečasová, Šárka

    2015-01-01

    Roč. 120, June (2015), s. 154-170 ISSN 0362-546X R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Peterlin viscoelastic model * existence * uniqueness Subject RIV: BA - General Mathematics Impact factor: 1.125, year: 2015 http://www.sciencedirect.com/science/article/pii/S0362546X1500070X

  8. Mathematical theory of compressible viscous fluids analysis and numerics

    CERN Document Server

    Feireisl, Eduard; Pokorný, Milan

    2016-01-01

    This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematic...

  9. A new subgrid characteristic length for turbulence simulations on anisotropic grids

    Science.gov (United States)

    Trias, F. X.; Gorobets, A.; Silvis, M. H.; Verstappen, R. W. C. P.; Oliva, A.

    2017-11-01

    Direct numerical simulations of the incompressible Navier-Stokes equations are not feasible yet for most practical turbulent flows. Therefore, dynamically less complex mathematical formulations are necessary for coarse-grained simulations. In this regard, eddy-viscosity models for Large-Eddy Simulation (LES) are probably the most popular example thereof. This type of models requires the calculation of a subgrid characteristic length which is usually associated with the local grid size. For isotropic grids, this is equal to the mesh step. However, for anisotropic or unstructured grids, such as the pancake-like meshes that are often used to resolve near-wall turbulence or shear layers, a consensus on defining the subgrid characteristic length has not been reached yet despite the fact that it can strongly affect the performance of LES models. In this context, a new definition of the subgrid characteristic length is presented in this work. This flow-dependent length scale is based on the turbulent, or subgrid stress, tensor and its representations on different grids. The simplicity and mathematical properties suggest that it can be a robust definition that minimizes the effects of mesh anisotropies on simulation results. The performance of the proposed subgrid characteristic length is successfully tested for decaying isotropic turbulence and a turbulent channel flow using artificially refined grids. Finally, a simple extension of the method for unstructured meshes is proposed and tested for a turbulent flow around a square cylinder. Comparisons with existing subgrid characteristic length scales show that the proposed definition is much more robust with respect to mesh anisotropies and has a great potential to be used in complex geometries where highly skewed (unstructured) meshes are present.

  10. Logic and discrete mathematics a concise introduction

    CERN Document Server

    Conradie, Willem

    2015-01-01

    A concise yet rigorous introduction to logic and discrete mathematics. This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade.  The chapters on logic - propositional and first-order - provide a robust toolkit for logical reasoning, emphasizing the conceptual understanding of the language and the semantics of classical logic as well as practical applications through the easy

  11. Modelling of the glass fiber length and the glass fiber length distribution in the compounding of short glass fiber-reinforced thermoplastics

    Science.gov (United States)

    Kloke, P.; Herken, T.; Schöppner, V.; Rudloff, J.; Kretschmer, K.; Heidemeyer, P.; Bastian, M.; Walther, Dridger, A.

    2014-05-01

    The use of short glass fiber-reinforced thermoplastics for the production of highly stressed parts in the plastics processing industry has experienced an enormous boom in the last few years. The reasons for this are primarily the improvements to the stiffness and strength properties brought about by fiber reinforcement. These positive characteristics of glass fiber-reinforced polymers are governed predominantly by the mean glass fiber length and the glass fiber length distribution. It is not enough to describe the properties of a plastics component solely as a function of the mean glass fiber length [1]. For this reason, a mathematical-physical model has been developed for describing the glass fiber length distribution in compounding. With this model, it is possible on the one hand to optimize processes for the production of short glass fiber-reinforced thermoplastics, and, on the other, to obtain information on the final distribution, on the basis of which much more detailed statements can be made about the subsequent properties of the molded part. Based on experimental tests, it was shown that this model is able to accurately describe the change in glass fiber length distribution in compounding.

  12. Existence and uniqueness of a periodic solution to an indefinite attractive singular equation

    Czech Academy of Sciences Publication Activity Database

    Hakl, Robert; Zamora, M.

    2016-01-01

    Roč. 195, č. 3 (2016), s. 995-1009 ISSN 0373-3114 Institutional support: RVO:67985840 Keywords : singular differential equation * periodic solution * uniqueness Subject RIV: BA - General Mathematics Impact factor: 0.864, year: 2016 http://link.springer.com/article/10.1007%2Fs10231-015-0501-3

  13. Mathematical modelling a case studies approach

    CERN Document Server

    Illner, Reinhard; McCollum, Samantha; Roode, Thea van

    2004-01-01

    Mathematical modelling is a subject without boundaries. It is the means by which mathematics becomes useful to virtually any subject. Moreover, modelling has been and continues to be a driving force for the development of mathematics itself. This book explains the process of modelling real situations to obtain mathematical problems that can be analyzed, thus solving the original problem. The presentation is in the form of case studies, which are developed much as they would be in true applications. In many cases, an initial model is created, then modified along the way. Some cases are familiar, such as the evaluation of an annuity. Others are unique, such as the fascinating situation in which an engineer, armed only with a slide rule, had 24 hours to compute whether a valve would hold when a temporary rock plug was removed from a water tunnel. Each chapter ends with a set of exercises and some suggestions for class projects. Some projects are extensive, as with the explorations of the predator-prey model; oth...

  14. Transmission line sag calculations using interval mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Shaalan, H. [Institute of Electrical and Electronics Engineers, Washington, DC (United States)]|[US Merchant Marine Academy, Kings Point, NY (United States)

    2007-07-01

    Electric utilities are facing the need for additional generating capacity, new transmission systems and more efficient use of existing resources. As such, there are several uncertainties associated with utility decisions. These uncertainties include future load growth, construction times and costs, and performance of new resources. Regulatory and economic environments also present uncertainties. Uncertainty can be modeled based on a probabilistic approach where probability distributions for all of the uncertainties are assumed. Another approach to modeling uncertainty is referred to as unknown but bounded. In this approach, the upper and lower bounds on the uncertainties are assumed without probability distributions. Interval mathematics is a tool for the practical use and extension of the unknown but bounded concept. In this study, the calculation of transmission line sag was used as an example to demonstrate the use of interval mathematics. The objective was to determine the change in cable length, based on a fixed span and an interval of cable sag values for a range of temperatures. The resulting change in cable length was an interval corresponding to the interval of cable sag values. It was shown that there is a small change in conductor length due to variation in sag based on the temperature ranges used in this study. 8 refs.

  15. Mathematical Properties Relevant to Geomagnetic Field Modeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils

    2010-01-01

    be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focussed. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations.The set of numerical coefficients defining this linear combination is then what one refers.......The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...

  16. Mathematical Properties Relevant to Geomagnetic Field Modeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils

    2014-01-01

    be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focused. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations. The set of numerical coefficients defining this linear combination is then what one refers....... The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...

  17. Treatment options for tank farms long-length contaminated equipment

    International Nuclear Information System (INIS)

    Josephson, W.S.

    1995-01-01

    This study evaluated a variety of treatment and disposal technologies for mixed waste (MW) meeting the following criteria: 1. Single-Shell and Double-Shell Tank System (tank farms) equipment and other debris; 2. length greater than 12 feet; and contaminated with listed MW from the tank farms. This waste stream, commonly referred to as tank farms long-length contaminated equipment (LLCE), poses a unique and costly set of challenges during all phases of the waste management lifecycle

  18. IGCSE core mathematics

    CERN Document Server

    Wall, Terry

    2013-01-01

    Give your core level students the support and framework they require to get their best grades with this book dedicated to the core level content of the revised syllabus and written specifically to ensure a more appropriate pace. This title has been written for Core content of the revised Cambridge IGCSE Mathematics (0580) syllabus for first teaching from 2013. ? Gives students the practice they require to deepen their understanding through plenty of practice questions. ? Consolidates learning with unique digital resources on the CD, included free with every book. We are working with Cambridge

  19. Compact Riemann surfaces an introduction to contemporary mathematics

    CERN Document Server

    Jost, Jürgen

    2006-01-01

    Although Riemann surfaces are a time-honoured field, this book is novel in its broad perspective that systematically explores the connection with other fields of mathematics. It can serve as an introduction to contemporary mathematics as a whole as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. It is unique among textbooks on Riemann surfaces in including an introduction to Teichmüller theory. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation.

  20. Learners' Performance in Mathematics: A Case Study of Public High Schools, South Africa

    Science.gov (United States)

    Mapaire, Lawrence

    2016-01-01

    Mathematics is fundamental to national prosperity in providing tools for understanding science, technology, engineering and economics. It is essential in public decision-making and for participation in the knowledge economy. Mathematics equips pupils with uniquely powerful ways to describe, analyse and change the world. It can stimulate moments of…

  1. Ocular hemodynamics and glaucoma: the role of mathematical modeling.

    Science.gov (United States)

    Harris, Alon; Guidoboni, Giovanna; Arciero, Julia C; Amireskandari, Annahita; Tobe, Leslie A; Siesky, Brent A

    2013-01-01

    To discuss the role of mathematical modeling in studying ocular hemodynamics, with a focus on glaucoma. We reviewed recent literature on glaucoma, ocular blood flow, autoregulation, the optic nerve head, and the use of mathematical modeling in ocular circulation. Many studies suggest that alterations in ocular hemodynamics play a significant role in the development, progression, and incidence of glaucoma. Although there is currently a limited number of studies involving mathematical modeling of ocular blood flow, regulation, and diseases (such as glaucoma), preliminary modeling work shows the potential of mathematical models to elucidate the mechanisms that contribute most significantly to glaucoma progression. Mathematical modeling is a useful tool when used synergistically with clinical and laboratory data in the study of ocular blood flow and glaucoma. The development of models to investigate the relationship between ocular hemodynamic alterations and glaucoma progression will provide a unique and useful method for studying the pathophysiology of glaucoma.

  2. Dependence of flame length on cross sections of burners

    Energy Technology Data Exchange (ETDEWEB)

    Hackeschmidt, M.

    1983-06-01

    This article analyzes the relation between the shape of burner muzzle and the resulting flame jet in a combustion chamber. Geometrical shapes of burner muzzles, either square, circular or triangular are compared as well as proportions of flame dimensions. A formula for calculating flame lengths is derived, for which the mathematical value 'contact profile radius' for burner muzzle shape is introduced. The formula for calculating flame lengths allows a partial replacement of the empirical flame mixing factor according to N.Q. Toai, 1981. The geometrical analysis does not include thermodynamic and reaction kinetic studies, which may be necessary for evaluating heterogenous (coal dust) combustion flames with longer burning time. (12 refs.)

  3. Interfacial Fluid Mechanics A Mathematical Modeling Approach

    CERN Document Server

    Ajaev, Vladimir S

    2012-01-01

    Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then,several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail.  Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces, evaporation/condensation, and surfactant phenomena are discussed in the later chapters. This book also:  Discusses mathematical models in the context of actual applications such as electrowetting Includes unique material on fluid flow near structured surfaces and phase change phenomena Shows readers how to solve modeling problems related to microscale multiphase flows Interfacial Fluid Me...

  4. Uniqueness Theorem for the Inverse Aftereffect Problem and Representation the Nodal Points Form

    OpenAIRE

    A. Neamaty; Sh. Akbarpoor; A. Dabbaghian

    2015-01-01

    In this paper, we consider a boundary value problem with aftereffect on a finite interval. Then, the asymptotic behavior of the solutions, eigenvalues, the nodal points and the associated nodal length are studied. We also calculate the numerical values of the nodal points and the nodal length. Finally, we prove the uniqueness theorem for the inverse aftereffect problem by applying any dense subset of the nodal points.

  5. Amongst mathematicians teaching and learning mathematics at university level

    CERN Document Server

    Nardi, Elena

    2008-01-01

    "Amongst Mathematicians" offers a unique perspective on the ways in which mathematicians perceive their students' learning, the way they teach and reflect on those teaching practices. Elena Nardi employs fictional characters to create a conversation on these important issues. While personas are created, the facts incorporated into their stories are based on large bodies of data including intense focus groups comprised of mathematicians and mathematics education.This book further develops analyses of the data and demonstrates the pedagogical potential that lies in collaborative research that engages educators, researchers, and students in undergraduate mathematics education. Nardi also addresses the need for action in undergraduate mathematics education by creating discourse for reform and demonstrating the feasibility and potential of collaboration between mathematicians and researchers. "Amongst Mathematicians" is of interest to the entire mathematics community including teacher educators, undergraduate and ...

  6. Does Knowing More Advanced Mathematics Ensure Effectiveness of Working towards Demonstrating Specialised Mathematical Content Knowledge of Second-Year Pre-Service Teachers?

    Science.gov (United States)

    Livy, Sharyn

    2012-01-01

    The theoretical understanding that underpins a teacher's foundation knowledge draws on their common content knowledge (CCK) and influences their mathematics' teaching (Rowland, Turner, Thwaites, & Huckstep, 2009). Teachers who have specialised content knowledge (SCK) demonstrate a unique kind of content knowledge which is more than knowing the…

  7. Length expectation values in quantum Regge calculus

    International Nuclear Information System (INIS)

    Khatsymovsky, V.M.

    2004-01-01

    Regge calculus configuration superspace can be embedded into a more general superspace where the length of any edge is defined ambiguously depending on the 4-tetrahedron containing the edge. Moreover, the latter superspace can be extended further so that even edge lengths in each the 4-tetrahedron are not defined, only area tensors of the 2-faces in it are. We make use of our previous result concerning quantization of the area tensor Regge calculus which gives finite expectation values for areas. Also our result is used showing that quantum measure in the Regge calculus can be uniquely fixed once we know quantum measure on (the space of the functionals on) the superspace of the theory with ambiguously defined edge lengths. We find that in this framework quantization of the usual Regge calculus is defined up to a parameter. The theory may possess nonzero (of the order of Planck scale) or zero length expectation values depending on whether this parameter is larger or smaller than a certain value. Vanishing length expectation values means that the theory is becoming continuous, here dynamically in the originally discrete framework

  8. Recent developments of mathematical fluid mechanics

    CERN Document Server

    Giga, Yoshikazu; Kozono, Hideo; Okamoto, Hisashi; Yamazaki, Masao

    2016-01-01

    The book addresses recent developments of the mathematical research on the Navier-Stokes and Euler equations as well as on related problems. In particular, there are covered:   1) existence, uniqueness, and the regularity of weak solutions; 2) stability of the motion in rest and the asymptotic behavior of solutions; 3) singularity and blow-up of weak and strong solutions; 4) vorticity and energy conservation; 5) motions of rotating fluids, or of fluids surrounding a rotating body; 6) free boundary problems; 7) maximal regularity theory and other abstract results for mathematical fluid mechanics.   For this quarter century, these topics have been playing a central role in both pure and applied mathematics and having a great influence to the developm ent of the functional analysis, harmonic analysis and numerical analysis whose tools make a a substantial contribution to the investigation of nonlinear partial differential equations, particularly the Navier-Stokes and the Euler equations.      There are 24...

  9. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In particular, algebras with orthogonal involution which split as a tensor product of quaternion algebras with involution are studied. ... of an arbitrary unstable wave must approach zero as the wave length decreases to zero, is established in a mathematically rigorous fashion for plane parallel heterogeneous shear flows with ...

  10. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Howard's conjecture, which states that in the linear instability problem of inviscid heterogeneous parallel shear flow growth rate of an arbitrary unstable wave must approach zero as the wave length decreases to zero, is established in a mathematically rigorous fashion for plane parallel heterogeneous shear flows with ...

  11. Logic and discrete mathematics a concise introduction : solutions manual

    CERN Document Server

    Conradie, Willem; Robinson, Claudette

    2015-01-01

    Solutions manual to accompany Logic and Discrete Mathematics: A Concise Introduction This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade. Written in a clear and reader-friendly style, each section ends with an extensive set of exercises, most of them provided with complete solutions which are available in this accompanying solutions manual.

  12. Classical and Weak Solutions for Two Models in Mathematical Finance

    Science.gov (United States)

    Gyulov, Tihomir B.; Valkov, Radoslav L.

    2011-12-01

    We study two mathematical models, arising in financial mathematics. These models are one-dimensional analogues of the famous Black-Scholes equation on finite interval. The main difficulty is the degeneration at the both ends of the space interval. First, classical solutions are studied. Positivity and convexity properties of the solutions are discussed. Variational formulation in weighted Sobolev spaces is introduced and existence and uniqueness of the weak solution is proved. Maximum principle for weak solution is discussed.

  13. Predicting long-term growth in students' mathematics achievement: the unique contributions of motivation and cognitive strategies.

    Science.gov (United States)

    Murayama, Kou; Pekrun, Reinhard; Lichtenfeld, Stephanie; Vom Hofe, Rudolf

    2013-01-01

    This research examined how motivation (perceived control, intrinsic motivation, and extrinsic motivation), cognitive learning strategies (deep and surface strategies), and intelligence jointly predict long-term growth in students' mathematics achievement over 5 years. Using longitudinal data from six annual waves (Grades 5 through 10; Mage  = 11.7 years at baseline; N = 3,530), latent growth curve modeling was employed to analyze growth in achievement. Results showed that the initial level of achievement was strongly related to intelligence, with motivation and cognitive strategies explaining additional variance. In contrast, intelligence had no relation with the growth of achievement over years, whereas motivation and learning strategies were predictors of growth. These findings highlight the importance of motivation and learning strategies in facilitating adolescents' development of mathematical competencies. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  14. Model answers in pure mathematics for a-level students

    CERN Document Server

    Pratt, GA; Schofield, C W

    1967-01-01

    Model Answers in Pure Mathematics for A-Level Students provides a set of solutions that indicate what is required and expected in an Advanced Level examination in Pure Mathematics. This book serves as a guide to the length of answer required, layout of the solution, and methods of selecting the best approach to any particular type of math problem. This compilation intends to supplement, not replace, the normal textbook and provides a varied selection of questions for practice in addition to the worked solutions. The subjects covered in this text include algebra, trigonometry, coordinate geomet

  15. Uniqueness Theorem for the Inverse Aftereffect Problem and Representation the Nodal Points Form

    Directory of Open Access Journals (Sweden)

    A. Neamaty

    2015-03-01

    Full Text Available In this paper, we consider a boundary value problem with aftereffect on a finite interval. Then, the asymptotic behavior of the solutions, eigenvalues, the nodal points and the associated nodal length are studied. We also calculate the numerical values of the nodal points and the nodal length. Finally, we prove the uniqueness theorem for the inverse aftereffect problem by applying any dense subset of the nodal points.

  16. Domain General Mediators of the Relation between Kindergarten Number Sense and First-Grade Mathematics Achievement

    Science.gov (United States)

    Hassinger-Das, Brenna; Jordan, Nancy C.; Glutting, Joseph; Irwin, Casey; Dyson, Nancy

    2013-01-01

    Domain general skills that mediate the relation between kindergarten number sense and first-grade mathematics skills were investigated. Participants were 107 children who displayed low number sense in the fall of kindergarten. Controlling for background variables, multiple regression analyses showed that attention problems and executive functioning both were unique predictors of mathematics outcomes. Attention problems were more important for predicting first-grade calculation performance while executive functioning was more important for predicting first-grade performance on applied problems. Moreover, both executive functioning and attention problems were unique partial mediators of the relationship between kindergarten and first-grade mathematics skills. The results provide empirical support for developing interventions that target executive functioning and attention problems in addition to instruction in number skills for kindergartners with initial low number sense. PMID:24237789

  17. Learning mathematics concepts in a traditional socio-culture ...

    African Journals Online (AJOL)

    Abstract. This paper argues that each culture has its unique applications of mathematical concepts. It presents this argument by showing how the Great Zimbabwe Monument that was built between the 12th and 14th century applied some geometrical concepts that some secondary school students in Zimbabwe find difficult ...

  18. Using Mathematics, Mathematical Applications, Mathematical Modelling, and Mathematical Literacy: A Theoretical Study

    Science.gov (United States)

    Mumcu, Hayal Yavuz

    2016-01-01

    The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…

  19. The Mathematics of Infinity A Guide to Great Ideas

    CERN Document Server

    Faticoni, Theodore G

    2012-01-01

    Praise for the First Edition ". . . an enchanting book for those people in computer science or mathematics who are fascinated by the concept of infinity."—Computing Reviews ". . . a very well written introduction to set theory . . . easy to read and well suited for self-study . . . highly recommended."—Choice The concept of infinity has fascinated and confused mankind for centuries with theories and ideas that cause even seasoned mathematicians to wonder. The Mathematics of Infinity: A Guide to Great Ideas, Second Edition uniquely explores how we can manipulate these ideas when

  20. Investment, Reprocurement and Franchise Contract Length in the British Railway Industry

    OpenAIRE

    Affuso, Luisa; Newbery, David M G

    2000-01-01

    This Paper studies the interaction between repeated auctions of rail franchises of different lengths, uncertainty, and incentives for investment in rolling stock, following the privatization of British Rail. Theoretical predictions are tested empirically using a unique panel of data. Theory suggests that short franchise lengths reduce incentives to invest in specific assets. Our empirical results suggest that competition and strategic behaviour at the re-procurement stage can create incentive...

  1. Rays, waves, and scattering topics in classical mathematical physics

    CERN Document Server

    Adam, John A

    2017-01-01

    This one-of-a-kind book presents many of the mathematical concepts, structures, and techniques used in the study of rays, waves, and scattering. Panoramic in scope, it includes discussions of how ocean waves are refracted around islands and underwater ridges, how seismic waves are refracted in the earth's interior, how atmospheric waves are scattered by mountains and ridges, how the scattering of light waves produces the blue sky, and meteorological phenomena such as rainbows and coronas. Rays, Waves, and Scattering is a valuable resource for practitioners, graduate students, and advanced undergraduates in applied mathematics, theoretical physics, and engineering. Bridging the gap between advanced treatments of the subject written for specialists and less mathematical books aimed at beginners, this unique mathematical compendium features problems and exercises throughout that are geared to various levels of sophistication, covering everything from Ptolemy's theorem to Airy integrals (as well as more technica...

  2. A mathematical model of an automatic assembler to stack fuel pellets

    International Nuclear Information System (INIS)

    Jarvis, R.G.; Joynes, R.; Bretzlaff, C.I.

    1980-11-01

    Fuel elements for CANDU reactors are assembled from stacks of cylindrical UO 2 pellets, with close tolerances on lengths and diameters. Present stacking techniques involve extensive manual operations and they can be speeded up and reduced in cost by an automated device. If gamma-active fuel is handled such a device is essential. An automatic fuel pellet assembly process was modelled mathematically. The model indicated a suitable sequence of pellet manipulations to arrive at a stack length that was always within tolerance. This sequence was used as the inital input for the design of mechanical hardware. The mechanical design and the refinement of the mathematical model proceeded simultaneously. Mechanical constraints were allowed for in the model, and its optimized sequence of operations was incorporated in a microcomputer program to control the mechanical hardware. (auth)

  3. Mathematical Footprints Discovering Mathematics Everywhere

    CERN Document Server

    Pappas, Theoni

    1999-01-01

    MATHEMATICAL FOOTPRINTS takes a creative look at the role mathematics has played since prehistoric times, and will play in the future, and uncovers mathematics where you least expect to find it from its many uses in medicine, the sciences, and its appearance in art to its patterns in nature and its central role in the development of computers. Pappas presents mathematical ideas in a readable non-threatening manner. MATHEMATICAL FOOTPRINTS is another gem by the creator of THE MATHEMATICS CALENDAR and author of THE JOY OF MATHEMATICS. "Pappas's books have been gold mines of mathematical ent

  4. Predicting Long-Term Growth in Students' Mathematics Achievement: The Unique Contributions of Motivation and Cognitive Strategies

    Science.gov (United States)

    Murayama, Kou; Pekrun, Reinhard; Lichtenfeld, Stephanie; vom Hofe, Rudolf

    2013-01-01

    This research examined how motivation (perceived control, intrinsic motivation, and extrinsic motivation), cognitive learning strategies (deep and surface strategies), and intelligence jointly predict long-term growth in students' mathematics achievement over 5 years. Using longitudinal data from six annual waves (Grades 5 through 10;…

  5. Mathematics for plasma physics; Mathematiques pour la physique des plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, R. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-01-15

    The plasma physics is in the heart of the research of the CEA-DAM. Using mathematics in this domain is necessary, particularly for a precise statement of the partial differential equations systems which are on the basis of the numerical simulations. Examples are given concerning hydrodynamics, models for the thermal conduction and laser-plasma interaction. For the bi-temperature compressible Euler model, the mathematical study of the problem has allowed us to understand why the role of the energy equations dealing with ions on one hand and electrons on the other hand are not identical despite the symmetrical appearance of the system. The mathematical study is also necessary to be sure of the existence and uniqueness of the solution

  6. Boundary asymptotics for a non-neutral electrochemistry model with small Debye length

    Science.gov (United States)

    Lee, Chiun-Chang; Ryham, Rolf J.

    2018-04-01

    This article addresses the boundary asymptotics of the electrostatic potential in non-neutral electrochemistry models with small Debye length in bounded domains. Under standard physical assumptions motivated by non-electroneutral phenomena in oxidation-reduction reactions, we show that the electrostatic potential asymptotically blows up at boundary points with respect to the bulk reference potential as the scaled Debye length tends to zero. The analysis gives a lower bound for the blow-up rate with respect to the model parameters. Moreover, the maximum potential difference over any compact subset of the physical domain vanishes exponentially in the zero-Debye-length limit. The results mathematically confirm the physical description that electrolyte solutions are electrically neutral in the bulk and are strongly electrically non-neutral near charged surfaces.

  7. 3rd International Conference on Computational Mathematics and Computational Geometry

    CERN Document Server

    Ravindran, Anton

    2016-01-01

    This volume presents original research contributed to the 3rd Annual International Conference on Computational Mathematics and Computational Geometry (CMCGS 2014), organized and administered by Global Science and Technology Forum (GSTF). Computational Mathematics and Computational Geometry are closely related subjects, but are often studied by separate communities and published in different venues. This volume is unique in its combination of these topics. After the conference, which took place in Singapore, selected contributions chosen for this volume and peer-reviewed. The section on Computational Mathematics contains papers that are concerned with developing new and efficient numerical algorithms for mathematical sciences or scientific computing. They also cover analysis of such algorithms to assess accuracy and reliability. The parts of this project that are related to Computational Geometry aim to develop effective and efficient algorithms for geometrical applications such as representation and computati...

  8. Effects of Single-Gender Mathematics Classrooms on Self-Perception of Mathematical Ability and Post Secondary Engineering Paths: An Australian Case Study

    Science.gov (United States)

    Tully, D.; Jacobs, B.

    2010-01-01

    This study focused on a population of female engineering students, probing the influences of their secondary school experience on their choice to pursue an engineering course of study at university. The motivating question is: Do unique opportunities exist in an all-female secondary school mathematics classroom, which impact a young woman's…

  9. Matematica 1. Livro do Aluno (Mathematics 1. Student Workbook).

    Science.gov (United States)

    D'Alu, Maria Jose

    Matematica 1 is the first book of a mathematics program in Portuguese "designed for first graders." The book contains 15 chapters dealing with: sets, numeration, place value, numbers from 0 through 99, addition and subtraction, geometric shapes, measurements (money, time, length), fractions, word problems, and commutative and associative…

  10. Domain-general mediators of the relation between kindergarten number sense and first-grade mathematics achievement.

    Science.gov (United States)

    Hassinger-Das, Brenna; Jordan, Nancy C; Glutting, Joseph; Irwin, Casey; Dyson, Nancy

    2014-02-01

    Domain-general skills that mediate the relation between kindergarten number sense and first-grade mathematics skills were investigated. Participants were 107 children who displayed low number sense in the fall of kindergarten. Controlling for background variables, multiple regression analyses showed that both attention problems and executive functioning were unique predictors of mathematics outcomes. Attention problems were more important for predicting first-grade calculation performance, whereas executive functioning was more important for predicting first-grade performance on applied problems. Moreover, both executive functioning and attention problems were unique partial mediators of the relationship between kindergarten and first-grade mathematics skills. The results provide empirical support for developing interventions that target executive functioning and attention problems in addition to instruction in number skills for kindergartners with initial low number sense. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Systematic perspectives on diverging mathematical orientations

    Directory of Open Access Journals (Sweden)

    D.F.M. Strauss

    2005-07-01

    Full Text Available The popular view that mathematics is “objective” and “neutral” in the sense that it does not know different standpoints is contradicted by the factual state of modern mathematics. In the light of the dominant one-sided trends in the history of mathe-matics, fluctuating between arithmeticism and a geometrisation of this discipline, this article explores some provisional starting-points for a different view. This third option is explored by investigating some features of an acknowledgement of the uniqueness of number and space without neglecting the inter-aspectual connections between these two modal functions. An argument is advanced regarding the inevitability of employing analogical (or elementary basic concepts, and this perspective is articulated in terms of the theory of modal aspects. Numerical and spatial terms are discussed and eventually focused on a deepened understanding of the meaning of infinity. In addition to a brief look at the circularity present in the arithmeticist claim that mathematics could be fully arithmetised (Grünbaum, attention is also asked for the agreement between Aristotle and Cantor regarding the nature of continuity – assessed in terms of the irreducibility of the numerical and spatial aspects of reality. Finally a characterisation is given of the ontological assumpt-ions of intuitionism and axiomatic formalism.

  12. On estimation of secret message length in LSB steganography in spatial domain

    Science.gov (United States)

    Fridrich, Jessica; Goljan, Miroslav

    2004-06-01

    In this paper, we present a new method for estimating the secret message length of bit-streams embedded using the Least Significant Bit embedding (LSB) at random pixel positions. We introduce the concept of a weighted stego image and then formulate the problem of determining the unknown message length as a simple optimization problem. The methodology is further refined to obtain more stable and accurate results for a wide spectrum of natural images. One of the advantages of the new method is its modular structure and a clean mathematical derivation that enables elegant estimator accuracy analysis using statistical image models.

  13. The Optimization of the Data Packet Length in Adaptive Radio Networks

    Directory of Open Access Journals (Sweden)

    Anatolii P. Voiter

    2017-10-01

    Full Text Available Background. Development of methods and means of the adaptive management of the radio networks bandwidth with competitive access to the radio channel. Objective. The aim of the paper is to determine the packet length effect on the effective radio networks transmission rate with taking into account the parameters, formats, and procedures of the physical and link levels at using the MAC protocol with a rigid strategy of competitive access to the radio channel. Methods. The goal is achieved by creating and analyzing the mathematical model of the effective transmission rate in radio networks. The model is described by the equation for the effective transmission rate, which is the function of both the probability of the conflict-free transmission of the MAC protocol and the coefficient of the data packet size deviation from the optimal for LLC protocol. Results. It is proved that there is the optimal deviation of the data packet length for each MAC protocol traffic intensity value, which provides the most effective transfer rate. This makes the possibility for adaptive management of the radio bandwidth by applying a pre-calculated deviation of the data packet size in dependence on the traffic intensity. Conclusions. The proposed mathematical model is the tool for calculation of both the radio bandwidth network capacity and the optimal deviation of the data packet length at adaptive management of competitive access to a radio channel with a rigid strategy at conditions of the significant fluctuation in traffic intensity.

  14. An Archaeological/Genealogical Historical Analysis of The National Council of Teachers of Mathematics' Standards Documents

    Science.gov (United States)

    Bullock, Erika Catherine

    2013-01-01

    Since the mid-20th century in the United States, there have been several reform movements within mathematics education; each movement has been subject to its own unique socio-cultural and -political forces. The National Council of Teachers of Mathematics' (NCTM) Standards documents--"Curriculum and Evaluation Standards for School…

  15. Mathematical aspects of multi-porosity continua

    CERN Document Server

    Straughan, Brian

    2017-01-01

    This book is devoted to describing theories for porous media where such pores have an inbuilt macro structure and a micro structure. For example, a double porosity material has pores on a macro scale, but additionally there are cracks or fissures in the solid skeleton. The actual body is allowed to deform and thus the underlying theory is one of elasticity. Various different descriptions are reviewed. Chapter 1 introduces the classical linear theory of elastodynamics together with uniqueness and continuous dependence results. Chapters 2 and 3 review developments of theories for double and triple porosity using a pressure-displacement structure and also using voids-displacement. Chapter 4 compares various aspects of the pressure-displacement and voids-displacement theories via uniqueness studies and wave motion analysis. Mathematical analyses of double and triple porosity materials are included concentrating on uniqueness and stability studies in chapters 5 to 7. In chapters 8 and 9 the emphasis is on wa...

  16. ABOUT THE RELEVANCE AND METHODOLOGY ASPECTS OF TEACHING THE MATHEMATICAL MODELING TO PEDAGOGICAL STUDENTS

    Directory of Open Access Journals (Sweden)

    Y. A. Perminov

    2014-01-01

    Full Text Available The paper substantiates the need for profile training in mathematical modeling for pedagogical students, caused by the total penetration of mathematics into different sciences, including the humanities; fast development of the information communications technologies; and growing importance of mathematical modeling, combining the informal scientific and formal mathematical languages with the unique opportunities of computer programming. The author singles out the reasons for mastering and using the mathematical apparatus by teaches in every discipline. Indeed, among all the modern mathematical methods and ideas, mathematical modeling retains its priority in all professional spheres. Therefore, the discipline of “Mathematical Modeling” can play an important role in integrating different components of specialists training in various profiles. By mastering the basics of mathematical modeling, students acquire skills of methodological thinking; learn the principles of analysis, synthesis, generalization of ideas and methods in different disciplines and scientific spheres; and achieve general culture competences. In conclusion, the author recommends incorporating the “Methods of Profile Training in Mathematical Modeling” into the pedagogical magistracy curricula. 

  17. Gender-Based Differential Item Performance in Mathematics Achievement Items.

    Science.gov (United States)

    Doolittle, Allen E.; Cleary, T. Anne

    1987-01-01

    Eight randomly equivalent samples of high school seniors were each given a unique form of the ACT Assessment Mathematics Usage Test (ACTM). Signed measures of differential item performance (DIP) were obtained for each item in the eight ACTM forms. DIP estimates were analyzed and a significant item category effect was found. (Author/LMO)

  18. Determination by vibrational spectra of the strength and the bond length of atoms U and O in uranyl complexes

    International Nuclear Information System (INIS)

    Rodriguez S, A.; Martinez Q, E.

    1996-01-01

    The vibrational spectra of different uranyl compounds were studied. The wave number was related to the harmonic oscillator model and to the mathematical expression of Badger as modified by Jones, to determine the strength and the bond length of atoms U and O in UO 2 2+ . A mathematical simplification develop by us is proposed and its results compared with values obtained by other methods. (Author)

  19. Non-unique conical and non-conical tangents to rectifiable stationary varifolds in R-4

    Czech Academy of Sciences Publication Activity Database

    Kolář, Jan

    2015-01-01

    Roč. 54, č. 2 (2015), s. 1875-1909 ISSN 0944-2669 R&D Projects: GA AV ČR IAA100190903; GA ČR(CZ) GAP201/12/0290 Institutional support: RVO:67985840 Keywords : minimal surfaces * cones * uniqueness Subject RIV: BA - General Mathematics Impact factor: 1.555, year: 2015 http://link.springer.com/article/10.1007%2Fs00526-015-0847-9

  20. What We Think We Know About Maya Mathematics and Astronomy

    Science.gov (United States)

    Van Stone, M.

    2016-01-01

    In most cultures, mathematics and astronomy are obscure and arcane. Not so to the ancient Maya. Despite what we consider technological “deficiencies”—they lacked both metal tools and the wheel—their public inscriptions paid uniquely sophisticated attention to these sciences. At any given monument, fully half the text is devoted to situating events in time, particularly specifying the precise number of days between events, whether historical or mythological. Often these intervals have numerological significance, and many are precise multiples of the periodicities of heavenly bodies. The Maya apparently were fully aware of the exact length of the tropical year, the sidereal year, the cycles of Venus, and eclipses; and there is evidence that they even celebrated events reflecting the 26,000-year precession cycle. However, Maya illuminati had an agenda quite alien to our way of thinking. Clues to their knowledge are arcane, rare, and often difficult for us to recognize with eyes clouded by our modern worldview. The body of work left to us consists of just a few tantalizing sherds of a once-rich and diverse astromythological tradition. Moreover, there was no single pan-Mayan mythos. An astronomical alignment seen repeatedly in one city will be completely absent in others. Each city-state emphasized specific and often unique features, and they often contradict one another. But we soldier on. The diversity we find so frustrating is simply the fine structure of their worldview. Intellectual historians have for too long been, like Procrustes, trying to force all Maya science and religion into a single universal straitjacket.

  1. Predicting Relationships between Mathematics Anxiety, Mathematics Teaching Anxiety, Self-efficacy Beliefs towards Mathematics and Mathematics Teaching

    OpenAIRE

    Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent

    2017-01-01

    The purpose of the research is to investigate the relationships betweenself-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacybeliefs toward mathematics teaching, mathematics teaching anxiety variables andtesting the relationships between these variables with structural equationmodel. The sample of the research, which was conducted in accordance withrelational survey model, consists of 380 university students, who studied atthe department of Elementary Mathematics Educ...

  2. ICMI 1966-2016: A Double Insiders' View of the Latest Hal Century of the International Commission on Mathematical Instruction

    DEFF Research Database (Denmark)

    Hodgson, Bernard; Niss, Mogens Allan

    2018-01-01

    This paper concentrates on the latest five decades of the International Commission on Mathematical Instruction. We had the privilege of occupying leading positions within ICMI for roughly half the period under consideration, which has provided us with a unique standpoint for identifying and refle......This paper concentrates on the latest five decades of the International Commission on Mathematical Instruction. We had the privilege of occupying leading positions within ICMI for roughly half the period under consideration, which has provided us with a unique standpoint for identifying...... and reflecting on main trends and developments of the relationship between ICMI and mathematics education. The years 1966–2016 have seen marked trends and developments in mathematics teaching and learning around the world, at the same time as mathematics education as a scientific discipline came of age...... and matured. ICMI as an organisation has not only observed these developments but has also been a key player in charting and analysing them, as well as in fostering and facilitating (some of) them. We offer, here, observations, analyses and reflections on key issues in mathematics education as perceived by us...

  3. Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows

    Science.gov (United States)

    Assouline, S.; Lehmann, P. G.; Or, D.

    2015-12-01

    Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.

  4. Mathematical and Statistical Methods for Actuarial Sciences and Finance

    CERN Document Server

    Legros, Florence; Perna, Cira; Sibillo, Marilena

    2017-01-01

    This volume gathers selected peer-reviewed papers presented at the international conference "MAF 2016 – Mathematical and Statistical Methods for Actuarial Sciences and Finance”, held in Paris (France) at the Université Paris-Dauphine from March 30 to April 1, 2016. The contributions highlight new ideas on mathematical and statistical methods in actuarial sciences and finance. The cooperation between mathematicians and statisticians working in insurance and finance is a very fruitful field, one that yields unique  theoretical models and practical applications, as well as new insights in the discussion of problems of national and international interest. This volume is addressed to academicians, researchers, Ph.D. students and professionals.

  5. The determinants of IPO firm prospectus length in Africa

    Directory of Open Access Journals (Sweden)

    Bruce Hearn

    2013-04-01

    Full Text Available This paper studies the differential impact on IPO firm listing prospectus length from increasing proportions of foreign directors from civil as opposed to common law societies and social elites. Using a unique hand-collected and comprehensive sample of 165 IPO firms from across 18 African countries the evidence suggests that increasing proportions of directors from civil code law countries is associated with shorter prospectuses while the opposite is true for their common law counterparts. Furthermore increasing proportions of directors drawn from elevated social positions in indigenous society is related to increasing prospectus length in North Africa while being insignificant in SSA.

  6. The Origins of Diverse Domains of Mathematics: Generalist Genes but Specialist Environments

    OpenAIRE

    Kovas, Y.; Petrill, S. A.; Plomin, R.

    2007-01-01

    The authors assessed 2,502 ten-year-old children, members of 1,251 pairs of twins, on a Web-based battery of problems from 5 diverse aspects of mathematics assessed as part of the U.K. national curriculum. This 1st genetic study into the etiology of variation in different domains of mathematics showed that the heritability estimates were moderate and highly similar across domains and that these genetic influences were mostly general. Environmental factors unique to each twin in a family (rath...

  7. Effect of operational cycle time length on nitrogen removal in an alternating oxidation ditch system.

    Science.gov (United States)

    Mantziaras, I D; Stamou, A; Katsiri, A

    2011-06-01

    This paper refers to nitrogen removal optimization of an alternating oxidation ditch system through the use of a mathematical model and pilot testing. The pilot system where measurements have been made has a total volume of 120 m(3) and consists of two ditches operating in four phases during one cycle and performs carbon oxidation, nitrification, denitrification and settling. The mathematical model consists of one-dimensional mass balance (convection-dispersion) equations based on the IAWPRC ASM 1 model. After the calibration and verification of the model, simulation system performance was made. Optimization is achieved by testing operational cycles and phases with different time lengths. The limits of EU directive 91/271 for nitrogen removal have been used for comparison. The findings show that operational cycles with smaller time lengths can achieve higher nitrogen removals and that an "equilibrium" between phase time percentages in the whole cycle, for a given inflow, must be achieved.

  8. Predicting Relationships between Mathematics Anxiety, Mathematics Teaching Anxiety, Self-Efficacy Beliefs towards Mathematics and Mathematics Teaching

    Science.gov (United States)

    Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent

    2017-01-01

    The purpose of the research is to investigate the relationships between self-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacy beliefs toward mathematics teaching, mathematics teaching anxiety variables and testing the relationships between these variables with structural equation model. The sample of the research, which…

  9. A mathematical definition of the financial bubbles and crashes

    Science.gov (United States)

    Watanabe, Kota; Takayasu, Hideki; Takayasu, Misako

    2007-09-01

    We check the validity of the mathematical method of detecting financial bubbles or crashes, which is based on a data fitting with an exponential function. We show that the period of a bubble can be determined nearly uniquely independent of the precision of data. The method is widely applicable for stock market data such as the Internet bubble.

  10. Mathematical models for prediction of safety factors for a simply ...

    African Journals Online (AJOL)

    From the results obtained, mathematical prediction models were developed using a least square regression analysis for bending, shear and deflection modes of failure considered in the study. The results showed that the safety factors for material, dead and live load are not unique, but they are influenced by safety index ...

  11. A truly Newtonian softening length for disc simulations

    Science.gov (United States)

    Huré, J.-M.; Trova, A.

    2015-02-01

    The softened point mass model is commonly used in simulations of gaseous discs including self-gravity while the value of associated length λ remains, to some degree, controversial. This `parameter' is however fully constrained when, in a discretized disc, all fluid cells are demanded to obey Newton's law. We examine the topology of solutions in this context, focusing on cylindrical cells more or less vertically elongated. We find that not only the nominal length depends critically on the cell's shape (curvature, radial extension, height), but it is either a real or an imaginary number. Setting λ as a fraction of the local disc thickness - as usually done - is indeed not the optimal choice. We then propose a novel prescription valid irrespective of the disc properties and grid spacings. The benefit, which amounts to 2-3 more digits typically, is illustrated in a few concrete cases. A detailed mathematical analysis is in progress.

  12. Contributions of executive function and spatial skills to preschool mathematics achievement.

    Science.gov (United States)

    Verdine, Brian N; Irwin, Casey M; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn

    2014-10-01

    Early mathematics achievement is highly predictive of later mathematics performance. Here we investigated the influence of executive function (EF) and spatial skills, two generalizable skills often overlooked in mathematics curricula, on mathematics performance in preschoolers. Children (N=44) of varying socioeconomic status (SES) levels were assessed at 3 years of age on a new assessment of spatial skill (Test of Spatial Assembly, TOSA) and a vocabulary measure (Peabody Picture Vocabulary Test, PPVT). The same children were tested at 4 years of age on the Beery Test of Visual-Motor Integration (VMI) as well as on measures of EF and mathematics. The TOSA was created specifically as an assessment for 3-year-olds, allowing the investigation of links among spatial, EF, and mathematical skills earlier than previously possible. Results of a hierarchical regression indicate that EF and spatial skills predict 70% of the variance in mathematics performance without an explicit math test, EF is an important predictor of math performance as prior research suggested, and spatial skills uniquely predict 27% of the variance in mathematics skills. Additional research is needed to understand whether EF is truly malleable and whether EF and spatial skills may be leveraged to support early mathematics skills, especially for lower SES children who are already falling behind in these skill areas by 3 and 4 years of age. These findings indicate that both skills are part of an important foundation for mathematics performance and may represent pathways for improving school readiness for mathematics. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Mathematics related anxiety: Mathematics bogeyman or not?

    Directory of Open Access Journals (Sweden)

    Videnović Marina

    2011-01-01

    Full Text Available Data of the PISA 2003 survey indicate high levels of mathematics anxiety of students in Serbia. More than half of our students worry whether they will have difficulties in mathematics class or whether they will earn poor marks. Aims of this study therefore are: examining relationship between math anxiety and achievement at mathematics literacy scale; establishing possible predictors of math anxiety and identification of students' groups in relations to their relationship towards mathematics as a subject. Mathematics anxiety is statistically negatively correlated with school achievement and achievement at mathematics literacy scale. Socio-demographic factors, motivational and cognitive aspects related to learning mathematics, perception of school and classroom climate explain 40% variance of mathematics anxiety. Based on students' relationship towards mathematics they cam be divided into three groups; while dimensions that apart them are uninterested-interested in mathematics and presence-absence of anxiety. The group displaying anxiety scores lowest among the three. Applying qualitative analysis students' and teachers' attitudes on specific issues related to teaching and learning mathematics was examined.

  14. Electrorheological fluids modeling and mathematical theory

    CERN Document Server

    Růžička, Michael

    2000-01-01

    This is the first book to present a model, based on rational mechanics of electrorheological fluids, that takes into account the complex interactions between the electromagnetic fields and the moving liquid. Several constitutive relations for the Cauchy stress tensor are discussed. The main part of the book is devoted to a mathematical investigation of a model possessing shear-dependent viscosities, proving the existence and uniqueness of weak and strong solutions for the steady and the unsteady case. The PDS systems investigated possess so-called non-standard growth conditions. Existence results for elliptic systems with non-standard growth conditions and with a nontrivial nonlinear r.h.s. and the first ever results for parabolic systems with a non-standard growth conditions are given for the first time. Written for advanced graduate students, as well as for researchers in the field, the discussion of both the modeling and the mathematics is self-contained.

  15. TIME SERIES ANALYSIS USING A UNIQUE MODEL OF TRANSFORMATION

    Directory of Open Access Journals (Sweden)

    Goran Klepac

    2007-12-01

    Full Text Available REFII1 model is an authorial mathematical model for time series data mining. The main purpose of that model is to automate time series analysis, through a unique transformation model of time series. An advantage of this approach of time series analysis is the linkage of different methods for time series analysis, linking traditional data mining tools in time series, and constructing new algorithms for analyzing time series. It is worth mentioning that REFII model is not a closed system, which means that we have a finite set of methods. At first, this is a model for transformation of values of time series, which prepares data used by different sets of methods based on the same model of transformation in a domain of problem space. REFII model gives a new approach in time series analysis based on a unique model of transformation, which is a base for all kind of time series analysis. The advantage of REFII model is its possible application in many different areas such as finance, medicine, voice recognition, face recognition and text mining.

  16. Teachers' Mathematics as Mathematics-at-Work

    Science.gov (United States)

    Bednarz, Nadine; Proulx, Jérôme

    2017-01-01

    Through recognising mathematics teachers as professionals who use mathematics in their workplace, this article traces a parallel between the mathematics enacted by teachers in their practice and the mathematics used in workplaces found in studies of professionals (e.g. nurses, engineers, bankers). This parallel is developed through the five…

  17. Temporal characterization of FEL micropulses as function of cavity length detuning using frequency-resolved optical gating

    Energy Technology Data Exchange (ETDEWEB)

    Richman, B.A. [Stanford Univ., CA (United States); DeLong, K.W.; Trebino, R. [Sandia National Lab., Livermore, CA (United States)

    1995-12-31

    Results of frequency resolved optical gating (FROG) measurements on the Stanford mid-IR FEL system show the effect of FEL cavity length detuning on the micropulse temporal structure. The FROG technique enables the acquisition of complete and uniquely invertible amplitude and phase temporal dependence of optical pulses. Unambiguous phase and amplitude profiles are recovered from the data. The optical pulses are nearly transform limited, and the pulse length increases with cavity length detuning.

  18. Examining Fourth-Grade Mathematics Writing: Features of Organization, Mathematics Vocabulary, and Mathematical Representations

    Science.gov (United States)

    Hebert, Michael A.; Powell, Sarah R.

    2016-01-01

    Increasingly, students are expected to write about mathematics. Mathematics writing may be informal (e.g., journals, exit slips) or formal (e.g., writing prompts on high-stakes mathematics assessments). In order to develop an effective mathematics-writing intervention, research needs to be conducted on how students organize mathematics writing and…

  19. Non-unique factorizations algebraic, combinatorial and analytic theory

    CERN Document Server

    Geroldinger, Alfred

    2006-01-01

    From its origins in algebraic number theory, the theory of non-unique factorizations has emerged as an independent branch of algebra and number theory. Focused efforts over the past few decades have wrought a great number and variety of results. However, these remain dispersed throughout the vast literature. For the first time, Non-Unique Factorizations: Algebraic, Combinatorial, and Analytic Theory offers a look at the present state of the theory in a single, unified resource.Taking a broad look at the algebraic, combinatorial, and analytic fundamentals, this book derives factorization results and applies them in concrete arithmetical situations using appropriate transfer principles. It begins with a basic introduction that can be understood with knowledge of standard basic algebra. The authors then move to the algebraic theory of monoids, arithmetic theory of monoids, the structure of sets of lengths, additive group theory, arithmetical invariants, and the arithmetic of Krull monoids. They also provide a s...

  20. Teaching Mathematical Modeling in Mathematics Education

    Science.gov (United States)

    Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant

    2016-01-01

    Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…

  1. The mathematical career of Pierre de Fermat 1601-1665

    CERN Document Server

    Mahoney, Michael Sean

    1994-01-01

    Hailed as one of the greatest mathematical results of the twentieth century, the recent proof of Fermat's Last Theorem by Andrew Wiles brought to public attention the enigmatic problem-solver Pierre de Fermat, who centuries ago stated his famous conjecture in a margin of a book, writing that he did not have enough room to show his "truly marvelous demonstration" Along with formulating this proposition-xn+yn=zn has no rational solution for n > 2-Fermat, an inventor of analytic geometry, also laid the foundations of differential and integral calculus, established, together with Pascal, the conceptual guidelines of the theory of probability, and created modern number theory. In one of the first full-length investigations of Fermat's life and work, Michael Sean Mahoney provides rare insight into the mathematical genius of a hobbyist who never sought to publish his work, yet who ranked with his contemporaries Pascal and Descartes in shaping the course of modern mathematics.

  2. Mathematical Modeling and Pure Mathematics

    Science.gov (United States)

    Usiskin, Zalman

    2015-01-01

    Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…

  3. Plutonium uniqueness

    International Nuclear Information System (INIS)

    Silver, G.L.

    1984-01-01

    A standard is suggested against which the putative uniqueness of plutonium may be tested. It is common folklore that plutonium is unique among the chemical elements because its four common oxidation states can coexist in the same solution. Whether this putative uniqueness appears only during transit to equilibrium, or only at equilibrium, or all of the time, is not generally made clear. But while the folklore may contain some truth, it cannot be put to test until some measure of 'uniqueness' is agreed upon so that quantitative comparisons are possible. One way of measuring uniqueness is as the magnitude of the product of the mole fractions of the element at equilibrium. A 'coexistence index' is defined and discussed. (author)

  4. Progress in Industrial Mathematics at ECMI 2000

    CERN Document Server

    Capasso, Vincenzo; Greco, Antonio

    2002-01-01

    The European Consortium for Mathematics in Industry (ECMI) was founded in 1986 by leading groups of mathematicians in Europe for the following scopes: i) direct involvement of mathematicians in R&D activities; ii) international cooperation at a European scale; iii) education of industrial mathematicians to meet the growing demand for such experts. ECMI 2000 shows that ECMI has offered a unique example of effective international cooperation thanks to the financial support of the European Framework programmes. In particular they have helped ECMI establishing a set of Special Interest Groups to favour interaction with industry . This volume includes minisymposia about their activities, in particular microelectronics, glass, polymers, finance, traffic, and textiles. Applied mathematicians and other professionals working in academia or industry will find the book to be a useful and stimulating source of mathematical applications related to industrial problems.

  5. Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process

    International Nuclear Information System (INIS)

    Aiki, Toyohiko; Kumazaki, Kota

    2012-01-01

    From civil engineering point of view it is very important to construct and analyze a mathematical model for a mechanism of concrete carbonation process. On this subject there are several mathematical results concerned with a one-dimensional model, in which hysteresis effects are neglected. Our aim is to give a model with hysteresis effects appearing in carbonation process. In this paper, as the first step of this research we focus only on moisture transport in the process and propose an initial boundary value problem for a system of partial differential equations as a mathematical model. Also, we give results on the existence of a solution to the problem, globally in time and the uniqueness in only one-dimensional case without proofs.

  6. Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier–Stokes system

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Jin, B.J.; Novotný, A.

    2012-01-01

    Roč. 14, č. 4 (2012), s. 717-730 ISSN 1422-6928 R&D Projects: GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : suitable weak solution * weak-strong uniqueness * compressible Navier-Stokes system Subject RIV: BA - General Mathematics Impact factor: 1.415, year: 2012 http://link.springer.com/article/10.1007%2Fs00021-011-0091-9

  7. Linking Preservice Teachers' Mathematics Self-Efficacy and Mathematics Teaching Efficacy to Their Mathematical Performance

    Science.gov (United States)

    Bates, Alan B.; Latham, Nancy; Kim, Jin-ah

    2011-01-01

    This study examined preservice teachers' mathematics self-efficacy and mathematics teaching efficacy and compared them to their mathematical performance. Participants included 89 early childhood preservice teachers at a Midwestern university. Instruments included the Mathematics Self-Efficacy Scale (MSES), Mathematics Teaching Efficacy Beliefs…

  8. Influence of crack length on crack depth measurement by an alternating current potential drop technique

    International Nuclear Information System (INIS)

    Raja, Manoj K; Mahadevan, S; Rao, B P C; Behera, S P; Jayakumar, T; Raj, Baldev

    2010-01-01

    An alternating current potential drop (ACPD) technique is used for sizing depth of surface cracks in metallic components. Crack depth estimations are prone to large deviations when ACPD measurements are made on very shallow and finite length cracks, especially in low conducting materials such as austenitic stainless steel (SS). Detailed studies have been carried out to investigate the influence of crack length and aspect ratio (length to depth) on depth estimation by performing measurements on electric discharge machined notches with the aspect ratio in the range of 1 to 40 in SS plates. In notches with finite length, an additional path for current to flow through the surface along the length is available causing the notch depths to be underestimated. The experimentally observed deviation in notch depth estimates is explained from a simple mathematical approach using the equivalent resistive circuit model based on the additional path available for the current to flow. A scheme is proposed to accurately measure the depth of cracks with finite lengths in SS components

  9. Mathematics and Statistics Research Department progress report for period ending June 30, 1977

    International Nuclear Information System (INIS)

    Lever, W.E.; Shepherd, D.E.; Ward, R.C.; Wilson, D.G.

    1977-09-01

    Brief descriptions are given of work done in mathematical and statistical research (moving-boundary problems; numerical analysis; continuum mechanics; matrices and other operators; experiment design; statistical testing; multivariate, multipopulation classification; statistical estimation) and statistical and mathematical collaboration (analytical chemistry, biological research, chemistry and physics research, energy research, engineering technology research, environmental sciences research, health physics research, meterials research, sampling inspection and quality control, uranium resource evaluation research). Most of the descriptions are a page or less in length. Educational activities, publications, seminar titles, etc., are also included

  10. Contrasts in Mathematical Challenges in A-Level Mathematics and Further Mathematics, and Undergraduate Mathematics Examinations

    Science.gov (United States)

    Darlington, Ellie

    2014-01-01

    This article describes part of a study which investigated the role of questions in students' approaches to learning mathematics at the secondary-tertiary interface, focussing on the enculturation of students at the University of Oxford. Use of the Mathematical Assessment Task Hierarchy taxonomy revealed A-level Mathematics and Further Mathematics…

  11. Probing the Unique Contributions of Self-Concept, Task Values, and Their Interactions Using Multiple Value Facets and Multiple Academic Outcomes

    NARCIS (Netherlands)

    Guo, Jiesi; Nagengast, Benjamin; Marsh, Herbert W.; Kelava, Augustin; Gaspard, Hanna; Brandt, Holger; Cambria, Jenna; Flunger, B.; Dicke, Anna Lena; Häfner, Isabelle; Brisson, Brigitte Maria; Trautwein, Ulrich

    2016-01-01

    Drawing on expectancy-value theory, the present study examined the unique contributions of the four major value beliefs and self-concept on achievement, self-reported effort, and teacher-rated behavioral engagement in mathematics. In particular, we examined the multiplicative effects of self-concept

  12. Constraint theory multidimensional mathematical model management

    CERN Document Server

    Friedman, George J

    2017-01-01

    Packed with new material and research, this second edition of George Friedman’s bestselling Constraint Theory remains an invaluable reference for all engineers, mathematicians, and managers concerned with modeling. As in the first edition, this text analyzes the way Constraint Theory employs bipartite graphs and presents the process of locating the “kernel of constraint” trillions of times faster than brute-force approaches, determining model consistency and computational allowability. Unique in its abundance of topological pictures of the material, this book balances left- and right-brain perceptions to provide a thorough explanation of multidimensional mathematical models. Much of the extended material in this new edition also comes from Phan Phan’s PhD dissertation in 2011, titled “Expanding Constraint Theory to Determine Well-Posedness of Large Mathematical Models.” Praise for the first edition: "Dr. George Friedman is indisputably the father of the very powerful methods of constraint theory...

  13. Effects of single-gender mathematics classrooms on self-perception of mathematical ability and post secondary engineering paths: an Australian case study

    Science.gov (United States)

    Tully, D.; Jacobs, B.

    2010-08-01

    This study focused on a population of female engineering students, probing the influences of their secondary school experience on their choice to pursue an engineering course of study at university. The motivating question is: Do unique opportunities exist in an all-female secondary school mathematics classroom, which impact a young woman's self-perception of her mathematics ability as well as promote a positive path towards an engineering-based university major? Using both qualitative and quantitative data collection instruments, this study examined a sample of Australian engineering students enrolled at the University of Technology, Sydney (UTS). Demographic statistics show that 40% of UTS' female engineering student population attended a single-gender secondary school, indicating a potential influence of school type (single-gender) on engineering enrolment patterns. Female students were primarily motivated to pursue a post secondary engineering path because of a self-belief that they are good at mathematics. In contrast, male students were more influenced by positive male role models of family members who are practising engineers. In measures of self- perception of mathematical skill and ability, female students from single-gender schools outscored their male engineering counterparts. Additionally, female students seem to benefit from verbal encouragement, contextualisation, same gender problem-solving groups and same gender classroom dynamics.

  14. The contribution of parent-child numeracy activities to young Chinese children's mathematical ability.

    Science.gov (United States)

    Huang, Qi; Zhang, Xiao; Liu, Yingyi; Yang, Wen; Song, Zhanmei

    2017-09-01

    A growing body of recent research has shown that parent-child mathematical activities have a strong effect on children's mathematical learning. However, this research was conducted predominantly in Western societies and focused mainly on mothers' involvement in such activities. This study aimed to examine both mother-child and father-child numeracy activities in Hong Kong Chinese families and both parents' unique roles in predicting young Chinese children's mathematics ability. A sample of 104 Hong Kong Chinese children aged approximately 5 years and their mothers and fathers participated in this study. Mothers and fathers independently reported the frequency of their own numeracy activities with their children. Children were assessed individually using two measures of mathematical ability. Hierarchical regression models were used to investigate the contribution of parent-child numeracy activities to children's mathematical ability. Mothers' participation in number skill activities and fathers' participation in number game and application activities significantly predicted their children's mathematical performance even after controlling for background variables and children's language ability. This study extends previous research with a sample of Chinese kindergarten children and shows that parent-child numeracy activities are related to young children's mathematical ability. The findings highlight the important roles that mothers and fathers play in their young children's mathematical learning. © 2017 The British Psychological Society.

  15. Skolem and pessimism about proof in mathematics.

    Science.gov (United States)

    Cohen, Paul J

    2005-10-15

    Attitudes towards formalization and proof have gone through large swings during the last 150 years. We sketch the development from Frege's first formalization, to the debates over intuitionism and other schools, through Hilbert's program and the decisive blow of the Gödel Incompleteness Theorem. A critical role is played by the Skolem-Lowenheim Theorem, which showed that no first-order axiom system can characterize a unique infinite model. Skolem himself regarded this as a body blow to the belief that mathematics can be reliably founded only on formal axiomatic systems. In a remarkably prescient paper, he even sketches the possibility of interesting new models for set theory itself, something later realized by the method of forcing. This is in contrast to Hilbert's belief that mathematics could resolve all its questions. We discuss the role of new axioms for set theory, questions in set theory itself, and their relevance for number theory. We then look in detail at what the methods of the predicate calculus, i.e. mathematical reasoning, really entail. The conclusion is that there is no reasonable basis for Hilbert's assumption. The vast majority of questions even in elementary number theory, of reasonable complexity, are beyond the reach of any such reasoning. Of course this cannot be proved and we present only plausibility arguments. The great success of mathematics comes from considering 'natural problems', those which are related to previous work and offer a good chance of being solved. The great glories of human reasoning, beginning with the Greek discovery of geometry, are in no way diminished by this pessimistic view. We end by wishing good health to present-day mathematics and the mathematics of many centuries to come.

  16. Using Mathematics Literature with Prospective Secondary Mathematics Teachers

    Science.gov (United States)

    Jett, Christopher C.

    2014-01-01

    Literature in mathematics has been found to foster positive improvements in mathematics learning. This manuscript reports on a mathematics teacher educator's use of literature via literature circles with 11 prospective secondary mathematics teachers in a mathematics content course. Using survey and reflection data, the author found that…

  17. Diffusion as a Ruler: Modeling Kinesin Diffusion as a Length Sensor for Intraflagellar Transport.

    Science.gov (United States)

    Hendel, Nathan L; Thomson, Matthew; Marshall, Wallace F

    2018-02-06

    An important question in cell biology is whether cells are able to measure size, either whole cell size or organelle size. Perhaps cells have an internal chemical representation of size that can be used to precisely regulate growth, or perhaps size is just an accident that emerges due to constraint of nutrients. The eukaryotic flagellum is an ideal model for studying size sensing and control because its linear geometry makes it essentially one-dimensional, greatly simplifying mathematical modeling. The assembly of flagella is regulated by intraflagellar transport (IFT), in which kinesin motors carry cargo adaptors for flagellar proteins along the flagellum and then deposit them at the tip, lengthening the flagellum. The rate at which IFT motors are recruited to begin transport into the flagellum is anticorrelated with the flagellar length, implying some kind of communication between the base and the tip and possibly indicating that cells contain some mechanism for measuring flagellar length. Although it is possible to imagine many complex scenarios in which additional signaling molecules sense length and carry feedback signals to the cell body to control IFT, might the already-known components of the IFT system be sufficient to allow length dependence of IFT? Here we investigate a model in which the anterograde kinesin motors unbind after cargo delivery, diffuse back to the base, and are subsequently reused to power entry of new IFT trains into the flagellum. By mathematically modeling and simulating such a system, we are able to show that the diffusion time of the motors can in principle be sufficient to serve as a proxy for length measurement. We found that the diffusion model can not only achieve a stable steady-state length without the addition of any other signaling molecules or pathways, but also is able to produce the anticorrelation between length and IFT recruitment rate that has been observed in quantitative imaging studies. Copyright © 2017 Biophysical

  18. Doing Mathematics with Purpose: Mathematical Text Types

    Science.gov (United States)

    Dostal, Hannah M.; Robinson, Richard

    2018-01-01

    Mathematical literacy includes learning to read and write different types of mathematical texts as part of purposeful mathematical meaning making. Thus in this article, we describe how learning to read and write mathematical texts (proof text, algorithmic text, algebraic/symbolic text, and visual text) supports the development of students'…

  19. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics

    Science.gov (United States)

    Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.

    2016-01-01

    Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…

  20. Stuttering Frequency in Relation to Lexical Diversity, Syntactic Complexity, and Utterance Length

    Science.gov (United States)

    Wagovich, Stacy A.; Hall, Nancy E.

    2018-01-01

    Children's frequency of stuttering can be affected by utterance length, syntactic complexity, and lexical content of language. Using a unique small-scale within-subjects design, this study explored whether language samples that contain more stuttering have (a) longer, (b) syntactically more complex, and (c) lexically more diverse utterances than…

  1. A new approach to the analysis of Type 1 non-uniqueness of the ITS-90 above 0 °C

    Science.gov (United States)

    Gaita, Sonia; Bonnier, Georges

    2018-04-01

    The Type 1 non-uniqueness (NU-1) is the difference between interpolated values at the same temperature in the resistance thermometer subranges of the International Temperature Scale of 1990 (ITS-90) that overlap. The paper argues for a method of evaluating the NU-1 at a given temperature which considers all subranges of the Scale that contain the respective temperature, not only combinations of two, and it proposes mathematical models to determine the values of NU-1 for temperatures above 0 °C. The paper demonstrates that NU-1 is not the right contributor to the uncertainty associated with the realisation of the ITS-90. Therefore, a new concept of Correction for the Type 1 non-uniqueness of the Scale, CNU-1, is introduced and its mathematical model is established. Also, the estimate of CNU-1 and its standard uncertainty are defined and they are assessed through statistical analysis. The values of standard uncertainty determined by the novel methodology do not exceed 0.26 mK and they are smaller than the values given in the specific Guides developed by the Consultative Committee for Thermometry. The proposed models allow authors to single out and analyse the factors that generate Type 1 non-uniqueness of the Scale and influence its value.

  2. Kant's Schematism and the Foundations of Mathematics

    DEFF Research Database (Denmark)

    Jørgensen, Klaus Frovin

    The theory of schematism was initiated by I. Kant, who, however, was never precise with respect to what he understood under this theory. I give---based on the theoretical works of Kant---an interpretation of the most important aspects of Kant's theory of schematism. In doing this I show how...... show that, contrary to Kant's own intentions, he was not up-to-date on mathematics. And in fact, it was because of this that it was possible for him to formulate his rather rigid theory concerning the unique characterizations of intuition and understanding. I show how phenomena in the mathematics...... of the time of Kant should have had an effect on him. He should have remained more critical towards his formulation and demarcation of intuition, understanding and reason. Finally I show how D. Hilbert in fact gives the necessary generalization of Kant's philosophy. This generalization provides us...

  3. Stable Same-Sex Friendships with Higher Achieving Partners Promote Mathematical Reasoning in Lower Achieving Primary School Children

    Science.gov (United States)

    DeLay, Dawn; Laursen, Brett; Kiuru, Noona; Poikkeus, Anna-Maija; Aunola, Kaisa; Nurmi, Jari-Erik

    2015-01-01

    This study is designed to investigate friend influence over mathematical reasoning in a sample of 374 children in 187 same-sex friend dyads (184 girls in 92 friendships; 190 boys in 95 friendships). Participants completed surveys that measured mathematical reasoning in the 3rd grade (approximately 9 years old) and one year later in the 4th grade (approximately 10 years old). Analyses designed for dyadic data (i.e., longitudinal Actor-Partner Interdependence Models) indicated that higher achieving friends influenced the mathematical reasoning of lower achieving friends, but not the reverse. Specifically, greater initial levels of mathematical reasoning among higher achieving partners in the 3rd grade predicted greater increases in mathematical reasoning from 3rd grade to 4th grade among lower achieving partners. These effects held after controlling for peer acceptance and rejection, task avoidance, interest in mathematics, maternal support for homework, parental education, length of the friendship, and friendship group norms on mathematical reasoning. PMID:26402901

  4. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  5. Is DNA a worm-like chain in Couette flow? In search of persistence length, a critical review.

    Science.gov (United States)

    Rittman, Martyn; Gilroy, Emma; Koohya, Hashem; Rodger, Alison; Richards, Adair

    2009-01-01

    Persistence length is the foremost measure of DNA flexibility. Its origins lie in polymer theory which was adapted for DNA following the determination of BDNA structure in 1953. There is no single definition of persistence length used, and the links between published definitions are based on assumptions which may, or may not be, clearly stated. DNA flexibility is affected by local ionic strength, solvent environment, bound ligands and intrinsic sequence-dependent flexibility. This article is a review of persistence length providing a mathematical treatment of the relationships between four definitions of persistence length, including: correlation, Kuhn length, bending, and curvature. Persistence length has been measured using various microscopy, force extension and solution methods such as linear dichroism and transient electric birefringence. For each experimental method a model of DNA is required to interpret the data. The importance of understanding the underlying models, along with the assumptions required by each definition to determine a value of persistence length, is highlighted for linear dichroism data, where it transpires that no model is currently available for long DNA or medium to high shear rate experiments.

  6. Investigating the incremental validity of cognitive variables in early mathematics screening.

    Science.gov (United States)

    Clarke, Ben; Shanley, Lina; Kosty, Derek; Baker, Scott K; Cary, Mari Strand; Fien, Hank; Smolkowski, Keith

    2018-03-26

    The purpose of this study was to investigate the incremental validity of a set of domain general cognitive measures added to a traditional screening battery of early numeracy measures. The sample consisted of 458 kindergarten students of whom 285 were designated as severely at-risk for mathematics difficulty. Hierarchical multiple regression results indicated that Wechsler Abbreviated Scales of Intelligence (WASI) Matrix Reasoning and Vocabulary subtests, and Digit Span Forward and Backward measures explained a small, but unique portion of the variance in kindergarten students' mathematics performance on the Test of Early Mathematics Ability-Third Edition (TEMA-3) when controlling for Early Numeracy Curriculum Based Measurement (EN-CBM) screening measures (R² change = .01). Furthermore, the incremental validity of the domain general cognitive measures was relatively stronger for the severely at-risk sample. We discuss results from the study in light of instructional decision-making and note the findings do not justify adding domain general cognitive assessments to mathematics screening batteries. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. A mathematical medley fifty easy pieces on mathematics

    CERN Document Server

    Szpiro, George G

    2010-01-01

    Szpiro's book provides a delightful, well-written, eclectic selection of mathematical tidbits that makes excellent airplane reading for anyone with an interest in mathematics, regardless of their mathematical background. Excellent gift material. -Keith Devlin, Stanford University, author of The Unfinished Game and The Language of Mathematics It is great to have collected in one volume the many varied, insightful and often surprising mathematical stories that George Szpiro has written in his mathematical columns for the newspapers through the years. -Marcus du Sautoy, Oxford University, author

  8. The Relationship among Elementary Teachers’ Mathematics Anxiety, Mathematics Instructional Practices, and Student Mathematics Achievement

    OpenAIRE

    Hadley, Kristin M.; Dorward, Jim

    2011-01-01

    Many elementary teachers have been found to have high levels of mathematics anxiety but the impact on student achievement was unknown. Elementary teachers (N = 692) completed the modified Mathematics Anxiety Rating Scale-Revised (Hopko, 2003) along with a questionnaire probing anxiety about teaching mathematics and current mathematics instructional practices. Student mathematics achievement data were collected for the classrooms taught by the teachers. A positive relationship was found betwee...

  9. 3rd International Symposium Mathematical Progress in Expressive Image Synthesis

    CERN Document Server

    Ochiai, Hiroyuki

    2016-01-01

    “Progress in Expressive Image Synthesis” (MEIS2015), was held in Fukuoka, Japan, September 25–27, 2015. The aim of the symposium was to provide a unique venue where various issues in computer graphics (CG) application fields could be discussed by mathematicians, CG researchers, and practitioners. Through the previous symposiums MEIS2013 and MEIS2014, mathematicians as well as CG researchers have recognized that CG is a specific and practical activity derived from mathematical theories. Issues found in CG broaden the field of mathematics and vice versa, and CG visualizes mathematical theories in an aesthetic manner. In this volume, the editors aim to provoke interdisciplinary research projects through the peer-reviewed papers and poster presentations at the this year’s symposium. This book captures interactions among mathematicians, CG researchers, and practitioners sharing important, state-of-the-art issues in graphics and visual perception. The book is suitable for all CG researchers seeking open pro...

  10. Arche papers on the mathematics of abstraction

    CERN Document Server

    Cook, Roy T

    2007-01-01

    This volume collects together a number of important papers concerning both the method of abstraction generally and the use of particular abstraction principles to reconstruct central areas of mathematics along logicist lines. Gottlob Frege's original logicist project was, in effect, refuted by Russell's paradox. Crispin Wright has recently revived Frege's enterprise, however, providing a philosophical and technical framework within which a reconstruction of arithmetic is possible. While the Neo-Fregean project has recieved extensive attention and discussion, the present volume is unique in pre

  11. The language of mathematics telling mathematical tales

    CERN Document Server

    Barton, Bill

    2008-01-01

    Everyday mathematical ideas are expressed differently in different languages. This book probes those differences and explores their implications for mathematics education, arguing for alternatives to how we teach and learn mathematics.

  12. Cognitive predictors of children's development in mathematics achievement: A latent growth modeling approach.

    Science.gov (United States)

    Xenidou-Dervou, Iro; Van Luit, Johannes E H; Kroesbergen, Evelyn H; Friso-van den Bos, Ilona; Jonkman, Lisa M; van der Schoot, Menno; van Lieshout, Ernest C D M

    2018-04-24

    Research has identified various domain-general and domain-specific cognitive abilities as predictors of children's individual differences in mathematics achievement. However, research into the predictors of children's individual growth rates, namely between-person differences in within-person change in mathematics achievement is scarce. We assessed 334 children's domain-general and mathematics-specific early cognitive abilities and their general mathematics achievement longitudinally across four time-points within the first and second grades of primary school. As expected, a constellation of multiple cognitive abilities contributed to the children's starting level of mathematical success. Specifically, latent growth modeling revealed that WM abilities, IQ, counting skills, nonsymbolic and symbolic approximate arithmetic and comparison skills explained individual differences in the children's initial status on a curriculum-based general mathematics achievement test. Surprisingly, however, only one out of all the assessed cognitive abilities was a unique predictor of the children's individual growth rates in mathematics achievement: their performance in the symbolic approximate addition task. In this task, children were asked to estimate the sum of two large numbers and decide if this estimated sum was smaller or larger compared to a third number. Our findings demonstrate the importance of multiple domain-general and mathematics-specific cognitive skills for identifying children at risk of struggling with mathematics and highlight the significance of early approximate arithmetic skills for the development of one's mathematical success. We argue the need for more research focus on explaining children's individual growth rates in mathematics achievement. © 2018 John Wiley & Sons Ltd.

  13. Optimization and simulation of tandem column supercritical fluid chromatography separations using column back pressure as a unique parameter.

    Science.gov (United States)

    Wang, Chunlei; Tymiak, Adrienne A; Zhang, Yingru

    2014-04-15

    Tandem column supercritical fluid chromatography (SFC) has demonstrated to be a useful technique to resolve complex mixtures by serially coupling two columns of different selectivity. The overall selectivity of a tandem column separation is the retention time weighted average of selectivity from each coupled column. Currently, the method development merely relies on extensive screenings and is often a hit-or-miss process. No attention is paid to independently adjust retention and selectivity contributions from individual columns. In this study, we show how tandem column SFC selectivity can be optimized by changing relative dimensions (length or inner diameter) of the coupled columns. Moreover, we apply column back pressure as a unique parameter for SFC optimization. Continuous tuning of tandem column SFC selectivity is illustrated through column back pressure adjustments of the upstream column, for the first time. In addition, we show how and why changing coupling order of the columns can produce dramatically different separations. Using the empirical mathematical equation derived in our previous study, we also demonstrate a simulation of tandem column separations based on a single retention time measurement on each column. The simulation compares well with experimental results and correctly predicts column order and back pressure effects on the separations. Finally, considerations on instrument and column hardware requirements are discussed.

  14. Mathematical Modelling Approach in Mathematics Education

    Science.gov (United States)

    Arseven, Ayla

    2015-01-01

    The topic of models and modeling has come to be important for science and mathematics education in recent years. The topic of "Modeling" topic is especially important for examinations such as PISA which is conducted at an international level and measures a student's success in mathematics. Mathematical modeling can be defined as using…

  15. Mathematics Underground

    Science.gov (United States)

    Luther, Kenneth H.

    2012-01-01

    Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…

  16. Mathematical bridges

    CERN Document Server

    Andreescu, Titu; Tetiva, Marian

    2017-01-01

    Building bridges between classical results and contemporary nonstandard problems, Mathematical Bridges embraces important topics in analysis and algebra from a problem-solving perspective. Blending old and new techniques, tactics and strategies used in solving challenging mathematical problems, readers will discover numerous genuine mathematical gems throughout that will heighten their appreciation of the inherent beauty of mathematics. Most of the problems are original to the authors and are intertwined in a well-motivated exposition driven by representative examples. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics. Instructors and educators teaching problem-solving courses or organizing mathematics clubs, as well as motivated mathematics students from high school juniors to college seniors, will find Mathematical Bri...

  17. Exploring mathematics anxiety and attitude: Mathematics students' experiences

    Science.gov (United States)

    Sahri, Nurul Ashikin; Kamaruzaman, Wan Nur Farahdalila Wan; Jamil, Jastini Mohd.; Shaharanee, Izwan Nizal Mohd.

    2017-11-01

    A quantitative and correlational, survey methods were used to investigate the relationships among mathematical anxiety and attitude toward student's mathematics performance. Participants were 100 students volunteer to enroll in undergraduate Industrial Statistics, Decision Sciences and Business Mathematics at one of northern university in Malaysia. Survey data consisted of demographic items and Likert scale items. The collected data was analyzed by using the idea of correlation and regression analysis. The results indicated that there was a significant positive relationship between students' attitude and mathematics anxiety. Results also indicated that a substantial positive effect of students' attitude and mathematics anxiety in students' achievement. Further study can be conducted on how mathematical anxiety and attitude toward mathematics affects can be used to predict the students' performance in the class.

  18. Using Mobile Technology to Encourage Mathematical Communication in Maori-Medium Pangarau Classrooms

    Science.gov (United States)

    Allen, Piata

    2017-01-01

    Maori-medium pangarau classrooms occupy a unique space within the mathematics education landscape. The language of instruction is an endangered minority language and many teachers and learners in Maori-medium pangarau classrooms are second language (L2) learners of te reo Maori. Mobile technology could be used in Maori-medium pangarau classrooms…

  19. A Capstone Mathematics Course for Prospective Secondary Mathematics Teachers

    Science.gov (United States)

    Artzt, Alice F.; Sultan, Alan; Curcio, Frances R.; Gurl, Theresa

    2012-01-01

    This article describes an innovative capstone mathematics course that links college mathematics with school mathematics and pedagogy. It describes how college juniors in a secondary mathematics teacher preparation program engage in leadership experiences that enable them to learn mathematics for teaching while developing student-centered…

  20. EDUCATION AND NATIONAL SECURITY: SYSTEM DEFICIENCIES OF MATHEMATICAL EDUCATION IN RUSSIA AND THE USA

    Directory of Open Access Journals (Sweden)

    M. A. Choshanov

    2013-01-01

    Full Text Available The paper looks at the mathematical education in Russian schools regarded not long ago as fundamental and based on developing students' mental abilities. However, the analysis of the Trends in International Mathematics and Science Study (TIMSS 2011 demonstrates the non-consistent results in mathematical achievements of young Russians over the last fifteen years referring to the decreasing rate of successfully solved high level problems. The author disapproves of mechanical duplication of any foreign experience contradicting the Russian realities. Meanwhile, a lot of people in the USA and elsewhere abroad realize that national security is closely related to the human capital, which directly depends on education. The publication considers the limitations of mathematical education both in Russia and the USA from the national security stand point.The author gives the comparative analysis of the system errors in mathematical education of the USA, and singles out the ones to be avoided: the residual investment into the human capital, rising gap between the school mathematics and mathematical science, degrading fundamentality of mathematical education, test drills instead of in-depth training, non-consistency of school reorganization, reduced academic hours, etc. In the author’s opinion, the negative foreign experience should be considered in order to meet the time requirements and preserve a unique Russian brand of the high quality mathematical education. 

  1. Approximate numerical abilities and mathematics: Insight from correlational and experimental training studies.

    Science.gov (United States)

    Hyde, D C; Berteletti, I; Mou, Y

    2016-01-01

    Humans have the ability to nonverbally represent the approximate numerosity of sets of objects. The cognitive system that supports this ability, often referred to as the approximate number system (ANS), is present in early infancy and continues to develop in precision over the life span. It has been proposed that the ANS forms a foundation for uniquely human symbolic number and mathematics learning. Recent work has brought two types of evidence to bear on the relationship between the ANS and human mathematics: correlational studies showing individual differences in approximate numerical abilities correlate with individual differences in mathematics achievement and experimental studies showing enhancing effects of nonsymbolic approximate numerical training on exact, symbolic mathematical abilities. From this work, at least two accounts can be derived from these empirical data. It may be the case that the ANS and mathematics are related because the cognitive and brain processes responsible for representing numerical quantity in each format overlap, the Representational Overlap Hypothesis, or because of commonalities in the cognitive operations involved in mentally manipulating the representations of each format, the Operational Overlap hypothesis. The two hypotheses make distinct predictions for future work to test. © 2016 Elsevier B.V. All rights reserved.

  2. On Mathematical Understanding: Perspectives of Experienced Chinese Mathematics Teachers

    Science.gov (United States)

    Cai, Jinfa; Ding, Meixia

    2017-01-01

    Researchers have long debated the meaning of mathematical understanding and ways to achieve mathematical understanding. This study investigated experienced Chinese mathematics teachers' views about mathematical understanding. It was found that these mathematics teachers embrace the view that understanding is a web of connections, which is a result…

  3. Hands-On Mathematics: Two Cases from Ancient Chinese Mathematics

    Science.gov (United States)

    Wang, Youjun

    2009-01-01

    In modern mathematical teaching, it has become increasingly emphasized that mathematical knowledge should be taught by problem-solving, hands-on activities, and interactive learning experiences. Comparing the ideas of modern mathematical education with the development of ancient Chinese mathematics, we find that the history of mathematics in…

  4. Theoretical Mathematics

    Science.gov (United States)

    Stöltzner, Michael

    Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.

  5. Progress in Long Scale Length Laser-Plasma Interactions

    International Nuclear Information System (INIS)

    Glenzer, S H; Arnold, P; Bardsley, G; Berger, R L; Bonanno, G; Borger, T; Bower, D E; Bowers, M; Bryant, R; Buckman, S.; Burkhart, S C; Campbell, K; Chrisp, M P; Cohen, B I; Constantin, G; Cooper, F; Cox, J; Dewald, E; Divol, L; Dixit, S; Duncan, J; Eder, D; Edwards, J; Erbert, G; Felker, B; Fornes, J; Frieders, G; Froula, D H; Gardner, S D; Gates, C; Gonzalez, M; Grace, S; Gregori, G; Greenwood, A; Griffith, R; Hall, T; Hammel, B A; Haynam, C; Heestand, G; Henesian, M; Hermes, G; Hinkel, D; Holder, J; Holdner, F; Holtmeier, G; Hsing, W; Huber, S; James, T; Johnson, S; Jones, O S; Kalantar, D; Kamperschroer, J H; Kauffman, R; Kelleher, T; Knight, J; Kirkwood, R K; Kruer, W L; Labiak, W; Landen, O L; Langdon, A B; Langer, S; Latray, D; Lee, A; Lee, F D; Lund, D; MacGowan, B; Marshall, S; McBride, J; McCarville, T; McGrew, L; Mackinnon, A J; Mahavandi, S; Manes, K; Marshall, C; Mertens, E; Meezan, N; Miller, G; Montelongo, S; Moody, J D; Moses, E; Munro, D; Murray, J; Neumann, J; Newton, M; Ng, E; Niemann, C; Nikitin, A; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rekow, V; Rinnert, R; Riordan, B; Rhodes, M.

    2003-01-01

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 mm and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3ω) with a total intensity of 2 x 10 15 W cm -2 . The targets were filled with 1 atm of CO 2 producing of up to 7 mm long homogeneously heated plasmas with densities of n e = 6 x 10 20 cm -3 and temperatures of T e = 2 keV. The high energy in a NIF quad of beams of 16kJ, illuminating the target from one direction, creates unique conditions for the study of laser plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last ∼1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 6% for the smallest length (∼2 mm). increasing to 12% for ∼7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modeling of the laser-plasma interactions at ignition-size scale lengths

  6. Exploring Differential Effects of Mathematics Courses on Mathematics Achievement

    Science.gov (United States)

    Ma, Xin; McIntyre, Laureen J.

    2005-01-01

    Using data from the Longitudinal Study of Mathematics Participation (N = 1,518 students from 34 schools), we investigated the effects of pure and applied mathematics courses on mathematics achievement, controlling for prior mathematics achievement. Results of multilevel modelling showed that the effects of pure mathematics were significant after…

  7. Creativity and technical innovation: spatial ability's unique role.

    Science.gov (United States)

    Kell, Harrison J; Lubinski, David; Benbow, Camilla P; Steiger, James H

    2013-09-01

    In the late 1970s, 563 intellectually talented 13-year-olds (identified by the SAT as in the top 0.5% of ability) were assessed on spatial ability. More than 30 years later, the present study evaluated whether spatial ability provided incremental validity (beyond the SAT's mathematical and verbal reasoning subtests) for differentially predicting which of these individuals had patents and three classes of refereed publications. A two-step discriminant-function analysis revealed that the SAT subtests jointly accounted for 10.8% of the variance among these outcomes (p development of creativity, beyond the roles played by the abilities traditionally measured in educational selection, counseling, and industrial-organizational psychology. Spatial ability plays a key and unique role in structuring many important psychological phenomena and should be examined more broadly across the applied and basic psychological sciences.

  8. Mathematics Curriculum, the Philosophy of Mathematics and its ...

    African Journals Online (AJOL)

    It is my observation that the current school mathematics curriculum in Ethiopia is not producing competent mathematics students. Many mathematicians in Ethiopia and other part of the world have often expressed grief that the majority of students do not understand mathematical concepts, or do not see why mathematical ...

  9. Mathematics, the Computer, and the Impact on Mathematics Education.

    Science.gov (United States)

    Tooke, D. James

    2001-01-01

    Discusses the connection between mathematics and the computer; mathematics curriculum; mathematics instruction, including teachers learning to use computers; and the impact of the computer on learning mathematics. (LRW)

  10. Finite Mathematics and Discrete Mathematics: Is There a Difference?

    Science.gov (United States)

    Johnson, Marvin L.

    Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…

  11. Unique properties of Drosophila spermatocyte primary cilia

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Riparbelli

    2013-09-01

    The primary cilium is an essential organelle required for animal development and adult homeostasis that is found on most animal cells. The primary cilium contains a microtubule-based axoneme cytoskeleton that typically grows from the mother centriole in G0/G1 phase of the cell cycle as a membrane-bound compartment that protrudes from the cell surface. A unique system of bidirectional transport, intraflagellar transport (IFT, maintains the structure and function of cilia. While the axoneme is dynamic, growing and shrinking at its tip, at the same time it is very stable to the effects of microtubule-targeting drugs. The primary cilia found on Drosophila spermatocytes diverge from the general rules of primary cilium biology in several respects. Among these unique attributes, spermatocyte cilia assemble from all four centrioles in an IFT-independent manner in G2 phase, and persist continuously through two cell divisions. Here, we show that Drosophila spermatocyte primary cilia are extremely sensitive to microtubule-targeting drugs, unlike their mammalian counterparts. Spermatocyte cilia and their axonemes fail to assemble or be maintained upon nocodazole treatment, while centriole replication appears unperturbed. On the other hand, paclitaxel (Taxol, a microtubule-stabilizing drug, disrupted transition zone assembly and anchoring to the plasma membrane while causing spermatocyte primary cilia to grow extensively long during the assembly/elongation phase, but did not overtly affect the centrioles. However, once assembled to their mature length, spermatocyte cilia appeared unaffected by Taxol. The effects of these drugs on axoneme dynamics further demonstrate that spermatocyte primary cilia are endowed with unique assembly properties.

  12. The Classroom Environment and Students' Reports of Avoidance Strategies in Mathematics: A Multimethod Study.

    Science.gov (United States)

    Turner, Julianne C.; Midgley, Carol; Meyer, Debra K.; Gheen, Margaret; Anderman, Eric M.; Kang, Yongjin; Patrick, Helen

    2002-01-01

    The relation between learning environment (perceptions of classroom goal structure and teachers' instructional discourse) and students' reported use of avoidance strategies (self-handicapping, avoidance of help seeking) and preference to avoid novelty in mathematics was examined. High incidence of motivational support was uniquely characteristic…

  13. Mathematical Intelligence and Mathematical Creativity: A Causal Relationship

    Science.gov (United States)

    Tyagi, Tarun Kumar

    2017-01-01

    This study investigated the causal relationship between mathematical creativity and mathematical intelligence. Four hundred thirty-nine 8th-grade students, age ranged from 11 to 14 years, were included in the sample of this study by random cluster technique on which mathematical creativity and Hindi adaptation of mathematical intelligence test…

  14. Number Line Estimation Predicts Mathematical Skills: Difference in Grades 2 and 4

    Directory of Open Access Journals (Sweden)

    Meixia Zhu

    2017-09-01

    Full Text Available Studies have shown that number line estimation is important for learning. However, it is yet unclear if number line estimation predicts different mathematical skills in different grades after controlling for age, non-verbal cognitive ability, attention, and working memory. The purpose of this study was to examine the role of number line estimation on two mathematical skills (calculation fluency and math problem-solving in grade 2 and grade 4. One hundred and forty-eight children from Shanghai, China were assessed on measures of number line estimation, non-verbal cognitive ability (non-verbal matrices, working memory (N-back, attention (expressive attention, and mathematical skills (calculation fluency and math problem-solving. The results showed that in grade 2, number line estimation correlated significantly with calculation fluency (r = -0.27, p < 0.05 and math problem-solving (r = -0.52, p < 0.01. In grade 4, number line estimation correlated significantly with math problem-solving (r = -0.38, p < 0.01, but not with calculation fluency. Regression analyses indicated that in grade 2, number line estimation accounted for unique variance in math problem-solving (12.0% and calculation fluency (4.0% after controlling for the effects of age, non-verbal cognitive ability, attention, and working memory. In grade 4, number line estimation accounted for unique variance in math problem-solving (9.0% but not in calculation fluency. These findings suggested that number line estimation had an important role in math problem-solving for both grades 2 and 4 children and in calculation fluency for grade 2 children. We concluded that number line estimation could be a useful indicator for teachers to identify and improve children’s mathematical skills.

  15. Fundamentals of teaching mathematics at university level

    CERN Document Server

    Baumslag, Benjamin

    2000-01-01

    This unique book presents a personal and global approach to teaching mathematics at university level. It is impressively broad in its scope, and thought-provoking in its advice. The author writes with a love of his subject and the benefit of a long and varied career. He compares and contrasts various educational systems and philosophies. Furthermore, by constantly drawing on his own experiences and those of his colleagues, he offers useful suggestions on how teachers can respond to the problems they face. This book will interest educationalists, policy advisers, administrators, lecturers, and

  16. The Origins of Diverse Domains of Mathematics: Generalist Genes but Specialist Environments.

    Science.gov (United States)

    Kovas, Y; Petrill, S A; Plomin, R

    2007-02-01

    The authors assessed 2,502 ten-year-old children, members of 1,251 pairs of twins, on a Web-based battery of problems from 5 diverse aspects of mathematics assessed as part of the U.K. national curriculum. This 1st genetic study into the etiology of variation in different domains of mathematics showed that the heritability estimates were moderate and highly similar across domains and that these genetic influences were mostly general. Environmental factors unique to each twin in a family (rather than shared by the 2 twins) explained most of the remaining variance, and these factors were mostly specific to each domain.

  17. The Origins of Diverse Domains of Mathematics: Generalist Genes but Specialist Environments

    Science.gov (United States)

    Kovas, Y.; Petrill, S. A.; Plomin, R.

    2009-01-01

    The authors assessed 2,502 ten-year-old children, members of 1,251 pairs of twins, on a Web-based battery of problems from 5 diverse aspects of mathematics assessed as part of the U.K. national curriculum. This 1st genetic study into the etiology of variation in different domains of mathematics showed that the heritability estimates were moderate and highly similar across domains and that these genetic influences were mostly general. Environmental factors unique to each twin in a family (rather than shared by the 2 twins) explained most of the remaining variance, and these factors were mostly specific to each domain. PMID:19756208

  18. In situ detection of tandem DNA repeat length

    Energy Technology Data Exchange (ETDEWEB)

    Yaar, R.; Szafranski, P.; Cantor, C.R.; Smith, C.L. [Boston Univ., MA (United States)

    1996-11-01

    A simple method for scoring short tandem DNA repeats is presented. An oligonucleotide target, containing tandem repeats embedded in a unique sequence, was hybridized to a set of complementary probes, containing tandem repeats of known lengths. Single-stranded loop structures formed on duplexes containing a mismatched (different) number of tandem repeats. No loop structure formed on duplexes containing a matched (identical) number of tandem repeats. The matched and mismatched loop structures were enzymatically distinguished and differentially labeled by treatment with S1 nuclease and the Klenow fragment of DNA polymerase. 7 refs., 4 figs.

  19. Low back pain at school: unique risk deriving from unsatisfactory grade in maths and school-type recommendation.

    Science.gov (United States)

    Erne, Cordula; Elfering, Achim

    2011-12-01

    Psychosocial stress and pain may relate to educational selection. At the end of primary school (International Standard Classification of Education: ISCED level 1) children are recommended for one of three performance-based lower secondary level types of school (ISCED level 2). The study examines the association of educational selection and other risk factors with pain in the upper back (UBP), lower back pain (LBP), peripheral (limb) pain (PP), and abdominal pain (AP). Teacher reports of unsatisfactory grades in mathematics, and official school-type recommendation are included as objective psychosocial risk factors. One hundred and ninety-two schoolchildren, aged between 10 and 13 from 11 classes of 7 schools in Switzerland participated in the cross-sectional study. In logistic regression analysis, predictor variables included age, sex, BMI, participation in sport, physical mobility, weight of satchel, hours of daily TV, video, and computer use, pupils' back pain reported by the mother and father, psychosocial strain, unsatisfactory grade in mathematics, and school-type recommendation. Analysis of pain drawings was highly reliable and revealed high prevalence rates of musculoskeletal pain in the last 4 weeks (UBP 15.3%, LBP 13:8%, PP 33.9%, AP 20.1%). Psychosocial risk factors were uniquely significant predictors of UBP (psychosocial strain), LBP (psychosocial strain, unsatisfactory grade in mathematics, school-type recommendation), and AP (school-type recommendation). In conclusion, selection in terms of educational school system was uniquely associated with LBP in schoolchildren. Stress caused by educational selection should be addressed in primary prevention of musculoskeletal pain in schoolchildren.

  20. Learning Mathematics for Teaching Mathematics: Non-Specialist Teachers' Mathematics Teacher Identity

    Science.gov (United States)

    Crisan, Cosette; Rodd, Melissa

    2017-01-01

    A non-specialist teacher of mathematics is a school teacher who qualified to teach in a subject other than mathematics yet teaches mathematics to students in secondary school. There is an emerging interest internationally in this population, a brief report of which is given in the paper. Because of concerns about the quality of non-specialists'…

  1. Interactions between Activation and Repolarization Restitution Properties in the Intact Human Heart: In-Vivo Whole-Heart Data and Mathematical Description.

    Directory of Open Access Journals (Sweden)

    Michele Orini

    Full Text Available The restitution of the action potential duration (APDR and conduction velocity (CVR are mechanisms whereby cardiac excitation and repolarization adapt to changes in heart rate. They modulate the vulnerability to dangerous arrhythmia, but the mechanistic link between restitution and arrhythmogenesis remains only partially understood.This paper provides an experimental and theoretical study of repolarization and excitation restitution properties and their interactions in the intact human epicardium. The interdependence between excitation and repolarization dynamic is studied in 8 patients (14 restitution protocols, 1722 restitution curves undergoing global epicardial mapping with multi-electrode socks before open heart surgery. A mathematical description of the contribution of both repolarization and conduction dynamics to the steepness of the APDR slope is proposed.This study demonstrates that the APDR slope is a function of both activation and repolarization dynamics. At short cycle length, conduction delay significantly increases the APDR slope by interacting with the diastolic interval. As predicted by the proposed mathematical formulation, the APDR slope was more sensitive to activation time prolongation than to the simultaneous shortening of repolarization time. A steep APDR slope was frequently identified, with 61% of all cardiac sites exhibiting an APDR slope > 1, suggesting that a slope > 1 may not necessarily promote electrical instability in the human epicardium. APDR slope did not change for different activation or repolarization times, and it was not a function of local baseline APD. However, it was affected by the spatial organization of electrical excitation, suggesting that in tissue APDR is not a unique function of local electrophysiological properties. Spatial heterogeneity in both activation and repolarization restitution contributed to the increase in the modulated dispersion of repolarization, which for short cycle length was

  2. Crossroads in the History of Mathematics and Mathematics Education. The Montana Mathematics Enthusiast: Monograph Series in Mathematics Education

    Science.gov (United States)

    Sriraman, Bharath, Ed.

    2012-01-01

    The interaction of the history of mathematics and mathematics education has long been construed as an esoteric area of inquiry. Much of the research done in this realm has been under the auspices of the history and pedagogy of mathematics group. However there is little systematization or consolidation of the existing literature aimed at…

  3. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  4. Neighborhood Disadvantage and Telomere Length: Results from the Fragile Families Study

    Directory of Open Access Journals (Sweden)

    Douglas S. Massey

    2018-04-01

    Full Text Available Telomeres are repetitive nucleotide sequences located at the ends of chromosomes that protect genetic material. We use data from the Fragile Families and Child Wellbeing Study to analyze the relationship between exposure to spatially concentrated disadvantage and telomere length for white and black mothers. We find that neighborhood disadvantage is associated with shorter telomere length for mothers of both races. This finding highlights a potential mechanism through which the unique spatially concentrated disadvantage faced by African Americans contributes to racial health disparities. We conclude that equalizing the health and socioeconomic status of black and white Americans will be very difficult without reducing levels of residential segregation in the United States.

  5. Mathematical Literacy: A new literacy or a new mathematics?

    Directory of Open Access Journals (Sweden)

    Renuka Vithal

    2006-10-01

    Full Text Available Mathematical Literacy is a ‘hot’ topic at present in most countries, whether it is referred to by that name, or in some cases as Numeracy, or Quantitative Literacy, or Matheracy, or as some part of Ethnomathematics, or related to Mathematics in Society. Questions continue to be asked about what is meant by mathematics in any concept of Mathematical Literacy and the use of the very word ‘Literacy’ in its association with Mathematics has been challenged. Its importance, however, lies in changing our perspective on mathematics teaching, away from the elitism so often associated with much mathematics education, and towards a more equitable, accessible and genuinely educational ideal.

  6. The Relationship of Mathematics Anxiety and Mathematical Knowledge to the Learning of Mathematical Pedagogy by Preservice Elementary Teachers.

    Science.gov (United States)

    Battista, Michael T.

    1986-01-01

    Examined how preservice elementary teachers' (N=38) mathematical knowledge and mathematics anxiety affect their success in a mathematics methods course. Also examined the hypothesis that a mathematics methods course can reduce the mathematics anxiety of these teachers. One finding is that mathematics anxiety does not inhibit their learning of…

  7. The Relationships among Mathematics Teaching Efficacy, Mathematics Self-Efficacy, and Mathematical Beliefs for Elementary Pre-Service Teachers

    Science.gov (United States)

    Briley, Jason S.

    2012-01-01

    Ninety-five elementary pre-service teachers enrolled in a mathematics content course for elementary school teachers completed 3 surveys to measure mathematics teaching efficacy, mathematics self-efficacy, and mathematical beliefs. The pre-service teachers who reported stronger beliefs in their capabilities to teach mathematics effectively were…

  8. Optimization of the Critical Diameter and Average Path Length of Social Networks

    Directory of Open Access Journals (Sweden)

    Haifeng Du

    2017-01-01

    Full Text Available Optimizing average path length (APL by adding shortcut edges has been widely discussed in connection with social networks, but the relationship between network diameter and APL is generally ignored in the dynamic optimization of APL. In this paper, we analyze this relationship and transform the problem of optimizing APL into the problem of decreasing diameter to 2. We propose a mathematic model based on a memetic algorithm. Experimental results show that our algorithm can efficiently solve this problem as well as optimize APL.

  9. Mathematical modelling

    DEFF Research Database (Denmark)

    Blomhøj, Morten

    2004-01-01

    Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...

  10. Specific Preschool Executive Functions Predict Unique Aspects of Mathematics Development: A 3-Year Longitudinal Study.

    Science.gov (United States)

    Simanowski, Stefanie; Krajewski, Kristin

    2017-08-10

    This study assessed the extent to which executive functions (EF), according to their factor structure in 5-year-olds (N = 244), influenced early quantity-number competencies, arithmetic fluency, and mathematics school achievement throughout first and second grades. A confirmatory factor analysis resulted in updating as a first, and inhibition and shifting as a combined second factor. In the structural equation model, updating significantly affected knowledge of the number word sequence, suggesting a facilitatory effect on basic encoding processes in numerical materials that can be learnt purely by rote. Shifting and inhibition significantly influenced quantity to number word linkages, indicating that these processes promote developing a profound understanding of numbers. These results show the supportive role of specific EF for specific aspects of a numerical foundation. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  11. Normal telomere lengths in naive and memory CD4+ T cells in HIV type 1 infection: a mathematical interpretation

    NARCIS (Netherlands)

    Wolthers, K. C.; Noest, A. J.; Otto, S. A.; Miedema, F.; de Boer, R. J.

    1999-01-01

    To study CD4+ T cell productivity during HIV-1 infection, CD4+ T cell telomere lengths were measured. Cross-sectional and longitudinal analysis of HIV-1-infected individuals with CD4+ T cells counts >300 cells/mm3 showed normal average telomeric restriction fragment (TRF) length and normal

  12. Normal telomere lengths in naive and memory CD4 T cells in HIV type 1 infection : a mathematical interpretation

    NARCIS (Netherlands)

    Wolthers, K.C.; Noest, A.J.; Otto, S.A.; Miedema, F.; Boer, R.J. de

    1999-01-01

    To study CD4+ T cell productivity during HIV-1 infection, CD4+ T cell telomere lengths were measured. Cross-sectional and longitudinal analysis of HIV-1-infected individuals with CD4+ T cells counts >300 cells/mm3 showed normal average telomeric restriction fragment (TRF) length and normal

  13. The Mathematics of Charged Particles interacting with Electromagnetic Fields

    DEFF Research Database (Denmark)

    Petersen, Kim

    In this thesis, we study the mathematics used to describe systems of charged quantum mechanical particles coupled with their classical self-generated electromagnetic field. We prove the existence of a unique local in time solution to the many-body Maxwell-Schrödinger initial value problem expressed...... in Coulomb gauge and we show that the one-body Maxwell-Schrödinger system as well as the related one-body Maxwell-Pauli system both admit travelling wave solutions....

  14. Upgrading geometry conceptual understanding and strategic competence through implementing rigorous mathematical thinking (RMT)

    Science.gov (United States)

    Nugraheni, Z.; Budiyono, B.; Slamet, I.

    2018-03-01

    To reach higher order thinking skill, needed to be mastered the conceptual understanding and strategic competence as they are two basic parts of high order thinking skill (HOTS). RMT is a unique realization of the cognitive conceptual construction approach based on Feurstein with his theory of Mediated Learning Experience (MLE) and Vygotsky’s sociocultural theory. This was quasi-experimental research which compared the experimental class that was given Rigorous Mathematical Thinking (RMT) as learning method and the control class that was given Direct Learning (DL) as the conventional learning activity. This study examined whether there was different effect of two learning model toward conceptual understanding and strategic competence of Junior High School Students. The data was analyzed by using Multivariate Analysis of Variance (MANOVA) and obtained a significant difference between experimental and control class when considered jointly on the mathematics conceptual understanding and strategic competence (shown by Wilk’s Λ = 0.84). Further, by independent t-test is known that there was significant difference between two classes both on mathematical conceptual understanding and strategic competence. By this result is known that Rigorous Mathematical Thinking (RMT) had positive impact toward Mathematics conceptual understanding and strategic competence.

  15. Discrete Mathematics and the Secondary Mathematics Curriculum.

    Science.gov (United States)

    Dossey, John

    Discrete mathematics, the mathematics of decision making for finite settings, is a topic of great interest in mathematics education at all levels. Attention is being focused on resolving the diversity of opinion concerning the exact nature of the subject, what content the curriculum should contain, who should study that material, and how that…

  16. Predicting Physics Achievement: Attitude towards Physics, Self-Efficacy of Learning Physics, and Mathematics Achievement

    Science.gov (United States)

    Kapucu, Serkan

    2017-01-01

    This study aims to explore the relationships among Turkish high school students' attitude towards physics, self-efficacy of learning physics, mathematics achievement, and physics achievement. To investigate the relationships, a unique questionnaire that identifies the attitude, self-efficacy and achievements were delivered to a total of 301 high…

  17. Mathematical properties and parameter estimation for transit compartment pharmacodynamic models.

    Science.gov (United States)

    Yates, James W T

    2008-07-03

    One feature of recent research in pharmacodynamic modelling has been the move towards more mechanistically based model structures. However, in all of these models there are common sub-systems, such as feedback loops and time-delays, whose properties and contribution to the model behaviour merit some mathematical analysis. In this paper a common pharmacodynamic model sub-structure is considered: the linear transit compartment. These models have a number of interesting properties as the length of the cascade chain is increased. In the limiting case a pure time-delay is achieved [Milsum, J.H., 1966. Biological Control Systems Analysis. McGraw-Hill Book Company, New York] and the initial behaviour becoming increasingly sensitive to parameter value perturbation. It is also shown that the modelled drug effect is attenuated, though the duration of action is longer. Through this analysis the range of behaviours that such models are capable of reproducing are characterised. The properties of these models and the experimental requirements are discussed in order to highlight how mathematical analysis prior to experimentation can enhance the utility of mathematical modelling.

  18. Rationality, irrationality and escalating behavior in lowest unique bid auctions.

    Science.gov (United States)

    Radicchi, Filippo; Baronchelli, Andrea; Amaral, Luís A N

    2012-01-01

    Information technology has revolutionized the traditional structure of markets. The removal of geographical and time constraints has fostered the growth of online auction markets, which now include millions of economic agents worldwide and annual transaction volumes in the billions of dollars. Here, we analyze bid histories of a little studied type of online auctions--lowest unique bid auctions. Similarly to what has been reported for foraging animals searching for scarce food, we find that agents adopt Lévy flight search strategies in their exploration of "bid space". The Lévy regime, which is characterized by a power-law decaying probability distribution of step lengths, holds over nearly three orders of magnitude. We develop a quantitative model for lowest unique bid online auctions that reveals that agents use nearly optimal bidding strategies. However, agents participating in these auctions do not optimize their financial gain. Indeed, as long as there are many auction participants, a rational profit optimizing agent would choose not to participate in these auction markets.

  19. Quantification of wall motion and phase of contraction in tomographic gated blood pool studies using length-based Fourier analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Kenichi; Bunko, Hisashi; Taki, Junichi; Nambu, Ichiro; Shiire, Yasushi; Tonami, Norihisa; Hisada, Kinichi; Tada, Akira; Kojima, Kazuhkio

    1985-03-01

    Length-based Fourier analysis, a new method for quantification of wall motion and timing of contraction, was applied to tomographic gated blood pool study. Two parameters, percent-length shortening (%LS) and length-based phase were calculated based on the time-length curves from a center to ventricular edges, and compared with the count-based method. In mathematical models for tomographic gated blood pool images, the severity of asynergy was easily determined by length-based method, and the accuracy of the parameters was good. As to the setting of the center, fixed center provided more reliable parameters than the method using movable center, i.e., when a center of gravity was determined in each frame. By length-based Fourier analysis, quantification of wall motion was easily performed, and the initial inward movement caused by the accessory conduction pathway was assessed in patients with Wolff-Parkinson-White syndrome. Length-based approach was considered to be reasonable and effective because the movements of the ventricular edges are essential in tomographic gated blood pool images.

  20. Quantification of wall motion and phase of contraction in tomographic gated blood pool studies using length-based Fourier analysis

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Bunko, Hisashi; Taki, Junichi; Nambu, Ichiro; Shiire, Yasushi; Tonami, Norihisa; Hisada, Kinichi; Tada, Akira; Kojima, Kazuhiko.

    1985-01-01

    Length-based Fourier analysis, a new method for quantification of wall motion and timing of contraction, was applied to tomographic gated blood pool study. Two parameters, percent-length shortening (%LS) and length-based phase were calculated based on the time-length curves from a center to ventricular edges, and compared with the count-based method. In mathematical models for tomographic gated blood pool images, the severity of asynergy was easily determined by length-based method, and the accuracy of the parameters was good. As to the setting of the center, fixed center provided more reliable parameters than the method using movable center, i.e., when a center of gravity was determined in each frame. By length-based Fourier analysis, quantification of wall motion was easily performed, and the initial inward movement caused by the accessory conduction pathway was assessed in patients with Wolff-Parkinson-White syndrome. Length-based approach was considered to be reasonable and effective because the movements of the ventricular edges are essential in tomographic gated blood pool images. (author)

  1. Meeting in mathematics

    DEFF Research Database (Denmark)

    Mogensen, Arne; Georgiev, Vladimir; Ulovec, Andreas

    To encourage many more young people to appreciate the real nature and spirit of mathematics and possibly to be enrolled in mathematics study it is important to involve them in doing mathematics (not just learning about mathematics). This goal could be achieved if mathematics teachers are prepared...... to identify and work with mathematically gifted students (without loosing the rest). The book offers chapters on gifted students, mathematical competences and other issues....

  2. Cambridge IGCSE mathematics core and extended

    CERN Document Server

    Pimentel, Ric

    2013-01-01

    The most cost effective and straightforward way to teach the revised syllabus, with all the core and extended content covered by a single book and accompanying free digital resources.  . This title has been written for the revised Cambridge IGCSE Mathematics (0580) syllabus, for first teaching from 2013.  . ·         Gives students the practice they require to deepen their understanding through plenty of questions. ·         Consolidates learning with unique digital resources on the CD, included free with every Student's Book.  . We are working with Cambridge International Examinations to gain

  3. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties

    Science.gov (United States)

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil’s Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children’s LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions. PMID:26090806

  4. International note: Are Emirati parents' attitudes toward mathematics linked to their adolescent children's attitudes toward mathematics and mathematics achievement?

    Science.gov (United States)

    Areepattamannil, Shaljan; Khine, Myint Swe; Melkonian, Michael; Welch, Anita G; Al Nuaimi, Samira Ahmed; Rashad, Fatimah F

    2015-10-01

    Drawing on data from the 2012 Program for International Student Assessment (PISA) and employing multilevel modeling as an analytic strategy, this study examined the relations of adolescent children's perceptions of their parents' attitudes towards mathematics to their own attitudes towards mathematics and mathematics achievement among a sample of 5116 adolescents from 384 schools in the United Arab Emirates. The results of this cross-sectional study revealed that adolescents who perceived that their parents liked mathematics and considered mathematics was important for their children not only to study but also for their career tended to report higher levels of intrinsic and instrumental motivation to learn mathematics, mathematics self-concept and self-efficacy, and mathematics work ethic. Moreover, adolescents who perceived that their parents liked mathematics and considered mathematics was important for their children's career tended to report positive intentions and behaviors toward mathematics. However, adolescents who perceived that their parents considered mathematics was important for their children's career tended to report higher levels of mathematics anxiety. Finally, adolescents who perceived that their parents considered mathematics was important for their children to study performed significantly better on the mathematics assessment than did their peers whose parents disregarded the importance of learning mathematics. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  5. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    Directory of Open Access Journals (Sweden)

    Yinghui Lai

    Full Text Available Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA and mathematical metacognition on word problem solving (WPS. We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56 with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA, typical achieving (TA, low achieving (LA, and mathematical learning difficulty (MLD. Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA than the TA and HA children, but not in mathematical evaluation anxiety (MEA. MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  6. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    Science.gov (United States)

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  7. The Relationships among Pre-Service Mathematics Teachers' Beliefs about Mathematics, Mathematics Teaching, and Use of Technology in China

    Science.gov (United States)

    Yang, Xinrong; Leung, Frederick K. S.

    2015-01-01

    This paper investigated pre-service mathematics teachers' mathematics beliefs, beliefs about information and communication technology (ICT), and their relationships. 787 pre-service mathematics teachers in China completed a survey questionnaire measuring their beliefs about the nature of mathematics, beliefs about mathematics learning and…

  8. I. SPATIAL SKILLS, THEIR DEVELOPMENT, AND THEIR LINKS TO MATHEMATICS.

    Science.gov (United States)

    Verdine, Brian N; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathy; Newcombe, Nora S

    2017-03-01

    Understanding the development of spatial skills is important for promoting school readiness and improving overall success in STEM (science, technology, engineering, and mathematics) fields (e.g., Wai, Lubinski, Benbow, & Steiger, 2010). Children use their spatial skills to understand the world, including visualizing how objects fit together, and can practice them via spatial assembly activities (e.g., puzzles or blocks). These skills are incorporated into measures of overall intelligence and have been linked to success in subjects like mathematics (Mix & Cheng, 2012) and science (Pallrand & Seeber, 1984; Pribyl & Bodner, 1987). This monograph sought to answer four questions about early spatial skill development: 1) Can we reliably measure spatial skills in 3- and 4-year-olds?; 2) Do spatial skills measured at 3 predict spatial skills at age 5?; 3) Do preschool spatial skills predict mathematics skills at age 5?; and 4) What factors contribute to individual differences in preschool spatial skills (e.g., SES, gender, fine-motor skills, vocabulary, and executive function)? Longitudinal data generated from a new spatial skill test for 3-year-old children, called the TOSA (Test of Spatial Assembly), show that it is a reliable and valid measure of early spatial skills that provides strong prediction to spatial skills measured with established tests at age 5. New data using this measure finds links between early spatial skill and mathematics, language, and executive function skills. Analyses suggest that preschool spatial experiences may play a central role in children's mathematical skills around the time of school entry. Executive function skills provide an additional unique contribution to predicting mathematical performance. In addition, individual differences, specifically socioeconomic status, are related to spatial and mathematical skill. We conclude by exploring ways of providing rich early spatial experiences to children. © 2017 The Society for Research in Child

  9. Mathematics without boundaries surveys in pure mathematics

    CERN Document Server

    Pardalos, Panos

    2014-01-01

    The contributions in this volume have been written by eminent scientists from the international mathematical community and present significant advances in several theories, methods and problems of Mathematical Analysis, Discrete Mathematics, Geometry and their Applications. The chapters focus on both old and recent developments in Functional Analysis, Harmonic Analysis, Complex Analysis, Operator Theory, Combinatorics, Functional Equations, Differential Equations as well as a variety of Applications. The book also contains some review works, which could prove particularly useful for a broader audience of readers in Mathematical Sciences, and especially to graduate students looking for the  latest information.

  10. Pre-Service Teachers' Mathematics Self-Efficacy and Mathematics Teaching Self-Efficacy

    Science.gov (United States)

    Zuya, Habila Elisha; Kwalat, Simon Kevin; Attah, Bala Galle

    2016-01-01

    Pre-service mathematics teachers' mathematics self-efficacy and mathematics teaching self-efficacy were investigated in this study. The purpose was to determine the confidence levels of their self-efficacy in mathematics and mathematics teaching. Also, the study was aimed at finding whether their mathematics self-efficacy and teaching…

  11. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers

    OpenAIRE

    Girardot, Charles; Scholtalbers, Jelle; Sauer, Sajoscha; Su, Shu-Yi; Furlong, Eileen E.M.

    2016-01-01

    Background The yield obtained from next generation sequencers has increased almost exponentially in recent years, making sample multiplexing common practice. While barcodes (known sequences of fixed length) primarily encode the sample identity of sequenced DNA fragments, barcodes made of random sequences (Unique Molecular Identifier or UMIs) are often used to distinguish between PCR duplicates and transcript abundance in, for example, single-cell RNA sequencing (scRNA-seq). In paired-end sequ...

  12. Mathematics Teachers' Perceptions of Their Students' Mathematical Competence: Relations to Mathematics Achievement, Affect, and Engagement in Singapore and Australia

    Science.gov (United States)

    Areepattamannil, Shaljan; Kaur, Berinderjeet

    2013-01-01

    This study, drawing on data from the Trends in International Mathematics and Science Study (TIMSS) 2011, examined whether mathematics teachers' perceptions of their students' mathematical competence were related to mathematics achievement, affect toward mathematics, and engagement in mathematics lessons among Grade 8 students in Singapore and…

  13. Mathematics education a spectrum of work in mathematical sciences departments

    CERN Document Server

    Hsu, Pao-sheng; Pollatsek, Harriet

    2016-01-01

    Many in the mathematics community in the U.S. are involved in mathematics education in various capacities. This book highlights the breadth of the work in K-16 mathematics education done by members of US departments of mathematical sciences. It contains contributions by mathematicians and mathematics educators who do work in areas such as teacher education, quantitative literacy, informal education, writing and communication, social justice, outreach and mentoring, tactile learning, art and mathematics, ethnomathematics, scholarship of teaching and learning, and mathematics education research. Contributors describe their work, its impact, and how it is perceived and valued. In addition, there is a chapter, co-authored by two mathematicians who have become administrators, on the challenges of supporting, evaluating, and rewarding work in mathematics education in departments of mathematical sciences. This book is intended to inform the readership of the breadth of the work and to encourage discussion of its val...

  14. Developing teaching material based on realistic mathematics andoriented to the mathematical reasoning and mathematical communication

    Directory of Open Access Journals (Sweden)

    Fitria Habsah

    2017-05-01

    Full Text Available This research aims to produce mathematics textbook for grade VII junior high school students based on realistic mathematics and oriented to the mathematical reasoning and mathematical communication. The quality is determined based on Nieveen criteria, including validity, practicality, and effectiveness.This study was a research and development and used Borg & Gall model. The subject of this research were the students of SMPN 2 Pujon-Kabupaten Malang, that is 30 students in an experimental class (using the developed textbook and 29 students in a control class (using BSE book from the government. The teaching material was categorized valid if the expert's judgment at least is categorized as “good”. The teaching material was categorized practical if both of teachers and students assessment at least categorized as “good”. The teaching material was categorized effectively if minimum 75% of student scores at least is categorized as “good” for the mathematical reasoning test and mathematical communication test. This research resulted in a valid, practical, and effective teaching material. The resulted of the validation show that material teaching is valid. The resulted of teachers and students assessment show that the product is practical. The tests scores show that the product is effective. Percentage of students who categorized at least as “good” is 83,33% for the mathematical reasoning and 86,67% for the mathematical communication. The resulted of statistic test shows that the product more effective than the BSE book from the government in terms of mathematical reasoning and mathematical communication.

  15. Processes in the development of mathematics in kindergarten children from Title 1 schools.

    Science.gov (United States)

    Foster, Matthew E; Anthony, Jason L; Clements, Doug H; Sarama, Julie H

    2015-12-01

    This study examined how well nonverbal IQ (or fluid intelligence), vocabulary, phonological awareness (PA), rapid autonomized naming (RAN), and phonological short-term memory (STM) predicted mathematics outcomes. The 208 participating kindergartners were administered tests of fluid intelligence, vocabulary, PA, RAN, STM, and numeracy in the fall of kindergarten, whereas tests of numeracy and applied problems were administered in the spring of kindergarten. Fall numeracy scores accounted for substantial variation in spring outcomes (R(2) values = .49 and .32 for numeracy and applied problems, respectively), which underscores the importance of preschool math instruction and screening for mathematics learning difficulties on entry into kindergarten. Fluid intelligence and PA significantly predicted unique variation in spring numeracy scores (ΔR(2) = .05) after controlling for autoregressive effects and classroom nesting. Fluid intelligence, PA, and STM significantly predicted unique variation in spring applied problems scores (ΔR(2) = .14) after controlling for autoregressive effects and classroom nesting. Although the contributions of fluid intelligence, PA, and STM toward math outcomes were reliable and arguably important, they were small. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches

    Science.gov (United States)

    Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem

    2014-01-01

    Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…

  17. Representations of Numerical and Non-Numerical Magnitude Both Contribute to Mathematical Competence in Children

    Science.gov (United States)

    Lourenco, Stella F.; Bonny, Justin W.

    2017-01-01

    A growing body of evidence suggests that non-symbolic representations of number, which humans share with nonhuman animals, are functionally related to uniquely human mathematical thought. Other research suggesting that numerical and non-numerical magnitudes not only share analog format but also form part of a general magnitude system raises…

  18. Using Mathematics in Science: Working with Your Mathematics Department

    Science.gov (United States)

    Lyon, Steve

    2014-01-01

    Changes to the mathematics and science curriculums are designed to increase rigour in mathematics, and place greater emphasis on mathematical content in science subjects at key stages 3, 4 and 5 (ages 11-18). One way to meet the growing challenge of providing increased emphasis on mathematics in the science curriculum is greater collaboration…

  19. Characterising the large coherence length at diamond’s beamline I13L

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, U. H., E-mail: ulrich.wagner@diamond.ac.uk; Parsons, A. [Diamond Light Source Ltd, Didcot, UK, OX11 0DE (United Kingdom); Rahomaki, J.; Vogt, U. [KTH Royal Institute of Technology, Stockholm, Sweden, SE-100 44 (Sweden); Rau, C. [Diamond Light Source Ltd, Didcot, UK, OX11 0DE (United Kingdom); Northwestern University, Chicago, IL 60611-3008 (United States)

    2016-07-27

    I13 is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. An outstanding feature of the coherence branch, due to its length and a new generation of ultra-stable beamline instrumentation [2], is its capability of delivering a very large coherence length well beyond 200 μm, providing opportunities for unique x-ray optical experiments. In this paper we discuss the challenges of measuring a large coherence length and present quantitative measurement based on analyzing diffraction patterns from a boron fiber [3]. We also discuss the limitations of this classical method in respect to detector performance, very short and long coherence lengths. Furthermore we demonstrate how a Ronchi grating setup [4] can be used to quickly establish if the beam is coherent over a large area.

  20. Characterising the large coherence length at diamond’s beamline I13L

    International Nuclear Information System (INIS)

    Wagner, U. H.; Parsons, A.; Rahomaki, J.; Vogt, U.; Rau, C.

    2016-01-01

    I13 is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. An outstanding feature of the coherence branch, due to its length and a new generation of ultra-stable beamline instrumentation [2], is its capability of delivering a very large coherence length well beyond 200 μm, providing opportunities for unique x-ray optical experiments. In this paper we discuss the challenges of measuring a large coherence length and present quantitative measurement based on analyzing diffraction patterns from a boron fiber [3]. We also discuss the limitations of this classical method in respect to detector performance, very short and long coherence lengths. Furthermore we demonstrate how a Ronchi grating setup [4] can be used to quickly establish if the beam is coherent over a large area.

  1. Delaware Longitudinal Study of Fraction Learning: Implications for Helping Children With Mathematics Difficulties.

    Science.gov (United States)

    Jordan, Nancy C; Resnick, Ilyse; Rodrigues, Jessica; Hansen, Nicole; Dyson, Nancy

    The goal of the present article is to synthesize findings to date from the Delaware Longitudinal Study of Fraction Learning. The study followed a large cohort of children ( N = 536) between Grades 3 and 6. The findings showed that many students, especially those with diagnosed learning disabilities, made minimal growth in fraction knowledge and that some showed only a basic grasp of the meaning of a fraction even after several years of instruction. Children with low growth in fraction knowledge during the intermediate grades were much more likely to fail to meet state standards on a broad mathematics measure at the end of Grade 6. Although a range of general and mathematics-specific competencies predicted fraction outcomes, the ability to estimate numerical magnitudes on a number line was a uniquely important marker of fraction success. Many children with mathematics difficulties have deep-seated problems related to whole number magnitude representations that are complicated by the introduction of fractions into the curriculum. Implications for helping students with mathematics difficulties are discussed.

  2. Method of selecting optimum cross arm lengths for a 750 kV transmission line

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, G N; Olorokov, V P

    1965-01-01

    A method is presented, based on both technical and economic considerations, for selecting cross arm lengths for intermediate poles of power transmission lines according to the effects of internal overvoltage, methods from probability theory and mathematical statistics employed. The problem of optimum pole size is considered in terms of the effect of internal overvoltages for a prescribed maximum level of 2.1 PU currently used in the USSR for the design of 750 kV lines.

  3. The pragmatics of mathematics education vagueness and mathematical discourse

    CERN Document Server

    Rowland, Tim

    2003-01-01

    Drawing on philosophy of language and recent linguistic theory, Rowland surveys several approaches to classroom communication in mathematics. Are students intimidated by the nature of mathematics teaching? Many students appear fearful of voicing their understanding - is fear of error part of the linguistics of mathematics? The approaches explored here provide a rationale and a method for exploring and understanding speakers'' motives in classroom mathematics talk. Teacher-student interactions in mathematics are analysed, and this provides a toolkit that teachers can use to respond to the intellectual vulnerability of their students.

  4. Developing Teaching Material Based on Realistic Mathematics Andoriented to the Mathematical Reasoning and Mathematical Communication

    OpenAIRE

    Habsah, Fitria

    2017-01-01

    This research aims to produce mathematics textbook for grade VII junior high school students based on realistic mathematics and oriented to the mathematical reasoning and mathematical communication. The quality is determined based on Nieveen criteria, including validity, practicality, and effectiveness.This study was a research and development and used Borg & Gall model. The subject of this research were the students of SMPN 2 Pujon-Kabupaten Malang, that is 30 students in an experimental cla...

  5. INTERSUBJECT CONNECTIONS OF COURSE OF MATHEMATICAL LOGIC AND OTHER MATHEMATICAL COURSES AT PREPARATION OF FUTURE TEACHER OF MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Yu.I. Sinko

    2012-03-01

    Full Text Available In this article the interconnections of course of mathematical logic with other mathematical courses – geometry, algebra and theory of numbers, mathematical analysis, and also with the courses of mathematics teaching methodology, history of mathematics in the system of preparation of teachers of mathematics in pedagogical Institute of higher education are analyzed. The presence of connections between the elements of the system and their quality is the important description of the pedagogical system.

  6. Mathematics Connection

    African Journals Online (AJOL)

    MATHEMATICS CONNECTION aims at providing a forum topromote the development of Mathematics Education in Ghana. Articles that seekto enhance the teaching and/or learning of mathematics at all levels of theeducational system are welcome.

  7. Undergraduate mathematics competitions (1995–2016) Taras Shevchenko National University of Kyiv

    CERN Document Server

    Brayman, Volodymyr

    2017-01-01

    Versatile and comprehensive in content, this book of problems will appeal to students in nearly all areas of mathematics. The text offers original and advanced problems proposed from 1995 to 2016 at the Mathematics Olympiads. Essential for undergraduate students, PhD students, and instructors, the problems in this book vary in difficulty and cover most of the obligatory courses given at the undergraduate level, including calculus, algebra, geometry, discrete mathematics, measure theory, complex analysis, differential equations, and probability theory. Detailed solutions to all of the problems from Part I are supplied in Part II, giving students the ability to check their solutions and observe new and unexpected ideas. Most of the problems in this book are not technical and allow for a short and elegant solution. The problems given are unique and non-standard; solving the problems requires a creative approach as well as a deep understanding of the material. Nearly all of the problems are originally authored by...

  8. Distinct Domains of CheA Confer Unique Functions in Chemotaxis and Cell Length in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Gullett, Jessica M; Bible, Amber; Alexandre, Gladys

    2017-07-01

    Chemotaxis is the movement of cells in response to gradients of diverse chemical cues. Motile bacteria utilize a conserved chemotaxis signal transduction system to bias their motility and navigate through a gradient. A central regulator of chemotaxis is the histidine kinase CheA. This cytoplasmic protein interacts with membrane-bound receptors, which assemble into large polar arrays, to propagate the signal. In the alphaproteobacterium Azospirillum brasilense , Che1 controls transient increases in swimming speed during chemotaxis, but it also biases the cell length at division. However, the exact underlying molecular mechanisms for Che1-dependent control of multiple cellular behaviors are not known. Here, we identify specific domains of the CheA1 histidine kinase implicated in modulating each of these functions. We show that CheA1 is produced in two isoforms: a membrane-anchored isoform produced as a fusion with a conserved seven-transmembrane domain of unknown function (TMX) at the N terminus and a soluble isoform similar to prototypical CheA. Site-directed and deletion mutagenesis combined with behavioral assays confirm the role of CheA1 in chemotaxis and implicate the TMX domain in mediating changes in cell length. Fluorescence microscopy further reveals that the membrane-anchored isoform is distributed around the cell surface while the soluble isoform localizes at the cell poles. Together, the data provide a mechanism for the role of Che1 in controlling multiple unrelated cellular behaviors via acquisition of a new domain in CheA1 and production of distinct functional isoforms. IMPORTANCE Chemotaxis provides a significant competitive advantage to bacteria in the environment, and this function has been transferred laterally multiple times, with evidence of functional divergence in different genomic contexts. The molecular principles that underlie functional diversification of chemotaxis in various genomic contexts are unknown. Here, we provide a molecular

  9. Islamic design a mathematical approach

    CERN Document Server

    Wichmann, Brian

    2017-01-01

    This book deals with the genre of geometric design in the Islamic sphere. Part I presents an overview of Islamic history, its extraordinary spread from the Atlantic to the borders of China in its first century, its adoption of the cultural outlook of the older civilisations that it conquered (in the Middle East, Persia and Central Asia), including their philosophical and scientific achievements - from which it came to express its own unique and highly distinctive artistic and architectural forms. Part II represents the mathematical analysis of Islamic geometric designs.  The presentation offers unlimited precision that allows software to reconstruct the design vision of the original artist. This book will be of interest to Islamic academics, mathematicians as well as to artists & art students.

  10. Mathematical methods for students of physics and related fields

    CERN Document Server

    Hassani, Sadri

    2000-01-01

    Intended to follow the usual introductory physics courses, this book has the unique feature of addressing the mathematical needs of sophomores and juniors in physics, engineering and other related fields Many original, lucid, and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts help guide the student through the material Beginning with reviews of vector algebra and differential and integral calculus, the book continues with infinite series, vector analysis, complex algebra and analysis, ordinary and partial differential equations Discussions of numerical analysis, nonlinear dynamics and chaos, and the Dirac delta function provide an introduction to modern topics in mathematical physics This new edition has been made more user-friendly through organization into convenient, shorter chapters Also, it includes an entirely new section on Probability and plenty of new material on tensors and integral transforms Some praise for the previous edi...

  11. Mathematical Methods For Students of Physics and Related Fields

    CERN Document Server

    Hassani, Sadri

    2009-01-01

    Intended to follow the usual introductory physics courses, this book has the unique feature of addressing the mathematical needs of sophomores and juniors in physics, engineering and other related fields. Many original, lucid, and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts help guide the student through the material. Beginning with reviews of vector algebra and differential and integral calculus, the book continues with infinite series, vector analysis, complex algebra and analysis, ordinary and partial differential equations. Discussions of numerical analysis, nonlinear dynamics and chaos, and the Dirac delta function provide an introduction to modern topics in mathematical physics. This new edition has been made more user-friendly through organization into convenient, shorter chapters. Also, it includes an entirely new section on Probability and plenty of new material on tensors and integral transforms. Some praise for the previo...

  12. Telomere length and early severe social deprivation: linking early adversity and cellular aging

    Science.gov (United States)

    Drury, SS; Theall, K; Gleason, MM; Smyke, AT; De Vivo, I; Wong, JYY; Fox, NA; Zeanah, CH; Nelson, CA

    2012-01-01

    Accelerated telomere length attrition has been associated with psychological stress and early adversity in adults; however, no studies have examined whether telomere length in childhood is associated with early experiences. The Bucharest Early Intervention Project is a unique randomized controlled trial of foster care placement compared with continued care in institutions. As a result of the study design, participants were exposed to a quantified range of time in institutional care, and represented an ideal population in which to examine the association between a specific early adversity, institutional care and telomere length. We examined the association between average relative telomere length, telomere repeat copy number to single gene copy number (T/S) ratio and exposure to institutional care quantified as the percent of time at baseline (mean age 22 months) and at 54 months of age that each child lived in the institution. A significant negative correlation between T/S ratio and percentage of time was observed. Children with greater exposure to institutional care had significantly shorter relative telomere length in middle childhood. Gender modified this main effect. The percentage of time in institutional care at baseline significantly predicted telomere length in females, whereas the percentage of institutional care at 54 months was strongly predictive of telomere length in males. This is the first study to demonstrate an association between telomere length and institutionalization, the first study to find an association between adversity and telomere length in children, and contributes to the growing literature linking telomere length and early adversity. PMID:21577215

  13. Full Length Research Article

    African Journals Online (AJOL)

    Dr Ahmed

    other areas of business administration. ... mathematics, real estate, insurance, actuarial science and business administration (McCutcheon & Scott, 1989). Most textbooks written in these ..... Mathematics of Finance; Heinemann; Oxford. Murray ...

  14. Equivalence of massive propagator distance and mathematical distance on graphs

    International Nuclear Information System (INIS)

    Filk, T.

    1992-01-01

    It is shown in this paper that the assignment of distance according to the massive propagator method and according to the mathematical definition (length of minimal path) on arbitrary graphs with a bound on the degree leads to equivalent large scale properties of the graph. Especially, the internal scaling dimension is the same for both definitions. This result holds for any fixed, non-vanishing mass, so that a really inequivalent definition of distance requires the limit m → 0

  15. VEDIC MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Sead Rešić

    2015-09-01

    Full Text Available It is very difficult to motivate students when it comes to a school subject like Mathematics. Teachers spend a lot of time trying to find something that will arouse interest in students. It is particularly difficult to find materials that are motivating enough for students that they eagerly wait for the next lesson. One of the solutions may be found in Vedic Mathematics. Traditional methods of teaching Mathematics create fear of this otherwise interesting subject in the majority of students. Fear increases failure. Often the traditional, conventional mathematical methods consist of very long lessons which are difficult to understand. Vedic Mathematics is an ancient system that is very flexible and encourages the development of intuition and innovation. It is a mental calculating tool that does not require a calculator because the calculator is embedded in each of us. Starting from the above problems of fear and failure in Mathematics, the goal of this paper is to do research with the control and the experimental group and to compare the test results. Two tests should be done for each of the groups. The control group would do the tests in the conventional way. The experimental group would do the first test in a conventional manner and then be subjected to different treatment, that is to say, be taught on the basis of Vedic Mathematics. After that, the second group would do the second test according to the principles of Vedic Mathematics. Expectations are that after short lectures on Vedic mathematics results of the experimental group would improve and that students will show greater interest in Mathematics.

  16. The Magic of Mathematics Discovering the Spell of Mathematics

    CERN Document Server

    Pappas, Theoni

    2011-01-01

    Delves into the world of ideas, explores the spell mathematics casts on our lives, and helps you discover mathematics where you least expect it. Be spellbound by the mathematical designs found in nature. Learn how knots may untie the mysteries of life. Be mesmerized by the computer revolution. Discover how the hidden forces of mathematics hold architectural structures together connect your telephone calls help airplanes get off the ground solve the mysteries of the living cell. See how some artists use a mathematical palette in their works and how many writers draw upon the wealth of its ideas

  17. Uniqueness of KMS states for continuous fermion systems

    International Nuclear Information System (INIS)

    Jaekel, C.D.

    1993-01-01

    In 1989 Prof H. Narnhofer and Prof. W. Thirring established a (nonlocal) model of fermions with pair interactions. The existence of equilibrium states and the appearance of mixing properties was proofed. If this model reflects the basic facts of nature, one has to expect and to require that at high temperatures there is a unique equilibrium state and at low temperatures there are many different equilibrium states. Uniqueness of the equilibrium state at high temperatures is the topic of this dissertation. One may be astonished, that the proof of the uniqueness requires such a huge machinery, while the existence of KMS-states followes from fairly general conditions. Two states differ, if they can be distinguished by experiment. If one considers now that we have to show that two KMS-states at high temperatures result into the same value in all experiments one can think of, one might get an idea how unhandy this problem is. Even a conscious numeration of all experiments was a problem. Surprisingly only a few principal ideas of the treatment of spin-models survive. The temperature is the leading parameter and therefore it is a good idea to make a high temperature perturbation expansion for the KMS-condition, which fixes an equilibrium state in mathematical terms. But when we choose a generating vector for the perturbation expansion the similarities end. We better use physical considerations: at high temperatures we expect that chemical bounds will be broken up and the interacting equilibrium state will differ only slightly from the equilibrium state for the free time evolution. Roughly spoken, one can expect that high-energetic particles neglect interactions and fly in a straight line. In chapter 2.4 the whole machinery is presented in an easy-to-survey manner on a simple interaction. But in the case of pair interactions every particle interacts with each other and so the author was not able to find an easily accessible form of the developed method for this case

  18. Interest in mathematics and science among students having high mathematics aptitude

    Science.gov (United States)

    Ely, Jane Alice

    The study investigates why men and women differ in their interest in mathematics and science and in the pursuit of careers in mathematics and science. The most persistent gender differential in educational standard testing is the scores in mathematics achievement. The mean Scholastic Aptitude Test (Mathematics) scores for women are consistently below that of men by about 40 points. One result of this gender differential in mathematics is that few women entertain a career requiring a robust knowledge of higher mathematics (i.e. engineering, computing, or the physical sciences). A large body of literature has been written attempting to explain why this is happening. Biological, cultural, structural and psychological explanations have been suggested and empirically examined. Controlling for mathematical ability is one method of sorting out these explanations. Eliminating mathematical ability as a factor, this dissertation reports the results of a study of men and women college students who all had high mathematics ability. Thus, any differences we found among them would have to be a result of other variables. Using a Mathematics Placement Exam and the SAT-M, forty-two students (12 males and 30 females) with high scores in both were interviewed. Student were asked about their experiences in high school and college mathematics, their career choices, and their attitudes toward mathematics. The findings, that there were no gender differences in the course selection, attitudes towards mathematics, and career choice, differed from my initial expectations. This negative finding suggests that women with high ability in mathematics are just as likely as men to pursue interests in mathematics and related courses in college and in selecting careers.

  19. Mathematical thinking styles of undergraduate students and their achievement in mathematics

    Science.gov (United States)

    Risnanosanti

    2017-08-01

    The main purpose of this study is to analyze the role of mathematical thinking styles in students' achievement in mathematics. On the basis of this study, it is also to generate recommendation for classroom instruction. The two specific aims are; first to observe students' mathematical thinking styles during problem solving, the second to asses students' achievement in mathematics. The data were collected by using Mathematical Thinking Styles questionnaires and test of students' achievement in mathematics. The subject in this study was 35 students from third year at mathematics study program of Muhammadiyah University of Bengkulu in academic year 2016/2017. The result of this study was that the students have three mathematical thinking styles (analytic, visual, and integrated), and the students who have analytic styles have better achievement than those who have visual styles in mathematics.

  20. Quotable Quotes in Mathematics

    Science.gov (United States)

    Lo, Bruce W. N.

    1983-01-01

    As a way to dispel negative feelings toward mathematics, a variety of quotations are given. They are categorized by: what mathematics is, mathematicians, mathematics and other disciplines, different areas of mathematics, mathematics and humor, applications of mathematics, and pure versus applied mathematics. (MNS)

  1. Mathematical Relationships between Neuron Morphology and Neurite Growth Dynamics in Drosophila melanogaster Larva Class IV Sensory Neurons

    Science.gov (United States)

    Ganguly, Sujoy; Liang, Xin; Grace, Michael; Lee, Daniel; Howard, Jonathon

    The morphology of neurons is diverse and reflects the diversity of neuronal functions, yet the principles that govern neuronal morphogenesis are unclear. In an effort to better understand neuronal morphogenesis we will be focusing on the development of the dendrites of class IV sensory neuron in Drosophila melanogaster. In particular we attempt to determine how the the total length, and the number of branches of dendrites are mathematically related to the dynamics of neurite growth and branching. By imaging class IV neurons during early embryogenesis we are able to measure the change in neurite length l (t) as a function of time v (t) = dl / dt . We found that the distribution of v (t) is well characterized by a hyperbolic secant distribution, and that the addition of new branches per unit time is well described by a Poisson process. Combining these measurements with the assumption that branching occurs with equal probability anywhere along the dendrite we were able to construct a mathematical model that provides reasonable agreement with the observed number of branches, and total length of the dendrites of the class IV sensory neuron.

  2. Elementary Mathematics Teachers' Perceptions and Lived Experiences on Mathematical Communication

    Science.gov (United States)

    Kaya, Defne; Aydin, Hasan

    2016-01-01

    Mathematical thinking skills and meaningful mathematical understanding are among the goals of current mathematics education. There is a wide consensus among scholars about the purpose of developing mathematical understanding and higher order thinking skills in students. However, how to develop those skills in classroom settings is an area that…

  3. Understanding in mathematics

    CERN Document Server

    Sierpinska, Anna

    1994-01-01

    The concept of understanding in mathematics with regard to mathematics education is considered in this volume, the main problem for mathematics teachers being how to facilitate their students'' understanding of the mathematics being taught.

  4. Figures of thought mathematics and mathematical texts

    CERN Document Server

    Reed, David

    2003-01-01

    Examines the ways in which mathematical works can be read as texts, examines their textual strategiesand demonstrates that such readings provide a rich source of philosophical debate regarding mathematics.

  5. Predicting Success in College Mathematics from High School Mathematics Preparation

    OpenAIRE

    Shepley, Richard A.

    1983-01-01

    The purpose of this study was to develop a model to predict the college mathematics courses a freshman could expect to pass by considering their high school mathematics preparation. The high school information that was used consisted of the student's sex, the student's grade point average in mathematics, the highest level of high school mathematics courses taken, and the number of mathematics courses taken in high school. The high school sample was drawn from graduated Seniors in the State...

  6. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  7. Elementary Pre-Service Teachers' Mathematics Anxiety and Mathematics Teaching Anxiety

    Science.gov (United States)

    Haciomeroglu, Guney

    2014-01-01

    The present study examined the structure of elementary pre-service teachers' mathematics anxiety and mathematics teaching anxiety by asking whether the two systems of anxiety are related. The Turkish Mathematics Anxiety Rating Scale Short Version and the Mathematics Teaching Anxiety Scale were administered to 260 elementary pre-service teachers.…

  8. Mathematics across cultures the history of non-Western mathematics

    CERN Document Server

    2000-01-01

    Mathematics Across Cultures: A History of Non-Western Mathematics consists of essays dealing with the mathematical knowledge and beliefs of cultures outside the United States and Europe. In addition to articles surveying Islamic, Chinese, Native American, Aboriginal Australian, Inca, Egyptian, and African mathematics, among others, the book includes essays on Rationality, Logic and Mathematics, and the transfer of knowledge from East to West. The essays address the connections between science and culture and relate the mathematical practices to the cultures which produced them. Each essay is well illustrated and contains an extensive bibliography. Because the geographic range is global, the book fills a gap in both the history of science and in cultural studies. It should find a place on the bookshelves of advanced undergraduate students, graduate students, and scholars, as well as in libraries serving those groups.

  9. Should I take Further Mathematics? Physics undergraduates’ experiences of post-compulsory Mathematics

    Science.gov (United States)

    Bowyer, Jessica; Darlington, Ellie

    2017-01-01

    It is essential that physics undergraduates are appropriately prepared for the mathematical demands of their course. This study investigated physics students’ perceptions of post-compulsory mathematics as preparation for their degree course. 494 physics undergraduates responded to an online questionnaire about their experiences of A-level Mathematics and Further Mathematics. The findings suggest that physics undergraduates would benefit from studying Further Mathematics and specialising in mechanics during their A-level studies. As both A-level Mathematics and Further Mathematics are being reformed, universities should look closely at the benefits of Further Mathematics as preparation for their physics courses and either increase their admissions requirements, or recommend that students take Further Mathematics.

  10. New Avenues for History in Mathematics Education: Mathematical Competencies and Anchoring

    DEFF Research Database (Denmark)

    Jankvist, U. T.; Kjeldsen, T. H.

    2011-01-01

    . The first scenario occurs when history is used as a ‘tool’ for the learning and teaching of mathematics, the second when history of mathematics as a ‘goal’ is pursued as an integral part of mathematics education. We introduce a multiple-perspective approach to history, and suggest that research on history......The paper addresses the apparent lack of impact of ‘history in mathematics education’ in mathematics education research in general, and proposes new avenues for research. We identify two general scenarios of integrating history in mathematics education that each gives rise to different problems...... in mathematics education follows one of two different avenues in dealing with these scenarios. The first is to focus on students’ development of mathematical competencies when history is used a tool for the learning of curriculum-dictated mathematical in-issues. A framework for this is described. Secondly, when...

  11. Realization of the Zone Length Measurement during Zone Refining Process via Implementation of an Infrared Camera

    Directory of Open Access Journals (Sweden)

    Danilo C. Curtolo

    2018-05-01

    Full Text Available Zone refining, as the currently most common industrial process to attain ultrapure metals, is influenced by a variety of factors. One of these parameters, the so-called “zone length”, affects not only the ultimate concentration distribution of impurities, but also the rate at which this distribution is approached. This important parameter has however neither been investigated experimentally, nor ever varied for the purpose of optimization. This lack of detections may be due to the difficult temperature measurement of a moving molten area in a vacuum system, of which the zone refining methodology is comprised. Up to now, numerical simulation as a combination of complex mathematical calculations, as well as many assumptions has been the only way to reveal it. This paper aims to propose an experimental method to accurately measure the molten zone length and to extract helpful information on the thermal gradient, temperature profile and real growth rate in the zone refining of an exemplary metal, in this case aluminum. This thermographic method is based on the measurement of the molten surface temperature via an infrared camera, as well as further data analysis through the mathematical software MATLAB. The obtained results show great correlation with the visual observations of zone length and provide helpful information to determine the thermal gradient and real growth rate during the whole process. The investigations in this paper approved the application of an infrared camera for this purpose as a promising technique to automatically control the zone length during a zone refining process.

  12. From inverse problems in mathematical physiology to quantitative differential diagnoses.

    Directory of Open Access Journals (Sweden)

    Sven Zenker

    2007-11-01

    Full Text Available The improved capacity to acquire quantitative data in a clinical setting has generally failed to improve outcomes in acutely ill patients, suggesting a need for advances in computer-supported data interpretation and decision making. In particular, the application of mathematical models of experimentally elucidated physiological mechanisms could augment the interpretation of quantitative, patient-specific information and help to better target therapy. Yet, such models are typically complex and nonlinear, a reality that often precludes the identification of unique parameters and states of the model that best represent available data. Hypothesizing that this non-uniqueness can convey useful information, we implemented a simplified simulation of a common differential diagnostic process (hypotension in an acute care setting, using a combination of a mathematical model of the cardiovascular system, a stochastic measurement model, and Bayesian inference techniques to quantify parameter and state uncertainty. The output of this procedure is a probability density function on the space of model parameters and initial conditions for a particular patient, based on prior population information together with patient-specific clinical observations. We show that multimodal posterior probability density functions arise naturally, even when unimodal and uninformative priors are used. The peaks of these densities correspond to clinically relevant differential diagnoses and can, in the simplified simulation setting, be constrained to a single diagnosis by assimilating additional observations from dynamical interventions (e.g., fluid challenge. We conclude that the ill-posedness of the inverse problem in quantitative physiology is not merely a technical obstacle, but rather reflects clinical reality and, when addressed adequately in the solution process, provides a novel link between mathematically described physiological knowledge and the clinical concept of

  13. From Inverse Problems in Mathematical Physiology to Quantitative Differential Diagnoses

    Science.gov (United States)

    Zenker, Sven; Rubin, Jonathan; Clermont, Gilles

    2007-01-01

    The improved capacity to acquire quantitative data in a clinical setting has generally failed to improve outcomes in acutely ill patients, suggesting a need for advances in computer-supported data interpretation and decision making. In particular, the application of mathematical models of experimentally elucidated physiological mechanisms could augment the interpretation of quantitative, patient-specific information and help to better target therapy. Yet, such models are typically complex and nonlinear, a reality that often precludes the identification of unique parameters and states of the model that best represent available data. Hypothesizing that this non-uniqueness can convey useful information, we implemented a simplified simulation of a common differential diagnostic process (hypotension in an acute care setting), using a combination of a mathematical model of the cardiovascular system, a stochastic measurement model, and Bayesian inference techniques to quantify parameter and state uncertainty. The output of this procedure is a probability density function on the space of model parameters and initial conditions for a particular patient, based on prior population information together with patient-specific clinical observations. We show that multimodal posterior probability density functions arise naturally, even when unimodal and uninformative priors are used. The peaks of these densities correspond to clinically relevant differential diagnoses and can, in the simplified simulation setting, be constrained to a single diagnosis by assimilating additional observations from dynamical interventions (e.g., fluid challenge). We conclude that the ill-posedness of the inverse problem in quantitative physiology is not merely a technical obstacle, but rather reflects clinical reality and, when addressed adequately in the solution process, provides a novel link between mathematically described physiological knowledge and the clinical concept of differential diagnoses

  14. Mathematical marriages: intercourse between mathematics and Semiotic choice.

    Science.gov (United States)

    Wagner, Roy

    2009-04-01

    This paper examines the interaction between Semiotic choices and the presentation and solution of a family of contemporary mathematical problems centred around the so-called 'stable marriage problem'. I investigate how a socially restrictive choice of signs impacts mathematical production both in terms of problem formation and of solutions. I further note how the choice of gendered language ends up constructing a reality, which duplicates the very structural framework that it imported into mathematical analysis in the first place. I go on to point out some semiotic lines of flight from this interlocking grip of mathematics and gendered language.

  15. Analysis of a time-delayed mathematical model for tumour growth with an almost periodic supply of external nutrients.

    Science.gov (United States)

    Xu, Shihe; Bai, Meng; Zhang, Fangwei

    2017-12-01

    In this paper, the existence, uniqueness and exponential stability of almost periodic solutions for a mathematical model of tumour growth are studied. The establishment of the model is based on the reaction-diffusion dynamics and mass conservation law and is considered with a delay in the cell proliferation process. Using a fixed-point theorem in cones, the existence and uniqueness of almost periodic solutions for different parameter values of the model is proved. Moreover, by the Gronwall inequality, sufficient conditions are established for the exponential stability of the unique almost periodic solution. Results are illustrated by computer simulations.

  16. Somatic cell nuclear transfer: Infinite reproduction of a unique diploid genome

    International Nuclear Information System (INIS)

    Kishigami, Satoshi; Wakayama, Sayaka; Hosoi, Yoshihiko; Iritani, Akira; Wakayama, Teruhiko

    2008-01-01

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the 'Hayflick limit'. However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to 'passage' a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the 'passage' of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels

  17. Somatic cell nuclear transfer: infinite reproduction of a unique diploid genome.

    Science.gov (United States)

    Kishigami, Satoshi; Wakayama, Sayaka; Hosoi, Yoshihiko; Iritani, Akira; Wakayama, Teruhiko

    2008-06-10

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the "Hayflick limit". However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to "passage" a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the "passage" of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels.

  18. Structural Equation Model to Validate: Mathematics-Computer Interaction, Computer Confidence, Mathematics Commitment, Mathematics Motivation and Mathematics Confidence

    Science.gov (United States)

    Garcia-Santillán, Arturo; Moreno-Garcia, Elena; Escalera-Chávez, Milka E.; Rojas-Kramer, Carlos A.; Pozos-Texon, Felipe

    2016-01-01

    Most mathematics students show a definite tendency toward an attitudinal deficiency, which can be primarily understood as intolerance to the matter, affecting their scholar performance adversely. In addition, information and communication technologies have been gradually included within the process of teaching mathematics. Such adoption of…

  19. Mathematical and numerical methods for partial differential equations applications for engineering sciences

    CERN Document Server

    Chaskalovic, Joël

    2014-01-01

    This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material, as in most standard textbooks. This English edition is based on the Finite Element Methods for Engineering Sciences by Joel Chaskalovic

  20. On the normalization of the minimum free energy of RNAs by sequence length.

    Science.gov (United States)

    Trotta, Edoardo

    2014-01-01

    The minimum free energy (MFE) of ribonucleic acids (RNAs) increases at an apparent linear rate with sequence length. Simple indices, obtained by dividing the MFE by the number of nucleotides, have been used for a direct comparison of the folding stability of RNAs of various sizes. Although this normalization procedure has been used in several studies, the relationship between normalized MFE and length has not yet been investigated in detail. Here, we demonstrate that the variation of MFE with sequence length is not linear and is significantly biased by the mathematical formula used for the normalization procedure. For this reason, the normalized MFEs strongly decrease as hyperbolic functions of length and produce unreliable results when applied for the comparison of sequences with different sizes. We also propose a simple modification of the normalization formula that corrects the bias enabling the use of the normalized MFE for RNAs longer than 40 nt. Using the new corrected normalized index, we analyzed the folding free energies of different human RNA families showing that most of them present an average MFE density more negative than expected for a typical genomic sequence. Furthermore, we found that a well-defined and restricted range of MFE density characterizes each RNA family, suggesting the use of our corrected normalized index to improve RNA prediction algorithms. Finally, in coding and functional human RNAs the MFE density appears scarcely correlated with sequence length, consistent with a negligible role of thermodynamic stability demands in determining RNA size.

  1. The boundary length and point spectrum enumeration of partial chord diagrams using cut and join recursion

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Fuji, Hiroyuki; Penner, Robert C.

    relation, which combined with an initial condition determines these numbers uniquely. This recursion relation is equivalent to a second order, non-linear, algebraic partial differential equation for the generating function of the numbers of partial chord diagrams filtered by the boundary length and point...

  2. From statistics to mathematical finance festschrift in honour of Winfried Stute

    CERN Document Server

    Manteiga, Wenceslao; Schmidt, Thorsten; Wang, Jane-Ling

    2017-01-01

    This book, dedicated to Winfried Stute on the occasion of his 70th birthday, presents a unique collection of contributions by leading experts in statistics, stochastic processes, mathematical finance and insurance. The individual chapters cover a wide variety of topics ranging from nonparametric estimation, regression modelling and asymptotic bounds for estimators, to shot-noise processes in finance, option pricing and volatility modelling. The book also features review articles, e.g. on survival analysis.

  3. Mathematics

    CERN Document Server

    Eringen, A Cemal

    2013-01-01

    Continuum Physics: Volume 1 - Mathematics is a collection of papers that discusses certain selected mathematical methods used in the study of continuum physics. Papers in this collection deal with developments in mathematics in continuum physics and its applications such as, group theory functional analysis, theory of invariants, and stochastic processes. Part I explains tensor analysis, including the geometry of subspaces and the geometry of Finsler. Part II discusses group theory, which also covers lattices, morphisms, and crystallographic groups. Part III reviews the theory of invariants th

  4. The materiality of mathematics: presenting mathematics at the blackboard.

    Science.gov (United States)

    Greiffenhagen, Christian

    2014-09-01

    Sociology has been accused of neglecting the importance of material things in human life and the material aspects of social practices. Efforts to correct this have recently been made, with a growing concern to demonstrate the materiality of social organization, not least through attention to objects and the body. As a result, there have been a plethora of studies reporting the social construction and effects of a variety of material objects as well as studies that have explored the material dimensions of a diversity of practices. In different ways these studies have questioned the Cartesian dualism of a strict separation of 'mind' and 'body'. However, it could be argued that the idea of the mind as immaterial has not been entirely banished and lingers when it comes to discussing abstract thinking and reasoning. The aim of this article is to extend the material turn to abstract thought, using mathematics as a paradigmatic example. This paper explores how writing mathematics (on paper, blackboards, or even in the air) is indispensable for doing and thinking mathematics. The paper is based on video recordings of lectures in formal logic and investigates how mathematics is presented at the blackboard. The paper discusses the iconic character of blackboards in mathematics and describes in detail a number of inscription practices of presenting mathematics at the blackboard (such as the use of lines and boxes, the designation of particular regions for specific mathematical purposes, as well as creating an 'architecture' visualizing the overall structure of the proof). The paper argues that doing mathematics really is 'thinking with eyes and hands' (Latour 1986). Thinking in mathematics is inextricably interwoven with writing mathematics. © London School of Economics and Political Science 2014.

  5. Effects of spatially varying slip length on friction drag reduction in wall turbulence

    International Nuclear Information System (INIS)

    Hasegawa, Yosuke; Frohnapfel, Bettina; Kasagi, Nobuhide

    2011-01-01

    A series of direct numerical simulation has been made of turbulent flow over hydrophobic surfaces, which are characterized by streamwise periodic micro-grooves. By assuming that the size of micro-grooves is much smaller than the typical length-scale of near-wall turbulent structures, the dynamical boundary condition is expressed by a mobility tensor, which relates the slip velocity and the surface shear stress. Based on the derived mathematical relationship between the friction drag and different dynamical contributions, it is shown how the turbulence contribution can be extracted and analyzed.

  6. Rationality, irrationality and escalating behavior in lowest unique bid auctions.

    Directory of Open Access Journals (Sweden)

    Filippo Radicchi

    Full Text Available Information technology has revolutionized the traditional structure of markets. The removal of geographical and time constraints has fostered the growth of online auction markets, which now include millions of economic agents worldwide and annual transaction volumes in the billions of dollars. Here, we analyze bid histories of a little studied type of online auctions--lowest unique bid auctions. Similarly to what has been reported for foraging animals searching for scarce food, we find that agents adopt Lévy flight search strategies in their exploration of "bid space". The Lévy regime, which is characterized by a power-law decaying probability distribution of step lengths, holds over nearly three orders of magnitude. We develop a quantitative model for lowest unique bid online auctions that reveals that agents use nearly optimal bidding strategies. However, agents participating in these auctions do not optimize their financial gain. Indeed, as long as there are many auction participants, a rational profit optimizing agent would choose not to participate in these auction markets.

  7. Rationality, Irrationality and Escalating Behavior in Lowest Unique Bid Auctions

    Science.gov (United States)

    Radicchi, Filippo; Baronchelli, Andrea; Amaral, Luís A. N.

    2012-01-01

    Information technology has revolutionized the traditional structure of markets. The removal of geographical and time constraints has fostered the growth of online auction markets, which now include millions of economic agents worldwide and annual transaction volumes in the billions of dollars. Here, we analyze bid histories of a little studied type of online auctions – lowest unique bid auctions. Similarly to what has been reported for foraging animals searching for scarce food, we find that agents adopt Lévy flight search strategies in their exploration of “bid space”. The Lévy regime, which is characterized by a power-law decaying probability distribution of step lengths, holds over nearly three orders of magnitude. We develop a quantitative model for lowest unique bid online auctions that reveals that agents use nearly optimal bidding strategies. However, agents participating in these auctions do not optimize their financial gain. Indeed, as long as there are many auction participants, a rational profit optimizing agent would choose not to participate in these auction markets. PMID:22279553

  8. Rainforest Mathematics

    Science.gov (United States)

    Kilpatrick, Jeremy

    2014-01-01

    This paper addresses the contested way that ethnomathematics has sometimes been received by mathematicians and others and what that disagreement might suggest about issues in mathematics education; namely, (a) the relation of ethnomathematics to academic mathematics; (b) recent efforts to reform secondary school mathematics so that it prepares…

  9. Trajectory attractors of equations of mathematical physics

    International Nuclear Information System (INIS)

    Vishik, Marko I; Chepyzhov, Vladimir V

    2011-01-01

    In this survey the method of trajectory dynamical systems and trajectory attractors is described, and is applied in the study of the limiting asymptotic behaviour of solutions of non-linear evolution equations. This method is especially useful in the study of dissipative equations of mathematical physics for which the corresponding Cauchy initial-value problem has a global (weak) solution with respect to the time but the uniqueness of this solution either has not been established or does not hold. An important example of such an equation is the 3D Navier-Stokes system in a bounded domain. In such a situation one cannot use directly the classical scheme of construction of a dynamical system in the phase space of initial conditions of the Cauchy problem of a given equation and find a global attractor of this dynamical system. Nevertheless, for such equations it is possible to construct a trajectory dynamical system and investigate a trajectory attractor of the corresponding translation semigroup. This universal method is applied for various types of equations arising in mathematical physics: for general dissipative reaction-diffusion systems, for the 3D Navier-Stokes system, for dissipative wave equations, for non-linear elliptic equations in cylindrical domains, and for other equations and systems. Special attention is given to using the method of trajectory attractors in approximation and perturbation problems arising in complicated models of mathematical physics. Bibliography: 96 titles.

  10. Mathematical scandals

    CERN Document Server

    Pappas, Theoni

    1997-01-01

    In this highly readable volume of vignettes of mathematical scandals and gossip, Theoni Pappas assembles 29 fascinating stories of intrigue and the bizarre ? in short, the human background of the history of mathematics. Might a haberdasher have changed Einstein's life? Why was the first woman mathematician murdered? How come there's no Nobel Prize in mathematics?Mathematics is principally about numbers, equations, and solutions, all of them precise and timeless. But, behind this arcane matter lies the sometimes sordid world of real people, whose rivalries and deceptions

  11. High school mathematics teachers' perspectives on the purposes of mathematical proof in school mathematics

    Science.gov (United States)

    Dickerson, David S.; Doerr, Helen M.

    2014-12-01

    Proof serves many purposes in mathematics. In this qualitative study of 17 high school mathematics teachers, we found that these teachers perceived that two of the most important purposes for proof in school mathematics were (a) to enhance students' mathematical understanding and (b) to develop generalized thinking skills that were transferable to other fields of endeavor. We found teachers were divided on the characteristics (or features) of proofs that would serve these purposes. Teachers with less experience tended to believe that proofs in the high school should adhere to strict standards of language and reasoning while teachers with more experience tended to believe that proofs based on concrete or visual features were well suited for high school mathematics. This study has implications for teacher preparation because it appears that there is a wide variation in how teachers think about proof. It seems likely that students would experience proof very differently merely because they were seated in different classrooms.

  12. Financial mathematics

    CERN Document Server

    Jothi, A Lenin

    2009-01-01

    Financial services, particularly banking and insurance services is the prominent sector for the development of a nation. After the liberalisation of financial sector in India, the scope of getting career opportunities has been widened. It is heartening to note that various universities in India have introduced professional courses on banking and insurance. A new field of applied mathematics has come into prominence under the name of Financial Mathematics. Financial mathematics has attained much importance in the recent years because of the role played by mathematical concepts in decision - m

  13. Engineering mathematics

    CERN Document Server

    Stroud, K A

    2013-01-01

    A groundbreaking and comprehensive reference that's been a bestseller since it first debuted in 1970, the new seventh edition of Engineering Mathematics has been thoroughly revised and expanded. Providing a broad mathematical survey, this innovative volume covers a full range of topics from the very basic to the advanced. Whether you're an engineer looking for a useful on-the-job reference or want to improve your mathematical skills, or you are a student who needs an in-depth self-study guide, Engineering Mathematics is sure to come in handy time and time again.

  14. Unique solvability of a non-linear non-local boundary-value problem for systems of non-linear functional differential equations

    Czech Academy of Sciences Publication Activity Database

    Dilna, N.; Rontó, András

    2010-01-01

    Roč. 60, č. 3 (2010), s. 327-338 ISSN 0139-9918 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-linear boundary value-problem * functional differential equation * non-local condition * unique solvability * differential inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0015-9

  15. Influence of Precollege Experience on Self-Concept among Community College Students in Science, Mathematics, and Engineering

    Science.gov (United States)

    Starobin, Soko S.; Laanan, Frankie Santos

    Female and minority students have historically been underrepresented in the field of science, mathematics, and engineering at colleges and universities. Although a plethora of research has focused on students enrolled in 4-year colleges or universities, limited research addresses the factors that influence gender differences in community college students in science, mathematics, and engineering. Using a target population of 1,599 aspirants in science, mathematics, and engineering majors in public community colleges, this study investigates the determinants of self-concept by examining a hypothetical structural model. The findings suggest that background characteristics, high school academic performance, and attitude toward science have unique contributions to the development of self-concept among female community college students. The results add to the literature by providing new theoretical constructs and the variables that predict students' self-concept.

  16. Mathematical Modeling: Challenging the Figured Worlds of Elementary Mathematics

    Science.gov (United States)

    Wickstrom, Megan H.

    2017-01-01

    This article is a report on a teacher study group that focused on three elementary teachers' perceptions of mathematical modeling in contrast to typical mathematics instruction. Through the theoretical lens of figured worlds, I discuss how mathematics instruction was conceptualized across the classrooms in terms of artifacts, discourse, and…

  17. Mathematics Teachers' Ideas about Mathematical Models: A Diverse Landscape

    Science.gov (United States)

    Bautista, Alfredo; Wilkerson-Jerde, Michelle H.; Tobin, Roger G.; Brizuela, Bárbara M.

    2014-01-01

    This paper describes the ideas that mathematics teachers (grades 5-9) have regarding mathematical models of real-world phenomena, and explores how teachers' ideas differ depending on their educational background. Participants were 56 United States in-service mathematics teachers. We analyzed teachers' written responses to three open-ended…

  18. Mathematics and engineering in real life through mathematical competitions

    Science.gov (United States)

    More, M.

    2018-02-01

    We bring out an experience of organizing mathematical competitions that can be used as a medium to motivate the student and teacher minds in new directions of thinking. This can contribute to fostering research, innovation and provide a hands-on experience of mathematical concepts with the real world. Mathematical competitions can be used to build curiosity and give an understanding of mathematical applications in real life. Participation in the competition has been classified under four broad categories. Student can showcase their findings in various forms of expression like model, poster, soft presentation, animation, live performance, art and poetry. The basic focus of the competition is on using open source computation tools and modern technology, to emphasize the relationship of mathematical concepts with engineering applications in real life.

  19. Modeling relaxation length and density of acacia mangium wood using gamma - ray attenuation technique

    International Nuclear Information System (INIS)

    Tamer A Tabet; Fauziah Abdul Aziz

    2009-01-01

    Wood density measurement is related to the several factors that influence wood quality. In this paper, density, relaxation length and half-thickness value of eight ages, 3, 5, 7, 10, 11, 13 and 15 year-old of Acacia mangium wood were determined using gamma radiation from 137 Cs source. Results show that Acacia mangium tree of age 3 year has the highest relaxation length of 83.33 cm and least density of 0.43 gcm -3 , while the tree of age 15 year has the least Relaxation length of 28.56 cm and highest density of 0.76 gcm -3 . Results also show that the 3 year-old Acacia mangium wood has the highest half thickness value of 57.75 cm and 15 year-old tree has the least half thickness value of 19.85 cm. Two mathematical models have been developed for the prediction of density, variation with relaxation length and half-thickness value of different age of tree. A good agreement (greater than 85% in most cases) was observed between the measured values and predicted ones. Very good linear correlation was found between measured density and the age of tree (R2 = 0.824), and between estimated density and Acacia mangium tree age (R2 = 0.952). (Author)

  20. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    ; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics...... to new problems. Relations and functions: Define a product set; define and apply equivalence relations; construct and apply functions. Apply these concepts to new problems. Natural numbers and induction: Define the natural numbers; apply the principle of induction to verify a selection of properties...

  1. Mathematics Anxiety in Young Children: Concurrent and Longitudinal Associations with Mathematical Performance

    Science.gov (United States)

    Vukovic, Rose K.; Kieffer, Michael J.; Bailey, Sean P.; Harari, Rachel R.

    2013-01-01

    This study explored mathematics anxiety in a longitudinal sample of 113 children followed from second to third grade. We examined how mathematics anxiety related to different types of mathematical performance concurrently and longitudinally and whether the relations between mathematics anxiety and mathematical performance differed as a function of…

  2. Introducing philosophy of mathematics

    CERN Document Server

    Friend, Michele

    2014-01-01

    What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual acc

  3. CDKL5 regulates flagellar length and localizes to the base of the flagella in Chlamydomonas

    Science.gov (United States)

    Tam, Lai-Wa; Ranum, Paul T.; Lefebvre, Paul A.

    2013-01-01

    The length of Chlamydomonas flagella is tightly regulated. Mutations in four genes—LF1, LF2, LF3, and LF4—cause cells to assemble flagella up to three times wild-type length. LF2 and LF4 encode protein kinases. Here we describe a new gene, LF5, in which null mutations cause cells to assemble flagella of excess length. The LF5 gene encodes a protein kinase very similar in sequence to the protein kinase CDKL5. In humans, mutations in this kinase cause a severe form of juvenile epilepsy. The LF5 protein localizes to a unique location: the proximal 1 μm of the flagella. The proximal localization of the LF5 protein is lost when genes that make up the proteins in the cytoplasmic length regulatory complex (LRC)—LF1, LF2, and LF3—are mutated. In these mutants LF5p becomes localized either at the distal tip of the flagella or along the flagellar length, indicating that length regulation involves, at least in part, control of LF5p localization by the LRC. PMID:23283985

  4. Mathematical Modelling in the Junior Secondary Years: An Approach Incorporating Mathematical Technology

    Science.gov (United States)

    Lowe, James; Carter, Merilyn; Cooper, Tom

    2018-01-01

    Mathematical models are conceptual processes that use mathematics to describe, explain, and/or predict the behaviour of complex systems. This article is written for teachers of mathematics in the junior secondary years (including out-of-field teachers of mathematics) who may be unfamiliar with mathematical modelling, to explain the steps involved…

  5. DEVELOPING STUDENTS’ ABILITY OF MATHEMATICAL CONNECTION THROUGH USING OUTDOOR MATHEMATICS LEARNING

    Directory of Open Access Journals (Sweden)

    Saleh Haji

    2017-01-01

    Full Text Available The Purpose of this study is to determine the achievement and improvement of students’ mathematical connectionability through using outdoor mathematics learning. 64 students from the fifth grade of Primary School at SDN 65 and SDN 67 Bengkulu City were taken as the sample of this study. While the method of the research used in this research is experiment with quasi-experimental designs non-equivalent control group. The results of the study are as follows: (1 There is an increasing ability found in mathematical connection of students whom taught by using outdoors mathematics learning is 0,53; (2 Based on statical computation that achievement of students’ ability of mathematical connection is taught by using outdoor mathematics learning score is 71,25. It is higher than the students score 66,25 which were taught by using the conventional learning. So as to improve students’ mathematical connection, teachers are suggested to use the outdoors mathematics learning

  6. Loving + hating mathematics challenging the myths of mathematical life

    CERN Document Server

    Hersh, Reuben

    2011-01-01

    Mathematics is often thought of as the coldest expression of pure reason. But few subjects provoke hotter emotions--and inspire more love and hatred--than mathematics. And although math is frequently idealized as floating above the messiness of human life, its story is nothing if not human; often, it is all too human. Loving and Hating Mathematics is about the hidden human, emotional, and social forces that shape mathematics and affect the experiences of students and mathematicians. Written in a lively, accessible style, and filled with gripping stories and anecdotes, Loving and Hating Mathema

  7. Dilemma in Teaching Mathematics

    Science.gov (United States)

    Md Kamaruddin, Nafisah Kamariah; Md Amin, Zulkarnain

    2012-01-01

    The challenge in mathematics education is finding the best way to teach mathematics. When students learn the reasoning and proving in mathematics, they will be proficient in mathematics. Students must know mathematics before they can apply it. Symbolism and logic is the key to both the learning of mathematics and its effective application to…

  8. Introductory discrete mathematics

    CERN Document Server

    Balakrishnan, V K

    2010-01-01

    This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems.Chapters 0-3 cover fundamental operations involv

  9. CBM Reading, Mathematics, and Written Expression at the Secondary Level: Examining Latent Composite Relations Among Indices and Unique Predictions With a State Achievement Test.

    Science.gov (United States)

    Codding, Robin S; Petscher, Yaacov; Truckenmiller, Adrea

    2015-05-01

    A paucity of research has examined the utility of curriculum-based measurement (CBM) for data-based decision making at the secondary level. As schools move to multitiered systems of service delivery, it is conceivable that multiple screening measures will be used that address various academic subject areas. The value of including different CBM indices measures is not well understood. The purpose of this study was to (a) examine the relationship among a variety of reading, writing, and mathematics CBM indices administered to 249 seventh-grade students; (b) investigate amount and patterns of growth; and (c) examine predictive validity to a high-stakes state test using latent factor analysis and multiple indicator growth models. Results indicated strong correspondence among CBM types for fall static scores but weak relationships among slopes. Different patterns of growth were yielded for CBM writing than for CBM reading and mathematics. Findings from this study suggested that although reading, mathematics, and writing CBM were independently and moderately related to both English Language Arts and Math test scores, reading was the strongest predictor when all 3 CBM constructs were considered jointly.

  10. An overview of the formulation, existence and uniqueness issues for the initial value problem raised by the dynamics of discrete systems with unilateral contact and dry friction

    Science.gov (United States)

    Ballard, Patrick; Charles, Alexandre

    2018-03-01

    In the end of the seventies, Schatzman and Moreau undertook to revisit the venerable dynamics of rigid bodies with contact and dry friction in the light of more recent mathematics. One claimed objective was to reach, for the first time, a mathematically consistent formulation of an initial value problem associated with the dynamics. The purpose of this article is to make a review of the today state-of-art concerning not only the formulation, but also the issues of existence and uniqueness of solution. xml:lang="fr"

  11. Fraction magnitude understanding and its unique role in predicting general mathematics achievement at two early stages of fraction instruction.

    Science.gov (United States)

    Liu, Yingyi

    2017-09-08

    Prior studies on fraction magnitude understanding focused mainly on students with relatively sufficient formal instruction on fractions whose fraction magnitude understanding is relatively mature. This study fills a research gap by investigating fraction magnitude understanding in the early stages of fraction instruction. It extends previous findings to children with limited and primary formal fraction instruction. Thirty-five fourth graders with limited fraction instruction and forty fourth graders with primary fraction instruction were recruited from a Chinese primary school. Children's fraction magnitude understanding was assessed with a fraction number line estimation task. Approximate number system (ANS) acuity was assessed with a dot discrimination task. Whole number knowledge was assessed with a whole number line estimation task. General reading and mathematics achievements were collected concurrently and 1 year later. In children with limited fraction instruction, fraction representation was linear and fraction magnitude understanding was concurrently related to both ANS and whole number knowledge. In children with primary fraction instruction, fraction magnitude understanding appeared to (marginally) significantly predict general mathematics achievement 1 year later. Fraction magnitude understanding emerged early during formal instruction of fractions. ANS and whole number knowledge were related to fraction magnitude understanding when children first began to learn about fractions in school. The predictive value of fraction magnitude understanding is likely constrained by its sophistication level. © 2017 The British Psychological Society.

  12. Mathematics and Engineering in Real Life through Mathematical Competitions

    Science.gov (United States)

    More, M.

    2018-01-01

    We bring out an experience of organizing mathematical competitions that can be used as a medium to motivate the student and teacher minds in new directions of thinking. This can contribute to fostering research, innovation and provide a hands-on experience of mathematical concepts with the real world. Mathematical competitions can be used to build…

  13. Secondary School Mathematics Teachers' Attitude in Teaching Mathematics

    OpenAIRE

    Mulugeta Atnafu

    2014-01-01

    The purpose of this study was to examine Addis Ababa secondary school mathematics teachers’ attitude in teaching mathematics. 148 mathematics teachers were selected using cluster sampling from Addis Ababa administration region. The study used survey method of data collection and it includes both quantitative and qualitative research methods. From the independent t-test, ANOVA, tukey test and regression analysis, some of the results obtained were: the majority of the secondary school mathemati...

  14. An Investigation of Mathematical Modeling with Pre-Service Secondary Mathematics Teachers

    Science.gov (United States)

    Thrasher, Emily Plunkett

    2016-01-01

    The goal of this thesis was to investigate and enhance our understanding of what occurs while pre-service mathematics teachers engage in a mathematical modeling unit that is broadly based upon mathematical modeling as defined by the Common Core State Standards for Mathematics (National Governors Association Center for Best Practices & Council…

  15. Unique Path Partitions

    DEFF Research Database (Denmark)

    Bessenrodt, Christine; Olsson, Jørn Børling; Sellers, James A.

    2013-01-01

    We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions.......We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions....

  16. The length-weight and length-length relationships of bluefish, Pomatomus saltatrix (Linnaeus, 1766 from Samsun, middle Black Sea region

    Directory of Open Access Journals (Sweden)

    Melek Özpiçak

    2017-10-01

    Full Text Available In this study, length-weight relationship (LWR and length-length relationship (LLR of bluefish, Pomatomus saltatrix were determined. A total of 125 specimens were sampled from Samsun, the middle Black Sea in 2014 fishing season. Bluefish specimens were monthly collected from commercial fishing boats from October to December 2014. All captured individuals (N=125 were measured to the nearest 0.1 cm for total, fork and standard lengths. The weight of each fish (W was recorded to the nearest 0.01 g. According to results of analyses, there were no statistically significant differences between sexes in term of length and weight (P˃0.05. The minimum and maximum total, fork and standard lengths of bluefish ranged between 13.5-23.6 cm, 12.50-21.80 cm and 10.60-20.10 cm, respectively. The equation of length-weight relationship were calculated as W=0.008TL3.12 (r2>0.962. Positive allometric growth was observed for bluefish (b>3. Length-length relationship was also highly significant (P<0.001 with coefficient of determination (r2 ranging from 0.916 to 0.988.

  17. Panel Debate: Technics and technology in mathematics and mathematics education

    DEFF Research Database (Denmark)

    Misfeldt, Morten

    2015-01-01

    The use of computer technology for teaching and learning of mathematics has several consequences and does sometimes give rise to both controversies and misunderstandings. We address these problems by both a philosophical and a historical approach, investigating what it actually is that goes on when...... guidelines and conclusions regarding the use of computer technology in mathematics education....... new technologies enter mathematics as a discipline and mathematics education as a societal practice. Our analysis suggests a focus on continuities in time and place in the sense that it is necessary to understand the history of “tool use” in mathematics and the various ways that scholastic and non...

  18. Cocaine addiction and personality: a mathematical model.

    Science.gov (United States)

    Caselles, Antonio; Micó, Joan C; Amigó, Salvador

    2010-05-01

    The existence of a close relation between personality and drug consumption is recognized, but the corresponding causal connection is not well known. Neither is it well known whether personality exercises an influence predominantly at the beginning and development of addiction, nor whether drug consumption produces changes in personality. This paper presents a dynamic mathematical model of personality and addiction based on the unique personality trait theory (UPTT) and the general modelling methodology. This model attempts to integrate personality, the acute effect of drugs, and addiction. The UPTT states the existence of a unique trait of personality called extraversion, understood as a dimension that ranges from impulsive behaviour and sensation-seeking (extravert pole) to fearful and anxious behaviour (introvert pole). As a consequence of drug consumption, the model provides the main patterns of extraversion dynamics through a system of five coupled differential equations. It combines genetic extraversion, as a steady state, and dynamic extraversion in a unique variable measured on the hedonic scale. The dynamics of this variable describes the effects of stimulant drugs on a short-term time scale (typical of the acute effect); while its mean time value describes the effects of stimulant drugs on a long-term time scale (typical of the addiction effect). This understanding may help to develop programmes of prevention and intervention in drug misuse.

  19. The Joy of Mathematics Discovering Mathematics All Around You

    CERN Document Server

    Pappas, Theoni

    1993-01-01

    Part of the joy of mathematics is that it is everywhere-in soap bubbles, electricity, da Vinci's masterpieces, even in an ocean wave. Written by the well-known mathematics teacher consultant, this volume's collection of over 200 clearly illustrated mathematical ideas, concepts, puzzles, and games shows where they turn up in the "real" world. You'll find out what a googol is, visit hotel infinity, read a thorny logic problem that was stumping them back in the 8th century. THE JOY OF MATHEMATICS is designed to be opened at random…it's mini essays are self-contained providing the reader

  20. Grounded Blends and Mathematical Gesture Spaces: Developing Mathematical Understandings via Gestures

    Science.gov (United States)

    Yoon, Caroline; Thomas, Michael O. J.; Dreyfus, Tommy

    2011-01-01

    This paper examines how a person's gesture space can become endowed with mathematical meaning associated with mathematical spaces and how the resulting mathematical gesture space can be used to communicate and interpret mathematical features of gestures. We use the theory of grounded blends to analyse a case study of two teachers who used gestures…

  1. Some unsolved problems in discrete mathematics and mathematical cybernetics

    Science.gov (United States)

    Korshunov, Aleksei D.

    2009-10-01

    There are many unsolved problems in discrete mathematics and mathematical cybernetics. Writing a comprehensive survey of such problems involves great difficulties. First, such problems are rather numerous and varied. Second, they greatly differ from each other in degree of completeness of their solution. Therefore, even a comprehensive survey should not attempt to cover the whole variety of such problems; only the most important and significant problems should be reviewed. An impersonal choice of problems to include is quite hard. This paper includes 13 unsolved problems related to combinatorial mathematics and computational complexity theory. The problems selected give an indication of the author's studies for 50 years; for this reason, the choice of the problems reviewed here is, to some extent, subjective. At the same time, these problems are very difficult and quite important for discrete mathematics and mathematical cybernetics. Bibliography: 74 items.

  2. Some unsolved problems in discrete mathematics and mathematical cybernetics

    International Nuclear Information System (INIS)

    Korshunov, Aleksei D

    2009-01-01

    There are many unsolved problems in discrete mathematics and mathematical cybernetics. Writing a comprehensive survey of such problems involves great difficulties. First, such problems are rather numerous and varied. Second, they greatly differ from each other in degree of completeness of their solution. Therefore, even a comprehensive survey should not attempt to cover the whole variety of such problems; only the most important and significant problems should be reviewed. An impersonal choice of problems to include is quite hard. This paper includes 13 unsolved problems related to combinatorial mathematics and computational complexity theory. The problems selected give an indication of the author's studies for 50 years; for this reason, the choice of the problems reviewed here is, to some extent, subjective. At the same time, these problems are very difficult and quite important for discrete mathematics and mathematical cybernetics. Bibliography: 74 items.

  3. Mathematics through Millenia

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    2005-01-01

    A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations.......A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations....

  4. Mathematics through millenia

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations.......A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations....

  5. Mathematical biology

    CERN Document Server

    Murray, James D

    1993-01-01

    The book is a textbook (with many exercises) giving an in-depth account of the practical use of mathematical modelling in the biomedical sciences. The mathematical level required is generally not high and the emphasis is on what is required to solve the real biological problem. The subject matter is drawn, e.g. from population biology, reaction kinetics, biological oscillators and switches, Belousov-Zhabotinskii reaction, reaction-diffusion theory, biological wave phenomena, central pattern generators, neural models, spread of epidemics, mechanochemical theory of biological pattern formation and importance in evolution. Most of the models are based on real biological problems and the predictions and explanations offered as a direct result of mathematical analysis of the models are important aspects of the book. The aim is to provide a thorough training in practical mathematical biology and to show how exciting and novel mathematical challenges arise from a genuine interdisciplinary involvement with the biosci...

  6. Mathematics unbound

    CERN Document Server

    Parshall, Karen Hunger

    2002-01-01

    Although today's mathematical research community takes its international character very much for granted, this "global nature" is relatively recent, having evolved over a period of roughly 150 years-from the beginning of the nineteenth century to the middle of the twentieth century. During this time, the practice of mathematics changed from being centered on a collection of disparate national communities to being characterized by an international group of scholars for whom the goal of mathematical research and cooperation transcended national boundaries. Yet, the development of an international community was far from smooth and involved obstacles such as war, political upheaval, and national rivalries. Until now, this evolution has been largely overlooked by historians and mathematicians alike. This book addresses the issue by bringing together essays by twenty experts in the history of mathematics who have investigated the genesis of today's international mathematical community. This includes not only develo...

  7. On the normalization of the minimum free energy of RNAs by sequence length.

    Directory of Open Access Journals (Sweden)

    Edoardo Trotta

    Full Text Available The minimum free energy (MFE of ribonucleic acids (RNAs increases at an apparent linear rate with sequence length. Simple indices, obtained by dividing the MFE by the number of nucleotides, have been used for a direct comparison of the folding stability of RNAs of various sizes. Although this normalization procedure has been used in several studies, the relationship between normalized MFE and length has not yet been investigated in detail. Here, we demonstrate that the variation of MFE with sequence length is not linear and is significantly biased by the mathematical formula used for the normalization procedure. For this reason, the normalized MFEs strongly decrease as hyperbolic functions of length and produce unreliable results when applied for the comparison of sequences with different sizes. We also propose a simple modification of the normalization formula that corrects the bias enabling the use of the normalized MFE for RNAs longer than 40 nt. Using the new corrected normalized index, we analyzed the folding free energies of different human RNA families showing that most of them present an average MFE density more negative than expected for a typical genomic sequence. Furthermore, we found that a well-defined and restricted range of MFE density characterizes each RNA family, suggesting the use of our corrected normalized index to improve RNA prediction algorithms. Finally, in coding and functional human RNAs the MFE density appears scarcely correlated with sequence length, consistent with a negligible role of thermodynamic stability demands in determining RNA size.

  8. Implementing a new mathematics curriculum: Mathematics teachers’ beliefs and practices

    OpenAIRE

    Ernest Ampadu

    2013-01-01

    Mathematics has become a ‘critical filter’ in the social, economic and professional development of individuals and forms a core component of the school curriculum in most countries. It is upon this utilitarian nature of mathematics to the individual and the society as a whole that the school mathematics curriculum has been undergoing a number of restructuring over the last three decades. In Ghana, a new mathematics curriculum was introduced in September 2007 which aims at shifting the teachin...

  9. Measurements of electric charge and screening length of microparticles in a plasma sheath

    International Nuclear Information System (INIS)

    Nakamura, Y.; Ishihara, O.

    2009-01-01

    An experiment is described in which microparticles are levitated within a rf sheath above a conducting plate in argon plasma. The microparticles forming a two-dimensional crystal structure are considered to possess Debye screening Coulomb potential φ(r)=(Q/4πε 0 r)exp(-r/λ), where Q is the electric charge, r is distance, and λ is the screening length. When the crystal structure is slanted with an angle θ, a particle experiences a force Mg sin θ, where M is the mass of the particle and g is acceleration due to gravity, which must be equal to the Debye screened Coulomb force from other particles. By changing θ, relations for λ(Q) are measured. The screening length λ and Q are determined uniquely from the crossing points of several relations. The electric charge Q is also estimated from a floating potential measured with a probe. The measured λ is nearly equal to an ion Debye length.

  10. Mathematics for physicists

    CERN Document Server

    Martin, B R

    2015-01-01

    Mathematics for Physicists is a relatively short volume covering all the essential mathematics needed for a typical first degree in physics, from a starting point that is compatible with modern school mathematics syllabuses. Early chapters deliberately overlap with senior school mathematics, to a degree that will depend on the background of the individual reader, who may quickly skip over those topics with which he or she is already familiar. The rest of the book covers the mathematics that is usually compulsory for all students in their first two years of a typical university physics degree, plus a little more. There are worked examples throughout the text, and chapter-end problem sets. Mathematics for Physicists features: * Interfaces with modern school mathematics syllabuses * All topics usually taught in the first two years of a physics degree * Worked examples throughout * Problems in every chapter, with answers to selected questions at the end of the book and full solutions on a website This text will ...

  11. Semantic, executive, and visuospatial abilities in mathematical reasoning of referred college students.

    Science.gov (United States)

    Cirino, Paul T; Morris, Mary K; Morris, Robin D

    2007-03-01

    Semantic retrieval (SR) and executive-procedural (EP), but not visuospatial (VS) skills, have been found to be uniquely predictive of mathematical calculation skills in a sample of clinically referred college students. This study set out to cross-validate these results in an independent sample of clinically referred college students (N = 337) as well as extend them by examination of the contributions of these cognitive domains to math reasoning skills. Results indicate that these cognitive domains were able to predict 30% of the variance in calculation skills and 50% of the variance in math reasoning; however, in both cases, only the domains of semantic retrieval and visuospatial skill contributed uniquely. Differences between studies, and the lack of unique contribution of the EP domain to either type of math skill, may be due to measurement and sampling differences, the degree of shared relations among domains, and the choice of measures that represent the EP domain. Implications and future directions are explored.

  12. Semiotic Scaffolding in Mathematics

    DEFF Research Database (Denmark)

    Johansen, Mikkel Willum; Misfeldt, Morten

    2015-01-01

    This paper investigates the notion of semiotic scaffolding in relation to mathematics by considering its influence on mathematical activities, and on the evolution of mathematics as a research field. We will do this by analyzing the role different representational forms play in mathematical...... cognition, and more broadly on mathematical activities. In the main part of the paper, we will present and analyze three different cases. For the first case, we investigate the semiotic scaffolding involved in pencil and paper multiplication. For the second case, we investigate how the development of new...... in both mathematical cognition and in the development of mathematics itself, but mathematical cognition cannot itself be reduced to the use of semiotic scaffolding....

  13. Thermoregulation in premature infants: A mathematical model.

    Science.gov (United States)

    Pereira, Carina Barbosa; Heimann, Konrad; Czaplik, Michael; Blazek, Vladimir; Venema, Boudewijn; Leonhardt, Steffen

    2016-12-01

    In 2010, approximately 14.9 million babies (11.1%) were born preterm. Because preterm infants suffer from an immature thermoregulatory system they have difficulty maintaining their core body temperature at a constant level. Therefore, it is essential to maintain their temperature at, ideally, around 37°C. For this, mathematical models can provide detailed insight into heat transfer processes and body-environment interactions for clinical applications. A new multi-node mathematical model of the thermoregulatory system of newborn infants is presented. It comprises seven compartments, one spherical and six cylindrical, which represent the head, thorax, abdomen, arms and legs, respectively. The model is customizable, i.e. it meets individual characteristics of the neonate (e.g. gestational age, postnatal age, weight and length) which play an important role in heat transfer mechanisms. The model was validated during thermal neutrality and in a transient thermal environment. During thermal neutrality the model accurately predicted skin and core temperatures. The difference in mean core temperature between measurements and simulations averaged 0.25±0.21°C and that of skin temperature averaged 0.36±0.36°C. During transient thermal conditions, our approach simulated the thermoregulatory dynamics/responses. Here, for all infants, the mean absolute error between core temperatures averaged 0.12±0.11°C and that of skin temperatures hovered around 0.30°C. The mathematical model appears able to predict core and skin temperatures during thermal neutrality and in case of a transient thermal conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. TIMSS 2003: Relating dimensions of mathematics attitude to mathematics achievement

    Directory of Open Access Journals (Sweden)

    Kadijević Đorđe

    2008-01-01

    Full Text Available This study, which used a sample of 137,346 students from thirty three countries that participated in the TIMSS 2003 project in the eighth grade, examined the features of the individual and collective relations of three dimensions of mathematics attitude to mathematics achievement (MA, searching for the dimension mostly related to that achievement. The three dimensions of mathematics attitude were self-confidence in learning mathematics (SCLM, liking mathematics (LM and usefulness of mathematics (UM. By utilizing psychometrically valid and reliable measures of the three dimensions, it was found that: (1 each dimension of mathematics attitude alone was positively related to MA for almost all thirty three countries; (2 SCLM was primarily related to MA for thirty one countries; (3 when the two other dimensions were held constant, SCLM was positively related to MA for thirty three countries, LM was negatively related to MA for thirty countries, whereas UM was not related to MA for twenty one countries; (4 positive collective relationships of SCLM, LM and UM to MA considerably varied from country to country. Implications for research and practice are included.

  15. Uniqueness and non-uniqueness of semigroups generated by singular diffusion operators

    CERN Document Server

    Eberle, Andreas

    1999-01-01

    This book addresses both probabilists working on diffusion processes and analysts interested in linear parabolic partial differential equations with singular coefficients. The central question discussed is whether a given diffusion operator, i.e., a second order linear differential operator without zeroth order term, which is a priori defined on test functions over some (finite or infinite dimensional) state space only, uniquely determines a strongly continuous semigroup on a corresponding weighted Lp space. Particular emphasis is placed on phenomena causing non-uniqueness, as well as on the relation between different notions of uniqueness appearing in analytic and probabilistic contexts.

  16. Comparative study of freshwater crayfish, Cherax spp. (crustaceae: decapoda: parastacidae) from Papua, Indonesia based on length-weight analysis

    Science.gov (United States)

    Hamidah, H.; Abinawanto, Bowolaksono, A.

    2017-07-01

    The freshwater crayfish is one of the most important fish species as the protein resources. Lake and rivers are the habitat of crayfish in Papua. Morphological characters of crayfish, such as color, total body lengths (L) and body weight (W) were influenced by the habitat. The purpose of the study, therefore, was to compare the total body length and body weight as well as the unique color of crayfish from Uter lake (Atinjo district), Seremuk river (Haha village), Baliem river (Pike village; Hubukiak district, Jayawijaya), and Baliem river (Wesaput village; Wesaput district). Length-weight (body length; LB versus wet weight; WWT) relationships were determined for male and female crayfish (Cherax spp.) The length-weight relationships of total individuals was W = 0,022215.L3,159. This regression differed significantly (R2 = 97.5 %) between locations. Both males and females exhibited positive allometric growth as statistical difference was observed in the mean of the wet weight and body length between males and females. Besides, Canonical function was subjected to determine population distribution based on length-weight data.

  17. Philosophy of mathematics

    CERN Document Server

    Gabbay, Dov M; Woods, John

    2009-01-01

    One of the most striking features of mathematics is the fact that we are much more certain about the mathematical knowledge we have than about what mathematical knowledge is knowledge of. Are numbers, sets, functions and groups physical entities of some kind? Are they objectively existing objects in some non-physical, mathematical realm? Are they ideas that are present only in the mind? Or do mathematical truths not involve referents of any kind? It is these kinds of questions that have encouraged philosophers and mathematicians alike to focus their attention on issues in the philosophy of mat

  18. Some unsolved problems in discrete mathematics and mathematical cybernetics

    Energy Technology Data Exchange (ETDEWEB)

    Korshunov, Aleksei D [S.L. Sobolev Institute for Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2009-10-31

    There are many unsolved problems in discrete mathematics and mathematical cybernetics. Writing a comprehensive survey of such problems involves great difficulties. First, such problems are rather numerous and varied. Second, they greatly differ from each other in degree of completeness of their solution. Therefore, even a comprehensive survey should not attempt to cover the whole variety of such problems; only the most important and significant problems should be reviewed. An impersonal choice of problems to include is quite hard. This paper includes 13 unsolved problems related to combinatorial mathematics and computational complexity theory. The problems selected give an indication of the author's studies for 50 years; for this reason, the choice of the problems reviewed here is, to some extent, subjective. At the same time, these problems are very difficult and quite important for discrete mathematics and mathematical cybernetics. Bibliography: 74 items.

  19. Mathematical Models of Elementary Mathematics Learning and Performance. Final Report.

    Science.gov (United States)

    Suppes, Patrick

    This project was concerned with the development of mathematical models of elementary mathematics learning and performance. Probabilistic finite automata and register machines with a finite number of registers were developed as models and extensively tested with data arising from the elementary-mathematics strand curriculum developed by the…

  20. PhiMSAMP: philosophy of mathematics: sociological aspects and mathematical practice

    NARCIS (Netherlands)

    Löwe, B.; Müller, T.

    2010-01-01

    Philosophy of mathematics is moving in a new direction: away from a foundationalism in terms of formal logic and traditional ontology, and towards a broader range of approaches that are united by a focus on mathematical practice. The scientific research network PhiMSAMP (Philosophy of Mathematics:

  1. Mathematical Creativity and Mathematical Aptitude: A Cross-Lagged Panel Analysis

    Science.gov (United States)

    Tyagi, Tarun Kumar

    2016-01-01

    Cross-lagged panel correlation (CLPC) analysis has been used to identify causal relationships between mathematical creativity and mathematical aptitude. For this study, 480 8th standard students were selected through a random cluster technique from 9 intermediate and high schools of Varanasi, India. Mathematical creativity and mathematical…

  2. A synthesis of mathematical and cognitive performances of students with mathematics learning disabilities.

    Science.gov (United States)

    Shin, Mikyung; Bryant, Diane Pedrotty

    2015-01-01

    The purpose of this study was to synthesize the findings from 23 articles that compared the mathematical and cognitive performances of students with mathematics learning disabilities (LD) to (a) students with LD in mathematics and reading, (b) age- or grade-matched students with no LD, and (c) mathematical-ability-matched younger students with no LD. Overall results revealed that students with mathematics LD exhibited higher word problem-solving abilities and no significant group differences on working memory, long-term memory, and metacognition measures compared to students with LD in mathematics and reading. Findings also revealed students with mathematics LD demonstrated significantly lower performance compared to age- or grade-matched students with no LD on both mathematical and cognitive measures. Comparison between students with mathematics LD and younger students with no LD revealed mixed outcomes on mathematical measures and generally no significant group differences on cognitive measures. © Hammill Institute on Disabilities 2013.

  3. Effects of Gender, Mathematics Anxiety and Achievement Motivation on College Students’ Achievement in Mathematics

    Directory of Open Access Journals (Sweden)

    Ajogbeje Oke James

    2013-07-01

    Full Text Available The urge to excel or perform maximally in mathematics varies from individual to individual because achievement motivation is often developed or learnt during socialization and learning experiences. The study examined the relationship between College of Education students’ achievement motivation and mathematics achievement, correlation coefficient between mathematics anxiety and college students’ achievement motivation as well as mathematics anxiety and mathematics achievement. The sample, 268 College of Education students offering mathematics as one of their subject combination, was selected using purposive sampling techniques. Three research instruments namely: Mathematics Anxiety Scale (MAS, Achievement Motivation Scale (AMS and Mathematics Achievement Test (MAT were used to collect data for the study. Data collected for the study were analyzed using correlational analysis and ANOVA. The results showed that a significantly low negative correlation coefficient existed between mathematics anxiety and mathematics achievement. There is a negative and significant correlation coefficient between mathematics anxiety and achievement motivation. Similarly, a positive and significant correlation coefficient also exists between achievement motivation and mathematics achievement. Based on the findings of the study, it was recommended that mathematics teachers should adopt activity based strategies and conducive learning environment in order to reduce college students’ anxieties in mathematics learning.

  4. The Mathematics Education Debates: Preparing Students to Become Professionally Active Mathematics Teachers

    Science.gov (United States)

    Munakata, Mika

    2010-01-01

    The Mathematics Education Debate is an assignment designed for and implemented in an undergraduate mathematics methods course for prospective secondary school mathematics teachers. For the assignment, students read and analyze current research and policy reports related to mathematics education, prepare and present their positions, offer…

  5. Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving

    Science.gov (United States)

    Ayllón, María F.; Gómez, Isabel A.; Ballesta-Claver, Julio

    2016-01-01

    This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas), flexibility (range of ideas),…

  6. "Mathematics Is Like a Lion": Elementary Students' Beliefs about Mathematics

    Science.gov (United States)

    Markovits, Zvia; Forgasz, Helen

    2017-01-01

    The aim of this study was to explore the beliefs of elementary school students about mathematics and about themselves as mathematics learners. The participants, Israeli grade 4 and grade 6 students, completed questionnaires. Using an "animal metaphor" to tap beliefs, some students perceived mathematics as difficult and complicated, while…

  7. Authenticity of Mathematical Modeling

    Science.gov (United States)

    Tran, Dung; Dougherty, Barbara J.

    2014-01-01

    Some students leave high school never quite sure of the relevancy of the mathematics they have learned. They fail to see links between school mathematics and the mathematics of everyday life that requires thoughtful decision making and often complex problem solving. Is it possible to bridge the gap between school mathematics and the mathematics in…

  8. Constructing an optimal facility layout to maximize adjacency as a function of common boundary length

    Science.gov (United States)

    Ghassemi Tari, Farhad; Neghabi, Hossein

    2018-03-01

    An effective facility layout implies that departments with high flow are laid adjacent. However, in the case of a very narrow boundary length between the neighbouring departments, the adjacency would actually be useless. In traditional layout design methods, a score is generally assigned independent of the department's boundary length. This may result in a layout design with a restricted material flow. This article proposes a new concept of adjacency in which the department pairs are laid adjacent with a wider path. To apply this concept, a shop with unequal rectangular departments is contemplated and a mathematical programming model with the objective of maximizing the sum of the adjacency degrees is proposed. A computational experiment is conducted to demonstrate the efficiency of the layout design. It is demonstrated that the new concept provides a more efficient and a more realistic layout design.

  9. Pre-Service Secondary Mathematics Teachers' Reflections on Good and Bad Mathematics Teaching

    Science.gov (United States)

    Dayal, Hem Chand

    2013-01-01

    Researchers suggest that teachers' beliefs about teaching are strongly influenced by their personal experiences with mathematics. This study aimed to explore Pacific Island pre-service secondary mathematics teachers' perceptions about good and bad mathematics teachers. Thirty pre-service teachers, enrolled in a mathematics teaching methods course…

  10. The Effect of Realistic Mathematics Education Approach on Students' Achievement And Attitudes Towards Mathematics

    Directory of Open Access Journals (Sweden)

    Effandi Zakaria

    2017-02-01

    Full Text Available This study was conducted to determine the effect of Realistic Mathematics Education Approach on mathematics achievement and student attitudes towards mathematics. This study also sought determine the relationship between student achievement and attitudes towards mathematics. This study used a quasi-experimental design conducted on 61 high school students at SMA Unggul Sigli. Students were divided into two groups, the treatment group $(n = 30$ namely, the Realistic Mathematics Approach group (PMR and the control group $(n = 31$ namely, the traditional group. This study was conducted for six weeks. The instruments used in this study were the achievement test and the attitudes towards mathematics questionnaires. Data were analyzed using SPSS. To determine the difference in mean achievement and attitudes between the two groups, data were analyzed using one-way ANOVA test. The result showed significant differences between the Realistic Mathematics Approach and the traditional approach in terms of achievement. The study showed no significant difference between the Realistic Mathematics Approach and the traditional approach in term of attitudes towards mathematics. It can be concluded that the use of realistic mathematics education approach enhanced students' mathematics achievement, but not attitudes towards mathematics. The Realistic Mathematics Education Approach encourage students to participate actively in the teaching and learning of mathematics. Thus, Realistic Mathematics Education Approach is an appropriate methods to improve the quality of teaching and learning process.

  11. [Uniqueness seeking behavior as a self-verification: an alternative approach to the study of uniqueness].

    Science.gov (United States)

    Yamaoka, S

    1995-06-01

    Uniqueness theory explains that extremely high perceived similarity between self and others evokes negative emotional reactions and causes uniqueness seeking behavior. However, the theory conceptualizes similarity so ambiguously that it appears to suffer from low predictive validity. The purpose of the current article is to propose an alternative explanation of uniqueness seeking behavior. It posits that perceived uniqueness deprivation is a threat to self-concepts, and therefore causes self-verification behavior. Two levels of self verification are conceived: one based on personal categorization and the other on social categorization. The present approach regards uniqueness seeking behavior as the personal-level self verification. To test these propositions, a 2 (very high or moderate similarity information) x 2 (with or without outgroup information) x 2 (high or low need for uniqueness) between-subject factorial-design experiment was conducted with 95 university students. Results supported the self-verification approach, and were discussed in terms of effects of uniqueness deprivation, levels of self-categorization, and individual differences in need for uniqueness.

  12. Experiencing mathematics what do we do, when we do mathematics?

    CERN Document Server

    Hersh, Reuben

    2014-01-01

    The question "What am I doing?" haunts many creative people, researchers, and teachers. Mathematics, poetry, and philosophy can look from the outside sometimes as ballet en pointe, and at other times as the flight of the bumblebee. Reuben Hersh looks at mathematics from the inside; he collects his papers written over several decades, their edited versions, and new chapters in his book Experiencing Mathematics, which is practical, philosophical, and in some places as intensely personal as Swann's madeleine. -Yuri Manin, Max Planck Institute, Bonn, Germany What happens when mid-career a mathemat

  13. Racial Differences in Mathematics Test Scores for Advanced Mathematics Students

    Science.gov (United States)

    Minor, Elizabeth Covay

    2016-01-01

    Research on achievement gaps has found that achievement gaps are larger for students who take advanced mathematics courses compared to students who do not. Focusing on the advanced mathematics student achievement gap, this study found that African American advanced mathematics students have significantly lower test scores and are less likely to be…

  14. Primary School Pre-Service Mathematics Teachers' Views on Mathematical Modeling

    Science.gov (United States)

    Karali, Diren; Durmus, Soner

    2015-01-01

    The current study aimed to identify the views of pre-service teachers, who attended a primary school mathematics teaching department but did not take mathematical modeling courses. The mathematical modeling activity used by the pre-service teachers was developed with regards to the modeling activities utilized by Lesh and Doerr (2003) in their…

  15. Why do early mathematics skills predict later reading? The role of mathematical language.

    Science.gov (United States)

    Purpura, David J; Logan, Jessica A R; Hassinger-Das, Brenna; Napoli, Amy R

    2017-09-01

    A growing body of evidence indicates that the development of mathematics and literacy skills is highly related. The importance of literacy skills-specifically language-for mathematics development has been well rationalized. However, despite several prominent studies indicating that mathematics skills are highly predictive of literacy development, the reason for this relation is not well understood. The purpose of this study was to identify how and why early mathematics is predictive of early literacy development. Participants included 125 preschool children 3-5 years old (M = 4 years 3 months). Participants were assessed on mathematics, literacy, and cognitive measures in both the fall and spring of their preschool year. Mediation analyses indicated that the relation between early mathematics and literacy skills is mediated by children's mathematical language skills. These findings suggest that, in prior research identifying mathematical performance as a significant predictor of later literacy skills, mathematical performance may have acted only as a proxy measure for more complex language skills such as those assessed on a mathematical language measure. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. An Invitation to Mathematics

    CERN Document Server

    Schleicher, Dierk

    2011-01-01

    This "Invitation to Mathematics" consists of 14 contributions, many from the world's leading mathematicians, which introduce the readers to exciting aspects of current mathematical research. The contributions are as varied as the personalities of active mathematicians, but together they show mathematics as a rich and lively field of research. The contributions are written for interested students at the age of transition between high school and university who know high school mathematics and perhaps competition mathematics and who want to find out what current research mathematics is

  17. The Mathematical Event: Mapping the Axiomatic and the Problematic in School Mathematics

    Science.gov (United States)

    de Freitas, Elizabeth

    2013-01-01

    Traditional philosophy of mathematics has been concerned with the nature of mathematical objects rather than events. This traditional focus on reified objects is reflected in dominant theories of learning mathematics whereby the learner is meant to acquire familiarity with ideal mathematical objects, such as number, polygon, or tangent. I argue…

  18. Examining the Impact of Acculturation and Perceived Social Support on Mathematics Achievement among Latino/a High School Students

    Science.gov (United States)

    Neseth, Hans; Savage, Todd A.; Navarro, Rachel

    2009-01-01

    The current migration of Latino/as into the United States has many schools struggling to meet the unique academic needs of this particular group of students. Previous research suggests level of acculturation and perceived social support impact mathematics achievement amongst Latino/a students. The current study employed hierarchical and…

  19. Magical mathematics the mathematical ideas that animate great magic tricks

    CERN Document Server

    Diaconis, Persi

    2012-01-01

    Magical Mathematics reveals the secrets of amazing, fun-to-perform card tricks--and the profound mathematical ideas behind them--that will astound even the most accomplished magician. Persi Diaconis and Ron Graham provide easy, step-by-step instructions for each trick, explaining how to set up the effect and offering tips on what to say and do while performing it. Each card trick introduces a new mathematical idea, and varying the tricks in turn takes readers to the very threshold of today's mathematical knowledge. For example, the Gilbreath Principle--a fantastic effect where the cards remain in control despite being shuffled--is found to share an intimate connection with the Mandelbrot set. Other card tricks link to the mathematical secrets of combinatorics, graph theory, number theory, topology, the Riemann hypothesis, and even Fermat's last theorem.

  20. Mathematical modelling

    CERN Document Server

    2016-01-01

    This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.

  1. Mathematical modeling

    CERN Document Server

    Eck, Christof; Knabner, Peter

    2017-01-01

    Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.

  2. On the growth and dissemination laws in a mathematical model of metastatic growth

    Directory of Open Access Journals (Sweden)

    Benzekry Sébastien

    2015-01-01

    Full Text Available Metastasis represents one of the main clinical challenge in cancer treatment since it is associated with the majority of deaths. Recent technological advances allow quantification of the dynamics of the process by means of noninvasive techniques such as longitudinal tracking of bioluminescent cells. The metastatic process was simplified here into two essential components – dissemination and colonization – which were mathematically formalized in terms of simple quantitative laws. The resulting mathematical model was confronted to in vivo experimental data of spontaneous metastasis after primary tumor resection. We discuss how much information can be inferred from confrontation of theories to the data with emphasis on identifiability issues. It is shown that two mutually exclusive assumptions for the secondary growth law (namely same or different from the primary tumor growth law could fit equally well the data. Similarly, the fractal dimension coeffcient in the dissemination law could not be uniquely determined from data on total metastatic burden only. Together, these results delimitate the range of information that can be recovered from fitting data of metastatic growth to already simplified mathematical models.

  3. Secondary Teachers’ Mathematics-related Beliefs and Knowledge about Mathematical Problem-solving

    Science.gov (United States)

    E Siswono, T. Y.; Kohar, A. W.; Hartono, S.

    2017-02-01

    This study investigates secondary teachers’ belief about the three mathematics-related beliefs, i.e. nature of mathematics, teaching mathematics, learning mathematics, and knowledge about mathematical problem solving. Data were gathered through a set of task-based semi-structured interviews of three selected teachers with different philosophical views of teaching mathematics, i.e. instrumental, platonist, and problem solving. Those teachers were selected from an interview using a belief-related task from purposively selected teachers in Surabaya and Sidoarjo. While the interviews about knowledge examine teachers’ problem solving content and pedagogical knowledge, the interviews about beliefs examine their views on several cases extracted from each of such mathematics-related beliefs. Analysis included the categorization and comparison on each of beliefs and knowledge as well as their interaction. Results indicate that all the teachers did not show a high consistency in responding views of their mathematics-related beliefs, while they showed weaknesses primarily on problem solving content knowledge. Findings also point out that teachers’ beliefs have a strong relationship with teachers’ knowledge about problem solving. In particular, the instrumental teacher’s beliefs were consistent with his insufficient knowledge about problem-solving, while both platonist and problem-solving teacher’s beliefs were consistent with their sufficient knowledge of either content or pedagogical problem solving.

  4. Mathematics Connection: Contact

    African Journals Online (AJOL)

    Principal Contact. Dr. Kofi Mereku Executive Editor Department of Mathematics Education, UCE Mathematical Association of Ghana, C/o Department of Mathematics Education University College of Education of Winneba P. O. Box 25, Winneba, Ghana Phone: +233244961318. Email: dkmereku@uew.edu.gh ...

  5. Middle School Mathematics Students' Perspectives on the Study of Mathematics

    Science.gov (United States)

    Vaughn, Christy H.

    2012-01-01

    This qualitative study addressed the perceptions toward the study of mathematics by middle school students who had formerly been in a remedial mathematics program. The purpose of the study was to explore the past experiences of nine students in order to determine what is needed for them to feel successful in mathematics. The conceptual framework…

  6. Mathematics disorder

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001534.htm Mathematics disorder To use the sharing features on this page, please enable JavaScript. Mathematics disorder is a condition in which a child's ...

  7. Do Branch Lengths Help to Locate a Tree in a Phylogenetic Network?

    Science.gov (United States)

    Gambette, Philippe; van Iersel, Leo; Kelk, Steven; Pardi, Fabio; Scornavacca, Celine

    2016-09-01

    Phylogenetic networks are increasingly used in evolutionary biology to represent the history of species that have undergone reticulate events such as horizontal gene transfer, hybrid speciation and recombination. One of the most fundamental questions that arise in this context is whether the evolution of a gene with one copy in all species can be explained by a given network. In mathematical terms, this is often translated in the following way: is a given phylogenetic tree contained in a given phylogenetic network? Recently this tree containment problem has been widely investigated from a computational perspective, but most studies have only focused on the topology of the phylogenies, ignoring a piece of information that, in the case of phylogenetic trees, is routinely inferred by evolutionary analyses: branch lengths. These measure the amount of change (e.g., nucleotide substitutions) that has occurred along each branch of the phylogeny. Here, we study a number of versions of the tree containment problem that explicitly account for branch lengths. We show that, although length information has the potential to locate more precisely a tree within a network, the problem is computationally hard in its most general form. On a positive note, for a number of special cases of biological relevance, we provide algorithms that solve this problem efficiently. This includes the case of networks of limited complexity, for which it is possible to recover, among the trees contained by the network with the same topology as the input tree, the closest one in terms of branch lengths.

  8. 1st Joint India-AMS Meeting in Mathematics : History of Indian Mathematics at the AMS-India Mathematics Conference

    CERN Document Server

    Sridharan, R; Srinivas, M

    2005-01-01

    This volume consists of a collection of articles based on lectures given by scholars from India, Europe and USA at the sessions on 'History of Indian Mathematics' at the AMS-India mathematics conference in Bangalore during December 2003. These articles cover a wide spectrum of themes in Indian mathematics. They begin with the mathematics of the ancient period dealing with Vedic Prosody and Buddhist Logic, move on to the work of Brahmagupta, of Bhaskara, and that of the mathematicians of the Kerala school of the classical and medieval period, and end with the work of Ramanaujan, and Indian contributions to Quantum Statistics during the modern era. The volume should be of value to those interested in the history of mathematics.

  9. Mathematical concepts

    CERN Document Server

    Jost, Jürgen

    2015-01-01

    The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas are carefully motivated, explained and illustrated by examples so that many of the more technical proofs can be omitted. The book can therefore be used: ·         simply as an overview of the panorama of mathematical structures and the relations between them, to be supplemented by more detailed texts whenever you want to acquire a working knowledge of some structure ·         by itself as a first introduction to abstract mathematics ·         together with existing textbooks, to put their results into a more general perspective ·         to gain a new and hopefully deeper perspective after having studied such textbooks Mathematical Concepts has a broader scope and is less detaile...

  10. Mathematical models of human cerebellar development in the fetal period.

    Science.gov (United States)

    Dudek, Krzysztof; Nowakowska-Kotas, Marta; Kędzia, Alicja

    2018-04-01

    The evaluation of cerebellar growth in the fetal period forms a part of a widely used examination to identify any features of abnormalities in early stages of human development. It is well known that the development of anatomical structures, including the cerebellum, does not always follow a linear model of growth. The aim of the study was to analyse a variety of mathematical models of human cerebellar development in fetal life to determine their adequacy. The study comprised 101 fetuses (48 males and 53 females) between the 15th and 28th weeks of fetal life. The cerebellum was exposed and measurements of the vermis and hemispheres were performed, together with statistical analyses. The mathematical model parameters of fetal growth were assessed for crown-rump length (CRL) increases, transverse cerebellar diameter and ventrodorsal dimensions of the cerebellar vermis in the transverse plane, and rostrocaudal dimensions of the cerebellar vermis and hemispheres in the frontal plane. A variety of mathematical models were applied, including linear and non-linear functions. Taking into consideration the variance between models and measurements, as well as correlation parameters, the exponential and Gompertz models proved to be the most suitable for modelling cerebellar growth in the second and third trimesters of pregnancy. However, the linear model gave a satisfactory approximation of cerebellar growth, especially in older fetuses. The proposed models of fetal cerebellar growth constructed on the basis of anatomical examination and objective mathematical calculations could be useful in the estimation of fetal development. © 2018 Anatomical Society.

  11. The length-weight and length-length relationships of bluefish, Pomatomus saltatrix (Linnaeus, 1766) from Samsun, middle Black Sea region

    OpenAIRE

    Özpiçak, Melek; Saygın, Semra; Polat, Nazmi

    2017-01-01

    In this study, length-weight relationship (LWR) and length-length relationship (LLR) of bluefish,Pomatomus saltatrix were determined. A total of 125 specimens were sampled from Samsun, themiddle Black Sea in 2014 fishing season. Bluefish specimens were monthly collected fromcommercial fishing boats from October to December 2014. All captured individuals (N=125) weremeasured to the nearest 0.1 cm for total, fork and standard lengths. The weight of each fish (W)was recorded to the nearest 0.01 ...

  12. Teaching secondary mathematics

    CERN Document Server

    Rock, David

    2013-01-01

    Solidly grounded in up-to-date research, theory and technology,?Teaching Secondary Mathematics?is a practical, student-friendly, and popular text for secondary mathematics methods courses. It provides clear and useful approaches for mathematics teachers, and shows how concepts typically found in a secondary mathematics curriculum can be taught in a positive and encouraging way. The thoroughly revised fourth edition combines this pragmatic approach with truly innovative and integrated technology content throughout. Synthesized content between the book and comprehensive companion websi

  13. DISCRETE MATHEMATICS/NUMBER THEORY

    OpenAIRE

    Mrs. Manju Devi*

    2017-01-01

    Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics such as integers, graphs, and statements do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus and analysis. Discrete objects can often be enumerated by ...

  14. Mathematics Teaching Today

    Science.gov (United States)

    Martin, Tami S.; Speer, William R.

    2009-01-01

    This article describes features, consistent messages, and new components of "Mathematics Teaching Today: Improving Practice, Improving Student Learning" (NCTM 2007), an updated edition of "Professional Standards for Teaching Mathematics" (NCTM 1991). The new book describes aspects of high-quality mathematics teaching; offers a model for observing,…

  15. Perspectives on mathematical practices bringing together philosophy of mathematics, sociology of mathematics, and mathematics education

    CERN Document Server

    van Kerkhove, Bart

    2007-01-01

    Philosophy of mathematics today has transformed into a very complex network of diverse ideas, viewpoints, and theories. Sometimes the emphasis is on the ""classical"" foundational work (often connected with the use of formal logical methods), sometimes on the sociological dimension of the mathematical research community and the ""products"" it produces, then again on the education of future mathematicians and the problem of how knowledge is or should be transmitted from one generation to the next. The editors of this book felt the urge, first of all, to bring together the widest variety of aut

  16. Making Sense with Manipulatives: Developing Mathematical Experiences for Early Childhood Teachers

    OpenAIRE

    Furman, Cara E.

    2017-01-01

    This paper is premised on the fact that math can be an important tool in helping people make sense of the world. Math offers a unique and particular lens, helping people to focus on a range of characteristics from shape and amount to the relationship between the general and the particular. To promote math as a tool for making sense, early childhood math instruction ought to teach it in a manner that helps children make sense of mathematical concepts. Specifically, I argue here that manipul...

  17. Developmental Mathematics Students: Who are They and What is Their Mathematics Self-Efficacy?

    OpenAIRE

    Baxter, Ryan; Bates, Alan; Al-Bataineh, Adel Tawfig

    2017-01-01

    The purpose of this quantitative study was to determine differences indevelopmental mathematics students’ self-efficacy within the demographic datafrom the survey. Data from a sample of 240 Intermediate Algebra students at asingle four-year university using the Mathematics Self-Efficacy Resultsindicate that males possess higher levels of mathematics self-efficacy andconfidence with their mathematical abilities than females. Students whocompleted a lower developmental mathematics course prior ...

  18. Algorithmic mathematics

    CERN Document Server

    Hougardy, Stefan

    2016-01-01

    Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.

  19. Boundary value problems of finite elasticity local theorems on existence, uniqueness, and analytic dependence on data

    CERN Document Server

    Valent, Tullio

    1988-01-01

    In this book I present, in a systematic form, some local theorems on existence, uniqueness, and analytic dependence on the load, which I have recently obtained for some types of boundary value problems of finite elasticity. Actually, these results concern an n-dimensional (n ~ 1) formal generalization of three-dimensional elasticity. Such a generalization, be­ sides being quite spontaneous, allows us to consider a great many inter­ esting mathematical situations, and sometimes allows us to clarify certain aspects of the three-dimensional case. Part of the matter presented is unpublished; other arguments have been only partially published and in lesser generality. Note that I concentrate on simultaneous local existence and uniqueness; thus, I do not deal with the more general theory of exis­ tence. Moreover, I restrict my discussion to compressible elastic bodies and I do not treat unilateral problems. The clever use of the inverse function theorem in finite elasticity made by STOPPELLI [1954, 1957a, 1957b]...

  20. Telomere length analysis.

    Science.gov (United States)

    Canela, Andrés; Klatt, Peter; Blasco, María A

    2007-01-01

    Most somatic cells of long-lived species undergo telomere shortening throughout life. Critically short telomeres trigger loss of cell viability in tissues, which has been related to alteration of tissue function and loss of regenerative capabilities in aging and aging-related diseases. Hence, telomere length is an important biomarker for aging and can be used in the prognosis of aging diseases. These facts highlight the importance of developing methods for telomere length determination that can be employed to evaluate telomere length during the human aging process. Telomere length quantification methods have improved greatly in accuracy and sensitivity since the development of the conventional telomeric Southern blot. Here, we describe the different methodologies recently developed for telomere length quantification, as well as their potential applications for human aging studies.

  1. Pulp regeneration in a full-length human tooth root using a hierarchical nanofibrous microsphere system.

    Science.gov (United States)

    Li, Xiangwei; Ma, Chi; Xie, Xiaohua; Sun, Hongchen; Liu, Xiaohua

    2016-04-15

    While pulp regeneration using tissue engineering strategy has been explored for over a decade, successful regeneration of pulp tissues in a full-length human root with a one-end seal that truly simulates clinical endodontic treatment has not been achieved. To address this challenge, we designed and synthesized a unique hierarchical growth factor-loaded nanofibrous microsphere scaffolding system. In this system, vascular endothelial growth factor (VEGF) binds with heparin and is encapsulated in heparin-conjugated gelatin nanospheres, which are further immobilized in the nanofibers of an injectable poly(l-lactic acid) (PLLA) microsphere. This hierarchical microsphere system not only protects the VEGF from denaturation and degradation, but also provides excellent control of its sustained release. In addition, the nanofibrous PLLA microsphere integrates the extracellular matrix-mimicking architecture with a highly porous injectable form, efficiently accommodating dental pulp stem cells (DPSCs) and supporting their proliferation and pulp tissue formation. Our in vivo study showed the successful regeneration of pulp-like tissues that fulfilled the entire apical and middle thirds and reached the coronal third of the full-length root canal. In addition, a large number of blood vessels were regenerated throughout the canal. For the first time, our work demonstrates the success of pulp tissue regeneration in a full-length root canal, making it a significant step toward regenerative endodontics. The regeneration of pulp tissues in a full-length tooth root canal has been one of the greatest challenges in the field of regenerative endodontics, and one of the biggest barriers for its clinical application. In this study, we developed a unique approach to tackle this challenge, and for the first time, we successfully regenerated living pulp tissues in a full-length root canal, making it a significant step toward regenerative endodontics. This study will make positive scientific

  2. Handbook of mathematics

    CERN Document Server

    Kuipers, L

    1969-01-01

    International Series of Monographs in Pure and Applied Mathematics, Volume 99: Handbook of Mathematics provides the fundamental mathematical knowledge needed for scientific and technological research. The book starts with the history of mathematics and the number systems. The text then progresses to discussions of linear algebra and analytical geometry including polar theories of conic sections and quadratic surfaces. The book then explains differential and integral calculus, covering topics, such as algebra of limits, the concept of continuity, the theorem of continuous functions (with examp

  3. Developmental Mathematics Students: Who are They and What is Their Mathematics Self-Efficacy?

    OpenAIRE

    Ryan Baxter; Alan Bates; Adel Tawfig Al-Bataineh

    2016-01-01

    The purpose of this quantitative study was to determine differences in developmental mathematics students’ self-efficacy within the demographic data from the survey. Data from a sample of 240 Intermediate Algebra students at a single four-year university using the Mathematics Self-Efficacy Results indicate that males possess higher levels of mathematics self-efficacy and confidence with their mathematical abilities than females. Students who completed a lower developmental mathematics course ...

  4. Mathematical physics

    CERN Document Server

    Geroch, Robert

    1985-01-01

    Mathematical Physics is an introduction to such basic mathematical structures as groups, vector spaces, topological spaces, measure spaces, and Hilbert space. Geroch uses category theory to emphasize both the interrelationships among different structures and the unity of mathematics. Perhaps the most valuable feature of the book is the illuminating intuitive discussion of the ""whys"" of proofs and of axioms and definitions. This book, based on Geroch's University of Chicago course, will be especially helpful to those working in theoretical physics, including such areas as relativity, particle

  5. Applied mathematics

    CERN Document Server

    Logan, J David

    2013-01-01

    Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

  6. Speed mathematics

    CERN Document Server

    Handley, Bill

    2012-01-01

    This new, revised edition of the bestselling Speed Mathematics features new chapters on memorising numbers and general information, calculating statistics and compound interest, square roots, logarithms and easy trig calculations. Written so anyone can understand, this book teaches simple strategies that will enable readers to make lightning-quick calculations. People who excel at mathematics use better strategies than the rest of us; they are not necessarily more intelligent. With Speed Mathematics you'll discover methods to make maths easy and fun. This book is perfect for stud

  7. Masculinities in mathematics

    CERN Document Server

    Mendick, Heather

    2006-01-01

    The study of mathematics, with other ''gendered'' subjects such as science and engineering, usually attracts more male than female pupils. This book explores this phenomenon, addressing the important question of why more boys than girls choose to study mathematics. It illuminates what studying mathematics means for both students and teachers.

  8. Resonance chains in open systems, generalized zeta functions and clustering of the length spectrum

    International Nuclear Information System (INIS)

    Barkhofen, S; Faure, F; Weich, T

    2014-01-01

    In many non-integrable open systems in physics and mathematics, resonances have been found to be surprisingly ordered along curved lines in the complex plane. In this article we provide a unifying approach to these resonance chains by generalizing dynamical zeta functions. By means of a detailed numerical study we show that these generalized zeta functions explain the mechanism that creates the chains of quantum resonance and classical Ruelle resonances for three-disk systems as well as geometric resonances on Schottky surfaces. We also present a direct system-intrinsic definition of the continuous lines on which the resonances are strung together as a projection of an analytic variety. Additionally, this approach shows that the existence of resonance chains is directly related to a clustering of the classical length spectrum on multiples of a base length. Finally, this link is used to construct new examples where several different structures of resonance chains coexist. (paper)

  9. Mathematics at University

    DEFF Research Database (Denmark)

    Winsløw, Carl

    2015-01-01

    Mathematics is studied in universities by a large number of students. At the same time it is a field of research for a (smaller) number of university teachers. What relations, if any, exist between university research and teaching of mathematics? Can research “support” teaching? What research...... and what teaching? In this presentation we propose a theoretical framework to study these questions more precisely, based on the anthropological theory of didactics. As a main application, the links between the practices of mathematical research and university mathematics teaching are examined...

  10. Mathematics in civilization

    CERN Document Server

    Resnikoff, Howard L

    2015-01-01

    Space flight, computers, lasers, and information technology ― these are but a few examples of the spectacular growth, development, and far-reaching applications of mathematics. But what of the field's past? Upon which intellectual milestones were the foundations of modern mathematics constructed? How has our comprehension of the physical universe, language, and the nature of thought itself been influenced and informed by the developments of mathematics through the ages?This lucid presentation examines how mathematics shaped and was shaped by the course of human events. In a format suited to co

  11. Mathematics in India

    CERN Document Server

    Plofker, Kim

    2009-01-01

    Based on extensive research in Sanskrit sources, Mathematics in India chronicles the development of mathematical techniques and texts in South Asia from antiquity to the early modern period. Kim Plofker reexamines the few facts about Indian mathematics that have become common knowledge--such as the Indian origin of Arabic numerals--and she sets them in a larger textual and cultural framework. The book details aspects of the subject that have been largely passed over in the past, including the relationships between Indian mathematics and astronomy, and their cross-fertilizations with Islamic sc

  12. Meaning in mathematics

    CERN Document Server

    2011-01-01

    Is mathematics a highly sophisticated intellectual game in which the adepts display their skill by tackling invented problems, or are mathematicians engaged in acts of discovery as they explore an independent realm of mathematical reality? Why does this seemingly abstract discipline provide the key to unlocking the deep secrets of the physical universe? How one answers these questions will significantly influence metaphysical thinking about reality. This book is intended to fill a gap between popular 'wonders of mathematics' books and the technical writings of the philosophers of mathematics.

  13. The Use of the History of Mathematics in the Teaching Pre-Service Mathematics Teachers

    Science.gov (United States)

    Galante, Dianna

    2014-01-01

    Many scholars have written about using the history of mathematics in the teaching of pre-service mathematics teachers. For this study, pre-service mathematics teachers developed an electronic journal of reflections based on presentations in the history of mathematics in a secondary mathematics education course. The main purpose of the…

  14. Construction of mathematical knowledge using graphic calculators (CAS) in the mathematics classroom

    Science.gov (United States)

    Hitt, Fernando

    2011-09-01

    Mathematics education researchers are asking themselves about why technology has impacted heavily on the social environment and not in the mathematics classroom. The use of technology in the mathematics classroom has not had the expected impact, as it has been its use in everyday life (i.e. cell phone). What about teachers' opinions? Mathematics teachers can be divided into three categories: those with a boundless overflow (enthusiasm) who want to use the technology without worrying much about the construction of mathematical concepts, those who reject outright the use of technology because they think that their use inhibits the development of mathematical skills and others that reflect on the balance that must exist between paper-pencil activities and use of technology. The mathematics teacher, by not having clear examples that support this last option about the balance of paper-pencil activities and technology, opt for one of the extreme positions outlined above. In this article, we show the results of research on a methodology based on collaborative learning (ACODESA) in the training of mathematics teachers in secondary schools and implementation of activities in an environment of paper-pencil and CAS in the mathematics classroom. We also note that with the development of technology on the use of electronic tablets and interactive whiteboards, these activities will take on greater momentum in the near future.

  15. Mathematical Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Glimm, J.

    2009-10-14

    Progress for the past decade or so has been extraordinary. The solution of Fermat's Last Theorem [11] and of the Poincare Conjecture [1] have resolved two of the most outstanding challenges to mathematics. For both cases, deep and advanced theories and whole subfields of mathematics came into play and were developed further as part of the solutions. And still the future is wide open. Six of the original seven problems from the Clay Foundation challenge remain open, the 23 DARPA challenge problems are open. Entire new branches of mathematics have been developed, including financial mathematics and the connection between geometry and string theory, proposed to solve the problems of quantized gravity. New solutions of the Einstein equations, inspired by shock wave theory, suggest a cosmology model which fits accelerating expansion of the universe possibly eliminating assumptions of 'dark matter'. Intellectual challenges and opportunities for mathematics are greater than ever. The role of mathematics in society continues to grow; with this growth comes new opportunities and some growing pains; each will be analyzed here. We see a broadening of the intellectual and professional opportunities and responsibilities for mathematicians. These trends are also occuring across all of science. The response can be at the level of the professional societies, which can work to deepen their interactions, not only within the mathematical sciences, but also with other scientific societies. At a deeper level, the choices to be made will come from individual mathematicians. Here, of course, the individual choices will be varied, and we argue for respect and support for this diversity of responses. In such a manner, we hope to preserve the best of the present while welcoming the best of the new.

  16. Empowering Mathematical Practices

    Science.gov (United States)

    Coomes, Jacqueline; Lee, Hyung Sook

    2017-01-01

    Mathematics teachers want to empower students as mathematical thinkers and doers (NCTM 2000). Specific ways of thinking and doing mathematics were described in the Process Standards (NCTM 2000); they were further characterized as habits of mind (Mark, Goldenberg, and Sword 2010); and more recently, they were detailed in the Common Core's Standards…

  17. Learners with learning difficulties in mathematics : attitudes, curriculum and methods of teaching mathematics

    OpenAIRE

    2012-01-01

    D.Ed. The aim of this theses is to find out whether there is any relationship between learners' attitudes and learning difficulties in mathematics: To investigate whether learning difficulties in mathematics are associated with learners' gender. To establish the nature of teachers' perceptions of the learning problem areas in the mathematics curriculum. To find out about the teachers' views on the methods of teaching mathematics, resources, learning of mathematics, extra curricular activit...

  18. Studies in Mathematics, Volume X. Applied Mathematics in the High School.

    Science.gov (United States)

    Schiffer, Max M.

    This publication contains a sequence of lectures given to high school mathematics teachers by the author. Applications of mathematics emphasized are elementary algebra, geometry, and matrix algebra. Included are: (1) an introduction concerning teaching applications of mathematics; (2) Chapter 1: Mechanics for the High School Student; (3) Chapter…

  19. Mathematics, anxiety, and the brain.

    Science.gov (United States)

    Moustafa, Ahmed A; Tindle, Richard; Ansari, Zaheda; Doyle, Margery J; Hewedi, Doaa H; Eissa, Abeer

    2017-05-24

    Given that achievement in learning mathematics at school correlates with work and social achievements, it is important to understand the cognitive processes underlying abilities to learn mathematics efficiently as well as reasons underlying the occurrence of mathematics anxiety (i.e. feelings of tension and fear upon facing mathematical problems or numbers) among certain individuals. Over the last two decades, many studies have shown that learning mathematical and numerical concepts relies on many cognitive processes, including working memory, spatial skills, and linguistic abilities. In this review, we discuss the relationship between mathematical learning and cognitive processes as well as the neural substrates underlying successful mathematical learning and problem solving. More importantly, we also discuss the relationship between these cognitive processes, mathematics anxiety, and mathematics learning disabilities (dyscalculia). Our review shows that mathematical cognition relies on a complex brain network, and dysfunction to different segments of this network leads to varying manifestations of mathematical learning disabilities.

  20. Mathematics for the liberal arts

    CERN Document Server

    Bindner, Donald; Hemmeter, Joe

    2014-01-01

    Presents a clear bridge between mathematics and the liberal arts Mathematics for the Liberal Arts provides a comprehensible and precise introduction to modern mathematics intertwined with the history of mathematical discoveries. The book discusses mathematical ideas in the context of the unfolding story of human thought and highlights the application of mathematics in everyday life. Divided into two parts, Mathematics for the Liberal Arts first traces the history of mathematics from the ancient world to the Middle Ages, then moves on to the Renaissance and finishes with the development of modern mathematics. In the second part, the book explores major topics of calculus and number theory, including problem-solving techniques and real-world applications. This book emphasizes learning through doing, presents a practical approach, and features: A detailed explanation of why mathematical principles are true and how the mathematical processes workNumerous figures and diagrams as well as hundreds of worked example...

  1. Mathematical analysis of compressive/tensile molecular and nuclear structures

    Science.gov (United States)

    Wang, Dayu

    Mathematical analysis in chemistry is a fascinating and critical tool to explain experimental observations. In this dissertation, mathematical methods to present chemical bonding and other structures for many-particle systems are discussed at different levels (molecular, atomic, and nuclear). First, the tetrahedral geometry of single, double, or triple carbon-carbon bonds gives an unsatisfying demonstration of bond lengths, compared to experimental trends. To correct this, Platonic solids and Archimedean solids were evaluated as atoms in covalent carbon or nitrogen bond systems in order to find the best solids for geometric fitting. Pentagonal solids, e.g. the dodecahedron and icosidodecahedron, give the best fit with experimental bond lengths; an ideal pyramidal solid which models covalent bonds was also generated. Second, the macroscopic compression/tension architectural approach was applied to forces at the molecular level, considering atomic interactions as compressive (repulsive) and tensile (attractive) forces. Two particle interactions were considered, followed by a model of the dihydrogen molecule (H2; two protons and two electrons). Dihydrogen was evaluated as two different types of compression/tension structures: a coaxial spring model and a ring model. Using similar methods, covalent diatomic molecules (made up of C, N, O, or F) were evaluated. Finally, the compression/tension model was extended to the nuclear level, based on the observation that nuclei with certain numbers of protons/neutrons (magic numbers) have extra stability compared to other nucleon ratios. A hollow spherical model was developed that combines elements of the classic nuclear shell model and liquid drop model. Nuclear structure and the trend of the "island of stability" for the current and extended periodic table were studied.

  2. Engineering mathematics

    CERN Document Server

    Bird, John

    2014-01-01

    A practical introduction to the core mathematics required for engineering study and practiceNow in its seventh edition, Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams.John Bird's approach is based on worked examples and interactive problems. This makes it ideal for students from a wide range of academic backgrounds as the student can work through the material at their own pace. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure

  3. Extended-length fiber optic carbon dioxide monitoring

    Science.gov (United States)

    Delgado-Alonso, Jesus; Lieberman, Robert A.

    2013-05-01

    This paper discusses the design and performance of fiber optic distributed intrinsic sensors for dissolved carbon dioxide, based on the use optical fibers fabricated so that their entire lengths are chemically sensitive. These fibers use a polymer-clad, silica-core structure where the cladding undergoes a large, reversible, change in optical absorbance in the presence of CO2. The local "cladding loss" induced by this change is thus a direct indication of the carbon dioxide concentration in any section of the fiber. To create these fibers, have developed a carbon dioxide-permeable polymer material that adheres well to glass, is physically robust, has a refractive index lower than fused silica, and acts as excellent hosts for a unique colorimetric indicator system that respond to CO2. We have used this proprietary material to produce carbon-dioxide sensitive fibers up to 50 meters long, using commercial optical fiber fabrication techniques. The sensors have shown a measurement range of dissolved CO2 of 0 to 1,450 mg/l (0 to 100% CO2 saturation), limit of detection of 0.3 mg/l and precision of 1.0 mg/l in the 0 to 50 mg/l dissolved CO2 range, when a 5 meter-long sensor fiber segment is used. Maximum fiber length, minimum detectable concentration, and spatial resolution can be adjusted by adjusting indicator concentration and fiber design.

  4. Preservice Elementary Mathematics Teachers' Level of Relating Mathematical Concepts in Daily Life Contexts

    Science.gov (United States)

    Akkus, Oylum

    2008-01-01

    The purpose of this study was to investigate preservice elementary mathematics teachers' ability of relating mathematical concepts and daily life context. Two research questions were set; what is the preservice elementary mathematics teachers' level of relating mathematical concepts and daily life context regarding to their education year and…

  5. Secondary Mathematics Coaching: The Components of Effective Mathematics Coaching and Implications

    Science.gov (United States)

    Bengo, Priscilla

    2016-01-01

    Mathematics coaching, which can be defined broadly as job-embedded learning for mathematics teachers with someone who can help, is being used in Canada to improve teaching practice and increase student achievement. Mathematics coaching research is quite new with little written on the components of effective coaching. The paper attempts to…

  6. Learning higher mathematics

    CERN Document Server

    Pontrjagin, Lev Semenovič

    1984-01-01

    Lev Semenovic Pontrjagin (1908) is one of the outstanding figures in 20th century mathematics. In a long career he has made fundamental con­ tributions to many branches of mathematics, both pure and applied. He has received every honor that a grateful government can bestow. Though in no way constrained to do so, he has through the years taught mathematics courses at Moscow State University. In the year 1975 he set himself the task of writing a series of books on secondary school and beginning university mathematics. In his own words, "I wished to set forth the foundations of higher mathematics in a form that would have been accessible to myself as a lad, but making use of all my experience as a scientist and a teacher, ac­ cumulated over many years. " The present volume is a translation of the first two out of four moderately sized volumes on this theme planned by Pro­ fessor Pontrjagin. The book begins at the beginning of modern mathematics, analytic ge­ ometry in the plane and 3-dimensional space. Refin...

  7. Structural Modeling for Influence of Mathematics Self-Concept, Motivation to Learn Mathematics and Self-Regulation Learning on Mathematics Academic Achievement

    OpenAIRE

    Hamideh Jafari Koshkouei; Ahmad Shahvarani; Mohammad Hassan Behzadi; Mohsen Rostamy-Malkhalifeh

    2016-01-01

    The present study was carried out to investigate the influence of mathematics self-concept (MSC), motivation to learn mathematics (SMOT) and self-regulation learning (SRL) on students' mathematics academic achievement. This study is of a descriptive survey type. 300 female students at the first grade of high school (the second period) in City Qods, were selected by multiple step cluster sampling method and completed MSC, SMOT and SRL questionnaires. Mathematics academic achievement was measur...

  8. Making Sense of Mathematics

    Science.gov (United States)

    Umphrey, Jan

    2011-01-01

    The National Council of Teachers of Mathematics (NCTM) is a voice and advocate for mathematics educators, working to ensure that all students receive equitable mathematics learning of the highest quality. To help teachers and school leaders understand the Common Core State Standards for Mathematics (CCSSM) and to point out how the CCSSM can be…

  9. Where mathematics come from how the embodied mind brings mathematics into being

    CERN Document Server

    Lakoff, George

    2001-01-01

    This book is about mathematical ideas, about what mathematics means-and why. Abstract ideas, for the most part, arise via conceptual metaphor-metaphorical ideas projecting from the way we function in the everyday physical world. Where Mathematics Comes From argues that conceptual metaphor plays a central role in mathematical ideas within the cognitive unconscious-from arithmetic and algebra to sets and logic to infinity in all of its forms.

  10. Pluralism in mathematics a new position in philosophy of mathematics

    CERN Document Server

    Friend, Michèle

    2014-01-01

    This book is about philosophy, mathematics and logic, giving a philosophical account of Pluralism which is a family of positions in the philosophy of mathematics. There are four parts to this book, beginning with a look at motivations for Pluralism by way of Realism, Maddy's Naturalism, Shapiro's Structuralism and Formalism. In the second part of this book the author covers: the philosophical presentation of Pluralism; using a formal theory of logic metaphorically; rigour and proof for the Pluralist; and mathematical fixtures. In the third part the author goes on to focus on the transcendental presentation of Pluralism, and in part four looks at applications of Pluralism, such as a Pluralist approach to proof in mathematics and how Pluralism works in regard to together-inconsistent philosophies of mathematics. The book finishes with suggestions for further Pluralist enquiry. In this work the author takes a deeply radical approach in developing a new position that will either convert readers, or act as a stron...

  11. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2013-01-01

    Mathematics for Physical Chemistry is the ideal supplementary text for practicing chemists and students who want to sharpen their mathematics skills while enrolled in general through physical chemistry courses. This book specifically emphasizes the use of mathematics in the context of physical chemistry, as opposed to being simply a mathematics text. This 4e includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The early chapters are constructed around a sequence of mathematical topics, wit

  12. Mathematical models applied to the Cr(III) and Cr(VI) breakthrough curves.

    Science.gov (United States)

    Ramirez C, Margarita; Pereira da Silva, Mônica; Ferreira L, Selma G; Vasco E, Oscar

    2007-07-19

    Trivalent and hexavalent chromium continuous biosorption was studied using residual brewer Saccharomyces cerevisiae immobilized in volcanic rock. The columns used in the process had a diameter of 4.5 cm and a length of 140 cm, working at an inlet flow rate of 15 mL/min. Breakthrough curves were used to study the yeast biosorption behavior in the process. The saturation time (ts) was 21 and 45 h for Cr(III) and Cr(VI), respectively, and a breakthrough time (tb) of 4 h for Cr(III) and 5 h for Cr(VI). The uptake capacity of the biosorbent for Cr(III) and Cr(VI) were 48 and 60 mg/g, respectively. Two non-diffusional mathematical models with parameters t0 and sigma were used to adjust the experimental data obtained. Microsoft Excel tools were used for the mathematical solution of the two parameters used.

  13. The future of mathematical communication. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Christy, J.

    1994-12-31

    One of the first fruits of cooperation with LBL was the use of the MBone (Multi-Cast Backbone) to broadcast the Conference on the Future of Mathematical Communication, held at MSRI November 30--December 3, 1994. Late last fall, MSRI brought together more than 150 mathematicians, librarians, software developers, representatives of scholarly societies, and both commercial and not-for-profit publishers to discuss the revolution in scholarly communication brought about by digital technology. The conference was funded by the Department of Energy, the National Science Foundation, and the Paul and Gabriella Rosenbaum Foundation. It focused on the impact of the technological revolution on mathematics, but necessarily included issues of a much wider scope. There were talks on electronic publishing, collaboration across the Internet, economic and intellectual property issues, and various new technologies which promise to carry the revolution forward. There were panel discussions of electronic documents in mathematics, the unique nature of electronic journals, technological tools, and the role of scholarly societies. There were focus groups on Developing Countries, K-12 Education, Libraries, and Te{sub X}. The meeting also embodied the promises of the revolution; it was multicast over the MBone channel of the Internet to hundreds of sites around the world and much information on the conference will be available on their World Wide Web server at the URL http://www.msri.org/fmc. The authors have received many comments about the meeting indicating that it has had a profound impact on how the community thinks about how scientists can communicate and make their work public.

  14. Mathematical Modeling of Contact Resistance in Silicon Photovoltaic Cells

    KAUST Repository

    Black, J. P.

    2013-10-22

    In screen-printed silicon-crystalline solar cells, the contact resistance of a thin interfacial glass layer between the silicon and the silver electrode plays a limiting role for electron transport. We analyze a simple model for electron transport across this layer, based on the driftdiffusion equations. We utilize the size of the current/Debye length to conduct asymptotic techniques to simplify the model; we solve the model numerically to find that the effective contact resistance may be a monotonic increasing, monotonic decreasing, or nonmonotonic function of the electron flux, depending on the values of the physical parameters. © 2013 Society for Industrial and Applied Mathematics.

  15. Head Start Program Quality: Examination of Classroom Quality and Parent Involvement in Predicting Children's Vocabulary, Literacy, and Mathematics Achievement Trajectories

    Science.gov (United States)

    Wen, Xiaoli; Bulotsky-Shearer, Rebecca J.; Hahs-Vaughn, Debbie L.; Korfmacher, Jon

    2012-01-01

    Guided by a developmental-ecological framework and Head Start's two-generational approach, this study examined two dimensions of Head Start program quality, classroom quality and parent involvement and their unique and interactive contribution to children's vocabulary, literacy, and mathematics skills growth from the beginning of Head Start…

  16. Secondary School Mathematics Teachers' Knowledge Levels and Use of History of Mathematics

    Science.gov (United States)

    Bütüner, Suphi Önder

    2018-01-01

    This study describes secondary school mathematics teachers' use of history of mathematics in their classes and their knowledge levels in this field. The study population included a total of 58 secondary school mathematics teachers working at the secondary schools located in Yozgat city center, and the sample included 32 mathematics teachers from…

  17. Mathematical mind-benders

    CERN Document Server

    Winkler, Peter

    2007-01-01

    Peter Winkler is at it again. Following the enthusiastic reaction to Mathematical Puzzles: A Connoisseur's Collection, Peter has compiled a new collection of elegant mathematical puzzles to challenge and entertain the reader. The original puzzle connoisseur shares these puzzles, old and new, so that you can add them to your own anthology. This book is for lovers of mathematics, lovers of puzzles, lovers of a challenge. Most of all, it is for those who think that the world of mathematics is orderly, logical, and intuitive-and are ready to learn otherwise! A pdf with errata is updated by the aut

  18. Mathematical knowledge for teaching: Making the tacit more explicit in mathematics teacher education

    Science.gov (United States)

    Abdullah, Mohd Faizal Nizam Lee; Vimalanandan, Lena

    2017-05-01

    Teaching practice during school based experiences, afford an opportunity for pre service teachers to put into practice their knowledge for teaching mathematics. Like all knowledge, Mathematical Knowledge for Teaching (MKT) is held in both tacit and explicit form, making it especially difficult to study and map during instruction. This study investigates the tacit and explicit nature of MKT held by pre service teachers in a Malaysian Teacher Education Program and how it impacts the Mathematical Quality of their instruction (MQI). This study of three mathematics pre-service teachers (PSTs), utilised videos of mathematics lessons, reflective debriefs and interviews. The findings suggest that factors such as reflecting, peer-sharing, conferencing with mentors and observing support in making tacit knowledge more explicit during planning and instruction. Implications for preparation of mathematics teachers capable of high Mathematical Quality of Instruction are also discussed.

  19. Teaching mathematics using excel

    OpenAIRE

    Bonello, Mary Rose; Camilleri, Silvana

    2004-01-01

    'Technology is essential in teaching and learning mathematics; it influences the mathematics that is taught and enhances students' learning.' (Principles and Standards for School Mathematics-NCTM April 2000)

  20. Perception determinants in learning mathematics

    Science.gov (United States)

    Mokhtar, Siti Fairus; Ali, Noor Rasidah; Rashid, Nurazlina Abdul

    2015-05-01

    This article described a statistical study of students' perception in mathematics. The objective of this study is to identify factors related to perception about learning mathematics among non mathematics' student. This study also determined the relationship between of these factors among non mathematics' student. 43 items questionnaires were distributed to one hundred students in UiTM Kedah who enrolled in the Business Mathematics course. These items were measured by using a semantic scale with the following anchors: 1 = strongly disagree to 7 = strongly agree. A factor analysis of respondents were identified into five factors that influencing the students' perception in mathematics. In my study, factors identified were attitude, interest, role of the teacher, role of peers and usefulness of mathematics that may relate to the perception about learning mathematics among non mathematics' student.

  1. Construction mathematics

    CERN Document Server

    Virdi, Surinder; Virdi, Narinder Kaur

    2014-01-01

    Construction Mathematics is an introductory level mathematics text, written specifically for students of construction and related disciplines. Learn by tackling exercises based on real-life construction maths. Examples include: costing calculations, labour costs, cost of materials and setting out of building components. Suitable for beginners and easy to follow throughout. Learn the essential basic theory along with the practical necessities. The second edition of this popular textbook is fully updated to match new curricula, and expanded to include even more learning exercises. End of chapter exercises cover a range of theoretical as well as practical problems commonly found in construction practice, and three detailed assignments based on practical tasks give students the opportunity to apply all the knowledge they have gained. Construction Mathematics addresses all the mathematical requirements of Level 2 construction NVQs from City & Guilds/CITB and Edexcel courses, including the BTEC First Diploma in...

  2. Attitudes of Mathematics Teachers toward Using Smart Board in Teaching Mathematics

    Science.gov (United States)

    Muhanna, Wafa; Nejem, Khamis Mousa

    2013-01-01

    This study aimed at investigating the attitudes of mathematics teachers toward using a smart board in teaching mathematics and also to determine the effect of gender, experience, and qualification of teachers on their attitudes. The sample of this study consisted of 74 mathematics teachers--35 males and 39 females--from private schools in Amman…

  3. The role of mathematics in politics as an issue for mathematics teaching

    DEFF Research Database (Denmark)

    Sánchez, Mario; Blomhøj, Morten

    2010-01-01

    This paper presents analyses of some examples of mathematical models used in the Mexican society of today. We seek to justify why and illustrate how such examples can be included in mathematics teaching and in teacher education.......This paper presents analyses of some examples of mathematical models used in the Mexican society of today. We seek to justify why and illustrate how such examples can be included in mathematics teaching and in teacher education....

  4. Metacognition Process of Students with High Mathematics Anxiety in Mathematics Problem-Solving

    OpenAIRE

    Patrisius Afrisno Udil; Tri Atmojo Kusmayadi; Riyadi Riyadi

    2017-01-01

    This study aims to find out students’ metacognition process while solving the mathematics problem. It focuses on analyzing the metacognition process of students with high mathematics anxiety based on Polya’s problem solving phases. This study uses qualitative research with case study strategy. The subjects consist of 8 students of 7th grade selected through purposive sampling. Data in the form of Mathematics Anxiety Scale (MAS) result and recorded interview while solving mathematics problems ...

  5. Mathematics for the imagination

    CERN Document Server

    Higgins, Peter

    2002-01-01

    Mathematics for the Imagination provides an accessible and entertaining investigation into mathematical problems in the world around us. From world navigation, family trees, and calendars to patterns, tessellations, and number tricks, this informative and fun new book helps you to understand the maths behind real-life questions and rediscover your arithmetical mind.This is a follow-up to the popular Mathematics for the Curious, Peter Higgins's first investigation into real-life mathematical problems.A highly involving book which encourages the reader to enter into the spirit of mathematical ex

  6. What is mathematical logic?

    CERN Document Server

    Crossley, J N; Brickhill, CJ; Stillwell, JC

    2010-01-01

    Although mathematical logic can be a formidably abstruse topic, even for mathematicians, this concise book presents the subject in a lively and approachable fashion. It deals with the very important ideas in modern mathematical logic without the detailed mathematical work required of those with a professional interest in logic.The book begins with a historical survey of the development of mathematical logic from two parallel streams: formal deduction, which originated with Aristotle, Euclid, and others; and mathematical analysis, which dates back to Archimedes in the same era. The streams beg

  7. The nature of mathematics

    CERN Document Server

    Jourdain, Philip E B

    2007-01-01

    Anyone with an interest in mathematics will welcome the republication of this little volume by a remarkable mathematician who was also a logician, a philosopher, and an occasional writer of fiction and poetry. Originally published in 1913, and later included in the acclaimed anthology The World of Mathematics, Jourdain's survey shows how and why the methods of mathematics were developed, traces the development of mathematical science from the earliest to modern times, and chronicles the application of mathematics to natural science.Starting with the ancient Egyptians and Greeks, the author p

  8. Fundamental concepts of mathematics

    CERN Document Server

    Goodstein, R L

    Fundamental Concepts of Mathematics, 2nd Edition provides an account of some basic concepts in modern mathematics. The book is primarily intended for mathematics teachers and lay people who wants to improve their skills in mathematics. Among the concepts and problems presented in the book include the determination of which integral polynomials have integral solutions; sentence logic and informal set theory; and why four colors is enough to color a map. Unlike in the first edition, the second edition provides detailed solutions to exercises contained in the text. Mathematics teachers and people

  9. The development of mathematics

    CERN Document Server

    Bell, Eric Temple

    1945-01-01

    ""This important book . . . presents a broad account of the part played by mathematics in the evolution of civilization, describing clearly the main principles, methods, and theories of mathematics that have survived from about 4000 BC to 1940.""― BooklistIn this time-honored study, one of the 20th century's foremost scholars and interpreters of the history and meaning of mathematics masterfully outlines the development of its leading ideas, and clearly explains the mathematics involved in each. According to the author, a professor of mathematics at the California Institute of Technology from

  10. Mathematics in ancient Greece

    CERN Document Server

    Dantzig, Tobias

    2006-01-01

    More than a history of mathematics, this lively book traces mathematical ideas and processes to their sources, stressing the methods used by the masters of the ancient world. Author Tobias Dantzig portrays the human story behind mathematics, showing how flashes of insight in the minds of certain gifted individuals helped mathematics take enormous forward strides. Dantzig demonstrates how the Greeks organized their precursors' melange of geometric maxims into an elegantly abstract deductive system. He also explains the ways in which some of the famous mathematical brainteasers of antiquity led

  11. The history of the priority di∫pute between Newton and Leibniz mathematics in history and culture

    CERN Document Server

    Sonar, Thomas

    2018-01-01

    This book provides a thrilling history of the famous priority dispute between Gottfried Wilhelm Leibniz and Isaac Newton, presenting the episode for the first time in the context of cultural history. It introduces readers to the background of the dispute, details its escalation, and discusses the aftermath of the big divide, which extended well into recent times. One of the unique features of the book is that the mathematics behind the story is very intelligibly explained – an approach that offers general readers interested in the history of sciences and mathematics a window into the world of these two giants in their field. From the epilogue to the German edition by Eberhard Knobloch: Thomas Sonar has traced the emergence and the escalation of this conflict, which was heightened by Leibniz’s rejection of Newton’s gravitation theory, in a grandiose, excitingly written monograph. With absolute competence, he also explains the mathematical context so that non-mathematicians will also profit from the book....

  12. The mathematical model of thread unrolling from a bobbin

    Directory of Open Access Journals (Sweden)

    S. M. Tenenbaum

    2014-01-01

    Full Text Available I. Introduction The subject of research in this work is a process of thread unrolling from a bobbin. The mathematical model of this process considering motion of thread peace on a bobbin and unrolled peace is proposed. The dimension of system of differential equations for this model is constant during deploying.The relevance to simulate this process for design of Heliogyro-like solar sails (Heliogyro [1], BMSTU-Sail [2] is proved. The paper briefly characterizes a blade for such solar sail as a simulation object. It proves the possibility for using a flexible thread model for a long blade because of very small blade thickness (less than 10 μm [3] relative to blade width and the phenomena of Koriolis forces [4] that lead to buckling failure of blade flatness.The major features of the proposed model are:-- simulated as a motion of the thread piece both being on a bobbin and its unrolled peace;-- splitting a thread length into nodes does not depend on the demand to ensure a sufficient number of nodes on a single thread turn on the coil;-- because of avoiding a problem of contact between the thread and bobbin a stable integration of motion equations is provided by the conventional Runge-Kutta method of fourth order with a constant step [5];-- in the course of solution the number of freedom degrees (number of motion equation is constant, thereby simplifying a calculation algorithm.The closest mathematical model is proposed in [6].The scientific novelty of this research is the approach to solving the problem of unrolling thread from a bobbin using a constant number of motion equations while preserving real kinematics coiling process.II. Problem formulationIn this section the problem of unrolling thread with length L from a bobbin of radius r is posed while any kind of forces are acting on the unrolled peace of thread. Moreover, the law of bobbin rotation φ(t assumed to be known with the proviso that the model can be modified if φ(t is the result of

  13. Unique features in the ARIES glovebox line

    International Nuclear Information System (INIS)

    Martinez, H.E.; Brown, W.G.; Flamm, B.; James, C.A.; Laskie, R.; Nelson, T.O.; Wedman, D.E.

    1998-01-01

    A series of unique features have been incorporated into the Advanced Recovery and Integrated Extraction System (ARIES) at the Los Alamos National Laboratory, TA-55 Plutonium Facility. The features enhance the material handling in the process of the dismantlement of nuclear weapon primaries in the glovebox line. Incorporated into these features are the various plutonium process module's different ventilation zone requirements that the material handling systems must meet. These features include a conveyor system that consists of a remotely controlled cart that transverses the length of the conveyor glovebox, can be operated from a remote location and can deliver process components to the entrance of any selected module glovebox. Within the modules there exists linear motion material handling systems with lifting hoist, which are controlled via an Allen Bradley control panel or local control panels. To remove the packaged products from the hot process line, the package is processed through an air lock/electrolytic decontamination process that removes the radioactive contamination from the outside of the package container and allows the package to be removed from the process line

  14. Uniquely Strongly Clean Group Rings

    Institute of Scientific and Technical Information of China (English)

    WANG XIU-LAN

    2012-01-01

    A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.

  15. Architectural analysis and intraoperative measurements demonstrate the unique design of the multifidus muscle for lumbar spine stability.

    Science.gov (United States)

    Ward, Samuel R; Kim, Choll W; Eng, Carolyn M; Gottschalk, Lionel J; Tomiya, Akihito; Garfin, Steven R; Lieber, Richard L

    2009-01-01

    a low fiber length-to-muscle length ratio) demonstrates that the multifidus muscle is uniquely designed as a stabilizer to produce large forces. Furthermore, multifidus sarcomeres are positioned on the ascending portion of the length-tension curve, allowing the muscle to become stronger as the spine assumes a forward-leaning posture.

  16. Meaning in mathematics education

    CERN Document Server

    Valero, Paola; Hoyles, Celia; Skovsmose, Ole

    2005-01-01

    What does it mean to know mathematics? How does meaning in mathematics education connect to common sense or to the meaning of mathematics itself? How are meanings constructed and communicated and what are the dilemmas related to these processes? There are many answers to these questions, some of which might appear to be contradictory. Thus understanding the complexity of meaning in mathematics education is a matter of huge importance. There are twin directions in which discussions have developed - theoretical and practical - and this book seeks to move the debate forward along both dimensions while seeking to relate them where appropriate. A discussion of meaning can start from a theoretical examination of mathematics and how mathematicians over time have made sense of their work. However, from a more practical perspective, anybody involved in teaching mathematics is faced with the need to orchestrate the myriad of meanings derived from multiple sources that students develop of mathematical knowledge.

  17. Women in mathematics celebrating the centennial of the Mathematical Association of America

    CERN Document Server

    Greenwald, Sarah; Jensen-Vallin, Jacqueline; Mast, Maura

    2017-01-01

    This collection of refereed papers celebrates the contributions, achievements, and progress of female mathematicians, mostly in the 20th and 21st centuries. Emerging from the themed paper session “The Contributions of Women to Mathematics: 100 Years and Counting” at MAA's 2015 MathFest, this volume contains a diverse mix of current scholarship and exposition on women and mathematics, including biographies, histories, and cultural discussions. The multiplicity of authors also ensures a wide variety of perspectives. In inspiring and informative chapters, the authors featured in this volume reflect on the accomplishments of women in mathematics, showcasing the changes in mathematical culture that resulted as more women obtained tenure-track and tenured academic positions, received prestigious awards and honors, served in leadership roles in professional societies, and became more visibly active in the mathematical community. Readers will find discussions of mathematical excellence at Girton College, Cambridg...

  18. Length-weight and length-length relationships of common carp (Cyprinus carpio L.) in the middle and southern Iraq provinces

    Science.gov (United States)

    Al-jebory, Taymaa A.; Das, Simon K.; Usup, Gires; Bakar, Y.; Al-saadi, Ali H.

    2018-04-01

    In this study, length-weight and length-length relationships of common carp (Cyprinus carpio L.) in the middle and southern Iraq provinces were determined. Fish specimens were procured from seven provinces from July to December, 2015. A negative and positive allometric growth pattern was obtained, where the total length (TL) ranged from 25.60 cm to 33.53 cm, and body weight (BW) ranged from 700 g to 1423 g. Meanwhile, the lowest of 1.03 and highest of 3.54 in "b" value was recorded in group F and group C, respectively. Therefore, Fulton condition factor (K) range from 2.57 to 4.94. While, relative condition factor (Kn) was in the ranged of 0.95 to 1.01. A linear relationship between total length (TL) and standard length (SL) among the provinces for fish groups was obtained. The variances in "b" value ranged from 0.10 to 0.93 with correlation coefficient (r2) of 0.02 to 0.97. This research could be used as a guide to study the ecology and biology of common Carp (Cyprinus carpio L.) in the middle and southern Iraq provinces.

  19. Relationships of Mathematics Anxiety, Mathematics Self-Efficacy and Mathematics Performance of Adult Basic Education Students

    Science.gov (United States)

    Watts, Beverly Kinsey

    2011-01-01

    Competent mathematical skills are needed in the workplace as well as in the college setting. Adults in Adult Basic Education classes and programs generally perform below high school level competency, but very few studies have been performed investigating the predictors of mathematical success for adults. The current study contributes to the…

  20. Improving University Students' Perception of Mathematics and Mathematics Ability

    Directory of Open Access Journals (Sweden)

    Shelly L. Wismath

    2015-01-01

    Full Text Available Although mathematical and quantitative reasoning skills are an essential part of adult life in our society, many students arrive at post-secondary education without such skills. Taking a standard mathematics course such as calculus may do little to improve those skills. Using a modification of the Tapia & Marsh questionnaire, we surveyed 62 students taking a broad quantitative reasoning course designed to develop quantitative skills, with respect to two broad attitudinal areas: students’ perception of their own ability, confidence and anxiety, and their perception of the value of mathematics in their studies and their lives. Pre- to post-course comparisons were done by both paired t-tests and Wilcoxon signed-rank tests. Our results showed a significant increase in confidence and decrease in anxiety, while perception of the value of mathematics was already high and changed little by the end of the course.

  1. Number Line Estimation Predicts Mathematical Skills: Difference in Grades 2 and 4.

    Science.gov (United States)

    Zhu, Meixia; Cai, Dan; Leung, Ada W S

    2017-01-01

    Studies have shown that number line estimation is important for learning. However, it is yet unclear if number line estimation predicts different mathematical skills in different grades after controlling for age, non-verbal cognitive ability, attention, and working memory. The purpose of this study was to examine the role of number line estimation on two mathematical skills (calculation fluency and math problem-solving) in grade 2 and grade 4. One hundred and forty-eight children from Shanghai, China were assessed on measures of number line estimation, non-verbal cognitive ability (non-verbal matrices), working memory (N-back), attention (expressive attention), and mathematical skills (calculation fluency and math problem-solving). The results showed that in grade 2, number line estimation correlated significantly with calculation fluency ( r = -0.27, p problem-solving ( r = -0.52, p problem-solving ( r = -0.38, p problem-solving (12.0%) and calculation fluency (4.0%) after controlling for the effects of age, non-verbal cognitive ability, attention, and working memory. In grade 4, number line estimation accounted for unique variance in math problem-solving (9.0%) but not in calculation fluency. These findings suggested that number line estimation had an important role in math problem-solving for both grades 2 and 4 children and in calculation fluency for grade 2 children. We concluded that number line estimation could be a useful indicator for teachers to identify and improve children's mathematical skills.

  2. Advanced engineering mathematics

    CERN Document Server

    Jeffrey, Alan

    2001-01-01

    Advanced Engineering Mathematics provides comprehensive and contemporary coverage of key mathematical ideas, techniques, and their widespread applications, for students majoring in engineering, computer science, mathematics and physics. Using a wide range of examples throughout the book, Jeffrey illustrates how to construct simple mathematical models, how to apply mathematical reasoning to select a particular solution from a range of possible alternatives, and how to determine which solution has physical significance. Jeffrey includes material that is not found in works of a similar nature, such as the use of the matrix exponential when solving systems of ordinary differential equations. The text provides many detailed, worked examples following the introduction of each new idea, and large problem sets provide both routine practice, and, in many cases, greater challenge and insight for students. Most chapters end with a set of computer projects that require the use of any CAS (such as Maple or Mathematica) th...

  3. Canadian Mathematical Congress

    CERN Document Server

    1977-01-01

    For two weeks in August, 1975 more than 140 mathematicians and other scientists gathered at the Universite de Sherbrooke. The occasion was the 15th Biennial Seminar of the Canadian Mathematical Congress, entitled Mathematics and the Life Sciences. Participants in this inter­ disciplinary gathering included researchers and graduate students in mathematics, seven different areas of biological science, physics, chemistry and medical science. Geographically, those present came from the United States and the United Kingdom as well as from academic departments and government agencies scattered across Canada. In choosing this particular interdisciplinary topic the programme committee had two chief objectives. These were to promote Canadian research in mathematical problems of the life sciences, and to encourage co-operation and exchanges between mathematical scientists" biologists and medical re­ searchers. To accomplish these objective the committee assembled a stim­ ulating programme of lectures and talks. Six ...

  4. Mathematical modeling and design parameters of crushing machines with variable-pitch helix of the screw

    Directory of Open Access Journals (Sweden)

    Pelenko V. V.

    2017-11-01

    Full Text Available From the point of view of the effectiveness of the top cutting unit, the helix angle in the end portion of the screw is the most important and characteristic parameter, as it determines the pressure of the meat material in the zone of interaction of a knife and grate. The importance of solving the problem of mathematical modeling of geometry is due to the need to address the problem of minimizing the reverse flow of the food material when injecting into the cutting zone, as the specified effect of "locking" significantly reduces the performance of the transfer process, increases energy consumption of the equipment and entails the deterioration of the quality of the raw materials output. The problem of determining the length of the helix variable pitch for screw chopper food materials has been formulated and solved by methods of differential geometry. The task of correct description of the law of changing the angle of helix inclination along its length has been defined in this case as a key to provide the required dependence of this angle tangent on the angle of the radius-vector of the circle. It has been taken into account that the reduction in the pitch of the screw in the direction of the product delivery should occur at a decreasing rate. The parametric equation of the helix has been written in the form of three functional dependencies of the corresponding cylindrical coordinates. Based on the wide range analysis and significant number of models of tops from different manufacturers the boundaries of possible changes in the angles of inclination of the helical line of the first and last turns of the screw have been identified. The auger screw length is determined mathematically in the form of an analytical relationship and both as a function of the variable angle of its rise, and as a function of the rotation angle of the radius-vector of the circle generatrix, which makes it possible to expand the design possibilities of this node. Along

  5. Quantum superposition of the state discrete spectrum of mathematical correlation molecule for small samples of biometric data

    Directory of Open Access Journals (Sweden)

    Vladimir I. Volchikhin

    2017-06-01

    Full Text Available Introduction: The study promotes to decrease a number of errors of calculating the correlation coefficient in small test samples. Materials and Methods: We used simulation tool for the distribution functions of the density values of the correlation coefficient in small samples. A method for quantization of the data, allows obtaining a discrete spectrum states of one of the varieties of correlation functional. This allows us to consider the proposed structure as a mathematical correlation molecule, described by some analogue continuous-quantum Schrödinger equation. Results: The chi-squared Pearson’s molecule on small samples allows enhancing power of classical chi-squared test to 20 times. A mathematical correlation molecule described in the article has similar properties. It allows in the future reducing calculation errors of the classical correlation coefficients in small samples. Discussion and Conclusions: The authors suggest that there are infinitely many mathematical molecules are similar in their properties to the actual physical molecules. Schrödinger equations are not unique, their analogues can be constructed for each mathematical molecule. You can expect a mathematical synthesis of molecules for a large number of known statistical tests and statistical moments. All this should make it possible to reduce calculation errors due to quantum effects that occur in small test samples.

  6. Mathematical physiology

    CERN Document Server

    Sneyd, James

    2009-01-01

    There has been a long history of interaction between mathematics and physiology. This book looks in detail at a wide selection of mathematical models in physiology, showing how physiological problems can be formulated and studied mathematically, and how such models give rise to interesting and challenging mathematical questions. With its coverage of many recent models it gives an overview of the field, while many older models are also discussed, to put the modern work in context. In this second edition the coverage of basic principles has been expanded to include such topics as stochastic differential equations, Markov models and Gibbs free energy, and the selection of models has also been expanded to include some of the basic models of fluid transport, respiration/perfusion, blood diseases, molecular motors, smooth muscle, neuroendrocine cells, the baroreceptor loop, turboglomerular oscillations, blood clotting and the retina. Owing to this extensive coverage, the second edition is published in two volumes. ...

  7. Brain correlates of mathematical competence in processing mathematical representations

    Directory of Open Access Journals (Sweden)

    Roland H. Grabner

    2011-11-01

    Full Text Available The ability to extract numerical information from different representation formats (e.g., equations, tables, or diagrams is a key component of mathematical competence but little is known about its neural correlate. Previous studies comparing mathematically less and more competent adults have focused on mental arithmetic and reported differences in left angular gyrus activity which were interpreted to reflect differential reliance on arithmetic fact retrieval during problem solving. The aim of the present functional magnetic resonance imaging (fMRI study was to investigate the brain correlates of mathematical competence in a task requiring the processing of typical mathematical representations. Twenty-eight adults of lower and higher mathematical competence worked on a representation matching task in which they had to evaluate whether the numerical information of a symbolic equation matches that of a bar chart. Two task conditions without and one condition with arithmetic demands were administered. Both competence groups performed equally well in the non-arithmetic conditions and only differed in accuracy in the condition requiring calculation. Activation contrasts between the groups revealed consistently stronger left angular gyrus activation in the more competent individuals across all three task conditions. The finding of competence-related activation differences independently of arithmetic demands suggests that more and less competent individuals differ in a cognitive process other than arithmetic fact retrieval. Specifically, it is argued that the stronger left angular gyrus activity in the more competent adults may reflect their higher proficiency in processing mathematical symbols. Moreover, the study demonstrates competence-related parietal activation differences that were not accompanied by differential experimental performance.

  8. Mathematization in introductory physics

    Science.gov (United States)

    Brahmia, Suzanne M.

    Mathematization is central to STEM disciplines as a cornerstone of the quantitative reasoning that characterizes these fields. Introductory physics is required for most STEM majors in part so that students develop expert-like mathematization. This dissertation describes coordinated research and curriculum development for strengthening mathematization in introductory physics; it blends scholarship in physics and mathematics education in the form of three papers. The first paper explores mathematization in the context of physics, and makes an original contribution to the measurement of physics students' struggle to mathematize. Instructors naturally assume students have a conceptual mastery of algebra before embarking on a college physics course because these students are enrolled in math courses beyond algebra. This paper provides evidence that refutes the validity of this assumption and categorizes some of the barriers students commonly encounter with quantification and representing ideas symbolically. The second paper develops a model of instruction that can help students progress from their starting points to their instructor's desired endpoints. Instructors recognize that the introductory physics course introduces new ideas at an astonishing rate. More than most physicists realize, however, the way that mathematics is used in the course is foreign to a large portion of class. This paper puts forth an instructional model that can move all students toward better quantitative and physical reasoning, despite the substantial variability of those students' initial states. The third paper describes the design and testing of curricular materials that foster mathematical creativity to prepare students to better understand physics reasoning. Few students enter introductory physics with experience generating equations in response to specific challenges involving unfamiliar quantities and units, yet this generative use of mathematics is typical of the thinking involved in

  9. The Effect of Realistic Mathematics Education Approach on Students' Achievement And Attitudes Towards Mathematics

    OpenAIRE

    Effandi Zakaria; Muzakkir Syamaun

    2017-01-01

    This study was conducted to determine the effect of Realistic Mathematics Education Approach on mathematics achievement and student attitudes towards mathematics. This study also sought determine the relationship between student achievement and attitudes towards mathematics. This study used a quasi-experimental design conducted on 61 high school students at SMA Unggul Sigli. Students were divided into two groups, the treatment group $(n = 30)$ namely, the Realistic Mathematics Approach group ...

  10. Orientations toward Mathematical Processes of Prospective Secondary Mathematics Teachers as Related to Work with Tasks

    Science.gov (United States)

    Cannon, Tenille

    2016-01-01

    Mathematics can be conceptualized in different ways. Policy documents such as the National Council of Teachers of Mathematics (NCTM) (2000) and the Common Core State Standards Initiative (CCSSI) (2010), classify mathematics in terms of mathematical content (e.g., quadratic functions, Pythagorean theorem) and mathematical activity in the form of…

  11. Temperature-sensitive elastin-mimetic dendrimers: Effect of peptide length and dendrimer generation to temperature sensitivity.

    Science.gov (United States)

    Kojima, Chie; Irie, Kotaro; Tada, Tomoko; Tanaka, Naoki

    2014-06-01

    Dendrimers are synthetic macromolecules with unique structure, which are a potential scaffold for peptides. Elastin is one of the main components of extracellular matrix and a temperature-sensitive biomacromolecule. Previously, Val-Pro-Gly-Val-Gly peptides have been conjugated to a dendrimer for designing an elastin-mimetic dendrimer. In this study, various elastin-mimetic dendrimers using different length peptides and different dendrimer generations were synthesized to control the temperature dependency. The elastin-mimetic dendrimers formed β-turn structure by heating, which was similar to the elastin-like peptides. The elastin-mimetic dendrimers exhibited an inverse phase transition, largely depending on the peptide length and slightly depending on the dendrimer generation. The elastin-mimetic dendrimers formed aggregates after the phase transition. The endothermal peak was observed in elastin-mimetic dendrimers with long peptides, but not with short ones. The peptide length and the dendrimer generation are important factors to tune the temperature dependency on the elastin-mimetic dendrimer. Copyright © 2013 Wiley Periodicals, Inc.

  12. Abandoning mathematics. Reconstructing the process in the context of the social perception of mathematics

    Directory of Open Access Journals (Sweden)

    Anna Baczko-Dombi

    2018-02-01

    Full Text Available Mathematics, as no other school subject, evokes conflicting emotions and contradictory attitudes – from “the gate to a career” and “the queen of science” to the widespread acceptance of mathematical ignorance in society. The process of studying mathematics requires systematic work and patience, as mathematical knowledge has a cumulative nature. In the case of mathematics education, some students abandon mathematics at quite early levels of education and begin to consider themselves “humanists”, which results in serious consequences for future educational and career choices. In this paper, I propose a description of the process of escaping from mathematics in the context of students’ perceptions of this subject, using the results of two studies – one qualitative and the other quantitative.

  13. Is rapid automatized naming related to reading and mathematics for the same reason(s)? A follow-up study from kindergarten to Grade 1.

    Science.gov (United States)

    Georgiou, George K; Tziraki, Niki; Manolitsis, George; Fella, Argyro

    2013-07-01

    We examined (a) what rapid automatized naming (RAN) components (articulation time and/or pause time) predict reading and mathematics ability and (b) what processing skills involved in RAN (speed of processing, response inhibition, working memory, and/or phonological awareness) may explain its relationship with reading and mathematics. A sample of 72 children were followed from the beginning of kindergarten until the end of Grade 1 and were assessed on measures of RAN, general cognitive ability, speed of processing, attention, working memory, phonological awareness, reading, and mathematics. The results indicated that pause time was the critical component in both the RAN-reading and RAN-mathematics relationships and that it shared most of its predictive variance in reading and mathematics with speed of processing and working memory. Our findings further suggested that, unlike the relationship between RAN and reading fluency in Grade 1, there is nothing in the RAN task that is uniquely related to math. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Intra-Cultural Variation in Cognitive Development - Conservation of Length Among the Imbonggu. Indigenous Mathematics Project. Working Paper 15.

    Science.gov (United States)

    Lancy, David; And Others

    Reported are the results of an experiment in which twelve different conservation of length tasks, indicative of passage from Piaget's pre-operational to concrete operations stages of cognitive development, were administered to a sample of individuals from Imbonggu-speaking people, a remote and traditional society in Papua New Guinea. Individuals…

  15. Mathematics of the 19th century mathematical logic, algebra, number theory, probability theory

    CERN Document Server

    Yushkevich, A

    1992-01-01

    This multi-authored effort, Mathematics of the nineteenth century (to be fol­ lowed by Mathematics of the twentieth century), is a sequel to the History of mathematics fram antiquity to the early nineteenth century, published in three 1 volumes from 1970 to 1972. For reasons explained below, our discussion of twentieth-century mathematics ends with the 1930s. Our general objectives are identical with those stated in the preface to the three-volume edition, i. e. , we consider the development of mathematics not simply as the process of perfecting concepts and techniques for studying real-world spatial forms and quantitative relationships but as a social process as weIl. Mathematical structures, once established, are capable of a certain degree of autonomous development. In the final analysis, however, such immanent mathematical evolution is conditioned by practical activity and is either self-directed or, as is most often the case, is determined by the needs of society. Proceeding from this premise, we intend...

  16. A history of Chinese mathematics

    CERN Document Server

    Martzloff, Jean-Claude

    1997-01-01

    For the English language edition, this completely unique book of J.C. Martzloff has been fully revised and updated. It includes many new recent insights and illustrations, a new appendix on Chinese primary sources and a guide to the to the bibliography. From the reviews: "This book ranks with the most erudite Asian publications, and is the most informative and most broadly informed on its topic in any language." N. Sivin, China Quarterly "... crammed with insights, cautionary tales and a great deal of information about current research ... will surely become a standard reference for students, teachers, and researchers alike", J. N. Crossley, Annals of Science "... a truly scholarly and balanced exposition ... a book that the reviewer believes belongs in the library of every university or college, as well as in that of every individual seriously interested in the history of Chinese mathematics", B. L. McAllister, ZBfM "Martzloff History demonstrates clearly that while the Chinese were adept in applying their m...

  17. Making Mathematics.

    Science.gov (United States)

    Huckstep, Peter

    2002-01-01

    Contends teachers must resist the temptation to suggest that, while children can create stories and melodies, they cannot create mathematics. Quotes mathematician G. H. Hardy: "A mathematician, like a painter or poet, is a 'maker' of patterns." Considers mathematics should be able to stand up for itself. (BT)

  18. The Language of Mathematics: The Importance of Teaching and Learning Mathematical Vocabulary

    Science.gov (United States)

    Riccomini, Paul J.; Smith, Gregory W.; Hughes, Elizabeth M.; Fries, Karen M.

    2015-01-01

    Vocabulary understanding is a major contributor to overall comprehension in many content areas, including mathematics. Effective methods for teaching vocabulary in all content areas are diverse and long standing. Teaching and learning the language of mathematics is vital for the development of mathematical proficiency. Students' mathematical…

  19. Reciprocal Relationships between Mathematics Anxiety and Attitude towards Mathematics in Elementary Students

    Science.gov (United States)

    Haciomeroglu, Guney

    2017-01-01

    This current study examined the reciprocal relationship between anxiety and attitude towards mathematics in elementary students. Two instruments (attitudes towards mathematics inventory short form [ATMI-Short Form] and the Revised Fennema-Sherman Mathematics Anxiety Scale [Revised-FSMAS]) were administered to 310 fourth grade elementary students.…

  20. Helping Children Learn Mathematics through Multiple Intelligences and Standards for School Mathematics.

    Science.gov (United States)

    Adams, Thomasenia Lott

    2001-01-01

    Focuses on the National Council of Teachers of Mathematics 2000 process-oriented standards of problem solving, reasoning and proof, communication, connections, and representation as providing a framework for using the multiple intelligences that children bring to mathematics learning. Presents ideas for mathematics lessons and activities to…

  1. Mathematics, substance and surmise views on the meaning and ontology of mathematics

    CERN Document Server

    Davis, Philip

    2015-01-01

    The seventeen thought-provoking and engaging essays in this collection present readers with a wide range of diverse perspectives on the ontology of mathematics. The essays address such questions as: What kind of things are mathematical objects? What kinds of assertions do mathematical statements make? How do people think and speak about mathematics?  How does society use mathematics? How have our answers to these questions changed over the last two millennia, and how might they change again in the future?   The authors include mathematicians, philosophers, computer scientists, cognitive psychologists, sociologists, educators, and mathematical historians; each brings their own expertise and insights to the discussion. Contributors to this volume: Jeremy Avigad Jody Azzouni David H. Bailey David Berlinski Jonathan M. Borwein Ernest Davis Philip J. Davis Donald Gillies Jeremy Gray Jesper Lützen Ursula Martin Kay L. O’Halloran Alison Pease Steven T. Piantadosi Lance J. Rips Micah T. Ross Nathalie Sinclair J...

  2. A Hierarchy of Compatibility and Comeasurability Levels in Quantum Logics with Unique Conditional Probabilities

    International Nuclear Information System (INIS)

    Niestegge, Gerd

    2010-01-01

    In the quantum mechanical Hilbert space formalism, the probabilistic interpretation is a later ad-hoc add-on, more or less enforced by the experimental evidence, but not motivated by the mathematical model itself. A model involving a clear probabilistic interpretation from the very beginning is provided by the quantum logics with unique conditional probabilities. It includes the projection lattices in von Neumann algebras and here probability conditionalization becomes identical with the state transition of the Lueders-von Neumann measurement process. This motivates the definition of a hierarchy of five compatibility and comeasurability levels in the abstract setting of the quantum logics with unique conditional probabilities. Their meanings are: the absence of quantum interference or influence, the existence of a joint distribution, simultaneous measurability, and the independence of the final state after two successive measurements from the sequential order of these two measurements. A further level means that two elements of the quantum logic (events) belong to the same Boolean subalgebra. In the general case, the five compatibility and comeasurability levels appear to differ, but they all coincide in the common Hilbert space formalism of quantum mechanics, in von Neumann algebras, and in some other cases. (general)

  3. Mathematics for the liberal arts

    CERN Document Server

    Brown, Jason I

    2014-01-01

    The Math in Your Life Health, Safety, and Mathematics Found in Translation The Essentials of Conversion Making Sense of Your World with Statistics Summarizing Data with a Few Good Numbers Estimating Unknowns Leading You Down the Garden Path with Statistics Visualizing with Mathematics Seeing Data A Graph Is Worth a Thousand Words Money and Risk Money - Now or Later Risk Taking and Probability The Life in Your Math! Deciding to Make the Best Decisions Making the Right Choices for You Game Theory - Coming Out on Top Making Joint Decisions Art Imitating Math The Math that Makes the Art Believing What You See (or Not) The Mathematics of Sound (and the Sound of Mathematics) The Mathematics of Listening The Mathematics of Composing Solving Musical Mysteries with MSI (Math Scene Investigations) Late Night Mathematics - Humor and Philosophy Laughing with Mathematics The Limits of Mathematics Bibliography Index Review questions appear at the end of each chapter.

  4. Asthma Length of Stay in Hospitals in London 2001?2006: Demographic, Diagnostic and Temporal Factors

    OpenAIRE

    Soyiri, Ireneous N.; Reidpath, Daniel D.; Sarran, Christophe

    2011-01-01

    Asthma is a condition of significant public health concern associated with morbidity, mortality and healthcare utilisation. This study identifies key determinants of length of stay (LOS) associated with asthma-related hospital admissions in London, and further explores their effects on individuals. Subjects were primarily diagnosed and admitted for asthma in London between 1(st) January 2001 and 31(st) December 2006. All repeated admissions were treated uniquely as independent cases. Negative...

  5. Lowering Preservice Teachers' Mathematics Anxiety through an Experience-Based Mathematics Methods Course.

    Science.gov (United States)

    Conrad, Karen S.; Tracy, Dyanne M.

    Research has shown that elementary teachers are mathematics anxious, and that this anxiousness can be transmitted to their students. Therefore, many students are not afforded the opportunity to participate in a comfortable mathematics environment. Preservice elementary teachers (n=63) reported their pre- and posttest mathematics anxiety using the…

  6. The Education of Mathematics

    Directory of Open Access Journals (Sweden)

    Abu Darda

    2016-01-01

    Full Text Available The objective of mathematics education is not only preparingmathematicians but making well-informed citizens. This is a broad generalterms for objective of the teaching of mathematics. And, this might beimplemented as “accurate thorough knowledge” or “original logicalthinking”. So, teaching mathematics is not the conversation andtransmission of mathematical knowledge, but on the aim of preparing wellinformedcitizens trained in independent, critical thinking.By the mathematics, sciences become simple, clearer, and easier to bedeveloped. The mathematics is often applied for solving any problem ofother field of sciences, either in the physics such as astronomy, chemistry,technique; or social sciences such as economy, demography, and assurance.Those all need an analysis reading ability.Mathematical skill, therefore, relates strongly with the analysisreading ability in the human intellectual structure. This study is about therelationship between them. And, result of the study shows us as below:Both Mathematical skill and analysis reading ability possess the “high type”of thinking operation. Both also involve the same content of the abstractintelligent, i.e. symbolic and semantic contents. Last but not least, both alsouse the same product of thinking, i.e. units, classes, relations, and systems.Both can be transformed and have an implication.

  7. On the discrete reconciliation of relativity and quantum mechanics

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1987-03-01

    A way is sketched to replace physics based on arbitrary units of mass, length, and time by counting in terms of these quantized values and to replace continuum mathematical physics by computer science. The consequences of such a discrete physics are summarized. These are obtained by postulating finiteness, discreteness, finite computability, absolute non-uniqueness, and additivity

  8. Improving Mathematics Teaching in Kindergarten with Realistic Mathematical Education

    Science.gov (United States)

    Papadakis, Stamatios; Kalogiannakis, Michail; Zaranis, Nicholas

    2017-01-01

    The present study investigates and compares the influence of teaching Realistic Mathematics on the development of mathematical competence in kindergarten. The sample consisted of 231 Greek kindergarten students. For the implementation of the survey, we conducted an intervention, which included one experimental and one control group. Children in…

  9. Mathematics Connection: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. MATHEMATICS CONNECTION aims at providing a forum to promote the development of Mathematics Education in Ghana. Articles that seek to enhance the teaching and/or learning of mathematics at all levels of the educational system are welcome ...

  10. Proof and knowledge in mathematics

    CERN Document Server

    Detlefsen, Michael

    2005-01-01

    These questions arise from any attempt to discover an epistemology for mathematics. This collection of essays considers various questions concerning the nature of justification in mathematics and possible sources of that justification. Among these are the question of whether mathematical justification is a priori or a posteriori in character, whether logical and mathematical differ, and if formalization plays a significant role in mathematical justification,

  11. Telomere Length and Mortality

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P

    2008-01-01

    Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...

  12. Mathematics achievement of Serbian eighth grade students and characteristics of mathematics curriculum

    Directory of Open Access Journals (Sweden)

    Antonijević Radovan M.

    2006-01-01

    Full Text Available This paper considers the main results and some educational implications of the TIMSS 2003 assessment conducted in Serbia, in the fields of mathematics achievement of Serbian eighth grade students and the mathematics curriculum context of their achievement. It was confirmed that Serbian eighth graders have made average scale score of 477 points, and with this achievement they are placed in the zone of intermediate international benchmarking level. The average mathematics achievement of the Serbian eighth graders is somewhat above the average international mathematics achievement. The best result was achieved in the content domain of "algebra", and the lower result in the content domains of "measurement" and "data". In the defined cognitive domains the Serbian students have achieved the best results in "solving routine problems" and "knowing facts and procedures", and the weaker result in "reasoning". Statistically significant difference was found in the mathematics achievement between girls and boys in the Serbian TIMSS 2003 sample, so the girls’ average scale score was 480 points and the same value for the boys was 473 points. The achieved results raise many questions about the contents of mathematics curriculum in Serbia, its quality and basic characteristics of its implementation. These results can be eligibly used to improve the mathematics curriculum and teaching in Serbian primary school.

  13. Mathematics Teachers' Use of Ethnomathematics Approach in Mathematics Teaching in Edo State

    Science.gov (United States)

    Aikpitanyi, Lucky Aiwuyor; Eraikhuemen, Lucy

    2017-01-01

    The study investigated mathematics teachers' use of ethnomathematics approach to teaching. Descriptive survey research was used with a target population of all mathematics teacher in all public secondary schools in Oredo, Egor and Ikpoba-Okha local government areas of Edo State out of which 121 mathematics teachers in 42 randomly selected public…

  14. Mathematics Teacher Identity in the Context of Mathematics Reform: Elementary Teacher Experiences

    Science.gov (United States)

    Sun, Jennifer

    2017-01-01

    Reform efforts and changes in mathematics education have brought on a shift towards a new vision of mathematics teaching in the United States. In light of recent accountability standards, the focus on teacher learning within the context of mathematics professional development is even more pressing. Prior research on teacher learning in the context…

  15. Mathematics of Risk Taking

    Indian Academy of Sciences (India)

    Author Affiliations. K B Athreya1 2 M G Nadkarni3. Department of Mathematics Iowa State University, Ames, Iowa; I M I, Department of Mathematics, Indian Institute of Science, Bangalore, 560012, India. Department of Mathematics, University of Mumbai Kalina, Mumbai, 400098, India.

  16. The unique field experiments on the assessment of accident consequences at industrial enterprises of gas-chemical complexes

    International Nuclear Information System (INIS)

    Belov, N.S.; Trebin, I.S.; Sorokovikova, O.

    1998-01-01

    Sour natural gas fields are the unique raw material base for setting up such large enterprises as gas chemical complexes. The presence of high toxic H 2 S in natural gas results in widening a range of dangerous and harmful factors for biosphere. Emission of such gases into atmosphere during accidents at gas wells and gas pipelines is of especial danger for environment and first of all for people. Development of mathematical forecast models for assessment of accidents progression and consequences is one of the main elements of works on safety analysis and risk assessment. The critical step in development of such models is their validation using the experimental material. Full-scale experiments have been conducted by the All-Union Scientific-Research institute of Natural Gases and Gas Technology (VNIIGAZ) for grounding of sizes of hazard zones in case of the severe accidents with the gas pipelines. The source of emergency gas release was the working gas pipelines with 100 mm dia. And 110 km length. This pipeline was used for transportation of natural gas with significant amount of hydrogen sulphide. During these experiments significant quantities of the gas including H 2 S were released into the atmosphere and then concentrations of gas and H 2 S were measured in the accident region. The results of these experiments are used for validation of atmospheric dispersion models including the new Lagrangian trace stochastic model that takes into account a wide range of meteorological factors. This model was developed as a part of computer system for decision-making support in case of accident release of toxic gases into atmosphere at the enterprises of Russian gas industry. (authors)

  17. Mathematical Gossip: Relevance and Context in the Mathematics Classroom

    Science.gov (United States)

    Callingham, Rosemary

    2004-01-01

    Using mathematical gossip in the classroom allows teachers to expand their students' horizons, and provide pathways to improvement of understanding. The expansion of a simple idea into another mathematical context can enrich a student's learning. In particular it may help to bridge the gap between purely procedural approaches and a conceptual…

  18. The influence of Missouri mathematics project on seventh grade students’ mathematical understanding ability

    Science.gov (United States)

    Rezeki, S.; Setyawan, A. A.; Amelia, S.

    2018-01-01

    Mathematical understanding ability is a primary goal of Indonesian national education goals. However, various sources has shown that Indonesian students’ mathematical understanding ability is still relatively low. This study used quasi-experimental research design to examine the effectiveness of the application of Missouri Mathematics Project (MMP) on students’ mathematical understanding ability. The participants of the study were seventh grade students in Pekanbaru, Riau Province, Indonesia. They were selected purposively and represented as high, medium, and low-quality schools. The result of this study indicated that there was a significant effect of MMP on the overall students’ mathematical understanding ability and in all categories, except for low school level.

  19. Fuel element cladding state change mathematical model for a WWER-1000 plant operated in the mode of varying loading

    Directory of Open Access Journals (Sweden)

    S. N. Pelykh

    2010-09-01

    Full Text Available Main features of a fuel element cladding state change mathematical model for a WWER-1000 reactor plant operated in the mode of varying loading are listed. The integrated model is based on the energy creep theory, uses the finite element method for imultaneous solution of the fuel element heat conduction and mechanical deformation equa-tions. Proposed mathematical model allows us to determine the influence of the WWER-1000 regime parameters and fuel assembly design characteristics on the change of cladding properties under different loading conditions of normal operation, as well as the cladding limiting state at variable loading depending on the length, depth and number of cycles.

  20. Mathematical modelling and analysis for a three-tiered microbial food web in a chemostat

    Directory of Open Access Journals (Sweden)

    Miled El hajji

    2017-10-01

    Full Text Available In this article, we present a mathematical six-dimensional dynamical system involving a three-tiered microbial food web without maintenance. We give a qualitative analysis of the model, and an analysis of the local stability of equilibrium points. Under general assumptions of monotonicity, we prove the uniqueness and the local stability of the positive equilibrium point corresponding to the persistence of the three bacteria. Possibilities of periodic orbits are not excluded and asymptotic coexistence is satisfied.