WorldWideScience

Sample records for lengthened circadian period

  1. Glycogen synthase kinase-3β haploinsufficiency lengthens the circadian locomotor activity period in mice.

    Science.gov (United States)

    Lavoie, Joëlle; Hébert, Marc; Beaulieu, Jean-Martin

    2013-09-15

    The mood stabiliser drug lithium has been reported to impact circadian rhythms in vertebrates. Among several putative therapeutic molecular targets, direct inhibition of glycogen synthase kinase-3 beta (GSK3β) by lithium has been proposed to underlie its effects on circadian physiology. Here we study the effect of GSK3β haploinsufficiency on the circadian locomotor activity in mice during a free-running period in comparison to wildtype littermates (WT). Mice were housed individually to record their circadian wheel running activity and were entrained to a 12h light/12h dark cycle for 14 days and then placed under constant darkness for 14 days to allow free-running. During the free-running phase, the circadian locomotor activity period of GSK3β(+/-) was significantly lengthened (23.83±0.05h) when compared to the WT mice (23.54±0.10h; p=0.0374). No significant difference in locomotor activity was observed. Knowing that GSK3β interacts with most of the core clock components, these data suggest that GSK3β acts as a critical intrinsic regulator of the circadian clock and plays an important role in regulating its period in response to lithium treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Circadian period integrates network information through activation of the BMP signaling pathway.

    Directory of Open Access Journals (Sweden)

    Esteban J Beckwith

    2013-12-01

    Full Text Available Living organisms use biological clocks to maintain their internal temporal order and anticipate daily environmental changes. In Drosophila, circadian regulation of locomotor behavior is controlled by ∼150 neurons; among them, neurons expressing the PIGMENT DISPERSING FACTOR (PDF set the period of locomotor behavior under free-running conditions. To date, it remains unclear how individual circadian clusters integrate their activity to assemble a distinctive behavioral output. Here we show that the BONE MORPHOGENETIC PROTEIN (BMP signaling pathway plays a crucial role in setting the circadian period in PDF neurons in the adult brain. Acute deregulation of BMP signaling causes period lengthening through regulation of dClock transcription, providing evidence for a novel function of this pathway in the adult brain. We propose that coherence in the circadian network arises from integration in PDF neurons of both the pace of the cell-autonomous molecular clock and information derived from circadian-relevant neurons through release of BMP ligands.

  3. Mini screening of kinase inhibitors affecting period-length of mammalian cellular circadian clock.

    Science.gov (United States)

    Yagita, Kazuhiro; Yamanaka, Iori; Koinuma, Satoshi; Shigeyoshi, Yasufumi; Uchiyama, Yasuo

    2009-06-27

    In mammalian circadian rhythms, the transcriptional-translational feedback loop (TTFL) consisting of a set of clock genes is believed to elicit the circadian clock oscillation. The TTFL model explains that the accumulation and degradation of mPER and mCRY proteins control the period-length (tau) of the circadian clock. Although recent studies revealed that the Casein Kinase I epsilon delta (CKI epsilon delta) regulates the phosphorylation of mPER proteins and the circadian period-length, other kinases are also likely to contribute the phosphorylation of mPER. Here, we performed small scale screening using 84 chemical compounds known as kinase inhibitors to identify candidates possibly affecting the circadian period-length in mammalian cells. Screening by this high-throughput real-time bioluminescence monitoring system revealed that the several chemical compounds apparently lengthened the cellular circadian clock oscillation. These compounds are known as inhibitors against kinases such as Casein Kinase II (CKII), PI3-kinase (PI3K) and c-Jun N-terminal Kinase (JNK) in addition to CKI epsilon delta. Although these kinase inhibitors may have some non-specific effects on other factors, our mini screening identified new candidates contributing to period-length control in mammalian cells.

  4. Disruption of the circadian period of body temperature by the anesthetic propofol.

    Science.gov (United States)

    Touitou, Yvan; Mauvieux, Benoit; Reinberg, Alain; Dispersyn, Garance

    2016-01-01

    The circadian time structure of an organism can be desynchronized in a large number of instances, including the intake of specific drugs. We have previously found that propofol, which is a general anesthetic, induces a desynchronization of the circadian time structure in rats, with a 60-80 min significant phase advance of body temperature circadian rhythm. We thus deemed it worthwhile to examine whether this phase shift of body temperature was related to a modification of the circadian period Tau. Propofol was administered at three different Zeitgeber Times (ZTs): ZT6 (middle of the rest period), ZT10 (2 h prior to the beginning of activity period), ZT16 (4 h after the beginning of the activity period), with ZT0 being the beginning of the rest period (light onset) and ZT12 being the beginning of the activity period (light offset). Control rats (n = 20) were injected at the same ZTs with 10% intralipid, which is a control lipidic solution. Whereas no modification of the circadian period of body temperature was observed in the control rats, propofol administration resulted in a significant shortening of the period by 96 and 180 min at ZT6 and ZT10, respectively. By contrast, the period was significantly lengthened by 90 min at ZT16. We also found differences in the time it took for the rats to readjust their body temperature to the original 24-h rhythm. At ZT16, the speed of readjustment was more rapid than at the two other ZTs that we investigated. This study hence shows (i) the disruptive effects of the anesthetic propofol on the body temperature circadian rhythm, and it points out that (ii) the period Tau for body temperature responds to this anesthetic drug according to a Tau-response curve. By sustaining postoperative sleep-wake disorders, the disruptive effects of propofol on circadian time structure might have important implications for the use of this drug in humans.

  5. Heritable circadian period length in a wild bird population

    NARCIS (Netherlands)

    Helm, B.; Visser, M.E.

    2010-01-01

    Timing is essential, but circadian clocks, which play a crucial role in timekeeping, are almost unaddressed in evolutionary ecology. A key property of circadian clocks is their free-running period length (τ), i.e. the time taken for a full cycle under constant conditions. Under laboratory

  6. Cooperative interaction between phosphorylation sites on PERIOD maintains circadian period in Drosophila.

    Directory of Open Access Journals (Sweden)

    David S Garbe

    Full Text Available Circadian rhythms in Drosophila rely on cyclic regulation of the period (per and timeless (tim clock genes. The molecular cycle requires rhythmic phosphorylation of PER and TIM proteins, which is mediated by several kinases and phosphatases such as Protein Phosphatase-2A (PP2A and Protein Phosphatase-1 (PP1. Here, we used mass spectrometry to identify 35 "phospho-occupied" serine/threonine residues within PER, 24 of which are specifically regulated by PP1/PP2A. We found that cell culture assays were not good predictors of protein function in flies and so we generated per transgenes carrying phosphorylation site mutations and tested for rescue of the per(01 arrhythmic phenotype. Surprisingly, most transgenes restore wild type rhythms despite carrying mutations in several phosphorylation sites. One particular transgene, in which T610 and S613 are mutated to alanine, restores daily rhythmicity, but dramatically lengthens the period to ~ 30 hrs. Interestingly, the single S613A mutation extends the period by 2-3 hours, while the single T610A mutation has a minimal effect, suggesting these phospho-residues cooperate to control period length. Conservation of S613 from flies to humans suggests that it possesses a critical clock function, and mutational analysis of residues surrounding T610/S613 implicates the entire region in determining circadian period. Biochemical and immunohistochemical data indicate defects in overall phosphorylation and altered timely degradation of PER carrying the double or single S613A mutation(s. The PER-T610A/S613A mutant also alters CLK phosphorylation and CLK-mediated output. Lastly, we show that a mutation at a previously identified site, S596, is largely epistatic to S613A, suggesting that S613 negatively regulates phosphorylation at S596. Together these data establish functional significance for a new domain of PER, demonstrate that cooperativity between phosphorylation sites maintains PER function, and support a model

  7. Sex and ancestry determine the free-running circadian period.

    Science.gov (United States)

    Eastman, Charmane I; Tomaka, Victoria A; Crowley, Stephanie J

    2017-10-01

    The endogenous, free-running circadian period (τ) determines the phase relationship that an organism assumes when entrained to the 24-h day. We found a shorter circadian period in African Americans compared to non-Hispanic European Americans (24.07 versus 24.33 h). We speculate that a short circadian period, closer to 24 h, was advantageous to humans living around the equator, but when humans migrated North out of Africa, where the photoperiod changes with seasons, natural selection favoured people with longer circadian periods. Recently, in evolutionary terms, immigrants came from Europe and Africa to America ('the New World'). The Europeans were descendents of people who had lived in Europe for thousands of years with changing photoperiods (and presumably longer periods), whereas Africans had ancestors who had always lived around the equator (with shorter periods). It may have been advantageous to have a longer circadian period while living in Europe early in the evolution of humans. In our modern world, however, it is better to have a shorter period, because it helps make our circadian rhythms earlier, which is adaptive in our early-bird-dominated society. European American women had a shorter circadian period than men (24.24 versus 24.41), but there was no sex difference in African Americans (24.07 for both men and women). We speculate that selection pressures in Europe made men develop a slightly longer period than women to help them track dawn which could be useful for hunters, but less important for women as gatherers. © 2017 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  8. Effects of caffeine on circadian phase, amplitude and period evaluated in cells in vitro and peripheral organs in vivo in PER2::LUCIFERASE mice

    Science.gov (United States)

    Narishige, Seira; Kuwahara, Mari; Shinozaki, Ayako; Okada, Satoshi; Ikeda, Yuko; Kamagata, Mayo; Tahara, Yu; Shibata, Shigenobu

    2014-01-01

    Background and Purpose Caffeine is one of the most commonly used psychoactive substances. Circadian rhythms consist of the main suprachiasmatic nucleus (SCN) clocks and peripheral clocks. Although caffeine lengthens circadian rhythms and modifies phase changes in SCN-operated rhythms, the effects on caffeine on the phase, period and amplitude of peripheral organ clocks are not known. In addition, the role of cAMP/Ca2+ signalling in effects of caffeine on rhythm has not been fully elucidated. Experimental Approach We examined whether chronic or transient application of caffeine affects circadian period/amplitude and phase by evaluating bioluminescence rhythm in PER2::LUCIFERASE knock-in mice. Circadian rhythms were monitored in vitro using fibroblasts and ex vivo and in vivo for monitoring of peripheral clocks. Key Results Chronic application of caffeine (0.1–10 mM) increased period and amplitude in vitro. Transient application of caffeine (10 mM) near the bottom of the decreasing phase of bioluminescence rhythm caused phase advance in vitro. Caffeine (0.1%) intake caused a phase delay under light–dark or constant dark conditions, suggesting a period-lengthening effect in vivo. Caffeine (20 mg·kg−1) at daytime or at late night-time caused phase advance or delay in bioluminescence rhythm in the liver and kidney respectively. The complicated roles of cAMP/Ca2+ signalling may be involved in the caffeine-induced increase of period and amplitude in vitro. Conclusions and Implications Caffeine affects circadian rhythm in mice by lengthening the period and causing a phase shift of peripheral clocks. These results suggest that caffeine intake with food/drink may help with food-induced resetting of peripheral circadian clocks. PMID:25160990

  9. A Positive Role for PERIOD in Mammalian Circadian Gene Expression

    Directory of Open Access Journals (Sweden)

    Makoto Akashi

    2014-05-01

    Full Text Available In the current model of the mammalian circadian clock, PERIOD (PER represses the activity of the circadian transcription factors BMAL1 and CLOCK, either independently or together with CRYPTOCHROME (CRY. Here, we provide evidence that PER has an entirely different function from that reported previously, namely, that PER inhibits CRY-mediated transcriptional repression through interference with CRY recruitment into the BMAL1-CLOCK complex. This indirect positive function of PER is consistent with previous data from genetic analyses using Per-deficient or mutant mice. Overall, our results support the hypothesis that PER plays different roles in different circadian phases: an early phase in which it suppresses CRY activity, and a later phase in which it acts as a transcriptional repressor with CRY. This buffering effect of PER on CRY might help to prolong the period of rhythmic gene expression. Additional studies are required to carefully examine the promoter- and phase-specific roles of PER.

  10. Interspecific studies of circadian genes period and timeless in Drosophila.

    Science.gov (United States)

    Noreen, Shumaila; Pegoraro, Mirko; Nouroz, Faisal; Tauber, Eran; Kyriacou, Charalambos P

    2018-03-30

    The level of rescue of clock function in genetically arrhythmic Drosophila melanogaster hosts using interspecific clock gene transformation was used to study the putative intermolecular coevolution between interacting clock proteins. Among them PER and TIM are the two important negative regulators of the circadian clock feedback loop. We transformed either the D. pseudoobscura per or tim transgenes into the corresponding arrhythmic D. melanogaster mutant (per01 or tim01) and observed >50% rhythmicity but the period of activity rhythm was either longer (D. pseudoobscura-per) or shorter than 24 h (D. pseudoobscura-tim) compared to controls. By introducing both transgenes simultaneously into double mutants, we observed that the period of the activity rhythm was rescued by the pair of hemizygous transgenes (~24 h). These flies also showed a more optimal level of temperature compensation for the period. Under LD 12:12 these flies have a D. pseudoobscura like activity profile with the absence of morning anticipation as well as a very prominent earlier evening peak of activity rhythm. These observation are consistent with the view that TIM and PER form a heterospecific coevolved module at least for the circadian period of activity rhythms. However the strength of rhythmicity was reduced by having both transgenes present, so while evidence for a coevolution between PER and TIM is observed for some characters it is not for others. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. period -1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.; Baker, Scott E.; Loros, Jennifer J.; Dunlap, Jay C.

    2015-12-08

    Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 and DDX17 in humans and Dbp2p in yeast, are implicated in various processes including transcriptional regulation, elongation, and termination, 23 ribosome biogenesis, and RNA decay. Although prdi-1smutantssiois an ATP-dependent RNA helicase, member of a sub-family display a long period (~25 hrs) circadian developmental cycle, they interestingly display a wild type period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator runs with a long period under glucose-sufficient conditions. Thus PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose PRD-1 is in the nucleus until glucose runs out which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd­-1 may be formally viewed as clock mutant with defective nutritional compensation of circadian period length.

  12. The period length of fibroblast circadian gene expression varies widely among human individuals.

    Directory of Open Access Journals (Sweden)

    Steven A Brown

    2005-10-01

    Full Text Available Mammalian circadian behavior is governed by a central clock in the suprachiasmatic nucleus of the brain hypothalamus, and its intrinsic period length is believed to affect the phase of daily activities. Measurement of this period length, normally accomplished by prolonged subject observation, is difficult and costly in humans. Because a circadian clock similar to that of the suprachiasmatic nucleus is present in most cell types, we were able to engineer a lentiviral circadian reporter that permits characterization of circadian rhythms in single skin biopsies. Using it, we have determined the period lengths of 19 human individuals. The average value from all subjects, 24.5 h, closely matches average values for human circadian physiology obtained in studies in which circadian period was assessed in the absence of the confounding effects of light input and sleep-wake cycle feedback. Nevertheless, the distribution of period lengths measured from biopsies from different individuals was wider than those reported for circadian physiology. A similar trend was observed when comparing wheel-running behavior with fibroblast period length in mouse strains containing circadian gene disruptions. In mice, inter-individual differences in fibroblast period length correlated with the period of running-wheel activity; in humans, fibroblasts from different individuals showed widely variant circadian periods. Given its robustness, the presented procedure should permit quantitative trait mapping of human period length.

  13. Plasticity of the intrinsic period of the human circadian timing system.

    Directory of Open Access Journals (Sweden)

    Frank A J L Scheer

    2007-08-01

    Full Text Available Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol, which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light ( approximately 450 lux; approximately 1.2 W/m(2 for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration.

  14. Stability, precision, and near-24-hour period of the human circadian pacemaker

    Science.gov (United States)

    Czeisler, C. A.; Duffy, J. F.; Shanahan, T. L.; Brown, E. N.; Mitchell, J. F.; Rimmer, D. W.; Ronda, J. M.; Silva, E. J.; Allan, J. S.; Emens, J. S.; hide

    1999-01-01

    Regulation of circadian period in humans was thought to differ from that of other species, with the period of the activity rhythm reported to range from 13 to 65 hours (median 25.2 hours) and the period of the body temperature rhythm reported to average 25 hours in adulthood, and to shorten with age. However, those observations were based on studies of humans exposed to light levels sufficient to confound circadian period estimation. Precise estimation of the periods of the endogenous circadian rhythms of melatonin, core body temperature, and cortisol in healthy young and older individuals living in carefully controlled lighting conditions has now revealed that the intrinsic period of the human circadian pacemaker averages 24.18 hours in both age groups, with a tight distribution consistent with other species. These findings have important implications for understanding the pathophysiology of disrupted sleep in older people.

  15. Daily Light Exposure Patterns Reveal Phase and Period of the Human Circadian Clock.

    Science.gov (United States)

    Woelders, Tom; Beersma, Domien G M; Gordijn, Marijke C M; Hut, Roelof A; Wams, Emma J

    2017-06-01

    Light is the most potent time cue that synchronizes (entrains) the circadian pacemaker to the 24-h solar cycle. This entrainment process is an interplay between an individual's daily light perception and intrinsic pacemaker period under free-running conditions. Establishing individual estimates of circadian phase and period can be time-consuming. We show that circadian phase can be accurately predicted (SD = 1.1 h for dim light melatonin onset, DLMO) using 9 days of ambulatory light and activity data as an input to Kronauer's limit-cycle model for the human circadian system. This approach also yields an estimated circadian period of 24.2 h (SD = 0.2 h), with longer periods resulting in later DLMOs. A larger amount of daylight exposure resulted in an earlier DLMO. Individuals with a long circadian period also showed shorter intervals between DLMO and sleep timing. When a field-based estimation of tau can be validated under laboratory studies in a wide variety of individuals, the proposed methods may prove to be essential tools for individualized chronotherapy and light treatment for shift work and jetlag applications. These methods may improve our understanding of fundamental properties of human circadian rhythms under daily living conditions.

  16. Mammalian TIMELESS Is Involved in Period Determination and DNA Damage-Dependent Phase Advancing of the Circadian Clock

    NARCIS (Netherlands)

    M.P. Engelen (Erik); R. Janssens (Roel); K. Yagita (Kazuhiro); V.A.J. Smits (Veronique); G.T.J. van der Horst (Gijsbertus); F. Tamanini (Filippo)

    2013-01-01

    textabstractThe transcription/translation feedback loop-based molecular oscillator underlying the generation of circadian gene expression is preserved in almost all organisms. Interestingly, the animal circadian clock proteins CRYPTOCHROME (CRY), PERIOD (PER) and TIMELESS (TIM) are strongly

  17. A role for the PERIOD:PERIOD homodimer in the Drosophila circadian clock.

    Directory of Open Access Journals (Sweden)

    Johannes Landskron

    2009-04-01

    Full Text Available Circadian clocks in eukaryotes rely on transcriptional feedback loops, in which clock genes repress their own transcription resulting in molecular oscillations with a period of approximately 24 h. In Drosophila, the clock proteins Period (PER and Timeless (TIM operate in such a feedback loop, whereby they first accumulate in the cytoplasm of clock cells as a heterodimer. Nuclear translocation of the complex or the individual PER and TIM proteins is followed by repression of per and tim transcription, whereby PER seems to act as the prime repressor. We found that in addition to PER:TIM complexes, functional PER:PER homodimers exist in flies. Specific disruption of PER homodimers results in drastically impaired behavioral and molecular rhythmicity, pointing the biological importance of this clock protein complex. Analysis of PER subcellular distribution and repressor competence in the PER dimer mutant revealed defects in PER nuclear translocation and a disruption of rhythmic period transcription. The striking similarity of these phenotypes with that of reduced CKII activity suggests that the formation or function of the PER dimer is closely linked to this kinase. Our results confirm a previous structural model for PER and provide strong evidence that PER homodimers are important for circadian clock function.

  18. The physiological period length of the human circadian clock in vivo is directly proportional to period in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Lucia Pagani

    Full Text Available BACKGROUND: Diurnal behavior in humans is governed by the period length of a circadian clock in the suprachiasmatic nuclei of the brain hypothalamus. Nevertheless, the cell-intrinsic mechanism of this clock is present in most cells of the body. We have shown previously that for individuals of extreme chronotype ("larks" and "owls", clock properties measured in human fibroblasts correlated with extreme diurnal behavior. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have measured circadian period in human primary fibroblasts taken from normal individuals and, for the first time, compared it directly with physiological period measured in vivo in the same subjects. Human physiological period length was estimated via the secretion pattern of the hormone melatonin in two different groups of sighted subjects and one group of totally blind subjects, each using different methods. Fibroblast period length was measured via cyclical expression of a lentivirally delivered circadian reporter. Within each group, a positive linear correlation was observed between circadian period length in physiology and in fibroblast gene expression. Interestingly, although blind individuals showed on average the same fibroblast clock properties as sighted ones, their physiological periods were significantly longer. CONCLUSIONS/SIGNIFICANCE: We conclude that the period of human circadian behaviour is mostly driven by cellular clock properties in normal individuals and can be approximated by measurement in peripheral cells such as fibroblasts. Based upon differences among sighted and blind subjects, we also speculate that period can be modified by prolonged unusual conditions such as the total light deprivation of blindness.

  19. Chronic cocaine causes long-term alterations in circadian period and photic entrainment in the mouse.

    Science.gov (United States)

    Stowie, A C; Amicarelli, M J; Prosser, R A; Glass, J D

    2015-01-22

    The disruptive effects of cocaine on physiological, behavioral and genetic processes are well established. However, few studies have focused on the actions of cocaine on the adult circadian timekeeping system, and none have explored the circadian implications of long-term (weeks to months) cocaine exposure. The present study was undertaken to explore the actions of such long-term cocaine administration on core circadian parameters in mice, including rhythm period, length of the nocturnal activity period and photic entrainment. For cocaine dosing over extended periods, cocaine was provided in drinking water using continuous and scheduled regimens. The impact of chronic cocaine on circadian regulation was evidenced by disruptions of the period of circadian entrainment and intrinsic free-running circadian period. Specifically, mice under a skeleton photoperiod (1-min pulse of dim light delivered daily) receiving continuous ad libitum cocaine entrained rapidly to the light pulse at activity onset. Conversely, water controls entrained more slowly at activity offset through a process of phase-delays, which resulted in their activity rhythms being entrained 147° out of phase with the cocaine group. This pattern persisted after cocaine withdrawal. Next, mice exposed to scheduled daily cocaine presentations exhibited free-running periods under constant darkness that were significantly longer than water controls and which also persisted after cocaine withdrawal. These cocaine-induced perturbations of clock timing could produce chronic psychological and physiological stress, contributing to increased cocaine use and dependence. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Detection and resolution of genetic loci affecting circadian period in Brassica oleracea.

    Science.gov (United States)

    Salathia, Neeraj; Lynn, James R; Millar, Andrew J; King, Graham J

    2007-02-01

    Circadian rhythms regulate many aspects of plant growth, fitness and vigour. The components and detailed mechanism of circadian regulation to date have been dissected in the reference species Arabidopsis thaliana. To determine the genetic basis and range of natural allelic variation for intrinsic circadian period in the closest crop relatives, we used an accurate and high throughput data capture system to record rhythmic cotyledon movement in two immortal segregating populations of Brassica oleracea, derived from parent lines representing different crop types. Periods varied between 24.4 and 26.1 h between the parent lines, with transgressive segregation between extreme recombinant lines in both populations of approximately 3.5 h. The additive effect of individual QTL identified in each population varied from 0.17 to 0.36 h. QTL detected in one doubled haploid population were verified and the mapping intervals further resolved by determining circadian period in genomic substitution lines derived from the parental lines. Comparative genomic analysis based on collinearity between Brassica and Arabidopsis also allowed identification of candidate orthologous genes known to regulate period in Arabidopsis, that may account for the additive circadian effects of specific QTL. The distinct QTL positions detected in the two populations, and the extent of transgressive segregation suggest that there is likely to be considerable scope for modulating the range of available circadian periods in natural populations and crop species of Brassica. This may provide adaptive advantage for optimising growth and development in different latitudes, seasons or climate conditions.

  1. Lengthened Cutaneous Silent Period in Fibromyalgia Suggesting Central Sensitization as a Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Seol-Hee Baek

    Full Text Available The pathogenesis of fibromyalgia (FM has not been clearly elucidated, but central sensitization, which plays an important role in the development of neuropathic pain, is considered to be the main mechanism. The cutaneous silent period (CSP, which is a spinal reflex mediated by A-delta cutaneous afferents, is useful for the evaluation of sensorimotor integration at the spinal and supraspinal levels. To understand the pathophysiology of FM, we compared CSP patterns between patients with FM and normal healthy subjects. Twenty-four patients with FM diagnosed in accordance with the 1990 American College of Rheumatology classification system and 24 age- and sex-matched healthy volunteers were recruited. The CSP was measured from the abductor pollicis brevis muscle. Demographic data, number of tender points, and visual analog scale and FM impact questionnaire scores were collected. The measured CSP and clinical parameters of the patient and control groups were compared. In addition, possible correlations between the CSP parameters and the other clinical characteristics were analyzed. Mean CSP latencies did not differ between patients (55.50 ± 10.97 ms and healthy controls (60.23 ± 11.87 ms; p = 0.158, although the mean CSP duration was significantly longer in patients (73.75 ± 15.67 ms than in controls (63.50 ± 14.05 ms; p = 0.021. CSP variables did not correlate with any clinical variables. The significantly longer CSP duration in FM patients suggests central dysregulation at the spinal and supraspinal levels, rather than peripheral small fiber dysfunction.

  2. Lengthened Cutaneous Silent Period in Fibromyalgia Suggesting Central Sensitization as a Pathogenesis.

    Science.gov (United States)

    Baek, Seol-Hee; Seok, Hung Youl; Koo, Yong Seo; Kim, Byung-Jo

    2016-01-01

    The pathogenesis of fibromyalgia (FM) has not been clearly elucidated, but central sensitization, which plays an important role in the development of neuropathic pain, is considered to be the main mechanism. The cutaneous silent period (CSP), which is a spinal reflex mediated by A-delta cutaneous afferents, is useful for the evaluation of sensorimotor integration at the spinal and supraspinal levels. To understand the pathophysiology of FM, we compared CSP patterns between patients with FM and normal healthy subjects. Twenty-four patients with FM diagnosed in accordance with the 1990 American College of Rheumatology classification system and 24 age- and sex-matched healthy volunteers were recruited. The CSP was measured from the abductor pollicis brevis muscle. Demographic data, number of tender points, and visual analog scale and FM impact questionnaire scores were collected. The measured CSP and clinical parameters of the patient and control groups were compared. In addition, possible correlations between the CSP parameters and the other clinical characteristics were analyzed. Mean CSP latencies did not differ between patients (55.50 ± 10.97 ms) and healthy controls (60.23 ± 11.87 ms; p = 0.158), although the mean CSP duration was significantly longer in patients (73.75 ± 15.67 ms) than in controls (63.50 ± 14.05 ms; p = 0.021). CSP variables did not correlate with any clinical variables. The significantly longer CSP duration in FM patients suggests central dysregulation at the spinal and supraspinal levels, rather than peripheral small fiber dysfunction.

  3. Robust circadian rhythms in organoid cultures from PERIOD2::LUCIFERASE mouse small intestine

    Directory of Open Access Journals (Sweden)

    Sean R. Moore

    2014-09-01

    Full Text Available Disruption of circadian rhythms is a risk factor for several human gastrointestinal (GI diseases, ranging from diarrhea to ulcers to cancer. Four-dimensional tissue culture models that faithfully mimic the circadian clock of the GI epithelium would provide an invaluable tool to understand circadian regulation of GI health and disease. We hypothesized that rhythmicity of a key circadian component, PERIOD2 (PER2, would diminish along a continuum from ex vivo intestinal organoids (epithelial ‘miniguts’, nontransformed mouse small intestinal epithelial (MSIE cells and transformed human colorectal adenocarcinoma (Caco-2 cells. Here, we show that bioluminescent jejunal explants from PERIOD2::LUCIFERASE (PER2::LUC mice displayed robust circadian rhythms for >72 hours post-excision. Circadian rhythms in primary or passaged PER2::LUC jejunal organoids were similarly robust; they also synchronized upon serum shock and persisted beyond 2 weeks in culture. Remarkably, unshocked organoids autonomously synchronized rhythms within 12 hours of recording. The onset of this autonomous synchronization was slowed by >2 hours in the presence of the glucocorticoid receptor antagonist RU486 (20 μM. Doubling standard concentrations of the organoid growth factors EGF, Noggin and R-spondin enhanced PER2 oscillations, whereas subtraction of these factors individually at 24 hours following serum shock produced no detectable effects on PER2 oscillations. Growth factor pulses induced modest phase delays in unshocked, but not serum-shocked, organoids. Circadian oscillations of PER2::LUC bioluminescence aligned with Per2 mRNA expression upon analysis using quantitative PCR. Concordant findings of robust circadian rhythms in bioluminescent jejunal explants and organoids provide further evidence for a peripheral clock that is intrinsic to the intestinal epithelium. The rhythmic and organotypic features of organoids should offer unprecedented advantages as a resource for

  4. No impact of physical activity on the period of the circadian pacemaker in humans

    NARCIS (Netherlands)

    Beersma, DGM; Hiddinga, AE

    1998-01-01

    The intrinsic period tau of the circadian pacemaker in humans was investigated by means of forced desynchrony. In this protocol, during 6 scheduled days, the sleep-wake alternation was forced to a period of 20h (i.e., 13.5h for wakefulness and 6.5h for sleep). Light intensity was kept below 10 lux.

  5. Experimental and Mathematical Analyses Relating Circadian Period and Phase of Entrainment in Neurospora crassa.

    Science.gov (United States)

    Lee, Kwangwon; Shiva Kumar, Prithvi; McQuade, Sean; Lee, Joshua Y; Park, Sohyun; An, Zheming; Piccoli, Benedetto

    2017-12-01

    Circadian rhythms are observed in most organisms on earth and are known to play a major role in successful adaptation to the 24-h cycling environment. Circadian phenotypes are characterized by a free-running period that is observed in constant conditions and an entrained phase that is observed in cyclic conditions. Thus, the relationship between the free-running period and phase of entrainment is of interest. A popular simple rule has been that the entrained phase is the expression of the period in a cycling environment (i.e., that a short period causes an advanced phase and a long period causes a delayed phase). However, there are experimental data that are not explained by this simple relationship, and no systematic study has been done to explore all possible period-phase relationships. Here, we show the existence of stable period-phase relationships that are exceptions to this rule. First, we analyzed period-phase relationships using populations with different degrees of genome complexity. Second, we generated isogenic F1 populations by crossing 14 classical period mutants to the same female and analyzed 2 populations with a short period/delayed phase and a long period/advanced phase. Third, we generated a mathematical model to account for such variable relationships between period and phase. Our analyses support the view that the circadian period of an organism is not the only predictor of the entrained phase.

  6. Temporal organization of feeding in Syrian hamsters with a genetically altered circadian period

    NARCIS (Netherlands)

    Oklejewicz, M; Overkamp, GJF; Stirland, JA; Daan, S

    2001-01-01

    The variation in spontaneous meal patterning was studied in three genotypes (tau +/+, tau +/- and tau -/-) of the Syrian hamster with an altered circadian period. Feeding activity was monitored continuously in 13 individuals from each genotype in constant dim light conditions. All three genotypes

  7. Melanopsin resets circadian rhythms in cells by inducing clock gene Period1

    Science.gov (United States)

    Yamashita, Shuhei; Uehara, Tomoe; Matsuo, Minako; Kikuchi, Yo; Numano, Rika

    2014-02-01

    The biochemical, physiological and behavioral processes are under the control of internal clocks with the period of approximately 24 hr, circadian rhythms. The expression of clock gene Period1 (Per1) oscillates autonomously in cells and is induced immediately after a light pulse. Per1 is an indispensable member of the central clock system to maintain the autonomous oscillator and synchronize environmental light cycle. Per1 expression could be detected by Per1∷luc and Per1∷GFP plasmid DNA in which firefly luciferase and Green Fluorescence Protein were rhythmically expressed under the control of the mouse Per1 promoter in order to monitor mammalian circadian rhythms. Membrane protein, MELANOPSIN is activated by blue light in the morning on the retina and lead to signals transduction to induce Per1 expression and to reset the phase of circadian rhythms. In this report Per1 induction was measured by reporter signal assay in Per1∷luc and Per1∷GFP fibroblast cell at the input process of circadian rhythms. To the result all process to reset the rhythms by Melanopsin is completed in single cell like in the retina projected to the central clock in the brain. Moreover, the phase of circadian rhythm in Per1∷luc cells is synchronized by photo-activated Melanopsin, because the definite peak of luciferase activity in one dish was found one day after light illumination. That is an available means that physiological circadian rhythms could be real-time monitor as calculable reporter (bioluminescent and fluorescent) chronological signal in both single and groups of cells.

  8. Allelic polymorphism of GIGANTEA is responsible for naturally occurring variation in circadian period in Brassica rapa.

    Science.gov (United States)

    Xie, Qiguang; Lou, Ping; Hermand, Victor; Aman, Rashid; Park, Hee Jin; Yun, Dae-Jin; Kim, Woe Yeon; Salmela, Matti Juhani; Ewers, Brent E; Weinig, Cynthia; Khan, Sarah L; Schaible, D Loring P; McClung, C Robertson

    2015-03-24

    GIGANTEA (GI) was originally identified by a late-flowering mutant in Arabidopsis, but subsequently has been shown to act in circadian period determination, light inhibition of hypocotyl elongation, and responses to multiple abiotic stresses, including tolerance to high salt and cold (freezing) temperature. Genetic mapping and analysis of families of heterogeneous inbred lines showed that natural variation in GI is responsible for a major quantitative trait locus in circadian period in Brassica rapa. We confirmed this conclusion by transgenic rescue of an Arabidopsis gi-201 loss of function mutant. The two B. rapa GI alleles each fully rescued the delayed flowering of Arabidopsis gi-201 but showed differential rescue of perturbations in red light inhibition of hypocotyl elongation and altered cold and salt tolerance. The B. rapa R500 GI allele, which failed to rescue the hypocotyl and abiotic stress phenotypes, disrupted circadian period determination in Arabidopsis. Analysis of chimeric B. rapa GI alleles identified the causal nucleotide polymorphism, which results in an amino acid substitution (S264A) between the two GI proteins. This polymorphism underlies variation in circadian period, cold and salt tolerance, and red light inhibition of hypocotyl elongation. Loss-of-function mutations of B. rapa GI confer delayed flowering, perturbed circadian rhythms in leaf movement, and increased freezing and increased salt tolerance, consistent with effects of similar mutations in Arabidopsis. Collectively, these data suggest that allelic variation of GI-and possibly of clock genes in general-offers an attractive target for molecular breeding for enhanced stress tolerance and potentially for improved crop yield.

  9. Circadian rhythm of periodic limb movements and sensory symptoms of restless legs syndrome.

    Science.gov (United States)

    Trenkwalder, C; Hening, W A; Walters, A S; Campbell, S S; Rahman, K; Chokroverty, S

    1999-01-01

    The symptoms of restless legs syndrome (RLS) worsen while patients are sitting or lying and also worsen at night. The current study was designed to determine if the periodic limb movements (PLMs) and sensory symptoms of RLS are modulated by an independent circadian factor. We recorded sleeping and waking PLMs and waking sensory symptoms in eight volunteers with RLS for 3 successive nights and days, starting with a polysomnographic recording of 2 nights, followed by a third night of sleep deprivation and the day after sleep deprivation. This study showed that both the PLMs and sensory symptoms were worst at night with a maximum for both between midnight and 1:00 AM and a minimum between 9:00 and 11:00 AM. Sleep and drowsiness had a tendency to worsen PLMs and sensory symptoms after the night of sleep deprivation. Circadian temperature curves were normal in all four patients with adequate data collection. The highest PLM counts occurred on the falling phase of the circadian temperature curve whereas the lowest PLM counts occurred on the rising phase of the curve. We conclude that the PLM and sensory symptoms in RLS are influenced by a circadian rhythm, and that the "worsening at night" criterion of the RLS Definition Criteria is, at least in part, distinct from the "worsening while lying or sitting" criterion.

  10. Feeding period restriction alters the expression of peripheral circadian rhythm genes without changing body weight in mice.

    Directory of Open Access Journals (Sweden)

    Hagoon Jang

    Full Text Available Accumulating evidence suggests that the circadian clock is closely associated with metabolic regulation. However, whether an impaired circadian clock is a direct cause of metabolic dysregulation such as body weight gain is not clearly understood. In this study, we demonstrate that body weight gain in mice is not significantly changed by restricting feeding period to daytime or nighttime. The expression of peripheral circadian clock genes was altered by feeding period restriction, while the expression of light-regulated hypothalamic circadian clock genes was unaffected by either a normal chow diet (NCD or a high-fat diet (HFD. In the liver, the expression pattern of circadian clock genes, including Bmal1, Clock, and Per2, was changed by different feeding period restrictions. Moreover, the expression of lipogenic genes, gluconeogenic genes, and fatty acid oxidation-related genes in the liver was also altered by feeding period restriction. Given that feeding period restriction does not affect body weight gain with a NCD or HFD, it is likely that the amount of food consumed might be a crucial factor in determining body weight. Collectively, these data suggest that feeding period restriction modulates the expression of peripheral circadian clock genes, which is uncoupled from light-sensitive hypothalamic circadian clock genes.

  11. Percutaneous Achilles Tendon Lengthening

    Science.gov (United States)

    ... All Site Content AOFAS / FootCareMD / Treatments Percutaneous Achilles Tendon Lengthening Page Content ​ Pre-operative incision markings along ... What is the goal of a percutaneous Achilles tendon lengthening? The goal of this procedure is to ...

  12. Leg lengthening - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100127.htm Leg lengthening - series—Indications To use the sharing features ... with lengthening procedures are the bones of the leg, the tibia and the femur. Surgical treatment may ...

  13. Leg lengthening and shortening

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002965.htm Leg lengthening and shortening To use the sharing features on this page, please enable JavaScript. Leg lengthening and shortening are types of surgery to ...

  14. Regulation of Drosophila circadian rhythms by miRNA let-7 is mediated by a regulatory cycle.

    Science.gov (United States)

    Chen, Wenfeng; Liu, Zhenxing; Li, Tianjiao; Zhang, Ruifeng; Xue, Yongbo; Zhong, Yang; Bai, Weiwei; Zhou, Dasen; Zhao, Zhangwu

    2014-11-24

    MicroRNA-mediated post-transcriptional regulations are increasingly recognized as important components of the circadian rhythm. Here we identify microRNA let-7, part of the Drosophila let-7-Complex, as a regulator of circadian rhythms mediated by a circadian regulatory cycle. Overexpression of let-7 in clock neurons lengthens circadian period and its deletion attenuates the morning activity peak as well as molecular oscillation. Let-7 regulates the circadian rhythm via repression of CLOCKWORK ORANGE (CWO). Conversely, upregulated cwo in cwo-expressing cells can rescue the phenotype of let-7-Complex overexpression. Moreover, circadian prothoracicotropic hormone (PTTH) and CLOCK-regulated 20-OH ecdysteroid signalling contribute to the circadian expression of let-7 through the 20-OH ecdysteroid receptor. Thus, we find a regulatory cycle involving PTTH, a direct target of CLOCK, and PTTH-driven miRNA let-7.

  15. Effect of deuterium on the circadian period and metabolism in wild-type and tau mutant Syrian hamsters

    NARCIS (Netherlands)

    Oklejewicz, M; Hut, RA; Daan, S

    2000-01-01

    Homozygous tau mutant Syrian hamsters (tau-/-) have a free-running circadian period (tau) around 20 h and a proportionally higher metabolic rate compared with wild-type hamsters (tau+/+) with a period of circa 24 h. In this study, we applied deuterium oxide (D2O) to hamsters to test whether

  16. The frequency of hippocampal theta rhythm is modulated on a circadian period and is entrained by food availability.

    Directory of Open Access Journals (Sweden)

    Robert Gordon Keith Munn

    2015-03-01

    Full Text Available The hippocampal formation plays a critical role in the generation of episodic memory. While the encoding of the spatial and contextual components of memory have been extensively studied, how the hippocampus encodes temporal information, especially at long time intervals, is less well understood. The activity of place cells in hippocampus has previously been shown to be modulated at a circadian time-scale, entrained by a behavioral stimulus, but not entrained by light. The experimental procedures used in the previous study of this phenomenon, however, necessarily conflated two alternative entraining stimuli, the exposure to the recording environment and the availability of food, making it impossible to distinguish between these possibilities. Here we demonstrate that the frequency of theta-band hippocampal EEG varies with a circadian period in freely moving animals and that this periodicity mirrors changes in the firing rate of hippocampal neurons. Theta activity serves, therefore, as a proxy of circadian-modulated hippocampal neuronal activity. We then demonstrate that the frequency of hippocampal theta driven by stimulation of the reticular formation also varies with a circadian period. Because this effect can be observed without having to feed the animal to encourage movement we were able to identify what stimulus entrains the circadian oscillation. We show that with reticular-activated recordings started at various times of the day the frequency of theta varies quasi-sinusoidally with a 25 hour period and phase-aligned when referenced to the animal’s regular feeding time, but not the recording start time. Furthermore, we show that theta frequency consistently varied with a circadian period when the data obtained from repeated recordings started at various times of the day were referenced to the start of food availability in the recording chamber. This pattern did not occur when data were referenced to the start of the recording session or

  17. Limb lengthening in achondroplasia

    Directory of Open Access Journals (Sweden)

    Sanjay K Chilbule

    2016-01-01

    Full Text Available Background: Stature lengthening in skeletal dysplasia is a contentious issue. Specific guidelines regarding the age and sequence of surgery, methods and extent of lengthening at each stage are not uniform around the world. Despite the need for multiple surgeries, with their attendant complications, parents demanding stature lengthening are not rare, due to the social bias and psychological effects experienced by these patients. This study describes the outcome and complications of extensive stature lengthening performed at our center. Materials and Methods: Eight achondroplasic and one hypochondroplasic patient underwent bilateral transverse lengthening for tibiae, humeri and femora. Tibia lengthening was carried out using a ring fixator and bifocal corticotomy, while a monolateral pediatric limb reconstruction system with unifocal corticotomy was used for the femur and humerus. Lengthening of each bone segment, height gain, healing index and complications were assessed. Subgroup analysis was carried out to assess the effect of age and bone segment on the healing index. Results: Nine patients aged five to 25 years (mean age 10.2 years underwent limb lengthening procedures for 18 tibiae, 10 femora and 8 humeri. Four patients underwent bilateral lengthening of all three segments. The mean length gain for the tibia, femur and humerus was 15.4 cm (100.7%, 9.9 cm (52.8% and 9.6 cm (77.9%, respectively. Healing index was 25.7, 25.6 and 20.6 days/cm, respectively, for the tibia, femur and humerus. An average of 33.3% height gain was attained. Lengthening of both tibia and femur added to projected height achieved as the 3 rd percentile of standard height in three out of four patients. In all, 33 complications were encountered (0.9 complications per segment. Healing index was not affected by age or bone segment. Conclusion: Extensive limb lengthening (more than 50% over initial length carries significant risk and should be undertaken only after due

  18. Multiple circadian transcriptional elements cooperatively regulate cell-autonomous transcriptional oscillation ofPeriod3, a mammalian clock gene.

    Science.gov (United States)

    Matsumura, Ritsuko; Akashi, Makoto

    2017-09-29

    Cell-autonomous oscillation in clock gene expression drives circadian rhythms. The development of comprehensive analytical techniques, such as bioinformatics and ChIP-sequencing, has enabled the genome-wide identification of potential circadian transcriptional elements that regulate the transcriptional oscillation of clock genes. However, detailed analyses using traditional biochemical and molecular-biological approaches, such as binding and reporter assays, are still necessary to determine whether these potential circadian transcriptional elements are actually functional and how significantly they contribute to driving transcriptional oscillation. Here, we focused on the molecular mechanism of transcriptional oscillations in the mammalian clock gene Period3 ( Per3 ). The PER3 protein is essential for robust peripheral clocks and is a key component in circadian output processes. We found three E box-like elements located upstream of human Per3 transcription start sites that additively contributed to cell-autonomous transcriptional oscillation. However, we also found that Per3 is still expressed in a circadian manner when all three E box-like elements are functionally impaired. We noted that Per3 transcription was activated by the synergistic actions of two D box-like elements and the three E box-like elements, leading to a drastic increase in circadian amplitude. Interestingly, circadian expression of Per3 was completely disrupted only when all five transcriptional elements were functionally impaired. These results indicate that three E box-like and two D box-like elements cooperatively and redundantly regulate cell-autonomous transcriptional oscillation of Per3 . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The endogenous circadian temperature period length (tau) in delayed sleep phase disorder compared to good sleepers.

    Science.gov (United States)

    Micic, Gorica; de Bruyn, Amanda; Lovato, Nicole; Wright, Helen; Gradisar, Michael; Ferguson, Sally; Burgess, Helen J; Lack, Leon

    2013-12-01

    The currently assumed aetiology for delayed sleep phase disorder (DSPD) is a delay of the circadian system. Clinicians have sought to use bright light therapy, exogenous melatonin or chronotherapy to correct the disorder. However, these treatments have achieved unreliable outcomes for DSPD patients and, as such, one suggestion has been that the disorder may be caused by a longer than normal circadian rhythm period length (i.e. tau). The present study investigated this premise using a 78-h ultradian, ultra-short sleep-wake cycle. This constant bedrest routine was used to simulate a series of 1-h long 'days' by alternating 20-min sleep opportunities and 40 min of enforced wakefulness. Thirteen participants were recruited for the study including, six people diagnosed with DSPD according to the International Classification of Sleep Disorders-2 [mean age = 22.0, standard deviation (SD) = 3.3] and seven good sleepers (mean age = 23.1, SD = 3.9) with normal sleep timing. The DSPD participants' core temperature rhythm tau (mean = 24 h 54 min, SD = 23 min) was significantly longer (t = -2.33, P = 0.04, Cohen's d = 1.91) than the good sleepers' (mean 24 h 29 min, SD = 16 min). The temperature rhythm of the DSPD participants delayed more rapidly (i.e. >25 min day(-1) ) than the good sleepers'. These findings provide an explanation for the difficulty that DSPD patients have in phase advancing to a more conventional sleep time and their frequent relapse following treatment. The outcomes of this study support a vigorous and continued application of chronobiological and behavioural therapies to entrain DSPD patients to their desired earlier sleep times. © 2013 European Sleep Research Society.

  20. Circadian rhythm disturbance after radiotherapy for brain tumor in infantile period

    International Nuclear Information System (INIS)

    Kubota, Masaya; Shinozaki, Masako; Sasaki, Hideo.

    1993-01-01

    We report a 19-year-old man suffering from circadian sleep-wake (S-W) rhythm disturbance after total tumor resection and whole brain irradiation. The patient was diagnosed as having astrocytoma in the right temporal lobe by CT scan and angiography at the age of 6 months. After total tumor resection and whole brain irradiation ( 60 Co 60 Gy), he showed profound psychomotor retardation, endoclinologic dysfunction including hypothyroidism and growth hormone deficiency, and S-W rhythm disturbance. At the age of 19, brain MRI revealed asymmetrical low intensity in the hypothalamic region. On endoclinological examination panhypopituitarism due to primary hypothalamic lesion was evident. His S-W rhythm was disturbed; i.e., sleep periods were dispersedly distributed throughout 24 hours. So he showed a lethargic tendency in the daytime. All-day polysomnography revealed abnormal sleep structure such as the absence of sleep spindle and hump, peripheral apnea, snoring and low oxygen saturation. After L-thyroxine supplementation his daily activity improved gradually. The decrease in short time sleep and tendency of a free-running rhythm were observed and oxygen saturation improved remarkably. Peripheral apnea and snoring disappeared. This wakening effect of L-thyroxine administration may be due to improvement of hypothyroidism symptom such as myxoedematous pharynx. It also seems related to the alteration of the central S-W rhythm regulation, because free-running rhythm appeared after L-thyroxine administration. Vitamin B 12 (VB 12 ), which has been reported to be effective for S-W rhythm disorders, was not effective for our patient's free-running rhythm. Compared with the patients responding to VB 12 , our patient's organic brain damage was more evident radiologically and endoclinologically. Following the hypothesis that VB 12 has a potential to reinforce the entrainment of circadian rhythm, our patient's organic brain damage may include entrainment system. (author)

  1. Establishment of human cell lines showing circadian rhythms of bioluminescence.

    Science.gov (United States)

    Yoshikawa, Aki; Shimada, Hiroko; Numazawa, Kahori; Sasaki, Tsukasa; Ikeda, Masaaki; Kawashima, Minae; Kato, Nobumasa; Tokunaga, Katsushi; Ebisawa, Takashi

    2008-11-28

    We have established human retinal pigment epithelial cell lines stably expressing the luciferase gene, driven by the human Bmal1 promoter, to obtain human-derived cells that show circadian rhythms of bioluminescence after dexamethasone treatment. The average circadian period of bioluminescence for the obtained clones was 24.07+/-0.48 h. Lithium (10 mM) in the medium significantly lengthened the circadian period of bioluminescence, which is consistent with previous reports, while 2 mM or 5 mM lithium had no effect. This is the first report on the establishment of human-derived cell lines that proliferate infinitely and show circadian rhythms of bioluminescence, and also the first to investigate the effects of low-dose lithium on the circadian rhythms of human-derived cells in vitro. The established cells will be useful for various in vitro studies of human circadian rhythms and for the development of new therapies for human disorders related to circadian rhythm disturbances.

  2. Circadian-scale periodic bursts in theta and gamma-band coherence between hippocampus, cingulate and insular cortices

    Directory of Open Access Journals (Sweden)

    Robert G.K. Munn

    2017-06-01

    Full Text Available Previous studies have demonstrated that mean activity levels in the hippocampus oscillate on a circadian timescale, both at the single neuron and EEG level. This oscillation is also entrained by the availability of food, suggesting that the circadian modulation of hippocampal activity might comprise part of the recently discovered food-entrainable circadian oscillator (FEO. In order to determine whether the circadian oscillation in hippocampal activity is linked to activity in other brain regions, we recorded field-potential EEG from hippocampus and two cortical regions known to connect to hippocampus; the anterior cingulate cortex and the agranular insular cortex. These latter regions are involved in executive control (cingulate and gustatory feedback (insula and so are in a position where they could usefully contribute to, or benefit from, hippocampal memorial information in order to undertake task-related processing. We recorded EEG from these three regions for 20 m every hour for 58 consecutive hours in one continuous exposure to the recording environment. We found that there are regular and distinct increases in magnitude coherence between hippocampus and both cortical regions for EEG in both theta (6–12 Hz and gamma (30–48 Hz bands. These periods of increased coherence are spaced approximately one solar day apart, appear not to be specifically light-entrained, and are most apparent for gamma frequency activity. The gamma association between the two cortical regions shows the same temporal pattern of coherence peaks as the hippocampal-cortical coherences. We propose that these peaks in coherence represent the transient synchronization of temporally tagged memorial information between the hippocampus and other brain regions for which this information may be relevant. These findings suggest that the FEO involves coordinated activity across a number of brain regions and may underlie a mechanism via which an organism can store and recall

  3. Early doors (Edo) mutant mouse reveals the importance of period 2 (PER2) PAS domain structure for circadian pacemaking.

    Science.gov (United States)

    Militi, Stefania; Maywood, Elizabeth S; Sandate, Colby R; Chesham, Johanna E; Barnard, Alun R; Parsons, Michael J; Vibert, Jennifer L; Joynson, Greg M; Partch, Carrie L; Hastings, Michael H; Nolan, Patrick M

    2016-03-08

    The suprachiasmatic nucleus (SCN) defines 24 h of time via a transcriptional/posttranslational feedback loop in which transactivation of Per (period) and Cry (cryptochrome) genes by BMAL1-CLOCK complexes is suppressed by PER-CRY complexes. The molecular/structural basis of how circadian protein complexes function is poorly understood. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced mutation, early doors (Edo), in the PER-ARNT-SIM (PAS) domain dimerization region of period 2 (PER2) (I324N) that accelerates the circadian clock of Per2(Edo/Edo) mice by 1.5 h. Structural and biophysical analyses revealed that Edo alters the packing of the highly conserved interdomain linker of the PER2 PAS core such that, although PER2(Edo) complexes with clock proteins, its vulnerability to degradation mediated by casein kinase 1ε (CSNK1E) is increased. The functional relevance of this mutation is revealed by the ultrashort (Edo/Edo); Csnk1e(Tau/Tau) mice and the SCN. These periods are unprecedented in mice. Thus, Per2(Edo) reveals a direct causal link between the molecular structure of the PER2 PAS core and the pace of SCN circadian timekeeping.

  4. Selective Inhibition of Casein Kinase 1 epsilon Minimally Alters Circadian Clock Period

    Czech Academy of Sciences Publication Activity Database

    Walton, K. M.; Fisher, K.; Rubitski, D.; Marconi, M.; Meng, Q.-J.; Sládek, Martin; Adams, J.; Bass, M.; Chandrasekaran, R.; Butler, T.; Griffor, M.; Rajamohan, F.; Serpa, M.; Chen, Y.; Claffey, M.; Hastings, M.; Loudon, A.; Maywood, E.; Ohren, J.; Doran, A.; Wager, T. T.

    2009-01-01

    Roč. 330, č. 2 (2009), s. 430-439 ISSN 0022-3565 Institutional research plan: CEZ:AV0Z50110509 Keywords : circadian clock * casein kinase 1 epsilon * inhibitor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.093, year: 2009

  5. The Circadian Clock Gene Period1 Connects the Molecular Clock to Neural Activity in the Suprachiasmatic Nucleus.

    Science.gov (United States)

    Kudo, Takashi; Block, Gene D; Colwell, Christopher S

    2015-01-01

    The neural activity patterns of suprachiasmatic nucleus (SCN) neurons are dynamically regulated throughout the circadian cycle with highest levels of spontaneous action potentials during the day. These rhythms in electrical activity are critical for the function of the circadian timing system and yet the mechanisms by which the molecular clockwork drives changes in the membrane are not well understood. In this study, we sought to examine how the clock gene Period1 (Per1) regulates the electrical activity in the mouse SCN by transiently and selectively decreasing levels of PER1 through use of an antisense oligodeoxynucleotide. We found that this treatment effectively reduced SCN neural activity. Direct current injection to restore the normal membrane potential partially, but not completely, returned firing rate to normal levels. The antisense treatment also reduced baseline [Ca(2+)]i levels as measured by Fura2 imaging technique. Whole cell patch clamp recording techniques were used to examine which specific potassium currents were altered by the treatment. These recordings revealed that the large conductance [Ca(2+)]i-activated potassium currents were reduced in antisense-treated neurons and that blocking this current mimicked the effects of the anti-sense on SCN firing rate. These results indicate that the circadian clock gene Per1 alters firing rate in SCN neurons and raise the possibility that the large conductance [Ca(2+)]i-activated channel is one of the targets. © The Author(s) 2015.

  6. Drosophila spaghetti and doubletime link the circadian clock and light to caspases, apoptosis and tauopathy.

    Directory of Open Access Journals (Sweden)

    John C Means

    2015-05-01

    Full Text Available While circadian dysfunction and neurodegeneration are correlated, the mechanism for this is not understood. It is not known if age-dependent circadian dysfunction leads to neurodegeneration or vice-versa, and the proteins that mediate the effect remain unidentified. Here, we show that the knock-down of a regulator (spag of the circadian kinase Dbt in circadian cells lowers Dbt levels abnormally, lengthens circadian rhythms and causes expression of activated initiator caspase (Dronc in the optic lobes during the middle of the day or after light pulses at night. Likewise, reduced Dbt activity lengthens circadian period and causes expression of activated Dronc, and a loss-of-function mutation in Clk also leads to expression of activated Dronc in a light-dependent manner. Genetic epistasis experiments place Dbt downstream of Spag in the pathway, and Spag-dependent reductions of Dbt are shown to require the proteasome. Importantly, activated Dronc expression due to reduced Spag or Dbt activity occurs in cells that do not express the spag RNAi or dominant negative Dbt and requires PDF neuropeptide signaling from the same neurons that support behavioral rhythms. Furthermore, reduction of Dbt or Spag activity leads to Dronc-dependent Drosophila Tau cleavage and enhanced neurodegeneration produced by human Tau in a fly eye model for tauopathy. Aging flies with lowered Dbt or Spag function show markers of cell death as well as behavioral deficits and shortened lifespans, and even old wild type flies exhibit Dbt modification and activated caspase at particular times of day. These results suggest that Dbt suppresses expression of activated Dronc to prevent Tau cleavage, and that the circadian clock defects confer sensitivity to expression of activated Dronc in response to prolonged light. They establish a link between the circadian clock factors, light, cell death pathways and Tau toxicity, potentially via dysregulation of circadian neuronal remodeling in

  7. Circadian Systems and Metabolism

    NARCIS (Netherlands)

    Roenneberg, Till; Merrow, Martha

    1999-01-01

    Circadian systems direct many metabolic parameters and, at the same time, they appear to be exquisitely shielded from metabolic variations. Although the recent decade of circadian research has brought insights into how circadian periodicity may be generated at the molecular level, little is known

  8. Comparative analysis of the circadian rhythm genes period and timeless in Culex pipiens Linnaeus, 1758 (Diptera, Culicidae)

    Science.gov (United States)

    Shaikevich, Elena V.; Karan, Ludmila S.; Fyodorova, Marina V.

    2016-01-01

    Abstract Nucleotide sequences of the circadian rhythm genes, period and timeless, were studied for the first time in mosquitoes Culex pipiens Linnaeus, 1758. In this work we evaluated variations of the studied genome fragments for the two forms of Culex pipiens (forma “pipiens” – mosquitoes common for aboveground habitats, forma “molestus” – underground mosquitoes). We compared Culex pipiens from Russia with transatlantic Culex pipiens and subtropical Culex quinquefasciatus Say, 1823. Our results show that intraspecies variability is higher for the gene period than for the gene timeless. The revealed substitutions in nucleotide sequences and especially in amino acid sequences grouped the individuals of the two forms into distinct clusters with high significance. The detected fixed amino acid substitutions may appear essential for functioning of the circadian rhythm proteins in Culex pipiens, and may be correlated with adaptations of the taxa within the group Culex pipiens. Our results suggest that natural selection favors fixed mutations and the decrease in diversity of the genes period and timeless in mosquitoes of the Culex pipiens f. “molestus” compared with the Culex pipiens f. “pipiens”, is probably correlated with adaptive features of Culex pipiens f. “molestus”. The studied genome regions may be considered as promising molecular-genetic markers for identification, population and phylogenetic analysis of similar species and forms of the Culex pipiens complex. PMID:28123673

  9. Effect of Mefloquine, a Gap Junction Blocker, on Circadian Period2 Gene Oscillation in the Mouse Suprachiasmatic Nucleus

    Directory of Open Access Journals (Sweden)

    Jinmi Koo

    2015-09-01

    Full Text Available BackgroundIn mammals, the master circadian pacemaker is localized in an area of the ventral hypothalamus known as the suprachiasmatic nucleus (SCN. Previous studies have shown that pacemaker neurons in the SCN are highly coupled to one another, and this coupling is crucial for intrinsic self-sustainability of the SCN central clock, which is distinguished from peripheral oscillators. One plausible mechanism underlying the intercellular communication may involve direct electrical connections mediated by gap junctions.MethodsWe examined the effect of mefloquine, a neuronal gap junction blocker, on circadian Period 2 (Per2 gene oscillation in SCN slice cultures prepared from Per2::luciferase (PER2::LUC knock-in mice using a real-time bioluminescence measurement system.ResultsAdministration of mefloquine causes instability in the pulse period and a slight reduction of amplitude in cyclic PER2::LUC expression. Blockade of gap junctions uncouples PER2::LUC-expressing cells, in terms of phase transition, which weakens synchrony among individual cellular rhythms.ConclusionThese findings suggest that neuronal gap junctions play an important role in synchronizing the central pacemaker neurons and contribute to the distinct self-sustainability of the SCN master clock.

  10. Differential effect of lithium on the circadian oscillator in young and old hamsters

    International Nuclear Information System (INIS)

    Iwahana, Eiko; Hamada, Toshiyuki; Uchida, Ayumi; Shibata, Shigenobu

    2007-01-01

    Lithium is one of the most commonly used drugs in the prophylaxis and treatment of bipolar disorder. It is also known to lengthen circadian period in several organisms. Previously, we reported that there was the association between lengthening circadian period by lithium and GSK-3 protein and its enzyme activity in the mouse suprachiasmatic nucleus (SCN). In this study, we show that lithium affects the circadian oscillator in young and old hamster SCN, in an age-dependent manner. We found that basal levels of phosphorylated GSK-3 (pGSK-3) protein expression in old hamsters are much lower than that in young hamsters. Furthermore, in the old hamsters, lithium did not affect the period of the locomotor activity rhythm or pGSK-3 expression, while changing period and pGSK-3 in the younger animals. These results indicate that the content of pGSK-3 in the SCN has an important role in age-dependent effects of lithium on the circadian oscillator

  11. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    Keywords. Circadian rhythms, biological clocks, geophysical cycles, en- trainment. Living organisms ranging from bacteria to human beings exhibit 24-h rhythms in various behaviours and physiological processes. Matching of the period of such rhythms with that of the daily environmental cycles gives an impression that.

  12. Cell type-specific functions of period genes revealed by novel adipocyte and hepatocyte circadian clock models.

    Directory of Open Access Journals (Sweden)

    Chidambaram Ramanathan

    2014-04-01

    Full Text Available In animals, circadian rhythms in physiology and behavior result from coherent rhythmic interactions between clocks in the brain and those throughout the body. Despite the many tissue specific clocks, most understanding of the molecular core clock mechanism comes from studies of the suprachiasmatic nuclei (SCN of the hypothalamus and a few other cell types. Here we report establishment and genetic characterization of three cell-autonomous mouse clock models: 3T3 fibroblasts, 3T3-L1 adipocytes, and MMH-D3 hepatocytes. Each model is genetically tractable and has an integrated luciferase reporter that allows for longitudinal luminescence recording of rhythmic clock gene expression using an inexpensive off-the-shelf microplate reader. To test these cellular models, we generated a library of short hairpin RNAs (shRNAs against a panel of known clock genes and evaluated their impact on circadian rhythms. Knockdown of Bmal1, Clock, Cry1, and Cry2 each resulted in similar phenotypes in all three models, consistent with previous studies. However, we observed cell type-specific knockdown phenotypes for the Period and Rev-Erb families of clock genes. In particular, Per1 and Per2, which have strong behavioral effects in knockout mice, appear to play different roles in regulating period length and amplitude in these peripheral systems. Per3, which has relatively modest behavioral effects in knockout mice, substantially affects period length in the three cellular models and in dissociated SCN neurons. In summary, this study establishes new cell-autonomous clock models that are of particular relevance to metabolism and suitable for screening for clock modifiers, and reveals previously under-appreciated cell type-specific functions of clock genes.

  13. Effects of caffeine on the human circadian clock in vivo and in vitro

    Science.gov (United States)

    Burke, Tina M.; Markwald, Rachel R.; McHill, Andrew W.; Chinoy, Evan D.; Snider, Jesse A.; Bessman, Sara C.; Jung, Christopher M.; O’Neill, John S.; Wright, Kenneth P.

    2015-01-01

    Caffeine’s wakefulness-promoting and sleep-disrupting effects are well established, yet whether caffeine affects human circadian timing is unknown. Here we show that evening caffeine consumption delays the human circadian melatonin rhythm in vivo, and chronic application of caffeine lengthens the circadian period of molecular oscillations in vitro primarily via an adenosine receptor/cyclic AMP-dependent mechanism. In a double-blind, placebo controlled, ~49-day long within-subject study, we found the equivalent amount of caffeine as that in a double espresso 3 hours before habitual bedtime induced a phase delay of the circadian melatonin rhythm in humans by ~40 minutes. This magnitude of delay was nearly half of the magnitude of the phase-delaying response induced by exposure to 3-hours of evening bright-light (~3000 lux; ~7 Watts/m2) that began at habitual bedtime. Furthermore, using human osteosarcoma U2OS cells expressing clock gene luciferase reporters, we found a dose-dependent lengthening of circadian period by caffeine. By pharmacological dissection and siRNA knockdown we established that perturbation of adenosine receptor signaling, but not ryanodine receptor or phosphodiesterase activity, is sufficient to account for caffeine’s effects on cellular timekeeping. We also used a cyclic AMP biosensor to show that caffeine increased cyclic AMP levels, indicating that caffeine can influence a core component of the cellular circadian clock. Taken together, our findings demonstrate that caffeine influences human circadian timing and gives new insight into how the world’s most widely consumed psychoactive drug impacts upon human physiology. PMID:26378246

  14. Circadian period and the timing of melatonin onset in men and women: predictors of sleep during the weekend and in the laboratory.

    Science.gov (United States)

    Lazar, Alpar S; Santhi, Nayantara; Hasan, Sibah; Lo, June C-Y; Johnston, Jonathan D; Von Schantz, Malcolm; Archer, Simon N; Dijk, Derk-Jan

    2013-04-01

    Sleep complaints and irregular sleep patterns, such as curtailed sleep during workdays and longer and later sleep during weekends, are common. It is often implied that differences in circadian period and in entrained phase contribute to these patterns, but few data are available. We assessed parameters of the circadian rhythm of melatonin at baseline and in a forced desynchrony protocol in 35 participants (18 women) with no sleep disorders. Circadian period varied between 23 h 50 min and 24 h 31 min, and correlated positively (n = 31, rs  = 0.43, P = 0.017) with the timing of the melatonin rhythm relative to habitual bedtime. The phase of the melatonin rhythm correlated with the Insomnia Severity Index (n = 35, rs  = 0.47, P = 0.004). Self-reported time in bed during free days also correlated with the timing of the melatonin rhythm (n = 35, rs  = 0.43, P = 0.01) as well as with the circadian period (n = 31, rs  = 0.47, P = 0.007), such that individuals with a more delayed melatonin rhythm or a longer circadian period reported longer sleep during the weekend. The increase in time in bed during the free days correlated positively with circadian period (n = 31, rs  = 0.54, P = 0.002). Polysomnographically assessed latency to persistent sleep (n = 34, rs  = 0.48, P = 0.004) correlated with the timing of the melatonin rhythm when participants were sleeping at their habitual bedtimes in the laboratory. This correlation was significantly stronger in women than in men (Z = 2.38, P = 0.017). The findings show that individual differences in circadian period and phase of the melatonin rhythm associate with differences in sleep, and suggest that individuals with a long circadian period may be at risk of developing sleep problems. © 2012 European Sleep Research Society.

  15. Crown lengthening procedures

    Directory of Open Access Journals (Sweden)

    AA. Khoshkhonejad

    1994-06-01

    Full Text Available Nowadays, due to recent developments and researches in dental science, it is possible to preserve and restore previously extracted cases such as teeth with extensive caries, fractured or less appropriate cases for crown coverage as well as teeth with external perforation caused by restorative pins. In order to restore the teeth with preservation of periodontium, we should know thoroughly physiological aspects of periodontium and protection of Biologic Width which is formed by epithelial and supracrestal connective tissue connections. Considering biologic width is one of the principal rules of teeth restoration, otherwise we may destruct periodontal tissues. Several factors are involved in placing a restoration and one of the most important ones is where the restoration margin is terminated. Many studies have been conducted on the possible effects of restoration margin on the gingiva and due to the results of these studies it was concluded that restoration margin should be finished supragingivally. However, when we have to end the restoration under Gingival Crest, First a healthy gingival sulcus is required. Also, we should not invade the biological width. Since a normal biologic with is reported 2 mm and sound tooth tissue should be placed at least 2 mm coronal to the epithelial tissue, the distance between sound tooth tissue and crown margin should be at least 4mm. Thus, performing crown lengthening is essential to increase the clinical crown length. Basically, two objectives are considered: 1 restorative 2 esthetic (gummy smile Surgical procedure includes gingivectomy and flap procedure. Orthodontic procedure involves orthodontic extrusion or force eruption technique which is controlled vertical movements of teeth into occlusion. Besides, this procedure can also used to extrude teeth defects from the gingival tissue. By crown lengthening, tooth extraction is not required and furthermore, adjacent teeth preparation for placing a fixed

  16. The after-hours circadian mutant has reduced phenotypic plasticity in behaviors at multiple timescales and in sleep homeostasis.

    Science.gov (United States)

    Maggi, Silvia; Balzani, Edoardo; Lassi, Glenda; Garcia-Garcia, Celina; Plano, Andrea; Espinoza, Stefano; Mus, Liudmila; Tinarelli, Federico; Nolan, Patrick M; Gainetdinov, Raul R; Balci, Fuat; Nieus, Thierry; Tucci, Valter

    2017-12-19

    Circadian clock is known to adapt to environmental changes and can significantly influence cognitive and physiological functions. In this work, we report specific behavioral, cognitive, and sleep homeostatic defects in the after hours (Afh) circadian mouse mutant, which is characterized by lengthened circadian period. We found that the circadian timing irregularities in Afh mice resulted in higher interval timing uncertainty and suboptimal decisions due to incapability of processing probabilities. Our phenotypic observations further suggested that Afh mutants failed to exhibit the necessary phenotypic plasticity for adapting to temporal changes at multiple time scales (seconds-to-minutes to circadian). These behavioral effects of Afh mutation were complemented by the specific disruption of the Per/Cry circadian regulatory complex in brain regions that govern food anticipatory behaviors, sleep, and timing. We derive statistical predictions, which indicate that circadian clock and sleep are complementary processes in controlling behavioral/cognitive performance during 24 hrs. The results of this study have pivotal implications for understanding how the circadian clock modulates sleep and behavior.

  17. Circadian variation of transient myocardial ischemia in the early out-of-hospital period after first acute myocardial infarction

    DEFF Research Database (Denmark)

    Mickley, H; Pless, P; Nielsen, J R

    1991-01-01

    Circadian rhythms have been demonstrated in acute myocardial infarction (AMI) and in other clinical cardiac dysfunctions. The purpose of this study was to elucidate whether a circadian pattern of transient myocardial ischemia exists after first AMI. Prospectively, 24-hour ambulatory ST-segment mo...

  18. A PEST-like element in FREQUENCY determines the length of the circadian period in Neurospora crassa

    NARCIS (Netherlands)

    Görl, Margit; Merrow, Martha; Huttner, Benedikt; Johnson, Judy; Roenneberg, Till; Brunner, Michael

    2001-01-01

    FREQUENCY (FRQ) is a crucial element of the circadian clock in Neurospora crassa. In the course of a circadian day FRQ is successively phosphorylated and degraded. Here we report that two PEST-like elements in FRQ, PEST-1 and PEST-2, are phosphorylated in vitro by recombinant CK-1a and CK-1b, two

  19. Interval Timing Is Preserved Despite Circadian Desynchrony in Rats: Constant Light and Heavy Water Studies.

    Science.gov (United States)

    Petersen, Christian C; Mistlberger, Ralph E

    2017-08-01

    The mechanisms that enable mammals to time events that recur at 24-h intervals (circadian timing) and at arbitrary intervals in the seconds-to-minutes range (interval timing) are thought to be distinct at the computational and neurobiological levels. Recent evidence that disruption of circadian rhythmicity by constant light (LL) abolishes interval timing in mice challenges this assumption and suggests a critical role for circadian clocks in short interval timing. We sought to confirm and extend this finding by examining interval timing in rats in which circadian rhythmicity was disrupted by long-term exposure to LL or by chronic intake of 25% D 2 O. Adult, male Sprague-Dawley rats were housed in a light-dark (LD) cycle or in LL until free-running circadian rhythmicity was markedly disrupted or abolished. The rats were then trained and tested on 15- and 30-sec peak-interval procedures, with water restriction used to motivate task performance. Interval timing was found to be unimpaired in LL rats, but a weak circadian activity rhythm was apparently rescued by the training procedure, possibly due to binge feeding that occurred during the 15-min water access period that followed training each day. A second group of rats in LL were therefore restricted to 6 daily meals scheduled at 4-h intervals. Despite a complete absence of circadian rhythmicity in this group, interval timing was again unaffected. To eliminate all possible temporal cues, we tested a third group of rats in LL by using a pseudo-randomized schedule. Again, interval timing remained accurate. Finally, rats tested in LD received 25% D 2 O in place of drinking water. This markedly lengthened the circadian period and caused a failure of LD entrainment but did not disrupt interval timing. These results indicate that interval timing in rats is resistant to disruption by manipulations of circadian timekeeping previously shown to impair interval timing in mice.

  20. Dominant-negative CK2alpha induces potent effects on circadian rhythmicity.

    Directory of Open Access Journals (Sweden)

    Elaine M Smith

    2008-01-01

    Full Text Available Circadian clocks organize the precise timing of cellular and behavioral events. In Drosophila, circadian clocks consist of negative feedback loops in which the clock component PERIOD (PER represses its own transcription. PER phosphorylation is a critical step in timing the onset and termination of this feedback. The protein kinase CK2 has been linked to circadian timing, but the importance of this contribution is unclear; it is not certain where and when CK2 acts to regulate circadian rhythms. To determine its temporal and spatial functions, a dominant negative mutant of the catalytic alpha subunit, CK2alpha(Tik, was targeted to circadian neurons. Behaviorally, CK2alpha(Tik induces severe period lengthening (approximately 33 h, greater than nearly all known circadian mutant alleles, and abolishes detectable free-running behavioral rhythmicity at high levels of expression. CK2alpha(Tik, when targeted to a subset of pacemaker neurons, generates period splitting, resulting in flies exhibiting both long and near 24-h periods. These behavioral effects are evident even when CK2alpha(Tik expression is induced only during adulthood, implicating an acute role for CK2alpha function in circadian rhythms. CK2alpha(Tik expression results in reduced PER phosphorylation, delayed nuclear entry, and dampened cycling with elevated trough levels of PER. Heightened trough levels of per transcript accompany increased protein levels, suggesting that CK2alpha(Tik disturbs negative feedback of PER on its own transcription. Taken together, these in vivo data implicate a central role of CK2alpha function in timing PER negative feedback in adult circadian neurons.

  1. Evidence for the circadian gene period as a proximate mechanism of protandry in a pollinating fig wasp.

    Science.gov (United States)

    Gu, Hai-Feng; Xiao, Jin-Hua; Dunn, Derek W; Niu, Li-Ming; Wang, Bo; Jia, Ling-Yi; Huang, Da-Wei

    2014-03-01

    Protandry in insects is the tendency for adult males to emerge before females and usually results from intra-sexual selection. However, the genetic basis of this common phenomenon is poorly understood. Pollinating fig wasp (Agaonidae) larvae develop in galled flowers within the enclosed inflorescences ('figs') of fig trees. Upon emergence, males locate and mate with the still galled females. After mating, males release females from their galls to enable dispersal. Females cannot exit galls or disperse from a fig without male assistance. We sampled male and female Ceratosolen solmsi (the pollinator of Ficus hispida) every 3 h over a 24 h emergence period, and then measured the expression of five circadian genes: period (per), clock (clk), cycle (cyc), pigment-dispersing factor (pdf) and clockwork orange (cwo). We found significant male-biased sexual dimorphism in the expression of all five genes. per showed the greatest divergence between the sexes and was the only gene rhythmically expressed. Expression of per correlated closely with emergence rates at specific time intervals in both male and female wasps. We suggest that this rhythmical expression of per may be a proximate mechanism of protandry in this species.

  2. Circadian secretion of cortisol and melatonin in cluster headache during active cluster periods and remission.

    OpenAIRE

    Waldenlind, E; Gustafsson, S A; Ekbom, K; Wetterberg, L

    1987-01-01

    The cyclic nature of cluster headache warranted a study of the 24-hour rhythms of serum cortisol and melatonin. They were both altered during cluster periods as compared with periods of remission and healthy controls. The 24-hour mean and maximal cortisol levels were higher and the timing of the cortisol minimum was delayed as compared to the same patients in remission. Although there was no relation between the cortisol and melatonin levels and headaches, the rise of cortisol following many ...

  3. SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis.

    Science.gov (United States)

    Wang, Xiaoxue; Wu, Fangming; Xie, Qiguang; Wang, Huamei; Wang, Ying; Yue, Yanling; Gahura, Ondrej; Ma, Shuangshuang; Liu, Lei; Cao, Ying; Jiao, Yuling; Puta, Frantisek; McClung, C Robertson; Xu, Xiaodong; Ma, Ligeng

    2012-08-01

    Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 5' and 3' splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level.

  4. Circadian secretion of cortisol and melatonin in cluster headache during active cluster periods and remission.

    Science.gov (United States)

    Waldenlind, E; Gustafsson, S A; Ekbom, K; Wetterberg, L

    1987-02-01

    The cyclic nature of cluster headache warranted a study of the 24-hour rhythms of serum cortisol and melatonin. They were both altered during cluster periods as compared with periods of remission and healthy controls. The 24-hour mean and maximal cortisol levels were higher and the timing of the cortisol minimum was delayed as compared to the same patients in remission. Although there was no relation between the cortisol and melatonin levels and headaches, the rise of cortisol following many attacks might in part represent an adaptive response to pain. The nocturnal melatonin maximum was lower during cluster periods than in remission. This finding, and the dysautonomic signs during attacks, may reflect a change of the vegetative tone in a hyposympathetic direction.

  5. Circadian secretion of cortisol and melatonin in cluster headache during active cluster periods and remission.

    Science.gov (United States)

    Waldenlind, E; Gustafsson, S A; Ekbom, K; Wetterberg, L

    1987-01-01

    The cyclic nature of cluster headache warranted a study of the 24-hour rhythms of serum cortisol and melatonin. They were both altered during cluster periods as compared with periods of remission and healthy controls. The 24-hour mean and maximal cortisol levels were higher and the timing of the cortisol minimum was delayed as compared to the same patients in remission. Although there was no relation between the cortisol and melatonin levels and headaches, the rise of cortisol following many attacks might in part represent an adaptive response to pain. The nocturnal melatonin maximum was lower during cluster periods than in remission. This finding, and the dysautonomic signs during attacks, may reflect a change of the vegetative tone in a hyposympathetic direction. Images PMID:3572435

  6. Dirofilaria immitis and D. repens show circadian co-periodicity in naturally co-infected dogs

    Czech Academy of Sciences Publication Activity Database

    Ionică, A.M.; Matei, I.A.; D'Amico, G.; Bel, L.; Dumitrache, M.O.; Modrý, David; Mihalca, A. D.

    2017-01-01

    Roč. 10, FEB 28 (2017), č. článku 116. ISSN 1756-3305 Institutional support: RVO:60077344 Keywords : periodicity * microfilariae * co-infection * Dirofilaria immitis * Dirofilaria repens Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine OBOR OECD: Veterinary science Impact factor: 3.080, year: 2016

  7. [Desynchronization of the circadian rhythm of plasma insulin levels and feeding schedules after inversion of periodicity].

    Science.gov (United States)

    Weinert, D; Ulrich, F E; Schuh, J

    1986-01-01

    In experiments with laboratory mice a desynchronisation of daily rhythms in plasma insulin concentration and feeding after inversion of the light-dark periodicity is documented. Whereas the feeding rhythm follows the exogenous Zeitgeber (differences concern above all the quantity of food which decrease after inversion), the acrophase of the hormone rhythm is stable in relation to astronomic time. The daily mean, however, is reduced and the main maximum is split into three components. The results support the hypothesis that rhythms of the two investigated parameters are generated by separate oscillators.

  8. Limb Lengthening in Patients with Achondroplasia.

    Science.gov (United States)

    Park, Kwang-Won; Garcia, Rey-an Niño; Rejuso, Chastity Amor; Choi, Jung-Woo; Song, Hae-Ryong

    2015-11-01

    Although bilateral lower-limb lengthening has been performed on patients with achondroplasia, the outcomes for the tibia and femur in terms of radiographic parameters, clinical results, and complications have not been compared with each other. We proposed 1) to compare the radiological outcomes of femoral and tibial lengthening and 2) to investigate the differences of complications related to lengthening. We retrospectively reviewed 28 patients (average age, 14 years 4 months) with achondroplasia who underwent bilateral limb lengthening between 2004 and 2012. All patients first underwent bilateral tibial lengthening, and at 9-48 months (average, 17.8 months) after this procedure, bilateral femoral lengthening was performed. We analyzed the pixel value ratio (PVR) and characteristics of the callus of the lengthened area on serial radiographs. The external fixation index (EFI) and healing index (HI) were computed to compare tibial and femoral lengthening. The complications related to lengthening were assessed. The average gain in length was 8.4 cm for the femur and 9.8 cm for the tibia. The PVR, EFI, and HI of the tibia were significantly better than those of the femur. Fewer complications were found during the lengthening of the tibia than during the lengthening of the femur. Tibial lengthening had a significantly lower complication rate and a higher callus formation rate than femoral lengthening. Our findings suggest that bilateral limb lengthening (tibia, followed by femur) remains a reasonable option; however, we should be more cautious when performing femoral lengthening in selected patients.

  9. Retention of a 24-hour time memory in Syrian hamsters carrying the 20-hour short circadian period mutation in casein kinase-1ε (ck1εtau/tau).

    Science.gov (United States)

    Cain, Sean W; Yoon, Jeena; Shrestha, Tenjin C; Ralph, Martin R

    2014-10-01

    Circadian rhythmic expression of conditioned place avoidance (CPA) was produced in Syrian hamsters homozygous for the circadian short period mutation, tau. In constant dim red light neither the 20 h endogenous period, nor a 20 h place conditioning schedule eliminated the 24 h modulation of CPA behavior described previously for wild type (wt) hamsters and other species. Tau mutants exhibited a 20 h rhythm superimposed on the 24 h modulation. The 20 h component was removed selectively with lesions of the suprachiasmatic nucleus. Wt animals conditioned on a 20 h schedule did not produce a 20 h rhythm, but still expressed the 24 h modulation. The results show that the context entrainable oscillator (CEO) underlying memory for the timing of an unconditioned stimulus, retains a period of about 24 h regardless of clock gene background (tau mutation) and/or the conditioning schedule (24 vs 20 h). Therefore the CEO responsible for time memory is distinct from the biological clock controlling activity; the underlying circadian molecular mechanisms may differ from the ubiquitous transcription-translation feedback oscillator; and time memory itself is not classically conditioned. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Inositol polyphosphates contribute to cellular circadian rhythms: Implications for understanding lithium's molecular mechanism.

    Science.gov (United States)

    Wei, Heather; Landgraf, Dominic; Wang, George; McCarthy, Michael J

    2018-01-11

    Most living organisms maintain cell autonomous circadian clocks that synchronize critical biological functions with daily environmental cycles. In mammals, the circadian clock is regulated by inputs from signaling pathways including glycogen synthase kinase 3 (GSK3). The drug lithium has actions on GSK3, and also on inositol metabolism. While it is suspected that lithium's inhibition of GSK3 causes rhythm changes, it is not known if inositol polyphosphates can also affect the circadian clock. We examined whether the signaling molecule inositol hexaphosphate (IP 6 ) has effects on circadian rhythms. Using a bioluminescent reporter (Per2::luc) to measure circadian rhythms, we determined that IP 6 increased rhythm amplitude and shortened period in NIH3T3 cells. The IP 6 effect on amplitude was attenuated by selective siRNA knockdown of GSK3B and pharmacological blockade of AKT kinase. However, unlike lithium, IP 6 did not induce serine-9 phosphorylation of GSK3B. The synthesis of IP 6 involves the enzymes inositol polyphosphate multikinase (IPMK) and inositol pentakisphosphate 2-kinase (IPPK). Knockdown of Ippk had effects opposite to those of IP 6 , decreasing rhythm amplitude and lengthening period. Ipmk knockdown had few effects on rhythm alone, but attenuated the effects of lithium on rhythms. However, lithium did not change the intracellular content of IP 6 in NIH3T3 cells or neurons. Pharmacological inhibition of the IP 6 kinases (IP6K) increased rhythm amplitude and shortened period, suggesting secondary effects of inositol pyrophosphates may underlie the period shortening effect, but not the amplitude increasing effect of IP 6 . Overall, we conclude that inositol phosphates, in particular IP 6 have effects on circadian rhythms. Manipulations affecting IP 6 and related inositol phosphates may offer a novel means through which circadian rhythms can be regulated. Published by Elsevier Inc.

  11. The telomere lengthening conundrum - artifact or biology?

    DEFF Research Database (Denmark)

    Steenstrup, Troels; Hjelmborg, Jacob V B; Kark, Jeremy D

    2013-01-01

    . Based on empirical data and theoretical considerations, we show that regardless of the method used to measure telomere length (Southern blot or quantitative polymerase chain reaction-based methods), measurement error of telomere length and duration of follow-up explain almost entirely the absence of age......-dependent LTL attrition in longitudinal studies. We find that LTL lengthening is far less frequent in studies with long follow-up periods and those that used a high-precision Southern blot method (as compared with quantitative polymerase chain reaction determination, which is associated with larger laboratory...

  12. Circadian Rhythms

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 11. Circadian Rhythms - Circadian Timing Systems: How are they Organized? Koustubh M Vaze Vijay Kumar Sharma. Series Article Volume 18 Issue 11 November 2013 pp 1032-1050 ...

  13. SKIP Is a Component of the Spliceosome Linking Alternative Splicing and the Circadian Clock in Arabidopsis[W

    Science.gov (United States)

    Wang, Xiaoxue; Wu, Fangming; Xie, Qiguang; Wang, Huamei; Wang, Ying; Yue, Yanling; Gahura, Ondrej; Ma, Shuangshuang; Liu, Lei; Cao, Ying; Jiao, Yuling; Puta, Frantisek; McClung, C. Robertson; Xu, Xiaodong; Ma, Ligeng

    2012-01-01

    Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 5′ and 3′ splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level. PMID:22942380

  14. A role for the clock period circadian regulator 2 gene in regulating the clock gene network in human oral squamous cell carcinoma cells.

    Science.gov (United States)

    Ao, Yiran; Zhao, Qin; Yang, Kai; Zheng, Gang; Lv, Xiaoqing; Su, Xiaoli

    2018-04-01

    Clock genes are the core of the circadian rhythms in the human body and are important in regulating normal physiological functions. To date, research has indicated that the clock gene, period circadian clock 2 ( PER2 ), is downregulated in numerous types of cancer, and that it is associated with cancer occurrence and progression via the regulation of various downstream cell cycle genes. However, it remains unclear whether the decreased expression of PER2 influences the expression of other clock genes in cancer cells. In the present study, short hairpin RNA interference was used to knockdown PER2 effectively in human oral squamous cell carcinoma SCC15 cells. Quantitative polymerase chain reaction was used to assess the mRNA expression levels of various clock genes and revealed that, following the knockdown of PER2 in SCC15 cells, the mRNA expression levels of PER3 , brain and muscle ARNT-like 1, deleted in esophageal cancer (DEC)1, DEC2 , cryptochrome circadian clock ( CRY )2, timeless circadian clock, retinoic acid receptor-related orphan receptor-alpha and neuronal PAS domain protein 2 were significantly downregulated, while the mRNA expression levels of PER1 and nuclear receptor subfamily 1 group D member 1 were significantly upregulated. In addition, flow cytometric analysis demonstrated that proliferation was enhanced and apoptosis was reduced following PER2 knockdown in SCC15 cells (Pclock genes of the clock gene network in cancer cells. This is of great significance in elucidating the molecular function and tumor suppression mechanism of PER2 .

  15. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    significance. (right) Vijay Kumar Sharma is a Professor at the. Evolutionary and. Organismal Biology Unit,. JNCASR, Bangalore. His major research interests presently are in understand- ing circadian organization of fruit flies and ants, adaptive significance of circadian clocks, neurogenetics of circadian egg-laying rhythm.

  16. Circadian light

    Directory of Open Access Journals (Sweden)

    Bierman Andrew

    2010-02-01

    Full Text Available Abstract The present paper reflects a work in progress toward a definition of circadian light, one that should be informed by the thoughtful, century-old evolution of our present definition of light as a stimulus for the human visual system. This work in progress is based upon the functional relationship between optical radiation and its effects on nocturnal melatonin suppression, in large part because the basic data are available in the literature. Discussed here are the fundamental differences between responses by the visual and circadian systems to optical radiation. Brief reviews of photometry, colorimetry, and brightness perception are presented as a foundation for the discussion of circadian light. Finally, circadian light (CLA and circadian stimulus (CS calculation procedures based on a published mathematical model of human circadian phototransduction are presented with an example.

  17. Circadian Regulation of Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Marcos G. Frank

    2016-07-01

    Full Text Available Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity.

  18. Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK

    DEFF Research Database (Denmark)

    Rawashdeh, Oliver; Jilg, Antje; Maronde, Erik

    2016-01-01

    Memory performance varies over a 24-h day/night cycle. While the detailed underlying mechanisms are yet unknown, recent evidence suggests that in the mouse hippocampus, rhythmic phosphorylation of mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate response element-binding ......Memory performance varies over a 24-h day/night cycle. While the detailed underlying mechanisms are yet unknown, recent evidence suggests that in the mouse hippocampus, rhythmic phosphorylation of mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate response element......-binding protein (CREB) are central to the circadian (~ 24 h) regulation of learning and memory. We recently identified the clock protein PERIOD1 (PER1) as a vehicle that translates information encoding time of day to hippocampal plasticity. We here elaborate how PER1 may gate the sensitivity of memory...... activation. Taken together, the PER1-dependent modulation of cytoplasmic-to-nuclear signaling in the murine hippocampus provides a molecular explanation for how the circadian system potentially shapes a temporal framework for daytime-dependent memory performance, and adds a novel facet to the versatility...

  19. Using Higher-Order Dynamic Bayesian Networks to Model Periodic Data from the Circadian Clock of Arabidopsis Thaliana

    Science.gov (United States)

    Daly, Rónán; Edwards, Kieron D.; O'Neill, John S.; Aitken, Stuart; Millar, Andrew J.; Girolami, Mark

    Modelling gene regulatory networks in organisms is an important task that has recently become possible due to large scale assays using technologies such as microarrays. In this paper, the circadian clock of Arabidopsis thaliana is modelled by fitting dynamic Bayesian networks to luminescence data gathered from experiments. This work differs from previous modelling attempts by using higher-order dynamic Bayesian networks to explicitly model the time lag between the various genes being expressed. In order to achieve this goal, new techniques in preprocessing the data and in evaluating a learned model are proposed. It is shown that it is possible, to some extent, to model these time delays using a higher-order dynamic Bayesian network.

  20. Neurobiology of circadian systems.

    Science.gov (United States)

    Schulz, Pierre; Steimer, Thierry

    2009-01-01

    Time is a dimension tightly associated with the biology of living species. There are cycles of varied lengths in biological activities, from very short (ultradian) rhythms to rhythms with a period of approximately one day (circadian) and rhythms with longer cycles, of a week, a month, a season, or even longer. These rhythms are generated by endogenous biological clocks, i.e. time-keeping structures, rather than being passive reactions to external fluctuations. In mammals, the suprachiasmatic nucleus (SCN) is the major pacemaker. The pineal gland, which secretes melatonin, is the major pacemaker in other phyla. There also exist biological clocks generating circadian rhythms in peripheral tissues, for example the liver. A series of clock genes generates the rhythm through positive and negative feedback effect of proteins on their own synthesis, and this system oscillates with a circadian period. External factors serve as indicators of the astronomical (solar) time and are called zeitgebers, literally time-givers. Light is the major zeitgeber, which resets daily the SCN circadian clock. In the absence of zeitgebers, the circadian rhythm is said to be free running; it has a period that differs from 24 hours. The SCN, together with peripheral clocks, enables a time-related homeostasis, which can become disorganized in its regulation by external factors (light, social activities, food intake), in the coordination and relative phase position of rhythms, or in other ways. Disturbances of rhythms are found in everyday life (jet lag, shift work), in sleep disorders, and in several psychiatric disorders including affective disorders. As almost all physiological and behavioural functions in humans occur on a rhythmic basis, the possibility that advances, delays or desynchronization of circadian rhythms might participate in neurological and psychiatric disorders has been a theme of research. In affective disorders, a decreased circadian amplitude of several rhythms as well as a

  1. Circadian Rhythms

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 7. Circadian Rhythms - From Daily Rhythms to Biological Clocks. Koustubh M Vaze Vijay Kumar Sharma. Series Article Volume 18 Issue 7 July 2013 pp 662- ... Keywords. Circadian rhythms; biological clocks; geophysical cycles; entrainment.

  2. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    hunger and sleep at the same time as the body would not be in the right state to metabolise food efficiently. Thus, synchronization of internal rhythms is an essential aspect of physiology, and circadian rhythms benefit living beings by bringing about such temporal order. In other words, circadian rhythms are thought to.

  3. Independence of genetic geographical variation between photoperiodic diapause, circadian eclosion rhythm, and Thr-Gly repeat region of the period gene in Drosophila littoralis.

    Science.gov (United States)

    Lankinen, P; Forsman, P

    2006-02-01

    Drosophila littoralis is a latitudinally widespread European species of the Drosophila virilis group. The species has ample genetic variation in photoperiodism (adult diapause) and circadian rhythmicity (pupal eclosion rhythm), with adaptive latitudinal clines in both of them. The possible common genetic basis between the variability of photoperiodism and circadian rhythms was studied by a long-term crossing experiment. A northern strain (65 degrees N) having long critical day length (CDL = 19.9 h) for diapause, early phase of the entrained rhythm in LD 3:21 (psi(LD3:21) = 12.3 h), and short period (tau= 18.8 h) of the free-running rhythm for the eclosion rhythm was crossed with a southern strain (42 degrees N) having short CDL (12.4 h), late eclosion phase (psi(LD3:21) = 20.2 h), and long period (tau= 22.8 h). After 54 generations, including free recombination, artificial selection, and genetic drift, a novel strain resulted, having even more "southern" diapause and more "northern" eclosion rhythm characteristics than found in any of the geographical strains. The observed complete separation of eclosion rhythm characteristics from photoperiodism is a new finding in D. littoralis; in earlier studies followed for 16 generations, the changes had been mostly parallel. Evidently, the genes controlling the variability of the eclosion rhythm and photoperiodism in D. littoralis are different but closely linked. To test for the possible gene loci underlying the observed geographical variability, the period gene was studied in 10 strains covering all the known clock variability in D. littoralis. The authors sequenced the most suspected Thr-Gly region, which is known to take part in the adaptive clock variability in Drosophila melanogaster. No coding differences were found in the strains, showing that this region is not included in the adaptive clock variability in D. littoralis.

  4. Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK.

    Science.gov (United States)

    Rawashdeh, Oliver; Jilg, Antje; Maronde, Erik; Fahrenkrug, Jan; Stehle, Jörg H

    2016-09-01

    Memory performance varies over a 24-h day/night cycle. While the detailed underlying mechanisms are yet unknown, recent evidence suggests that in the mouse hippocampus, rhythmic phosphorylation of mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate response element-binding protein (CREB) are central to the circadian (~ 24 h) regulation of learning and memory. We recently identified the clock protein PERIOD1 (PER1) as a vehicle that translates information encoding time of day to hippocampal plasticity. We here elaborate how PER1 may gate the sensitivity of memory-relevant hippocampal signaling pathways. We found that in wild-type mice (WT), spatial learning triggers CREB phosphorylation only during the daytime, and that this effect depends on the presence of PER1. The time-of-day-dependent induction of CREB phosphorylation can be reproduced pharmacologically in acute hippocampal slices prepared from WT mice, but is absent in preparations made from Per1-knockout (Per1(-/-) ) mice. We showed that the PER1-dependent CREB phosphorylation is regulated downstream of MAPK. Stimulation of WT hippocampal neurons triggered the co-translocation of PER1 and the CREB kinase pP90RSK (pMAPK-activated ribosomal S6 kinase) into the nucleus. In hippocampal neurons from Per1(-/-) mice, however, pP90RSK remained perinuclear. A co-immunoprecipitation assay confirmed a high-affinity interaction between PER1 and pP90RSK. Knocking down endogenous PER1 in hippocampal cells inhibited adenylyl cyclase-dependent CREB activation. Taken together, the PER1-dependent modulation of cytoplasmic-to-nuclear signaling in the murine hippocampus provides a molecular explanation for how the circadian system potentially shapes a temporal framework for daytime-dependent memory performance, and adds a novel facet to the versatility of the clock gene protein PER1. We provide evidence that the circadian clock gene Period1 (Per1) regulates CREB phosphorylation in the mouse hippocampus

  5. Temporal patterns of death after trauma: evaluation of circadian, diurnal, periodical and seasonal trends in 260 fatal injuries.

    Science.gov (United States)

    Søreide, K

    2010-01-01

    Temporal patterns of trauma deaths may indicate potential for prevention or systems improvement, but have been poorly investigated in the Scandinavian trauma population. This study examines patterns in trauma deaths to the occurrence in hour and time of the day, day and time in the week, and month and season. Investigation of the temporal patterns of death in 260 fatalities undergoing autopsy. Time of death were explored according to time of the day (hour; day/night), time of the week (day of week; weekday/weekend) and time of the year (month; season) and analyzed for difference in gender, age, injury type and severity, and mechanisms of injury and death. A total of 260 trauma deaths were included, of which 125 (48%) died in hospital and 194 (75%) were male. No particular peak-hour of the day when deaths occurred was found. One-third of deaths occurred during weekends. For inhospital deaths during weekends, significantly more patients had respiratory distress (RR > 20 or Trauma deaths in a Scandinavian population did not demonstrate statistically significant differences in overall circadian, weekly or seasonal patterns of trauma death occurrence. However, the impact of fatal head injuries during spring and summer warrants further investigation.

  6. Circadian Rhythms

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 2 ... Adaptation; fitness; circadian resonance; latitudinal clines; experimental evolution. ... Chronobiology Laboratory Evolutionary and Organismal Biology Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, PO Box 6436, ...

  7. Circadian rhythm disturbance after radiotherapy for brain tumor in infantile period; Clinical effect of L-thyroxine and vitamin B[sub 12

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Masaya; Shinozaki, Masako (Metropolitan Medical Center for the Severely Handicapped, Fuchu, Tokyo (Japan)); Sasaki, Hideo

    1993-08-01

    We report a 19-year-old man suffering from circadian sleep-wake (S-W) rhythm disturbance after total tumor resection and whole brain irradiation. The patient was diagnosed as having astrocytoma in the right temporal lobe by CT scan and angiography at the age of 6 months. After total tumor resection and whole brain irradiation ([sup 60]Co 60 Gy), he showed profound psychomotor retardation, endoclinologic dysfunction including hypothyroidism and growth hormone deficiency, and S-W rhythm disturbance. At age 19, brain MRI revealed asymmetrical low intensity in the hypothalamic region. On endoclinological examination panhypopituitarism due to primary hypothalamic lesion was evident. His S-W rhythm was disturbed; i.e., sleep periods were dispersedly distributed throughout 24 hours. He showed a lethargic tendency in the daytime. All-day polysomnography revealed abnormal sleep structure such as the absence of sleep spindle and hump, peripheral apnea, snoring and low oxygen saturation. After L-thyroxine supplementation his daily activity improved gradually. The decrease in short time sleep and tendency of a free-running rhythm were observed and oxygen saturation improved remarkably. Peripheral apnea and snoring disappeared. This wakening effect of L-thyroxine administration may be due to improvement of hypothyroidism symptom such as myxoedematous pharynx. It also seems related to the alteration of the central S-W rhythm regulation, because free-running rhythm appeared after L-thyroxine administration. Vitamin B[sub 12] (VB[sub 12]), which has been reported to be effective for S-W rhythm disorders, was not effective for our patient's free-running rhythm. Compared with the patients responding to VB[sub 12], our patient's organic brain damage was more evident radiologically and endoclinologically. Following the hypothesis that VB[sub 12] has a potential to reinforce the entrainment of circadian rhythm, our patient's organic brain damage may include entrainment

  8. Limb lengthening in Africa: tibial lengthening indicated for limb length discrepancy and postosteomyelitis pseudarthrosis

    Directory of Open Access Journals (Sweden)

    Ibrahima F

    2014-05-01

    Full Text Available Farikou Ibrahima,1,2 Pius Fokam,2 Félicien Faustin Mouafo Tambo11Department of Surgery and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, 2Department of Surgery, Douala General Hospital, Douala, CameroonBackground: We present a case of lengthening of a tibia to treat postosteomyelitis pseudarthrosis and limb length discrepancy by the Ilizarov device.Objective: The objective was to treat the pseudarthrosis and correct the consequent limb length discrepancy of 50 mm.Materials and methods: The patient was a 5-year-old boy. Osteotomy of the tibia, excision of fibrosis, and decortications were carried out. After a latency period of 5 days, the lengthening started at a rate of 1 mm per day.Results: The pseudarthrosis healed and the gained correction was 21.73%. The index consolidation was 49 days/cm. Minor complications were reported.Discussion: Osteomyelitis of long bones is a common poverty-related disease in Africa. The disease usually is diagnosed at an advanced stage with complications. In these conditions, treatment is much more difficult. Most surgical procedures treating this condition use the Ilizarov device. The most common reported surgical complications are refractures and recurrence of infection.Conclusion: This technique should be popularized in countries with limited resources because it would be an attractive alternative to the amputations that are sometimes performed.Keywords: Limb length discrepancy (LLD, bone gap, Ilizarov device

  9. Postoperative circadian disturbances

    DEFF Research Database (Denmark)

    Gögenur, Ismail

    2010-01-01

    parameters, and if pharmacological administration of chronobiotics could improve postoperative recovery. Circadian rhythm disturbances were found in all the examined endogenous rhythms. A delay was found in the endogenous rhythm of plasma melatonin and excretion of the metabolite of melatonin (AMT6s...... in patients with lower than median pain levels for a three days period after laparoscopic cholecystectomy. In the series of studies included in this thesis we have systematically shown that circadian disturbances are found in the secretion of hormones, the sleep-wake cycle, core body temperature rhythm...

  10. [Lengthening temporalis myoplasty: Technical refinements].

    Science.gov (United States)

    Guerreschi, P; Labbé, D

    2015-10-01

    First described by Labbé in 1997, the lengthening temporalis myoplasty (LTM) ensures the transfer of the entire temporal muscle from the coronoid process to the upper half of the lip without interposition of aponeurotic tissue. Thanks to brain plasticity, the temporal muscle is able to change its function because it is entirely mobilized towards another effector: the labial commissure. After 6 months of speech rehabilitation, the muscle loses its chewing function and it acquires its new smiling function. We describe as far as possible all the technical points to guide surgeons who would like to perform this powerful surgical procedure. We show the coronoid process approaches both through an upper temporal fossa approach and a lower nasolabial fold approach. Rehabilitation starts 3 weeks after the surgery following a standardized protocol to move from a mandibular smile to a voluntary smile, and then a spontaneous smile in 3 steps. The LTM is the main part of a one-stage global treatment of the paralyzed face. It constitutes a dynamic palliative treatment usually started at the sequelae stage, 18 months after the outcome of a peripheral facial paralysis. This one-stage procedure is a reproducible and relevant surgical technique in the difficult treatment of peripheral facial paralysis. An active muscle is transferred to reanimate the labial commissure and to recreate a mobile nasolabial fold. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Surgical crown lengthening: a 12-month study - radiographic results

    Directory of Open Access Journals (Sweden)

    Daniela Eleutério Diniz

    2007-08-01

    Full Text Available OBJECTIVE: The purpose of this study was to perform a radiographic follow-up evaluation after a 12-month healing period, following crown lengthening surgery. MATERIAL AND METHODS: Twenty-three periodontally healthy subjects (mean age 32.5 years that required crown lengthening surgery in premolars were recruited. In a total of 30 premolars, full thickness flaps, osseous resection, and flap suturing were performed. The restorative margin was defined in the pre-surgical phase and maintained unaltered during the healing period, serving as a reference point. Standardized bitewing radiographs were taken before and after osseous reduction, and at 2, 3, 6, and 12-month healing periods. RESULTS: Intact lamina dura was observed at both mesial and distal alveolar crests only from the 3rd month. At 12-months, all alveolar crests presented lamina dura. The overall mean distance from the restorative margin to the alveolar crest achieved after osseous resection was 3.28±0.87 mm at mesial and 2.81±0.51 mm at distal sites. No significant radiographic changes in the bone crest were observed during a 12-month healing period. CONCLUSION: The findings of this study suggest that the radiographic proximal bone level observed on bitewing radiographs following crown lengthening surgery can be used as a reference to predict the future level of the healed alveolar crest.

  12. Intestinal lengthening: an experimental and clinical review.

    Science.gov (United States)

    Bianchi, A

    1984-01-01

    Small intestinal lengthening by the Bianchi procedure has now had successful clinical application in children and neonates with the short-bowel syndrome. This paper reviews the background experimental work and clinical cases so far treated. A personal case of intestinal lengthening in a 7-week-old baby with 35 cm jejunum is described in detail. Intestinal lengthening appears to reduce dependence on parenteral nutrition, thus allowing earlier establishment of total enteral alimentation. The procedure may therefore have a useful place in the overall management of the short-bowel syndrome. Images Figure 3. A Figure 3. B Figure 3. C Figure 3. D PMID:6471060

  13. Cosmetic lengthening: what are the limits?

    Science.gov (United States)

    Guerreschi, F; Tsibidakis, H

    2016-12-01

    In the last decades, limb lengthening has not been limited to the treatment of patients with dwarfism and deformities resulting from congenital anomalies, trauma, tumor and infections, but, has also been used for aesthetic reasons. Cosmetic lengthening by the Ilizarov method with circular external fixation has been applied to individuals with constitutional short stature who wish to be taller. From January 1985 to December 2010, the medical records of 63 patients with constitutional short stature (36 M, 27F; 126 legs) who underwent cosmetic bilateral leg lengthening using a hybrid advanced fixator according to the Ilizarov method, were reviewed, retrospectively. The mean age was 24.8 years, while the mean preoperative height was 152.6 cm. Paley's criteria were used to evaluate problems, obstacles, and complications from the time of surgery until 1 year after frame's removal. The mean lengthening achieved in all patients was 7.2 cm (range: 5-11 cm), with a mean duration of treatment of 9 months and 15 days (range: 7-18 months). The mean follow-up time was 6.14 years (range 1-10). The cosmetic leg lengthening was helpful to all patients, improving their social capabilities and self-confidence. All patients considered their stature as normal and they reported satisfaction and gratification with important changes in their professional and personal life. Cosmetic leg lengthening may raise some ethical objections and for that reason patients should be well informed about all the risks and complications related to this type of surgery.

  14. [Circadian rhythms and systems biology].

    Science.gov (United States)

    Goldbeter, Albert; Gérard, Claude; Leloup, Jean-Christophe

    2010-01-01

    Cellular rhythms represent a field of choice for studies in system biology. The examples of circadian rhythms and of the cell cycle show how the experimental and modeling approaches contribute to clarify the conditions in which periodic behavior spontaneously arises in regulatory networks at the cellular level. Circadian rhythms originate from intertwined positive and negative feedback loops controlling the expression of several clock genes. Models can be used to address the dynamical bases of physiological disorders related to dysfunctions of the mammalian circadian clock. The cell cycle is driven by a network of cyclin-dependent kinases (Cdks). Modeled in the form of four modules coupled through multiple regulatory interactions, the Cdk network operates in an oscillatory manner in the presence of sufficient amounts of growth factor. For circadian rhythms and the cell cycle, as for other recently observed cellular rhythms, periodic behavior represents an emergent property of biological systems related to their regulatory structure.

  15. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    rhythms especially their endogenous, self-sustained nature, ability to entrain to environmental cycles and. PRCs, greatly resemble those of self-sustained physical oscillators; which led them to propose that circadian rhythms function like physical oscillators and named such biological oscillators as 'endogenous self- ...

  16. Circadian Rhythms

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 2. Circadian Rhythms: Why do Living Organisms Have Them? Koustubh M Vaze K L Nikhil Vijay Kumar Sharma. Series Article Volume 19 Issue 2 February 2014 pp 175-189 ...

  17. Clockwork orange encodes a transcriptional repressor important for circadian-clock amplitude in Drosophila.

    Science.gov (United States)

    Lim, Chunghun; Chung, Brian Y; Pitman, Jena L; McGill, Jermaine J; Pradhan, Suraj; Lee, Jongbin; Keegan, Kevin P; Choe, Joonho; Allada, Ravi

    2007-06-19

    Gene transcription is a central timekeeping process in animal clocks. In Drosophila, the basic helix-loop helix (bHLH)-PAS transcription-factor heterodimer, CLOCK/CYCLE (CLK/CYC), transcriptionally activates the clock components period (per), timeless (tim), Par domain protein 1 (Pdp1), and vrille (vri), which feed back and regulate distinct features of CLK/CYC function. Microarray studies have identified numerous rhythmically expressed transcripts, some of which are potential direct CLK targets. Here we demonstrate a circadian function for one such target, a bHLH-Orange repressor, CG17100/CLOCKWORK ORANGE (CWO). cwo is rhythmically expressed, and levels are reduced in Clk mutants, suggesting that cwo is CLK activated in vivo. cwo mutants display reduced-amplitude molecular and behavioral rhythms with lengthened periods. Molecular analysis suggests that CWO acts, in part, by repressing CLK target genes. We propose that CWO acts as a transcriptional and behavioral rhythm amplifier.

  18. clockwork orange encodes a transcriptional repressor important for circadian clock amplitude in Drosophila

    Science.gov (United States)

    Lim, Chunghun; Chung, Brian Y.; Pitman, Jena L.; McGill, Jermaine J.; Pradhan, Suraj; Lee, Jongbin; Keegan, Kevin P.; Choe, Joonho; Allada, Ravi

    2007-01-01

    Summary Gene transcription is a central timekeeping process in animal clocks. In Drosophila, the basic helix-loop helix (bHLH)-PAS transcription factor heterodimer, CLOCK (CLK)/CYCLE(CYC) transcriptionally activates the clock components period (per), timeless (tim), Par domain protein 1 (Pdp1), and vrille (vri) that feedback and regulate distinct features of CLK/CYC function [1]. Microarray studies have identified numerous rhythmically expressed transcripts [2-7], some of which are potential direct CLK targets [7]. Here we demonstrate a circadian function for one such target, a bHLH-Orange repressor CG17100/CLOCKWORK ORANGE (CWO). cwo is rhythmically expressed and levels are reduced in Clk mutants, suggesting that cwo is CLK-activated in vivo. cwo mutants display reduced amplitude molecular and behavioral rhythms with lengthened periods. Molecular analysis suggests CWO acts, in part, by repressing CLK target genes. We propose that CWO acts as a transcriptional and behavioral rhythm amplifier. PMID:17555964

  19. Indications & predisposing factors of crown lengthening surgery

    Directory of Open Access Journals (Sweden)

    Arghavan Amini-Behbahani

    2014-09-01

    Full Text Available Introduction: Since crown lengthening surgery could be accompanied by stress, pain and discomfort, knowledge about its predisposing factors could reduce the demands for such surgery.The aim of this study was to identify the most important indications of crown lengthening surgery in order to present new ideas to clinicians on how to reduce the need for this surgery. Methods: This cross-sectional study was done on 470 patients (aged 12-89 years referred for crown lengthening surgery. The patients' demographic data and their reasons for surgery, the teeth restoration condition and its type, condition of the opposite tooth, type of fractured cusp (posterior teeth, root canal therapy condition and quality, and size of existing intracanal posts were recorded in a data sheet. Data were analyzed by using SPSS software.The chi-square and fisher exact test were used for statistical analysis. The significant difference was p<0.05. Results: The most frequent indication in men and women was dental caries followed by tooth fracture.The second upper premolars and first lower molars needed crown lengthening surgery more often, respectively. Conclusions: Since dental caries and fracture are the most important factors that predispose teeth to crown lengthening surgery, controlling caries with a regular recall sequence can reduce the need for such surgery, especially in the elderly.

  20. Control of Rest:Activity by a Dopaminergic Ultradian Oscillator and the Circadian Clock

    Directory of Open Access Journals (Sweden)

    Clément Bourguignon

    2017-11-01

    Full Text Available There is long-standing evidence for rhythms in locomotor activity, as well as various other aspects of physiology, with periods substantially shorter than 24 h in organisms ranging from fruit flies to humans. These ultradian oscillations, whose periods frequently fall between 2 and 6 h, are normally well integrated with circadian rhythms; however, they often lack the period stability and expression robustness of the latter. An adaptive advantage of ultradian rhythms has been clearly demonstrated for the common vole, suggesting that they may have evolved to confer social synchrony. The cellular substrate and mechanism of ultradian rhythm generation have remained elusive so far, however recent findings—the subject of this review—now indicate that ultradian locomotor rhythms rely on an oscillator based on dopamine, dubbed the dopaminergic ultradian oscillator (DUO. These findings also reveal that the DUO period can be lengthened from <4 to >48 h by methamphetamine treatment, suggesting that the previously described methamphetamine-sensitive (circadian oscillator represents a long-period manifestation of the DUO.

  1. A Brief History of Limb Lengthening.

    Science.gov (United States)

    Birch, John G

    2017-09-01

    In the last 35 years, orthopaedic surgeons have witnessed 3 major advances in the technique of limb lengthening: "distraction osteogenesis" facilitated by Gavriil Ilizarov method and infinitely-adaptable circular fixator with fine-wire bone fragment fixation; the introduction of the "6-strut" computer program-assisted circular fixators to effect complex deformity correction simultaneously; and the development of motorized intramedullary lengthening nails. However, the principles and associated complications of these techniques are on the basis of observations by Codivilla, Putti, and Abbott from as much as 110 years ago. This review notes the contribution of these pioneers in limb lengthening, and the contribution of Thor Heyerdahl principles of tolerance and diversity to the dissemination of Ilizarov principles to the Western world.

  2. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.

    Science.gov (United States)

    Dodd, Antony N; Salathia, Neeraj; Hall, Anthony; Kévei, Eva; Tóth, Réka; Nagy, Ferenc; Hibberd, Julian M; Millar, Andrew J; Webb, Alex A R

    2005-07-22

    Circadian clocks are believed to confer an advantage to plants, but the nature of that advantage has been unknown. We show that a substantial photosynthetic advantage is conferred by correct matching of the circadian clock period with that of the external light-dark cycle. In wild type and in long- and short-circadian period mutants of Arabidopsis thaliana, plants with a clock period matched to the environment contain more chlorophyll, fix more carbon, grow faster, and survive better than plants with circadian periods differing from their environment. This explains why plants gain advantage from circadian control.

  3. EXPERIMENTAL APPROVAL OF COMBINED FIXATION FOR FEMUR LENGTHENING

    Directory of Open Access Journals (Sweden)

    M. A. Stepanov

    2017-01-01

    Full Text Available Elimination of congenital shortening of lower limb still remains a complex and unsolved orthopaedic task which requires an improved fixation technique as well as adjusted tactics of treatment and rehabilitation procedures.Purpose of the study — experimental approval of femur lengthening technique by external fixation with Ilizarov apparatus and internal fixation by plate.Materials and methods. Femur lengthening was performed in 6 mongrel dogs. Average animal age was 1,5±0,3 years, average weight — 20±5 kg, femur length — 22±2 sm. External apparatus with two supports and a titanium plate of an original design were applied under general anesthesia on the right femur of animals. Lengthening was performed manually at a rate of1 mm per day in 4 stages at a distance of 10% from initial segment length. External apparatus was removed on the last day of distraction after locking the plate. X-ray examination was done on the day of surgery, in 7, 14 and 25 days from the onset of distraction as well as in 14, 30, 60 and 90 days after completion of distraction and removal of external apparatus. Three animals were taken out of experiment in 30 days of fixation, remaining three animals — in 90 days. After euthanasia the authors performed autopsy of the organic femur complex and tissues contacting the plate.Results. The use of operated limb was not restricted during the whole distraction period. The authors observed first roentgenological signs of distraction osteogenesis on 7th day of lengthening. By the end of distraction period, at 25th day, shadows of regenerates demonstrated longitudinal striated structures in all cases. Median lucency area of 1–5 mm was located diagonally and across the regenerate or was intermittent. In 60 days of fixation X-rays demonstrated homogeneous regenerate. External fixation index was 13,9±1,5 days/sm (p≤0,05. The authors observed no cases of implants fracture or deformity during the experiment

  4. Periodic variation in bile acids controls circadian changes in uric acid via regulation of xanthine oxidase by the orphan nuclear receptor PPARα.

    Science.gov (United States)

    Kanemitsu, Takumi; Tsurudome, Yuya; Kusunose, Naoki; Oda, Masayuki; Matsunaga, Naoya; Koyanagi, Satoru; Ohdo, Shigehiro

    2017-12-29

    Xanthine oxidase (XOD), also known as xanthine dehydrogenase, is a rate-limiting enzyme in purine nucleotide degradation, which produces uric acid. Uric acid concentrations in the blood and liver exhibit circadian oscillations in both humans and rodents; however, the underlying mechanisms remain unclear. Here, we demonstrate that XOD expression and enzymatic activity exhibit circadian oscillations in the mouse liver. We found that the orphan nuclear receptor peroxisome proliferator-activated receptor-α (PPARα) transcriptionally activated the mouse XOD gene and that bile acids suppressed XOD transactivation. The synthesis of bile acids is known to be under the control of the circadian clock, and we observed that the time-dependent accumulation of bile acids in hepatic cells interfered with the recruitment of the co-transcriptional activator p300 to PPARα, thereby repressing XOD expression. This time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the hepatic expression of XOD, which, in turn, led to circadian alterations in uric acid production. Finally, we also demonstrated that the anti-hyperuricemic effect of the XOD inhibitor febuxostat was enhanced by administering it at the time of day before hepatic XOD activity increased. These results suggest an underlying mechanism for the circadian alterations in uric acid production and also underscore the importance of selecting an appropriate time of day for administering XOD inhibitors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Clinical Results and Complications of Lower Limb Lengthening for Fibular Hemimelia: A Report of Eight Cases.

    Science.gov (United States)

    Mishima, Kenichi; Kitoh, Hiroshi; Iwata, Koji; Matsushita, Masaki; Nishida, Yoshihiro; Hattori, Tadashi; Ishiguro, Naoki

    2016-05-01

    Fibular hemimelia is a rare but the most common congenital long bone deficiency, encompassing a broad range of anomalies from isolated fibular hypoplasia up to substantial femoral and tibial shortening with ankle deformity and foot deficiency. Most cases of fibular hemimelia manifest clinically significant leg length discrepancy (LLD) with time that requires adequate correction by bone lengthening for stable walking. Bone lengthening procedures, especially those for pathological bones, are sometimes associated with severe complications, such as delayed consolidation, fractures, and deformities of the lengthened bones, leading to prolonged healing time and residual LLD at skeletal maturity. The purpose of this study was to review our clinical results of lower limb lengthening for fibular hemimelia.This study included 8 Japanese patients who diagnosed with fibular hemimelia from physical and radiological findings characteristic of fibular hemimelia and underwent single or staged femoral and/or tibial lengthening during growth or after skeletal maturity. LLD, state of the lengthened callus, and bone alignment were evaluated with full-length radiographs of the lower limb. Previous interventions, associated congenital anomalies, regenerate fractures were recorded with reference to medical charts and confirmed on appropriate radiographs. Successful lengthening was defined as the healing index <50 days/cm without regenerate fractures.A significant difference was observed in age at surgery between successful and unsuccessful lengthening. The incidence of regenerate fractures was significantly correlated with callus maturity before frame removal. LLD was corrected within 11 mm, whereas mechanical axis deviated laterally.Particular attention should be paid to the status of callus maturation and the mechanical axis deviation during the treatment period in fibular hemimelia.

  6. Repeated mechanical lengthening of intestinal segments in a novel model.

    Science.gov (United States)

    Scott, Andrew; Sullins, Veronica F; Steinberger, Doug; Rouch, Joshua D; Wagner, Justin P; Chiang, Elvin; Lee, Steven L; Wu, Benjamin M; Dunn, James C Y

    2015-06-01

    Currently, animal models used for mechanical intestinal lengthening utilize a single lengthening procedure prior to analysis or restoration back into continuity. Here we developed a novel surgical model to examine the feasibility of repeated lengthening of intestinal segments. A Roux-en-Y jejunojejunostomy with a blind Roux limb was created in rats. An encapsulated polycaprolactone spring was placed into a 1cm segment of the Roux limb. After 4 weeks, a second encapsulated PCL spring was inserted into a 1cm portion of the lengthened segment. After another 4 weeks, the repeatedly lengthened segments were retrieved for histological analyses. Jejunal segments of the Roux limb were successfully lengthened from 1.0 cm to 2.6 ± 0.7 cm. Four weeks after the second PCL spring placement, 1.0 cm of the previously lengthened segment increased to 2.7 ± 0.8 cm. Stronger mechanical force was required to achieve subsequent re-lengthening. Lengthened and re-lengthened segments had increased smooth muscle thickness and crypt depth when compared to normal jejunal mucosa. Using the Roux-en-Y model, previously lengthened segments of intestine can be successfully re-lengthened. Intestinal segments may be subjected to multiple lengthening procedures to achieve clinically significant length for the treatment of short bowel syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Circadian rhythms in Macaca mulatta monkeys during Bion 11 flight

    Science.gov (United States)

    Alpatov, A. M.; Hoban-Higgins, T. M.; Klimovitsky, V. Y.; Tumurova, E. G.; Fuller, C. A.

    2000-01-01

    Circadian rhythms of primate brain temperature, head and ankle skin temperature, motor activity, and heart rate were studied during spaceflight and on the ground. In space, the circadian rhythms of all the parameters were synchronized with diurnal Zeitgebers. However, in space the brain temperature rhythm showed a significantly more delayed phase angle, which may be ascribed to an increase of the endogenous circadian period.

  8. Natural selection against a circadian clock gene mutation in mice

    NARCIS (Netherlands)

    Spoelstra, K.; Wikelski, Martin; Daan, Serge; Loudon, Andrew; Hau, Michaela

    2016-01-01

    Circadian rhythms with an endogenous period close or equal to the natural light-dark cycle are considered evolutionarily adaptive (‘circadian resonance hypothesis’). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural

  9. Natural selection against a circadian clock gene mutation in mice

    NARCIS (Netherlands)

    Spoelstra, Kamiel; Wikelski, Martin; Daan, Serge; Loudon, Andrew S I; Hau, Michaela

    2016-01-01

    Circadian rhythms with an endogenous period close to or equal to the natural light-dark cycle are considered evolutionarily adaptive ("circadian resonance hypothesis"). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under

  10. Circadian and Circalunar Clock Interactions in a Marine Annelid

    Directory of Open Access Journals (Sweden)

    Juliane Zantke

    2013-10-01

    Full Text Available Life is controlled by multiple rhythms. Although the interaction of the daily (circadian clock with environmental stimuli, such as light, is well documented, its relationship to endogenous clocks with other periods is little understood. We establish that the marine worm Platynereis dumerilii possesses endogenous circadian and circalunar (monthly clocks and characterize their interactions. The RNAs of likely core circadian oscillator genes localize to a distinct nucleus of the worm’s forebrain. The worm’s forebrain also harbors a circalunar clock entrained by nocturnal light. This monthly clock regulates maturation and persists even when circadian clock oscillations are disrupted by the inhibition of casein kinase 1δ/ε. Both circadian and circalunar clocks converge on the regulation of transcript levels. Furthermore, the circalunar clock changes the period and power of circadian behavior, although the period length of the daily transcriptional oscillations remains unaltered. We conclude that a second endogenous noncircadian clock can influence circadian clock function.

  11. Hip stability during lengthening in children with congenital femoral deficiency.

    Science.gov (United States)

    Eidelman, Mark; Jauregui, Julio J; Standard, Shawn C; Paley, Dror; Herzenberg, John E

    2016-12-01

    Congenital femoral deficiency (CFD) is one of the most challenging and complex conditions for limb lengthening. We focused on the problem of hip instability during femoral lengthening because subluxation and dislocation are potentially catastrophic for hip function. We assessed for hip stability in 69 children (91 femoral lengthenings) who had CFD Paley type 1a (43 children) and 1b (26 children). The mean age at first lengthening was 6.4 years. Hip subluxation/dislocation occurred during 14 (15 %) of 91 lengthenings. Thirty-three pelvic osteotomies were performed before lengthening in an attempt to stabilize hips. Thirteen patients (type 1a, eight; type 1b, five) had acetabular dysplasia at initiation of lengthening. One of the eight with type 1a experienced mild femoral head subluxation; four of the five with type 1b experienced three dislocations and one subluxation. Eight patients (type 1b) experienced hip instability although they had pelvic osteotomies. Proximal femoral lengthening was a significant factor for hip subluxation. Patients with hip subluxation more likely underwent monolateral fixation and the original superhip procedure. Age ±six years was not a contributing factor for hip instability. Important risk factors for hip instability during femoral lengthening are severity of CFD, residual acetabular dysplasia, and proximal femoral lengthening. We recommend routine performance of pelvic osteotomy for patients with Paley type 1b CFD and distal lengthening. Therapeutic Level IV.

  12. Nutrition and the Circadian System

    Science.gov (United States)

    Potter, Gregory D M; Cade, Janet E; Grant, Peter J; Hardie, Laura J

    2016-01-01

    The human circadian system anticipates and adapts to daily environmental changes to optimise behaviour according to time of day and temporally partition incompatible physiological processes. At the helm of this system is a master clock in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN are primarily synchronised to the 24 hour day by the light/dark cycle; however, feeding/fasting cycles are the primary time cues for clocks in peripheral tissues. Aligning feeding/fasting cycles with clock-regulated metabolic changes optimises metabolism, and studies of other animals suggest that feeding at inappropriate times disrupts circadian system organisation and thereby contributes to adverse metabolic consequences and chronic disease development. ‘High-fat diets’ (HFDs) produce particularly deleterious effects on circadian system organisation in rodents by blunting feeding/fasting cycles. Time-of-day-restricted feeding, where food availability is restricted to a period of several hours, offsets many adverse consequences of HFDs in these animals; however, further evidence is required to assess whether the same is true in humans. Several nutritional compounds have robust effects on the circadian system. Caffeine, for example, can speed synchronisation to new time zones after jetlag. An appreciation of the circadian system has many implications for nutritional science and may ultimately help reduce the burden of chronic diseases. PMID:27221157

  13. Circadian clock and oral cancer.

    Science.gov (United States)

    Nirvani, Minou; Khuu, Cuong; Utheim, Tor Paaske; Sand, Lars Peter; Sehic, Amer

    2018-02-01

    The circadian clock is comprised of a master component situated in the hypothalamic suprachiasmatic nucleus and subordinate clock genes in almost every cell of the body. The circadian clock genes and their encoded proteins govern the organism to follow the natural signals of time, and adapt to external changes in the environment. The majority of physiological processes in mammals exhibit variable circadian rhythms, which are generated and coordinated by an oscillation in the expression of the clock genes. A number of studies have reported that alteration in the expression level of clock genes is correlated with several pathological conditions, including cancer. However, little is known about the role of clock genes in homeostasis of the oral epithelium and their disturbances in oral carcinogenesis. The present review summarizes the current state of knowledge of the implications of clock genes in oral cancer. It has been demonstrated that the development of oral squamous cell carcinoma undergoes circadian oscillation in relation to tumor volume and proliferation rate. The circadian clock gene period ( PER)1 has been associated with oral cancer pathogenesis and it is suggested that changes in the expression of PER1 may exhibit an important role in the development, invasion, and metastasis of oral squamous cell carcinoma. However, its role remains elusive and there is a need for further research in order to understand the underlying mechanisms of the clock genes in oral cancer pathogenesis.

  14. Circadian and Wakefulness-Sleep Modulation of Cognition in Humans

    Directory of Open Access Journals (Sweden)

    Kenneth P Wright

    2012-04-01

    Full Text Available Cognitive and affective processes vary over the course of the 24 hour day. Time of day dependent changes in human cognition are modulated by an internal circadian timekeeping system with a near-24-hour period. The human circadian timekeeping system interacts with sleep-wakefulness regulatory processes to modulate brain arousal, neurocognitive and affective function. Brain arousal is regulated by ascending brain stem, basal forebrain and hypothalamic arousal systems and inhibition or disruption of these systems reduces brain arousal, impairs cognition, and promotes sleep. The internal circadian timekeeping system modulates cognition and affective function by projections from the master circadian clock, located in the hypothalamic suprachiasmatic nuclei, to arousal and sleep systems and via clock gene oscillations in brain tissues. Understanding the basic principles of circadian and wakefulness-sleep physiology can help to recognize how the circadian system modulates human cognition and influences learning, memory and emotion. Developmental changes in sleep and circadian processes and circadian misalignment in circadian rhythm sleep disorders have important implications for learning, memory and emotion. Overall, when wakefulness occurs at appropriate internal biological times, circadian clockwork benefits human cognitive and emotion function throughout the lifespan. Yet, when wakefulness occurs at inappropriate biological times because of environmental pressures (e.g., early school start times, long work hours that include work at night, shift work, jet lag or because of circadian rhythm sleep disorders, the resulting misalignment between circadian and wakefulness-sleep physiology leads to impaired cognitive performance, learning, emotion, and safety.

  15. The influence of muscular lengthening on cramps.

    Science.gov (United States)

    Bertolasi, L; De Grandis, D; Bongiovanni, L G; Zanette, G P; Gasperini, M

    1993-02-01

    Muscle cramps induced by voluntary contraction and by electrical stimulation of the peripheral nerve were studied electrophysiologically in 10 healthy subjects. The aim was to verify that cramps can be evoked by electrical stimulation of peripheral nerve and to clarify the physiological mechanism responsible by analyzing the effect of muscular stretching on cramps. Our results showed: (1) Cramps can be induced even after peripheral nerve block by electrical stimulation distal to the block. (2) No cramps were recorded during or following maximal voluntary contraction without muscular shortening, while 7 of 10 subjects showed a true cramp following maximal effort with shortening of the muscle. (3) Muscle stretching caused a sudden interruption of cramps induced by either voluntary contraction or electrical stimulation of the peripheral nerve, even after the induction of nerve block. (4) The lengthening state of the muscle can strongly influence the possibility of evoking cramps by electrical stimulation of nerve. Our study verifies the experimental model proposed by Lambert in 1969, emphasizing the relevance of frequency of stimulation and confirming the hypothesis that cramps are of peripheral origin. The effects of muscle stretch and lengthening on cramp interruption and development also have a peripheral mechanism.

  16. [Circadian markers and genes in bipolar disorder].

    Science.gov (United States)

    Yeim, S; Boudebesse, C; Etain, B; Belliviera, F

    2015-09-01

    Bipolar disorder is a severe and complex multifactorial disease, characterized by alternance of acute episodes of depression and mania/hypomania, interspaced by euthymic periods. The etiological determinants of bipolar disorder yet, are still poorly understood. For the last 30 years, chronobiology is an important field of investigation to better understand the pathophysiology of bipolar disorder. We conducted a review using Medline, ISI Database, EMBase, PsyInfo up to January 2015, using the following keywords combinations: "mood disorder", "bipolar disorder", "depression", "unipolar disorder", "major depressive disorder", "affective disorder", for psychiatric conditions; and "circadian rhythms", "circadian markers", "circadian gene", "clock gene", "melatonin" for circadian rhythms. The search critera was presence of word in any field of the article. Quantitative and qualitative circadian abnormalities are associated with bipolar disorders both during acute episodes and euthymic periods, suggesting that these altered circadian rhythms may represent biological trait markers of the disorder. These circadian dysfunctions were assessed by various validated tools including polysomnography, actigraphy, sleep diaries, chronotype assessments and blood melatonin/cortisol measures. Other altered endogenous circadian activities have also been reported in bipolar patients, such as hormones secretion, core body temperature or fibroblasts activity. Moreover, these markers were also altered in healthy relatives of bipolar patients, suggesting a degree of heritability. Several genetic association studies have also showed associations between multiple circadian genes and bipolar disorder, such as CLOCK, ARTNL1, GSK3β, PER3, NPAS2, NR1D1, TIMELESS, RORA, RORB, and CSNK1ε. Thus, these circadian gene variants may contribute to the genetic susceptibility of the disease. Furthermore, the study of the clock system may help to better understand some phenotypic aspects like the

  17. Disturbances in the circadian pattern of activity and sleep after laparoscopic versus open abdominal surgery

    NARCIS (Netherlands)

    Gogenur, I.; Bisgaard, T.; Burgdorf, S.; van Someren, E.J.W.; Rosenberg, I.M.P.

    2009-01-01

    Background: Studies on the circadian variation in bodily functions and sleep are important for understanding the pathophysiological processes in the postoperative period. We aimed to investigate changes in the circadian variation in activity after minimally invasive surgery (laparoscopic

  18. Physeal growth arrest after tibial lengthening in achondroplasia

    Science.gov (United States)

    2012-01-01

    Background and purpose Bilateral tibial lengthening has become one of the standard treatments for upper segment-lower segment disproportion and to improve quality of life in achondroplasia. We determined the effect of tibial lengthening on the tibial physis and compared tibial growth that occurred at the physis with that in non-operated patients with acondroplasia. Methods We performed a retrospective analysis of serial radiographs until skeletal maturity in 23 achondroplasia patients who underwent bilateral tibial lengthening before skeletal maturity (lengthening group L) and 12 achondroplasia patients of similar height and age who did not undergo tibial lengthening (control group C). The mean amount of lengthening of tibia in group L was 9.2 cm (lengthening percentage: 60%) and the mean age at the time of lengthening was 8.2 years. The mean duration of follow-up was 9.8 years. Results Skeletal maturity (fusion of physis) occurred at 15.2 years in group L and at 16.0 years in group C. The actual length of tibia (without distraction) at skeletal maturity was 238 mm in group L and 277 mm in group C (p = 0.03). The mean growth rates showed a decrease in group L relative to group C from about 2 years after surgery. Physeal closure was most pronounced on the anterolateral proximal tibial physis, with relative preservation of the distal physis. Interpretation Our findings indicate that physeal growth rate can be disturbed after tibial lengthening in achondroplasia, and a close watch should be kept for such an occurrence—especially when lengthening of more than 50% is attempted. PMID:22489887

  19. Bmal1 is an essential regulator for circadian cytosolic Ca²⁺ rhythms in suprachiasmatic nucleus neurons.

    Science.gov (United States)

    Ikeda, Masayuki; Ikeda, Masaaki

    2014-09-03

    The hypothalamic suprachiasmatic nucleus (SCN) plays a pivotal role in the mammalian circadian clock system. Bmal1 is a clock gene that drives transcriptional-translational feedback loops (TTFLs) for itself and other genes, and is expressed in nearly all SCN neurons. Despite strong evidence that Bmal1-null mutant mice display arrhythmic behavior under constant darkness, the function of Bmal1 in neuronal activity is unknown. Recently, periodic changes in the levels of intracellular signaling messengers, such as cytosolic Ca(2+) and cAMP, were suggested to regulate TTFLs. However, the opposite aspect of how clock gene TTFLs regulate cytosolic signaling remains unclear. To investigate intracellular Ca(2+) dynamics under Bmal1 perturbations, we cotransfected some SCN neurons with yellow cameleon together with wild-type or dominant-negative Bmal1 using a gene-gun applied for mouse organotypic cultures. Immunofluorescence staining for a tag protein linked to BMAL1 showed nuclear expression of wild-type BMAL1 and its degradation within 1 week after transfection in SCN neurons. However, dominant-negative BMAL1 did not translocate into the nucleus and the cytosolic signals persisted beyond 1 week. Consistently, circadian Ca(2+) rhythms in SCN neurons were inhibited for longer periods by dominant-negative Bmal1 overexpression. Furthermore, SCN neurons transfected with a Bmal1 shRNA lengthened, whereas those overexpressing wild-type Bmal1 shortened, the periods of Ca(2+) rhythms, with a significant reduction in their amplitude. BMAL1 expression was intact in the majority of neighboring neurons in organotypic cultures. Therefore, we conclude that proper intrinsic Bmal1 expression, but not passive signaling via cell-to-cell interactions, is the determinant of circadian Ca(2+) rhythms in SCN neurons. Copyright © 2014 the authors 0270-6474/14/3412029-10$15.00/0.

  20. Ischemic stroke destabilizes circadian rhythms

    Directory of Open Access Journals (Sweden)

    Borjigin Jimo

    2008-10-01

    Full Text Available Abstract Background The central circadian pacemaker is a remarkably robust regulator of daily rhythmic variations of cardiovascular, endocrine, and neural physiology. Environmental lighting conditions are powerful modulators of circadian rhythms, but regulation of circadian rhythms by disease states is less clear. Here, we examine the effect of ischemic stroke on circadian rhythms in rats using high-resolution pineal microdialysis. Methods Rats were housed in LD 12:12 h conditions and monitored by pineal microdialysis to determine baseline melatonin timing profiles. After demonstration that the circadian expression of melatonin was at steady state, rats were subjected to experimental stroke using two-hour intralumenal filament occlusion of the middle cerebral artery. The animals were returned to their cages, and melatonin monitoring was resumed. The timing of onset, offset, and duration of melatonin secretion were calculated before and after stroke to determine changes in circadian rhythms of melatonin secretion. At the end of the monitoring period, brains were analyzed to determine infarct volume. Results Rats demonstrated immediate shifts in melatonin timing after stroke. We observed a broad range of perturbations in melatonin timing in subsequent days, with rats exhibiting onset/offset patterns which included: advance/advance, advance/delay, delay/advance, and delay/delay. Melatonin rhythms displayed prolonged instability several days after stroke, with a majority of rats showing a day-to-day alternation between advance and delay in melatonin onset and duration. Duration of melatonin secretion changed in response to stroke, and this change was strongly determined by the shift in melatonin onset time. There was no correlation between infarct size and the direction or amplitude of melatonin phase shifting. Conclusion This is the first demonstration that stroke induces immediate changes in the timing of pineal melatonin secretion, indicating

  1. Distraction lengthening by callotasis of traumatically shortened bones of the hand.

    Science.gov (United States)

    Hosny, Gamal Ahmad; Kandel, Wael Abdelaziz

    2012-06-01

    Callotasis of the hand has several advantages: it is less invasive than other techniques as bone grafting is unnecessary, gradual distraction is possible, joint mobilization can be performed during treatment, and sensation is maintained. Disadvantages include longer period of treatment and perhaps the need for complicated and bulky instrumentation. We reported results of the lengthening of eight traumatically shortened metacarpals or phalanges (in six patients). There were two men and four women, with a mean age of 17.5 years. There were one thumb and seven fingers. There were three proximal phalanges and five metacarpals. Unilateral external fixator was applied to all cases. Osteotomy was performed at the proximal metaphysis in three cases, middle diaphysis in two cases, and the distal metaphysis in three cases. Lengthening was begun after 10 days to 14 days at a rate of 0.25 mm two times or three times daily. We modified the rate of distraction according to the development of pain, sensory disturbance, and contracture of the digit during lengthening. In former cases, the rate was 0.25 mm three times daily. The proposed length was achieved in all digits and no bone graft was required. The mean length increase was 18.9 mm (53.5% of the original length of 35.25 mm). Age was positively correlated with the healing index and consolidation time as younger patients healed faster than older patients. Conversely, the faster the distraction rate, the slower were the healing index and consolidation time. There were few complications which did not affect the final results. We preferred metacarpal lengthening in cases with very short proximal phalangeal traumatic amputation stump (<1 cm). Distraction lengthening is a valid option with minor complications rate. Therapeutic study, level V. Copyright © 2012 by Lippincott Williams & Wilkins.

  2. Identification of circadian clock modulators from existing drugs.

    Science.gov (United States)

    Tamai, T Katherine; Nakane, Yusuke; Ota, Wataru; Kobayashi, Akane; Ishiguro, Masateru; Kadofusa, Naoya; Ikegami, Keisuke; Yagita, Kazuhiro; Shigeyoshi, Yasufumi; Sudo, Masaki; Nishiwaki-Ohkawa, Taeko; Sato, Ayato; Yoshimura, Takashi

    2018-04-17

    Chronic circadian disruption due to shift work or frequent travel across time zones leads to jet-lag and an increased risk of diabetes, cardiovascular disease, and cancer. The development of new pharmaceuticals to treat circadian disorders, however, is costly and hugely time-consuming. We therefore performed a high-throughput chemical screen of existing drugs for circadian clock modulators in human U2OS cells, with the aim of repurposing known bioactive compounds. Approximately 5% of the drugs screened altered circadian period, including the period-shortening compound dehydroepiandrosterone (DHEA; also known as prasterone). DHEA is one of the most abundant circulating steroid hormones in humans and is available as a dietary supplement in the USA Dietary administration of DHEA to mice shortened free-running circadian period and accelerated re-entrainment to advanced light-dark (LD) cycles, thereby reducing jet-lag. Our drug screen also revealed the involvement of tyrosine kinases, ABL1 and ABL2, and the BCR serine/threonine kinase in regulating circadian period. Thus, drug repurposing is a useful approach to identify new circadian clock modulators and potential therapies for circadian disorders. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  3. Bidirectional Interactions between Circadian Entrainment and Cognitive Performance

    Science.gov (United States)

    Gritton, Howard J.; Kantorowski, Ana; Sarter, Martin; Lee, Theresa M.

    2012-01-01

    Circadian rhythms influence a variety of physiological and behavioral processes; however, little is known about how circadian rhythms interact with the organisms' ability to acquire and retain information about their environment. These experiments tested whether rats trained outside their endogenous active period demonstrate the same rate of…

  4. Circadian Rhythm Sleep Disorders

    Directory of Open Access Journals (Sweden)

    Erhan Akinci

    2016-06-01

    Full Text Available The circadian rhythm sleep disorders define the clinical conditions where sleep and ndash;wake rhythm is disrupted despite optimum environmental and social conditions. They occur as a result of the changes in endogenous circadian hours or non-compatibility of environmental factors or social life with endogenous circadian rhythm. The sleep and ndash;wake rhythm is disrupted continuously or in repeating phases depending on lack of balance between internal and external cycles. This condition leads to functional impairments which cause insomnia, excessive sleepiness or both in people. Application of detailed sleep anamnesis and sleep diary with actigraphy record, if possible, will be sufficient for diagnosis. The treatment aims to align endogenous circadian rhythm with environmental conditions. The purpose of this article is to review pathology, clinical characteristics, diagnosis and treatment of circadian rhythm disorder. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(2: 178-189

  5. Surgical crown lengthening: a periodontal and restorative interdisciplinary approach.

    Science.gov (United States)

    Parwani, Simran R; Parwani, Rajkumar N

    2014-01-01

    Surgical crown lengthening helps to provide an adequate retention form for proper tooth preparation, thus enabling dentists to create esthetically pleasing and healthy restorations. Long-term stability requires accurate diagnosis and development of a comprehensive treatment plan in each case. This sequence of events stresses the importance of communication between the restorative dentist and the periodontist. This article presents 2 cases that involve surgical crown lengthening (including mucoperiosteal flap and ostectomy) for the restoration of teeth.

  6. Compensatory lengthening and structure preservation revisited yet again

    OpenAIRE

    Kavitskaya, Darya

    2017-01-01

    In their seminal paper, deChene (1979) make a strong claim that pre-existing vowel length contrast is a necessary condition for the phonologization of vowel length through compensatory lengthening. Compensatory lengthening is thus predicted to be always a structure-preserving change. Since that time, the claim has been challenged in numerous works (Gess 1998, Hock1986, Morin 1992), among others). A closer examination of the cited counterexamples to de Chene and Anderson's claim reveals certa...

  7. Mechanical lengthening in multiple intestinal segments in-series.

    Science.gov (United States)

    Scott, Andrew; Rouch, Joshua D; Huynh, Nhan; Chiang, Elvin; Shekherdimian, Shant; Lee, Steven L; Wu, Benjamin M; Dunn, James C Y

    2016-06-01

    Current models of mechanical intestinal lengthening employ a single device in an isolated segment. Here we demonstrate that polycaprolactone (PCL) springs can be deployed in-series to lengthen multiple intestinal segments simultaneously to further increase overall intestinal length. A Roux-en-y jejunojejunostomy with a blind Roux limb was created in the proximal jejunum of rats. Two encapsulated 10-mm PCL springs were placed in-series into the Roux limb and were secured with clips. After 4weeks, the lengthened segments were retrieved for histological analyses. Lengthening two intestinal segments simultaneously was achieved by placing two PCL springs in-series. The total combined length of the lengthened segments in-series was 45±4mm. The two jejunal segments with PCL springs (25±2 and 20±2mm) were significantly longer than control segments without the spring (14±1mm, p<0.05). Spring-mediated lengthening can be achieved using multiple springs placed sequentially. The use of the Roux-en-y surgical model allowed easy insertion of springs in a blind Roux limb and arrange them in-series. Combined with relengthening techniques, we can use these methods to increase the length of small intestine to reach clinical significance. 1 Experimental. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Endotoxin Disrupts Circadian Rhythms in Macrophages via Reactive Oxygen Species.

    Directory of Open Access Journals (Sweden)

    Yusi Wang

    Full Text Available The circadian clock is a transcriptional network that functions to regulate the expression of genes important in the anticipation of changes in cellular and organ function. Recent studies have revealed that the recognition of pathogens and subsequent initiation of inflammatory responses are strongly regulated by a macrophage-intrinsic circadian clock. We hypothesized that the circadian pattern of gene expression might be influenced by inflammatory stimuli and that loss of circadian function in immune cells can promote pro-inflammatory behavior. To investigate circadian rhythms in inflammatory cells, peritoneal macrophages were isolated from mPer2luciferase transgenic mice and circadian oscillations were studied in response to stimuli. Using Cosinor analysis, we found that LPS significantly altered the circadian period in peritoneal macrophages from mPer2luciferase mice while qPCR data suggested that the pattern of expression of the core circadian gene (Bmal1 was disrupted. Inhibition of TLR4 offered protection from the LPS-induced impairment in rhythm, suggesting a role for toll-like receptor signaling. To explore the mechanisms involved, we inhibited LPS-stimulated NO and superoxide. Inhibition of NO synthesis with L-NAME had no effect on circadian rhythms. In contrast, inhibition of superoxide with Tempol or PEG-SOD ameliorated the LPS-induced changes in circadian periodicity. In gain of function experiments, we found that overexpression of NOX5, a source of ROS, could significantly disrupt circadian function in a circadian reporter cell line (U2OS whereas iNOS overexpression, a source of NO, was ineffective. To assess whether alteration of circadian rhythms influences macrophage function, peritoneal macrophages were isolated from Bmal1-KO and Per-TKO mice. Compared to WT macrophages, macrophages from circadian knockout mice exhibited altered balance between NO and ROS release, increased uptake of oxLDL and increased adhesion and migration

  9. Neuroendocrine underpinnings of sex differences in circadian timing systems.

    Science.gov (United States)

    Yan, Lily; Silver, Rae

    2016-06-01

    There are compelling reasons to study the role of steroids and sex differences in the circadian timing system. A solid history of research demonstrates the ubiquity of circadian changes that impact virtually all behavioral and biological responses. Furthermore, steroid hormones can modulate every attribute of circadian responses including the period, amplitude and phase. Finally, desynchronization of circadian rhythmicity, and either enhancing or damping amplitude of various circadian responses can produce different effects in the sexes. Studies of the neuroendocrine underpinnings of circadian timing systems and underlying sex differences have paralleled the overall development of the field as a whole. Early experimental studies established the ubiquity of circadian rhythms by cataloging daily and seasonal changes in whole organism responses. The next generation of experiments demonstrated that daily changes are not a result of environmental synchronizing cues, and are internally orchestrated, and that these differ in the sexes. This work was followed by the revelation of molecular circadian rhythms within individual cells. At present, there is a proliferation of work on the consequences of these daily oscillations in health and in disease, and awareness that these may differ in the sexes. In the present discourse we describe the paradigms used to examine circadian oscillation, to characterize how these internal timing signals are synchronized to local environmental conditions, and how hormones of gonadal and/or adrenal origin modulate circadian responses. Evidence pointing to endocrinologically and genetically mediated sex differences in circadian timing systems can be seen at many levels of the neuroendocrine and endocrine systems, from the cell, the gland and organ, and to whole animal behavior, including sleep/wake or rest/activity cycles, responses to external stimuli, and responses to drugs. We review evidence indicating that the analysis of the circadian

  10. [Long-term treatment outcome and influencing factors of teeth receiving modified crown lengthening].

    Science.gov (United States)

    Wang, C; Jia, X T; Hu, W J; Zhen, M; Zhang, H

    2017-03-09

    Objective: To observe the long-term clinical treatment outcome and the influencing factors of the outcome for the teeth receiving modified crown lengthening surgery combined with root canal treatment and post-core crown restoration. To summarize the clinical guidelines of modified crown lengthening surgery in selection of indications and for mulation of treatment planning. Methods: Fifty-seven patients with a total of 67 teeth receiving modified crown lengthening surgery combined with root canal treatment and post-core crown restoration for at least a 6 months' follow-up period between July 2004 and July 2013 were recruited in this retrospective study by phone call interviews. The patients' clinical outcomes were evaluated by the combination of clinical examination, radiograph and questionnaire regarding patient-reported outcome of the last follow up (≥9 months post modified crown lengthening surgery and ≥6 months after definite crown restorations). All of the treated teeth were classified into two groups, group A (teeth with good clinical treatment outcome) and group B (teeth with poor clinical treatment outcome), based on the defined criteria including patients' satisfaction with the function and esthetics of the teeth and absence of periodontal, endodontic and prosthodontic complications. The potential influencing factors of clinical treatment outcome were also determined by Logistic regression analysis. Results: Vertical root fracture in 1 tooth was found on its periapical film and the tooth was deemed hopeless. Thus, the survival rate is 99% (66/67) for the multidisciplinary treatment approach. Seventy-two percent (48/67) of the teeth achieved good clinical treatment outcome and 28% (19/67) of the teeth developed one or several complications. In group B (teeth with poor clinical treatment), 16 out of teeth exhibited periodontal complications with bleeding on probing (BOP) positive mostly found. Logistic regression analysis demonstrated that plaque control

  11. Circadian rhythm and menopause.

    Science.gov (United States)

    Pines, A

    2016-12-01

    Circadian rhythm is an internal biological clock which initiates and monitors various physiological processes with a fixed time-related schedule. The master circadian pacemaker is located in the suprachiasmatic nucleus in the hypothalamus. The circadian clock undergoes significant changes throughout the life span, at both the physiological and molecular levels. This cyclical physiological process, which is very complex and multifactorial, may be associated with metabolic alterations, atherosclerosis, impaired cognition, mood disturbances and even development of cancer. Sex differences do exist, and the well-known sleep disturbances associated with menopause are a good example. Circadian rhythm was detected in the daily pattern of hot flushes, with a peak in the afternoons. Endogenous secretion of melatonin decreases with aging across genders, and, among women, menopause is associated with a significant reduction of melatonin levels, affecting sleep. Although it might seem that hot flushes and melatonin secretion are likely related, there are not enough data to support such a hypothesis.

  12. Utilization and efficacy of computational gait analysis for hamstring lengthening surgery.

    Science.gov (United States)

    MacWilliams, Bruce A; Stotts, Alan K; Carroll, Kristen L; D'Astous, Jacques L

    2016-09-01

    A retrospective analysis of computational gait studies performed in a single lab over a 12 year period was undertaken to characterize how recommendations to perform or not to perform hamstring lengthenings were utilized by physicians and the effect on outcomes. 131 Subjects were identified as either having hamstring lengthening considered by the referring surgeon, recommended by gait analysis data, or performed. A subset of this data meeting inclusion criteria for pre- and post-surgical timeframes, and bilateral diagnosis was further analyzed to assess the efficacy of the recommendations. There was initial agreement between planned procedures and recommended procedures in just 41% of the cases. Including the cases where there was agreement, gait analysis altered the initial procedure in 54%. In the cases where the initial plan was not supported by gait data, surgeons followed gait recommendations in 77%. In subjects who underwent hamstring lengthening, when surgeons followed or agreed with gait recommendations, patients were 3.6 times more likely to experience a positive outcome. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. CIRCADIAN CLOCK-ASSOCIATED 1 Inhibits Leaf Senescence in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yi Song

    2018-03-01

    Full Text Available Leaf senescence is an integral part of plant development, and the timing and progressing rate of senescence could substantially affect the yield and quality of crops. It has been known that a circadian rhythm synchronized with external environmental cues is critical for the optimal coordination of various physiological and metabolic processes. However, the reciprocal interactions between the circadian clock and leaf senescence in plants remain unknown. Here, through measuring the physiological and molecular senescence related markers of several circadian components mutants, we found that CIRCADIAN CLOCK-ASSOCIATED 1 inhibits leaf senescence. Further molecular and genetic studies revealed that CCA1 directly activates GLK2 and suppresses ORE1 expression to counteract leaf senescence. As plants age, the expression and periodic amplitude of CCA1 declines and thus weakens the inhibition of senescence. Our findings reveal an age-dependent circadian clock component of the process of leaf senescence.

  14. Physiological effects of light on the human circadian pacemaker

    Science.gov (United States)

    Shanahan, T. L.; Czeisler, C. A.

    2000-01-01

    The physiology of the human circadian pacemaker and its influence and on the daily organization of sleep, endocrine and behavioral processes is an emerging interest in science and medicine. Understanding the development, organization and fundamental properties underlying the circadian timing system may provide insight for the application of circadian principles to the practice of clinical medicine, both diagnostically (interpretation of certain clinical tests are dependent on time of day) and therapeutically (certain pharmacological responses vary with the time of day). The light-dark cycle is the most powerful external influence acting upon the human circadian pacemaker. It has been shown that timed exposure to light can both synchronize and reset the phase of the circadian pacemaker in a predictable manner. The emergence of detectable circadian rhythmicity in the neonatal period is under investigation (as described elsewhere in this issue). Therefore, the pattern of light exposure provided in the neonatal intensive care setting has implications. One recent study identified differences in both amount of sleep time and weight gain in infants maintained in a neonatal intensive care environment that controlled the light-dark cycle. Unfortunately, neither circadian phase nor the time of day has been considered in most clinical investigations. Further studies with knowledge of principles characterizing the human circadian timing system, which governs a wide array of physiological processes, are required to integrate these findings with the practice of clinical medicine.

  15. Interaction between stress responses and circadian metabolism in metabolic disease.

    Science.gov (United States)

    Yang, Zhao; Kim, Hyunbae; Ali, Arushana; Zheng, Ze; Zhang, Kezhong

    2017-09-01

    Circadian rhythms play crucial roles in orchestrating diverse physiological processes that are critical for health and disease. Dysregulated circadian rhythms are closely associated with various human metabolic diseases, including type 2 diabetes, cardiovascular disease, and non-alcoholic fatty liver disease. Modern lifestyles are frequently associated with an irregular circadian rhythm, which poses a significant risk to public health. While the central clock has a set periodicity, circadian oscillators in peripheral organs, particularly in the liver, can be entrained by metabolic alterations or stress cues. At the molecular level, the signal transduction pathways that mediate stress responses interact with, and are often integrated with, the key determinants of circadian oscillation, to maintain metabolic homeostasis under physiological or pathological conditions. In the liver, a number of nuclear receptors or transcriptional regulators, which are regulated by metabolites, hormones, the circadian clock, or environmental stressors, serve as direct links between stress responses and circadian metabolism. In this review, we summarize recent advances in the understanding of the interactions between stress responses (the endoplasmic reticulum (ER) stress response, the oxidative stress response, and the inflammatory response) and circadian metabolism, and the role of these interactions in the development of metabolic diseases.

  16. Coordination between Differentially Regulated Circadian Clocks Generates Rhythmic Behavior.

    Science.gov (United States)

    Top, Deniz; Young, Michael W

    2017-09-11

    Specialized groups of neurons in the brain are key mediators of circadian rhythms, receiving daily environmental cues and communicating those signals to other tissues in the organism for entrainment and to organize circadian physiology. In Drosophila , the "circadian clock" is housed in seven neuronal clusters, which are defined by their expression of the main circadian proteins, Period, Timeless, Clock, and Cycle. These clusters are distributed across the fly brain and are thereby subject to the respective environments associated with their anatomical locations. While these core components are universally expressed in all neurons of the circadian network, additional regulatory proteins that act on these components are differentially expressed, giving rise to "local clocks" within the network that nonetheless converge to regulate coherent behavioral rhythms. In this review, we describe the communication between the neurons of the circadian network and the molecular differences within neurons of this network. We focus on differences in protein-expression patterns and discuss how such variation can impart functional differences in each local clock. Finally, we summarize our current understanding of how communication within the circadian network intersects with intracellular biochemical mechanisms to ultimately specify behavioral rhythms. We propose that additional efforts are required to identify regulatory mechanisms within each neuronal cluster to understand the molecular basis of circadian behavior. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  17. The circadian response of intrinsically photosensitive retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Andrew J Zele

    Full Text Available Intrinsically photosensitive retinal ganglion cells (ipRGC signal environmental light level to the central circadian clock and contribute to the pupil light reflex. It is unknown if ipRGC activity is subject to extrinsic (central or intrinsic (retinal network-mediated circadian modulation during light entrainment and phase shifting. Eleven younger persons (18-30 years with no ophthalmological, medical or sleep disorders participated. The activity of the inner (ipRGC and outer retina (cone photoreceptors was assessed hourly using the pupil light reflex during a 24 h period of constant environmental illumination (10 lux. Exogenous circadian cues of activity, sleep, posture, caffeine, ambient temperature, caloric intake and ambient illumination were controlled. Dim-light melatonin onset (DLMO was determined from salivary melatonin assay at hourly intervals, and participant melatonin onset values were set to 14 h to adjust clock time to circadian time. Here we demonstrate in humans that the ipRGC controlled post-illumination pupil response has a circadian rhythm independent of external light cues. This circadian variation precedes melatonin onset and the minimum ipRGC driven pupil response occurs post melatonin onset. Outer retinal photoreceptor contributions to the inner retinal ipRGC driven post-illumination pupil response also show circadian variation whereas direct outer retinal cone inputs to the pupil light reflex do not, indicating that intrinsically photosensitive (melanopsin retinal ganglion cells mediate this circadian variation.

  18. Circadian Rhythms in Cyanobacteria

    Science.gov (United States)

    Golden, Susan S.

    2015-01-01

    SUMMARY Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organisms. Here we introduce the molecular mechanism of the circadian clock in the model cyanobacterium Synechococcus elongatus PCC 7942. We review the current understanding of the cyanobacterial clock, emphasizing recent work that has generated a more comprehensive understanding of how the circadian oscillator becomes synchronized with the external environment and how information from the oscillator is transmitted to generate rhythms of biological activity. These results have changed how we think about the clock, shifting away from a linear model to one in which the clock is viewed as an interactive network of multifunctional components that are integrated into the context of the cell in order to pace and reset the oscillator. We conclude with a discussion of how this basic timekeeping mechanism differs in other cyanobacterial species and how information gleaned from work in cyanobacteria can be translated to understanding rhythmic phenomena in other prokaryotic systems. PMID:26335718

  19. Restoration of self-sustained circadian rhythmicity by the mutant Clock allele in mice in constant illumination

    NARCIS (Netherlands)

    Spoelstra, K; Oklejewicz, M; Daan, S

    2002-01-01

    Mice mutant for the Clock gene display abnormal circadian behavior characterized by long circadian periods and a tendency to become rapidly arrhythmic in constant darkness (DID). To investigate whether this result is contingent on the absence of light, the authors studied the circadian behavior of

  20. [Intestinal lengthening techniques: an experimental model in dogs].

    Science.gov (United States)

    Garibay González, Francisco; Díaz Martínez, Daniel Alberto; Valencia Flores, Alejandro; González Hernández, Miguel Angel

    2005-01-01

    To compare two intestinal lengthening procedures in an experimental dog model. Intestinal lengthening is one of the methods for gastrointestinal reconstruction used for treatment of short bowel syndrome. The modification to the Bianchi's technique is an alternative. The modified technique decreases the number of anastomoses to a single one, thus reducing the risk of leaks and strictures. To our knowledge there is not any clinical or experimental report that studied both techniques, so we realized the present report. Twelve creole dogs were operated with the Bianchi technique for intestinal lengthening (group A) and other 12 creole dogs from the same race and weight were operated by the modified technique (Group B). Both groups were compared in relation to operating time, difficulties in technique, cost, intestinal lengthening and anastomoses diameter. There were no statistical difference in the anastomoses diameter (A = 9.0 mm vs. B = 8.5 mm, p = 0.3846). Operating time (142 min vs. 63 min) cost and technique difficulties were lower in group B (p anastomoses (of Group B) and intestinal segments had good blood supply and were patent along their full length. Bianchi technique and the modified technique offer two good reliable alternatives for the treatment of short bowel syndrome. The modified technique improved operating time, cost and technical issues.

  1. Influence of hamstring lengthening on muscle activation timing during gait

    NARCIS (Netherlands)

    Buurke, Jaap; Hermens, Hermanus J.; Roetenberg, D.; Harlaar, J.; Rosenbaum, D.; Kleissen, R.F.M.

    2004-01-01

    The purpose of this study was to describe the changes in muscle activation patterns using surface electromyography (sEMG) during walking in patients with cerebral palsy (CP), before and after hamstring lengthening. In the current clinical use of sEMG during walking in CP for pre-operative planning,

  2. Function of mechanically lengthened jejunum after restoration into continuity.

    Science.gov (United States)

    Sullins, Veronica F; Wagner, Justin P; Walthers, Christopher M; Chiang, Elvin K; Lee, Steven L; Wu, Benjamin M; Dunn, James C Y

    2014-06-01

    Distraction enterogenesis is a potential treatment for patients with short bowel syndrome. We previously demonstrated successful lengthening of jejunum using a degradable spring device in rats. Absorptive function of the lengthened jejunum after restoration into intestinal continuity needs to be determined. Encapsulated polycaprolactone springs were placed into isolated jejunal segments in rats for four weeks. Lengthened segments of jejunum were subsequently restored into intestinal continuity. Absorption studies were performed by placing a mixture of a non-absorbable substrate and glucose into the lumen of the restored jejunum. Restored jejunal segments demonstrated visible peristalsis at specimen retrieval. Compared to normal jejunal controls, restored segments demonstrated equal water absorption and greater glucose absorption. Restored segments had thicker smooth muscle, increased villus height, increased crypt depth, and decreased sucrase activity compared to normal jejunum. The density of enteric ganglia increased after restoration to near normal levels in the submucosa and to normal levels in the myenteric plexus. Jejunum lengthened with a degradable device demonstrates peristaltic and enzymatic activity as well as glucose and water absorption after restoration into intestinal continuity. Our findings further demonstrate the therapeutic potential of a degradable device. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Chitin Lengthens Power Production in a Sedimentary Microbial Fuel Cell

    Science.gov (United States)

    2014-01-01

    presented at the conference. DNA extraction, PCR-DGGE (denaturant gradient gel electrophoresis ) of 16 S ribosomal RNA gene, band excision and...are able to directly produce electrical energy by bacteria consuming biodegradable compounds in marine sediments. In sediments with low organic...organic carbon sediments demonstrate that chitin enhances and lengthens power production. Keywords—chitin; MFC; microbiology; iron-reducing bacteria

  4. On the JWKB solution of the uniformly lengthening pendulum via ...

    Indian Academy of Sciences (India)

    Common recipe for the lengthening pendulum (LP) involves some change of variables to give a relationship with the Bessel's equation. In this work, conventional semiclassical JWKB solution (named after Jeffreys, Wentzel, Kramers and Brillouin) of the LP is being obtained by first transforming the related Bessel's equation ...

  5. Transcriptional feedback and definition of the circadian pacemaker in Drosophila and animals.

    Science.gov (United States)

    Rosbash, M; Bradley, S; Kadener, S; Li, Y; Luo, W; Menet, J S; Nagoshi, E; Palm, K; Schoer, R; Shang, Y; Tang, C-H A

    2007-01-01

    The modern era of Drosophila circadian rhythms began with the landmark Benzer and Konopka paper and its definition of the period gene. The recombinant DNA revolution then led to the cloning and sequencing of this gene. This work did not result in a coherent view of circadian rhythm biochemistry, but experiments eventually gave rise to a transcription-centric view of circadian rhythm generation. Although these circadian transcription-translation feedback loops are still important, their contribution to core timekeeping is under challenge. Indeed, kinases and posttranslational regulation may be more important, based in part on recent in vitro work from cyanobacteria. In addition, kinase mutants or suspected kinase substrate mutants have unusually large period effects in Drosophila. This chapter discusses our recent experiments, which indicate that circadian transcription does indeed contribute to period determination in this system. We propose that cyanobacteria and animal clocks reflect two independent origins of circadian rhythms.

  6. Modeling the effects of cell cycle M-phase transcriptional inhibition on circadian oscillation.

    Directory of Open Access Journals (Sweden)

    Bin Kang

    2008-03-01

    Full Text Available Circadian clocks are endogenous time-keeping systems that temporally organize biological processes. Gating of cell cycle events by a circadian clock is a universal observation that is currently considered a mechanism serving to protect DNA from diurnal exposure to ultraviolet radiation or other mutagens. In this study, we put forward another possibility: that such gating helps to insulate the circadian clock from perturbations induced by transcriptional inhibition during the M phase of the cell cycle. We introduced a periodic pulse of transcriptional inhibition into a previously published mammalian circadian model and simulated the behavior of the modified model under both constant darkness and light-dark cycle conditions. The simulation results under constant darkness indicated that periodic transcriptional inhibition could entrain/lock the circadian clock just as a light-dark cycle does. At equilibrium states, a transcriptional inhibition pulse of certain periods was always locked close to certain circadian phases where inhibition on Per and Bmal1 mRNA synthesis was most balanced. In a light-dark cycle condition, inhibitions imposed at different parts of a circadian period induced different degrees of perturbation to the circadian clock. When imposed at the middle- or late-night phase, the transcriptional inhibition cycle induced the least perturbations to the circadian clock. The late-night time window of least perturbation overlapped with the experimentally observed time window, where mitosis is most frequent. This supports our hypothesis that the circadian clock gates the cell cycle M phase to certain circadian phases to minimize perturbations induced by the latter. This study reveals the hidden effects of the cell division cycle on the circadian clock and, together with the current picture of genome stability maintenance by circadian gating of cell cycle, provides a more comprehensive understanding of the phenomenon of circading gating of

  7. The clock gene cycle plays an important role in the circadian clock of the cricket Gryllus bimaculatus.

    Science.gov (United States)

    Uryu, Outa; Karpova, Svetlana G; Tomioka, Kenji

    2013-07-01

    To dissect the molecular oscillatory mechanism of the circadian clock in the cricket Gryllus bimaculatus, we have cloned a cDNA of the clock gene cycle (Gb'cyc) and analyzed its structure and function. Gb'cyc contains four functional domains, i.e. bHLH, PAS-A, PAS-B and BCTR domains, and is expressed rhythmically in light dark cycles, peaking at mid night. The RNA interference (RNAi) of Clock (Gb'Clk) and period (Gb'per) reduced the Gb'cyc mRNA levels and abolished the rhythmic expression, suggesting that the rhythmic expression of Gb'cyc is regulated by a mechanism including Gb'Clk and Gb'per. These features are more similar to those of mammalian orthologue of cyc (Bmal1) than those of Drosophila cyc. A single treatment with double-stranded RNA (dsRNA) of Gb'cyc effectively knocked down the Gb'cyc mRNA level and abolished its rhythmic expression. The cyc RNAi failed to disrupt the locomotor rhythm, but lengthened its free-running period in constant darkness (DD). It is thus likely that Gb'cyc is involved in the circadian clock machinery of the cricket. The cyc RNAi crickets showed a rhythmic expression of Gb'per and timeless (Gb'tim) in the optic lobe in DD, explaining the persistence of the locomotor rhythm. Surprisingly, cyc RNAi revealed a rhythmic expression of Gb'Clk in DD which is otherwise rather constitutively expressed in the optic lobe. These facts suggest that the cricket might have a unique clock oscillatory mechanism in which both Gb'cyc and Gb'Clk are rhythmically controlled and that under abundant expression of Gb'cyc the rhythmic expression of Gb'Clk may be concealed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Sensory Conflict Disrupts Activity of the Drosophila Circadian Network

    Directory of Open Access Journals (Sweden)

    Ross E.F. Harper

    2016-11-01

    Full Text Available Periodic changes in light and temperature synchronize the Drosophila circadian clock, but the question of how the fly brain integrates these two input pathways to set circadian time remains unanswered. We explore multisensory cue combination by testing the resilience of the circadian network to conflicting environmental inputs. We show that misaligned light and temperature cycles can lead to dramatic changes in the daily locomotor activities of wild-type flies during and after exposure to sensory conflict. This altered behavior is associated with a drastic reduction in the amplitude of PERIOD (PER oscillations in brain clock neurons and desynchronization between light- and temperature-sensitive neuronal subgroups. The behavioral disruption depends heavily on the phase relationship between light and temperature signals. Our results represent a systematic quantification of multisensory integration in the Drosophila circadian system and lend further support to the view of the clock as a network of coupled oscillatory subunits.

  9. Circadian clock, cell cycle and cancer

    Directory of Open Access Journals (Sweden)

    Cansu Özbayer

    2011-12-01

    Full Text Available There are a few rhythms of our daily lives that we are under the influence. One of them is characterized by predictable changes over a 24-hour timescale called circadian clock. This cellular clock is coordinated by the suprachiasmatic nucleus in the anterior hypothalamus. The clock consist of an autoregulatory transcription-translation feedback loop compose of four genes/proteins; BMAL1, Clock, Cyrptochrome, and Period. BMAL 1 and Clock are transcriptional factors and Period and Cyrptochrome are their targets. Period and Cyrptochrome dimerize in the cytoplasm to enter the nucleus where they inhibit Clock/BMAL activity.It has been demonstrate that circadian clock plays an important role cellular proliferation, DNA damage and repair mechanisms, checkpoints, apoptosis and cancer.

  10. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis.

    Directory of Open Access Journals (Sweden)

    Alexander M Zöllner

    Full Text Available Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09[Formula: see text]m to 3.51[Formula: see text]m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance

  11. Biological Clocks & Circadian Rhythms

    Science.gov (United States)

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  12. CIRCADIAN RHYTMICITY AND DEPRESSION

    Directory of Open Access Journals (Sweden)

    Peter Pregelj

    2008-11-01

    There is a grooving evidence that dysfunction in circadian rhythm regulation andmelatonergic system function is involved in depression pathogenesis. It is known thatclinically used antidepressants have influence on melatonergic system, probably throughchanged ratio between melatonergic type 1 and 2 receptors. With the clinical use of newcompounds like agomelatine that directly regulates melatonergic system new opportunities in depression treatment emerged

  13. Circadian Patterns in Twitter

    NARCIS (Netherlands)

    ten Thij, M.C.; Kampstra, P.; Bhulai, S.; Laux, F.; Pardalos, P.M.; Crolotte, A.

    2014-01-01

    In this paper, we study activity on the microblogging platform Twitter. We analyse two separate aspects of activity on Twitter. First, we analyse the daily and weekly number of posts, through which we find clear circadian (daily) patterns emerging in the use of Twitter for multiple languages. We see

  14. Metabolic rate changes proportionally to circadian frequency in tau mutant Syrian hamsters

    NARCIS (Netherlands)

    Oklejewicz, M; Hut, RA; Daan, S; Loudon, ASI; Stirland, AJ; Loudon, Andrew S.I.; Stirland, Anne J.

    1997-01-01

    The tau mutation in Syrian hamsters (Mesocricetus auratus) is phenotypically expressed in a period of the circadian rhythm of about 20 h in homozygotes (SS) and about 22 h in heterozygotes (S+). The authors investigate whether this well-defined model for variation in circadian period exhibits

  15. Proximal hamstring lengthening in the sitting cerebral palsy patient.

    Science.gov (United States)

    Elmer, E B; Wenger, D R; Mubarak, S J; Sutherland, D H

    1992-01-01

    We retrospectively studied 62 nonambulatory children with spastic quadriplegic cerebral palsy who underwent proximal hamstring lengthening to improve hip and spine positioning. Preoperatively, all had hamstring contracture, with difficulty sitting due to hip extensor thrust and increased kyphosis. Thirty-five patients with follow-up greater than or equal to 2 years were studied using a modified Reimer scale to assess sitting ability. Sitting ability improved significantly (p less than 0.01) postoperatively, along with popliteal angle (p less than 0.001) and straight leg raising (p less than 0.001). Proximal hamstring lengthening is effective in treating severe hamstring contractures in the wheelchair-bound child with cerebral palsy.

  16. Radiographic imaging for Ilizarov limb lengthening in children

    International Nuclear Information System (INIS)

    Blane, C.E.; DiPietro, M.A.; Herzenberg, J.E.

    1991-01-01

    The Ilizarov method for limb lengthening is rapidly gaining popularity in North America. Use of this new technique has necessitated modifications in radiographic protocol. Initial imaging problems gained from our experience with twenty children are detailed including accurate centering for the plain films, correcting for magnification to accurately measure the distraction gap and the expected radiographic appearance of the regenerate bone. Ultrasonography has potential value in accurately measuring the distraction gap and in imaging the new bone prior to radiographic appearance. Since overly fast distraction inhibits bone formation and overly slow distraction leads to premature consolidation, ultrasound may serve a useful role in the qualitative evaluation of new bone formation in Ilizarov limb lengthening, enabling the orthopedic surgeon to tailor the distraction rate to the particular child. (orig.)

  17. Clubfoot posteromedial release: advantages of tibialis anterior tendon lengthening.

    Science.gov (United States)

    Wicart, Philippe R; Barthes, Xavier; Ghanem, Ismat; Seringe, Raphaël

    2002-01-01

    The aim of this study is to evaluate the eventual advantages of tibialis anterior (TA) tendon lengthening during clubfoot posteromedial release. A continuous series of 60 idiopathic clubfeet has been retrospectively studied. Tibialis anterior lengthening (TAL) began to be performed in 1984. Two groups of 30 feet have been distinguished: without TAL (before 1984) and with TAL (after 1984). There was no significant difference between the 2 groups concerning mean age at surgery, preoperative clinical and radiologic data. Mean postoperative follow-up was 10 years and minimal follow-up required was 5 years. TAL decreased Triceps surae relative insufficiency and improved monopodal jump. TAL balanced TA and peroneus longus, decreased dynamic supination and balanced forefoot pronation and supination. The feet without TAL presented lack of anteromedial support (20% without TAL, 0% with TAL) and medial arch cavus with dorsal talo-navicular subluxation (20% without TAL, 3,3% with TAL). TAL decreased the rate of recurrence and surgical revision.

  18. Genetics and Neurobiology of Circadian Clocks in Mammals

    Science.gov (United States)

    Park, Junghea; Lee, Choogon; Takahashi, Joseph S.

    2013-01-01

    In animals circadian behavior can be analyzed as an integrated system - beginning with genes leading ultimately to behavioral outputs. In the last decade, the molecular mechanism of circadian clocks has been unraveled primarily by the use of phenotype-driven (forward) genetic analysis in a number of model systems. Circadian oscillations are generated by a set of genes forming a transcriptional autoregulatory feedback loop. In mammals, there is a “core” set of circadian genes that form the primary negative feedback loop of the clock mechanism (Clock/Npas2, Bmal1, Per1, Per2, Cry1, Cry2 and CK1ε). Another dozen candidate genes have been identified and play additional roles in the circadian gene network such as the feedback loop involving Rev-erbα. Despite this remarkable progress, it is clear that a significant number of genes that strongly influence and regulate circadian rhythms in mammals remain to be discovered and identified. As part of a large-scale N-ethyl-N-nitrosourea (ENU) mutagenesis screen using a wide range of nervous system and behavioral phenotypes, we have identified a number of new circadian mutants in mice. Here we describe a new short period circadian mutant, part-time (prtm), which is caused by a loss-of-function mutation in the Cryptochrome1 gene. We also describe a long period circadian mutant named Overtime (Ovtm). Positional cloning and genetic complementation reveal that Ovtm is encoded by the F-box protein FBXL3 a component of the SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligase complex. The Ovtm mutation causes an isoleucine to threonine (I364T) substitution leading to a loss-of-function in FBXL3 which interacts specifically with the CRYPTOCHROME (CRY) proteins. In Ovtm mice, expression of the PERIOD proteins PER1 and PER2 is reduced; however, the CRY proteins CRY1 and CRY2 are unchanged. The loss of FBXL3 function leads to a stabilization of the CRY proteins, which in turn leads to a global transcriptional repression of the Per and

  19. Calcaneal lengthening for planovalgus deformity in children with cerebral palsy.

    Science.gov (United States)

    Ettl, Volker; Wollmerstedt, Nicole; Kirschner, Stephan; Morrison, Robert; Pasold, Eva; Raab, Peter

    2009-05-01

    In children with cerebral palsy, planovalgus deformity of the foot is common. The aim of this study was to evaluate the outcome of calcaneal lengthening for the treatment of planovalgus foot deformity in children with cerebral palsy. We reviewed 19 children (28 feet) treated between 1996 and 2004 in our institution. There were 14 ambulating (19 feet) and 5 nonambulating children (9 feet). The average age of the children at time of surgery was 8.6 years. Followup averaged 4.3 years. We found satisfactory results in 75% of the feet clinically and in 79% radiologically according to Mosca's criteria. We saw no overcorrection but a relapse of the deformity in seven cases. There were six unsatisfactory radiological results, two (out of 19) in the ambulating and four (out of nine) in the nonambulating group. Ambulating children had a significantly better clinical and radiological outcome than nonambulating children (p = 0.042). A significant correlation was found between Ankle-hindfoot Score and clinical result according to Mosca's criteria (p = 0.001). In ambulatory children with cerebral palsy calcaneal lengthening is an effective procedure for the correction of mild to moderate planovalgus foot deformities. In nonambulatory children with severe plano-valgus deformities of the foot, calcaneal lengthening cannot be recommended because of the high relapse rate in these patients.

  20. Bunch lengthening in the SLC [Stanford Linear Collider] damping rings

    International Nuclear Information System (INIS)

    Bane, K.L.F.

    1990-02-01

    A high level of current dependent bunch lengthening has been observed on the North damping ring of the Stanford Linear Collider (SLC). At currents of 3 x 10 10 this behavior does not appear to degrade the machine's performance significantly. However, at the higher currents that are envisioned for the future one fears that its performance could be greatly degraded due to the phenomenon of bunch lengthening. This was the motivation for the work described in this paper. In this paper we calculate the longitudinal impedance of the damping ring vacuum chamber. More specifically, in this paper we find the response function of the ring to a short Gaussian bunch, which we call the Green function wake. In addition, we try to estimate the relative importance of the different vacuum chamber objects, in order to see how we might reduce the ring impedance. This paper also describes bunch length measurements performed on the North damping ring. We use the Green function wake, discussed above, to compute the bunch lengthening. Then we compare these results with those obtained from the measurements. In addition, we calculate the current dependence of the tune distribution

  1. Natural selection against a circadian clock gene mutation in mice.

    Science.gov (United States)

    Spoelstra, Kamiel; Wikelski, Martin; Daan, Serge; Loudon, Andrew S I; Hau, Michaela

    2016-01-19

    Circadian rhythms with an endogenous period close to or equal to the natural light-dark cycle are considered evolutionarily adaptive ("circadian resonance hypothesis"). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural conditions for any eukaryotic organism. We tested this hypothesis in mice bearing a short-period mutation in the enzyme casein kinase 1ε (tau mutation), which accelerates free-running circadian cycles. We compared daily activity (feeding) rhythms, survivorship, and reproduction in six replicate populations in outdoor experimental enclosures, established with wild-type, heterozygous, and homozygous mice in a Mendelian ratio. In the release cohort, survival was reduced in the homozygote mutant mice, revealing strong selection against short-period genotypes. Over the course of 14 mo, the relative frequency of the tau allele dropped from initial parity to 20%. Adult survival and recruitment of juveniles into the population contributed approximately equally to the selection for wild-type alleles. The expression of activity during daytime varied throughout the experiment and was significantly increased by the tau mutation. The strong selection against the short-period tau allele observed here contrasts with earlier studies showing absence of selection against a Period 2 (Per2) mutation, which disrupts internal clock function, but does not change period length. These findings are consistent with, and predicted by the theory that resonance of the circadian system plays an important role in individual fitness.

  2. Organization of Circadian Behavior Relies on Glycinergic Transmission

    Directory of Open Access Journals (Sweden)

    Lia Frenkel

    2017-04-01

    Full Text Available The small ventral lateral neurons (sLNvs constitute a central circadian pacemaker in the Drosophila brain. They organize daily locomotor activity, partly through the release of the neuropeptide pigment-dispersing factor (PDF, coordinating the action of the remaining clusters required for network synchronization. Despite extensive efforts, the basic principles underlying communication among circadian clusters remain obscure. We identified classical neurotransmitters released by sLNvs through disruption of specific transporters. Adult-specific RNAi-mediated downregulation of the glycine transporter or impairment of glycine synthesis in LNv neurons increased period length by nearly an hour without affecting rhythmicity of locomotor activity. Electrophysiological recordings showed that glycine reduces spiking frequency in circadian neurons. Interestingly, downregulation of glycine receptor subunits in specific sLNv targets impaired rhythmicity, revealing involvement of glycine in information processing within the network. These data identify glycinergic inhibition of specific targets as a cue that contributes to the synchronization of the circadian network.

  3. Melatonin in circadian sleep disorders in the blind.

    Science.gov (United States)

    Skene, D J; Lockley, S W; Arendt, J

    1999-01-01

    Assessment of sleep patterns in blind people demonstrates a high prevalence of sleep disorders. Our studies have shown that subjects with no conscious light perception (NPL) have a higher occurrence and more severe sleep disorders than those with some degree of light perception (LP). A detailed study of 49 blind individuals showed that those with NPL are likely to have free-running (FR) circadian rhythms (aMT6s, cortisol) including sleep. Non-24-hour (or FR) sleep-wake disorder, characterised by periods of good and bad sleep is a condition that may benefit from melatonin treatment. Melatonin has been administered to NPL subjects with FR circadian rhythms and compared with placebo (or the no-treatment baseline) sleep parameters improved. The results suggest that prior knowledge of the subject's type of circadian rhythm, and timing of treatment in relation to the individual's circadian phase, may improve the efficacy of melatonin.

  4. Thermoregulation is impaired in an environment without circadian time cues

    Science.gov (United States)

    Fuller, C. A.; Sulzman, F. M.; Moore-Ede, M. C.

    1978-01-01

    Thirteen adult male squirrel monkeys were restrained to a metabolism chair for periods of two or more weeks within an isolation chamber having controlled environmental lighting and ambient temperature. The monkeys were subjected to mild 6-hour cold exposures at all circadian phases of the day. It was found that a prominent circadian rhythm in body temperature, regulated against mild cold exposure, was present in those monkeys synchronized in a 24-hour light-dark cycle. Cold exposures were found to produce decreased core body temperatures when the circadian rhythms were free running or when environmental time indicators were not present. It is concluded that the thermoregulating system depends on the internal synchronization of the circadian time-keeping system.

  5. Circadian adaptations to meal timing: Neuroendocrine mechanisms

    Directory of Open Access Journals (Sweden)

    Danica F Patton

    2013-10-01

    Full Text Available Circadian rhythms of behavior and physiology are generated by central and peripheral circadian oscillators entrained by periodic environmental or physiological stimuli. A master circadian pacemaker in the hypothalamic suprachiasmatic nucleus is directly entrained by daily light-dark cycles, and coordinates the timing of other oscillators by direct and indirect neural, hormonal and behavioral outputs. The daily rhythm of food intake provides stimuli that entrain most peripheral and central oscillators, some of which can drive a daily rhythm of food anticipatory activity if food is restricted to one daily mealtime. The location of food-entrainable oscillators (FEOs that drive food anticipatory rhythms, and the food-related stimuli that entrain these oscillators, remain to be clarified. Here, we critically examine the role of peripheral metabolic hormones as potential internal entrainment stimuli or outputs for FEOs controlling food anticipatory rhythms in rats and mice. Hormones for which data are available include corticosterone, ghrelin, leptin, insulin, glucagon, and glucagon-like peptide 1. All of these hormones exhibit daily rhythms of synthesis and secretion that are synchronized by meal timing. There is some evidence that ghrelin and leptin modulate the expression of food anticipatory rhythms, but none of the hormones examined so far are necessary for entrainment. Ghrelin and leptin likely modulate food-entrained rhythms by actions in hypothalamic circuits utilizing melanocortin and orexin signaling, although again food-entrained behavioral rhythms can persist in lesion and gene knockout models in which these systems are disabled. Actions of these hormones on circadian oscillators in central reward circuits remain to be evaluated. Food-entrained activity rhythms are likely mediated by a distributed system of circadian oscillators sensitive to multiple feeding related inputs. Metabolic hormones appear to play a modulatory role within this

  6. Circadian adaptations to meal timing: neuroendocrine mechanisms.

    Science.gov (United States)

    Patton, Danica F; Mistlberger, Ralph E

    2013-10-14

    Circadian rhythms of behavior and physiology are generated by central and peripheral circadian oscillators entrained by periodic environmental or physiological stimuli. A master circadian pacemaker in the hypothalamic suprachiasmatic nucleus (SCN) is directly entrained by daily light-dark (LD) cycles, and coordinates the timing of other oscillators by direct and indirect neural, hormonal and behavioral outputs. The daily rhythm of food intake provides stimuli that entrain most peripheral and central oscillators, some of which can drive a daily rhythm of food anticipatory activity if food is restricted to one daily mealtime. The location of food-entrainable oscillators (FEOs) that drive food anticipatory rhythms, and the food-related stimuli that entrain these oscillators, remain to be clarified. Here, we critically examine the role of peripheral metabolic hormones as potential internal entrainment stimuli or outputs for FEOs controlling food anticipatory rhythms in rats and mice. Hormones for which data are available include corticosterone, ghrelin, leptin, insulin, glucagon, and glucagon-like peptide 1. All of these hormones exhibit daily rhythms of synthesis and secretion that are synchronized by meal timing. There is some evidence that ghrelin and leptin modulate the expression of food anticipatory rhythms, but none of the hormones examined so far are necessary for entrainment. Ghrelin and leptin likely modulate food-entrained rhythms by actions in hypothalamic circuits utilizing melanocortin and orexin signaling, although again food-entrained behavioral rhythms can persist in lesion and gene knockout models in which these systems are disabled. Actions of these hormones on circadian oscillators in central reward circuits remain to be evaluated. Food-entrained activity rhythms are likely mediated by a distributed system of circadian oscillators sensitive to multiple feeding related inputs. Metabolic hormones appear to play a modulatory role within this system.

  7. Circadian and infradian rhythms in mood.

    Science.gov (United States)

    Mitsutake, G; Otsuka, K; Cornélissen, G; Herold, M; Günther, R; Dawes, C; Burch, J B; Watson, D; Halberg, F

    2001-01-01

    The aim of this study was to assess any variation in positive, negative and total affect recorded longitudinally; to compare the results with those from prior transverse or hybrid population studies, based on the same or a different method of mood rating; and to test for any association of mood with cardiovascular, hormonal and geophysical variables monitored concomitantly. The study approach was as follows. A clinically healthy 34-year-old man filled out the positive and negative affective scale (PANAS) questionnaire five times a day for 86 days. Systolic (S) and diastolic (D) blood pressure (BP) and heart rate (HR) were also measured automatically at 30-minute intervals with an ambulatory monitor from May 19 to June 29, 2000, while different endpoints of heart rate variability (HRV) were also determined at 5-minute intervals from beat-to-beat electrocardiogram (ECG) monitoring for 42 days between May 3 and June 14, 2000, with only short interruptions while the subject took a shower and changed ECG tapes. Saliva samples were collected at the times of mood ratings for one month for later determination of melatonin and cortisol concentrations. Intervals of 24 hours of the record of each variable displaced in increments of 24 hours were analyzed by chronobiologic serial section at a trial period of 24 hours to assess the circadian characteristics as they changed from one day to another. Estimates of the midline-estimating statistic of rhythm (MESOR) and circadian amplitude and acrophase obtained on consecutive days were correlated among variables to assess any associations. The findings were as follows. Overall, a circadian rhythm was demonstrated for all variables. A positive association was noteworthy between the circadian amplitude of negative affect and the MESOR of both SBP (r= 0.363; P= 0.029) and DBP (r= 0.389; P= 0.019), suggesting that BP is raised in the presence of large swings in negative affect. Needing further validation was a weak association between

  8. Circadian clock and vascular disease.

    OpenAIRE

    Takeda, Norihiko; Maemura, Koji

    2010-01-01

    Cardiovascular functions, including blood pressure and vascular functions, show diurnal oscillation. Circadian variations have been clearly shown in the occurrence of cardiovascular events such as acute myocardial infarction. Circadian rhythm strongly influences human biology and pathology. The identification and characterization of mammalian clock genes revealed that they are expressed almost everywhere throughout the body in a circadian manner. In contrast to the central clock in the suprac...

  9. Circadian regulation of slow waves in human sleep: Topographical aspects.

    Science.gov (United States)

    Lazar, Alpar S; Lazar, Zsolt I; Dijk, Derk-Jan

    2015-08-01

    Slow waves (SWs, 0.5-4Hz) in field potentials during sleep reflect synchronized alternations between bursts of action potentials and periods of membrane hyperpolarization of cortical neurons. SWs decline during sleep and this is thought to be related to a reduction of synaptic strength in cortical networks and to be central to sleep's role in maintaining brain function. A central assumption in current concepts of sleep function is that SWs during sleep, and associated recovery processes, are independent of circadian rhythmicity. We tested this hypothesis by quantifying all SWs from 12 EEG derivations in 34 participants in whom 231 sleep periods were scheduled across the circadian cycle in a 10-day forced-desynchrony protocol which allowed estimation of the separate circadian and sleep-dependent modulation of SWs. Circadian rhythmicity significantly modulated the incidence, amplitude, frequency and the slope of the SWs such that the peaks of the circadian rhythms in these slow-wave parameters were located during the biological day. Topographical analyses demonstrated that the sleep-dependent modulation of SW characteristics was most prominent in frontal brain areas whereas the circadian effect was similar to or greater than the sleep-dependent modulation over the central and posterior brain regions. The data demonstrate that circadian rhythmicity directly modulates characteristics of SWs thought to be related to synaptic plasticity and that this modulation depends on topography. These findings have implications for the understanding of local sleep regulation and conditions such as ageing, depression, and neurodegeneration which are associated with changes in SWs, neural plasticity and circadian rhythmicity. Copyright © 2015. Published by Elsevier Inc.

  10. Circadian dysregulation in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Aleksandar Videnovic

    2017-01-01

    Full Text Available Parkinson's disease (PD is the second most common neurodegenerative disorder that affects over one million individuals in the US alone. PD is characterized by a plethora of motor and non-motor manifestations, resulting from a progressive degeneration of dopaminergic neurons and disbalance of several other neurotransmitters. A growing body of evidence points to significant alterations of the circadian system in PD. This is not surprising given the pivotal role that dopamine plays in circadian regulation as well as the role of circadian influences in dopamine metabolism. In this review we present basic and clinical investigations that examined the function of the circadian system in PD.

  11. Growth of the ulna after repeated bone lengthening in radial longitudinal deficiency.

    Science.gov (United States)

    Yoshida, Kiyoshi; Kawabata, Hidehiko; Wada, Mayuko

    2011-09-01

    Shortening of the ulna is one of the characteristic features of the radial longitudinal deficiency, which could be treated with repeated bone lengthening. The purpose of this study is to assess the changes in growth rate of the ulna after repeated bone lengthening in radial longitudinal deficiency. Five children (3 boys, 2 girls) who underwent twice bone lengthening of the ulna were reviewed. All patients had unilateral Bayne type IV radial longitudinal deficiency and had received centralization of the ulna previously. Ulnar length was measured on radiographs. Percent length against the normal side was used to measure differences between individuals. Ulnar growth rate was calculated as change in length over time. Ulnar length was 57.4% of the normal side on average at first visit to our hospitals. Percent length against the normal side became 88.9% immediately after the first lengthening. Then percent length decreased to 70.1% just before the second lengthening and became 101.7% after the second lengthening. Finally, it decreased to 82.9% at the last follow-up. Annual bone growth rate decreased after the first and second lengthening. Especially after the second lengthening, bone growth remarkably decreased. There were no complications except for pin-site infections at the first lengthening, whereas contracture of the elbow joint and callus fracture occurred at the second lengthening. Our study showed growth retardation occurred after bone lengthening and that the second lengthening resulted in remarkable growth retardation. We recommend delaying the second lengthening until the skeletal growth stops. Our series is small in number and we must investigate the influence of other factors (age, effect of the previous centralization, the amount of length, etc.). Further investigation will be needed to get firm conclusion. Level IV.

  12. AMPK regulates circadian rhythms in a tissue- and isoform-specific manner.

    Directory of Open Access Journals (Sweden)

    Jee-Hyun Um

    2011-03-01

    Full Text Available AMP protein kinase (AMPK plays an important role in food intake and energy metabolism, which are synchronized to the light-dark cycle. In vitro, AMPK affects the circadian rhythm by regulating at least two clock components, CKIα and CRY1, via direct phosphorylation. However, it is not known whether the catalytic activity of AMPK actually regulates circadian rhythm in vivo.THE CATALYTIC SUBUNIT OF AMPK HAS TWO ISOFORMS: α1 and α2. We investigate the circadian rhythm of behavior, physiology and gene expression in AMPKα1-/- and AMPKα2-/- mice. We found that both α1-/- and α2-/- mice are able to maintain a circadian rhythm of activity in dark-dark (DD cycle, but α1-/- mice have a shorter circadian period whereas α2-/- mice showed a tendency toward a slightly longer circadian period. Furthermore, the circadian rhythm of body temperature was dampened in α1-/- mice, but not in α2-/- mice. The circadian pattern of core clock gene expression was severely disrupted in fat in α1-/- mice, but it was severely disrupted in the heart and skeletal muscle of α2-/- mice. Interestingly, other genes that showed circadian pattern of expression were dysreguated in both α1-/- and α2-/- mice. The circadian rhythm of nicotinamide phosphoryl-transferase (NAMPT activity, which converts nicotinamide (NAM to NAD+, is an important regulator of the circadian clock. We found that the NAMPT rhythm was absent in AMPK-deficient tissues and cells.This study demonstrates that the catalytic activity of AMPK regulates circadian rhythm of behavior, energy metabolism and gene expression in isoform- and tissue-specific manners.

  13. Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(-/- mice.

    Directory of Open Access Journals (Sweden)

    Jessica W Tsai

    2009-06-01

    Full Text Available Light influences sleep and alertness either indirectly through a well-characterized circadian pathway or directly through yet poorly understood mechanisms. Melanopsin (Opn4 is a retinal photopigment crucial for conveying nonvisual light information to the brain. Through extensive characterization of sleep and the electrocorticogram (ECoG in melanopsin-deficient (Opn4(-/- mice under various light-dark (LD schedules, we assessed the role of melanopsin in mediating the effects of light on sleep and ECoG activity. In control mice, a light pulse given during the habitual dark period readily induced sleep, whereas a dark pulse given during the habitual light period induced waking with pronounced theta (7-10 Hz and gamma (40-70 Hz activity, the ECoG correlates of alertness. In contrast, light failed to induce sleep in Opn4(-/- mice, and the dark-pulse-induced increase in theta and gamma activity was delayed. A 24-h recording under a LD 1-hratio1-h schedule revealed that the failure to respond to light in Opn4(-/- mice was restricted to the subjective dark period. Light induced c-Fos immunoreactivity in the suprachiasmatic nuclei (SCN and in sleep-active ventrolateral preoptic (VLPO neurons was importantly reduced in Opn4(-/- mice, implicating both sleep-regulatory structures in the melanopsin-mediated effects of light. In addition to these acute light effects, Opn4(-/- mice slept 1 h less during the 12-h light period of a LD 12ratio12 schedule owing to a lengthening of waking bouts. Despite this reduction in sleep time, ECoG delta power, a marker of sleep need, was decreased in Opn4(-/- mice for most of the (subjective dark period. Delta power reached after a 6-h sleep deprivation was similarly reduced in Opn4(-/- mice. In mice, melanopsin's contribution to the direct effects of light on sleep is limited to the dark or active period, suggesting that at this circadian phase, melanopsin compensates for circadian variations in the photo sensitivity of

  14. The circadian variation of premature atrial contractions

    DEFF Research Database (Denmark)

    Larsen, Bjørn Strøier; Kumarathurai, Preman; Nielsen, Olav W

    2016-01-01

    AIMS: The aim of the study was to assess a possible circadian variation of premature atrial contractions (PACs) in a community-based population and to determine if the daily variation could be used to assess a more vulnerable period of PACs in predicting later incidence of atrial fibrillation (AF...... subgroups were studied based on a cut-off point of ≥720 PACs/day termed frequent PACs (n = 66) and not frequent PACs with ... variation in heart rate. After adjusting for relevant risk factors, the risk of AF was equal in all time intervals throughout the day. CONCLUSION: Premature atrial contractions showed a circadian variation in subjects with frequent PACs. No specific time interval of the day was more predictive of AF than...

  15. Central Circadian Control of Female Reproductive Function

    Directory of Open Access Journals (Sweden)

    Brooke H Miller

    2014-01-01

    Full Text Available Over the past two decades, it has become clear just how much of our physiology is under the control of the suprachiasmatic nucleus (SCN and the cell-intrinsic molecular clock that ticks with a periodicity of approximately 24 hours. The SCN prepares our digestive system for meals, our adrenal axis for the stress of waking up in the morning, and the genes expressed in our muscles when we prepare to exercise, Long before molecular studies of genes such as Clock, Bmal1, and the Per homologs were possible, it was obvious that female reproductive function was under strict circadian control at every level of the hypothalamic-pituitary-gonadal (HPG axis, and in the establishment and successful maintenance of pregnancy. This review highlights our current understanding of the role that the SCN plays in regulating female reproductive physiology, with a special emphasis on the advances made possible through the use of circadian mutant mice.

  16. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    Science.gov (United States)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  17. Circadian disorganization alters intestinal microbiota.

    Science.gov (United States)

    Voigt, Robin M; Forsyth, Christopher B; Green, Stefan J; Mutlu, Ece; Engen, Phillip; Vitaterna, Martha H; Turek, Fred W; Keshavarzian, Ali

    2014-01-01

    Intestinal dysbiosis and circadian rhythm disruption are associated with similar diseases including obesity, metabolic syndrome, and inflammatory bowel disease. Despite the overlap, the potential relationship between circadian disorganization and dysbiosis is unknown; thus, in the present study, a model of chronic circadian disruption was used to determine the impact on the intestinal microbiome. Male C57BL/6J mice underwent once weekly phase reversals of the light:dark cycle (i.e., circadian rhythm disrupted mice) to determine the impact of circadian rhythm disruption on the intestinal microbiome and were fed either standard chow or a high-fat, high-sugar diet to determine how diet influences circadian disruption-induced effects on the microbiome. Weekly phase reversals of the light:dark (LD) cycle did not alter the microbiome in mice fed standard chow; however, mice fed a high-fat, high-sugar diet in conjunction with phase shifts in the light:dark cycle had significantly altered microbiota. While it is yet to be established if some of the adverse effects associated with circadian disorganization in humans (e.g., shift workers, travelers moving across time zones, and in individuals with social jet lag) are mediated by dysbiosis, the current study demonstrates that circadian disorganization can impact the intestinal microbiota which may have implications for inflammatory diseases.

  18. Circadian Clocks : Running on Redox

    NARCIS (Netherlands)

    Merrow, Martha; Roenneberg, Till

    2001-01-01

    The circadian clock in all organisms is so intimately linked to light reception that it appears as if evolution has simply wired a timer into the mechanism that processes photic information. Several recent studies have provided new insights into the role of light input pathways in the circadian

  19. The neurobiology of circadian rhythms

    NARCIS (Netherlands)

    Van der Zee, Eddy A.; Boersma, Gretha J.; Hut, Roelof A.

    2009-01-01

    Purpose of review There is growing awareness of the importance of circadian rhythmicity in various research fields. Exciting developments are ongoing in the field of circadian neurobiology linked to sleep, food intake, and memory. With the current knowledge of critical clock genes' (genes found to

  20. Circadian rhythms in microalgae production

    NARCIS (Netherlands)

    Winter, de L.

    2015-01-01

    Abstract Thesis: Circadian rhythms in microalgae production

    Lenneke de Winter

    The sun imposes a daily cycle of light and dark on nearly all organisms. The circadian clock evolved to help organisms program their activities at an appropriate time during this daily

  1. Circadian Rhythm of Osteocalcin in the Maxillomandibular Complex

    Science.gov (United States)

    Gafni, Y.; Ptitsyn, A.A.; Zilberman, Y.; Pelled, G.; Gimble, J.M.; Gazit, D.

    2009-01-01

    The human body displays central circadian rhythms of activity. Recent findings suggest that peripheral tissues, such as bone, possess their own circadian clocks. Studies have shown that osteocalcin protein levels oscillate over a 24-hour period, yet the specific skeletal sites involved and its transcriptional profile remain unknown. The current study aimed to test the hypothesis that peripheral circadian mechanisms regulate transcription driven by the osteocalcin promoter. Transgenic mice harboring the human osteocalcin promoter linked to a luciferase reporter gene were used. Mice of both genders and various ages were analyzed non-invasively at sequential times throughout 24-hour periods. Statistical analyses of luminescent signal intensity of osteogenic activity from multiple skeletal sites indicated a periodicity of ~ 24 hrs. The maxillomandibular complex displayed the most robust oscillatory pattern. These findings have implications for dental treatments in orthodontics and maxillofacial surgery, as well as for the mechanisms underlying bone remodeling in the maxillomandibular complex. PMID:19131316

  2. Free-running circadian rhythms of muscle strength, reaction time, and body temperature in totally blind people

    OpenAIRE

    Squarcini, Camila Fabiana Rossi; Pires, Maria Laura Nogueira [UNESP; Lopes, Cleide; Benedito-silva, Ana AmÉlia; Esteves, Andrea Maculano; Cornelissen-guillaume, Germaine; Matarazzo, Carolina; Garcia, Danilo; Silva, Maria Stella Peccin; Tufik, Sergio; Mello, Marco TÚlio

    2013-01-01

    Light is the major synchronizer of circadian rhythms. In the absence of light, as for totally blind people, some variables, such as body temperature, have an endogenous period that is longer than 24 h and tend to be free running. However, the circadian rhythm of muscle strength and reaction time in totally blind people has not been defined in the literature. The objective of this study was to determine the period of the endogenous circadian rhythm of the isometric and isokinetic contraction s...

  3. Flexible lengthening-shortening arm mechanism for fishery resource management

    Directory of Open Access Journals (Sweden)

    Yoshiki Iwamochi

    2017-12-01

    Full Text Available The goal of this study was to use underwater robots instead of a diver’s observations to monitor and record the condition of an obstructed seabed in a shallow area. It is difficult to investigate marine resources that exist in deep water shaded by rock due to large and/or small rocks on the seabed. To solve these problems, we newly constructed a flexible lengthening-shortening arm with a small camera unit for an underwater robot to assist in the management of fishery resources. In this paper, we describe the concept and configuration of the newly developed arm mechanism using a sliding screw mechanism to overcome obstacles by changing arm posture in a two-dimensional plane, and we demonstrate the experimental results of a path-tracing controller for the rear links. The results were that the maximum deviations between the target path and the tracing path were less than 4.0% of the total width of the arm mechanism. These results suggest that the newly developed path-tracing algorithm is effective for our flexible lengthening-shortening arm mechanism.

  4. Emerging roles for microRNA in the regulation of Drosophila circadian clock.

    Science.gov (United States)

    Xue, Yongbo; Zhang, Yong

    2018-01-16

    The circadian clock, which operates within an approximately 24-h period, is closely linked to the survival and fitness of almost all living organisms. The circadian clock is generated through a negative transcription-translation feedback loop. microRNAs (miRNAs) are small non-coding RNAs comprised of approximately 22 nucleotides that post-transcriptionally regulate target mRNA by either inducing mRNA degradation or inhibiting translation. In recent years, miRNAs have been found to play important roles in the regulation of the circadian clock, especially in Drosophila. In this review, we will use fruit flies as an example, and summarize the progress achieved in the study of miRNA-mediated clock regulation. Three main aspects of the circadian clock, namely, the free-running period, locomotion phase, and circadian amplitude, are discussed in detail in the context of how miRNAs are involved in these regulations. In addition, approaches regarding the discovery of circadian-related miRNAs and their targets are also discussed. Research in the last decade suggests that miRNA-mediated post-transcriptional regulation is crucial to the generation and maintenance of a robust circadian clock in animals. In flies, miRNAs are known to modulate circadian rhythmicity and the free-running period, as well as circadian outputs. Further characterization of miRNAs, especially in the circadian input, will be a vital step toward a more comprehensive understanding of the functions underlying miRNA-control of the circadian clock.

  5. [Distraction Osteogenesis is an Effective Method to Lengthen Digits in Congenital Malformations].

    Science.gov (United States)

    Mann, M; Hülsemann, W; Winkler, F; Habenicht, R

    2016-02-01

    The aim of this study was to investigate the feasible amount of lengthening by distraction osteogenesis in congenital hand deficiencies. A total of 60 patients (1.6-17.8 years) underwent lengthening of 71 bones between 1994 and 2014. Bone lengthening was performed on 46 metacarpals and 25 phalanges. Mostly the first (n=30) and the fifth (n=21) rays were lengthened. Bone lengthening was performed to treat primarily symbrachydactyly (b=32) and amniotic band syndrome (n=10). To analyze the amount of lengthening preoperative radiographs and radiographs taken while removing the external fixator were compared. The charts were reviewed regarding age at surgery, duration of lengthening, duration of bony consolidation, complication, etc. The average of metacarpal distraction was 18.4 mm=73% lengthening with respect to the preoperative length; the average of phalange distraction was 14.0 mm=77% of the preoperative length. In both, metacarpals and phalanges, a lengthening of > 100% of the preoperative bone length was possible. In target length was reached in 89% of the procedures. The average time for consolidation was 6.1 (1-20) days/mm lengthening. The external fixator was in use on average for 140 (50-346) days. After removing of the external fixator an axial K-wire was used to stabilize the callus in 9 procedure, and an iliac bone craft plus axial K-wire in 11 procedures. The rate of complications was 30% (early consolidation, deviation, joint dislocation, pin infection, tendon dislocation). All complications could be treated without with acceptable results. Metacarpal and phalangeal distraction lengthening is an effective but demanding technique for ray reconstruction in congenital malformations of the hand. It is possible to lengthen a bone by more than 100%. Complications are common, but in most cases easy to handle. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Treatment of infected non union tibia: A novel technique - lengthening using limb reconstruction system over intramedullary nail

    Directory of Open Access Journals (Sweden)

    Mahantesh Y Patil

    2013-01-01

    Full Text Available Background: To assess combination of an intramedullary interlocking (IMIL nail with limb reconstruction system (LRS in cases of infected nonunion tibia and to show influence of nail in predicting good outcome. Materials and Methods: From 2009 to 2011, records of 20 patients (17 men and three women aged 18 to 65 years (mean, 38.4 years with infected nonunion of the tibia treated with the LRS over IMIL Nail technique were prospectively reviewed. According to Jain et al., patients were classified into five cases of A1, five cases of type A2, seven cases of type B1, and three cases of type B2. All cases underwent LRS and IMIL. Mean amount of target lengthening was 54.65 mm. The mean follow-up was 14 months. Results: Mean amount of tibia lengthening was 51.70 mm. Leg length equalization was achieved in 19 cases (±5. According to modified scoring by Paley et al., 12 patients had excellent results, three patients had good, four patients had fair outcome, and one patient had poor outcome. Mean distraction index was 0.97. Mean maturation index was 2.43. Mean consolidation index was 3.47. Mean healing index was 1.40. One case had proximal locking screw failure. One case developed pre mature consolidation as distraction was started at delayed period due to non-compliance. Two cases developed decreased dorsi flexion of ankle. Two cases required flap surgeries for cover of bone. One case had pin breakage, which had to be exchanged. One case developed re-infection. Conclusion: The advantages of this technique include complete eradication of infective foci, reduced risk of deformity during lengthening, decrease risk of fractures post external fixator removal and reduction of time required for external fixator use thus decreasing healing index: Number of days of external fixation required per centimetre of lengthening.

  7. Circadian-clock system in mouse liver affected by insulin resistance.

    Science.gov (United States)

    Yang, Shu-Chuan; Tseng, Huey-Lin; Shieh, Kun-Ruey

    2013-07-01

    Circadian rhythms are exhibited in the physiological and behavioral processes of all mammals; they are generated by intracellular levels of circadian oscillators, which are named as a set of circadian-clock genes. These genes compose the transcriptional/translational feedback loops to regulate not only circadian rhythmicity, but also energy metabolism. Previous studies have shown that obesity and diabetes cause the dysregulation of the circadian-clock system, and vice versa. However, some diabetes subjects are lean with insulin resistance and the mechanisms of insulin resistance without obesity are much less well known. Therefore, whether insulin resistance alone is enough to influence the expression of circadian-clock genes is uncertain. This study employs a neonatal streptozotocin (STZ)-treated paradigm in mice to model the molecular and physiological progress of nonobese insulin resistance. A single injection of STZ into 2-d-old male C57BL/6 mice induces nonobese, hyperglycemic and hyperinsulinemic conditions, and the levels of gene expression in the liver by a real-time quantitative polymerase chain reaction are then measured. Although the levels of Bmal1 (brain and muscle Arnt-like protein-1), Per2 (period 2), and Cry1 (cryptochrome 1) mRNA expression in the liver change during the progress of insulin resistance conditions, the gene expression patterns still show circadian rhythmicity. This study suggests that changes in the hepatic circadian-clock gene expression mark an early event in the metabolic disruption associated with insulin resistance. Furthermore, 2 wks of treatment with the thiazolidinedione, pioglitazone, fully resolve the dysfunction in metabolic parameters and the changes in circadian-clock gene expression from early insulin resistance conditions. These results indicate that the circadian-clock system is sensitive to insulin resistance, and that treatment with thiazolidinediones can resolve changes in the circadian-clock system in a timely

  8. Brachymetatarsia of the fourth metatarsal, lengthening scarf osteotomy with bone graft

    Directory of Open Access Journals (Sweden)

    Ankit Desai

    2013-09-01

    Full Text Available A 16-year-old girl presented with left fourth metatarsal shortening causing significant psychological distress. She underwent lengthening scarf osteotomy held with an Omnitech® screw (Biotech International, France with the addition of two 1 cm cancellous cubes (RTI Biologics, United States. A lengthening z-plasty of the extensor tendons and skin were also performed. At 6 weeks the patient was fully weight bearing and at one-year follow up, the patient was satisfied and discharged. A modified technique of lengthening scarf osteotomy is described for congenital brachymatatarsia. This technique allows one stage lengthening through a single incision with graft incorporation by 6 weeks.

  9. Ras-mediated deregulation of the circadian clock in cancer.

    Directory of Open Access Journals (Sweden)

    Angela Relógio

    Full Text Available Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock.

  10. Ras-Mediated Deregulation of the Circadian Clock in Cancer

    Science.gov (United States)

    Relógio, Angela; Thomas, Philippe; Medina-Pérez, Paula; Reischl, Silke; Bervoets, Sander; Gloc, Ewa; Riemer, Pamela; Mang-Fatehi, Shila; Maier, Bert; Schäfer, Reinhold; Leser, Ulf; Herzel, Hanspeter; Kramer, Achim; Sers, Christine

    2014-01-01

    Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock. PMID:24875049

  11. Functional analysis of Casein Kinase 1 in a minimal circadian system.

    Directory of Open Access Journals (Sweden)

    Gerben van Ooijen

    Full Text Available The Earth's rotation has driven the evolution of cellular circadian clocks to facilitate anticipation of the solar cycle. Some evidence for timekeeping mechanism conserved from early unicellular life through to modern organisms was recently identified, but the components of this oscillator are currently unknown. Although very few clock components appear to be shared across higher species, Casein Kinase 1 (CK1 is known to affect timekeeping across metazoans and fungi, but has not previously been implicated in the circadian clock in the plant kingdom. We now show that modulation of CK1 function lengthens circadian rhythms in Ostreococcustauri, a unicellular marine algal species at the base of the green lineage, separated from humans by ~1.5 billion years of evolution. CK1 contributes to timekeeping in a phase-dependent manner, indicating clock-mediated gating of CK1 activity. Label-free proteomic analyses upon overexpression as well as inhibition revealed CK1-responsive phosphorylation events on a set of target proteins, including highly conserved potentially clock-relevant cellular regulator proteins. These results have major implications for our understanding of cellular timekeeping and can inform future studies in any circadian organism.

  12. Lithium and bipolar disorder: Impacts from molecular to behavioural circadian rhythms.

    Science.gov (United States)

    Moreira, Jeverson; Geoffroy, Pierre Alexis

    2016-01-01

    Bipolar disorder (BD) is a severe and common psychiatric disorder. BD pathogenesis, clinical manifestations and relapses are associated with numerous circadian rhythm abnormalities. Lithium (Li) is the first-line treatment in BD, and its therapeutic action has been related to its ability to alter circadian rhythms. We systematically searched the PubMed database until January 2016, aiming to critically examine published studies investigating direct and indirect effects of Li on circadian rhythms. The results, from the 95 retained studies, indicated that Li: acts directly on the molecular clocks; delays the phase of sleep-wakefulness rhythms and the peak elevation of diurnal cycle body temperature; reduces the amplitude and shortens the duration of activity rhythms and lengthens free-running rhythms. Chronic Li treatment stabilizes free-running activity rhythms, by improving day-to-day rhythmicity of the activity, with effects that appear to be dose related. Pharmacogenetics demonstrate several associations of Li's response with circadian genes (NR1D1, GSK3β, CRY1, ARNTL, TIM, PER2). Finally, Li acts on the retinal-hypothalamic pineal pathway, influencing light sensitivity and melatonin secretion. Li is a highly investigated chronobiologic agent, and although its chronobiological effects are not completely understood, it seems highly likely that they constitute an inherent component of its therapeutic action in the treatment of mood disorders.

  13. Circadian clocks, epigenetics, and cancer

    KAUST Repository

    Masri, Selma

    2015-01-01

    The interplay between circadian rhythm and cancer has been suggested for more than a decade based on the observations that shift work and cancer incidence are linked. Accumulating evidence implicates the circadian clock in cancer survival and proliferation pathways. At the molecular level, multiple control mechanisms have been proposed to link circadian transcription and cell-cycle control to tumorigenesis.The circadian gating of the cell cycle and subsequent control of cell proliferation is an area of active investigation. Moreover, the circadian clock is a transcriptional system that is intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape at the level of histone modifications, DNA methylation, and small regulatory RNAs are differentially controlled in cancer cells. This concept raises the possibility that epigenetic control is a common thread linking the clock with cancer, though little scientific evidence is known to date.This review focuses on the link between circadian clock and cancer, and speculates on the possible connections at the epigenetic level that could further link the circadian clock to tumor initiation or progression.

  14. Circadian phase has profound effects on differential expression analysis.

    Directory of Open Access Journals (Sweden)

    Polly Yingshan Hsu

    Full Text Available Circadian rhythms are physiological and behavioral cycles with a period of approximately 24 hours that are generated by an endogenous clock, or oscillator. Found in diverse organisms, they are precisely controlled and provide growth and fitness benefits. Numerous microarray studies examining circadian control of gene expression have reported that a substantial fraction of the genomes of many organisms is clock-controlled. Here we show that a long-period mutant in Arabidopsis, rve8-1, has a global alteration in phase of all clock-controlled genes. After several days in constant environmental conditions, at which point the mutant and control plants have very different circadian phases, we found 1557 genes to be differentially expressed in rve8-1, almost all of which are clock-regulated. However, after adjusting for this phase difference, only a handful show overall expression level differences between rve8-1 and wild type. Thus the apparent differential expression is mainly due to the phase difference between these two genotypes. These findings prompted us to examine the effect of phase on gene expression within a single genotype. Using samples of wild-type plants harvested at thirty-minute intervals, we demonstrated that even this small difference in circadian phase significantly influences the results of differential expression analysis. Our study demonstrates the robust influence of the circadian clock on the transcriptome and provides a cautionary note for all biologists performing genome-level expression analysis.

  15. Nocturia: The circadian voiding disorder

    Directory of Open Access Journals (Sweden)

    Jin Wook Kim

    2016-05-01

    Full Text Available Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology.

  16. Lengthening of the storage life of cooled chicken through radurization

    International Nuclear Information System (INIS)

    Bok, H.E.; Holzapfel, W.H.

    1984-01-01

    Radurization is a particularly suitable method to lengthen the shelf life of chicken carcasses. A study was undertaken to determine the influence of four different dose rates and three storage temperatures, namely 3, 4, 5 and 7 kGy and 2, 4 and 8 degrees Celsius respectively. A total bacteria population of 10 6 per gramme was used as cut-off point for shelf life. Accordingly the untreated samples had a shelf life of 3 days at 4 degrees Celsius in comparison with 13 and 29 days for 3 and 5 kGy respectively. This study showed that low gamma radiation doses is not only an economical preservation method for chicken carcasses, but also destroys typical food pathogens such as Salmonella spp. The method also produces an organoleptic acceptable product

  17. Melorheostosis: complications of a tibial lengthening with the Ilizarov apparatus.

    Science.gov (United States)

    Griffet, J; el Hayek, T; Giboin, P

    1998-06-01

    Melorheostosis is a rare bone dysplasia, exceptionally described in childhood. It has been discovered in a 12-year-old boy who had a hemimelic affection associated with straw-berry skin marks. A 25 mm inequality of length of the lower limbs and a valgus deformation of the ankle resulting in a claudication and gonalgia requiring surgical correction. A reaxation and a progressive lengthening with the Ilizarov apparatus has been performed. Non-consolidation and a secondary bone infection led to the necessity of formation of a soleus flap. Consolidation and healing were finally obtained. In addition to vascular complications to be feared in this disease during surgical treatment, we have to take into consideration the absence of consolidation when the osteotomy is not performed on a safe bone.

  18. Circadian Rhythm Management System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The value of measuring sleep-wake cycles is significantly enhanced by measuring other physiological signals that depend on circadian rhythms (such as heart rate and...

  19. The circadian clock and asthma.

    Science.gov (United States)

    Durrington, Hannah J; Farrow, Stuart N; Loudon, Andrew S; Ray, David W

    2014-01-01

    It is characteristic of asthma that symptoms worsen overnight, particularly in the early hours of the morning. Nocturnal symptoms in asthma are common and are an important indicator for escalation of treatment. An extensive body of research has demonstrated that nocturnal symptoms of cough and dyspnea are accompanied by circadian variations in airway inflammation and physiologic variables, including airflow limitation and airways hyper-responsiveness. The molecular apparatus that underpins circadian variations, controlled by so called 'clock' genes, has recently been characterised. Clock genes control circadian rhythms both centrally, in the suprachiasmatic nucleus of the brain and peripherally, within every organ of the body. Here, we will discuss how clock genes regulate circadian rhythms. We will focus particularly on the peripheral lung clock and the peripheral immune clock and discuss how these might relate to both the pathogenesis and treatment of asthma.

  20. Tibial lengthening for unilateral Crowe type-IV developmental dysplasia of the hip

    Directory of Open Access Journals (Sweden)

    Jun Wan

    2014-01-01

    Conclusions: Tibial lengthening may effectively correct gait and satisfactorily improve body image in young patients with unilateral Crowe type-IV DDH. Mono-lateral external fixator allows for accelerated postoperative rehabilitation and optimal preservation of ankle movements. Lengthening along with intramedullary nails may significantly reduce the external fixation time and the risk of fixator-related complications.

  1. Effects of lengthening contraction on calcium kinetics and skeletal muscle contractility in humans

    DEFF Research Database (Denmark)

    Nielsen, J S; Madsen, K; Jørgensen, L V

    2005-01-01

    We have tested the hypothesis that the altered muscle contractility after lengthening contractions (LC) is caused by altered calcium (Ca2+) kinetics.......We have tested the hypothesis that the altered muscle contractility after lengthening contractions (LC) is caused by altered calcium (Ca2+) kinetics....

  2. Temporal Regulation of Cytokines by the Circadian Clock

    Directory of Open Access Journals (Sweden)

    Atsuhito Nakao

    2014-01-01

    Full Text Available Several parameters of the immune system exhibit oscillations with a period of approximately 24 hours that refers to “circadian rhythms.” Such daily variations in host immune system status might evolve to maximize immune reactions at times when encounters with pathogens are most likely to occur. However, the mechanisms behind circadian immunity have not been fully understood. Recent studies reveal that the internal time keeping system “circadian clock” plays a key role in driving the daily rhythms evident in the immune system. Importantly, several studies unveil molecular mechanisms of how certain clock proteins (e.g., BMAL1 and CLOCK temporally regulate expression of cytokines. Since cytokines are crucial mediators for shaping immune responses, this review mainly summarizes the new knowledge that highlights an emerging role of the circadian clock as a novel regulator of cytokines. A greater understanding of circadian regulation of cytokines will be important to exploit new strategies to protect host against infection by efficient cytokine induction or to treat autoimmunity and allergy by ameliorating excessive activity of cytokines.

  3. Physeal growth arrest after tibial lengthening in achondroplasia: 23 children followed to skeletal maturity.

    Science.gov (United States)

    Song, Sang-Heon; Agashe, Mandar Vikas; Huh, Young-Jae; Hwang, Soon-Young; Song, Hae-Ryong

    2012-06-01

    Bilateral tibial lengthening has become one of the standard treatments for upper segment-lower segment disproportion and to improve quality of life in achondroplasia. We determined the effect of tibial lengthening on the tibial physis and compared tibial growth that occurred at the physis with that in non-operated patients with achondroplasia. We performed a retrospective analysis of serial radiographs until skeletal maturity in 23 achondroplasia patients who underwent bilateral tibial lengthening before skeletal maturity (lengthening group L) and 12 achondroplasia patients of similar height and age who did not undergo tibial lengthening (control group C). The mean amount of lengthening of tibia in group L was 9.2 cm (lengthening percentage: 60%) and the mean age at the time of lengthening was 8.2 years. The mean duration of follow-up was 9.8 years. Skeletal maturity (fusion of physis) occurred at 15.2 years in group L and at 16.0 years in group C. The actual length of tibia (without distraction) at skeletal maturity was 238 mm in group L and 277 mm in group C (p = 0.03). The mean growth rates showed a decrease in group L relative to group C from about 2 years after surgery. Physeal closure was most pronounced on the anterolateral proximal tibial physis, with relative preservation of the distal physis. Our findings indicate that physeal growth rate can be disturbed after tibial lengthening in achondroplasia, and a close watch should be kept for such an occurrence-especially when lengthening of more than 50% is attempted.

  4. Circadian oscillations of DNA synthesis in rat brain.

    Science.gov (United States)

    Grassi Zucconi, G; Menichini, E; Castigli, E; Belia, S; Giuditta, A

    1988-05-03

    The possibility that the synthesis of brain DNA undergoes a circadian fluctuation was examined in male adult Wistar rats, kept under natural lighting conditions or born and raised under artificial lighting conditions. Groups of rats were taken every 4 h during the 24 h, injected subcutaneously with [methyl-3H]thymidine and killed 4 h later. By cosinor analysis, the DNA specific activity of cerebral hemispheres and brainstem was found to show a significant 24 h rhythm with the peak at the beginning of the dark period (waking period). By contrast, in kidney, the peak of the circadian rhythm of DNA specific activity occurred during the light period (sleep period), in agreement with literature data. On the other hand, in 4-week-old rats, born and raised in artificial lighting conditions, brain DNA specific activity followed a 12 h rhythm, in agreement with the lack of a significant diurnal oscillation of the sleep--waking structure. It is concluded that brain DNA synthesis undergoes a circadian fluctuation in association with the circadian rhythm of waking.

  5. Living by the clock: the circadian pacemaker in older people.

    NARCIS (Netherlands)

    Hofman, M.A.; Swaab, D.F.

    2006-01-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus is considered to be a critical component of a neural oscillator system implicated in the timing of a wide variety of biological processes. The circadian cycles established by this biological clock occur throughout nature and have a period of

  6. Living by the clock: the circadian pacemaker in older people

    NARCIS (Netherlands)

    Hofman, Michel A.; Swaab, Dick F.

    2006-01-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus is considered to be a critical component of a neural oscillator system implicated in the timing of a wide variety of biological processes. The circadian cycles established by this biological clock occur throughout nature and have a period of

  7. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals.

    Science.gov (United States)

    Koike, Nobuya; Yoo, Seung-Hee; Huang, Hung-Chung; Kumar, Vivek; Lee, Choogon; Kim, Tae-Kyung; Takahashi, Joseph S

    2012-10-19

    The mammalian circadian clock involves a transcriptional feed back loop in which CLOCK and BMAL1 activate the Period and Cryptochrome genes, which then feedback and repress their own transcription. We have interrogated the transcriptional architecture of the circadian transcriptional regulatory loop on a genome scale in mouse liver and find a stereotyped, time-dependent pattern of transcription factor binding, RNA polymerase II (RNAPII) recruitment, RNA expression, and chromatin states. We find that the circadian transcriptional cycle of the clock consists of three distinct phases: a poised state, a coordinated de novo transcriptional activation state, and a repressed state. Only 22% of messenger RNA (mRNA) cycling genes are driven by de novo transcription, suggesting that both transcriptional and posttranscriptional mechanisms underlie the mammalian circadian clock. We also find that circadian modulation of RNAPII recruitment and chromatin remodeling occurs on a genome-wide scale far greater than that seen previously by gene expression profiling.

  8. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock.

    Science.gov (United States)

    DiTacchio, Luciano; Le, Hiep D; Vollmers, Christopher; Hatori, Megumi; Witcher, Michael; Secombe, Julie; Panda, Satchidananda

    2011-09-30

    In animals, circadian oscillators are based on a transcription-translation circuit that revolves around the transcription factors CLOCK and BMAL1. We found that the JumonjiC (JmjC) and ARID domain-containing histone lysine demethylase 1a (JARID1a) formed a complex with CLOCK-BMAL1, which was recruited to the Per2 promoter. JARID1a increased histone acetylation by inhibiting histone deacetylase 1 function and enhanced transcription by CLOCK-BMAL1 in a demethylase-independent manner. Depletion of JARID1a in mammalian cells reduced Per promoter histone acetylation, dampened expression of canonical circadian genes, and shortened the period of circadian rhythms. Drosophila lines with reduced expression of the Jarid1a homolog, lid, had lowered Per expression and similarly altered circadian rhythms. JARID1a thus has a nonredundant role in circadian oscillator function.

  9. Circadian regulation of human sleep and age-related changes in its timing, consolidation and EEG characteristics

    Science.gov (United States)

    Dijk, D. J.; Duffy, J. F.

    1999-01-01

    The light-entrainable circadian pacemaker located in the suprachiasmatic nucleus of the hypothalamus regulates the timing and consolidation of sleep by generating a paradoxical rhythm of sleep propensity; the circadian drive for wakefulness peaks at the end of the day spent awake, ie close to the onset of melatonin secretion at 21.00-22.00 h and the circadian drive for sleep crests shortly before habitual waking-up time. With advancing age, ie after early adulthood, sleep consolidation declines, and time of awakening and the rhythms of body temperature, plasma melatonin and cortisol shift to an earlier clock hour. The variability of the phase relationship between the sleep-wake cycle and circadian rhythms increases, and in old age sleep is more susceptible to internal arousing stimuli associated with circadian misalignment. The propensity to awaken from sleep advances relative to the body temperature nadir in older people, a change that is opposite to the phase delay of awakening relative to internal circadian rhythms associated with morningness in young people. Age-related changes do not appear to be associated with a shortening of the circadian period or a reduction of the circadian drive for wake maintenance. These changes may be related to changes in the sleep process itself, such as reductions in slow-wave sleep and sleep spindles as well as a reduced strength of the circadian signal promoting sleep in the early morning hours. Putative mediators and modulators of circadian sleep regulation are discussed.

  10. Conservation of Arabidopsis thaliana circadian clock genes in Chrysanthemum lavandulifolium.

    Science.gov (United States)

    Fu, Jianxin; Yang, Liwen; Dai, Silan

    2014-07-01

    In Arabidopsis, circadian clock genes play important roles in photoperiod pathway by regulating the daytime expression of CONSTANS (CO), but related reports for chrysanthemum are notably limited. In this study, we isolated eleven circadian clock genes, which lie in the three interconnected negative and positive feedback loops in a wild diploid chrysanthemum, Chrysanthemum lavandulifolium. With the exception of ClELF3, ClPRR1 and ClPRR73, most of the circadian clock genes are expressed more highly in leaves than in other tested tissues. The diurnal rhythms of these circadian clock genes are similar to those of their homologs in Arabidopsis. ClELF3 and ClZTL are constitutively expressed at all time points in both assessed photoperiods. The expression succession from morning to night of the PSEUDO RESPONSE REGULATOR (PRR) gene family occurs in the order ClPRR73/ClPRR37, ClPRR5, and then ClPRR1. ClLHY is expressed during the dawn period, and ClGIs is expressed during the dusk period. The peak expression levels of ClFKF1 and ClGIs are synchronous in the inductive photoperiod. However, in the non-inductive night break (NB) condition or non-24 h photoperiod, the peak expression level of ClFKF1 is significantly changed, indicating that ClFKF1 itself or the synchronous expression of ClFKF1 and ClGIs might be essential to initiate the flowering of C. lavandulifolium. This study provides the first extensive evaluation of circadian clock genes, and it presents a useful foundation for dissecting the functions of circadian clock genes in C. lavandulifolium. Copyright © 2014. Published by Elsevier Masson SAS.

  11. Evidence for a biological dawn and dusk in the human circadian timing system

    Science.gov (United States)

    Wehr, T A; Aeschbach, D; Duncan, W C

    2001-01-01

    Because individuals differ in the phase angle at which their circadian rhythms are entrained to external time cues, averaging group data relative to clock time sometimes obscures abrupt changes that are characteristic of waveforms of the rhythms in individuals. Such changes may have important implications for the temporal organization of human circadian physiology. To control for variance in phase angle of entrainment, we used dual internal reference points – onset and offset of the nocturnal period of melatonin secretion – to calculate average profiles of circadian rhythm data from five previously published studies. Onset and/or offset of melatonin secretion were found to coincide with switch-like transitions between distinct diurnal and nocturnal periods of circadian rhythms in core body temperature, sleepiness, power in the theta band of the wake EEG, sleep propensity and rapid eye movement (REM) sleep propensity. Transitions between diurnal and nocturnal periods of sleep–wake and cortisol circadian rhythms were found to lag the other transitions by 1–3 h. When the duration of the daily light period was manipulated experimentally, melatonin-onset-related transitions in circadian rhythms appeared to be entrained to the light-to-dark transition, while melatonin-offset-related transitions appeared to be entrained to the dark-to-light transition. These results suggest a model of the human circadian timing system in which two states, one diurnal and one nocturnal, alternate with one another, and in which transitions between the states are switch-like and are separately entrained to dawn and dusk. This description of the human circadian system is similar to the Pittendrigh–Daan model of the rodent circadian system, and it suggests that core features of the system in other mammals are conserved in humans. PMID:11559786

  12. Circadian Stress Regimes Affect the Circadian Clock and Cause Jasmonic Acid-Dependent Cell Death in Cytokinin-Deficient Arabidopsis Plants[OPEN

    Science.gov (United States)

    Nitschke, Silvia; Cortleven, Anne; Iven, Tim; Havaux, Michel; Schmülling, Thomas

    2016-01-01

    The circadian clock helps plants measure daylength and adapt to changes in the day-night rhythm. We found that changes in the light-dark regime triggered stress responses, eventually leading to cell death, in leaves of Arabidopsis thaliana plants with reduced cytokinin levels or defective cytokinin signaling. Prolonged light treatment followed by a dark period induced stress and cell death marker genes while reducing photosynthetic efficiency. This response, called circadian stress, is also characterized by altered expression of clock and clock output genes. In particular, this treatment strongly reduced the expression of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Intriguingly, similar changes in gene expression and cell death were observed in clock mutants lacking proper CCA1 and LHY function. Circadian stress caused strong changes in reactive oxygen species- and jasmonic acid (JA)-related gene expression. The activation of the JA pathway, involving the accumulation of JA metabolites, was crucial for the induction of cell death, since the cell death phenotype was strongly reduced in the jasmonate resistant1 mutant background. We propose that adaptation to circadian stress regimes requires a normal cytokinin status which, acting primarily through the AHK3 receptor, supports circadian clock function to guard against the detrimental effects of circadian stress. PMID:27354555

  13. Circadian Stress Regimes Affect the Circadian Clock and Cause Jasmonic Acid-Dependent Cell Death in Cytokinin-Deficient Arabidopsis Plants.

    Science.gov (United States)

    Nitschke, Silvia; Cortleven, Anne; Iven, Tim; Feussner, Ivo; Havaux, Michel; Riefler, Michael; Schmülling, Thomas

    2016-07-01

    The circadian clock helps plants measure daylength and adapt to changes in the day-night rhythm. We found that changes in the light-dark regime triggered stress responses, eventually leading to cell death, in leaves of Arabidopsis thaliana plants with reduced cytokinin levels or defective cytokinin signaling. Prolonged light treatment followed by a dark period induced stress and cell death marker genes while reducing photosynthetic efficiency. This response, called circadian stress, is also characterized by altered expression of clock and clock output genes. In particular, this treatment strongly reduced the expression of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Intriguingly, similar changes in gene expression and cell death were observed in clock mutants lacking proper CCA1 and LHY function. Circadian stress caused strong changes in reactive oxygen species- and jasmonic acid (JA)-related gene expression. The activation of the JA pathway, involving the accumulation of JA metabolites, was crucial for the induction of cell death, since the cell death phenotype was strongly reduced in the jasmonate resistant1 mutant background. We propose that adaptation to circadian stress regimes requires a normal cytokinin status which, acting primarily through the AHK3 receptor, supports circadian clock function to guard against the detrimental effects of circadian stress. © 2016 American Society of Plant Biologists. All rights reserved.

  14. Lengthening Temporalis Myoplasty for Single-Stage Smile Reconstruction in Children with Facial Paralysis.

    Science.gov (United States)

    Panossian, Andre

    2016-04-01

    Free muscle transfer for dynamic smile reanimation in facial paralysis is not always predictable with regard to cosmesis. Hospital stays range from 5 to 7 days. Prolonged operative times, longer hospital stays, and excessive cheek bulk are associated with free flap options. Lengthening temporalis myoplasty offers single-stage smile reanimation with theoretical advantages over free tissue transfer. From 2012 to 2014, 18 lengthening temporalis myoplasties were performed in 14 children for smile reconstruction. A retrospective chart review was completed for demographics, operative times, length of hospital stay, and perioperative complications. Fourteen consecutive patients with complete facial paralysis were included. Four patients underwent single-stage bilateral reconstruction, and 10 underwent unilateral procedures. Diagnoses included Möbius syndrome (n = 5), posterior cranial fossa tumors (n = 4), posttraumatic (n = 2), hemifacial microsomia (n = 1), and idiopathic (n = 2). Average patient age was 10.1 years. Average operative time was 410 minutes (499 minutes for bilateral lengthening temporalis myoplasty and 373 for unilateral lengthening temporalis myoplasty). Average length of stay was 3.3 days (4.75 days for bilateral lengthening temporalis myoplasty and 2.8 for unilateral lengthening temporalis myoplasty). Nine patients required minor revisions. Lengthening temporalis myoplasty is a safe alternative to free tissue transfer for dynamic smile reconstruction in children with facial paralysis. Limited donor-site morbidity, shorter operative times, and shorter hospital stays are some benefits over free flap options. However, revisions are required frequently secondary to tendon avulsions and adhesions. Therapeutic, IV.

  15. Radial forcing and Edgar Allan Poe's lengthening pendulum

    Science.gov (United States)

    McMillan, Matthew; Blasing, David; Whitney, Heather M.

    2013-09-01

    Inspired by Edgar Allan Poe's The Pit and the Pendulum, we investigate a radially driven, lengthening pendulum. We first show that increasing the length of an undriven pendulum at a uniform rate does not amplify the oscillations in a manner consistent with the behavior of the scythe in Poe's story. We discuss parametric amplification and the transfer of energy (through the parameter of the pendulum's length) to the oscillating part of the system. In this manner, radial driving can easily and intuitively be understood, and the fundamental concept applied in many other areas. We propose and show by a numerical model that appropriately timed radial forcing can increase the oscillation amplitude in a manner consistent with Poe's story. Our analysis contributes a computational exploration of the complex harmonic motion that can result from radially driving a pendulum and sheds light on a mechanism by which oscillations can be amplified parametrically. These insights should prove especially valuable in the undergraduate physics classroom, where investigations into pendulums and oscillations are commonplace.

  16. Impact of leg lengthening on viscoelastic properties of the deep fascia

    Science.gov (United States)

    Wang, Hai-Qiang; Wei, Yi-Yong; Wu, Zi-Xiang; Luo, Zhuo-Jing

    2009-01-01

    Background Despite the morphological alterations of the deep fascia subjected to leg lengthening have been investigated in cellular and extracellular aspects, the impact of leg lengthening on viscoelastic properties of the deep fascia remains largely unknown. This study aimed to address the changes of viscoelastic properties of the deep fascia during leg lengthening using uniaxial tensile test. Methods Animal model of leg lengthening was established in New Zealand white rabbits. Distraction was initiated at a rate of 1 mm/day and 2 mm/day in two steps, and preceded until increases of 10% and 20% in the initial length of tibia had been achieved. The deep fascia specimens of 30 mm × 10 mm were clamped with the Instron 1122 tensile tester at room temperature with a constant tensile rate of 5 mm/min. After 5 load-download tensile tests had been performed, the specimens were elongated until rupture. The load-displacement curves were automatically generated. Results The normal deep fascia showed typical viscoelastic rule of collagenous tissues. Each experimental group of the deep fascia after leg lengthening kept the properties. The curves of the deep fascia at a rate of 1 mm/day with 20% increase in tibia length were the closest to those of normal deep fascia. The ultimate tension strength and the strain at rupture on average of normal deep fascia were 2.69 N (8.97 mN/mm2) and 14.11%, respectively. The increases in ultimate tension strength and strain at rupture of the deep fascia after leg lengthening were statistically significant. Conclusion The deep fascia subjected to leg lengthening exhibits viscoelastic properties as collagenous tissues without lengthening other than increased strain and strength. Notwithstanding different lengthening schemes result in varied viscoelastic properties changes, the most comparable viscoelastic properties to be demonstrated are under the scheme of a distraction rate of 1 mm/day and 20% increase in tibia length. PMID:19698092

  17. The human body circadian: How the biologic clock influences sleep and emotion.

    Science.gov (United States)

    Cardinali, Daniel P.

    2000-01-01

    Diurnal, nocturnal or seasonal modes of behavior are not passive responses to changes in the environment; rather, they are generated by an endogenous circadian pacemaker, entrained by a few environmental cues like lightdark cycles. Circadian clock mechanisms involve periodic gene expression, synchronized by a hierarchically superior structure located in mammals in the hypothalamic suprachiasmatic nuclei. Cycles of sleep and wakefulness are the most conspicuous circadian rhythm. Since modern humans use artificial light to extend their period of wakefulness and activity into the evening hours, they adhere to a shortnight sleep schedule with a highly consolidated and efficient sleep. As shown by studies in artificial long nights, modern humans may be sleepdeprived. Humans have also increasingly insulated themselves from the natural cycles of light and darkness. Still, the human circadian pacemaker has conserved a capacity to detect seasonal changes in day length. A mood disorder involving a recurring autumn or winter depression (seasonal affective disorder, SAD) is related to latitude, with the number of cases increasing with distance from the equator. SAD is ameliorated by using brilliant light. In nonseasonal depression, mood typically fluctuates daily, with improvement over the course of the day, and various physiological functions exhibit an altered circadian pattern, suggesting a link with circadian disruption. Treatment of circadian rhythm disorders, whether precipitated by intrinsic factors (e.g., sleep disorders, blindness, mental disorders, aging) or by extrinsic factors (e.g., jet lag, shift work) has led to the development of a new type of agents called "chronobiotics," among which melatonin is the prototype.

  18. Meal-engendered circadian-ensuing activity in rats.

    Science.gov (United States)

    White, W; Timberlake, W

    Large meals scheduled at greater-than-circadian periods (such as T = 31 h) tend to elicit enhanced activity approximately 24 h subsequent to receipt. These studies characterized the process responsible for this meal-engendered "circadian ensuing activity" (meal CEA). Female Sprague-Dawley rats were housed in stations containing a running wheel, pellet dispenser, and lights. Young, middle-aged, or suprachiasmatic-nucleus (SCN)-lesioned rats were given two 1-h meals every 31 or 34 h. Meals were separated by alternating short and long fasts. Most young intact rats engaged in enhanced activity approximately 24 h subsequent to the start of the two-meal series. This circadian ensuing activity underwent large, abrupt daily displacements in response to daily meal delays, was manifested to some degree at all times of day, had an amplitude that was modulated by circadian time of day, was attenuated in middle-aged rats, was evident in SCN-lesioned rats, and oscillated following termination of the feeding schedule. A single experience with food at a novel time of day can "reset" an SCN-independent oscillating process responsible for a circadian activity pattern. CEA has features not readily accommodated by present models of "food-anticipatory activity." The readiness with which the process can be reset implies a keen sensitivity to shifts in the time of food availability but could also produce aberrant behavioral patterns. A T > 24-h feeding schedule appears to be an ideal procedure with which to study the specific food-related factors responsible for resetting circadian processes and producing a subsequent reallocation of daily activity.

  19. Circadian molecular clock in lung pathophysiology

    Science.gov (United States)

    Sundar, Isaac K.; Yao, Hongwei; Sellix, Michael T.

    2015-01-01

    Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology. PMID:26361874

  20. Dysglycemia induces abnormal circadian blood pressure variability

    Directory of Open Access Journals (Sweden)

    Kumarasamy Sivarajan

    2011-11-01

    Full Text Available Abstract Background Prediabetes (PreDM in asymptomatic adults is associated with abnormal circadian blood pressure variability (abnormal CBPV. Hypothesis Systemic inflammation and glycemia influence circadian blood pressure variability. Methods Dahl salt-sensitive (S rats (n = 19 after weaning were fed either an American (AD or a standard (SD diet. The AD (high-glycemic-index, high-fat simulated customary human diet, provided daily overabundant calories which over time lead to body weight gain. The SD (low-glycemic-index, low-fat mirrored desirable balanced human diet for maintaining body weight. Body weight and serum concentrations for fasting glucose (FG, adipokines (leptin and adiponectin, and proinflammatory cytokines [monocyte chemoattractant protein-1 (MCP-1 and tumor necrosis factor-α (TNF-α] were measured. Rats were surgically implanted with C40 transmitters and blood pressure (BP-both systolic; SBP and diastolic; DBP and heart rate (HR were recorded by telemetry every 5 minutes during both sleep (day and active (night periods. Pulse pressure (PP was calculated (PP = SBP-DBP. Results [mean(SEM]: The AD fed group displayed significant increase in body weight (after 90 days; p Conclusion These data validate our stated hypothesis that systemic inflammation and glycemia influence circadian blood pressure variability. This study, for the first time, demonstrates a cause and effect relationship between caloric excess, enhanced systemic inflammation, dysglycemia, loss of blood pressure control and abnormal CBPV. Our results provide the fundamental basis for examining the relationship between dysglycemia and perturbation of the underlying mechanisms (adipose tissue dysfunction induced local and systemic inflammation, insulin resistance and alteration of adipose tissue precursors for the renin-aldosterone-angiotensin system which generate abnormal CBPV.

  1. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice.

    Directory of Open Access Journals (Sweden)

    Susie Lee

    2010-06-01

    Full Text Available Cell proliferation in all rapidly renewing mammalian tissues follows a circadian rhythm that is often disrupted in advanced-stage tumors. Epidemiologic studies have revealed a clear link between disruption of circadian rhythms and cancer development in humans. Mice lacking the circadian genes Period1 and 2 (Per or Cryptochrome1 and 2 (Cry are deficient in cell cycle regulation and Per2 mutant mice are cancer-prone. However, it remains unclear how circadian rhythm in cell proliferation is generated in vivo and why disruption of circadian rhythm may lead to tumorigenesis.Mice lacking Per1 and 2, Cry1 and 2, or one copy of Bmal1, all show increased spontaneous and radiation-induced tumor development. The neoplastic growth of Per-mutant somatic cells is not controlled cell-autonomously but is dependent upon extracellular mitogenic signals. Among the circadian output pathways, the rhythmic sympathetic signaling plays a key role in the central-peripheral timing mechanism that simultaneously activates the cell cycle clock via AP1-controlled Myc induction and p53 via peripheral clock-controlled ATM activation. Jet-lag promptly desynchronizes the central clock-SNS-peripheral clock axis, abolishes the peripheral clock-dependent ATM activation, and activates myc oncogenic potential, leading to tumor development in the same organ systems in wild-type and circadian gene-mutant mice.Tumor suppression in vivo is a clock-controlled physiological function. The central circadian clock paces extracellular mitogenic signals that drive peripheral clock-controlled expression of key cell cycle and tumor suppressor genes to generate a circadian rhythm in cell proliferation. Frequent disruption of circadian rhythm is an important tumor promoting factor.

  2. Circadian Clock, Cancer, and Chemotherapy

    Science.gov (United States)

    2015-01-01

    The circadian clock is a global regulatory system that interfaces with most other regulatory systems and pathways in mammalian organisms. Investigations of the circadian clock–DNA damage response connections have revealed that nucleotide excision repair, DNA damage checkpoints, and apoptosis are appreciably influenced by the clock. Although several epidemiological studies in humans and a limited number of genetic studies in mouse model systems have indicated that clock disruption may predispose mammals to cancer, well-controlled genetic studies in mice have not supported the commonly held view that circadian clock disruption is a cancer risk factor. In fact, in the appropriate genetic background, clock disruption may instead aid in cancer regression by promoting intrinsic and extrinsic apoptosis. Finally, the clock may affect the efficacy of cancer treatment (chronochemotherapy) by modulating the pharmacokinetics and pharmacodynamics of chemotherapeutic drugs as well as the activity of the DNA repair enzymes that repair the DNA damage caused by anticancer drugs. PMID:25302769

  3. Disturbances in the circadian pattern of activity and sleep after laparoscopic versus open abdominal surgery

    DEFF Research Database (Denmark)

    Gögenur, Ismail; Bisgaard, Thue; Burgdorf, Stefan

    2008-01-01

    BACKGROUND: Studies on the circadian variation in bodily functions and sleep are important for understanding the pathophysiological processes in the postoperative period. We aimed to investigate changes in the circadian variation in activity after minimally invasive surgery (laparoscopic...... scale (sleep quality, general well-being and pain) and fatigue was measured by a ten-point fatigue scale. The activity levels of the patients were monitored by actigraphy (a wrist-worn device measuring patient activity). Measures of circadian activity level [interday stability (IS), intraday variability...

  4. Bunch lengthening calculations for the SLC [Stanford Linear Collider] damping rings

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Ruth, R.D.

    1989-03-01

    The problem of bunch lengthening in electron storage rings has been treated by many people, and there have been many experiments. In the typical experiment, the theory is used to determine the impedance of the ring. What has been lacking thus far, however, is a calculation of bunch lengthening that uses a carefully calculated ring impedance (or wakefield). In this paper we begin by finding the potential well distortion due to some very simple impedance models, in order to illustrate different types of bunch lengthening behavior. We then give a prescription for extending potential well calculations into the turbulent regime once the threshold is known. Then finally, using the wakefield calculated for the SLC damping rings, combined with the measured value of the threshold, we calculate bunch lengthening for the damping rings, and compare the results with the measurements. 9 refs., 6 figs

  5. Elimination of a "Gummy Smile" With Crown Lengthening and Lip Repositioning.

    Science.gov (United States)

    Mahn, Douglas H

    2016-01-01

    Excessive gingival display is considered unattractive by many patients. A combination of surgical approaches may be required to correct this problem. Clinical crown lengthening involves recontouring crestal bone levels and moving the gingival margin in an apical direction. Lip repositioning reduces gingival display by limiting upper lip movement when smiling. This article describes a case in which a combination of clinical crown lengthening and lip repositioning was used to correct excessive gingival display when smiling.

  6. Does arm lengthening affect the functional outcome in onlay reverse shoulder arthroplasty?

    Science.gov (United States)

    Werner, Birgit S; Ascione, Francesco; Bugelli, Giulia; Walch, Gilles

    2017-12-01

    The concept of onlay design reverse shoulder arthroplasty has been introduced to overcome complications observed with the traditional Grammont-type prosthesis. The aim of this study was to determine the influence of arm lengthening on the short-term clinical outcome in onlay reverse shoulder arthroplasty and investigate the effect of humeral tray offset positioning on arm lengthening and range of motion. We retrospectively evaluated 56 patients undergoing reverse shoulder arthroplasty with the Aequalis Ascend Flex prosthesis (Tornier, Bloomington, MN, USA) at a minimum 2 years' follow-up. Arm lengthening was determined using bilateral scaled radiographs of the entire humerus. The Constant score and active range of motion were documented preoperatively and postoperatively. The relationship between arm lengthening, humeral tray offset position, and functional outcome was analyzed. The Constant score improved from 25.5 ± 9.5 points to 71.5 ± 13.8 points at a mean follow-up of 30.1 ± 5.2 months. Mean postoperative anterior elevation was 145.2° ± 21.1°, and external rotation was 30.7° ± 20.3°. Arm lengthening exceeding 2.5 cm was related to a decrease in anterior elevation. We found a relationship between arm lengthening averaging 2.2 ± 1.7 cm and increased Constant score values. Humeral tray positioning demonstrated no influence on the functional outcome. There was a trend toward increased arm lengthening in lateral offset positioning. Onlay reverse shoulder arthroplasty yields good short-term clinical results. In our population, arm lengthening averaging 1 to 2.5 cm was found to be the best compromise on postoperative range of motion. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  7. Clinical Results and Complications of Lower Limb Lengthening for Fibular Hemimelia

    OpenAIRE

    Mishima, Kenichi; Kitoh, Hiroshi; Iwata, Koji; Matsushita, Masaki; Nishida, Yoshihiro; Hattori, Tadashi; Ishiguro, Naoki

    2016-01-01

    Abstract Fibular hemimelia is a rare but the most common congenital long bone deficiency, encompassing a broad range of anomalies from isolated fibular hypoplasia up to substantial femoral and tibial shortening with ankle deformity and foot deficiency. Most cases of fibular hemimelia manifest clinically significant leg length discrepancy (LLD) with time that requires adequate correction by bone lengthening for stable walking. Bone lengthening procedures, especially those for pathological bone...

  8. Simple sequence repeats provide a substrate for phenotypic variation in the Neurospora crassa circadian clock.

    Directory of Open Access Journals (Sweden)

    Todd P Michael

    2007-08-01

    Full Text Available WHITE COLLAR-1 (WC-1 mediates interactions between the circadian clock and the environment by acting as both a core clock component and as a blue light photoreceptor in Neurospora crassa. Loss of the amino-terminal polyglutamine (NpolyQ domain in WC-1 results in an arrhythmic circadian clock; this data is consistent with this simple sequence repeat (SSR being essential for clock function.Since SSRs are often polymorphic in length across natural populations, we reasoned that investigating natural variation of the WC-1 NpolyQ may provide insight into its role in the circadian clock. We observed significant phenotypic variation in the period, phase and temperature compensation of circadian regulated asexual conidiation across 143 N. crassa accessions. In addition to the NpolyQ, we identified two other simple sequence repeats in WC-1. The sizes of all three WC-1 SSRs correlated with polymorphisms in other clock genes, latitude and circadian period length. Furthermore, in a cross between two N. crassa accessions, the WC-1 NpolyQ co-segregated with period length.Natural variation of the WC-1 NpolyQ suggests a mechanism by which period length can be varied and selected for by the local environment that does not deleteriously affect WC-1 activity. Understanding natural variation in the N.crassa circadian clock will facilitate an understanding of how fungi exploit their environments.

  9. Circadian rhythm and its role in malignancy

    Directory of Open Access Journals (Sweden)

    Mahmood Saqib

    2010-03-01

    Full Text Available Abstract Circadian rhythms are daily oscillations of multiple biological processes directed by endogenous clocks. The circadian timing system comprises peripheral oscillators located in most tissues of the body and a central pacemaker located in the suprachiasmatic nucleus (SCN of the hypothalamus. Circadian genes and the proteins produced by these genes constitute the molecular components of the circadian oscillator which form positive/negative feedback loops and generate circadian rhythms. The circadian regulation extends beyond clock genes to involve various clock-controlled genes (CCGs including various cell cycle genes. Aberrant expression of circadian clock genes could have important consequences on the transactivation of downstream targets that control the cell cycle and on the ability of cells to undergo apoptosis. This may lead to genomic instability and accelerated cellular proliferation potentially promoting carcinogenesis. Different lines of evidence in mice and humans suggest that cancer may be a circadian-related disorder. The genetic or functional disruption of the molecular circadian clock has been found in various cancers including breast, ovarian, endometrial, prostate and hematological cancers. The acquisition of current data in circadian clock mechanism may help chronotherapy, which takes into consideration the biological time to improve treatments by devising new therapeutic approaches for treating circadian-related disorders, especially cancer.

  10. Metabolism and the Circadian Clock Converge

    Science.gov (United States)

    Eckel-Mahan, Kristin

    2013-01-01

    Circadian rhythms occur in almost all species and control vital aspects of our physiology, from sleeping and waking to neurotransmitter secretion and cellular metabolism. Epidemiological studies from recent decades have supported a unique role for circadian rhythm in metabolism. As evidenced by individuals working night or rotating shifts, but also by rodent models of circadian arrhythmia, disruption of the circadian cycle is strongly associated with metabolic imbalance. Some genetically engineered mouse models of circadian rhythmicity are obese and show hallmark signs of the metabolic syndrome. Whether these phenotypes are due to the loss of distinct circadian clock genes within a specific tissue versus the disruption of rhythmic physiological activities (such as eating and sleeping) remains a cynosure within the fields of chronobiology and metabolism. Becoming more apparent is that from metabolites to transcription factors, the circadian clock interfaces with metabolism in numerous ways that are essential for maintaining metabolic homeostasis. PMID:23303907

  11. Mini Review: Circadian Clocks, Stress and Immunity

    Directory of Open Access Journals (Sweden)

    Rebecca eDumbell

    2016-05-01

    Full Text Available In mammals, molecular circadian clocks are present in most cells of the body, and this circadian network plays an important role in synchronizing physiological processes and behaviors to the appropriate time of day. The hypothalamic-pituitary-adrenal endocrine axis regulates the response to acute and chronic stress, acting through its final effectors – glucocorticoids – released from the adrenal cortex. Glucocorticoid secretion, characterized by its circadian rhythm, has an important role in synchronizing peripheral clocks and rhythms downstream of the master circadian pacemaker in the suprachiasmatic nucleus. Finally, glucocorticoids are powerfully anti-inflammatory, and recent work has implicated the circadian clock in various aspects and cells of the immune system, suggesting a tight interplay of stress and circadian systems in the regulation of immunity. This mini-review summarizes our current understanding of the role of the circadian clock network in both, the HPA axis and the immune system, and discusses their interactions.

  12. Drugs of Abuse Can Entrain Circadian Rhythms

    Directory of Open Access Journals (Sweden)

    Ann E. K. Kosobud

    2007-01-01

    Full Text Available Circadian rhythms prepare organisms for predictable events during the Earth's 24-h day. These rhythms are entrained by a variety of stimuli. Light is the most ubiquitous and best known zeitgeber, but a number of others have been identified, including food, social cues, locomotor activity, and, most recently drugs of abuse. Given the diversity of zeitgebers, it is probably not surprising that genes capable of clock functions are located throughout almost all organs and tissues. Recent evidence suggests that drugs of abuse can directly entrain some circadian rhythms. We have report here that entrainment by drugs of abuse is independent of the suprachiasmatic nucleus and the light/dark cycle, is not dependent on direct locomotor stimulation, and is shared by a variety of classes of drugs of abuse. We suggest that drug-entrained rhythms reflect variations in underlying neurophysiological states. This could be the basis for known daily variations in drug metabolism, tolerance, and sensitivity to drug reward. These rhythms could also take the form of daily periods of increased motivation to seek and take drugs, and thus contribute to abuse, addiction and relapse.

  13. Melatonin, Light and Circadian Cycles

    Science.gov (United States)

    1989-12-25

    bifida occulta , and sarcoidosis, all show loss of the melatonin circadian rhythm, with psoriasis vulgaris, spina bifida occulta , and sarcoidosis...autonomic neuro- pathy show decreased nocturnal melatonin (Checkley and Palazidou, 1988). Klinefelter’s syndrome, Turners syndrome, psoriasis vulgaris, spina

  14. ADHD, circadian rhythms and seasonality

    NARCIS (Netherlands)

    Wynchank, Dora S.; Bijlenga, Denise; Lamers, Femke; Bron, Tannetje I.; Winthorst, Wim H.; Vogel, Suzan W.; Penninx, Brenda W.; Beekman, Aartjan T.; Kooij, J. Sandra

    2016-01-01

    Objective: We evaluated whether the association between Adult Attention-Deficit/Hyperactivity Disorder (ADHD) and Seasonal Affective Disorder (SAD) was mediated by the circadian rhythm. Method: Data of 2239 persons from the Netherlands Study of Depression and Anxiety (NESDA) were used. Two groups

  15. Research on sleep, circadian rhythms and aging - Applications to manned spaceflight

    Science.gov (United States)

    Czeisler, Charles A.; Chiasera, August J.; Duffy, Jeanne F.

    1991-01-01

    Disorders of sleep and circadian rhythmicity are characteristic of both advancing age and manned spaceflight. Sleep fragmentation, reduced nocturnal sleep tendency and sleep efficiency, reduced daytime alertness, and increased daytime napping are common to both of these conditions. Recent research on the pathophysiology and treatment of disrupted sleep in older people has led to a better understanding of how the human circadian pacemaker regulates the timing of the daily sleep-wake cycle and how it responds to the periodic changes in the light-dark cycle to which we are ordinarily exposed. These findings have led to new treatments for some of the sleep disorders common to older individuals, using carefully timed exposure to bright light and darkness to manipulate the phase and/or amplitude of the circadian timing system. These insights and treatment approaches have direct applications in the design of countermeasures allowing astronauts to overcome some of the challenges which manned spaceflight poses for the human circadian timing system. We have conducted an operational feasibility study on the use of scheduled exposure to bright light and darkness prior to launch in order to facilitate adaptation of the circadian system of a NASA Space Shuttle crew to the altered sleep-wake schedule required for their mission. The results of this study illustrate how an understanding of the properties of the human circadian timing system and the consequences of circadian disruption can be applied to manned spaceflight.

  16. Emergence of noise-induced oscillations in the central circadian pacemaker.

    Directory of Open Access Journals (Sweden)

    Caroline H Ko

    2010-10-01

    Full Text Available Bmal1 is an essential transcriptional activator within the mammalian circadian clock. We report here that the suprachiasmatic nucleus (SCN of Bmal1-null mutant mice, unexpectedly, generates stochastic oscillations with periods that overlap the circadian range. Dissociated SCN neurons expressed fluctuating levels of PER2 detected by bioluminescence imaging but could not generate circadian oscillations intrinsically. Inhibition of intercellular communication or cyclic-AMP signaling in SCN slices, which provide a positive feed-forward signal to drive the intracellular negative feedback loop, abolished the stochastic oscillations. Propagation of this feed-forward signal between SCN neurons then promotes quasi-circadian oscillations that arise as an emergent property of the SCN network. Experimental analysis and mathematical modeling argue that both intercellular coupling and molecular noise are required for the stochastic rhythms, providing a novel biological example of noise-induced oscillations. The emergence of stochastic circadian oscillations from the SCN network in the absence of cell-autonomous circadian oscillatory function highlights a previously unrecognized level of circadian organization.

  17. Use of modified lip repositioning technique associated with esthetic crown lengthening for treatment of excessive gingival display: A case report of multiple etiologies

    Directory of Open Access Journals (Sweden)

    Matheus Bortoluzzi Mantovani

    2016-01-01

    Full Text Available Excessive gingival display during smile can result in compromised esthetics. This study aims to report a case of excessive gingival display with multiple etiologies treated by means of modified lip repositioning technique associated with esthetic crown lengthening. A 23-year-old female patient, with 5-mm gingival display during smile caused by altered passive eruption and hypermobility of the upper lip, underwent the modified lip repositioning technique associated with gingivectomy followed by flap elevation and ostectomy/osteoplasty. Seven months after the second procedure, the patient had her esthetic complaint solved appearing stable in the observation period. The modified lip repositioning technique is an effective procedure employed to reduce gingival display and when associated with esthetic clinical crown lengthening, can appropriately treat cases of gummy smile.

  18. Use of modified lip repositioning technique associated with esthetic crown lengthening for treatment of excessive gingival display: A case report of multiple etiologies

    Science.gov (United States)

    Mantovani, Matheus Bortoluzzi; Souza, Eduardo Clemente; Marson, Fabiano Carlos; Corrêa, Giovani Oliveira; Progiante, Patrícia Saram; Silva, Cléverson Oliveira

    2016-01-01

    Excessive gingival display during smile can result in compromised esthetics. This study aims to report a case of excessive gingival display with multiple etiologies treated by means of modified lip repositioning technique associated with esthetic crown lengthening. A 23-year-old female patient, with 5-mm gingival display during smile caused by altered passive eruption and hypermobility of the upper lip, underwent the modified lip repositioning technique associated with gingivectomy followed by flap elevation and ostectomy/osteoplasty. Seven months after the second procedure, the patient had her esthetic complaint solved appearing stable in the observation period. The modified lip repositioning technique is an effective procedure employed to reduce gingival display and when associated with esthetic clinical crown lengthening, can appropriately treat cases of gummy smile. PMID:27041845

  19. Familial circadian rhythm disorder in the diurnal primate, Macaca mulatta.

    Directory of Open Access Journals (Sweden)

    Irina V Zhdanova

    Full Text Available In view of the inverse temporal relationship of central clock activity to physiological or behavioral outputs in diurnal and nocturnal species, understanding the mechanisms and physiological consequences of circadian disorders in humans would benefit from studies in a diurnal animal model, phylogenetically close to humans. Here we report the discovery of the first intrinsic circadian disorder in a family of diurnal non-human primates, the rhesus monkey. The disorder is characterized by a combination of delayed sleep phase, relative to light-dark cycle, mutual desynchrony of intrinsic rhythms of activity, food intake and cognitive performance, enhanced nighttime feeding or, in the extreme case, intrinsic asynchrony. The phenotype is associated with normal length of intrinsic circadian period and requires an intact central clock, as demonstrated by an SCN lesion. Entrainment to different photoperiods or melatonin administration does not eliminate internal desynchrony, though melatonin can temporarily reinstate intrinsic activity rhythms in the animal with intrinsic asynchrony. Entrainment to restricted feeding is highly effective in animals with intrinsic or SCN lesion-induced asynchrony. The large isolated family of rhesus macaques harboring the disorder provides a powerful new tool for translational research of regulatory circuits underlying circadian disorders and their effective treatment.

  20. Thoracic surface temperature rhythms as circadian biomarkers for cancer chronotherapy

    Science.gov (United States)

    Roche, Véronique Pasquale; Mohamad-Djafari, Ali; Innominato, Pasquale Fabio; Karaboué, Abdoulaye; Gorbach, Alexander; Lévi, Francis Albert

    2014-01-01

    The disruption of the temperature circadian rhythm has been associated with cancer progression, while its amplification resulted in cancer inhibition in experimental tumor models. The current study investigated the relevance of skin surface temperature rhythms as biomarkers of the Circadian Timing System (CTS) in order to optimize chronotherapy timing in individual cancer patients. Baseline skin surface temperature at four sites and wrist accelerations were measured every minute for 4 days in 16 patients with metastatic gastro-intestinal cancer before chronotherapy administration. Temperature and rest-activity were recorded, respectively, with wireless skin surface temperature patches (Respironics, Phillips) and an actigraph (Ambulatory Monitoring). Both variables were further monitored in 10 of these patients during and after a 4-day course of a fixed chronotherapy protocol. Collected at baseline, during and after therapy longitudinal data sets were processed using Fast Fourier Transform Cosinor and Linear Discriminant Analyses methods. A circadian rhythm was statistically validated with a period of 24 h (p|0.7|; p<0.05). Individual circadian acrophases at baseline were scattered from 15:18 to 6:05 for skin surface temperature, and from 12:19 to 15:18 for rest-activity, with respective median values of 01:10 (25–75% quartiles, 22:35–3:07) and 14:12 (13:14–14:31). The circadian patterns in skin surface temperature and rest-activity persisted or were amplified during and after fixed chronotherapy delivery for 5/10 patients. In contrast, transient or sustained disruption of these biomarkers was found for the five other patients, as indicated by the lack of any statistically significant dominant period in the circadian range. No consistent correlation (r<|0.7|, p ≥ 0.05) was found between paired rest-activity and temperature time series during fixed chronotherapy delivery. In conclusion, large inter-patient differences in circadian amplitudes and acrophases of

  1. Spectral sensitivity of the circadian system

    Science.gov (United States)

    Figueiro, Mariana G.; Bullough, John D.; Rea, Mark S.

    2004-01-01

    Light exposure regulates several circadian functions in normal humans including the sleep-wake cycle. Individuals with Alzheimer"s Disease (AD) often do not have regular patterns of activity and rest, but, rather, experience random periods of sleep and agitation during both day and night. Bright light during the day and darkness at night has been shown to consolidate activity periods during the day and rest periods at night in AD patients. The important characteristics of bright light exposure (quantity, spectrum, distribution, timing and duration) for achieving these results in AD patients is not yet understood. Recent research has shown that moderate (~18 lx at the cornea) blue (~470 nm) light is effective at suppressing melatonin in normal humans. It was hypothesized that blue light applied just before AD patients retire to their beds for the night would have a measurable impact on their behavior. A pilot study was conducted for 30 days in a senior health care facility using four individuals diagnosed with mild to moderate levels of dementia. Four AD patients were exposed to arrays of blue light from light emitting diodes (max wavelength = 470 nm) in two-hour sessions (18:00 to 20:00 hours) for 10 days. As a control, they were exposed to red light (max wavelength = 640 nm) in two-hour sessions for 10 days prior to the blue light exposure. Despite the modest sample size, exposure to blue LEDs has shown to affect sleep quality and median body temperature peak of these AD patients. Median body temperature peak was delayed by approximately 2 hours after exposure to blue LEDs compared to exposure to red LEDs and sleep quality was improved. This pilot study demonstrated that light, especially LEDs, can be an important contribution to helping AD patients regulate their circadian functions.

  2. Postnatal Ontogenesis of the Islet Circadian Clock Plays a Contributory Role in β-Cell Maturation Process.

    Science.gov (United States)

    Rakshit, Kuntol; Qian, Jingyi; Gaonkar, Krutika Satish; Dhawan, Sangeeta; Colwell, Christopher S; Matveyenko, Aleksey V

    2018-03-02

    Development of cell replacement therapies in diabetes requires understanding of the molecular underpinnings of β-cell maturation. Circadian clock regulates diverse cellular functions important for regulation of β-cell function and turnover. However postnatal ontogenesis of the islet circadian clock and its potential role in β-cell maturation remain unknown. To address this, we studied wild type Sprague Dawley as well as Period1 luciferase transgenic rats ( Per1 :LUC) to determine circadian clock function, clock protein expression and diurnal insulin secretion during islet development and maturation process. We additionally studied β-cell-specific Bmal1 deficient mice to elucidate potential role of this key circadian transcription factor in β-cell functional and transcriptional maturation. We report that emergence of the islet circadian clock 1) occurs during early postnatal period, 2) depends on the establishment of global behavioral circadian rhythms and 3) leads to the induction of diurnal insulin secretion and gene expression. Islet cell maturation was also characterized by induction in the expression of circadian transcription factor BMAL1, deletion of which altered postnatal development of glucose-stimulated insulin secretion and associated transcriptional network. Postnatal development of the islet circadian clock contributes to early life β-cell maturation and should be considered for optimal design of future β-cell replacement strategies in diabetes. © 2018 by the American Diabetes Association.

  3. Evolution of the clock from yeast to man by period-doubling folds in the cellular oscillator.

    Science.gov (United States)

    Klevecz, R R; Li, C M

    2007-01-01

    Analysis of genome-wide oscillations in transcription reveals that the cell is an oscillator and an attractor and that the maintenance of a stable phenotype requires that maximums in expression in clusters of transcripts must be poised at antipodal phases around the steady state-this is the dynamic architecture of phenotype. Plots of the path through concentration phase space taken by all of the transcripts of Saccharomyces cerevisiae yield a simple three-dimensional surface. How this surface might change as period lengthens or as a cell differentiates is at the center of current work. We have shown that changes in gene expression in response to mutation or perturbation by drugs occur through a folding or unfolding of the surface described by this circle of transcripts and we suggest that the path from this 40-minute oscillation to the cell cycle and circadian rhythms takes place through a series of period-two or period-three bifurcations. These foldings in the surface of the putative attractor result in an increasingly dense set of nested trajectories in the concentrations of message and protein. Evolutionary advantage might accrue to an organism that could change period by changes in just one or a few genes as day length increased from 4 hours in the prebiotic Earth, through 8 hours during the expansion of photoautotrophs, to the present 24 hours.

  4. Individual differences in circadian locomotor parameters correlate with anxiety- and depression-like behavior.

    Directory of Open Access Journals (Sweden)

    Jeffrey Anyan

    Full Text Available Disrupted circadian rhythms are a core feature of mood and anxiety disorders. Circadian rhythms are coordinated by a light-entrainable master clock located in the suprachiasmatic nucleus. Animal models of mood and anxiety disorders often exhibit blunted rhythms in locomotor activity and clock gene expression. Interestingly, the changes in circadian rhythms correlate with mood-related behaviours. Although animal models of depression and anxiety exhibit aberrant circadian rhythms in physiology and behavior, it is possible that the methodology being used to induce the behavioral phenotype (e.g., brain lesions, chronic stress, global gene deletion affect behavior independently of circadian system. This study investigates the relationship between individual differences in circadian locomotor parameters and mood-related behaviors in healthy rats. The circadian phenotype of male Lewis rats was characterized by analyzing wheel running behavior under standard 12h:12h LD conditions, constant dark, constant light, and rate of re-entrainment to a phase advance. Rats were then tested on a battery of behavioral tests: activity box, restricted feeding, elevated plus maze, forced swim test, and fear conditioning. Under 12h:12h LD conditions, percent of daily activity in the light phase and variability in activity onset were associated with longer latency to immobility in the forced swim test. Variability in onset also correlated positively with anxiety-like behavior in the elevated plus maze. Rate of re-entrainment correlated positively with measures of anxiety in the activity box and elevated plus maze. Lastly, we found that free running period under constant dark was associated with anxiety-like behaviors in the activity box and elevated plus maze. Our results provide a previously uncharacterized relationship between circadian locomotor parameters and mood-related behaviors in healthy rats and provide a basis for future examination into circadian clock

  5. Modelling and analysis of the feeding regimen induced entrainment of hepatocyte circadian oscillators using petri nets.

    Directory of Open Access Journals (Sweden)

    Samar Hayat Khan Tareen

    Full Text Available Circadian rhythms are certain periodic behaviours exhibited by living organism at different levels, including cellular and system-wide scales. Recent studies have found that the circadian rhythms of several peripheral organs in mammals, such as the liver, are able to entrain their clocks to received signals independent of other system level clocks, in particular when responding to signals generated during feeding. These studies have found SIRT1, PARP1, and HSF1 proteins to be the major influencers of the core CLOCKBMAL1:PER-CRY circadian clock. These entities, along with abstracted feeding induced signals were modelled collectively in this study using Petri Nets. The properties of the model show that the circadian system itself is strongly robust, and is able to continually evolve. The modelled feeding regimens suggest that the usual 3 meals/day and 2 meals/day feeding regimens are beneficial with any more or less meals/day negatively affecting the system.

  6. Modelling and Analysis of the Feeding Regimen Induced Entrainment of Hepatocyte Circadian Oscillators Using Petri Nets

    Science.gov (United States)

    Tareen, Samar Hayat Khan; Ahmad, Jamil

    2015-01-01

    Circadian rhythms are certain periodic behaviours exhibited by living organism at different levels, including cellular and system-wide scales. Recent studies have found that the circadian rhythms of several peripheral organs in mammals, such as the liver, are able to entrain their clocks to received signals independent of other system level clocks, in particular when responding to signals generated during feeding. These studies have found SIRT1, PARP1, and HSF1 proteins to be the major influencers of the core CLOCKBMAL1:PER-CRY circadian clock. These entities, along with abstracted feeding induced signals were modelled collectively in this study using Petri Nets. The properties of the model show that the circadian system itself is strongly robust, and is able to continually evolve. The modelled feeding regimens suggest that the usual 3 meals/day and 2 meals/day feeding regimens are beneficial with any more or less meals/day negatively affecting the system. PMID:25789928

  7. The Influence of Circadian Timing on Olfactory Sensitivity.

    Science.gov (United States)

    Herz, Rachel S; Van Reen, Eliza; Barker, David H; Hilditch, Cassie J; Bartz, Ashten L; Carskadon, Mary A

    2017-12-25

    Olfactory sensitivity has traditionally been viewed as a trait that varies according to individual differences but is not expected to change with one's momentary state. Recent research has begun to challenge this position and time of day has been shown to alter detection levels. Links between obesity and the timing of food intake further raise the issue of whether odor detection may vary as a function of circadian processes. To investigate this question, 37 (21 male) adolescents (M age = 13.7 years) took part in a 28-h forced desynchrony (FD) protocol with 17.5 h awake and 10.5 h of sleep, for 7 FD cycles. Odor threshold was measured using Sniffin' Sticks 6 times for each FD cycle (total threshold tests = 42). Circadian phase was determined by intrinsic period derived from dim light melatonin onsets. Odor threshold showed a significant effect of circadian phase, with lowest threshold occurring on average slightly after the onset of melatonin production, or about 1.5○ (approximately 21:08 h). Considerable individual variability was observed, however, peak olfactory acuity never occurred between 80.5○ and 197.5○ (~02:22-10:10 h). These data are the first to show that odor threshold is differentially and consistently influenced by circadian timing, and is not a stable trait. Potential biological relevance for connections between circadian phase and olfactory sensitivity are discussed. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Mechanism of the circadian clock in physiology

    Science.gov (United States)

    Richards, Jacob

    2013-01-01

    It has been well established that the circadian clock plays a crucial role in the regulation of almost every physiological process. It also plays a critical role in pathophysiological states including those of obesity and diabetes. Recent evidence has highlighted the potential for targeting the circadian clock as a potential drug target. New studies have also demonstrated the existence of “clock-independent effects” of the circadian proteins, leading to exciting new avenues of research in the circadian clock field in physiology. The goal of this review is to provide an introduction to and overview of the circadian clock in physiology, including mechanisms, targets, and role in disease states. The role of the circadian clocks in the regulation of the cardiovascular system, renal function, metabolism, the endocrine system, immune, and reproductive systems will be discussed. PMID:23576606

  9. Effects of microgravity on circadian rhythms in insects

    Science.gov (United States)

    Alpatov, A. M.; Hoban-Higgins, T. M.; Fuller, C. A.; Lazarev, A. O.; Rietveld, W. J.; Tschernyshev, V. B.; Tumurova, E. G.; Wassmer, G.; Zotov, V. A.

    1998-01-01

    The desert beetle Trigonoscelis gigas Reitt. was used as a biological model in studies that examined the effects of space flight on the circadian timing system. Results from studies aboard the Bion-10, Bion-11, and Photon-11 missions are reported. The control study is an ongoing Mir experiment. The studies indicate that the free-running period in beetles may be longer during space flight.

  10. Mathematical Models of the Circadian Sleep-Wake Cycle.

    Science.gov (United States)

    1984-05-01

    may also be involved in adjustments of sleep -wake periodicity to conscious or subconscious habits , to shiftwork, and to Wever’s forced- sleep schedules...probably keeps running under LD control. Such force of external conditions and daily habits may affect the threshold system such that sleep ...A0 A145 712 MAIHEMATICAL MODELS Or ItE CIRCADIAN SLEEP -WAKE CYCLE i/ ll HARVARD MEDICAL SCHOOL BOSTON MA DEPT OF PHYSIOLOGY AND BIOPllVSICS U C MOORE

  11. Circadian modulation of gene expression, but not glutamate uptake, in mouse and rat cortical astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Beaulé

    2009-10-01

    Full Text Available Circadian clocks control daily rhythms including sleep-wake, hormone secretion, and metabolism. These clocks are based on intracellular transcription-translation feedback loops that sustain daily oscillations of gene expression in many cell types. Mammalian astrocytes display circadian rhythms in the expression of the clock genes Period1 (Per1 and Period2 (Per2. However, a functional role for circadian oscillations in astrocytes is unknown. Because uptake of extrasynaptic glutamate depends on the presence of Per2 in astrocytes, we asked whether glutamate uptake by glia is circadian.We measured glutamate uptake, transcript and protein levels of the astrocyte-specific glutamate transporter, Glast, and the expression of Per1 and Per2 from cultured cortical astrocytes and from explants of somatosensory cortex. We found that glutamate uptake and Glast mRNA and protein expression were significantly reduced in Clock/Clock, Per2- or NPAS2-deficient glia. Uptake was augmented when the medium was supplemented with dibutyryl-cAMP or B27. Critically, glutamate uptake was not circadian in cortical astrocytes cultured from rats or mice or in cortical slices from mice.We conclude that glutamate uptake levels are modulated by CLOCK, PER2, NPAS2, and the composition of the culture medium, and that uptake does not show circadian variations.

  12. Hierarchical organization of the circadian timing system

    OpenAIRE

    Steensel, Mariska van

    2006-01-01

    In order to cope with and to predict 24-hour rhythms in the environment, most, if not all, organisms have a circadian timing system. The most important mammalian circadian pacemaker is located in the suprachiasmatic nucleus at the base of the hypothalamus in the brain. Over the years, it has become clear that the circadian system is complex and that additional oscillators exist, both within and outside the central nervous system. The aim of this thesis was to obtain insight in the hierarchica...

  13. Polyporus and Bupleuri radix effectively alter peripheral circadian clock phase acutely in male mice.

    Science.gov (United States)

    Motohashi, Hiroaki; Sukigara, Haruna; Tahara, Yu; Saito, Keisuke; Yamazaki, Mayu; Shiraishi, Takuya; Kikuchi, Yosuke; Haraguchi, Atsushi; Shibata, Shigenobu

    2017-07-01

    In mammals, daily physiological events are precisely regulated by an internal circadian clock system. An important function of this system is to readjust the phase of the clock daily. In Japan, traditional herb medicines, so-called crude drugs (Shoyaku), are widely used for many diseases, and some are reported to affect circadian clock impairment, suggesting that some of them might have an ability to modify clock gene expression rhythms. Therefore, from selected 40 crude drugs, finding candidates that control the circadian clock phases was the first purpose of this study. As there are several crude drugs used for liver- and/or kidney-related diseases, the second aim of the present study was to find some crude drugs affecting liver/kidney circadian clock in vivo. To assess phase changes in the daily circadian rhythm, bioluminescence from the core clock gene product Period 2 was continuously monitored in mouse embryonic fibroblasts in vitro and in some peripheral tissues (kidney, liver, and submandibular gland) of PERIOD2::LUCIFERASE knock-in mice in vivo. In our screening, Polyporus and Bupleuri radix were found to be good candidates to effectively manipulate the peripheral circadian clock phase acutely, with stimulation time-of-day dependency in vitro as well as in vivo. Interestingly, Polyporus and Bupleuri radix are traditional herb medicines use for treating edema and promoting diuresis, and for chronic hepatitis, respectively. These crude drugs may be therefore good modulators of the circadian peripheral clocks including liver and kidney, and circadian clock genes become new molecular targets for these crude drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Smith-Magenis syndrome results in disruption of CLOCK gene transcription and reveals an integral role for RAI1 in the maintenance of circadian rhythmicity.

    Science.gov (United States)

    Williams, Stephen R; Zies, Deborah; Mullegama, Sureni V; Grotewiel, Michael S; Elsea, Sarah H

    2012-06-08

    Haploinsufficiency of RAI1 results in Smith-Magenis syndrome (SMS), a disorder characterized by intellectual disability, multiple congenital anomalies, obesity, neurobehavioral abnormalities, and a disrupted circadian sleep-wake pattern. An inverted melatonin rhythm (i.e., melatonin peaks during the day instead of at night) and associated sleep-phase disturbances in individuals with SMS, as well as a short-period circadian rhythm in mice with a chromosomal deletion of Rai1, support SMS as a circadian-rhythm-dysfunction disorder. However, the molecular cause of the circadian defect in SMS has not been described. The circadian oscillator temporally orchestrates metabolism, physiology, and behavior largely through transcriptional modulation. Data support RAI1 as a transcriptional regulator, but the genes it might regulate are largely unknown. Investigation into the role that RAI1 plays in the regulation of gene transcription and circadian maintenance revealed that RAI1 regulates the transcription of circadian locomotor output cycles kaput (CLOCK), a key component of the mammalian circadian oscillator that transcriptionally regulates many critical circadian genes. Data further show that haploinsufficiency of RAI1 and Rai1 in SMS fibroblasts and the mouse hypothalamus, respectively, results in the transcriptional dysregulation of the circadian clock and causes altered expression and regulation of multiple circadian genes, including PER2, PER3, CRY1, BMAL1, and others. These data suggest that heterozygous mutation of RAI1 and Rai1 leads to a disrupted circadian rhythm and thus results in an abnormal sleep-wake cycle, which can contribute to an abnormal feeding pattern and dependent cognitive performance. Finally, we conclude that RAI1 is a positive transcriptional regulator of CLOCK, pinpointing a novel and important role for this gene in the circadian oscillator. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Safe Cosmetic Leg Lengthening for Short Stature: Long-term Outcomes.

    Science.gov (United States)

    Elbatrawy, Yasser; Ragab, Ibrahim Mohammed A

    2015-07-01

    It is well known that limb lengthening is performed to treat limb-length discrepancies resulting from congenital anomalies and developmental problems. However, few studies discuss lengthening for cosmetic purposes. The current authors conducted a prospective study with long-term follow-up. From July 2002 through June 2007, 133 patients requested that their height be increased. Fifty-two were approved to undergo limb-lengthening surgery. Two were lost to final follow-up, leaving 50 in the study group. For all patients, the Ilizarov ring external fixator was applied with a maximum-stability technique that achieved frame stability and allowed patients to ambulate with a walker from the first week postoperatively. The method requires close follow-up for early detection of problems. Physiotherapy improved ankle function and prevented plantar flexion deformity, which can occur during lengthening. Excellent final outcomes were achieved in all patients except one, who required additional surgery. The Ilizarov device is a safe tool for limb lengthening in individuals of short stature when applied with the authors' maximum stability technique. To the authors' knowledge, this is the first article on this topic to report long-term results (minimum 5-year follow-up for all patients). Many factors influence the outcome of lengthening surgery performed with Ilizarov devices: the material of the rings, the use of a hybrid technique combining pins and wires, the diameter and number of pins over each bone segment, the size of the rings around the limb, the surgical technique for pin insertion, and the use of hydroxyapatite-coated pins or regular stainless pins. Copyright 2015, SLACK Incorporated.

  16. Limb lengthening in children with Russell-Silver syndrome: a comparison to other etiologies.

    Science.gov (United States)

    Goldman, V; McCoy, T H; Harbison, M D; Fragomen, A T; Rozbruch, S R

    2013-03-01

    Russell-Silver syndrome (RSS) is the combination of intrauterine growth retardation, difficulty feeding, and postnatal growth retardation. Leg length discrepancy (LLD) is one of four major diagnostic criteria of RSS and is present in most cases. We aimed to ascertain whether pediatric RSS patients will adequately consolidate bony regenerate following leg lengthening. We retrospectively reviewed pediatric RSS patients who underwent limb lengthening and compared them to a similar group of patients with LLD resulting from tumor, trauma, or congenital etiology. The primary outcome measurement was the bone healing index (BHI). The RSS group included seven lengthened segments in five patients; the comparison group included 21 segments in 19 patients. The groups had similar lengthening amounts (3.3 vs. 3.9 cm, p = 0.507). The RSS group healed significantly faster (lower BHI) than the control group (BHI 29 vs. 43 days/cm, p = 0.028). Secondary analysis showed no difference between RSS and trauma patients in terms of the BHI (29 vs. 31); however, the BHI of the RSS group was significantly lower than both of the other congenital etiologies (29 vs. 41, p = 0.032) and tumor patients (29 vs. 66, p = 0.019). The RSS patients had fewer and less significant complications than the controls. The limb lengthening regenerate healing of RSS patients is faster than the healing of patients with other congenital etiologies and tumor patients, and is as fast as the regenerate healing of patients with posttraumatic LLD. Although all RSS patients were treated with human growth hormone (hGH), we are unable to isolate the hGH contribution to the regenerate bone healing. We conclude that RSS patients can have safe limb lengthening.

  17. Molecular Mechanisms of Circadian Regulation During Spaceflight

    Science.gov (United States)

    Zanello, S. B.; Boyle, R.

    2012-01-01

    The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ip

  18. Circadian rhythms of Per2::Luc in individual primary mouse hepatocytes and cultures.

    Directory of Open Access Journals (Sweden)

    Casey J Guenthner

    Full Text Available BACKGROUND: Hepatocytes, the parenchymal cells of the liver, express core clock genes, such as Period2 and Cryptochrome2, which are involved in the transcriptional/translational feedback loop of the circadian clock. Whether or not the liver is capable of sustaining rhythms independent of a central pacemaker is controversial. Whether and how circadian information may be shared among cells in the liver in order to sustain oscillations is currently unknown. RESULTS: In this study we isolated primary hepatocytes from transgenic Per2(Luc mice and used bioluminescence as a read-out of the state of the circadian clock. Hepatocytes cultured in a collagen gel sandwich configuration exhibited persistent circadian rhythms for several weeks. The amplitude of the rhythms damped, but medium changes consistently reset the phase and amplitude of the cultures. Cry2(-/- Per2(Luc cells oscillated robustly and expressed a longer period. Co-culturing with wildtype cells did not significantly shorten the period, indicating that coupling among hepatocytes is insufficient to synchronize cells with significantly differing periods. However, spatial patterns revealed by cellular imaging of wildtype cultures provided evidence of weak local coupling among the hepatocytes. CONCLUSIONS: Our results with primary hepatocyte cultures demonstrate that cultured hepatocytes are weakly coupled. While this coupling is not sufficient to sustain global synchrony, it does increase local synchrony, which may stabilize the circadian rhythms of peripheral oscillators, such as the liver, against noise in the entraining signals.

  19. The Role of Mammalian Glial Cells in Circadian Rhythm Regulation

    Directory of Open Access Journals (Sweden)

    Donají Chi-Castañeda

    2017-01-01

    Full Text Available Circadian rhythms are biological oscillations with a period of about 24 hours. These rhythms are maintained by an innate genetically determined time-keeping system called the circadian clock. A large number of the proteins involved in the regulation of this clock are transcription factors controlling rhythmic transcription of so-called clock-controlled genes, which participate in a plethora of physiological functions in the organism. In the brain, several areas, besides the suprachiasmatic nucleus, harbor functional clocks characterized by a well-defined time pattern of clock gene expression. This expression rhythm is not restricted to neurons but is also present in glia, suggesting that these cells are involved in circadian rhythmicity. However, only certain glial cells fulfill the criteria to be called glial clocks, namely, to display molecular oscillators based on the canonical clock protein PERIOD, which depends on the suprachiasmatic nucleus for their synchronization. In this contribution, we summarize the current information about activity of the clock genes in glial cells, their potential role as oscillators as well as clinical implications.

  20. Internal noise-sustained circadian rhythms in a Drosophila model.

    Science.gov (United States)

    Li, Qianshu; Lang, Xiufeng

    2008-03-15

    Circadian rhythmic processes, mainly regulated by gene expression at the molecular level, have inherent stochasticity. Their robustness or resistance to internal noise has been extensively investigated by most of the previous studies. This work focuses on the constructive roles of internal noise in a reduced Drosophila model, which incorporates negative and positive feedback loops, each with a time delay. It is shown that internal noise sustains reliable oscillations with periods close to 24 h in a region of parameter space, where the deterministic kinetics would evolve to a stable steady state. The amplitudes of noise-sustained oscillations are significantly affected by the variation of internal noise level, and the best performance of the oscillations could be found at an optimal noise intensity, indicating the occurrence of intrinsic coherence resonance. In the oscillatory region of the deterministic model, the coherence of noisy circadian oscillations is suppressed by internal noise, while the period remains nearly constant over a large range of noise intensity, demonstrating robustness of the Drosophila model for circadian rhythms to intrinsic noise. In addition, the effects of time delay in the positive feedback on the oscillations are also investigated. It is found that the time delay could efficiently tune the performance of the noise-sustained oscillations. These results might aid understanding of the exploitation of intracellular noise in biochemical and genetic regulatory systems.

  1. Circadian Modulation of Consolidated Memory Retrieval Following Sleep Deprivation in Drosophila

    Science.gov (United States)

    Glou, Eric Le; Seugnet, Laurent; Shaw, Paul J.; Preat, Thomas; Goguel, Valérie

    2012-01-01

    Objectives: Several lines of evidence indicate that sleep plays a critical role in learning and memory. The aim of this study was to evaluate anesthesia resistant memory following sleep deprivation in Drosophila. Design: Four to 16 h after aversive olfactory training, flies were sleep deprived for 4 h. Memory was assessed 24 h after training. Training, sleep deprivation, and memory tests were performed at different times during the day to evaluate the importance of the time of day for memory formation. The role of circadian rhythms was further evaluated using circadian clock mutants. Results Memory was disrupted when flies were exposed to 4 h of sleep deprivation during the consolidation phase. Interestingly, normal memory was observed following sleep deprivation when the memory test was performed during the 2 h preceding lights-off, a period characterized by maximum wake in flies. We also show that anesthesia resistant memory was less sensitive to sleep deprivation in flies with disrupted circadian rhythms. Conclusions Our results indicate that anesthesia resistant memory, a consolidated memory less costly than long-term memory, is sensitive to sleep deprivation. In addition, we provide evidence that circadian factors influence memory vulnerability to sleep deprivation and memory retrieval. Taken together, the data show that memories weakened by sleep deprivation can be retrieved if the animals are tested at the optimal circadian time. Citation: Le Glou E; Seugnet L; Shaw PJ; Preat T; Goguel V. Circadian modulation of consolidated memory retrieval following sleep deprivation in Drosophila. SLEEP 2012;35(10):1377-1384. PMID:23024436

  2. The Trade-Off Mechanism in Mammalian Circadian Clock Model with Two Time Delays

    Science.gov (United States)

    Yan, Jie; Kang, Xiaxia; Yang, Ling

    Circadian clock is an autonomous oscillator which orchestrates the daily rhythms of physiology and behaviors. This study is devoted to explore how a positive feedback loop affects the dynamics of mammalian circadian clock. We simplify an experimentally validated mathematical model in our previous work, to a nonlinear differential equation with two time delays. This simplified mathematical model incorporates the pacemaker of mammalian circadian clock, a negative primary feedback loop, and a critical positive auxiliary feedback loop, Rev-erbα/Cry1 loop. We perform analytical studies of the system. Delay-dependent conditions for the asymptotic stability of the nontrivial positive steady state of the model are investigated. We also prove the existence of Hopf bifurcation, which leads to self-sustained oscillation of mammalian circadian clock. Our theoretical analyses show that the oscillatory regime is reduced upon the participation of the delayed positive auxiliary loop. However, further simulations reveal that the auxiliary loop can enable the circadian clock gain widely adjustable amplitudes and robust period. Thus, the positive auxiliary feedback loop may provide a trade-off mechanism, to use the small loss in the robustness of oscillation in exchange for adaptable flexibility in mammalian circadian clock. The results obtained from the model may gain new insights into the dynamics of biological oscillators with interlocked feedback loops.

  3. PPARα is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders

    International Nuclear Information System (INIS)

    Shirai, Hidenori; Oishi, Katsutaka; Kudo, Takashi; Shibata, Shigenobu; Ishida, Norio

    2007-01-01

    Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPARα) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPARα ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3 h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate also advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erbα was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPARα is involved in circadian clock control independently of the SCN and that PPARα could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS

  4. An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA.

    Directory of Open Access Journals (Sweden)

    Guo-Xiang Ruan

    2008-10-01

    Full Text Available The influence of the mammalian retinal circadian clock on retinal physiology and function is widely recognized, yet the cellular elements and neural regulation of retinal circadian pacemaking remain unclear due to the challenge of long-term culture of adult mammalian retina and the lack of an ideal experimental measure of the retinal circadian clock. In the current study, we developed a protocol for long-term culture of intact mouse retinas, which allows retinal circadian rhythms to be monitored in real time as luminescence rhythms from a PERIOD2::LUCIFERASE (PER2::LUC clock gene reporter. With this in vitro assay, we studied the characteristics and location within the retina of circadian PER2::LUC rhythms, the influence of major retinal neurotransmitters, and the resetting of the retinal circadian clock by light. Retinal PER2::LUC rhythms were routinely measured from whole-mount retinal explants for 10 d and for up to 30 d. Imaging of vertical retinal slices demonstrated that the rhythmic luminescence signals were concentrated in the inner nuclear layer. Interruption of cell communication via the major neurotransmitter systems of photoreceptors and ganglion cells (melatonin and glutamate and the inner nuclear layer (dopamine, acetylcholine, GABA, glycine, and glutamate did not disrupt generation of retinal circadian PER2::LUC rhythms, nor did interruption of intercellular communication through sodium-dependent action potentials or connexin 36 (cx36-containing gap junctions, indicating that PER2::LUC rhythms generation in the inner nuclear layer is likely cell autonomous. However, dopamine, acting through D1 receptors, and GABA, acting through membrane hyperpolarization and casein kinase, set the phase and amplitude of retinal PER2::LUC rhythms, respectively. Light pulses reset the phase of the in vitro retinal oscillator and dopamine D1 receptor antagonists attenuated these phase shifts. Thus, dopamine and GABA act at the molecular level of PER

  5. Identification of the molecular components of a Tigriopus californicus (Crustacea, Copepoda) circadian clock.

    Science.gov (United States)

    Nesbit, Katherine T; Christie, Andrew E

    2014-12-01

    Copepods of the genus Tigriopus have been proposed as marine models for investigations of environmental perturbation. One rapidly increasing anthropogenic stressor for intertidal organisms is light pollution. Given the sensitivity of circadian rhythms to exogenous light, the genes/proteins of a Tigriopus circadian pacemaker represent a potential system for investigating the influences of artificial light sources on circadian behavior in an intertidal species. Here, the molecular components of a putative Tigriopus californicus circadian clock were identified using publicly accessible transcriptome data; the recently deduced circadian proteins of the copepod Calanus finmarchicus were used as a reference. Transcripts encoding homologs of all commonly recognized ancestral arthropod core clock proteins were identified (i.e. CLOCK, CRYPTOCHROME 2, CYCLE, PERIOD and TIMELESS), as were ones encoding proteins likely to modulate the core clock (i.e. CASEIN KINASE II, CLOCKWORK ORANGE, DOUBLETIME, PROTEIN PHOSPHATASE 1, PROTEIN PHOSPHATASE 2A, SHAGGY, SUPERNUMERARY LIMBS and VRILLE) or to act as inputs to it (i.e. CRYPTOCHROME 1). PAR DOMAIN PROTEIN 1 was the only circadian-associated protein not identified in Tigriopus; it appears absent in Calanus too. These data represent just the third full set of molecular components for a crustacean circadian pacemaker (Daphnia pulex and C. finmarchicus previously), and only the second obtained from transcribed sequences (C. finmarchicus previously). Given Tigriopus' proposed status as a model for investigating the influences of anthropogenic stressors in the marine environment, these data provide the first suite of gene/protein targets for understanding how light pollution may influence circadian physiology and behavior in an intertidal organism. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The Drosophila melanogaster circadian pacemaker circuit

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... As an experimental model system, the fruit fly Drosophila melanogaster has been seminal in shaping our understanding of the circadian clockwork. The wealth of genetic tools at our disposal over the past four decades has enabled discovery of the genetic and molecular bases of circadian rhythmicity.

  7. The Drosophila melanogaster circadian pacemaker circuit

    Indian Academy of Sciences (India)

    2008-12-07

    Dec 7, 2008 ... system for the study of circadian rhythms primarily due to the availability of molecular genetic tools that enabled iden- tification of genes, proteins and neuronal groups that are es- sential components of the circadian machinery. Further, D. melanogaster exhibits robust and relatively easily measur-.

  8. Hierarchical organization of the circadian timing system

    NARCIS (Netherlands)

    Steensel, Mariska van

    2006-01-01

    In order to cope with and to predict 24-hour rhythms in the environment, most, if not all, organisms have a circadian timing system. The most important mammalian circadian pacemaker is located in the suprachiasmatic nucleus at the base of the hypothalamus in the brain. Over the years, it has become

  9. The Neurospora circadian clock : simple or complex?

    NARCIS (Netherlands)

    Bell-Pedersen, Deborah; Crosthwaite, Susan K.; Lakin-Thomas, Patricia L.; Merrow, Martha; Økland, Merete

    2001-01-01

    The fungus Neurospora crassa is being used by a number of research groups as a model organism to investigate circadian (daily) rhythmicity. In this review we concentrate on recent work relating to the complexity of the circadian system in this organism. We discuss: the advantages of Neurospora as a

  10. The Drosophila melanogaster circadian pacemaker circuit

    Indian Academy of Sciences (India)

    2008-12-07

    Dec 7, 2008 ... large variety of tissues in the fly such as the eye, brain, pro- boscis, antennae, wings, abdomen, Malpighian tubules and testes (Plautz et al. 1997; Giebultowicz 2001). Although cell-autonomous circadian function is attributed to several tissues in Drosophila, circadian pacemaker neurons located in the brain ...

  11. Development of cortisol circadian rhythm in infancy.

    NARCIS (Netherlands)

    Weerth, C. de; Zijl, R.H.

    2003-01-01

    BACKGROUND AND AIMS: Cortisol is the final product of the hypothalamus-pituitary-adrenal (HPA) axis. It is secreted in a pulsatile fashion that displays a circadian rhythm. Infants are born without a circadian rhythm in cortisol and they acquire it during their first year of life. Studies do not

  12. Digital signal processing reveals circadian baseline oscillation in majority of mammalian genes.

    Directory of Open Access Journals (Sweden)

    Andrey A Ptitsyn

    2007-06-01

    Full Text Available In mammals, circadian periodicity has been described for gene expression in the hypothalamus and multiple peripheral tissues. It is accepted that 10%-15% of all genes oscillate in a daily rhythm, regulated by an intrinsic molecular clock. Statistical analyses of periodicity are limited by the small size of datasets and high levels of stochastic noise. Here, we propose a new approach applying digital signal processing algorithms separately to each group of genes oscillating in the same phase. Combined with the statistical tests for periodicity, this method identifies circadian baseline oscillation in almost 100% of all expressed genes. Consequently, circadian oscillation in gene expression should be evaluated in any study related to biological pathways. Changes in gene expression caused by mutations or regulation of environmental factors (such as photic stimuli or feeding should be considered in the context of changes in the amplitude and phase of genetic oscillations.

  13. Circadian Clock Involvement in Zooplankton Diel Vertical Migration.

    Science.gov (United States)

    Häfker, N Sören; Meyer, Bettina; Last, Kim S; Pond, David W; Hüppe, Lukas; Teschke, Mathias

    2017-07-24

    Biological clocks are a ubiquitous ancient and adaptive mechanism enabling organisms to anticipate environmental cycles and to regulate behavioral and physiological processes accordingly [1]. Although terrestrial circadian clocks are well understood, knowledge of clocks in marine organisms is still very limited [2-5]. This is particularly true for abundant species displaying large-scale rhythms like diel vertical migration (DVM) that contribute significantly to shaping their respective ecosystems [6]. Here we describe exogenous cycles and endogenous rhythms associated with DVM of the ecologically important and highly abundant planktic copepod Calanus finmarchicus. In the laboratory, C. finmarchicus shows circadian rhythms of DVM, metabolism, and most core circadian clock genes (clock, period1, period2, timeless, cryptochrome2, and clockwork orange). Most of these genes also cycle in animals assessed in the wild, though expression is less rhythmic at depth (50-140 m) relative to shallow-caught animals (0-50 m). Further, peak expressions of clock genes generally occurred at either sunset or sunrise, coinciding with peak migration times. Including one of the first field investigations of clock genes in a marine species [5, 7], this study couples clock gene measurements with laboratory and field data on DVM. While the mechanistic connection remains elusive, our results imply a high degree of causality between clock gene expression and one of the planet's largest daily migrations of biomass. We thus suggest that circadian clocks increase zooplankton fitness by optimizing the temporal trade-off between feeding and predator avoidance, especially when environmental drivers are weak or absent [8]. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Circadian oscillators in the mouse brain

    DEFF Research Database (Denmark)

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-01-01

    The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators...... residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice...... and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes...

  15. Comparative bioavailability of ferrous succinate tablet formulations without correction for baseline circadian changes in iron concentration in healthy Chinese male subjects: a single-dose, randomized, 2-period crossover study.

    Science.gov (United States)

    Cao, Guo-Ying; Li, Ke-Xin; Jin, Peng-Fei; Yue, Xiang-Yang; Yang, Chen; Hu, Xin

    2011-12-01

    Ferrous succinate is used for the treatment of iron deficiency anemia. Determining the bioavailability of iron products is a challenge, because iron is naturally present in the blood and some tissues. Therefore, bioequivalence evaluation of ferrous formulations can be affected by the presence of endogenous iron species. Little information regarding the pharmacokinetics of ferrous supplements is available in the healthy Chinese population. The aim of the study was to assess the comparative bioavailability of 200-mg of a test (ferrous succinate,100 mg × 2, Hunan Huana Pharmaceutical Co., Ltd., Hunan, China) and reference (Sulifei, 100 mg × 2, Nanjing Jinling Pharmaceutical Co., Ltd., Nanjing, China) formulation in healthy Chinese male subjects. The study was conducted to meet Chinese State Food and Drug Administration regulatory requirements for approval of a generic formulation of ferrous succinate. This study utilized a single-dose randomized, 2-period, crossover design with alternate assignment of subjects to treatment (a single 200-mg [100 mg × 2]) or reference formulation groups. Both groups underwent a 4-day diet equilibration before 2 days of treatment and, finally, a 4-day washout period for the bioequivalence study. Blood samples were collected at 8:00 am on every diet equilibration day, 0 (baseline), 1, 2, 3, 4, 4.5, 5, 6, 9, 12, 24, and 36 hours after drug administration. Iron concentrations were determined using an inductively coupled plasma mass spectrometry. Subjects in both groups were given a standardized diet, with known amounts of iron and calories. The formulations were assumed to be bioequivalent if the 90% CI ratios for C(max) were within 70% to 143% and AUC(0-last) were within 80% to 125%-criteria established by the Chinese Food and Drug Administration. Tolerability was monitored throughout the study by assessing clinical parameters (vital signs, chemistry laboratory) and subject reports. Twenty healthy Han Chinese male subjects (mean age, 26

  16. Insulin resistance and circadian rhythm of cardiac autonomic modulation

    Directory of Open Access Journals (Sweden)

    Cai Jianwen

    2010-12-01

    Full Text Available Abstract Background Insulin resistance (IR has been associated with cardiovascular diseases (CVD. Heart rate variability (HRV, an index of cardiac autonomic modulation (CAM, is also associated with CVD mortality and CVD morbidity. Currently, there are limited data about the impairment of IR on the circadian pattern of CAM. Therefore, we conducted this investigation to exam the association between IR and the circadian oscillations of CAM in a community-dwelling middle-aged sample. Method Homeostasis models of IR (HOMA-IR, insulin, and glucose were used to assess IR. CAM was measured by HRV analysis from a 24-hour electrocardiogram. Two stage modeling was used in the analysis. In stage one, for each individual we fit a cosine periodic model based on the 48 segments of HRV data. We obtained three individual-level cosine parameters that quantity the circadian pattern: mean (M, measures the overall average of a HRV index; amplitude (Â, measures the amplitude of the oscillation of a HRV index; and acrophase time (θ, measures the timing of the highest oscillation. At the second stage, we used a random-effects-meta-analysis to summarize the effects of IR variables on the three circadian parameters of HRV indices obtained in stage one of the analysis. Results In persons without type diabetes, the multivariate adjusted β (SE of log HOMA-IR and M variable for HRV were -0.251 (0.093, -0.245 (0.078, -0.19 (0.06, -4.89 (1.76, -3.35 (1.31, and 2.14 (0.995, for log HF, log LF, log VLF, SDNN, RMSSD and HR, respectively (all P Conclusion Elevated IR, among non-diabetics significantly impairs the overall mean levels of CAM. However, the  or θ of CAM were not significantly affected by IR, suggesting that the circadian mechanisms of CAM are not impaired. However, among persons with type 2 diabetes, a group clinically has more severe form of IR, the adverse effects of increased IR on all three HRV circadian parameters are much larger.

  17. Dynamical mechanism of Bmal 1 / Rev- erbα loop in circadian clock

    Science.gov (United States)

    Li, Ying; Liu, Zengrong

    2015-07-01

    In mammals, the circadian clock is driven by multiple integrated transcriptional feedback loops involving three kinds of central clock-controlled elements (CCEs): E-boxes, D-boxes and ROR-elements. With the aid of CCEs, the concentrations of the active proteins are approximated by the delayed concentrations of mRNAs, which simplifies the circadian system drastically. The regulatory loop composed by BMAL1 and REV-ERB- α plays important roles in circadian clock. With delay differential equations, we gave a mathematical model of this loop and investigated its dynamical mechanisms. Specially, we theoretically provided the sufficient conditions for sustained oscillation of the loop with Hopf bifurcation theory. The total of delays determines the emergence of oscillators, which explains the crucial roles of delays in circadian clock revealed by biological experiments. Numerically, we studied the amplitude and period against the variations of delays and the degradation rates. The different sensitivities of amplitude and period on these factors provide ideas to adjust the amplitude or period of circadian oscillators.

  18. Recovery time of motor evoked potentials following lengthening and shortening muscle action in the tibialis anterior

    NARCIS (Netherlands)

    Tallent, J.; Goodall, S.; Hortobagyi, T.; Gibson, A. St Clair; French, D. N.; Howatson, G.

    Motor evoked potentials (MEP) at rest remain facilitated following an isometric muscle contraction. Because the pre-synaptic and post-synaptic control of shortening (SHO) and lengthening (LEN) contractions differs, the possibility exists that the recovery of the MEP is also task specific. The time

  19. Reduction in primary genu recurvatum gait after aponeurotic calf muscle lengthening during multilevel surgery.

    Science.gov (United States)

    Klotz, M C M; Wolf, S I; Heitzmann, D; Krautwurst, B; Braatz, F; Dreher, T

    2013-11-01

    Knee hyperextension (genu recurvatum, GR) is often seen in children with bilateral spastic cerebral palsy (CP). Primary GR appears essential without previous treatment. As equinus deformity is suspected to be one of the main factors evoking primary GR, the purpose of this study was to determine whether lengthening the calf muscles to decrease equinus would decrease coexisting GR in children with bilateral spastic CP. In a retrospective study, 19 CP patients with primary GR (mean age: 9.4 years, 13 male, 6 female, 26 involved limbs) in whom an aponeurotic calf muscle lengthening procedure was performed during single-event multilevel surgery were included and investigated using three-dimensional gait analysis before and at a mean follow-up of 14 months after the procedure according to a standardized protocol. After calf muscle lengthening, a significant improvement in ankle dorsiflexion (9.5°) and a significant reduction (10.5°) in knee hyperextension (pcalf muscle lengthening can effectively reduce GR in patients with CP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Three-dimensional virtual model and animation of penile lengthening surgery.

    Science.gov (United States)

    Wang, Ruiheng; Yang, Dongyun; Li, Shirong

    2012-10-01

    Three-dimensional digital models, animations, and simulations have been used in the plastic surgical field for surgical education and training and patient education. In penile lengthening surgery, proper patient selection and well-designed surgical interventions are necessary; however, no such surgical or patient education tool exists. Using magnetic resonance images as references, a preliminary three-dimensional digital model of the penis with its adjacent structures was constructed using Amira 5. This preliminary model was imported into Maya 2009, a computer modeling and animation software program, for processing to correct many defects. The refined model was used to create digital animation of penile lengthening surgery, including ordered steps of the procedure, using Maya 2009 and Adobe After Effects CS4. A three-dimensional digital animation was created to illustrate penile lengthening surgery. All major surgical steps were demonstrated, including exposure, transversal incision of the fundiform ligament, partial division and release of the suspensory ligament. Three-dimensional digital models and animations of penile lengthening surgery may serve as resources for patient education to facilitate patient selection and resident education outside the operating room. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. Outcome of medial hamstring lengthening in children with spastic paresis: A biomechanical and morphological observational study

    NARCIS (Netherlands)

    Haberfehlner, Helga; Jaspers, Richard T.; Rutz, Erich; Harlaar, J.; Harlaar, Jaap; Van Der Sluijs, Johannes A.; Witbreuk, Melinda; van Hutten, Kim; Romkes, Jacqueline; Freslier, Marie; Brunner, Reinald; Becher, Jules G.; Maas, H.; Buizer, Annemieke I.

    2018-01-01

    To improve gait in children with spastic paresis due to cerebral palsy or hereditary spastic paresis, the semitendinosus muscle is frequently lengthened amongst other medial hamstring muscles by orthopaedic surgery. Side effects on gait due to weakening of the hamstring muscles and overcorrections

  2. Outcome of medial hamstring lengthening in children with spastic paresis : A biomechanical and morphological observational study

    NARCIS (Netherlands)

    Haberfehlner, Helga; Jaspers, Richard T.; Rutz, Erich; Harlaar, Jaap; Van Der Sluijs, Johannes A.; Witbreuk, Melinda M.; van Hutten, Kim; Romkes, Jacqueline; Freslier, Marie; Brunner, Reinald; Becher, Jules G.; Maas, Huub; Buizer, Annemieke I.

    2018-01-01

    To improve gait in children with spastic paresis due to cerebral palsy or hereditary spastic paresis, the semitendinosus muscle is frequently lengthened amongst other medial hamstring muscles by orthopaedic surgery. Side effects on gait due to weakening of the hamstring muscles and overcorrections

  3. Foot lengthening and shortening during gait: a parameter to investigate foot function?

    NARCIS (Netherlands)

    Stolwijk, N.M.; Koenraadt, K.L.M.; Louwerens, J.W.; Grim, D.; Duysens, J.E.J.; Keijsers, N.L.W.

    2014-01-01

    INTRODUCTION: Based on the windlass mechanism theory of Hicks, the medial longitudinal arch (MLA) flattens during weight bearing. Simultaneously, foot lengthening is expected. However, changes in foot length during gait and the influence of walking speed has not been investigated yet. METHODS: The

  4. Intraoral distraction osteogenesis to lengthen the ascending ramus - Experience with seven patients

    NARCIS (Netherlands)

    Jansma, J; Bierman, MWJ; Becking, AG

    2004-01-01

    Seven children with facial asymmetry, mean age 12 years (range 11-14.5) were treated by intraoral distraction osteogenesis to lengthen the hypoplastic ramus. We achieved a mean increase in length of the ramus of 13 mm (range 10-16). In only one patient did we achieve a posterior open bite on the

  5. Intraoral distraction osteogenesis to lengthen the ascending ramus. Experience with seven patients

    NARCIS (Netherlands)

    Jansma, Johan; Bierman, Michiel W. J.; Becking, Alfred G.

    2004-01-01

    Seven children with facial asymmetry, mean age 12 years (range 11-14.5) were treated by intraoral distraction osteogenesis to lengthen the hypoplastic ramus. We achieved a mean increase in length of the ramus of 13mm (range 10-16). In only one patient did we achieve a posterior open bite on the

  6. Leg Lengthening as a Means of Improving Ambulation Following an Internal Hemipelvectomy

    Directory of Open Access Journals (Sweden)

    Wakyo Sato

    2016-01-01

    Full Text Available Reconstructive surgery following an internal hemipelvectomy for a malignant pelvic tumor is difficult due to the structural complexity of the pelvis and the massive extension of the tumor. While high complication rates have been encountered in various types of reconstructive surgery, resection without reconstruction reportedly involved fewer complications. However, this method often results in limb shortening with resultant instability during walking. We reported herein leg lengthening performed to correct lower limb shortening after an internal hemipelvectomy, which improved ambulatory stability and overall QOL. An 18-year-old male patient came to our hospital to correct a lower limb discrepancy resulting from a left internal hemipelvectomy. His left pelvis and proximal femur had been resected, and the femur remained without an acetabular roof. His left lower limb was about 8 centimeters shorter. The left tibia was lengthened 8 centimeters with an external fixator. After the lengthening, the patient was able to walk without support and his gait remarkably improved. Additionally he no longer required placing a wallet in his back pocket as a pad as a means of raising the left side of his torso while sitting. Leg lengthening was a useful method of improving ambulation after an internal hemipelvectomy.

  7. Extent of palatal lengthening after cleft palate repair as a contributing factor to the speech outcome.

    Science.gov (United States)

    Bae, Yong-Chan; Choi, Soo-Jong; Lee, Jae-Woo; Seo, Hyoung-Joon

    2015-03-01

    Operative techniques in performing cleft palate repair have gradually evolved to achieve better speech ability with its main focus on palatal lengthening and accurate approximation of the velar musculature. The authors doubted whether the extent of palatal lengthening would be directly proportional to the speech outcome. Patients with incomplete cleft palates who went into surgery before 18 months of age were intended for this study. Cases with associated syndromes, mental retardation, hearing loss, or presence of postoperative complications were excluded from the analysis. Palatal length was measured by the authors' devised method before and immediately after the cleft palate repair. Postoperative speech outcome was evaluated around 4 years by a definite pronunciation scoring system. Statistical analysis was carried out between the extent of palatal lengthening and the postoperative pronunciation score by Spearman correlation coefficient method. However, the authors could not find any significant correlation. Although the need for additional research on other variables affecting speech outcome is unequivocal, we carefully conclude that other intraoperative constituents such as accurate reapproximation of the velar musculature should be emphasized more in cleft palate repair rather than palatal lengthening itself.

  8. Bunch lengthening with bifurcation in electron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-San; Hirata, Kohji [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    The mapping which shows equilibrium particle distribution in synchrotron phase space for electron storage rings is discussed with respect to some localized constant wake function based on the Gaussian approximation. This mapping shows multi-periodic states as well as double bifurcation in dynamical states of the equilibrium bunch length. When moving around parameter space, the system shows a transition/bifurcation which is not always reversible. These results derived by mapping are confirmed by multiparticle tracking. (author)

  9. Oral Crest Lengthening for Increasing Removable Denture Retention by Means of CO2 Laser

    Directory of Open Access Journals (Sweden)

    Samir Nammour

    2014-01-01

    Full Text Available The loss of teeth and their replacement by artificial denture is associated with many problems. The denture needs a certain amount of ridge height to give it retention and a long-term function. Crest lengthening procedures are performed to provide a better anatomic environment and to create proper supporting structures for more stability and retention of the denture. The purpose of our study is to describe and evaluate the effectiveness of CO2 laser-assisted surgery in patients treated for crest lengthening (vestibular deepening. There have been various surgical techniques described in order to restore alveolar ridge height by pushing muscles attaching of the jaws. Most of these techniques cause postoperative complications such as edemas, hemorrhage, pain, infection, slow healing, and rebound to initial position. Our clinical study describes the treatment planning and clinical steps for the crest lengthening with the use of CO2 laser beam (6–15 Watts in noncontact, energy density range: 84.92–212.31 J/cm2, focus, and continuous mode with a focal point diameter of 0.3 mm. At the end of each surgery, dentures were temporarily relined with a soft material. Patients were asked to mandatorily wear their relined denture for a minimum of 4–6 weeks and to remove it for hygienic purposes. At the end of each surgery, the deepest length of the vestibule was measured by the operator. No sutures were made and bloodless wounds healed in second intention without grafts. Results pointed out the efficiency of the procedure using CO2 laser. At 8 weeks of post-op, the mean of crest lengthening was stable without rebound. Only a loss of 15% was noticed. To conclude, the use of CO2 laser is an effective option for crest lengthening.

  10. The role of prominence in determining the scope of boundary-related lengthening in Greek.

    Science.gov (United States)

    Katsika, Argyro

    2016-03-01

    This study aims at examining and accounting for the scope of the temporal effect of phrase boundaries. Previous research has indicated that there is an interaction between boundary-related lengthening and prominence such that the former extends towards the nearby prominent syllable. However, it is unclear whether this interaction is due to lexical stress and/or phrasal prominence (marked by pitch accent) and how far towards the prominent syllable the effect extends. Here, we use an electromagnetic articulography (EMA) study of Greek to examine the scope of boundary-related lengthening as a function of lexical stress and pitch accent separately. Boundaries are elicited by the means of a variety of syntactic constructions.. The results show an effect of lexical stress. Phrase-final lengthening affects the articulatory gestures of the phrase-final syllable that are immediately adjacent to the boundary in words with final stress, but is initiated earlier within phrase-final words with non-final stress. Similarly, the articulatory configurations during inter-phrasal pauses reach their point of achievement later in words with final stress than in words with non-final stress. These effects of stress hold regardless of whether the phrase-final word is accented or de-accented. Phrase-initial lengthening, on the other hand, is consistently detected on the phrase-initial constriction, independently of where the stress is within the preceding, phrase-final, word. These results indicate that the lexical aspect of prominence plays a role in determining the scope of boundary-related lengthening in Greek. Based on these results, a gestural account of prosodic boundaries in Greek is proposed in which lexical and phrasal prosody interact in a systematic and coordinated fashion. The cross-linguistic dimensions of this account and its implications for prosodic structure are discussed.

  11. Callus features of regenerate fracture cases in femoral lengthening in achondroplasia

    Energy Technology Data Exchange (ETDEWEB)

    Devmurari, Kamlesh N.; Song, Hae Ryong; Modi, Hitesh N.; Venkatesh, K.P.; Ju, Kim Seung; Song, Sang Heon [Korea University Medical College, Institute for Rare Diseases and Department of Orthopedic Surgery, Seoul (Korea)

    2010-09-15

    We studied the callus features seen in cases of regenerate fracture in femoral lengthening using a monolateral fixator in achondroplasia to determine whether callus types and shapes can predict the probability of callus fracture. The radiographs of 28 cases of femoral lengthening in 14 patients, 14 cases of callus fracture, and 14 cases without callus fracture were retrospectively analyzed by four observers and classified into different shapes and types in concordance with the Ru Li classification. The average lengthening of 9.4 cm (range 7.5-11.8 cm) was achieved, which was 41% (range 30-55%) of the original length and the average timing of callus fracture was 470 days (range 440-545 days) after surgery in the callus fracture group. While the average lengthening of 9.1 cm (range 8-9.7 cm) was achieved, this was 30% (range 28-32%) of the original length in the group of patients without callus fracture. The callus was atypically shaped, there was a 48% average (range 30-72%) reduction of the callus width compared with the natural width of the femur, and a lucent pathway was present in all cases of regenerate fracture. A lucent pathway was seen in all fracture cases with concave, lateral, and atypical shapes, and there was more than 30% lengthening and 30% reduction of the callus width compared with the natural width of the femur, which are the warning signs for regenerate fractures. These signs help the surgeon to predict the outcome and guide him in planning for any additional interventions. The Ru Li classification is an effective method for the evaluation of the chance of callus fracture. (orig.)

  12. A Comparative Evaluation for Biologic Width following Surgical Crown Lengthening Using Gingivectomy and Ostectomy Procedure

    Directory of Open Access Journals (Sweden)

    Kiran Kumar Ganji

    2012-01-01

    Full Text Available Surgical crown lengthening has been proposed as a means of facilitating restorative procedures and preventing injuries in teeth with structurally inadequate clinical crown or exposing tooth structure in the presence of deep, subgingival pathologies which may hamper the access for proper restorative measures. Histological studies utilizing animal models have shown that postoperative crestal resorption allowed reestablishment of the biologic width. However, very little has been done in humans. Aims. The purpose of the study was to evaluate the potential changes in the periodontal tissues, particularly the biologic width, following surgical crown lengthening by two surgical procedures before and after crown placement. Methods and Material. Twenty (20 patients who needed surgical crown lengthening to gain retention necessary for prosthetic treatment and/or to access caries, tooth fracture, or previous prosthetic margins entered the study. The following parameters were obtained from line angles of treated teeth (teeth requiring surgical crown lengthening and adjacent sites: Plaque and Gingival Indices (PI & (GI, Position of Gingival Margin from reference Stent (PGMRS, Probing depth (PD, and Biologic Width (BW. Statistical Analysis Used. Student “t” Test. Results. Initial baseline values of biologic width were 2.55 mm (Gingivectomy procedure B1 Group and 1.95 mm (Ostectomy procedure B2 Group and after surgical procedure the values were 1.15 mm and 1.25 mm. Conclusions. Within the limitations of the study the biologic width, at treated sites, was re-established to its original vertical dimension by 3 months. Ostectomy with apically positioned flap can be considered as a more effective procedure than Gingivectomy for Surgical Crown Lengthening.

  13. Lengthening of the congenital short femur using the Ilizarov technique: a single-surgeon series.

    Science.gov (United States)

    Aston, W J S; Calder, P R; Baker, D; Hartley, J; Hill, R A

    2009-07-01

    We present a retrospective review of a single-surgeon series of 30 consecutive lengthenings in 27 patients with congenital short femur using the Ilizarov technique performed between 1994 and 2005. The mean increase in length was 5.8 cm/18.65% (3.3 to 10.4, 9.7% to 48.8%), with a mean time in the frame of 223 days (75 to 363). By changing from a distal to a proximal osteotomy for lengthening, the mean range of knee movement was significantly increased from 98.1 degrees to 124.2 degrees (p = 0.041) and there was a trend towards a reduced requirement for quadricepsplasty, although this was not statistically significant (p = 0.07). The overall incidence of regenerate deformation or fracture requiring open reduction and internal fixation was similar in the distal and proximal osteotomy groups (56.7% and 53.8%, respectively). However, in the proximal osteotomy group, pre-placement of a Rush nail reduced this rate from 100% without a nail to 0% with a nail (p < 0.001). When comparing a distal osteotomy with a proximal one over a Rush nail for lengthening, there was a significant decrease in fracture rate from 58.8% to 0% (p = 0.043). We recommend that in this group of patients lengthening of the femur with an Ilizarov construct be carried out through a proximal osteotomy over a Rush nail. Lengthening should also be limited to a maximum of 6 cm during one treatment, or 20% of the original length of the femur, in order to reduce the risk of complications.

  14. A biomechanical analysis of the effect of lateral column lengthening calcaneal osteotomy on the flat foot.

    Science.gov (United States)

    Arangio, George A; Chopra, Vikram; Voloshin, Arkady; Salathe, Eric P

    2007-05-01

    Biomechanical models have been used to study the plantar aponeurosis, medial arch height, subtalar motion, medial displacement calcaneal osteotomy, subtalar arthroereisis and the distribution of forces in the normal and flat foot. The objective was to examine the hypothesis that increased load on the medial arch in the adult flat foot can be reduced through a 10mm lateral column lengthening calcaneal osteotomy 10 mm proximal from the calcaneal cuboid joint. A three dimensional multisegment biomechanical model was used with anatomical data from a normal foot, a flat foot and a foot corrected with a 10mm lateral column lengthening calcaneal osteotomy. The response of a normal foot, a flat foot and a flat foot with a 10mm lateral column lengthening calcaneal osteotomy to an applied load of 683 N was analyzed using the biomechanical model. Data for the biomechanical model was obtained from a cadaver foot using the direct linear transformation method. Direct linear transformation uses multiple cameras to determine the spatial location of anatomical landmarks. Load on the first metatarsal increases to 37% body weight in the flat foot compared to 12% for the normal foot and the moment about the talo-navicular joint increases from 5.6 N m to 21.6 N m. Lateral column lengthening shifts the load toward the lateral column, decreasing load on the first metatarsal to 10% and decreasing the moment about the talo-navicular joint to 8.1 N m. The analysis shows that a 10mm lateral column lengthening calcaneal osteotomy reduces the excess force on the medial arch in an adult flat foot and adds biomechanical rationale to this clinical procedure.

  15. Circadian Oscillations within the Hippocampus Support Hippocampus-dependent Memory Processing

    Directory of Open Access Journals (Sweden)

    Kristin Lynn Eckel-Mahan

    2012-04-01

    Full Text Available The ability to sustain memories over long periods of time, sometimes even a lifetime, is one of the most remarkable properties of the brain. Much knowledge has been gained over the past few decades regarding the molecular correlates of memory formation. Once a memory is forged, however, the molecular events that provide permanence are as of yet unclear. Studies in multiple organisms have revealed that circadian rhythmicity is important for the formation, stability, and recall of memories [1]. The neuronal events that provide this link need to be explored further. This article will discuss the findings related to the circadian regulation of memory-dependent processes in the hippocampus. Specifically, the circadian-controlled MAP kinase and cAMP signal transduction pathway plays critical roles in the consolidation of hippocampus-dependent memory. A series of studies have revealed the circadian oscillation of this pathway within the hippocampus, an activity that is absent in memory-deficient, transgenic mice lacking Ca2+-stimulated adenylyl cyclases. Interference with these oscillations proceeding the cellular memory consolidation period impairs the persistence of hippocampus-dependent memory. These data suggest that the persistence of long-term memories may depend upon reactivation of this signal transduction pathway in the hippocampus during the circadian cycle. New data reveals the dependence of hippocampal oscillation in MAPK activity on the SCN, again underscoring the importance of this region in maintaining the circadian physiology of memory. Finally, the downstream ramification of these oscillations in terms of gene expression and epigenetics should be considered, as emerging evidence is pointing strongly to a circadian link between epigenetics and long term synaptic plasticity.

  16. Circadian variation of EEG power spectra in NREM and REM sleep in humans: dissociation from body temperature

    Science.gov (United States)

    Dijk, D. J.

    1999-01-01

    In humans, EEG power spectra in REM and NREM sleep, as well as characteristics of sleep spindles such as their duration, amplitude, frequency and incidence, vary with circadian phase. Recently it has been hypothesized that circadian variations in EEG spectra in humans are caused by variations in brain or body temperature and may not represent phenomena relevant to sleep regulatory processes. To test this directly, a further analysis of EEG power spectra - collected in a forced desynchrony protocol in which sleep episodes were scheduled to a 28-h period while the rhythms of body temperature and plasma melatonin were oscillating at their near 24-h period - was carried out. EEG power spectra were computed for NREM and REM sleep occurring between 90-120 and 270-300 degrees of the circadian melatonin rhythm, i.e. just after the clearance of melatonin from plasma in the 'morning' and just after the 'evening' increase in melatonin secretion. Average body temperatures during scheduled sleep at these two circadian phases were identical (36.72 degrees C). Despite identical body temperatures, the power spectra in NREM sleep were very different at these two circadian phases. EEG activity in the low frequency spindle range was significantly and markedly enhanced after the evening increase in plasma melatonin as compared to the morning phase. For REM sleep, significant differences in power spectra during these two circadian phases, in particular in the alpha range, were also observed. The results confirm that EEG power spectra in NREM and REM sleep vary with circadian phase, suggesting that the direct contribution of temperature to the circadian variation in EEG power spectra is absent or only minor, and are at variance with the hypothesis that circadian variations in EEG power spectra are caused by variations in temperature.

  17. On the role of exponential smoothing in circadian dosimetry.

    Science.gov (United States)

    Price, Luke L A

    2014-01-01

    The effects lighting has on health through modulation of circadian rhythms are becoming increasingly well documented. Data are still needed to show how light exposures are influenced by architecture and lighting design and circadian dosimetry analyses should provide duration, phase and amplitude measures of 24 h exposure profiles. Exponential smoothing is used to derive suitable metrics from 24 h light measurements collected from private dwellings. A further application of these modified exposure time series as physiological models of the light drive is discussed. Unlike previous light drive models, the dose rate persists into periods of darkness following exposures. Comparisons to long duration exposure studies suggest this type of persistent light drive model could be incorporated into contemporary physiological models of the human circadian oscillator. © 2014 Crown copyright. Photochemistry and Photobiology © 2014 The American Society of Photobiology. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland and Public Health England.

  18. The hepatic circadian clock modulates xenobiotic metabolism in mice.

    Science.gov (United States)

    DeBruyne, Jason P; Weaver, David R; Dallmann, Robert

    2014-08-01

    The circadian clock generates daily cycles of gene expression that regulate physiological processes. The liver plays an important role in xenobiotic metabolism and also has been shown to possess its own cell-based clock. The liver clock is synchronized by the master clock in the brain, and a portion of rhythmic gene expression can be driven by behavior of the organism as a whole even when the hepatic clock is suppressed. So far, however, there is relatively little evidence indicating whether the liver clock is functionally important in modulating xenobiotic metabolism. Thus, mice lacking circadian clock function in the whole body or specifically in liver were challenged with pentobarbital and acetaminophen, and pentobarbital sleep time (PBST) and acetaminophen toxicity, respectively, was assessed at different times of day in mutant and control mice. The results suggest that the liver clock is essential for rhythmic changes in xenobiotic detoxification. Surprisingly, it seems that the way in which the clock is disrupted determines the rate of xenobiotic metabolism in the liver. CLOCK-deficient mice are remarkably resistant to acetaminophen and exhibit a longer PBST, while PERIOD-deficient mice have a short PBST. These results indicate an essential role of the tissue-intrinsic peripheral circadian oscillator in the liver in regulating xenobiotic metabolism. © 2014 The Author(s).

  19. Circadian rhythm in experimental granulomatous inflammation is modulated by melatonin.

    Science.gov (United States)

    Lopes, C; deLyra, J L; Markus, R P; Mariano, M

    1997-09-01

    Biological rhythms are detected in a variety of physiological and pathological conditions in man and animals, such as rheumatoid arthritis and asthma. Here we describe a circadian rhythm in experimental infectious and non-infectious granuloma. After 30 days of BCG (Bacillus Calmette-Guerin) or nystatin inoculation in the left hind foot of C57B1/6 mice, there is an oscillation with a period of approximately 24 hr in the variation of paw thickness, indicating a circadian rhythm. The acrophase occurred during the light phase, between 9:00 and 13:00 hr, while the nadir occurred in the dark phase, between 21:00 and 01:00 hr. The vascular permeability around the granulomatous lesions was higher at 12:00 hr than at 24:00 hr. This is in agreement with the observation that the thickness of a paw with granulomatous lesion is larger during the light phase. This rhythmic variation was eliminated by either pinealectomy or superior cervical ganglionectomy, which greatly reduce melatonin levels in the blood. Nocturnal replacement of melatonin in pinealectomized mice led to the re-establishment of the circadian rhythm. Thus, the rhythm of the granulomatous lesion is due to the rhythmic melatonin release by the pineal gland. This approach opens new questions regarding the modulation of chronic inflammation in inflammatory diseases that present rhythmic symptoms throughout the day.

  20. Circadian Rhythms, Sleep Deprivation, and Human Performance

    Science.gov (United States)

    Goel, Namni; Basner, Mathias; Rao, Hengyi; Dinges, David F.

    2014-01-01

    Much of the current science on, and mathematical modeling of, dynamic changes in human performance within and between days is dominated by the two-process model of sleep–wake regulation, which posits a neurobiological drive for sleep that varies homeostatically (increasing as a saturating exponential during wakefulness and decreasing in a like manner during sleep), and a circadian process that neurobiologically modulates both the homeostatic drive for sleep and waking alertness and performance. Endogenous circadian rhythms in neurobehavioral functions, including physiological alertness and cognitive performance, have been demonstrated using special laboratory protocols that reveal the interaction of the biological clock with the sleep homeostatic drive. Individual differences in circadian rhythms and genetic and other components underlying such differences also influence waking neurobehavioral functions. Both acute total sleep deprivation and chronic sleep restriction increase homeostatic sleep drive and degrade waking neurobehavioral functions as reflected in sleepiness, attention, cognitive speed, and memory. Recent evidence indicating a high degree of stability in neurobehavioral responses to sleep loss suggests that these trait-like individual differences are phenotypic and likely involve genetic components, including circadian genes. Recent experiments have revealed both sleep homeostatic and circadian effects on brain metabolism and neural activation. Investigation of the neural and genetic mechanisms underlying the dynamically complex interaction between sleep homeostasis and circadian systems is beginning. A key goal of this work is to identify biomarkers that accurately predict human performance in situations in which the circadian and sleep homeostatic systems are perturbed. PMID:23899598

  1. Principles for circadian orchestration of metabolic pathways

    Science.gov (United States)

    Thurley, Kevin; Herbst, Christopher; Wesener, Felix; Koller, Barbara; Wallach, Thomas; Maier, Bert; Kramer, Achim

    2017-01-01

    Circadian rhythms govern multiple aspects of animal metabolism. Transcriptome-, proteome- and metabolome-wide measurements have revealed widespread circadian rhythms in metabolism governed by a cellular genetic oscillator, the circadian core clock. However, it remains unclear if and under which conditions transcriptional rhythms cause rhythms in particular metabolites and metabolic fluxes. Here, we analyzed the circadian orchestration of metabolic pathways by direct measurement of enzyme activities, analysis of transcriptome data, and developing a theoretical method called circadian response analysis. Contrary to a common assumption, we found that pronounced rhythms in metabolic pathways are often favored by separation rather than alignment in the times of peak activity of key enzymes. This property holds true for a set of metabolic pathway motifs (e.g., linear chains and branching points) and also under the conditions of fast kinetics typical for metabolic reactions. By circadian response analysis of pathway motifs, we determined exact timing separation constraints on rhythmic enzyme activities that allow for substantial rhythms in pathway flux and metabolite concentrations. Direct measurements of circadian enzyme activities in mouse skeletal muscle confirmed that such timing separation occurs in vivo. PMID:28159888

  2. Circadian rhythms of women with fibromyalgia

    Science.gov (United States)

    Klerman, E. B.; Goldenberg, D. L.; Brown, E. N.; Maliszewski, A. M.; Adler, G. K.

    2001-01-01

    Fibromyalgia syndrome is a chronic and debilitating disorder characterized by widespread nonarticular musculoskeletal pain whose etiology is unknown. Many of the symptoms of this syndrome, including difficulty sleeping, fatigue, malaise, myalgias, gastrointestinal complaints, and decreased cognitive function, are similar to those observed in individuals whose circadian pacemaker is abnormally aligned with their sleep-wake schedule or with local environmental time. Abnormalities in melatonin and cortisol, two hormones whose secretion is strongly influenced by the circadian pacemaker, have been reported in women with fibromyalgia. We studied the circadian rhythms of 10 women with fibromyalgia and 12 control healthy women. The protocol controlled factors known to affect markers of the circadian system, including light levels, posture, sleep-wake state, meals, and activity. The timing of the events in the protocol were calculated relative to the habitual sleep-wake schedule of each individual subject. Under these conditions, we found no significant difference between the women with fibromyalgia and control women in the circadian amplitude or phase of rhythms of melatonin, cortisol, and core body temperature. The average circadian phases expressed in hours posthabitual bedtime for women with and without fibromyalgia were 3:43 +/- 0:19 and 3:46 +/- 0:13, respectively, for melatonin; 10:13 +/- 0:23 and 10:32 +/- 0:20, respectively for cortisol; and 5:19 +/- 0:19 and 4:57 +/- 0:33, respectively, for core body temperature phases. Both groups of women had similar circadian rhythms in self-reported alertness. Although pain and stiffness were significantly increased in women with fibromyalgia compared with healthy women, there were no circadian rhythms in either parameter. We suggest that abnormalities in circadian rhythmicity are not a primary cause of fibromyalgia or its symptoms.

  3. Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells

    Science.gov (United States)

    Bieler, Jonathan; Cannavo, Rosamaria; Gustafson, Kyle; Gobet, Cedric; Gatfield, David; Naef, Felix

    2014-01-01

    Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time-lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer. PMID:25028488

  4. Hypercholesterolemia Causes Circadian Dysfunction: A Potential Risk Factor for Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Makoto Akashi

    2017-06-01

    Full Text Available Hypercholesterolemia is a well-known risk factor for a wide range of diseases in developed countries. Here, we report that mice lacking functional LDLR (low density lipoprotein receptor, an animal model of human familial hypercholesterolemia, show circadian abnormalities. In free running behavioral experiments in constant darkness, these mice showed a prolonged active phase and distinctly bimodal rhythms. Even when the circadian rhythms were entrained by light and dark cycles, these mice showed a significant attenuation of behavioral onset intensity at the start of the dark period. Further, we hypothesized that the combination of hypercholesterolemia and circadian abnormalities may affect cardiovascular disease progression. To examine this possibility, we generated LDLR-deficient mice with impaired circadian rhythms by simultaneously introducing a mutation into Period2, a core clock gene, and found that these mice showed a significant enlargement of artery plaque area with an increase in inflammatory cytokine IL-6 levels. These results suggest that circadian dysfunction may be associated with the development or progression of cardiovascular diseases.

  5. A central role for ubiquitination within a circadian clock protein modification code

    Directory of Open Access Journals (Sweden)

    Katarina eStojkovic

    2014-08-01

    Full Text Available Circadian rhythms, endogenous cycles of about 24 h in physiology, are generated by a master clock located in the suprachiasmatic nucleus of the hypothalamus and other clocks located in the brain and peripheral tissues. Circadian disruption is known to increase the incidence of various illnesses, such as mental disorders, metabolic syndrome and cancer. At the molecular level, periodicity is established by a set of clock genes via autoregulatory translation-transcription feedback loops. This clock mechanism is regulated by post-translational modifications such as phosphorylation and ubiquitination, which set the pace of the clock. Ubiquitination in particular has been found to regulate the stability of core clock components, but also other clock protein functions. Mutation of genes encoding ubiquitin ligases can cause either elongation or shortening of the endogenous circadian period. Recent research has also started to uncover roles for deubiquitination in the molecular clockwork. Here we review the role of the ubiquitin pathway in regulating the circadian clock and we propose that ubiquitination is a key element in a clock protein modification code that orchestrates clock mechanisms and circadian behavior over the daily cycle.

  6. An evolutionary fitness enhancement conferred by the circadian system in cyanobacteria

    International Nuclear Information System (INIS)

    Ma, Peijun; Woelfle, Mark A.; Johnson, Carl Hirschie

    2013-01-01

    Circadian clocks are found in a wide variety of organisms from cyanobacteria to mammals. Many believe that the circadian clock system evolved as an adaption to the daily cycles in light and temperature driven by the rotation of the earth. Studies on the cyanobacterium, Synechococcus elongatus PCC 7942, have confirmed that the circadian clock in resonance with environmental cycles confers an adaptive advantage to cyanobacterial strains with different clock properties when grown in competition under light–dark cycles. The results thus far suggest that in a cyclic environment, the cyanobacterial strains whose free running periods are closest to the environmental period are the most fit and the strains lacking a functional circadian clock are at a competitive disadvantage relative to strains with a functional clock. In contrast, the circadian system provides little or no advantage to cyanobacteria grown in competition in constant light. To explain the potential mechanism of this clock-mediated enhancement in fitness in cyanobacteria, several models have been proposed; these include the limiting resource model, the diffusible inhibitor model and the cell-to-cell communication model. None of these models have been excluded by the currently available experimental data and the mechanistic basis of clock-mediated fitness enhancement remains elusive

  7. Quantitative analysis of circadian single cell oscillations in response to temperature.

    Science.gov (United States)

    Abraham, Ute; Schlichting, Julia Katharina; Kramer, Achim; Herzel, Hanspeter

    2018-01-01

    Body temperature rhythms synchronize circadian oscillations in different tissues, depending on the degree of cellular coupling: the responsiveness to temperature is higher when single circadian oscillators are uncoupled. So far, the role of coupling in temperature responsiveness has only been studied in organotypic tissue slices of the central circadian pacemaker, because it has been assumed that peripheral target organs behave like uncoupled multicellular oscillators. Since recent studies indicate that some peripheral tissues may exhibit cellular coupling as well, we asked whether peripheral network dynamics also influence temperature responsiveness. Using a novel technique for long-term, high-resolution bioluminescence imaging of primary cultured cells, exposed to repeated temperature cycles, we were able to quantitatively measure period, phase, and amplitude of central (suprachiasmatic nuclei neuron dispersals) and peripheral (mouse ear fibroblasts) single cell oscillations in response to temperature. Employing temperature cycles of different lengths, and different cell densities, we found that some circadian characteristics appear cell-autonomous, e.g. period responses, while others seem to depend on the quality/degree of cellular communication, e.g. phase relationships, robustness of the oscillation, and amplitude. Overall, our findings indicate a strong dependence on the cell's ability for intercellular communication, which is not only true for neuronal pacemakers, but, importantly, also for cells in peripheral tissues. Hence, they stress the importance of comparative studies that evaluate the degree of coupling in a given tissue, before it may be used effectively as a target for meaningful circadian manipulation.

  8. Magel2, a Prader-Willi syndrome candidate gene, modulates the activities of circadian rhythm proteins in cultured cells

    Directory of Open Access Journals (Sweden)

    Devos Julia

    2011-12-01

    Full Text Available Abstract Background The Magel2 gene is most highly expressed in the suprachiasmatic nucleus of the hypothalamus, where its expression cycles in a circadian pattern comparable to that of clock-controlled genes. Mice lacking the Magel2 gene have hypothalamic dysfunction, including circadian defects that include reduced and fragmented total activity, excessive activity during the subjective day, but they have a normal circadian period. Magel2 is a member of the MAGE family of proteins that have various roles in cellular function, but the specific function of Magel2 is unknown. Methods We used a variety of cell-based assays to determine whether Magel2 modifies the properties of core circadian rhythm proteins. Results Magel2 represses the activity of the Clock:Bmal1 heterodimer in a Per2-luciferase assay. Magel2 interacts with Bmal1 and with Per2 as measured by co-immunoprecipitation in co-transfected cells, and exhibits a subcellular distribution consistent with these interactions when visualized by immunofluorescence. As well, Magel2 induces the redistribution of the subcellular localization of Clock towards the cytoplasm, in contrast to the nucleus-directed effect of Bmal1 on Clock subcellular localization. Conclusion Consistent with the blunted circadian rhythm observed in Magel2-null mice, these data suggest that Magel2 normally promotes negative feedback regulation of the cellular circadian cycle, through interactions with key core circadian rhythm proteins.

  9. Circadian integration of metabolism and energetics.

    Science.gov (United States)

    Bass, Joseph; Takahashi, Joseph S

    2010-12-03

    Circadian clocks align behavioral and biochemical processes with the day/night cycle. Nearly all vertebrate cells possess self-sustained clocks that couple endogenous rhythms with changes in cellular environment. Genetic disruption of clock genes in mice perturbs metabolic functions of specific tissues at distinct phases of the sleep/wake cycle. Circadian desynchrony, a characteristic of shift work and sleep disruption in humans, also leads to metabolic pathologies. Here, we review advances in understanding the interrelationship among circadian disruption, sleep deprivation, obesity, and diabetes and implications for rational therapeutics for these conditions.

  10. Circadian Rhythms and Sleep inDrosophila melanogaster.

    Science.gov (United States)

    Dubowy, Christine; Sehgal, Amita

    2017-04-01

    The advantages of the model organism Drosophila melanogaster , including low genetic redundancy, functional simplicity, and the ability to conduct large-scale genetic screens, have been essential for understanding the molecular nature of circadian (∼24 hr) rhythms, and continue to be valuable in discovering novel regulators of circadian rhythms and sleep. In this review, we discuss the current understanding of these interrelated biological processes in Drosophila and the wider implications of this research. Clock genes period and timeless were first discovered in large-scale Drosophila genetic screens developed in the 1970s. Feedback of period and timeless on their own transcription forms the core of the molecular clock, and accurately timed expression, localization, post-transcriptional modification, and function of these genes is thought to be critical for maintaining the circadian cycle. Regulators, including several phosphatases and kinases, act on different steps of this feedback loop to ensure strong and accurately timed rhythms. Approximately 150 neurons in the fly brain that contain the core components of the molecular clock act together to translate this intracellular cycling into rhythmic behavior. We discuss how different groups of clock neurons serve different functions in allowing clocks to entrain to environmental cues, driving behavioral outputs at different times of day, and allowing flexible behavioral responses in different environmental conditions. The neuropeptide PDF provides an important signal thought to synchronize clock neurons, although the details of how PDF accomplishes this function are still being explored. Secreted signals from clock neurons also influence rhythms in other tissues. SLEEP is, in part, regulated by the circadian clock, which ensures appropriate timing of sleep, but the amount and quality of sleep are also determined by other mechanisms that ensure a homeostatic balance between sleep and wake. Flies have been useful

  11. Application of an ex vivo cellular model of circadian variation for bipolar disorder research: a proof of concept study.

    Science.gov (United States)

    Bamne, Mikhil N; Ponder, Christine A; Wood, Joel A; Mansour, Hader; Frank, Ellen; Kupfer, David J; Young, Michael W; Nimgaonkar, Vishwajit L

    2013-09-01

    Disruption of circadian function has been observed in several human disorders, including bipolar disorder (BD). Research into these disorders can be facilitated by human cellular models that evaluate external factors (zeitgebers) that impact circadian pacemaker activity. Incorporating a firefly luciferase reporter system into human fibroblasts provides a facile, bioluminescent readout that estimates circadian phase, while leaving the cells intact. We evaluated whether this system can be adapted to clinical BD research and whether it can incorporate zeitgeber challenge paradigms. Fibroblasts from patients with bipolar I disorder (BD-I) (n = 13) and controls (n = 12) were infected ex vivo with a lentiviral reporter incorporating the promoter sequences for Bmal1, a circadian gene to drive expression of the firefly luciferase gene. Following synchronization, the bioluminescence was used to estimate period length. Phase response curves (PRCs) were also generated following forskolin challenge and the phase response patterns were characterized. Period length and PRCs could be estimated reliably from the constructs. There were no significant case-control differences in period length, with a nonsignificant trend for differences in PRCs following the phase-setting experiments. An ex vivo cellular fibroblast-based model can be used to investigate circadian function in BD-I. It can be generated from specific individuals and this could usefully complement ongoing circadian clinical research. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Early and late fracture following extensive limb lengthening in patients with achondroplasia and hypochondroplasia.

    Science.gov (United States)

    Kitoh, H; Mishima, K; Matsushita, M; Nishida, Y; Ishiguro, N

    2014-09-01

    Two types of fracture, early and late, have been reported following limb lengthening in patients with achondroplasia (ACH) and hypochondroplasia (HCH). We reviewed 25 patients with these conditions who underwent 72 segmental limb lengthening procedures involving the femur and/or tibia, between 2003 and 2011. Gender, age at surgery, lengthened segment, body mass index, the shape of the callus, the amount and percentage of lengthening and the healing index were evaluated to determine predictive factors for the occurrence of early (within three weeks after removal of the fixation pins) and late fracture (> three weeks after removal of the pins). The Mann‑Whitney U test and Pearson's chi-squared test for univariate analysis and stepwise regression model for multivariate analysis were used to identify the predictive factor for each fracture. Only one patient (two tibiae) was excluded from the analysis due to excessively slow formation of the regenerate, which required supplementary measures. A total of 24 patients with 70 limbs were included in the study. There were 11 early fractures in eight patients. The shape of the callus (lateral or central callus) was the only statistical variable related to the occurrence of early fracture in univariate and multivariate analyses. Late fracture was observed in six limbs and the mean time between removal of the fixation pins and fracture was 18.3 weeks (3.3 to 38.4). Lengthening of the tibia, larger healing index, and lateral or central callus were related to the occurrence of a late fracture in univariate analysis. A multivariate analysis demonstrated that the shape of the callus was the strongest predictor for late fracture (odds ratio: 19.3, 95% confidence interval: 2.91 to 128). Lateral or central callus had a significantly larger risk of fracture than fusiform, cylindrical, or concave callus. Radiological monitoring of the shape of the callus during distraction is important to prevent early and late fracture of lengthened

  13. Identification of human circadian genes based on time course gene expression profiles by using a deep learning method.

    Science.gov (United States)

    Cui, Peng; Zhong, Tingyan; Wang, Zhuo; Wang, Tao; Zhao, Hongyu; Liu, Chenglin; Lu, Hui

    2017-12-12

    Circadian genes express periodically in an approximate 24-h period and the identification and study of these genes can provide deep understanding of the circadian control which plays significant roles in human health. Although many circadian gene identification algorithms have been developed, large numbers of false positives and low coverage are still major problems in this field. In this study we constructed a novel computational framework for circadian gene identification using deep neural networks (DNN) - a deep learning algorithm which can represent the raw form of data patterns without imposing assumptions on the expression distribution. Firstly, we transformed time-course gene expression data into categorical-state data to denote the changing trend of gene expression. Two distinct expression patterns emerged after clustering of the state data for circadian genes from our manually created learning dataset. DNN was then applied to discriminate the aperiodic genes and the two subtypes of periodic genes. In order to assess the performance of DNN, four commonly used machine learning methods including k-nearest neighbors, logistic regression, naïve Bayes, and support vector machines were used for comparison. The results show that the DNN model achieves the best balanced precision and recall. Next, we conducted large scale circadian gene detection using the trained DNN model for the remaining transcription profiles. Comparing with JTK_CYCLE and a study performed by Möller-Levet et al. (doi: https://doi.org/10.1073/pnas.1217154110), we identified 1132 novel periodic genes. Through the functional analysis of these novel circadian genes, we found that the GTPase superfamily exhibits distinct circadian expression patterns and may provide a molecular switch of circadian control of the functioning of the immune system in human blood. Our study provides novel insights into both the circadian gene identification field and the study of complex circadian-driven biological

  14. Sleep interruption associated with house staff work schedules alters circadian gene expression.

    Science.gov (United States)

    Fang, Ming Zhu; Ohman-Strickland, Pamela; Kelly-McNeil, Kathie; Kipen, Howard; Crabtree, Benjamin F; Lew, Jenny Pan; Zarbl, Helmut

    2015-11-01

    Epidemiological studies indicate that disruption of circadian rhythm by shift work increases the risk of breast and prostate cancer. Our studies demonstrated that carcinogens disrupt the circadian expression of circadian genes (CGs) and circadian-controlled genes (CCGs) during the early stages of rat mammary carcinogenesis. A chemopreventive regimen of methylselenocysteine (MSC) restored the circadian expression of CGs and CCGs, including PERIOD 2 (PER2) and estrogen receptor β (ERS2), to normal. The present study evaluated whether changes in CG and CCG expression in whole blood can serve as indicators of circadian disruption in shift workers. Fifteen shift workers were recruited to a crossover study. Blood samples were drawn before (6 PM) and after (8 AM) completing a night shift after at least seven days on floating night-shift rotation, and before (8 AM), during (1 PM), and after (6 PM) completing seven days on day shift. The plasma melatonin level and messenger RNA (mRNA) expression of PER2, nuclear receptor subfamily 1, group d, member 1 (NR1D1), and ERS2 were measured, and the changes in levels of melatonin and gene expression were evaluated with statistical analyses. The mRNA expression of PER2 was affected by shift (p = 0.0079); the levels were higher in the evening for the night shift, but higher in the morning for the day shift. Increased PER2 expression (p = 0.034) was observed in the evening on the night versus day shifts. The melatonin level was higher in the morning for both day shifts (p = 0.013) and night shifts (p <0.0001). Changes in the level of PER2 gene expression can serve as a biomarker of disrupted circadian rhythm in blood cells. Therefore, they can be a useful intermediate indicator of efficacy in future MSC-mediated chemoprevention studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Entrainment of the Neurospora circadian clock

    NARCIS (Netherlands)

    Merrow, M; Boesl, C; Ricken, J; Messerschmitt, M; Goedel, M; Roenneberg, T

    2006-01-01

    Neurospora crassa has been systematically investigated for circadian entrainment behavior. Many aspects of synchronization can be investigated in this simple, cellular system, ranging from systematic entrainment and drivenness to masking. Clock gene expression during entrainment and entrainment

  16. Targeting the Circadian Clock to Treat Cancer

    Science.gov (United States)

    Two compounds that target components of the circadian clock killed several types of cancer cells in the lab and slowed the growth of brain cancer in mice without harming healthy cells, as this Cancer Currents post reports.

  17. Cell-permeable Circadian Clock Proteins

    National Research Council Canada - National Science Library

    Johnson, Carl

    2002-01-01

    .... These 'biological clocks' are important to human physiology. For example, psychiatric and medical studies have shown that circadian rhythmicity is involved in some forms of depressive illness, 'jet lag', drug tolerance/efficacy, memory, and insomnia...

  18. Circadian Rhythm Management System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The value of measuring sleep-wake cycles is significantly enhanced by measuring other physiological signals that depend on circadian rhythms (such as heart rate and...

  19. Circadian Rhythms, Sleep, and Disorders of Aging.

    Science.gov (United States)

    Mattis, Joanna; Sehgal, Amita

    2016-04-01

    Sleep-wake cycles are known to be disrupted in people with neurodegenerative disorders. These findings are now supported by data from animal models for some of these disorders, raising the question of whether the disrupted sleep/circadian regulation contributes to the loss of neural function. As circadian rhythms and sleep consolidation also break down with normal aging, changes in these may be part of what makes aging a risk factor for disorders like Alzheimer's disease (AD). Mechanisms underlying the connection between circadian/sleep dysregulation and neurodegeneration remain unclear, but several recent studies provide interesting possibilities. While mechanistic analysis is under way, it is worth considering treatment of circadian/sleep disruption as a means to alleviate symptoms of neurodegenerative disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Mathematical Modeling of Circadian/Performance Countermeasures

    Data.gov (United States)

    National Aeronautics and Space Administration — We developed and refined our current mathematical model of circadian rhythms to incorporate melatonin as a marker rhythm. We used an existing physiologically based...

  1. Evaluating the Autonomy of the Drosophila Circadian Clock in Dissociated Neuronal Culture

    Directory of Open Access Journals (Sweden)

    Virginie Sabado

    2017-10-01

    Full Text Available Circadian behavioral rhythms offer an excellent model to study intricate interactions between the molecular and neuronal mechanisms of behavior. In mammals, pacemaker neurons in the suprachiasmatic nucleus (SCN generate rhythms cell-autonomously, which are synchronized by the network interactions within the circadian circuit to drive behavioral rhythms. However, whether this principle is universal to circadian systems in animals remains unanswered. Here, we examined the autonomy of the Drosophila circadian clock by monitoring transcriptional and post-transcriptional rhythms of individual clock neurons in dispersed culture with time-lapse microscopy. Expression patterns of the transcriptional reporter show that CLOCK/CYCLE (CLK/CYC-mediated transcription is constantly active in dissociated clock neurons. In contrast, the expression profile of the post-transcriptional reporter indicates that PERIOD (PER protein levels fluctuate and ~10% of cells display rhythms in PER levels with periods in the circadian range. Nevertheless, PER and TIM are enriched in the cytoplasm and no periodic PER nuclear accumulation was observed. These results suggest that repression of CLK/CYC-mediated transcription by nuclear PER is impaired, and thus the negative feedback loop of the molecular clock is incomplete in isolated clock neurons. We further demonstrate that, by pharmacological assays using the non-amidated form of neuropeptide pigment-dispersing factor (PDF, which could be specifically secreted from larval LNvs and adult s-LNvs, downstream events of the PDF signaling are partly impaired in dissociated larval clock neurons. Although non-amidated PDF is likely to be less active than the amidated one, these results point out the possibility that alteration in PDF downstream signaling may play a role in dampening of molecular rhythms in isolated clock neurons. Taken together, our results suggest that Drosophila clocks are weak oscillators that need to be in the

  2. Evolution of circadian organization in vertebrates

    Directory of Open Access Journals (Sweden)

    M. Menaker

    1997-03-01

    Full Text Available Circadian organization means the way in which the entire circadian system above the cellular level is put together physically and the principles and rules that determine the interactions among its component parts which produce overt rhythms of physiology and behavior. Understanding this organization and its evolution is of practical importance as well as of basic interest. The first major problem that we face is the difficulty of making sense of the apparently great diversity that we observe in circadian organization of diverse vertebrates. Some of this diversity falls neatly into place along phylogenetic lines leading to firm generalizations: i in all vertebrates there is a "circadian axis" consisting of the retinas, the pineal gland and the suprachiasmatic nucleus (SCN, ii in many non-mammalian vertebrates of all classes (but not in any mammals the pineal gland is both a photoreceptor and a circadian oscillator, and iii in all non-mammalian vertebrates (but not in any mammals there are extraretinal (and extrapineal circadian photoreceptors. An interesting explanation of some of these facts, especially the differences between mammals and other vertebrates, can be constructed on the assumption that early in their evolution mammals passed through a "nocturnal bottleneck". On the other hand, a good deal of the diversity among the circadian systems of vertebrates does not fall neatly into place along phylogenetic lines. In the present review we will consider how we might better understand such "phylogenetically incoherent" diversity and what sorts of new information may help to further our understanding of the evolution of circadian organization in vertebrates

  3. Molecular components of the mammalian circadian clock

    OpenAIRE

    Buhr, Ethan D.; Takahashi, Joseph S.

    2013-01-01

    Mammals synchronize their circadian activity primarily to the cycles of light and darkness in the environment. This is achieved by ocular photoreception relaying signals to the suprachiasmatic nucleus (SCN) in the hypothalamus. Signals from the SCN cause the synchronization of independent circadian clocks throughout the body to appropriate phases. Signals that can entrain these peripheral clocks include humoral signals, metabolic factors, and body temperature. At the level of individual tissu...

  4. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans.

    Science.gov (United States)

    Morris, Christopher J; Yang, Jessica N; Garcia, Joanna I; Myers, Samantha; Bozzi, Isadora; Wang, Wei; Buxton, Orfeu M; Shea, Steven A; Scheer, Frank A J L

    2015-04-28

    Glucose tolerance is lower in the evening and at night than in the morning. However, the relative contribution of the circadian system vs. the behavioral cycle (including the sleep/wake and fasting/feeding cycles) is unclear. Furthermore, although shift work is a diabetes risk factor, the separate impact on glucose tolerance of the behavioral cycle, circadian phase, and circadian disruption (i.e., misalignment between the central circadian pacemaker and the behavioral cycle) has not been systematically studied. Here we show--by using two 8-d laboratory protocols--in healthy adults that the circadian system and circadian misalignment have distinct influences on glucose tolerance, both separate from the behavioral cycle. First, postprandial glucose was 17% higher (i.e., lower glucose tolerance) in the biological evening (8:00 PM) than morning (8:00 AM; i.e., a circadian phase effect), independent of the behavioral cycle effect. Second, circadian misalignment itself (12-h behavioral cycle inversion) increased postprandial glucose by 6%. Third, these variations in glucose tolerance appeared to be explained, at least in part, by different mechanisms: during the biological evening by decreased pancreatic β-cell function (27% lower early-phase insulin) and during circadian misalignment presumably by decreased insulin sensitivity (elevated postprandial glucose despite 14% higher late-phase insulin) without change in early-phase insulin. We explored possible contributing factors, including changes in polysomnographic sleep and 24-h hormonal profiles. We demonstrate that the circadian system importantly contributes to the reduced glucose tolerance observed in the evening compared with the morning. Separately, circadian misalignment reduces glucose tolerance, providing a mechanism to help explain the increased diabetes risk in shift workers.

  5. The opening base wedge osteotomy and subsequent lengthening of the first metatarsal: an in vitro study.

    Science.gov (United States)

    Budny, Adam M; Masadeh, Suhail B; Lyons, Michael C; Frania, Stephen J

    2009-01-01

    Traditionally, the opening base wedge osteotomy has been indicated in a moderate to severe hallux abducto valgus deformity with a short first metatarsal. This in vitro study aimed to address the question of how much lengthening is inherent to the geometric design of an opening wedge in the first metatarsal. The preosteotomy length of a first metatarsal segment was compared with postosteotomy length after performing transverse and oblique basilar osteotomies while maintaining the opening wedge with a prefabricated spacer. In the current bench study, it was found that the opening base wedge osteotomy does indeed lengthen the first metatarsal, albeit a small percentage of the total length (1%-2.8%), and there was no significant difference between the lengths achieved through a transverse or oblique osteotomy based on a confidence interval of 95%. 5.

  6. A guide to minimally invasive crown lengthening and tooth preparation for rehabilitating pink and white aesthetics.

    Science.gov (United States)

    Al-Harbi, F; Ahmad, I

    2018-02-23

    The rehabilitation of anterior dental aesthetics involves a multitude of disciplines, each with its own methodologies for achieving a predefined goal. The literature is awash with different techniques for a given predicament, based on both scientific credence, as well as empirical clinical judgements. An example is crown lengthening for correcting uneven gingival zeniths, increasing clinical crown lengths, and therefore, reducing the amount of maxillary gingival display that detracts from pleasing pink aesthetics. Many procedures have been advocated for rectifying gingival anomalies depending on prevailing clinical scenarios and aetiology. This paper presents a minimally invasive technique for crown lengthening for short clinical crowns concurrent with excessive maxillary gingival display, which is expedient, maintaining the inter-proximal papilla, mitigating morbidity, reducing post-operative inflammation, and increasing patient comfort. In addition, with a similar ethos, a minimally invasive tooth preparation approach is presented for achieving optimal white aesthetics.

  7. Effect of V-Y plasty on lip lengthening and treatment of gummy smile.

    Science.gov (United States)

    Dilaver, E; Uckan, S

    2018-02-01

    The aim of this study was to assess the effect of isolated V-Y plasty on lip lengthening and the treatment of gummy smile. An isolated V-Y plasty was performed on 14 patients with a gummy smile. In each case, measurements of upper lip length and gingival display were recorded from posed-smile photographs taken preoperatively and at 1, 3, and 6 months postoperatively. Gingival display decreased significantly and lip length increased significantly over all intervals investigated. Applying this technique after Le Fort I surgery may be beneficial; however, as with other injection or surgical lip lengthening methods, its stand-alone application should be questioned. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Outcome of medial hamstring lengthening in children with spastic paresis: A biomechanical and morphological observational study.

    Directory of Open Access Journals (Sweden)

    Helga Haberfehlner

    Full Text Available To improve gait in children with spastic paresis due to cerebral palsy or hereditary spastic paresis, the semitendinosus muscle is frequently lengthened amongst other medial hamstring muscles by orthopaedic surgery. Side effects on gait due to weakening of the hamstring muscles and overcorrections have been reported. How these side effects relate to semitendinosus morphology is unknown. This study assessed the effects of bilateral medial hamstring lengthening as part of single-event multilevel surgery (SEMLS on (1 knee joint mechanics (2 semitendinosus muscle morphology and (3 gait kinematics. All variables were assessed for the right side only. Six children with spastic paresis selected for surgery to counteract limited knee range of motion were measured before and about a year after surgery. After surgery, in most subjects popliteal angle decreased and knee moment-angle curves were shifted towards a more extended knee joint, semitendinosus muscle belly length was approximately 30% decreased, while at all assessed knee angles tendon length was increased by about 80%. In the majority of children muscle volume of the semitendinosus muscle decreased substantially suggesting a reduction of physiological cross-sectional area. Gait kinematics showed more knee extension during stance (mean change ± standard deviation: 34±13°, but also increased pelvic anterior tilt (mean change ± standard deviation: 23±5°. In most subjects, surgical lengthening of semitendinosus tendon contributed to more extended knee joint angle during static measurements as well as during gait, whereas extensibility of semitendinosus muscle belly was decreased. Post-surgical treatment to maintain muscle belly length and physiological cross-sectional area may improve treatment outcome of medial hamstring lengthening.

  9. Role of alternative telomere lengthening unmasked in telomerase knock-out mutant plants

    Czech Academy of Sciences Publication Activity Database

    Růčková, Eva; Friml, J.; Procházková Schrumpfová, Petra; Fajkus, Jiří

    2008-01-01

    Roč. 66, č. 6 (2008), s. 637-646 ISSN 0167-4412 R&D Projects: GA MŠk(CZ) LC06004; GA ČR(CZ) GA521/05/0055; GA AV ČR(CZ) IAA600040505 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : alternative telomere lengthening * plant * replicative telomere shortening Subject RIV: BO - Biophysics Impact factor: 3.541, year: 2008

  10. Outcome of medial hamstring lengthening in children with spastic paresis: A biomechanical and morphological observational study

    Science.gov (United States)

    Jaspers, Richard T.; Rutz, Erich; Harlaar, Jaap; van der Sluijs, Johannes A.; Witbreuk, Melinda M.; van Hutten, Kim; Romkes, Jacqueline; Freslier, Marie; Brunner, Reinald; Becher, Jules G.

    2018-01-01

    To improve gait in children with spastic paresis due to cerebral palsy or hereditary spastic paresis, the semitendinosus muscle is frequently lengthened amongst other medial hamstring muscles by orthopaedic surgery. Side effects on gait due to weakening of the hamstring muscles and overcorrections have been reported. How these side effects relate to semitendinosus morphology is unknown. This study assessed the effects of bilateral medial hamstring lengthening as part of single-event multilevel surgery (SEMLS) on (1) knee joint mechanics (2) semitendinosus muscle morphology and (3) gait kinematics. All variables were assessed for the right side only. Six children with spastic paresis selected for surgery to counteract limited knee range of motion were measured before and about a year after surgery. After surgery, in most subjects popliteal angle decreased and knee moment-angle curves were shifted towards a more extended knee joint, semitendinosus muscle belly length was approximately 30% decreased, while at all assessed knee angles tendon length was increased by about 80%. In the majority of children muscle volume of the semitendinosus muscle decreased substantially suggesting a reduction of physiological cross-sectional area. Gait kinematics showed more knee extension during stance (mean change ± standard deviation: 34±13°), but also increased pelvic anterior tilt (mean change ± standard deviation: 23±5°). In most subjects, surgical lengthening of semitendinosus tendon contributed to more extended knee joint angle during static measurements as well as during gait, whereas extensibility of semitendinosus muscle belly was decreased. Post-surgical treatment to maintain muscle belly length and physiological cross-sectional area may improve treatment outcome of medial hamstring lengthening. PMID:29408925

  11. Apple-peel intestinal atresia: enteroplasty for intestinal lengthening and primary anastomosis.

    Science.gov (United States)

    Onofre, Luciano Silveira; Maranhão, Renato Frota de Albuquerque; Martins, Elaine Cristina Soares; Fachin, Camila Girardi; Martins, Jose Luiz

    2013-06-01

    Apple-peel atresia (or Type-IIIb intestinal atresia) is an unusual type of jejunoileal atresia. They present with jejunal atresia near the ligament of Treitz and a foreshortened small bowel. Many surgical options have been used, but the optimal method of repair remains unclear. We present a case of a newborn with apple-peel intestinal atresia managed by enteroplasty for intestinal lengthening and primary anastomosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Circadian rhythm of leaf movement in Capsicum annuum observed during centrifugation

    Science.gov (United States)

    Chapman, D. K.; Brown, A. H.; Dahl, A. O.

    1975-01-01

    Plant circadian rhythms of leaf movement in seedlings of the pepper plant (Capsicum annuum L., var. Yolo Wonder) were observed at different g-levels by means of a centrifuge. Except for the chronically imposed g-force all environmental conditions to which the plants were exposed were held constant. The circadian period, rate of change of amplitude of successive oscillations, symmetry of the cycles, and phase of the rhythm all were found not to be significantly correlated with the magnitude of the sustained g-force.

  13. Peak power is reduced following lengthening contractions despite a maintenance of shortening velocity.

    Science.gov (United States)

    Power, Geoffrey A; Dalton, Brian H; Rice, Charles L; Vandervoort, Anthony A

    2013-12-01

    Following repetitive lengthening contractions, power (the product of torque and velocity) is impaired during shortening contractions. However, the relative contribution of each component to power loss and the underlying factors are unclear. We investigated neuromuscular properties of the dorsiflexors in 8 males (27 ± 3 years) and 8 females (26 ± 4 years) for a potential sex-related difference before, during, and after 150 unaccustomed maximal lengthening actions. Velocity-dependent power was determined from shortening contractions at 8 levels (1 N · m to 70% of maximum voluntary isometric contraction (MVC)) before, after, and throughout recovery assessed at 0-30 min, 24 h, and 48 h. Immediately following task termination, both sexes displayed similar impairments of 30%, 4%, and 10% in MVC torque, shortening velocity, and overall peak power, respectively (P reduced by 10% in males, but females exhibited a 35% reduction (P reduced preferentially at higher loads (i.e., 60% MVC), with a greater loss in females (65%) than males (45%). For lower loads (velocity persisted until 30 min of recovery, and peak power did not recover until 24 h for both sexes. Unaccustomed lengthening contractions decreased power preferentially at higher loads, whereas peak power was reduced minimally owing to maintenance of maximal shortening velocity.

  14. Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction.

    Science.gov (United States)

    Tsui, C P; Tang, C Y; Leung, C P; Cheng, K W; Ng, Y F; Chow, D H K; Li, C K

    2004-01-01

    An active finite element model was developed to predict the mechanical behaviors of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction. The active finite element was created through incorporation of a user-defined material property into ABAQUS finite element code. The active finite element is controlled by a motor element that is activated by a mathematical function. The nonlinear passive behavior of the muscle was defined by the viscoelastic elements and can be easily altered to other properties by using other elements in the material library without the need of re-defining the constitutive relation of the muscle. The isometric force-length relationship, force-strain relations of the muscle-tendon complex during both shortening and lengthening contraction and muscle relaxation response were predicted using the proposed finite element model. The predicted results were found to be in good agreement with available experimental data. In addition, the stress distribution in the muscle-tendon complex during isometric, shortening and lengthening contractions was simulated. The location of the maximum stress may provide useful information for studying muscle damage and fatigue in the future.

  15. Circadian modulation of consolidated memory retrieval following sleep deprivation in Drosophila.

    Science.gov (United States)

    Le Glou, Eric; Seugnet, Laurent; Shaw, Paul J; Preat, Thomas; Goguel, Valérie

    2012-10-01

    Several lines of evidence indicate that sleep plays a critical role in learning and memory. The aim of this study was to evaluate anesthesia resistant memory following sleep deprivation in Drosophila. Four to 16 h after aversive olfactory training, flies were sleep deprived for 4 h. Memory was assessed 24 h after training. Training, sleep deprivation, and memory tests were performed at different times during the day to evaluate the importance of the time of day for memory formation. The role of circadian rhythms was further evaluated using circadian clock mutants. Memory was disrupted when flies were exposed to 4 h of sleep deprivation during the consolidation phase. Interestingly, normal memory was observed following sleep deprivation when the memory test was performed during the 2 h preceding lights-off, a period characterized by maximum wake in flies. We also show that anesthesia resistant memory was less sensitive to sleep deprivation in flies with disrupted circadian rhythms. Our results indicate that anesthesia resistant memory, a consolidated memory less costly than long-term memory, is sensitive to sleep deprivation. In addition, we provide evidence that circadian factors influence memory vulnerability to sleep deprivation and memory retrieval. Taken together, the data show that memories weakened by sleep deprivation can be retrieved if the animals are tested at the optimal circadian time.

  16. The Circadian Timing System: Making Sense of day/night gene expression

    Directory of Open Access Journals (Sweden)

    HANS G RICHTER

    2004-01-01

    Full Text Available The circadian time-keeping system ensures predictive adaptation of individuals to the reproducible 24-h day/night alternations of our planet by generating the 24-h (circadian rhythms found in hormone release and cardiovascular, biophysical and behavioral functions, and others. In mammals, the master clock resides in the suprachiasmatic nucleus (SCN of the hypothalamus. The molecular events determining the functional oscillation of the SCN neurons with a period of 24-h involve recurrent expression of several clock proteins that interact in complex transcription/translation feedback loops. In mammals, a glutamatergic monosynaptic pathway originating from the retina regulates the clock gene expression pattern in the SCN neurons, synchronizing them to the light:dark cycle. The emerging concept is that neural/humoral output signals from the SCN impinge upon peripheral clocks located in other areas of the brain, heart, lung, gastrointestinal tract, liver, kidney, fibroblasts, and most of the cell phenotypes, resulting in overt circadian rhythms in integrated physiological functions. Here we review the impact of day/night alternation on integrated physiology; the molecular mechanisms and input/output signaling pathways involved in SCN circadian function; the current concept of peripheral clocks; and the potential role of melatonin as a circadian neuroendocrine transducer

  17. A class of circadian long non-coding RNAs mark enhancers modulating long-range circadian gene regulation.

    Science.gov (United States)

    Fan, Zenghua; Zhao, Meng; Joshi, Parth D; Li, Ping; Zhang, Yan; Guo, Weimin; Xu, Yichi; Wang, Haifang; Zhao, Zhihu; Yan, Jun

    2017-06-02

    Circadian rhythm exerts its influence on animal physiology and behavior by regulating gene expression at various levels. Here we systematically explored circadian long non-coding RNAs (lncRNAs) in mouse liver and examined their circadian regulation. We found that a significant proportion of circadian lncRNAs are expressed at enhancer regions, mostly bound by two key circadian transcription factors, BMAL1 and REV-ERBα. These circadian lncRNAs showed similar circadian phases with their nearby genes. The extent of their nuclear localization is higher than protein coding genes but less than enhancer RNAs. The association between enhancer and circadian lncRNAs is also observed in tissues other than liver. Comparative analysis between mouse and rat circadian liver transcriptomes showed that circadian transcription at lncRNA loci tends to be conserved despite of low sequence conservation of lncRNAs. One such circadian lncRNA termed lnc-Crot led us to identify a super-enhancer region interacting with a cluster of genes involved in circadian regulation of metabolism through long-range interactions. Further experiments showed that lnc-Crot locus has enhancer function independent of lnc-Crot's transcription. Our results suggest that the enhancer-associated circadian lncRNAs mark the genomic loci modulating long-range circadian gene regulation and shed new lights on the evolutionary origin of lncRNAs. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Interval timing in mice does not rely upon the circadian pacemaker

    NARCIS (Netherlands)

    Lewis, PA; Miall, RC; Daan, S

    2003-01-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus is a precise timekeeper that controls and synchronizes the circadian period of countless physiological and behavioural functions and entrains them to the 24 h light/dark cycle. We examined the possibility that it is also indirectly involved in

  19. Using Actiwatch to monitor circadian rhythm disturbance in Huntington' disease: A cautionary note.

    Science.gov (United States)

    Townhill, Jenny; Hughes, Alis C; Thomas, Benny; Busse, Monica E; Price, Kathy; Dunnett, Stephen B; Hastings, Michael H; Rosser, Anne E

    2016-05-30

    Huntington's disease (HD) is an inherited neurodegenerative disorder that is well recognised as producing progressive deterioration of motor function, including dyskinetic movements, as well as deterioration of cognition and ability to carry out activities of daily living. However, individuals with HD commonly suffer from a wide range of additional symptoms, including weight loss and sleep disturbance, possibly due to disruption of circadian rhythmicity. Disrupted circadian rhythms have been reported in mice models of HD and in humans with HD. One way of assessing an individual's circadian rhythmicity in a community setting is to monitor their sleep/wake cycles, and a convenient method for recording periods of wakefulness and sleep is to use accelerometers to discriminate between varied activity levels (including sleep) during daily life. Here we used Actiwatch(®) Activity monitors alongside ambulatory EEG and sleep diaries to record wake/sleep patterns in people with HD and normal volunteers. We report that periods of wakefulness during the night, as detected by activity monitors, agreed poorly with EEG recordings in HD subjects, and unsurprisingly sleep diary findings showed poor agreement with both EEG recordings and activity monitor derived sleep periods. One explanation for this is the occurrence of 'break through' involuntary movements during sleep in the HD patients, which are incorrectly assessed as wakeful periods by the activity monitor algorithms. Thus, care needs to be taken when using activity monitors to assess circadian activity in individuals with movement disorders. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. A Functional Analysis of Circadian Pacemakers in Nocturnal Rodents. IV. Entrainment : Pacemaker as Clock

    NARCIS (Netherlands)

    Pittendrigh, Colin S.; Daan, Serge

    1976-01-01

    1. In the first part of the paper, the model of non-parametric entrainment of circadian pacemakers is tested for the case of nocturnal rodents. The model makes use of the available data on freerunning period (τ) in constant darkness and on phase response curves (PRC) for short light pulses. It is

  1. A forced desynchrony study of circadian pacemaker characteristics in seasonal affective disorder

    NARCIS (Netherlands)

    Koorengevel, Kathelijne M.; Beersma, Domien G.M.; den Boer, Johan; Hoofdakker, Rutger H. van den

    2002-01-01

    The circadian pacemaker is an endogenous clock that regulates oscillations in most physiological and psychological processes with a near 24-h period. In many species, this pacemaker triggers seasonal changes in behavior. The seasonality of symptoms and the efficacy of light therapy suggest

  2. The Clock Gene Rev-Erbα Regulates Methamphetamine Actions on Circadian Timekeeping in the Mouse Brain.

    Science.gov (United States)

    Salaberry, Nora L; Mateo, Maria; Mendoza, Jorge

    2017-09-01

    Circadian rhythms are strongly affected by drugs. In rodents, chronic methamphetamine (METH) intake changes circadian activity rhythms, mainly by altering light synchronization that generates the expression of a free-running rhythm with a period longer than 24 h and a second behavioral component that is independent of the main suprachiasmatic (SCN) clock. Although a number of clock genes do not appear to be involved in the effects of METH on circadian behavior, the molecular clockwork controlling these changes is still unclear. Therefore, we investigated the role of the clock gene Rev-Erbα in METH-induced behavioral and molecular responses using knockout mice and their wild-type littermates. Chronic intake of METH alters period circadian behavior of wild-type mice. However, in mice lacking the clock gene Rev-Erbα METH had no effect on their behavioral rhythms. Furthermore, PER2 bioluminescence rhythms in two extra-SCN brain oscillators, the dorsomedial hypothalamus and the habenula, were altered by METH in wild type but not in KO mice. Together, the present results implicate Rev-Erbα in the modulation of the circadian responses to METH and may provide a better comprehension into the mechanisms underlying circadian alterations provoked by drug addiction.

  3. Circadian Rhythms and Clock Genes in Reproduction: Insights From Behavior and the Female Rabbit’s Brain

    Directory of Open Access Journals (Sweden)

    Mario Caba

    2018-03-01

    Full Text Available Clock gene oscillations are necessary for a successful pregnancy and parturition, but little is known about their function during lactation, a period demanding from the mother multiple physiological and behavioral adaptations to fulfill the requirements of the offspring. First, we will focus on circadian rhythms and clock genes in reproductive tissues mainly in rodents. Disruption of circadian rhythms or proper rhythmic oscillations of clock genes provoke reproductive problems, as found in clock gene knockout mice. Then, we will focus mainly on the rabbit doe as this mammal nurses the young just once a day with circadian periodicity. This daily event synchronizes the behavior and the activity of specific brain regions critical for reproductive neuroendocrinology and maternal behavior, like the preoptic area. This region shows strong rhythms of the PER1 protein (product of the Per1 clock gene associated with circadian nursing. Additionally, neuroendocrine cells related to milk production and ejections are also synchronized to daily nursing. A threshold of suckling is necessary to entrain once a day nursing; this process is independent of milk output as even virgin does (behaving maternally following anosmia can display circadian nursing behavior. A timing motivational mechanism may regulate such behavior as mesolimbic dopaminergic cells are entrained by daily nursing. Finally, we will explore about the clinical importance of circadian rhythms. Indeed, women in chronic shift-work schedules show problems in their menstrual cycles and pregnancies and also have a high risk of preterm delivery, making this an important field of translational research.

  4. Social memory in the rat: circadian variation and effect of circadian rhythm disruption

    NARCIS (Netherlands)

    Reijmers, L.G.J.E.; Leus, I.E.; Burbach, J.P.H.; Spruijt, B.M.; Ree, van J.M.

    2001-01-01

    Disruption of circadian rhythm can impair long-term passive avoidance memory of rats and mice. The present study investigated whether disruption of circadian rhythm can also impair social memory of male rats. Social memory was assessed using the social discrimination test, in which a short-term

  5. A circadian clock in Antarctic krill: an endogenous timing system governs metabolic output rhythms in the euphausid species Euphausia superba.

    Directory of Open Access Journals (Sweden)

    Mathias Teschke

    Full Text Available Antarctic krill, Euphausia superba, shapes the structure of the Southern Ocean ecosystem. Its central position in the food web, the ongoing environmental changes due to climatic warming, and increasing commercial interest on this species emphasize the urgency of understanding the adaptability of krill to its environment. Krill has evolved rhythmic physiological and behavioral functions which are synchronized with the daily and seasonal cycles of the complex Southern Ocean ecosystem. The mechanisms, however, leading to these rhythms are essentially unknown. Here, we show that krill possesses an endogenous circadian clock that governs metabolic and physiological output rhythms. We found that expression of the canonical clock gene cry2 was highly rhythmic both in a light-dark cycle and in constant darkness. We detected a remarkable short circadian period, which we interpret as a special feature of the krill's circadian clock that helps to entrain the circadian system to the extreme range of photoperiods krill is exposed to throughout the year. Furthermore, we found that important key metabolic enzymes of krill showed bimodal circadian oscillations (∼9-12 h period in transcript abundance and enzymatic activity. Oxygen consumption of krill showed ∼9-12 h oscillations that correlated with the temporal activity profile of key enzymes of aerobic energy metabolism. Our results demonstrate the first report of an endogenous circadian timing system in Antarctic krill and its likely link to metabolic key processes. Krill's circadian clock may not only be critical for synchronization to the solar day but also for the control of seasonal events. This study provides a powerful basis for the investigation into the mechanisms of temporal synchronization in this marine key species and will also lead to the first comprehensive analyses of the circadian clock of a polar marine organism through the entire photoperiodic cycle.

  6. CT Measurement of Range of Motion of Ankle and Subtalar Joints Following Two Lateral Column Lengthening Procedures

    NARCIS (Netherlands)

    Beimers, Lijkele; Louwerens, Jan W. K.; Tuijthof, Gabrielle Josephine Maria; Jonges, Remmet; van Dijk, C. N. Niek; Blankevoort, Leendert

    2012-01-01

    Background: Lateral column lengthening (LCL) has become an accepted procedure for the operative treatment of the flexible flatfoot deformity. Hindfoot arthrodesis via a calcaneocuboid distraction arthrodesis (CCDA) has been considered a less favourable surgical option than the anterior open wedge

  7. Circadian rhythms in anesthesia and critical care medicine: potential importance of circadian disruptions.

    Science.gov (United States)

    Brainard, Jason; Gobel, Merit; Bartels, Karsten; Scott, Benjamin; Koeppen, Michael; Eckle, Tobias

    2015-03-01

    The rotation of the earth and associated alternating cycles of light and dark--the basis of our circadian rhythms--are fundamental to human biology and culture. However, it was not until 1971 that researchers first began to describe the molecular mechanisms for the circadian system. During the past few years, groundbreaking research has revealed a multitude of circadian genes affecting a variety of clinical diseases, including diabetes, obesity, sepsis, cardiac ischemia, and sudden cardiac death. Anesthesiologists, in the operating room and intensive care units, manage these diseases on a daily basis as they significantly affect patient outcomes. Intriguingly, sedatives, anesthetics, and the intensive care unit environment have all been shown to disrupt the circadian system in patients. In the current review, we will discuss how newly acquired knowledge of circadian rhythms could lead to changes in clinical practice and new therapeutic concepts. © The Author(s) 2014.

  8. Limits of Calcaneal Lengthening for Treating Planovalgus Foot Deformity in Children With Cerebral Palsy.

    Science.gov (United States)

    Luo, Chi-An; Kao, Hsuan-Kai; Lee, Wei-Chun; Yang, Wen-E; Chang, Chia-Hsieh

    2017-08-01

    Calcaneal lengthening is used to correct symptomatic planovalgus foot deformity, but outcomes have been less satisfactory in children with cerebral palsy. This study aimed to define limits of calcaneal lengthening by analyzing the risk factors for undercorrection of deformity. We retrospectively reviewed 20 cases of children with cerebral palsy who underwent calcaneal lengthening of 30 planovalgus feet at a mean age of 11.9 years. Foot deformities were evaluated by the anteroposterior talo-first metatarsal angle (normal, 10 ± 7.0 degrees), lateral talo-first metatarsal angle (normal, 13 ± 7.5 degrees), and lateral calcaneal pitch angle (normal, 17 ± 6.0 degrees) on standing foot radiographs. Among these parameters, a corrected foot was defined as 2 or 3 parameters being corrected to within a normal range, and an undercorrected foot was only 1 or no parameter being corrected to within a normal range. Factors were compared between the corrected group and undercorrected group for significant predictors, and cutoff values of predictors were calculated for use as a clinical guideline. Seventeen planovalgus feet were corrected satisfactorily by calcaneal lengthening, while the other 13 feet were undercorrected. Undercorrected feet had a greater preoperative anteroposterior talonavicular angle (33.7 vs 22.8 degrees, P = .001) and a smaller lateral calcaneal pitch (-1.7 vs 5.6 degrees, P = .03). A talonavicular angle of more than 24 degrees and calcaneal pitch less than -5 degrees were identified as cutoff values using a receiver operating characteristic curve. The predicted probability of undercorrection was 100% (9/9 feet) for 2 positive predictors, 50% (8/16 feet) for 1 positive predictor, and 0 (0/5 feet) for zero predictors. A talonavicular lateral subluxation of more than 24 degrees on the anteroposterior radiograph and a calcaneal pitch angle less than -5 degrees on the lateral radiograph were 2 independent predictors that could be used to identify a planovalgus

  9. Mechanisms of social synchrony between circadian activity rhythms in cohabiting marmosets.

    Science.gov (United States)

    Bessa, Zoélia Camila Moura; Melo, Paula Rocha De; Gonçalves, Bruno S B; Azevedo, Carolina V M De

    2018-01-26

    In marmosets, social synchrony between circadian profiles of activity is stronger in animals that cohabit in a family. The activity of three breeding pairs was recorded by actiwatches to investigate the mechanisms involved in the synchrony between the circadian activity profiles during cohabitation in marmoset reproductive pairs. The dyads were submitted to LD 12:12 (21 days) and LL: 1) cohabitation (24 days), 2) removal of the cage mate (20 days), 3) reintroduction of the mate into the cage of the 1 st situation (30 days) and 4) removal of the cage mate (7 days). Next, they were rejoined and maintained in LD 12:12 (11 days). In conditions involving cohabitation of pair, the general and maximum correlation indexes between circadian profiles were higher in cage mates compared to animals of the same or different sex with which they maintain only acoustic and olfactive contact. This strong synchrony between rhythms was accompanied by a stable phase relationship at the activity onset and offset, with identical circadian periods between mates. When the pairs were separated, there was a break in stability in the phase relationships between activity profiles with different circadian periods and a greater phase angle difference between rhythms of cage mates. During separation, two females and one male progressively anticipated the activity onset and offset in a phase similar to that in previous conditions, expressing entrainment to the mate. During the first reintroduction, two pairs exhibited signs of masking in rhythm. Although modulation in the rhythm of some animals has been observed through acoustic cues from animals outside the colony, we suggest that cohabitation favors strong synchrony between the circadian activity profiles of marmoset reproductive pairs involving synchronization by entrainment and masking. Further studies in the absence of external social cues are necessary to clarify the role of these mechanisms on social synchronization in marmosets.

  10. Does circadian disruption play a role in the metabolic-hormonal link to delayed lactogenesis II?

    Directory of Open Access Journals (Sweden)

    Manjie eFu

    2015-02-01

    Full Text Available Breastfeeding improves maternal and child health. The American Academy of Pediatrics recommends exclusive breastfeeding for six months, with continued breastfeeding for at least one year. However, in the US, only 18.8% of infants are exclusively breastfed until six months of age. For mothers who initiate breastfeeding, the early postpartum period sets the stage for sustained breastfeeding. Mothers who experience breastfeeding problems in the early postpartum period are more likely to discontinue breastfeeding within two weeks. A major risk factor for shorter breastfeeding duration is delayed lactogenesis II (i.e. onset of milk coming in more than 72 h postpartum. Recent studies report a metabolic-hormonal link to delayed lactogenesis II. This is not surprising because around the time of birth the mother’s entire metabolism changes to direct nutrients to mammary glands. Circadian and metabolic systems are closely linked, and our rodent studies suggest circadian clocks coordinate hormonal and metabolic changes to support lactation. Molecular and environmental disruption of the circadian system decreases a dam’s ability to initiate lactation and negatively impacts milk production. Circadian and metabolic systems evolved to be functional and adaptive when lifestyles and environmental exposures were quite different from modern times. We now have artificial lights, longer work days, and increases in shift work. Disruption in the circadian system due to shift work, jet lag, sleep disorders and other modern life style choices are associated with metabolic disorders, obesity, and impaired reproduction. We hypothesize delayed lactogenesis II is related to disruption of the mother’s circadian system. Here we review literature that supports this hypothesis, and describe interventions that may help to increase breastfeeding success.

  11. Ribosomal S6 Kinase Cooperates with Casein Kinase 2 to Modulate the Drosophila Circadian Molecular Oscillator

    Science.gov (United States)

    Akten, Bikem; Tangredi, Michelle M.; Jauch, Eike; Roberts, Mary A.; Ng, Fanny; Raabe, Thomas; Jackson, F. Rob

    2009-01-01

    There is a universal requirement for post-translational regulatory mechanisms in circadian clock systems. Previous work in Drosophila has identified several kinases, phosphatases and an E3 ligase that are critical for determining the nuclear translocation and/or stability of clock proteins. The present study evaluated the function of p90 ribosomal S6 kinase (RSK) in the Drosophila circadian system. In mammals, RSK1 is a light- and clock-regulated kinase known to be activated by the MAPK pathway, but there is no direct evidence that it functions as a component of the circadian system. Here, we show that Drosophila S6KII RNA displays rhythms in abundance, indicative of circadian control. Importantly, an S6KII null mutant exhibits a short-period circadian phenotype that can be rescued by expression of the wild-type gene in clock neurons, indicating a role for S6KII in the molecular oscillator. Peak PER clock protein expression is elevated in the mutant, indicative of enhanced stability, whereas per mRNA level is decreased, consistent with enhanced feedback repression. Gene reporter assays show that decreased S6KII is associated with increased PER repression. Surprisingly, we demonstrate a physical interaction between S6KII and the Casein Kinase 2 regulatory subunit (CK2β), suggesting a functional relationship between the two kinases. In support of such a relationship, there are genetic interactions between S6KII and CK2 mutations, in vivo, which indicate that CK2 activity is required for S6KII action. We propose that the two kinases cooperate within clock neurons to fine-tune circadian period, improving the precision of the clock mechanism. PMID:19144847

  12. Does Circadian Disruption Play a Role in the Metabolic-Hormonal Link to Delayed Lactogenesis II?

    Science.gov (United States)

    Fu, Manjie; Zhang, Lingsong; Ahmed, Azza; Plaut, Karen; Haas, David M; Szucs, Kinga; Casey, Theresa M

    2015-01-01

    Breastfeeding improves maternal and child health. The American Academy of Pediatrics recommends exclusive breastfeeding for 6 months, with continued breastfeeding for at least 1 year. However, in the US, only 18.8% of infants are exclusively breastfed until 6 months of age. For mothers who initiate breastfeeding, the early post-partum period sets the stage for sustained breastfeeding. Mothers who experience breastfeeding problems in the early post-partum period are more likely to discontinue breastfeeding within 2 weeks. A major risk factor for shorter breastfeeding duration is delayed lactogenesis II (DLII; i.e., onset of milk "coming in" more than 72 h post-partum). Recent studies report a metabolic-hormonal link to DLII. This is not surprising because around the time of birth the mother's entire metabolism changes to direct nutrients to mammary glands. Circadian and metabolic systems are closely linked, and our rodent studies suggest circadian clocks coordinate hormonal and metabolic changes to support lactation. Molecular and environmental disruption of the circadian system decreases a dam's ability to initiate lactation and negatively impacts milk production. Circadian and metabolic systems evolved to be functional and adaptive when lifestyles and environmental exposures were quite different from modern times. We now have artificial lights, longer work days, and increases in shift work. Disruption in the circadian system due to shift work, jet-lag, sleep disorders, and other modern life style choices are associated with metabolic disorders, obesity, and impaired reproduction. We hypothesize that DLII is related to disruption of the mother's circadian system. Here, we review literature that supports this hypothesis, and describe interventions that may help to increase breastfeeding success.

  13. Does Circadian Disruption Play a Role in the Metabolic–Hormonal Link to Delayed Lactogenesis II?

    Science.gov (United States)

    Fu, Manjie; Zhang, Lingsong; Ahmed, Azza; Plaut, Karen; Haas, David M.; Szucs, Kinga; Casey, Theresa M.

    2015-01-01

    Breastfeeding improves maternal and child health. The American Academy of Pediatrics recommends exclusive breastfeeding for 6 months, with continued breastfeeding for at least 1 year. However, in the US, only 18.8% of infants are exclusively breastfed until 6 months of age. For mothers who initiate breastfeeding, the early post-partum period sets the stage for sustained breastfeeding. Mothers who experience breastfeeding problems in the early post-partum period are more likely to discontinue breastfeeding within 2 weeks. A major risk factor for shorter breastfeeding duration is delayed lactogenesis II (DLII; i.e., onset of milk “coming in” more than 72 h post-partum). Recent studies report a metabolic–hormonal link to DLII. This is not surprising because around the time of birth the mother’s entire metabolism changes to direct nutrients to mammary glands. Circadian and metabolic systems are closely linked, and our rodent studies suggest circadian clocks coordinate hormonal and metabolic changes to support lactation. Molecular and environmental disruption of the circadian system decreases a dam’s ability to initiate lactation and negatively impacts milk production. Circadian and metabolic systems evolved to be functional and adaptive when lifestyles and environmental exposures were quite different from modern times. We now have artificial lights, longer work days, and increases in shift work. Disruption in the circadian system due to shift work, jet-lag, sleep disorders, and other modern life style choices are associated with metabolic disorders, obesity, and impaired reproduction. We hypothesize that DLII is related to disruption of the mother’s circadian system. Here, we review literature that supports this hypothesis, and describe interventions that may help to increase breastfeeding success. PMID:25988133

  14. Is bilateral lower limb lengthening appropriate for achondroplasia?: midterm analysis of the complications and quality of life.

    Science.gov (United States)

    Kim, Seung-Ju; Balce, Gracia Cielo; Agashe, Mandar Vikas; Song, Sang-Heon; Song, Hae-Ryong

    2012-02-01

    Use of the Ilizarov technique for limb lengthening in patients with achondroplasia is controversial, with a high risk of complications balancing cosmetic gains. Although several articles have described the complications of this procedure and satisfaction of patients after surgery, it remains unclear whether lengthening improves the quality of life (QOL) of these patients. We asked whether bilateral lower limb lengthenings with deformity correction in patients with achondroplasia would improve QOL and investigated the correlation between complication rate and QOL. We retrospectively reviewed 22 patients (average age, 12.7 years) diagnosed with achondroplasia who underwent bilateral lower limb lengthenings between 2002 and 2005. These patients were compared with 22 patients with achondroplasia for whom limb lengthening was not performed. The two groups were assessed using the American Academy of Orthopaedic Surgeons (AAOS) lower limb, SF-36, and Rosenberg self-esteem scores. Minimum followup was 4.5 years (range, 4.5-6.9 years). Among the lengthening group, the average gain in length was 10.21 ± 2.39 cm for the femur and 9.13 ± 2.12 cm for the tibia. A total of 123 complications occurred in these 88 segments. The surgical group had higher Rosenberg self-esteem scores than the nonsurgical group although there were no differences in the AAOS and the SF-36 scores. The self-esteem scores decreased with the increase in the number of complications. Our data suggest that despite frequent complications, bilateral lower limb lengthening increases patients' QOL. We believe lengthening is a reasonable option in selected patients. Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence.

  15. Impact of lengthening open water season on food security in Alaska coastal communities: Global impacts may outweigh local "frontline" effects

    Science.gov (United States)

    Rolph, R.; Mahoney, A. R.

    2015-12-01

    Using ice concentration data from the Alaska Sea Ice Atlas from 1953-2013 for selected communities in Alaska, we find a consistent trend toward later freeze up and earlier breakup, leading a lengthened open water period. Such changes are often considered to bring a variety of "frontline" local impacts to Arctic coastal communities such as increased rates of coastal erosion. However, direct consequences of these changes to local food security (e.g. through impacts on subsistence activities and marine transport of goods) may be outweighed at least in the short term by the effects of large scale Arctic sea ice change coupled with global oil markets. For example, a later freeze-up might delay local hunters' transition from boats to snow-machines, but whether this trend will affect hunting success, especially in the next few years, is uncertain. Likewise, the magnitude of change in open water season length is unlikely to be sufficient to increase the frequency with which communities are served by barges. However, an expanding open water season throughout the Arctic has implications for the global economy, which can have indirect effects on local communities. In the Chukchi and Beaufort Seas, where rapid sea ice change has been accompanied by increased interest in oil and gas development, the U.S. Bureau of Ocean Energy Management currently requires drilling operations to cease 38 days prior to freeze up. Taking this into account, the lengthening open water season has effectively extended the drilling season for oil companies by 184% since the 1950s. If oil development goes ahead, local communities will likely experience a range of indirect impacts on food security due to increased vessel traffic and demand on infrastructure coupled with changes in local economies and employment opportunities. Increased likelihood of an oil spill in coastal waters also poses a significant threat to local food security. Thus, while Arctic coastal communities are already experiencing

  16. Circadian rhythm of rectal temperature during sleep deprivation with modafinil.

    Science.gov (United States)

    Launay, Jean-Claude; Savourey, Gustave; Guinet, Angélique; Lallement, Guy; Besnard, Yves; Bittel, Jacques

    2002-10-01

    Sleep deprivation (SD) induces many adverse psychological and physiological effects, particularly on vigilance and the thermoregulatory system. The drug modafinil appears to suppress or diminish the harmful effects on vigilance. However, the effects of modafinil combined with SD on the circadian rhythm of core temperature are not well established. We studied the circadian rhythm of rectal temperature (CRTre) during 62 h of SD alone or with three dosage levels of modafinil. Six men underwent repeated SD experiments lasting 7 d each, including a 24-h control period, 62 h of SD, and a 24-h recovery period. Experiments were repeated four times in mixed order for placebo and three levels of modafinil (50, 150, or 300 mg x 24 h(-1)). The Tre was recorded each minute throughout the experiment and the CRTre was studied by the single cosinor method. Independent of modafinil, SD increased the mesor (p modafinil, but not the higher doses, induced a lower mesor (p modafinil on core temperature. The hyperthermic effect reported in the literature for SD with modafinil may actually result from the sleep deprivation alone.

  17. Development of the circadian clockwork in the kidney

    DEFF Research Database (Denmark)

    Mészáros, Krisztina; Pruess, Linda; Szabó, Attila J.

    2014-01-01

    intervals on embryonic day 20 and at postnatal weeks 1, 4, and 12. Canonical clock gene (Clock, Bmal1, Rev-erbα, Cry1, Cry2, Per1, Per2) and kidney-specific clock-controlled gene (αENaC, SGK1, NHE3, AVPR2) expression was profiled by RT-PCR. To investigate the role of nutritional cues, the feeding pattern...... was modified postpartum. Clock, Rev-erbα, Per2, αENaC, SGK1, NHE3, and AVPR2 showed circadian expression at the end of intrauterine development. By 1 week, all genes oscillated with a distinct acrophase shift toward the time of peak feeding activity. Daily 4-hour withdrawal of mothers induced a 12-hour phase....... During the nursing period, oscillations are entrained by nutritional cues. The coupling of the circadian expression of tubular regulators of fluid and electrolyte excretion to the feeding-entrained clockwork may be important to maintain homeostasis during this critical period....

  18. Wavelet-based analysis of circadian behavioral rhythms.

    Science.gov (United States)

    Leise, Tanya L

    2015-01-01

    The challenging problems presented by noisy biological oscillators have led to the development of a great variety of methods for accurately estimating rhythmic parameters such as period and amplitude. This chapter focuses on wavelet-based methods, which can be quite effective for assessing how rhythms change over time, particularly if time series are at least a week in length. These methods can offer alternative views to complement more traditional methods of evaluating behavioral records. The analytic wavelet transform can estimate the instantaneous period and amplitude, as well as the phase of the rhythm at each time point, while the discrete wavelet transform can extract the circadian component of activity and measure the relative strength of that circadian component compared to those in other frequency bands. Wavelet transforms do not require the removal of noise or trend, and can, in fact, be effective at removing noise and trend from oscillatory time series. The Fourier periodogram and spectrogram are reviewed, followed by descriptions of the analytic and discrete wavelet transforms. Examples illustrate application of each method and their prior use in chronobiology is surveyed. Issues such as edge effects, frequency leakage, and implications of the uncertainty principle are also addressed. © 2015 Elsevier Inc. All rights reserved.

  19. Ovariectomy influences the circadian rhythm of locomotor activity and the photic phase shifts in the volcano mouse.

    Science.gov (United States)

    Juárez-Tapia, Cinthia; Miranda-Anaya, Manuel

    2017-12-01

    Recently, the relationship between the circadian system and female reproduction has been of great interest; ovarian hormones can modify the amount and distribution of daily activity differently in rodent species. The volcano mouse Neotomodon alstoni is a species in which it is possible to study the circadian rhythm of locomotion, and it offers comparative information about the influence of ovaries on the circadian system. In this study, we used infrared crossings to compare free movement in intact and sham-operated or ovariectomized mice. We analyzed behavioral and endocrine changes related to the estrous cycle and locomotor circadian rhythm in free-running mice and photic phase shifting. Evidence shows that intact mice present a scalloped pattern of daily activity during the estrous cycle. In constant darkness, the ovariectomy reduces the total amount of activity, shortens the free-running circadian period of locomotion and increases photic phase shifts during the early subjective night. During entrainment, the ovariectomized mice increased the amplitude of total activity during the scotophase, and delay the time of activity onset. These results suggest that ovarian hormones in N. alstoni modulate the circadian rhythm of locomotor activity in a species-specific manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Adaptation to experimental jet-lag in R6/2 mice despite circadian dysrhythmia.

    Directory of Open Access Journals (Sweden)

    Nigel I Wood

    Full Text Available The R6/2 transgenic mouse model of Huntington's disease (HD shows a disintegration of circadian rhythms that can be delayed by pharmacological and non-pharmacological means. Since the molecular machinery underlying the circadian clocks is intact, albeit progressively dysfunctional, we wondered if light phase shifts could modulate the deterioration in daily rhythms in R6/2 mice. Mice were subjected to four x 4 hour advances in light onset. R6/2 mice adapted to phase advances, although angles of entrainment increased with age. A second cohort was subjected to a jet-lag paradigm (6 hour delay or advance in light onset, then reversal after 2 weeks. R6/2 mice adapted to the original shift, but could not adjust accurately to the reversal. Interestingly, phase shifts ameliorated the circadian rhythm breakdown seen in R6/2 mice under normal LD conditions. Our previous finding that the circadian period (tau of 16 week old R6/2 mice shortens to approximately 23 hours may explain how they adapt to phase advances and maintain regular circadian rhythms. We tested this using a 23 hour period light/dark cycle. R6/2 mice entrained to this cycle, but onsets of activity continued to advance, and circadian rhythms still disintegrated. Therefore, the beneficial effects of phase-shifting are not due solely to the light cycle being closer to the tau of the mice. Our data show that R6/2 mice can adapt to changes in the LD schedule, even beyond the age when their circadian rhythms would normally disintegrate. Nevertheless, they show abnormal responses to changes in light cycles. These might be caused by a shortened tau, impaired photic re-synchronization, impaired light detection and/or reduced masking by evening light. If similar abnormalities are present in HD patients, they may suffer exaggerated jet-lag. Since the underlying molecular clock mechanism remains intact, light may be a useful treatment for circadian dysfunction in HD.

  1. Contribution of medications and risk factors to QTc interval lengthening in the atherosclerosis risk in communities (ARIC) study.

    Science.gov (United States)

    Alburikan, Khalid A; Aldemerdash, Ahmed; Savitz, Samuel T; Tisdale, James E; Whitsel, Eric A; Soliman, Elsayed Z; Thudium, Emily M; Sueta, Carla A; Kucharska-Newton, Anna M; Stearns, Sally C; Rodgers, Jo E

    2017-12-01

    Prolongation of the corrected QT (QTc) interval is associated with increased morbidity and mortality. The association between QTc interval-prolonging medications (QTPMs) and risk factors with magnitude of QTc interval lengthening is unknown. We examined the contribution of risk factors alone and in combination with QTPMs to QTc interval lengthening. The Atherosclerosis Risk in Communities study assessed 15 792 participants with a resting, standard 12-lead electrocardiogram and ≥1 measure of QTc interval over 4 examinations at 3-year intervals (1987-1998). From 54 638 person-visits, we excluded participants with QRS ≥ 120 milliseconds (n = 2333 person-visits). We corrected the QT interval using the Bazett and Framingham formulas. We examined QTc lengthening using linear regression for 36 602 person-visit observations for 14 160 cohort members controlling for age ≥ 65 years, female sex, left ventricular hypertrophy, QTc > 500 milliseconds at the prior visit, and CredibleMeds categorized QTPMs (Known, Possible, or Conditional risk). We corrected standard errors for repeat observations per person. Eighty percent of person-visits had at least one risk factor for QTc lengthening. Use of QTPMs increased over the 4 visits from 8% to 17%. Among persons not using QTPMs, history of prolonged QTc interval and female sex were associated with the greatest QTc lengthening, 39 and 12 milliseconds, respectively. In the absence of risk factors, Known QTPMs and ≥2 QTPMs were associated with modest but greater QTc lengthening than Possible or Conditional QTPMs. In the presence of risk factors, ≥2 QTPM further increased QTc lengthening. In combination with risk factors, the association of all QTPM categories with QTc lengthening was greater than QTPMs alone. Risk factors, particularly female sex and history of prolonged QTc interval, have stronger associations with QTc interval lengthening than any QTPM category alone. All QTPM categories augmented QTc interval

  2. The circadian clock in cancer development and therapy

    Science.gov (United States)

    Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The...

  3. Circadian Variation of Breast Milk Components and Implications for Care.

    Science.gov (United States)

    White, Robert D

    2017-09-01

    Several components of breast milk show circadian variability. It is likely that at least some of these macronutrients, hormones, and micronutrients produce circadian stimuli that enhance the well-being of breast-fed infants. Future research should determine whether high-risk infants benefit if breast milk is given during the same circadian phase as it was expressed.

  4. Circadian timekeeping : from basic clock function to implications for health

    NARCIS (Netherlands)

    Lucassen, Eliane Alinda

    2016-01-01

    In modern society, circadian rhythms and sleep are often disturbed, which may negatively affect health. This thesis examines these associations and focuses on the basic functioning of sleep and the circadian system in mice and in humans. Circadian rhythms are orchestrated by ~20,000 neurons in the

  5. Altered dynamics in the circadian oscillation of clock genes in dermal fibroblasts of patients suffering from idiopathic hypersomnia.

    Directory of Open Access Journals (Sweden)

    Julian Lippert

    Full Text Available From single cell organisms to the most complex life forms, the 24-hour circadian rhythm is important for numerous aspects of physiology and behavior such as daily periodic fluctuations in body temperature and sleep-wake cycles. Influenced by environmental cues - mainly by light input -, the central pacemaker in the thalamic suprachiasmatic nuclei (SCN controls and regulates the internal clock mechanisms which are present in peripheral tissues. In order to correlate modifications in the molecular mechanisms of circadian rhythm with the pathophysiology of idiopathic hypersomnia, this study aimed to investigate the dynamics of the expression of circadian clock genes in dermal fibroblasts of idiopathic hypersomniacs (IH in comparison to those of healthy controls (HC. Ten clinically and polysomnographically proven IH patients were recruited from the department of sleep medicine of the University Hospital of Muenster. Clinical diagnosis was done by two consecutive polysomnographies (PSG and Multiple Sleep Latency Test (MSLT. Fourteen clinical healthy volunteers served as control group. Dermal fibroblasts were obtained via punch biopsy and grown in cell culture. The expression of circadian clock genes was investigated by semiquantitative Reverse Transcriptase-PCR qRT-PCR analysis, confirming periodical oscillation of expression of the core circadian clock genes BMAL1, PER1/2 and CRY1/2. The amplitude of the rhythmically expressed BMAL1, PER1 and PER2 was significantly dampened in dermal fibroblasts of IH compared to HC over two circadian periods whereas the overall expression of only the key transcriptional factor BMAL1 was significantly reduced in IH. Our study suggests for the first time an aberrant dynamics in the circadian clock in IH. These findings may serve to better understand some clinical features of the pathophysiology in sleep - wake rhythms in IH.

  6. Preliminary evidences of circadian fan activity rhythm in Sabella spallanzanii (Gmelin, 1791 (Polychaeta: Sabellidae

    Directory of Open Access Journals (Sweden)

    Jacopo Aguzzi

    2006-12-01

    Full Text Available The fan activity rhythm of Sabella spallanzanii (Gmelin, 1791 and its entrainment capability to light were studied. Animals were tested under constant darkness (DD followed by two consecutive 24 h light-darkness regimes: a first 11 h light period (LD and a second 9 h light period, with its phase inverted (DL. An infrared analogical video-camera took shots each 30 s. A number of pictures with open fan were counted every 15 min. In DD a weak free-running periodicity in the circadian range was found, thus reinforcing the matching of the 24 h period under study in both photoperiod regimes. A nocturnal activity was characterised with a consistent anticipation to lightOFF (i.e. entrainment. Moreover, this phase of entrainment differed between DL and LD. The presence of endogenous activity rhythm with a variable phase angle of entrainment is a distinctive feature of circadian pacemakers.

  7. Naturally occurring circadian rhythm and sleep duration are related to executive functions in early adulthood.

    Science.gov (United States)

    Kuula, Liisa; Pesonen, Anu-Katriina; Heinonen, Kati; Kajantie, Eero; Eriksson, Johan Gunnar; Andersson, Sture; Lano, Aulikki; Lahti, Jari; Wolke, Dieter; Räikkönen, Katri

    2018-02-01

    Experimental sleep deprivation studies suggest that insufficient sleep and circadian misalignment associates with poorer executive function. It is not known whether this association translates to naturally occurring sleep patterns. A total of 512 of full-term-born members of the Arvo Ylppö Longitudinal Study [mean age = 25.3, standard deviation (SD) = 0.65] (44.3% men) wore actigraphs to define sleep duration, its irregularity and circadian rhythm (sleep mid-point) during a 1-week period (mean 6.9 nights, SD = 1.7). Performance-based executive function was assessed with the Trail-Making Test, Conners' Continuous Performance Test and Stroop. The self-rated adult version of Behavior Rating Inventory of Executive Function was used to assess trait-like executive function. We found that performance-based and self-reported trait-like executive function correlated only modestly (all correlations ≤0.17). Shorter sleep duration associated with more commission errors. Later circadian rhythm associated with poorer trait-like executive function, as indicated by the Brief Metacognitive Index and the Behavior Regulation Index. Those belonging to the group with the most irregular sleep duration performed slower than others in the Trail-Making Test Part A. All associations were adjusted for sex, age, socioeconomic status and body mass index. In conclusion, naturally occurring insufficient sleep and later circadian rhythm showed modest associations with poorer executive function. Shorter habitual sleep duration was associated with lower scores of performance-based tests of executive function, and later circadian rhythm was associated mainly with poorer trait-like executive function characteristics. Our findings suggest additionally that sleep duration and circadian rhythm associate with different domains of executive function, and there are no additive effects between the two. © 2017 European Sleep Research Society.

  8. Mice deficient of glutamatergic signaling from intrinsically photosensitive retinal ganglion cells exhibit abnormal circadian photoentrainment.

    Directory of Open Access Journals (Sweden)

    Nicole Purrier

    Full Text Available Several aspects of behavior and physiology, such as sleep and wakefulness, blood pressure, body temperature, and hormone secretion exhibit daily oscillations known as circadian rhythms. These circadian rhythms are orchestrated by an intrinsic biological clock in the suprachiasmatic nuclei (SCN of the hypothalamus which is adjusted to the daily environmental cycles of day and night by the process of photoentrainment. In mammals, the neuronal signal for photoentrainment arises from a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs that send a direct projection to the SCN. ipRGCs also mediate other non-image-forming (NIF visual responses such as negative masking of locomotor activity by light, and the pupillary light reflex (PLR via co-release of neurotransmitters glutamate and pituitary adenylate cyclase-activating peptide (PACAP from their synaptic terminals. The relative contribution of each neurotransmitter system for the circadian photoentrainment and other NIF visual responses is still unresolved. We investigated the role of glutamatergic neurotransmission for circadian photoentrainment and NIF behaviors by selective ablation of ipRGC glutamatergic synaptic transmission in mice. Mutant mice displayed delayed re-entrainment to a 6 h phase shift (advance or delay in the light cycle and incomplete photoentrainment in a symmetrical skeleton photoperiod regimen (1 h light pulses between 11 h dark periods. Circadian rhythmicity in constant darkness also was reduced in some mutant mice. Other NIF responses such as the PLR and negative masking responses to light were also partially attenuated. Overall, these results suggest that glutamate from ipRGCs drives circadian photoentrainment and negative masking responses to light.

  9. The importance of hormonal circadian rhythms in daily feeding patterns: An illustration with simulated pigs.

    Science.gov (United States)

    Boumans, Iris J M M; de Boer, Imke J M; Hofstede, Gert Jan; la Fleur, Susanne E; Bokkers, Eddie A M

    2017-07-01

    The interaction between hormonal circadian rhythms and feeding behaviour is not well understood. This study aimed to deepen our understanding of mechanisms underlying circadian feeding behaviour in animals, using pigs, Sus scrofa, as a case study. Pigs show an alternans feeding pattern, that is, a small peak of feed intake at the beginning of the day and a larger peak at the end of the day. We simulated the feeding behaviour of pigs over a 24h period. The simulation model contained mechanisms that regulate feeding behaviour of animals, including: processing of feed in the gastrointestinal tract, fluctuation in energy balance, circadian rhythms of melatonin and cortisol and motivational decision-making. From the interactions between these various processes, feeding patterns (e.g. feed intake, meal frequency, feeding rate) emerge. These feeding patterns, as well as patterns for the underlying mechanisms (e.g. energy expenditure), fitted empirical data well, indicating that our model contains relevant mechanisms. The circadian rhythms of cortisol and melatonin explained the alternans pattern of feeding in pigs. Additionally, the timing and amplitude of cortisol peaks affected the diurnal and nocturnal peaks in feed intake. Furthermore, our results suggest that circadian rhythms of other hormones, such as leptin and ghrelin, are less important in circadian regulation of feeding behaviour than previously thought. These results are relevant to animal species with a metabolic and endocrine system similar to that of pigs, such as humans. Moreover, the modelling approach to understand feeding behaviour can be applied to other animal species. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Machine Learning Helps Identify CHRONO as a Circadian Clock Component

    Science.gov (United States)

    Venkataraman, Anand; Ramanathan, Chidambaram; Kavakli, Ibrahim H.; Hughes, Michael E.; Baggs, Julie E.; Growe, Jacqueline; Liu, Andrew C.; Kim, Junhyong; Hogenesch, John B.

    2014-01-01

    Over the last decades, researchers have characterized a set of “clock genes” that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics. PMID:24737000

  11. CULLIN-3 controls TIMELESS oscillations in the Drosophila circadian clock.

    Directory of Open Access Journals (Sweden)

    Brigitte Grima

    Full Text Available Eukaryotic circadian clocks rely on transcriptional feedback loops. In Drosophila, the PERIOD (PER and TIMELESS (TIM proteins accumulate during the night, inhibit the activity of the CLOCK (CLK/CYCLE (CYC transcriptional complex, and are degraded in the early morning. The control of PER and TIM oscillations largely depends on post-translational mechanisms. They involve both light-dependent and light-independent pathways that rely on the phosphorylation, ubiquitination, and proteasomal degradation of the clock proteins. SLMB, which is part of a CULLIN-1-based E3 ubiquitin ligase complex, is required for the circadian degradation of phosphorylated PER. We show here that CULLIN-3 (CUL-3 is required for the circadian control of PER and TIM oscillations. Expression of either Cul-3 RNAi or dominant negative forms of CUL-3 in the clock neurons alters locomotor behavior and dampens PER and TIM oscillations in light-dark cycles. In constant conditions, CUL-3 deregulation induces behavioral arrhythmicity and rapidly abolishes TIM cycling, with slower effects on PER. CUL-3 affects TIM accumulation more strongly in the absence of PER and forms protein complexes with hypo-phosphorylated TIM. In contrast, SLMB affects TIM more strongly in the presence of PER and preferentially associates with phosphorylated TIM. CUL-3 and SLMB show additive effects on TIM and PER, suggesting different roles for the two ubiquitination complexes on PER and TIM cycling. This work thus shows that CUL-3 is a new component of the Drosophila clock, which plays an important role in the control of TIM oscillations.

  12. Circadian Rhythms in Acute Intermittent Porphyria—a Pilot Study

    Science.gov (United States)

    Larion, Sebastian; Caballes, F. Ryan; Hwang, Sun-Il; Lee, Jin-Gyun; Rossman, Whitney Ellefson; Parsons, Judy; Steuerwald, Nury; Li, Ting; Maddukuri, Vinaya; Groseclose, Gale; Finkielstein, Carla V.; Bonkovsky, Herbert L.

    2013-01-01

    Acute intermittent porphyria (AIP) is an inherited disorder of heme synthesis wherein a partial deficiency of porphobilinogen [PBG] deaminase [PBGD], with other factors may give rise to biochemical and clinical manifestations of disease. The biochemical hallmarks of active AIP are relative hepatic heme deficiency and uncontrolled up-regulation of hepatic 5-aminolevulinic acid [ALA] synthase-1 [ALAS1] with overproduction of ALA and PBG. The treatment of choice is intravenous heme, which restores the deficient regulatory heme pool of the liver and represses ALAS1. Recently, heme has been shown to influence circadian rhythms by controlling their negative feedback loops. We evaluated whether subjects with AIP exhibited an altered circadian profile. Over a 21 h period, we measured levels of serum cortisol, melatonin, ALA, PBG, and mRNA levels [in peripheral blood mononuclear cells] of selected clock-controlled genes and genes involved in heme synthesis in 10 Caucasian [European-American] women who were either post-menopausal or had been receiving female hormone therapy, 6 of whom have AIP and 4 do not and are considered controls. Four AIP subjects with biochemical activity exhibited higher levels of PBG and lower levels and dampened oscillation of serum cortisol, and a trend for lower levels of serum melatonin, than controls or AIP subjects without biochemical activity. Levels of clock-controlled gene mRNAs showed significant increases over baseline in all subjects at 5 am and 11 pm, whereas mRNA levels of ALAS1, ALAS2, and PBGD were increased only at 11 pm in subjects with active AIP. This pilot study provides evidence for disturbances of circadian markers in women with active AIP that may trigger or sustain some common clinical features of AIP. PMID:23650938

  13. Sexual Differentiation of Circadian Clock Function in the Adrenal Gland.

    Science.gov (United States)

    Kloehn, Ian; Pillai, Savin B; Officer, Laurel; Klement, Claire; Gasser, Paul J; Evans, Jennifer A

    2016-05-01

    Sex differences in glucocorticoid production are associated with increased responsiveness of the adrenal gland in females. However, the adrenal-intrinsic mechanisms that establish sexual dimorphic function remain ill defined. Glucocorticoid production is gated at the molecular level by the circadian clock, which may contribute to sexual dimorphic adrenal function. Here we examine sex differences in the adrenal gland using an optical reporter of circadian clock function. Adrenal glands were cultured from male and female Period2::Luciferase (PER2::LUC) mice to assess clock function in vitro in real time. We confirm that there is a pronounced sex difference in the intrinsic capacity to sustain PER2::LUC rhythms in vitro, with higher amplitude rhythms in adrenal glands collected from males than from females. Changes in adrenal PER2::LUC rhythms over the reproductive life span implicate T as an important factor in driving sex differences in adrenal clock function. By directly manipulating hormone levels in adult mice in vivo, we demonstrate that T increases the amplitude of PER2::LUC rhythms in adrenal glands of both male and female mice. In contrast, we find little evidence that ovarian hormones modify adrenal clock function. Lastly, we find that T in vitro can increase the amplitude of PER2::LUC rhythms in male adrenals but not female adrenals, which suggests the existence of sex differences in the mechanisms of T action in vivo. Collectively these results reveal that activational effects of T alter circadian timekeeping in the adrenal gland, which may have implications for sex differences in stress reactivity and stress-related disorders.

  14. Sausage instabilities on top of kinking lengthening current-carrying magnetic flux tubes

    Science.gov (United States)

    von der Linden, Jens; You, Setthivoine

    2017-05-01

    We theoretically explore the possibility of sausage instabilities developing on top of a kink instability in lengthening current-carrying magnetic flux tubes. Observations indicate that the dynamics of magnetic flux tubes in our cosmos and terrestrial experiments can involve topological changes faster than time scales predicted by resistive magnetohydrodynamics. Recent laboratory experiments suggest that hierarchies of instabilities, such as kink and Rayleigh-Taylor, could be responsible for initiating fast topological changes by locally accessing two-fluid and kinetic regimes. Sausage instabilities can also provide this coupling mechanism between disparate scales. Flux tube experiments can be classified by the flux tube's evolution in a configuration space described by a normalized inverse aspect-ratio k ¯ and current-to-magnetic flux ratio λ ¯ . A lengthening current-carrying magnetic flux tube traverses this k ¯ - λ ¯ space and crosses stability boundaries. We derive a single general criterion for the onset of the sausage and kink instabilities in idealized magnetic flux tubes with core and skin currents. The criterion indicates a dependence of the stability boundaries on current profiles and shows overlapping kink and sausage unstable regions in the k ¯ - λ ¯ space with two free parameters. Numerical investigation of the stability criterion reduces the number of free parameters to a single one that describes the current profile and confirms the overlapping sausage and kink unstable regions in k ¯ - λ ¯ space. A lengthening, ideal current-carrying magnetic flux tube can therefore become sausage unstable after it becomes kink unstable.

  15. Interaction between circadian rhythms and stress

    Directory of Open Access Journals (Sweden)

    C.E. Koch

    2017-02-01

    Full Text Available Life on earth has adapted to the day-night cycle by evolution of internal, so-called circadian clocks that adjust behavior and physiology to the recurring changes in environmental conditions. In mammals, a master pacemaker located in the suprachiasmatic nucleus (SCN of the hypothalamus receives environmental light information and synchronizes peripheral tissues and central non-SCN clocks to geophysical time. Regulatory systems such as the hypothalamus-pituitary-adrenal (HPA axis and the autonomic nervous system (ANS, both being important for the regulation of stress responses, receive strong circadian input. In this review, we summarize the interaction of circadian and stress systems and the resulting physiological and pathophysiological consequences. Finally, we critically discuss the relevance of rodent stress studies for humans, addressing complications of translational approaches and offering strategies to optimize animal studies from a chronobiological perspective.

  16. The effect of plantar flexor lengthening on foot pressure in ambulatory children with cerebral palsy.

    Science.gov (United States)

    Abousamra, Oussama; Schwartz, Joshua; Church, Chris; Lennon, Nancy; Henley, John; Niiler, Tim; Miller, Freeman

    2018-05-01

    This study aimed to assess the effects of plantar flexor lengthening (PFL) on dynamic foot pressures of children with cerebral palsy using pedobarographs. Of 97 enrolled, 13 children with 18 legs had PFL. Age at surgery was 4.7 (2.8-8.8) years. A significant increase in ankle dorsiflexion and heel impulse was achieved postoperatively and was maintained at 5 years. The coronal plane pressure index increased postoperatively, but reverted to preoperative levels at the 5-year follow-up. Children tend to have more valgus after PFL. In young children, there caution should be exercised to avoid over treating varus at the time of equinus correction to avoid overcorrection.

  17. Fixator-Assisted Lengthening and Deformity Correction Over an Intramedullary Nail in a Patient with Achondroplasia

    Directory of Open Access Journals (Sweden)

    Erdal Uzun

    2014-12-01

    Full Text Available Achondroplasia is the most frequently encountered form of nonlethal skeletal dysplasia and a type of rhizomelic dwarfism. It results in considerable physical and psychologic handicaps owing to the disproportionate stature of the body and difficulty in performing routine activities of daily living. They also have major musculoskeletal problems including symptomatic malalignment of the lower limbs. Limb lengthening has been used in patients with achondroplasia by different techniques (Intramedullar nailing, monolateral or circular external fixator. We report our treatment of a patient 17 years of age with achondroplasia for bilateral lower limb length discrepancy and bilateral tibial varus deformity.

  18. Rf stability, control and bunch lengthening in electron synchrotron storage rings

    International Nuclear Information System (INIS)

    Wachtel, J.M.

    1989-09-01

    A self-consistent theory for nonlinear longitudinal particle motion and rf cavity excitation in a high energy electron storage ring is developed. Coupled first order equations for the motion of an arbitrary number of particles and for the field in several rf cavities are given in the form used in control system theory. Stochastic quantum excitation of synchrotron motion is included, as are the effects of rf control system corrections. Results of computations for double cavity bunch lengthening are given. 11 refs., 4 figs., 1 tab

  19. An analysis on forced eruption in crown lengthening of un-restorable teeth

    Directory of Open Access Journals (Sweden)

    Vahid A

    2004-07-01

    Full Text Available Cervical third root defects, like perforations (due to resoption or iatrogeic, fractures or invasive decays make great difficulties for appropriate restoration making. In these circumstances crown lengthening is needed, especially for anterior teeth. Forced eruption also could be a beneficial treatment. By this therapy, cervical third root defects will be available to receive a good restoration. without gum and biologic width problems. In this article tried to introduce this method of therapy by reviewing litraure and with regard to personal research.

  20. How does passive lengthening change the architecture of the human medial gastrocnemius muscle?

    Science.gov (United States)

    Bolsterlee, Bart; D'Souza, Arkiev; Gandevia, Simon C; Herbert, Robert D

    2017-04-01

    There are few comprehensive investigations of the changes in muscle architecture that accompany muscle contraction or change in muscle length in vivo. For this study, we measured changes in the three-dimensional architecture of the human medial gastrocnemius at the whole muscle level, the fascicle level and the fiber level using anatomical MRI and diffusion tensor imaging (DTI). Data were obtained from eight subjects under relaxed conditions at three muscle lengths. At the whole muscle level, a 5.1% increase in muscle belly length resulted in a reduction in both muscle width (mean change -2.5%) and depth (-4.8%). At the fascicle level, muscle architecture measurements obtained at 3,000 locations per muscle showed that for every millimeter increase in muscle-tendon length above the slack length, average fascicle length increased by 0.46 mm, pennation angle decreased by 0.27° (0.17° in the superficial part and 0.37° in the deep part), and fascicle curvature decreased by 0.18 m -1 There was no evidence of systematic variation in architecture along the muscle's long axis at any muscle length. At the fiber level, analysis of the diffusion signal showed that passive lengthening of the muscle increased diffusion along fibers and decreased diffusion across fibers. Using these measurements across scales, we show that the complex shape changes that muscle fibers, whole muscles, and aponeuroses of the medial gastrocnemius undergo in vivo cannot be captured by simple geometrical models. This justifies the need for more complex models that link microstructural changes in muscle fibers to macroscopic changes in architecture. NEW & NOTEWORTHY Novel MRI and DTI techniques revealed changes in three-dimensional architecture of the human medial gastrocnemius during passive lengthening. Whole muscle belly width and depth decreased when the muscle lengthened. Fascicle length, pennation, and curvature changed uniformly or near uniformly along the muscle during passive lengthening

  1. Circadian rhythms constrain leaf and canopy gas exchange in an Amazonian forest

    OpenAIRE

    Doughty, Christopher E.; Goulden, Michael L.; Miller, Scott D.; da Rocha, Humberto R.

    2006-01-01

    We used a controlled-environment leaf gas-exchange system and the micrometeorological technique eddy covariance to determine whether circadian rhythms constrain the rates of leaf and canopy gas exchange in an Amazonian forest over a day. When exposed to continuous and constant light for 20 to 48 hours leaves of eleven of seventeen species reduced their photosynthetic rates and closed their stomata during the normally dark period and resumed active gas exchange during the normally light period...

  2. Coordination of the maize transcriptome by a conserved circadian clock

    Directory of Open Access Journals (Sweden)

    Harmon Frank G

    2010-06-01

    Full Text Available Abstract Background The plant circadian clock orchestrates 24-hour rhythms in internal physiological processes to coordinate these activities with daily and seasonal changes in the environment. The circadian clock has a profound impact on many aspects of plant growth and development, including biomass accumulation and flowering time. Despite recent advances in understanding the circadian system of the model plant Arabidopsis thaliana, the contribution of the circadian oscillator to important agronomic traits in Zea mays and other cereals remains poorly defined. To address this deficit, this study investigated the transcriptional landscape of the maize circadian system. Results Since transcriptional regulation is a fundamental aspect of circadian systems, genes exhibiting circadian expression were identified in the sequenced maize inbred B73. Of the over 13,000 transcripts examined, approximately 10 percent displayed circadian expression patterns. The majority of cycling genes had peak expression at subjective dawn and dusk, similar to other plant circadian systems. The maize circadian clock organized co-regulation of genes participating in fundamental physiological processes, including photosynthesis, carbohydrate metabolism, cell wall biogenesis, and phytohormone biosynthesis pathways. Conclusions Circadian regulation of the maize genome was widespread and key genes in several major metabolic pathways had circadian expression waveforms. The maize circadian clock coordinated transcription to be coincident with oncoming day or night, which was consistent with the circadian oscillator acting to prepare the plant for these major recurring environmental changes. These findings highlighted the multiple processes in maize plants under circadian regulation and, as a result, provided insight into the important contribution this regulatory system makes to agronomic traits in maize and potentially other C4 plant species.

  3. Breathing around the clock: an overview of the circadian pattern of respiration.

    Science.gov (United States)

    Mortola, Jacopo P

    2004-03-01

    This article reviews human and animal studies about the circadian patterns of physiological variables involved with the respiratory function. Some measures reflecting the mechanical properties of the lungs, such as functional residual capacity, forced expiratory volumes and airway resistance, change periodically with the time of the day. Also resting pulmonary ventilation (V(E)), tidal volume, and breathing rate follow circadian patterns. In humans, these patterns occur independently of the daily changes in activity, whereas, to some extent, they are linked to changes in the state of arousal. Differently, in some rodents, the circadian oscillations of the breathing pattern occur independently of the daily rhythms of either activity or state of arousal. Recent measurements of the breathing pattern for unlimited periods of time in undisturbed animals have indicated that the circadian changes occur in close temporal phase with those of oxygen consumption, carbon dioxide production, and body temperature. However, none of these variables can fully explain the circadian pattern of breathing, the origin of which remains unclear. Both in humans and in rats the V(E) responses to hypercapnia or hypoxia differ at various times of the day. In rats, the daily differences in V(E) responses are buffered by changes in metabolic rate, such that, unlike humans, the hyperventilation (defined as the increase in ventilation-metabolism ratio) remains constant throughout the 24 h. The presence of a biological clock is a major advantage in the adaptation to the environment, although it forces some variables to deviate periodically from their mean value. In humans, these deviations become apparent in conditions of hypoxia. Hence, a daily time-window exists in which the respiratory system is less capable of responding to challenges, a factor which may contribute to the findings that some cardio-respiratory symptoms and diseases peak at particular times of the day.

  4. Circadian abnormalities in mouse models of Smith-Magenis syndrome: evidence for involvement of RAI1.

    Science.gov (United States)

    Lacaria, Melanie; Gu, Wenli; Lupski, James R

    2013-07-01

    Smith-Magenis syndrome (SMS; OMIM 182290) is a genomic disorder characterized by multiple congenital anomalies, intellectual disability, behavioral abnormalities, and disordered sleep resulting from an ~3.7 Mb deletion copy number variant (CNV) on chromosome 17p11.2 or from point mutations in the gene RAI1. The reciprocal duplication of this region results in another genomic disorder, Potocki-Lupski syndrome (PTLS; OMIM 610883), characterized by autism, intellectual disability, and congenital anomalies. We previously used chromosome-engineering and gene targeting to generate mouse models for PTLS (Dp(11)17/+), and SMS due to either deletion CNV or gene knock-out (Df(11)17-2/+ and Rai1(+/-) , respectively) and we observed phenotypes in these mouse models consistent with their associated human syndromes. To investigate the contribution of individual genes to the circadian phenotypes observed in SMS, we now report the analysis of free-running period lengths in Rai1(+/-) and Df(11)17-2/+ mice, as well as in mice deficient for another known circadian gene mapping within the commonly deleted/duplicated region, Dexras1, and we compare these results to those previously observed in Dp(11)17/+ mice. Reduced free-running period lengths were seen in Df(11)17-2/+, Rai1(+/-) , and Dexras1(-/-) , but not Dexras1(+/-) mice, suggesting that Rai1 may be the primary gene underlying the circadian defects in SMS. However, we cannot rule out the possibility that cis effects between multiple haploinsufficient genes in the SMS critical interval (e.g., RAI1 and DEXRAS1) either exacerbate the circadian phenotypes observed in SMS patients with deletions or increase their penetrance in certain environments. This study also confirms a previous report of abnormal circadian function in Dexras1(-/-) mice. Copyright © 2013 Wiley Periodicals, Inc.

  5. Circadian aspects of post-operative morbidity and mortality

    DEFF Research Database (Denmark)

    Kvaslerud, T.; Hansen, M.V.; Rosenberg, J.

    2010-01-01

    concerning post-operative circadian disturbances. We also present the literature concerning circadian variation in post-operative morbidity and mortality. PubMed and the Cochrane database were searched for papers using a combination of 'circadian,' 'surgery,' 'post-operative,' 'mortality' and 'morbidity....... There is a peak incidence of myocardial ischemia, fatal thromboembolism and sudden unexpected death in the morning hours. A circadian variation exists in post-operative morbidity and mortality. The observed circadian variation in post-operative morbidity and mortality may warrant a chronopharmacological approach...

  6. Circadian rhythm characteristics of oral squamous cell carcinoma growth in an orthotopic xenograft model

    Directory of Open Access Journals (Sweden)

    Zhao NB

    2013-01-01

    Full Text Available Ningbo Zhao,* Hong Tang,* Kai Yang, Dan Chen Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China*These authors contributed equally to this workBackground: Recent studies show that circadian rhythm changes are closely related to the occurrence and development of various tumors, such as breast, liver, and prostate. However, there are significant differences in circadian rhythm between different tumors. At present, the circadian rhythm characteristics of oral cancer remain unknown. The purpose of this study is to investigate the circadian rhythm characteristics of the in vivo growth of oral squamous cell carcinoma (OSCC.Materials and methods: Thirty-two nude mice were placed under 12-hour light/12-hour dark cycles. The human OSCC cell line BcaCD885 was inoculated in the cheek of nude mice. After 3 weeks, eight mice were sacrificed at four time points, including 4 hours after light onset (HALO, 10 HALO, 16 HALO, and 22 HALO, during a period of 24 hours. The volume of excised tumors was measured and the proliferative index (PI and apoptotic index (AI of tumor cells were determined by flow cytometry. A cosine analysis method was used to determine whether the tumor volume, PI, and AI obeyed a circadian rhythm.Results: There was a significant circadian rhythm in the tumor volume and PI of OSCC cells. For the tumor volume, there were significant differences between the four time points. The peak and trough values of the tumor volume appeared at 3.23 HALO and 15.23 HALO, whereas the peak and trough values of PI appeared at 6.60 HALO and 18.16 HALO, respectively. However, there was no circadian rhythm in the AI of tumor cells, despite significant differences between the four time points.Conclusion: This study demonstrates, for the first time, that the tumor volume and PI of in vivo growing OSCC undergo circadian rhythms. These results support the assertion that time factor should be

  7. Selective entrainment of the Drosophila circadian clock to daily gradients in environmental temperature

    Directory of Open Access Journals (Sweden)

    Goda Tadahiro

    2009-08-01

    Full Text Available Abstract Background Circadian clocks are internal daily time keeping mechanisms that allow organisms to anticipate daily changes in their environment and to organize their behavior and physiology in a coherent schedule. Although circadian clocks use temperature compensation mechanisms to maintain the same pace over a range of temperatures, they are also capable of synchronizing to daily temperature cycles. This study identifies key properties of this process. Results Gradually ramping daily temperature cycles are shown here to synchronize behavioral and molecular daily rhythms in Drosophila with a remarkable efficiency. Entrainment to daily temperature gradients of amplitudes as low as 4°C persisted even in the context of environmental profiles that also included continuous gradual increases or decreases in absolute temperature. To determine which elements of daily temperature gradients acted as the key determinants of circadian activity phase, comparative analyses of daily temperature gradients with different wave forms were performed. The phases of ascending and descending temperature acted together as key determinants of entrained circadian phase. In addition, circadian phase was found to be modulated by the relative temperature of release into free running conditions. Release at or close to the trough temperature of entrainment consistently resulted in phase advances. Re-entrainment to daily temperature gradients after large phase shifts occurred relatively slowly and required several cycles, allowing flies to selectively respond to periodic rather than anecdotal signals. The temperature-entrained phase relationship between clock gene expression rhythms and locomotor activity rhythms strongly resembled that previously observed for light entrainment. Moreover, daily temperature gradient and light/dark entrainment reinforced each other if the phases of ascending and descending temperature were in their natural alignment with the light and

  8. A software solution for recording circadian oscillator features in time-lapse live cell microscopy

    Directory of Open Access Journals (Sweden)

    Salmon Patrick

    2010-07-01

    Full Text Available Abstract Background Fluorescent and bioluminescent time-lapse microscopy approaches have been successfully used to investigate molecular mechanisms underlying the mammalian circadian oscillator at the single cell level. However, most of the available software and common methods based on intensity-threshold segmentation and frame-to-frame tracking are not applicable in these experiments. This is due to cell movement and dramatic changes in the fluorescent/bioluminescent reporter protein during the circadian cycle, with the lowest expression level very close to the background intensity. At present, the standard approach to analyze data sets obtained from time lapse microscopy is either manual tracking or application of generic image-processing software/dedicated tracking software. To our knowledge, these existing software solutions for manual and automatic tracking have strong limitations in tracking individual cells if their plane shifts. Results In an attempt to improve existing methodology of time-lapse tracking of a large number of moving cells, we have developed a semi-automatic software package. It extracts the trajectory of the cells by tracking theirs displacements, makes the delineation of cell nucleus or whole cell, and finally yields measurements of various features, like reporter protein expression level or cell displacement. As an example, we present here single cell circadian pattern and motility analysis of NIH3T3 mouse fibroblasts expressing a fluorescent circadian reporter protein. Using Circadian Gene Express plugin, we performed fast and nonbiased analysis of large fluorescent time lapse microscopy datasets. Conclusions Our software solution, Circadian Gene Express (CGE, is easy to use and allows precise and semi-automatic tracking of moving cells over longer period of time. In spite of significant circadian variations in protein expression with extremely low expression levels at the valley phase, CGE allows accurate and

  9. Circadian distribution of sleep phases after major abdominal surgery

    DEFF Research Database (Denmark)

    Gogenur, I.; Wildschiotz, G.; Rosenberg, J.

    2008-01-01

    Background. It is believed that the severely disturbed night-time sleep architecture after surgery is associated with increased cardiovascular morbidity with rebound of rapid eye movement (REM). The daytime sleep pattern of patients after major general surgery has not been investigated before. We...... decided to study the circadian distribution of sleep phases before and after surgery. Methods. Eleven patients undergoing elective major abdominal surgery were included in the study. Continuous ambulatory polysomnographic monitoring was made 24 h before surgery and 36 h after surgery, thus including two...... time awake (P=0.016) in the postoperative daytime period compared with the preoperative daytime period. Five patients had REM sleep during the daytime after surgery. Three of these patients did not have REM sleep during the preceding postoperative night. There was significantly reduced night-time REM...

  10. Circadian and sleep-dependent regulation of hormone release in humans

    Science.gov (United States)

    Czeisler, C. A.; Klerman, E. B.

    1999-01-01

    Daily oscillations characterize the release of nearly every hormone. The circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, generates circadian, approximately 24-hour rhythms in many physiologic functions. However, the observed hormonal oscillations do not simply reflect the output of this internal clock. Instead, daily hormonal profiles are the product of a complex interaction between the output of the circadian pacemaker, periodic changes in behavior, light exposure, neuroendocrine feedback mechanisms, gender, age, and the timing of sleep and wakefulness. The interaction of these factors can affect hormonal secretory pulse frequency and amplitude, with each endocrine system differentially affected by these factors. This chapter examines recent advances in understanding the effects on endocrine rhythms of a number of these factors. Sleep exerts a profound effect on endocrine secretion. Sleep is a dynamic process that is characterized by periodic changes in electrophysiologic activity. These electrophysiologic changes, which are used to mark the state and depth of sleep, are associated with periodic, short-term variations in hormonal levels. The secretion of hormones such as renin and human growth hormone are strongly influenced by sleep or wake state, while melatonin and cortisol levels are relatively unaffected by sleep or wake state. In addition, sleep is associated with changes in posture, behavior, and light exposure, each of which is known to affect endocrine secretion. Furthermore, the tight concordance of habitual sleep and wake times with certain circadian phases has made it difficult to distinguish sleep and circadian effects on these hormones. Specific protocols, designed to extract circadian and sleep information semi-independently, have been developed and have yielded important insights into the effects of these regulatory processes. These results may help to account for changes in endocrine rhythms observed in circadian

  11. The non-classical nuclear import carrier Transportin 1 modulates circadian rhythms through its effect on PER1 nuclear localization.

    Science.gov (United States)

    Korge, Sandra; Maier, Bert; Brüning, Franziska; Ehrhardt, Lea; Korte, Thomas; Mann, Matthias; Herrmann, Andreas; Robles, Maria S; Kramer, Achim

    2018-01-01

    Circadian clocks are molecular timekeeping mechanisms that allow organisms to anticipate daily changes in their environment. The fundamental cellular basis of these clocks is delayed negative feedback gene regulation with PERIOD and CRYPTOCHROME containing protein complexes as main inhibitory elements. For a correct circadian period, it is essential that such clock protein complexes accumulate in the nucleus in a precisely timed manner, a mechanism that is poorly understood. We performed a systematic RNAi-mediated screen in human cells and identified 15 genes associated with the nucleo-cytoplasmic translocation machinery, whose expression is important for circadian clock dynamics. Among them was Transportin 1 (TNPO1), a non-classical nuclear import carrier, whose knockdown and knockout led to short circadian periods. TNPO1 was found in endogenous clock protein complexes and particularly binds to PER1 regulating its (but not PER2's) nuclear localization. While PER1 is also transported to the nucleus by the classical, Importin β-mediated pathway, TNPO1 depletion slowed down PER1 nuclear import rate as revealed by fluorescence recovery after photobleaching (FRAP) experiments. In addition, we found that TNPO1-mediated nuclear import may constitute a novel input pathway of how cellular redox state signals to the clock, since redox stress increases binding of TNPO1 to PER1 and decreases its nuclear localization. Together, our RNAi screen knocking down import carriers (but also export carriers) results in short and long circadian periods indicating that the regulatory pathways that control the timing of clock protein subcellular localization are far more complex than previously assumed. TNPO1 is one of the novel players essential for normal circadian periods and potentially for redox regulation of the clock.

  12. Circadian rhythm in succinate dehydrogenase activity in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Álvarez Barón

    2004-07-01

    Full Text Available Neurospora crassa is a widely studied model of circadian rhythmicity. In this fungus, metabolism is controlled by multiple factors which include development, medium characteristics and the circadian clock. The study of the circadian control of metabolism in this fungus could be masked by the use of restrictive media that inhibit growth and development. In this report, the presence of a circadian rhythm in the activity of the enzyme Succinate Dehydrogenase in Neurospora crassa is demonstrated. Rhythmic and arrhythmic Neurospora strains were grown in complete medium without conidiation restriction. A circadian change in the enzymatic activity was found with high values in hours corresponding to the night and a low level during the day. This finding highlights the importance of deeper studies in the circadian control of metabolism in this fungus, given the existence of multiple pathways of regulation of metabolic enzymes and a circadian clock control at the transcriptional and post-transcriptional levels.

  13. Melatonin is required for the circadian regulation of sleep.

    Science.gov (United States)

    Gandhi, Avni V; Mosser, Eric A; Oikonomou, Grigorios; Prober, David A

    2015-03-18

    Sleep is an evolutionarily conserved behavioral state whose regulation is poorly understood. A classical model posits that sleep is regulated by homeostatic and circadian mechanisms. Several factors have been implicated in mediating the homeostatic regulation of sleep, but molecules underlying the circadian mechanism are unknown. Here we use animals lacking melatonin due to mutation of arylalkylamine N-acetyltransferase 2 (aanat2) to show that melatonin is required for circadian regulation of sleep in zebrafish. Sleep is dramatically reduced at night in aanat2 mutants maintained in light/dark conditions, and the circadian regulation of sleep is abolished in free-running conditions. We find that melatonin promotes sleep downstream of the circadian clock as it is not required to initiate or maintain circadian rhythms. Additionally, we provide evidence that melatonin may induce sleep in part by promoting adenosine signaling, thus potentially linking circadian and homeostatic control of sleep. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Double plication for spring-mediated intestinal lengthening of a defunctionalized Roux limb.

    Science.gov (United States)

    Dubrovsky, Genia; Huynh, Nhan; Thomas, Anne-Laure; Shekherdimian, Shant; Dunn, James C Y

    2017-12-26

    Spring-mediated distraction enterogenesis has been shown to increase the length of an intestinal segment. The goal of this study is to use suture plication to confine a spring within an intestinal segment while maintaining luminal patency to the rest of the intestine. Juvenile mini-Yucatan pigs underwent placement of nitinol springs within a defunctionalized Roux limb of jejunum. A 20 French catheter was passed temporarily, and sutures were used to plicate the intestinal wall around the catheter at both ends of the encapsulated spring. Uncompressed springs placed in plicated segments and springs placed in nonplicated segments served as controls. The intestine was examined approximately 3 weeks after spring placement. In the absence of plication, springs passed through the intestine within a week. Double plication allowed the spring to stay within the Roux limb for 3 weeks. Compared to uncompressed springs that showed no change in the length of plicated segments, compressed springs caused a significant 1.7-fold increase in the length of plicated segments. Intestinal plication is an effective method to confine endoluminal springs. The confined springs could lengthen intestine that maintains luminal patency. This approach may be useful to lengthen intestine in patients with short bowel syndrome. Level I Experimental Study. Copyright © 2018. Published by Elsevier Inc.

  15. Effect of distraction frequency on bone formation during bone lengthening: a study in chickens.

    Science.gov (United States)

    Mizuta, Hiroshi; Nakamura, Eiichi; Mizumoto, Yoshihiko; Kudo, Satoshi; Takagi, Katsumasa

    2003-12-01

    We compared the effects of two distraction frequencies on bone formation during tibial lengthening by evaluating radiographs, bone mineral density, and histological findings. In 15 mature White Leghorn chickens, both tibiae were distracted at a rate of 0.75 mm/day for 10 days. The distraction frequency was 2 steps (0.375 mm/12 hour) by hand on the right side and 120 steps (0.00625 mm/12 min) by autodistractor on the left. Serial radiographs showed faster bone formation on the 120-step side than on the 2-step side. Bone mineral density on the 120-step side was also higher than that on the 2-step side at all times. On the 2-step side, endochondral ossification was marked in the early stage of distraction; then intramembranous ossification became the main mechanism of bone formation. On the 120-step side, however, intramembranous bone formation predominated throughout the study. Our findings support the contention that, at least in skeletally mature chickens, an increase in the distraction frequency improves osteogenesis during bone lengthening.

  16. Distal fascia lata lengthening: an alternative surgical technique for recalcitrant trochanteric bursitis

    Science.gov (United States)

    Ortega, Javier; García-Rayo, Ramón; Resines, Carlos

    2009-01-01

    This article presents a simple technique for fascia lata lengthening that is less aggressive, can be performed under local anaesthetic with little morbidity and disability, and has excellent results. Eleven patients (13 hips) were enrolled in this study. Mean age was 54.6 years, there was one man and ten women. Outcomes were assessed by using a visual analog pain scale, Harris hip score and Lickert scale (satisfaction). There was a mean follow-up time of 43 months (range 15–84). All patients were scored by the Harris hip scale with a mean improvement from 61 (range 48–77) to 91 (range 76–95) after surgery. The mean visual analogue scale (VAS) score improved from 83 (range 60–99) to 13 (range 0–70). We had 12 of 13 patients reporting a good result. Mean surgical time was 15 min, and only one seroma was reported as a complication. No inpatient management was needed. In conclusion, distal “Z” lengthening of the fascia lata appears to be a good alternative for treatment of this condition. PMID:19214507

  17. Outcome of Low-Invasive Local Split-Thickness Lengthening for Iliotibial Band Friction Syndrome.

    Science.gov (United States)

    Inoue, Hiroaki; Hara, Kunio; Arai, Yuji; Nakagawa, Shuji; Kan, Hiroyuki; Hino, Manabu; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2018-02-01

    Conventional surgical methods for iliotibial band friction syndrome (ITBFS) may affect the iliotibial band (ITB), delaying return to sports activities or impeding performance. We have developed a minimally invasive method. This study retrospectively analyzed the outcomes of this procedure in individuals with ITBFS. This study included 34 knees of 31 individuals. Surgery involved lengthening the central part of the ITB by splitting it into a superficial and a deep layer, maintaining the anterior and posterior fibers immediately above the lateral epicondyle. Outcomes included time to resume sports activity, personal best times to run a 5000-m race before and after surgery, and 2-month post-surgery muscle strengths. The mean postoperative time to return to competition was 5.8 weeks. Personal best times of 5000-m race improved in 13 of 17 runners. Two months post-surgery, the mean extensor muscle strengths on the healthy and affected sides did not significantly differ nor did the flexor muscle strengths. In ITBFS, the ITB itself is normal. Lengthening the limited region of the ITB immediately above the lateral femoral epicondyle removes the cause of ITBFS, with a reduction in inflammation. This technique resulted in early return to competition without degrading performance. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Y-duplication of the male urethra: use of anterior anorectal wall for posterior urethral lengthening.

    Science.gov (United States)

    Sinha, S; Sen, S; Chacko, J; Thomas, G; Karl, S; Mathai, J

    2006-06-01

    We have approached two patients with Y-duplication of the male urethra by a new two-staged technique to provide better results. A strip of anterior anorectal wall in continuity with the posterior urethra was used for posterior urethral lengthening and a tubed pedicled prepucial flap was used to reconstruct the anterior urethra without using the native urethra. This was done under a covering colostomy. After a gap of 6 months to allow for healing of the anorectum and to ensure adequate functioning of the perineal neourethra, second stage reconstruction was done using buried scrotal tube for the mid urethra along with colostomy closure. On follow-up at 8 and 12 months, respectively, both children were well with no stricture or fistula. There was normal anal continence and no stenosis. This technique tackles the problem in Y-duplication of the male urethra of lengthening the posterior urethral channel, which is often difficult to bring to the anterior half of the perineum especially if the opening is high up in the anorectum (case 2).

  19. Long term self esteem assessment after height increase by lengthening and then nailing.

    Science.gov (United States)

    Emara, K; Al Kersh, M A; Emara, A K

    2017-03-01

    The purpose of the study is to assess the long term psychosocial functioning after height increase, using the external fixation then nailing method. Rosenberg Self-esteem scale and a questionnaire to assess social functioning were completed by 28 patients both preoperatively and at a mean follow-up of 7 years. The mean total score of RSE self-esteem for the 28 patients before lengthening was 21.5 (SD 1.03) (20-24). The mean total score of RSE for the patients 1 year after lengthening was 22 (SD 1.17) (20-24) with highly significant difference (p = 0.002).The mean total RSE self-esteem score after 7 years was 21.7 (SD 1.12) (21-25) with no significant difference (p = 0.11) Improvement was an evident in the short term self esteem after 1 year of follow up of the patients with height increase. On the other hand, there was an evident deterioration in the long term psychosocial evaluation during follow up after 7 years of height increase, returning to near pre-operative levels of self esteem.

  20. Combined tibial lengthening and ankle arthrodesis for patients with certain type of sequelae of poliomyelitis.

    Science.gov (United States)

    Wu, Chi-Chuan

    2017-01-01

    Following far advancement of modern medicine and technology, functional disability in a certain type of sequelae of poliomyelitis may be effectively improved. Eight consecutive adult patients with unilateral sequelae of poliomyelitis were treated. These patients had shortened lower extremity of an average of 4.8 cm (range, 4.0-5.5 cm) in the lesion side. Muscle power of the ipsilateral knee was nearly intact (grade 4 or 5) but the ankle extension was completely flaccid. The tibia was osteotomized and lengthened with external fixation. Consequently, all external fixators were converted to plates supplemented with autogenous corticocancellous bone graft and bone graft substitute. Ankle arthrodesis was performed concomitantly. Seven patients were followed up for an average of 3.7 years (range, 2.2-5.4 years). All seven lengthened sites healed with an average union time of 3.9 months (range, 3.5-4.5 months) after plating. One ankle infection occurred. Gait function significantly improved by modified Mazur scoring evaluation ( p = 0.02). At the latest follow-up, all patients had a minimal or unnoticed limp in level walking. The described combined techniques may be an excellent alternate for treating selected patients with sequelae of poliomyelitis. The procedure is not complex but the efficiency is extremely prominent.

  1. Microscopic modelling circadian and bursty pattern of human activities.

    Directory of Open Access Journals (Sweden)

    Jinhong Kim

    Full Text Available Recent studies for a wide range of human activities such as email communication, Web browsing, and library visiting, have revealed the bursty nature of human activities. The distribution of inter-event times (IETs between two consecutive human activities exhibits a heavy-tailed decay behavior and the oscillating pattern with a one-day period, reflective of the circadian pattern of human life. Even though a priority-based queueing model was successful as a basic model for understanding the heavy-tailed behavior, it ignored important ingredients, such as the diversity of individual activities and the circadian pattern of human life. Here, we collect a large scale of dataset which contains individuals' time stamps when articles are posted on blog posts, and based on which we construct a theoretical model which can take into account of both ignored ingredients. Once we identify active and inactive time intervals of individuals and remove the inactive time interval, thereby constructing an ad hoc continuous time domain. Therein, the priority-based queueing model is applied by adjusting the arrival and the execution rates of tasks by comparing them with the activity data of individuals. Then, the obtained results are transferred back to the real-time domain, which produces the oscillating and heavy-tailed IET distribution. This microscopic model enables us to develop theoretical understanding towards more empirical results.

  2. Microscopic modelling circadian and bursty pattern of human activities.

    Science.gov (United States)

    Kim, Jinhong; Lee, Deokjae; Kahng, Byungnam

    2013-01-01

    Recent studies for a wide range of human activities such as email communication, Web browsing, and library visiting, have revealed the bursty nature of human activities. The distribution of inter-event times (IETs) between two consecutive human activities exhibits a heavy-tailed decay behavior and the oscillating pattern with a one-day period, reflective of the circadian pattern of human life. Even though a priority-based queueing model was successful as a basic model for understanding the heavy-tailed behavior, it ignored important ingredients, such as the diversity of individual activities and the circadian pattern of human life. Here, we collect a large scale of dataset which contains individuals' time stamps when articles are posted on blog posts, and based on which we construct a theoretical model which can take into account of both ignored ingredients. Once we identify active and inactive time intervals of individuals and remove the inactive time interval, thereby constructing an ad hoc continuous time domain. Therein, the priority-based queueing model is applied by adjusting the arrival and the execution rates of tasks by comparing them with the activity data of individuals. Then, the obtained results are transferred back to the real-time domain, which produces the oscillating and heavy-tailed IET distribution. This microscopic model enables us to develop theoretical understanding towards more empirical results.

  3. Analysis of precision in chemical oscillators: implications for circadian clocks

    International Nuclear Information System (INIS)

    D'Eysmond, Thomas; De Simone, Alessandro; Naef, Felix

    2013-01-01

    Biochemical reaction networks often exhibit spontaneous self-sustained oscillations. An example is the circadian oscillator that lies at the heart of daily rhythms in behavior and physiology in most organisms including humans. While the period of these oscillators evolved so that it resonates with the 24 h daily environmental cycles, the precision of the oscillator (quantified via the Q factor) is another relevant property of these cell-autonomous oscillators. Since this quantity can be measured in individual cells, it is of interest to better understand how this property behaves across mathematical models of these oscillators. Current theoretical schemes for computing the Q factors show limitations for both high-dimensional models and in the vicinity of Hopf bifurcations. Here, we derive low-noise approximations that lead to numerically stable schemes also in high-dimensional models. In addition, we generalize normal form reductions that are appropriate near Hopf bifurcations. Applying our approximations to two models of circadian clocks, we show that while the low-noise regime is faithfully recapitulated, increasing the level of noise leads to species-dependent precision. We emphasize that subcomponents of the oscillator gradually decouple from the core oscillator as noise increases, which allows us to identify the subnetworks responsible for robust rhythms. (paper)

  4. Mathematical model of the Drosophila circadian clock: loop regulation and transcriptional integration.

    Science.gov (United States)

    Fathallah-Shaykh, Hassan M; Bona, Jerry L; Kadener, Sebastian

    2009-11-04

    Eukaryotic circadian clocks include interconnected positive and negative feedback loops. The clock-cycle dimer (CLK-CYC) and its homolog, CLK-BMAL1, are key transcriptional activators of central components of the Drosophila and mammalian circadian networks, respectively. In Drosophila, negative loops include period-timeless and vrille; positive loops include par domain protein 1. Clockwork orange (CWO) is a recently discovered negative transcription factor with unusual effects on period, timeless, vrille, and par domain protein 1. To understand the actions of this protein, we introduced a new system of ordinary differential equations to model regulatory networks. The model is faithful in the sense that it replicates biological observations. CWO loop actions elevate CLK-CYC; the transcription of direct targets responds by integrating opposing signals from CWO and CLK-CYC. Loop regulation and integration of opposite transcriptional signals appear to be central mechanisms as they also explain paradoxical effects of period gain-of-function and null mutations.

  5. CryoEM and Molecular Dynamics of the Circadian KaiB-KaiC Complex Indicates That KaiB Monomers Interact with KaiC and Block ATP Binding Clefts

    Energy Technology Data Exchange (ETDEWEB)

    Villarreal, Seth A.; Pattanayek, Rekha; Williams, Dewight R.; Mori, Tetsuya; Qin, Ximing; Johnson, Carl H.; Egli, Martin; Stewart, Phoebe L. [Case Western; (Vanderbilt); (Vanderbilt-MED)

    2014-10-02

    The circadian control of cellular processes in cyanobacteria is regulated by a posttranslational oscillator formed by three Kai proteins. During the oscillator cycle, KaiA serves to promote autophosphorylation of KaiC while KaiB counteracts this effect. Here, we present a crystallographic structure of the wild-type Synechococcus elongatus KaiB and a cryo-electron microscopy (cryoEM) structure of a KaiBC complex. The crystal structure shows the expected dimer core structure and significant conformational variations of the KaiB C-terminal region, which is functionally important in maintaining rhythmicity. The KaiBC sample was formed with a C-terminally truncated form of KaiC, KaiC-Δ489, which is persistently phosphorylated. The KaiB–KaiC-Δ489 structure reveals that the KaiC hexamer can bind six monomers of KaiB, which form a continuous ring of density in the KaiBC complex. We performed cryoEM-guided molecular dynamics flexible fitting simulations with crystal structures of KaiB and KaiC to probe the KaiBC protein–protein interface. This analysis indicated a favorable binding mode for the KaiB monomer on the CII end of KaiC, involving two adjacent KaiC subunits and spanning an ATP binding cleft. A KaiC mutation, R468C, which has been shown to affect the affinity of KaiB for KaiC and lengthen the period in a bioluminescence rhythm assay, is found within the middle of the predicted KaiBC interface. The proposed KaiB binding mode blocks access to the ATP binding cleft in the CII ring of KaiC, which provides insight into how KaiB might influence the phosphorylation status of KaiC.

  6. EFFECTS OF CIRCADIAN RHYTHM ON BALANCE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Karagul Osman

    2017-09-01

    Full Text Available Introduction. The aim of the study was to examine the effect of circadian rhythm on dynamic balance performance and to determine the role of physical activity level, body temperature, chronotype, and gender in this possible effect. Material and

  7. Circadian clock components in the rat neocortex

    DEFF Research Database (Denmark)

    Rath, Martin Fredensborg; Rohde, Kristian; Fahrenkrug, Jan

    2013-01-01

    in the rat neocortex. Among these, Per1, Per2, Per3, Cry1, Bmal1, Nr1d1 and Dbp were found to exhibit daily rhythms. The amplitude of circadian oscillation in neocortical clock gene expression was damped and the peak delayed as compared with the SCN. Lesions of the SCN revealed that rhythmic clock gene...

  8. Circadian Variation in Coronary Stent Thrombosis

    NARCIS (Netherlands)

    Mahmoud, Karim D.; Lennon, Ryan J.; Ting, Henry H.; Rihal, Charanjit S.; Holmes, David R.

    Objectives We sought to determine the circadian, weekly, and seasonal variation of coronary stent thrombosis. Background Other adverse cardiovascular events such as acute myocardial infarction are known to have higher incidences during the early morning hours, Mondays, and winter months. Methods The

  9. Nutrition and the circadian timing system

    NARCIS (Netherlands)

    Stenvers, Dirk Jan; Jonkers, Cora F.; Fliers, Eric; Bisschop, Peter H. L. T.; Kalsbeek, Andries

    2012-01-01

    Life on earth has evolved under the daily rhythm of light and dark. Consequently, most creatures experience a daily rhythm in food availability. In this review, we first introduce the mammalian circadian timing system, consisting of a central clock in the suprachiasmatic nucleus (SCN) and peripheral

  10. Circadian Metabolism in the Light of Evolution

    DEFF Research Database (Denmark)

    Gerhart-Hines, Zachary; Lazar, Mitchell A.

    2015-01-01

    A review. Circadian rhythm, or daily oscillation, of behaviors and biol. processes is a fundamental feature of mammalian physiol. that has developed over hundreds of thousands of years under the continuous evolutionary pressure of energy conservation and efficiency. Evolution has fine-tuned the b...

  11. Circadian rhythms: from genes to behaviour

    Indian Academy of Sciences (India)

    located in the third ventricle of the hypothalamus by two independent groups: F. K. Stephan and Irvin ... levels of biological organization, and we have tried to represent this aspect of our discipline in this special ... nature of circadian rhythm research, because at the core of all these studies lies a genetic architecture which.

  12. Circadian rhythms in handwriting kinematics and legibility

    NARCIS (Netherlands)

    Jasper, Isabelle; Gordijn, Marijke; Haeussler, Andreas; Hermsdoerfer, Joachim

    The aim of the present study was to analyze the circadian rhythmicity in handwriting kinematics and legibility and to compare the performance between Dutch and German writers. Two subject groups underwent a 40 h sleep deprivation protocol under Constant Routine conditions either in Groningen (10

  13. The Drosophila melanogaster circadian pacemaker circuit

    Indian Academy of Sciences (India)

    More recently, detailed investigation leading to the anatomical, neurochemical and electrophysiological characterization of the various neuronal subgroups that comprise the circadian machinery has revealed pathways through which these neurons come together to act as a neuronal circuit. Thus the D. melanogaster ...

  14. Combined Pharmacological and Genetic Manipulations Unlock Unprecedented Temporal Elasticity and Reveal Phase-Specific Modulation of the Molecular Circadian Clock of the Mouse Suprachiasmatic Nucleus

    OpenAIRE

    Patton, Andrew P.; Chesham, Johanna E.; Hastings, Michael H.

    2016-01-01

    The suprachiasmatic nucleus (SCN) is the master circadian oscillator encoding time-of-day information. SCN timekeeping is sustained by a cell-autonomous transcriptional–translational feedback loop, whereby expression of the Period and Cryptochrome genes is negatively regulated by their protein products. This loop in turn drives circadian oscillations in gene expression that direct SCN electrical activity and thence behavior. The robustness of SCN timekeeping is further enhanced by interneuron...

  15. Ketogenic diet disrupts the circadian clock and increases hypofibrinolytic risk by inducing expression of plasminogen activator inhibitor-1.

    Science.gov (United States)

    Oishi, Katsutaka; Uchida, Daisuke; Ohkura, Naoki; Doi, Ryosuke; Ishida, Norio; Kadota, Koji; Horie, Shuichi

    2009-10-01

    Metabolic disorders such as diabetes and obesity are considered risk factors for cardiovascular diseases by increasing levels of blood plasminogen activator inhibitor-1 (PAI-1). Ketogenic diets (KDs) have been used as an approach to weight loss in both obese and nonobese individuals. We examined circadian changes in plasma PAI-1 and its mRNA expression levels in tissues from mice fed with a KD (KD mice), to evaluate its effects on fibrinolytic functions. Two weeks on the kDa increased plasma levels of free fatty acids and ketones accompanied by hypoglycemia in mice. Plasma PAI-1 concentrations were extremely elevated in accordance with mRNA expression levels in the heart and liver, but not in the kidneys of KD mice. Circadian expression of PAI-1 mRNA was phase-advanced for 4.7, 7.9, and 7.8 hours in the heart, kidney, and adipose tissues, respectively, as well as that of circadian genes mPer2 and DBP in KD mice, suggesting that peripheral clocks were phase-advanced by ketosis despite feeding ad libitum under a periodic light-dark cycle. The circadian clock that regulates behavioral activity rhythms was also phase-advanced, and its free-running period was significantly shortened in KD mice. Our findings suggest that ketogenic status increases hypofibrinolytic risk by inducing abnormal circadian expression of PAI-1.

  16. Chronotype differences in circadian rhythms of temperature, melatonin, and sleepiness as measured in a modified constant routine protocol

    Directory of Open Access Journals (Sweden)

    Leon Lack

    2009-11-01

    Full Text Available Leon Lack, Michelle Bailey, Nicole Lovato, Helen WrightSchool of Psychology, Flinders University, Adelaide, South Australia, AustraliaAbstract: Evening chronotypes typically have sleep patterns timed 2–3 hours later than morning chronotypes. Ambulatory studies have suggested that differences in the timing of underlying circadian rhythms as a cause of the sleep period differences. However, differences in endogenous circadian rhythms are best explored in laboratory protocols such as the constant routine. We used a 27-hour modified constant routine to measure the endogenous core temperature and melatonin circadian rhythms as well as subjective and objective sleepiness from hourly 15-minute sleep opportunities. Ten (8f morning type individuals were compared with 12 (8f evening types. All were young, healthy, good sleepers. The typical sleep onset, arising times, circadian phase markers for temperature and melatonin and objective sleepiness were all 2–3 hours later for the evening types than morning types. However, consistent with past studies the differences for the subjective sleepiness rhythms were much greater (5–9 hours. Therefore, the present study supports the important role of subjective alertness/sleepiness in determining the sleep period differences between morning and evening types and the possible vulnerability of evening types to delayed sleep phase disorder.Keywords: chronotype, constant routine, circadian rhythms, sleep propensity, subjective sleepiness

  17. Tissue expander stimulated lengthening of arteries (TESLA) induces early endothelial cell proliferation in a novel rodent model.

    Science.gov (United States)

    Potanos, Kristina; Fullington, Nora; Cauley, Ryan; Purcell, Patricia; Zurakowski, David; Fishman, Steven; Vakili, Khashayar; Kim, Heung Bae

    2016-04-01

    We examine the mechanism of aortic lengthening in a novel rodent model of tissue expander stimulated lengthening of arteries (TESLA). A rat model of TESLA was examined with a single stretch stimulus applied at the time of tissue expander insertion with evaluation of the aorta at 2, 4 and 7day time points. Measurements as well as histology and proliferation assays were performed and compared to sham controls. The aortic length was increased at all time points without histologic signs of tissue injury. Nuclear density remained unchanged despite the increase in length suggesting cellular hyperplasia. Cellular proliferation was confirmed in endothelial cell layer by Ki-67 stain. Aortic lengthening may be achieved using TESLA. The increase in aortic length can be achieved without tissue injury and results at least partially from cellular hyperplasia. Further studies are required to define the mechanisms involved in the growth of arteries under increased longitudinal stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Bilateral humeral lengthening in achondroplasia with unilateral external fixators: is it safe and does it improve daily life?

    Science.gov (United States)

    Balci, H I; Kocaoglu, M; Sen, C; Eralp, L; Batibay, S G; Bilsel, K

    2015-11-01

    A retrospective study was performed in 18 patients with achondroplasia, who underwent bilateral humeral lengthening between 2001 and 2013, using monorail external fixators. The mean age was ten years (six to 15) and the mean follow-up was 40 months (12 to 104). The mean disabilities of the arm, shoulder and hand (DASH) score fell from 32.3 (20 to 40) pre-operatively to 9.4 (6 to 14) post-operatively (p = 0.037). A mean lengthening of 60% (40% to 95%) was required to reach the goal of independent perineal hygiene. One patient developed early consolidation, and fractures occurred in the regenerate bone of four humeri in three patients. There were three transient radial nerve palsies. Humeral lengthening increases the independence of people with achondroplasia and is not just a cosmetic procedure. ©2015 The British Editorial Society of Bone & Joint Surgery.

  19. Lengthening z-osteotomy of the fibula to correct persistent talar shift following open reduction internal fixation of ankle fractures.

    Science.gov (United States)

    Thangarajah, Tanujan; Lakdawala, Ayaz; Battaloglu, Emir; Malik, Atul; Tillu, Abhay

    2012-04-01

    In cases where ankle fracture union has been compromised by persistent syndesmotic diastasis following open reduction internal fixation, both external rotation and shortening of the fibula have been identified as prominent features. This study reports a technique that uses a z-osteotomy to achieve both lengthening and internal rotation of the fibula to correct persistent talar shift following ankle fracture fixation. Four patients with persistent talar shift following open reduction internal fixation for an ankle fracture received z-osteotomy of the fibula to achieve both lengthening and internal rotation. At the latest clinic review, all 4 ankles exhibited satisfactory clinical and radiological union. All patients have returned to full mobility and are satisfied with the outcome. This study demonstrates the effectiveness of lengthening z-osteotomy of the fibula in correcting persistent talar shift following internal fixation of ankle fractures. Therapeutic Level V.

  20. Circadian rhythms, sleep, and performance in space.

    Science.gov (United States)

    Mallis, M M; DeRoshia, C W

    2005-06-01

    Maintaining optimal alertness and neurobehavioral functioning during space operations is critical to enable the National Aeronautics and Space Administration's (NASA's) vision "to extend humanity's reach to the Moon, Mars and beyond" to become a reality. Field data have demonstrated that sleep times and performance of crewmembers can be compromised by extended duty days, irregular work schedules, high workload, and varying environmental factors. This paper documents evidence of significant sleep loss and disruption of circadian rhythms in astronauts and associated performance decrements during several space missions, which demonstrates the need to develop effective countermeasures. Both sleep and circadian disruptions have been identified in the Behavioral Health and Performance (BH&P) area and the Advanced Human Support Technology (AHST) area of NASA's Bioastronautics Critical Path Roadmap. Such disruptions could have serious consequences on the effectiveness, health, and safety of astronaut crews, thus reducing the safety margin and increasing the chances of an accident or incident. These decrements oftentimes can be difficult to detect and counter effectively in restrictive operational environments. NASA is focusing research on the development of optimal sleep/wake schedules and countermeasure timing and application to help mitigate the cumulative effects of sleep and circadian disruption and enhance operational performance. Investing research in humans is one of NASA's building blocks that will allow for both short- and long-duration space missions and help NASA in developing approaches to manage and overcome the human limitations of space travel. In addition to reviewing the current state of knowledge concerning sleep and circadian disruptions during space operations, this paper provides an overview of NASA's broad research goals. Also, NASA-funded research, designed to evaluate the relationships between sleep quality, circadian rhythm stability, and

  1. Photic and circadian regulation of melatonin production in the Mozambique tilapia Oreochromis mossambicus.

    Science.gov (United States)

    Nikaido, Yoshiaki; Ueda, Satomi; Takemura, Akihiro

    2009-01-01

    Diverse circadian systems related to phylogeny and ecological adaptive strategies are proposed in teleosts. Recently, retinal photoreception was reported to be important for the circadian pacemaking activities of the Nile tilapia Oreochromis niloticus. We aimed to confirm the photic and circadian responsiveness of its close relative-the Mozambique tilapia O. mossambicus. Melatonin production in cannulated or ophthalmectomized fish and its secretion from cultured pineal glands were examined under several light regimes. Melatonin production in the cannulated tilapias was measured at 3-h intervals; it fluctuated daily, with a nocturnal increase and a diurnal decrease. Exposing the cannulated fish to several light intensities (1500-0.1 lx) and to natural light (0.1 and 0.3 lx) suppressed melatonin levels within 30 min. Static pineal gland culture under light-dark and reverse light-dark cycles revealed that melatonin synthesis increased during the dark periods. Rhythmic melatonin synthesis disappeared on pineal gland culture under constant dark and light conditions. After ophthalmectomy, plasma melatonin levels did not vary with light-dark cycles. These results suggest that (1) Mozambique tilapias possess strong photic responsiveness, (2) their pineal glands are sensitive to light but lack circadian pacemaker activity, and (3) they require lateral eyes for rhythmic melatonin secretion from the pineal gland.

  2. The role of natural selection in circadian behaviour: a molecular-genetic approach.

    Science.gov (United States)

    Rosato, Ezio; Kyriacou, Charalambos P

    2011-06-30

    Circadian rhythms (~24 h) in biochemistry, physiology and behaviour are found in almost all eukaryotes and some bacteria. The elucidation of the molecular components of the 24 h circadian clock in a number of model organisms in recent years has provided an opportunity to assess the adaptive value of variation in clock genes. Laboratory experiments using artificially generated mutants reveal that the circadian period is adaptive in a 24 h world. Natural genetic variation can also be studied, and there are a number of ways in which the signature of natural selection can be detected. These include the study of geographical patterns of genetic variation, which provide a first indication that selection may be at work, and the use of sophisticated statistical neutrality tests, which examine whether the pattern of variation observed is consistent with a selective rather than a neutral (or drift) scenario. Finally, examining the probable selective agents and their differential effects on the circadian phenotype of the natural variants provides the final compelling evidence for selection. We present some examples of how these types of analyses have not only enlightened the evolutionary study of clocks, but have also contributed to a more pragmatic molecular understanding of the function of clock proteins.

  3. Association between circadian clock genes and diapause incidence in Drosophila triauraria.

    Directory of Open Access Journals (Sweden)

    Hirokazu Yamada

    Full Text Available Diapause is an adaptive response triggered by seasonal photoperiodicity to overcome unfavorable seasons. The photoperiodic clock is a system that controls seasonal physiological processes, but our knowledge about its physiological mechanisms and genetic architecture remains incomplete. The circadian clock is another system that controls daily rhythmic physiological phenomena. It has been argued that there is a connection between the two clocks. To examine the genetic connection between them, we analyzed the associations of five circadian clock genes (period, timeless, Clock, cycle and cryptochrome with the occurrence of diapause in Drosophila triauraria, which shows a robust reproductive diapause with clear photoperiodicity. Non-diapause strains found in low latitudes were compared in genetic crosses with the diapause strain, in which the diapause trait is clearly dominant. Single nucleotide polymorphism and deletion analyses of the five circadian clock genes in backcross progeny revealed that allelic differences in timeless and cryptochrome between the strains were additively associated with the differences in the incidence of diapause. This suggests that there is a molecular link between certain circadian clock genes and the occurrence of diapause.

  4. Humeral lengthening in patients with achondroplasia and in patients with post-septic shortening: comparison of procedure efficiency and safety.

    Science.gov (United States)

    Shadi, Milud; Musielak, Bartosz; Koczewski, Paweł; Janusz, Piotr

    2018-02-01

    Although humeral lengthening in patients with achondroplasia is an accepted procedure for improving functional status, there is still a paucity of information about the effectiveness of the method. Therefore, the aim of this study was to evaluate the efficacy and safety of humeral lengthening using monolateral fixators in patients with achondroplasia and unilateral shortening. Twenty-one patients (31 humeri) were included in this study. The study group consisted of eight patients with achondroplasia (16 segments). The control group consisted of 13 patients with post-septic shortening of the humerus (15 segments). All subjects underwent distraction osteogenesis with the use of a monolateral fixator. The mean lengthening in the patients with achondroplasia was 8.29 cm, whereas in the control group it was 7.34 cm (p = 0.1677). The mean lengthening percentage in the patients with achondroplasia (50% of the initial length of the humerus) was significantly greater than in the control group (33% of the initial length of the humerus) (p = 0.0007). The mean healing index was 24.8 days/cm in the patients with achondroplasia and 28.56 days/cm in the control group (p = 0.1832). The overall complication rates for the achondroplastic and post-septic patients were, respectively, 175% and 160% (p = 0.1420). Humeral lengthening with use of monolateral fixators in patients with achondroplasia is an efficient method. Although the segment lengthening percentage is significantly greater in patients with achondroplasia than in patients with post-septic shortening of the humerus, the safety of this procedure is comparable.

  5. Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology.

    Science.gov (United States)

    Reiter, Russel J; Tan, Dun Xian; Korkmaz, Ahmet; Rosales-Corral, Sergio A

    2014-01-01

    circadian clock, either directly or indirectly via the melatonin rhythm, programs the developing master oscillator of the fetus. Experimental studies have shown that disturbed maternal circadian rhythms, referred to as chronodisruption, and perturbed melatonin cycles have negative consequences for the maturing fetal oscillators, which may lead to psychological and behavioral problems in the newborn. To optimize regular circadian rhythms and prevent disturbances of the melatonin cycle during pregnancy, shift work and bright light exposure at night should be avoided, especially during the last trimester of pregnancy. Finally, melatonin synergizes with oxytocin to promote delivery of the fetus. Since blood melatonin levels are normally highest during the dark period, the propensity of childbirth to occur at night may relate to the high levels of melatonin at this time which work in concert with oxytocin to enhance the strength of uterine contractions. A number of conclusions naturally evolve from the data summarized in this review: (i) melatonin, of both pineal and placental origin, has essential functions in fetal maturation and placenta/uterine homeostasis; (ii) circadian clock genes, which are components of all cells including those in the peripheral reproductive organs, have important roles in reproductive and organismal (fetal and maternal) physiology; (iii) due to the potent antioxidant actions of melatonin, coupled with its virtual absence of toxicity, this indoleamine may have utility in the treatment of pre-eclampsia, intrauterine growth restriction, placental and fetal ischemia/reperfusion, etc. (iv) the propensity for parturition to occur at night may relate to the synergism between the nocturnal increase in melatonin and oxytocin.

  6. Scintigraphic evaluation of bone lengthening by Ilizarov technique; Avaliacao cintigrafica do alongamento osseo pela tecnica de Ilizarov

    Energy Technology Data Exchange (ETDEWEB)

    Wolosker, Sara; Knackfuss, Irocy; Marchiori, Edson

    1996-07-01

    One of the main problems in limb lengthening is the difficulty on the assessment of the regenerated bone healing, since there are no reliable methods for its in vitro evaluation of restoration and mechanical integrity. New bone formation depends on the interaction between blood supply and mechanical distraction. The uptake of 99m-Tc-MDP has been shown to be a function of both regional blood flow and bone formation. Therefore, we propose the use of sequential three phase bone scans as another method in monitoring the regenerated bone formation in the Ilizarov technique of limb lengthening. Our preliminary results are shown in this paper. (author)

  7. Daily circadian misalignment impairs human cognitive performance task-dependently.

    Science.gov (United States)

    Chellappa, Sarah L; Morris, Christopher J; Scheer, Frank A J L

    2018-02-14

    Shift work increases the risk for human errors, such that drowsiness due to shift work has contributed to major industrial disasters, including Space Shuttle Challenger, Chernobyl and Alaska Oil Spill disasters, with extraordinary socio-economical costs. Overnight operations pose a challenge because our circadian biology inhibits cognitive performance at night. Yet how the circadian system modulates cognition over multiple days under realistic shift work conditions remains to be established. Importantly, because task-specific cognitive brain regions show different 24-h circadian dynamics, we hypothesize that circadian misalignment impacts cognition task-dependently. Using a biologically-driven paradigm mimicking night shift work, with a randomized, cross-over design, we show that misalignment between the circadian pacemaker and behavioral/environmental cycles increases cognitive vulnerability on sustained attention, cognitive throughput, information processing and visual-motor performance over multiple days, compared to circadian alignment (day shifts). Circadian misalignment effects are task-dependent: while they acutely impair sustained attention with recovery after 3-days, they progressively hinder daily learning. Individuals felt sleepier during circadian misalignment, but they did not rate their performance as worse. Furthermore, circadian misalignment effects on sustained attention depended on prior sleep history. Collectively, daily circadian misalignment may provide an important biological framework for developing countermeasures against adverse cognitive effects in shift workers.

  8. Caffeine does not entrain the circadian clock but improves daytime alertness in blind patients with non-24-hour rhythms.

    Science.gov (United States)

    St Hilaire, Melissa A; Lockley, Steven W

    2015-06-01

    Totally blind individuals are highly likely to suffer from Non-24-Hour Sleep-Wake Disorder due to a failure of light to reset the circadian pacemaker in the suprachiasmatic nuclei. In this outpatient case series, we investigated whether daily caffeine administration could entrain the circadian pacemaker in non-entrained blind patients to alleviate symptoms of non-24-hour sleep-wake disorder. Three totally blind males (63.0 ± 7.5 years old) were studied at home over ~4 months. Urinary 6-sulphatoxymelatonin (aMT6s) rhythms were measured for 48 h every 1-2 weeks. Participants completed daily sleep-wake logs, and rated their alertness and mood using nine-point scales every ~2-4 h while awake on urine sampling days. Caffeine capsules (150 mg per os) were self-administered daily at 10 a.m. for approximately one circadian beat cycle based on each participant's endogenous circadian period τ and compared to placebo (n = 2) or no treatment (n = 1) in a single-masked manner. Non-24-h aMT6s rhythms were confirmed in all three participants (τ range = 24.32-24.57 h). Daily administration of 150 mg caffeine did not entrain the circadian clock. Caffeine treatment significantly improved daytime alertness at adverse circadian phases (p caffeine was able to improve daytime alertness acutely and may therefore provide temporary symptomatic relief, the inability of caffeine to correct the underlying circadian disorder means that an entraining agent is required to treat Non-24-Hour Sleep-Wake Disorder in the blind appropriately. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age

    International Nuclear Information System (INIS)

    Keith, Dove; Finlay, Liam; Butler, Judy; Gómez, Luis; Smith, Eric; Moreau, Régis; Hagen, Tory

    2014-01-01

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks

  10. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Dove; Finlay, Liam; Butler, Judy [Linus Pauling Institute, Oregon State University (United States); Gómez, Luis; Smith, Eric [Linus Pauling Institute, Oregon State University (United States); Biochemistry Biophysics Department, Oregon State University (United States); Moreau, Régis [Linus Pauling Institute, Oregon State University (United States); Hagen, Tory, E-mail: Tory.Hagen@oregonstate.edu [Linus Pauling Institute, Oregon State University (United States); Biochemistry Biophysics Department, Oregon State University (United States)

    2014-07-18

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.

  11. Human seasonal and circadian studies in Antarctica (Halley, 75°S).

    Science.gov (United States)

    Arendt, Josephine; Middleton, Benita

    2018-03-01

    Living for extended periods in Antarctica exposes base personnel to extremes of daylength (photoperiod) and temperature. At the British Antarctic Survey base of Halley, 75°S, the sun does not rise for 110 d in the winter and does not set for 100 d in summer. Photoperiod is the major time cue governing the timing of seasonal events such as reproduction in many species. The neuroendocrine signal providing photoperiodic information to body physiology is the duration of melatonin secretion which reflects the length of the night: longer in the short days of winter and shorter in summer. Light of sufficient intensity and spectral composition serves to suppress production of melatonin and to set the circadian timing and the duration of the rhythm. In humans early observations suggested that bright (>2000 lux) white light was needed to suppress melatonin completely. Shortly thereafter winter depression (Seasonal Affective Disorder or SAD) was described, and its successful treatment by an artificial summer photoperiod of bright white light, sufficient to shorten melatonin production. At Halley dim artificial light intensity during winter was measured, until 2003, at a maximum of approximately 500 lux in winter. Thus a strong seasonal and circadian time cue was absent. It seemed likely that winter depression would be common in the extended period of winter darkness and could be treated with an artificial summer photoperiod. These observations, and predictions, inspired a long series of studies regarding human seasonal and circadian status, and the effects of light treatment, in a small overwintering, isolated community, living in the same conditions for many months at Halley. We found little evidence of SAD, or change in duration of melatonin production with season. However the timing of the melatonin rhythm itself, and/or that of its metabolite 6-sulphatoxymelatonin (aMT6s), was used as a primary marker of seasonal, circadian and treatment changes. A substantial phase

  12. The Role of ATRX in the Alternative Lengthening of Telomeres (ALT) Phenotype.

    Science.gov (United States)

    Amorim, João P; Santos, Gustavo; Vinagre, João; Soares, Paula

    2016-09-19

    Telomeres are responsible for protecting chromosome ends in order to prevent the loss of coding DNA. Their maintenance is required for achieving immortality by neoplastic cells and can occur by upregulation of the telomerase enzyme or through a homologous recombination-associated process, the alternative lengthening of telomeres (ALT). The precise mechanisms that govern the activation of ALT or telomerase in tumor cells are not fully understood, although cellular origin may favor one of the other mechanisms that have been found thus far in mutual exclusivity. Specific mutational events influence ALT activation and maintenance: a unifying frequent feature of tumors that acquire this phenotype are the recurrent mutations of the Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX) or Death-Domain Associated Protein (DAXX) genes. This review summarizes the established criteria about this phenotype: its prevalence, theoretical molecular mechanisms and relation with ATRX, DAXX and other proteins (directly or indirectly interacting and resulting in the ALT phenotype).

  13. [Treatment of facial paralysis with temporalis lengthening myoplasty and dysarthria improvement].

    Science.gov (United States)

    Laure, B; Fritz, A-H; Dufour, J; Goga, D

    2013-04-01

    The dysfunctions engendered by the peripheral facial paralysis (PFP) induce modifications of the verbal and para-verbal functions. The purpose of our study was to observe if the temporalis lengthening myoplasty (TLM) allowed to decrease dysarthria observed on the operated patients. We followed-up seven patients affected by a peripheral facial paralysis with various etiologies. Due to specifics needs of this study, we created an evaluation grid of the articulation, which allowed us to measure evolutions after the operation by a tri-phase evaluation: before surgery, at 3 and 6months after it. Results show a definite improvement of dysarthria in the whole test group. TLM operation, in addition to be very efficient for the recovering of the paralyzed side, can also treat dysarthria on these patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Circadian sleep and feeding patterns in the rat: possible dependence on lipogenesis and lipolysis.

    Science.gov (United States)

    Danguir, J; Nicolaidis, S

    1980-03-01

    Sleep and feeding patterns were continuously recorded in rats under intravenous saline (control) and alternating insulin-epinephrine (experimental) infusions. The infusion of insulin (lipogenetic hormone) during the normally light period (0800-1600) replaced by epinephrine (lipolytic hormone) during the normally lipogenetic dark period (1600-0800) resulted in a complete inversion of the normal circadian distribution of sleep and feeding patterns and also of their correlation. Insulin infusion resulted in low blood glucose and glycerol levels whereas epinephrine increased these physiological parameters. Different control conditions showed that the fluctuations of sleep and feeding were dependent on the rate of utilization of the circulating metabolites at the cellular level. These results together with previous data suggest that the relation between sleep and feeding and their concomitant circadian fluctuation are possibly modulated by a common factor, namely the metabolic rate that is influenced by the lipogenesis/lipolysis rate.

  15. Foot lengthening and shortening during gait: a parameter to investigate foot function?

    Science.gov (United States)

    Stolwijk, N M; Koenraadt, K L M; Louwerens, J W K; Grim, D; Duysens, J; Keijsers, N L W

    2014-02-01

    Based on the windlass mechanism theory of Hicks, the medial longitudinal arch (MLA) flattens during weight bearing. Simultaneously, foot lengthening is expected. However, changes in foot length during gait and the influence of walking speed has not been investigated yet. The foot length and MLA angle of 34 healthy subjects (18 males, 16 females) at 3 velocities (preferred, low (preferred -0.4 m/s) and fast (preferred +0.4 m/s) speed were investigated with a 3D motion analysis system (VICON(®)). The MLA angle was calculated as the angle between the second metatarsal head, the navicular tuberculum and the heel in the local sagittal plane. Foot length was calculated as the distance between the marker at the heel and the 2nd metatarsal head. A General Linear Model for repeated measures was used to indicate significant differences in MLA angle and foot length between different walking speeds. The foot lengthened during the weight acceptance phase of gait and shortened during propulsion. With increased walking speed, the foot elongated less after heel strike and shortened more during push off. The MLA angle and foot length curve were similar, except between 50% and 80% of the stance phase in which the MLA increases whereas the foot length showed a slight decrease. Foot length seems to represent the Hicks mechanism in the foot and the ability of the foot to bear weight. At higher speeds, the foot becomes relatively stiffer, presumably to act as a lever arm to provide extra propulsion. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Characteristics of myogenic response and ankle torque recovery after lengthening contraction-induced rat gastrocnemius injury

    Directory of Open Access Journals (Sweden)

    Song Hongsun

    2012-10-01

    Full Text Available Abstract Background Although muscle dysfunction caused by unfamiliar lengthening contraction is one of most important issues in sports medicine, there is little known about the molecular events on regeneration process. The purpose of this study was to investigate the temporal and spatial expression patterns of myogenin, myoD, pax7, and myostatin after acute lengthening contraction (LC-induced injury in the rat hindlimb. Methods We employed our originally developed device with LC in rat gastrocnemius muscle (n = 24. Male Wistar rats were anesthetized with isoflurane (aspiration rate, 450 ml/min, concentration, 2.0%. The triceps surae muscle of the right hindlimb was then electrically stimulated with forced isokinetic dorsi-flexion (180°/sec and from 0 to 45°. Tissue contents of myoD, myogenin, pax7, myostatin were measured by western blotting and localizations of myoD and pax7 was measured by immunohistochemistry. After measuring isometric tetanic torque, a single bout of LC was performed in vivo. Results The torque was significantly decreased on days 2 and 5 as compared to the pre-treatment value, and recovered by day 7. The content of myoD and pax7 showed significant increases on day 2. Myogenin showed an increase from day 2 to 5. Myostatin on days 5 and 7 were significantly increased. Immunohistochemical analysis showed that myoD-positive/pax7-positive cells increased on day 2, suggesting that activated satellite cells play a role in the destruction and the early recovery phases. Conclusion We, thus, conclude that myogenic events associate with torque recovery after LC-induced injury.

  17. Attenuated food anticipatory activity and abnormal circadian locomotor rhythms in Rgs16 knockdown mice.

    Directory of Open Access Journals (Sweden)

    Naoto Hayasaka

    Full Text Available Regulators of G protein signaling (RGS are a multi-functional protein family, which functions in part as GTPase-activating proteins (GAPs of G protein α-subunits to terminate G protein signaling. Previous studies have demonstrated that the Rgs16 transcripts exhibit robust circadian rhythms both in the suprachiasmatic nucleus (SCN, the master circadian light-entrainable oscillator (LEO of the hypothalamus, and in the liver. To investigate the role of RGS16 in the circadian clock in vivo, we generated two independent transgenic mouse lines using lentiviral vectors expressing short hairpin RNA (shRNA targeting the Rgs16 mRNA. The knockdown mice demonstrated significantly shorter free-running period of locomotor activity rhythms and reduced total activity as compared to the wild-type siblings. In addition, when feeding was restricted during the daytime, food-entrainable oscillator (FEO-driven elevated food-anticipatory activity (FAA observed prior to the scheduled feeding time was significantly attenuated in the knockdown mice. Whereas the restricted feeding phase-advanced the rhythmic expression of the Per2 clock gene in liver and thalamus in the wild-type animals, the above phase shift was not observed in the knockdown mice. This is the first in vivo demonstration that a common regulator of G protein signaling is involved in the two separate, but interactive circadian timing systems, LEO and FEO. The present study also suggests that liver and/or thalamus regulate the food-entrained circadian behavior through G protein-mediated signal transduction pathway(s.

  18. Expression of circadian clock genes in human colorectal adenoma and carcinoma.

    Science.gov (United States)

    Momma, Tomoyuki; Okayama, Hirokazu; Saitou, Masaru; Sugeno, Hidekazu; Yoshimoto, Nobuhiro; Takebayashi, Yuji; Ohki, Shinji; Takenoshita, Seiichi

    2017-11-01

    Circadian rhythms are fundamental biological systems in most organisms. Epidemiological and animal studies have demonstrated that disruption of circadian rhythms is linked to tumor progression and mammalian tumorigenesis. However, the clinical significance of in situ clock gene expression in precancerous and cancerous colorectal lesions remains unknown. The present study aimed to investigate mRNA transcript levels of circadian clock genes within human colorectal cancer and adenoma tissue sections. Using in situ hybridization, the expression of key clock genes, including period circadian protein homolog ( Per ) 1 and 2, cryptochrome 1 ( Cry1 ), circadian locomoter output cycles protein kaput ( Clock ), brain and muscle ARNT-like protein 1 ( Bmal1 ) and casein kinase 1ε ( CK1 ε) were retrospectively examined in 51 cases of colorectal carcinoma and 10 cases of adenoma. The expression of clock genes was almost undetectable in the majority of adenomas, whereas positive expression of clock genes was observed in 27-47% of carcinomas. Notably, positive Per1 , Per2 and Clock staining in colorectal carcinomas were each significantly associated with a larger tumor size (P=0.012, P=0.011 and P=0.009, respectively). Tumors with positive Per2 and Clock expression tended to exhibit deeper depth of invasion and were generally more advanced than tumors that did not express these genes (P=0.052 and P=0.064, respectively). However, no statistically significant association was observed between clock gene expression and clinicopathological variables, including histopathological differentiation, lymph node metastasis, depth of invasion or disease stage, although Per2 -positive tumors tended to be associated with poorer overall survival (P=0.060). The results of the current study suggest that dysregulated expression of clock genes may be important in human colorectal tumorigenesis.

  19. Relationships between the circadian system and Alzheimer's disease-like symptoms in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dani M Long

    Full Text Available Circadian clocks coordinate physiological, neurological, and behavioral functions into circa 24 hour rhythms, and the molecular mechanisms underlying circadian clock oscillations are conserved from Drosophila to humans. Clock oscillations and clock-controlled rhythms are known to dampen during aging; additionally, genetic or environmental clock disruption leads to accelerated aging and increased susceptibility to age-related pathologies. Neurodegenerative diseases, such as Alzheimer's disease (AD, are associated with a decay of circadian rhythms, but it is not clear whether circadian disruption accelerates neuronal and motor decline associated with these diseases. To address this question, we utilized transgenic Drosophila expressing various Amyloid-β (Aβ peptides, which are prone to form aggregates characteristic of AD pathology in humans. We compared development of AD-like symptoms in adult flies expressing Aβ peptides in the wild type background and in flies with clocks disrupted via a null mutation in the clock gene period (per01. No significant differences were observed in longevity, climbing ability and brain neurodegeneration levels between control and clock-deficient flies, suggesting that loss of clock function does not exacerbate pathogenicity caused by human-derived Aβ peptides in flies. However, AD-like pathologies affected the circadian system in aging flies. We report that rest/activity rhythms were impaired in an age-dependent manner. Flies expressing the highly pathogenic arctic Aβ peptide showed a dramatic degradation of these rhythms in tune with their reduced longevity and impaired climbing ability. At the same time, the central pacemaker remained intact in these flies providing evidence that expression of Aβ peptides causes rhythm degradation downstream from the central clock mechanism.

  20. Melatonin Entrains PER2::LUC Bioluminescence Circadian Rhythm in the Mouse Cornea.

    Science.gov (United States)

    Baba, Kenkichi; Davidson, Alec J; Tosini, Gianluca

    2015-07-01

    Previous studies have reported the presence of a circadian rhythm in PERIOD2::LUCIFERASE (PER2::LUC) bioluminescence in mouse photoreceptors, retina, RPE, and cornea. Melatonin (MLT) modulates many physiological functions in the eye and it is believed to be one of the key circadian signals within the eye. The aim of the present study was to investigate the regulation of the PER2::LUC circadian rhythm in mouse cornea and to determine the role played by MLT. Corneas were obtained from PER2::LUC mice and cultured to measure bioluminescence rhythmicity in isolated tissue using a Lumicycle or CCD camera. To determine the time-dependent resetting of the corneal circadian clocks in response to MLT or IIK7 (a melatonin type 2 receptor, MT2, agonist) was added to the cultured corneas at different times of the day. We also defined the location of the MT2 receptor within different corneal layers using immunohistochemistry. A long-lasting bioluminescence rhythm was recorded from cultured PER2::LUC cornea and PER2::LUC signal was localized to the corneal epithelium and endothelium. MLT administration in the early night delayed the cornea rhythm, whereas administration of MLT at late night to early morning advanced the cornea rhythm. Treatment with IIK7 mimicked the MLT phase-shifting effect. Consistent with these results, MT2 immunoreactivity was localized to the corneal epithelium and endothelium. Our work demonstrates that MLT entrains the PER2::LUC bioluminescence rhythm in the cornea. Our data indicate that the cornea may represent a model to study the molecular mechanisms by which MLT affects the circadian clock.

  1. Proteomics of the photoneuroendocrine circadian system of the brain

    DEFF Research Database (Denmark)

    Møller, Morten; Lund-Andersen, Casper; Rovsing, Louise

    2010-01-01

    The photoneuroendocrine circadian system of the brain consists of (a) specialized photoreceptors in the retina, (b) a circadian generator located in the forebrain that contains "clock genes," (c) specialized nuclei in the forebrain involved in neuroendocrine secretion, and (d) the pineal gland....../night variations in gene expression in the circadian system as well as in the whole brain and peripheral tissues have, during the last decade, been performed. However, studies of circadian changes in the proteome have been less investigated. In this survey, the anatomy and function of the circadian......-generating system in mammals is described, and recent proteomic studies that investigate day/night changes in the retina, SCN, and pineal gland are reviewed. Further circadian changes controlled by the SCN in gene and protein expression in the liver are discussed....

  2. Physiological links of circadian clock and biological clock of aging.

    Science.gov (United States)

    Liu, Fang; Chang, Hung-Chun

    2017-07-01

    Circadian rhythms orchestrate biochemical and physiological processes in living organisms to respond the day/night cycle. In mammals, nearly all cells hold self-sustained circadian clocks meanwhile couple the intrinsic rhythms to systemic changes in a hierarchical manner. The suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master pacemaker to initiate daily synchronization according to the photoperiod, in turn determines the phase of peripheral cellular clocks through a variety of signaling relays, including endocrine rhythms and metabolic cycles. With aging, circadian desynchrony occurs at the expense of peripheral metabolic pathologies and central neurodegenerative disorders with sleep symptoms, and genetic ablation of circadian genes in model organisms resembled the aging-related features. Notably, a number of studies have linked longevity nutrient sensing pathways in modulating circadian clocks. Therapeutic strategies that bridge the nutrient sensing pathways and circadian clock might be rational designs to defy aging.

  3. Genomic and Physiological Characterization of the Mutant time for coffee within the Arabidopsis thaliana Circadian Clock

    OpenAIRE

    Sánchez Villarreal, Alfredo

    2010-01-01

    ircadian clocks are internal timekeepers that provide organisms with a sense of time. These oscillators, which are entrained by external stimuli, predict the daily day/night transitions and have a periodicity of about 24 hours. The Arabidopsis thaliana circadian clock is composed of interconnected transcriptional-translational feedback loops. The morning expressed elements CCA1 and LHY, which are clock controlled and light inducible, repress the transcription of the evening element TOC1. At d...

  4. α1B-Adrenergic receptor signaling controls circadian expression of Tnfrsf11b by regulating clock genes in osteoblasts

    Directory of Open Access Journals (Sweden)

    Takao Hirai

    2015-11-01

    Full Text Available Circadian clocks are endogenous and biological oscillations that occur with a period of <24 h. In mammals, the central circadian pacemaker is localized in the suprachiasmatic nucleus (SCN and is linked to peripheral tissues through neural and hormonal signals. In the present study, we investigated the physiological function of the molecular clock on bone remodeling. The results of loss-of-function and gain-of-function experiments both indicated that the rhythmic expression of Tnfrsf11b, which encodes osteoprotegerin (OPG, was regulated by Bmal1 in MC3T3-E1 cells. We also showed that REV-ERBα negatively regulated Tnfrsf11b as well as Bmal1 in MC3T3-E1 cells. We systematically investigated the relationship between the sympathetic nervous system and the circadian clock in osteoblasts. The administration of phenylephrine, a nonspecific α1-adrenergic receptor (AR agonist, stimulated the expression of Tnfrsf11b, whereas the genetic ablation of α1B-AR signaling led to the alteration of Tnfrsf11b expression concomitant with Bmal1 and Per2 in bone. Thus, this study demonstrated that the circadian regulation of Tnfrsf11b was regulated by the clock genes encoding REV-ERBα (Nr1d1 and Bmal1 (Bmal1, also known as Arntl, which are components of the core loop of the circadian clock in osteoblasts.

  5. Gene profiling the response to repeated cocaine self-administration in dorsal striatum: a focus on circadian genes.

    Science.gov (United States)

    Lynch, Wendy J; Girgenti, Matthew J; Breslin, Florence J; Newton, Samuel S; Taylor, Jane R

    2008-06-05

    Alterations in gene expression in the dorsal striatum caused by chronic cocaine exposure have been implicated in the long-term behavioral changes associated with cocaine addiction. To gain further insight into the molecular alterations that occur as a result of cocaine self-administration, we conducted a microarray analysis of gene expression followed by bioinformatic gene network analysis that allowed us to identify adaptations at the level of gene expression as well as into interconnected networks. Changes in gene expression were examined in the dorsal striatum of rats 1 day after they had self-administered cocaine for 7 days under a 24-h access, discrete trial paradigm (averaging 98 mg/kg/day). Here we report the regulation of the circadian genes Clock, Bmal1, Cryptochrome1, Period2, as well as several genes that are regulated by/associated with the circadian system (i.e., early growth response 1, dynorphin). We also observed regulation of other relevant genes (i.e., Nur77, beta catenin). These changes were then linked to curated pathways and formulated networks which identified circadian rhythm processes as affected by cocaine self-administration. These data strongly suggest involvement of circadian-associated genes in the brain's response to cocaine and may contribute to an understanding of addictive behavior including disruptions in sleep and circadian rhythmicity.

  6. There Is No Association Between the Circadian Clock Gene HPER3 and Cognitive Dysfunction After Noncardiac Surgery

    DEFF Research Database (Denmark)

    Voigt Hansen, Melissa; Simon Rasmussen, Lars; Jespersgaard, Cathrine

    2012-01-01

    The specific clock-gene PERIOD3 is important with regard to circadian rhythmicity, sleep homeostasis, and cognitive function. The allele PER3(5/5) has been associated with worse cognitive performance in response to sleep deprivation. We hypothesized that patients with the PER3(5/5) genotype would...

  7. A Functional Analysis of Circadian Pacemakers in Nocturnal Rodents. III. Heavy Water and Constant Light : Homeostasis of Frequency?

    NARCIS (Netherlands)

    Daan, Serge; Pittendrigh, Colin S.

    1976-01-01

    1. In a preceding paper differences in the lability of the freerunning circadian period (τ) in constant darkness (DD) were described among four species of rodents. This lability (i) is strongly correlated with the responses of τ to (ii) D2O-administration and to (iii) constant light (LL) of various

  8. A Functional Analysis of Circadian Pacemakers in Nocturnal Rodents. V. Pacemaker Structure : A Clock for All Seasons

    NARCIS (Netherlands)

    Pittendrigh, Colin S.; Daan, Serge

    1976-01-01

    1. This paper is an attempt to integrate in a general model the major findings reported earlier in this series on: lability and history dependence of circadian period, τ; dependence of τ and α on light intensity as described in Aschoffs Rule; the interrelationships between τ and phase response

  9. Changing circadian variation of transient myocardial ischemia during the first year after a first acute myocardial infarction

    DEFF Research Database (Denmark)

    Mickley, H; Pless, P; Nielsen, J R

    1992-01-01

    characteristics between the findings from discharge and 1-year ambulatory monitoring. The pathophysiologic processes underlying the observations from this study are unknown. The change in circadian periodicity could not be explained from differences in heart rate variation patterns or medical antianginal...

  10. Control of Circadian Behavior by Transplanted Suprachiasmatic Nuclei.

    Science.gov (United States)

    1994-09-02

    Ihara NL (in press) The tau mutation destabilizes the circadian system of golden hamste,’s Fifth Sapporo Symposium on Biological Rhythms Hokkaido...Shimomura K and Ihara NL (in press) The tau mutation destabilizes the circadian system of golden hamsters Fifth Sapporo Symposium oh Biological Rhythms...Switzerland, April 5 University of Pisa, Dipartimento di Scienze del Comportamento Animale e dell’Uomo, invited lecture: "Circadian Organization in the

  11. Avian Circadian Organization: A Chorus of Clocks

    Science.gov (United States)

    Cassone, Vincent M

    2013-01-01

    In birds, biological clock function pervades all aspects of biology, controlling daily changes in sleep: wake, visual function, song, migratory patterns and orientation, as well as seasonal patterns of reproduction, song and migration. The molecular bases for circadian clocks are highly conserved, and it is likely the avian molecular mechanisms are similar to those expressed in mammals, including humans. The central pacemakers in the avian pineal gland, retinae and SCN dynamically interact to maintain stable phase relationships and then influence downstream rhythms through entrainment of peripheral oscillators in the brain controlling behavior and peripheral tissues. Birds represent an excellent model for the role played by biological clocks in human neurobiology; unlike most rodent models, they are diurnal, they exhibit cognitively complex social interactions, and their circadian clocks are more sensitive to the hormone melatonin than are those of nocturnal rodents. PMID:24157655

  12. Sleep, circadian rhythms, and athletic performance.

    Science.gov (United States)

    Thun, Eirunn; Bjorvatn, Bjørn; Flo, Elisabeth; Harris, Anette; Pallesen, Ståle

    2015-10-01

    Sleep deprivation and time of day are both known to influence performance. A growing body of research has focused on how sleep and circadian rhythms impact athletic performance. This review provides a systematic overview of this research. We searched three different databases for articles on these issues and inspected relevant reference lists. In all, 113 articles met our inclusion criteria. The most robust result is that athletic performance seems to be best in the evening around the time when the core body temperature typically is at its peak. Sleep deprivation was negatively associated with performance whereas sleep extension seems to improve performance. The effects of desynchronization of circadian rhythms depend on the local time at which performance occurs. The review includes a discussion of differences regarding types of skills involved as well as methodological issues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Myofascial force transmisison between antagonistic rat lower limb muscles: effects of single muscle or muscle group lengthening

    NARCIS (Netherlands)

    Meijer, Hanneke J.M; Rijkelijkhuizen, Josina M.; Huijing, P.A.J.B.M.

    2007-01-01

    Effects of lengthening of the whole group of anterior crural muscles (tibialis anterior and extensor hallucis longus muscles (TA + EHL) and extensor digitorum longus (EDL)) on myofascial interaction between synergistic EDL and TA + EHL muscles, and on myofascial force transmission between anterior

  14. Enhanced Corticospinal Excitability and Volitional Drive in Response to Shortening and Lengthening Strength Training and Changes Following Detraining

    NARCIS (Netherlands)

    Tallent, Jamie; Goodall, Stuart; Gibbon, Karl C.; Hortobagyi, Tibor; Howatson, Glyn

    2017-01-01

    There is a limited understanding of the neurological adaptations responsible for changes in strength following shortening and lengthening resistance training and subsequent detraining. The aim of the study was to investigate differences in corticospinal and spinal responses to resistance training of

  15. The effect of walking speed on hamstrings length and lengthening velocity in children with spastic cerebral palsy

    NARCIS (Netherlands)

    Krogt, van der M.M.; Doorenbosch, C.A.M.; Harlaar, J.

    2009-01-01

    0.001). These data are important as a reference for valid interpretation of hamstrings length and velocity data in gait analyses at different walking speeds. The results indicate that the presence of spasticity is associated with reduced hamstrings length and lengthening velocity during gait, even

  16. Myofascial force transmission between antagonistic rat lower limb muscles: Effects of single muscle or muscle group lengthening.

    NARCIS (Netherlands)

    Meijer, H.J.M.; Rijkelijkhuizen, J.M.; Huijing, P.A.J.B.M.

    2007-01-01

    Effects of lengthening of the whole group of anterior crural muscles (tibialis anterior and extensor hallucis longus muscles (TA + EHL) and extensor digitorum longus (EDL)) on myofascial interaction between synergistic EDL and TA + EHL muscles, and on myofascial force transmission between anterior

  17. Anterior ankle impingement after tendo-Achilles lengthening for long-standing equinus deformity in residual poliomyelitis.

    Science.gov (United States)

    Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Park, Moon Seok

    2013-09-01

    This study was performed to investigate anterior ankle impingement after tendo-Achilles lengthening for long-standing equinus deformity in patients with residual poliomyelitis and to investigate whether the severity of preoperative equinus deformity affected the occurrence of symptomatic anterior impingement. Twenty-seven consecutive patients (mean age, 43.8 ± 9.4 years) with residual poliomyelitis who underwent tendo-Achilles lengthening for equinus foot deformity were included. On lateral foot-ankle weight-bearing radiographs, the tibiocalcaneal angle, plantigrade angle, and McDermott grade were measured and the presence of anterior blocking spur was evaluated. Eleven patients (40.7%) had anterior ankle impingement on radiographic findings preoperatively and 24 patients (88.9%) at latest follow-up. There was a significant difference in McDermott grade between preoperative and latest follow-up (P poliomyelitis had anterior ankle impingement after tendo-Achilles lengthening for long-standing equinus deformity, and the presence of symptomatic anterior ankle impingement was significantly associated with the severity of the equinus deformity. Therefore, for residual poliomyelitis patients with severe long-standing equinus deformity, surgeons should consider the possibility of a subsequent anterior procedure for anterior impingement after tendo-Achilles lengthening. Level IV, retrospective case series.

  18. Circadian molecular clocks tick along ontogenesis

    Czech Academy of Sciences Publication Activity Database

    Sumová, Alena; Bendová, Zdeňka; Sládek, Martin; El-Hennamy, Rehab; Matějů, Kristýna; Polidarová, Lenka; Sosniyenko, Serhiy; Illnerová, Helena

    2008-01-01

    Roč. 57, Suppl.3 (2008), S139-S148 ISSN 0862-8408 R&D Projects: GA ČR GA309/08/0503; GA AV ČR(CZ) IAA500110605; GA MŠk(CZ) LC554 Grant - others:EC(XE) LSH-2004-115-4-018741 Institutional research plan: CEZ:AV0Z50110509 Keywords : circadian clock * ontogenesis * suprachiasmatic nucleus Subject RIV: FH - Neurology Impact factor: 1.653, year: 2008

  19. Glaucoma alters the circadian timing system.

    Directory of Open Access Journals (Sweden)

    Elise Drouyer

    Full Text Available Glaucoma is a widespread ocular disease and major cause of blindness characterized by progressive, irreversible damage of the optic nerve. Although the degenerative loss of retinal ganglion cells (RGC and visual deficits associated with glaucoma have been extensively studied, we hypothesize that glaucoma will also lead to alteration of the circadian timing system. Circadian and non-visual responses to light are mediated by a specialized subset of melanopsin expressing RGCs that provide photic input to mammalian endogenous clock in the suprachiasmatic nucleus (SCN. In order to explore the molecular, anatomical and functional consequences of glaucoma we used a rodent model of chronic ocular hypertension, a primary causal factor of the pathology. Quantitative analysis of retinal projections using sensitive anterograde tracing demonstrates a significant reduction (approximately 50-70% of RGC axon terminals in all visual and non-visual structures and notably in the SCN. The capacity of glaucomatous rats to entrain to light was challenged by exposure to successive shifts of the light dark (LD cycle associated with step-wise decreases in light intensity. Although glaucomatous rats are able to entrain their locomotor activity to the LD cycle at all light levels, they require more time to re-adjust to a shifted LD cycle and show significantly greater variability in activity onsets in comparison with normal rats. Quantitative PCR reveals the novel finding that melanopsin as well as rod and cone opsin mRNAs are significantly reduced in glaucomatous retinas. Our findings demonstrate that glaucoma impacts on all these aspects of the circadian timing system. In light of these results, the classical view of glaucoma as pathology unique to the visual system should be extended to include anatomical and functional alterations of the circadian timing system.

  20. Principles for circadian orchestration of metabolic pathways

    OpenAIRE

    Thurley, Kevin; Herbst, Christopher; Wesener, Felix; Koller, Barbara; Wallach, Thomas; Maier, Bert; Kramer, Achim; Westermark, Pål O

    2017-01-01

    Circadian (24-h) rhythms influence the behavior and physiology of many organisms. These rhythms are generated at the gene expression level, causing the waxing and waning of protein abundances. Metabolic enzymes are affected, but the principles for the propagation of enzyme rhythmicity to cellular metabolism as quantified by fluxes through metabolic pathways and metabolite concentrations are not understood. We used the mathematics of chemical kinetics to systematically investigate how rhythms ...

  1. Circadian Phase Preference in Pediatric Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Kerri L. Kim

    2014-03-01

    Full Text Available Pediatric bipolar disorder (BD rates have notably increased over the past three decades. Given the significant morbidity and mortality associated with BD, efforts are needed to identify factors useful in earlier detection to help address this serious public health concern. Sleep is particularly important to consider given the sequelae of disrupted sleep on normative functioning and that sleep is included in diagnostic criteria for both Major Depressive and Manic Episodes. Here, we examine one component of sleep—i.e., circadian phase preference with the behavioral construct of morningness/eveningness (M/E. In comparing 30 BD and 45 typically developing control (TDC participants, ages 7–17 years, on the Morningness-Eveningness Scale for Children (MESC, no between-group differences emerged. Similar results were found when comparing three groups (BD−ADHD; BD+ADHD; TDC. Consistent with data available on circadian phase preference in adults with BD, however, we found that BD adolescents, ages 13 years and older, endorsed significantly greater eveningness compared to their TDC peers. While the current findings are limited by reliance on subjective report and the high-rate of comorbid ADHD among the BD group, this finding that BD teens demonstrate an exaggerated shift towards eveningness than would be developmentally expected is important. Future studies should compare the circadian rhythms across the lifespan for individuals diagnosed with BD, as well as identify the point at which BD youth part ways with their healthy peers in terms of phase preference. In addition, given our BD sample was overall euthymic, it may be that M/E is more state vs. trait specific in latency age youth. Further work would benefit from assessing circadian functioning using a combination of rating forms and laboratory-based measures. Improved understanding of sleep in BD may identify behavioral targets for inclusion in prevention and intervention protocols.

  2. The circadian clock, reward and memory

    Directory of Open Access Journals (Sweden)

    Urs eAlbrecht

    2011-11-01

    Full Text Available During our daily activities, we experience variations in our cognitive performance, which is often accompanied by cravings for small rewards, such as consuming coffee or chocolate. This indicates that the time of day, cognitive performance and reward may be related to one another. This review will summarize data that describes the influence of the circadian clock on addiction and mood-related behavior and put the data into perspective in relation to memory processes.

  3. Growth disturbance after lengthening of the lower limb and quantitative assessment of physeal closure in skeletally immature patients with achondroplasia.

    Science.gov (United States)

    Song, S H; Kim, S E; Agashe, M V; Lee, H; Refai, M A; Park, Y E; Choi, H J; Park, J H; Song, H R

    2012-04-01

    This study evaluated the effect of limb lengthening on longitudinal growth in patients with achondroplasia. Growth of the lower extremity was assessed retrospectively by serial radiographs in 35 skeletally immature patients with achondroplasia who underwent bilateral limb lengthening (Group 1), and in 12 skeletally immature patients with achondroplasia who did not (Group 2). In Group 1, 23 patients underwent only tibial lengthening (Group 1a) and 12 patients underwent tibial and femoral lengthening sequentially (Group 1b). The mean lengthening in the tibia was 9.2 cm (59.5%) in Group 1a, and 9.0 cm (58.2%) in the tibia and 10.2 cm (54.3%) in the femur in Group 1b. The mean follow-up was 9.3 years (8.6 to 10.3). The final mean total length of lower extremity in Group 1a was 526.6 mm (501.3 to 552.9) at the time of skeletal maturity and 610.1 mm (577.6 to 638.6) in Group 1b, compared with 457.0 mm (411.7 to 502.3) in Group 2. However, the mean actual length, representing the length solely grown from the physis without the length of distraction, showed that there was a significant disturbance of growth after limb lengthening. In Group 1a, a mean decrease of 22.4 mm (21.3 to 23.1) (4.9%) was observed in the actual limb length when compared with Group 2, and a greater mean decrease of 38.9 mm (37.2 to 40.8) (8.5%) was observed in Group 1b when compared with Group 2 at skeletal maturity. In Group 1, the mean actual limb length was 16.5 mm (15.8 to 17.2) (3.6%) shorter in Group 1b when compared with Group 1a at the time of skeletal maturity. Premature physeal closure was seen mostly in the proximal tibia and the distal femur with relative preservation of proximal femur and distal tibia. We suggest that significant disturbance of growth can occur after extensive limb lengthening in patients with achondroplasia, and therefore, this should be included in pre-operative counselling of these patients and their parents.

  4. Clinical Trial of Exercise on Circadian Clock Resetting

    National Research Council Canada - National Science Library

    Czeisler, Charles

    2001-01-01

    ...: test the hypothesis that multiple nightly bouts of exercise will induce significant delays in the endogenous circadian rhythms of core body temperature, plasma melatonin, reaction time, alertness...

  5. SCA1+ Cells from the Heart Possess a Molecular Circadian Clock and Display Circadian Oscillations in Cellular Functions

    Directory of Open Access Journals (Sweden)

    Bastiaan C. Du Pré

    2017-09-01

    Full Text Available Stem cell antigen 1-positive (SCA1+ cells (SPCs have been investigated in cell-based cardiac repair and pharmacological research, although improved cardiac function after injection has been variable and the mode of action remains unclear. Circadian (24-hr rhythms are biorhythms regulated by molecular clocks that play an important role in (pathophysiology. Here, we describe (1 the presence of a molecular circadian clock in SPCs and (2 circadian rhythmicity in SPC function. We isolated SPCs from human fetal heart and found that these cells possess a molecular clock based on typical oscillations in core clock components BMAL1 and CRY1. Functional analyses revealed that circadian rhythmicity also governs SPC proliferation, stress tolerance, and growth factor release, with large differences between peaks and troughs. We conclude that SPCs contain a circadian molecular clock that controls crucial cellular functions. Taking circadian rhythms into account may improve reproducibility and outcome of research and therapies using SPCs.

  6. Imaging Multidimensional Therapeutically Relevant Circadian Relationships

    Directory of Open Access Journals (Sweden)

    Jamil Singletary

    2009-01-01

    Full Text Available Circadian clocks gate cellular proliferation and, thereby, therapeutically target availability within proliferative pathways. This temporal coordination occurs within both cancerous and noncancerous proliferating tissues. The timing within the circadian cycle of the administration of drugs targeting proliferative pathways necessarily impacts the amount of damage done to proliferating tissues and cancers. Concurrently measuring target levels and associated key pathway components in normal and malignant tissues around the circadian clock provides a path toward a fuller understanding of the temporal relationships among the physiologic processes governing the therapeutic index of antiproliferative anticancer therapies. The temporal ordering among these relationships, paramount to determining causation, is less well understood using two- or three-dimensional representations. We have created multidimensional multimedia depictions of the temporal unfolding of putatively causative and the resultant therapeutic effects of a drug that specifically targets these ordered processes at specific times of the day. The systems and methods used to create these depictions are provided, as well as three example supplementary movies.

  7. Circadian and sleep disorders in Parkinson's disease.

    Science.gov (United States)

    Videnovic, Aleksandar; Golombek, Diego

    2013-05-01

    Impaired sleep and alertness, initially recognized by James Parkinson in his famous monograph "An Essay on the Shaking Palsy" in 1817, is one of the most common and disabling nonmotor symptoms of Parkinson's disease (PD). It is only recently, however, that sleep disturbances in PD have received the attention of medical and research community. Dopamine, the major neurotransmitter implicated in the pathogenesis of PD, plays a pivotal role in the regulation of sleep and circadian homeostasis. Sleep dysfunction affects up to 90% of patients with PD, and may precede the onset of the disease by decades. Sleep dysfunction in PD may be categorized into disturbances of overnight sleep and daytime alertness. Etiology of impaired sleep and alertness in PD is multifactorial. Co-existent primary sleep disorders, medication side effects, overnight re-emergence of motor symptoms, and primary neurodegeneration itself, are main causes of sleep disruption and excessive daytime sleepiness among patients with PD. Increasing body of evidence suggests that the circadian system becomes dysregulated in PD, which may lead to poor sleep and alertness. Treatment options are limited and frequently associated with unwanted side effects. Further studies that will examine pathophysiology of sleep dysfunction in PD, and focus on novel treatment approaches are therefore very much needed. In this article we review the role of dopamine in regulation of sleep and alertness and discuss main sleep and circadian disturbances associated with PD. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Links between circadian rhythms and psychiatric disease

    Directory of Open Access Journals (Sweden)

    Ilia N Karatsoreos

    2014-05-01

    Full Text Available Determining the cause of psychiatric disorders is a goal of modern neuroscience, and will hopefully lead to the discovery of treatments to either prevent or alleviate the suffering caused by these diseases. One roadblock to attaining this goal is the realization that neuropsychiatric diseases are rarely due to a single gene polymorphism, environmental exposure, or developmental insult. Rather, it is a complex interaction between these various influences that likely leads to the development of clinically relevant syndromes. Our lab is exploring the links between environmental exposures and neurobehavioral function by investigating how disruption of the circadian (daily clock alters the structure and function of neural circuits, with the hypothesis that disrupting this crucial homeostatic system can directly contribute to altered vulnerability of the organism to other factors that interact to produce psychiatric illness. This review explores some historical and more recent findings that link disrupted circadian clocks to neuropsychiatric disorders, particularly depression, mania, and schizophrenia. We take a comparative approach by exploring the effects observed in human populations, as well as some experimental models used in the laboratory to unravel mechanistic and causal relationships between disruption of the circadian clock and behavioral abnormalities. This is a rich area of research that we predict will contribute greatly to our understanding of how genes, environment, and development interact to modulate an individual’s vulnerability to psychiatric disorders.

  9. Factors influencing circadian rhythms in acetaminophen lethality.

    Science.gov (United States)

    Schnell, R C; Bozigian, H P; Davies, M H; Merrick, B A; Park, K S; McMillan, D A

    1984-01-01

    Experiments were conducted to examine the effects of changes in lighting schedules and food consumption on circadian rhythms in acetaminophen lethality and hepatic glutathione levels in male mice. Under a normal lighting schedule (light: 06.00-18.00 h), male mice exhibited a circadian rhythm in acetaminophen lethality (peak: 18.00 h; nadir: 06.00, 10.00 h) and an inverse rhythm in hepatic glutathione concentrations (peak: 06.00, 10.00 h; nadir: 18.00 h). Under a reversed lighting schedule (light: 18.00-06.00 h) the glutathione rhythm was reversed and the rhythm in acetaminophen lethality was altered showing greater sensitivity to the drug. Under continuous light, there was a shift in the acetaminophen lethality and the hepatic glutathione rhythms. Under continuous dark, both rhythms were abolished. Under a normal lighting regimen, hepatic glutathione levels were closely correlated with food consumption; i.e., both were increased during the dark phase and decreased during the light phase. Fasting the mice for 12 h abolished the rhythms in acetaminophen lethality and hepatic glutathione levels; moreover, the lethality was increased and the hepatic glutathione levels were decreased. These experiments show that both lighting schedules and feeding can alter the circadian rhythms in acetaminophen lethality and hepatic glutathione levels in male mice.

  10. Characterisation, analysis of expression and localisation of circadian clock genes from the perspective of photoperiodism in the aphid Acyrthosiphon pisum.

    Science.gov (United States)

    Barberà, Miquel; Collantes-Alegre, Jorge Mariano; Martínez-Torres, David

    2017-04-01

    Aphids are typical photoperiodic insects that switch from viviparous parthenogenetic reproduction typical of long day seasons to oviparous sexual reproduction triggered by the shortening of photoperiod in autumn yielding an overwintering egg in which an embryonic diapause takes place. While the involvement of the circadian clock genes in photoperiodism in mammals is well established, there is still some controversy on their participation in insects. The availability of the genome of the pea aphid Acyrthosiphon pisum places this species as an excellent model to investigate the involvement of the circadian system in the aphid seasonal response. In the present report, we have advanced in the characterisation of the circadian clock genes and showed that these genes display extensive alternative splicing. Moreover, the expression of circadian clock genes, analysed at different moments of the day, showed a robust cycling of central clock genes period and timeless. Furthermore, the rhythmic expression of these genes was shown to be rapidly dampened under DD (continuous darkness conditions), thus supporting the model of a seasonal response based on a heavily dampened circadian oscillator. Additionally, increased expression of some of the circadian clock genes under short-day conditions suggest their involvement in the induction of the aphid seasonal response. Finally, in situ localisation of transcripts of genes period and timeless in the aphid brain revealed the site of clock neurons for the first time in aphids. Two groups of clock cells were identified: the Dorsal Neurons (DN) and the Lateral Neurons (LN), both in the protocerebrum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Circadian rhythms affect electroretinogram, compound eye color, striking behavior and locomotion of the praying mantis Hierodula patellifera.

    Science.gov (United States)

    Schirmer, Aaron E; Prete, Frederick R; Mantes, Edgar S; Urdiales, Andrew F; Bogue, Wil

    2014-11-01

    Many behaviors and physiological processes oscillate with circadian rhythms that are synchronized to environmental cues (e.g. light onset), but persist with periods of ~24 h in the absence of such cues. We used a multilevel experimental approach to assess whether circadian rhythms modulate several aspects of the visual physiology and behavior of the praying mantis Hierodula patellifera. We used electroretinograms (ERGs) to assess compound eye sensitivity, colorimetric photographic analyses to assess compound eye color changes (screening pigment migration), behavioral assays of responsiveness to computer-generated prey-like visual stimuli and analyses of locomotor activity patterns on a modified treadmill apparatus. Our results indicate that circadian clocks control and/or modulate each of the target behaviors. Strong rhythms, persisting under constant conditions, with periods of ~24 h were evident in photoreceptor sensitivity to light, appetitive responsiveness to prey-like stimuli and gross locomotor activity. In the first two cases, responsiveness was highest during the subjective night and lowest during the subjective day. Locomotor activity was strongly clustered around the transition time from day to night. In addition, pigment migration and locomotor behavior responded strongly to light:dark cycles and anticipated the light-dark transition, suggesting that the circadian clocks modulating both were entrained to environmental light cues. Together, these data indicate that circadian rhythms operate at the cellular, cellular systems and organismal level in H. patellifera. Our results represent an intriguing first step in uncovering the complexities of circadian rhythms in the Mantodea. © 2014. Published by The Company of Biologists Ltd.

  12. Cortical and spinal excitability during and after lengthening contractions of the human plantar flexor muscles performed with maximal voluntary effort.

    Directory of Open Access Journals (Sweden)

    Daniel Hahn

    Full Text Available This study was designed to investigate the sites of potential specific modulations in the neural control of lengthening and subsequent isometric maximal voluntary contractions (MVCs versus purely isometric MVCs of the plantar flexor muscles, when there is enhanced torque during and following stretch. Ankle joint torque during maximum voluntary plantar flexion was measured by a dynamometer when subjects (n = 10 lay prone on a bench with the right ankle tightly strapped to a foot-plate. Neural control was analysed by comparing soleus motor responses to electrical nerve stimulation (M-wave, V-wave, electrical stimulation of the cervicomedullary junction (CMEP and transcranial magnetic stimulation of the motor cortex (MEP. Enhanced torque of 17 ± 8% and 9 ± 8% was found during and 2.5-3 s after lengthening MVCs, respectively. Cortical and spinal responsiveness was similar to that in isometric conditions during the lengthening MVCs, as shown by unchanged MEPs, CMEPs and V-waves, suggesting that the major voluntary motor pathways are not subject to substantial inhibition. Following the lengthening MVCs, enhanced torque was accompanied by larger MEPs (p ≤ 0.05 and a trend to greater V-waves (p ≤ 0.1. In combination with stable CMEPs, increased MEPs suggest an increase in cortical excitability, and enlarged V-waves indicate greater motoneuronal output or increased stretch reflex excitability. The new results illustrate that neuromotor pathways are altered after lengthening MVCs suggesting that the underlying mechanisms of the enhanced torque are not purely mechanical in nature.

  13. Distal femoral flexion deformity from growth disturbance treated with a two-level osteotomy and internal lengthening nail

    Directory of Open Access Journals (Sweden)

    Austin T. Fragomen

    2017-10-01

    Full Text Available Abstract Salter Harris fractures of the distal femur can lead to growth disturbance with resulting leg length inequality and knee deformity. We have looked at a case series (3 of patients who presented with a distal femur flexion malunion and shortening treated with a distal femoral osteotomy and plating and a proximal femoral osteotomy with a magnetic internal lengthening nail. Does a two-level osteotomy and internal fixation approach provide a reliable result both radiographically and functionally? The average knee extension loss was 12°, LLD 47 mm, PDFA 65°, MAD 2 mm. The patients were treated with an acute, posterior, opening wedge osteotomy of the distal femur stabilized with a lateral plate and screws and grafted with cancellous chips and putty. A second osteotomy was made proximally in the femur percutaneously, and the internal lengthening nail was inserted. Lengthening was done at approximately 1 mm/day. The average extension gain was 12°; amount of lengthening at the proximal site was 40 mm, LLD was 3 mm. The average PDFA was 81°, and MAD 3 mm. There were no complications. Functional results were excellent. Bone healing index was 24 days/cm. The average distance from the distal osteotomy to the joint line was 57 mm. The technique of two-level femur osteotomy stabilized with a plate and lengthening nail yielded excellent results with acceptable correction of deformity, full knee extension, and improved function. There were no complications including implant failure, infection, need for blood transfusion, knee stiffness, nonunion, compartment syndrome, or malunion.

  14. An endogenous circadian rhythm in sleep inertia results in greatest cognitive impairment upon awakening during the biological night.

    Science.gov (United States)

    Scheer, Frank A J L; Shea, Thomas J; Hilton, Michael F; Shea, Steven A

    2008-08-01

    Sleep inertia is the impaired cognitive performance immediately upon awakening, which decays over tens of minutes. This phenomenon has relevance to people who need to make important decisions soon after awakening, such as on-call emergency workers. Such awakenings can occur at varied times of day or night, so the objective of the study was to determine whether or not the magnitude of sleep inertia varies according to the phase of the endogenous circadian cycle. Twelve adults (mean, 24 years; 7 men) with no medical disorders other than mild asthma were studied. Following 2 baseline days and nights, subjects underwent a forced desynchrony protocol composed of seven 28-h sleep/wake cycles, while maintaining a sleep/wakefulness ratio of 1:2 throughout. Subjects were awakened by a standardized auditory stimulus 3 times each sleep period for sleep inertia assessments. The magnitude of sleep inertia was quantified as the change in cognitive performance (number of correct additions in a 2-min serial addition test) across the first 20 min of wakefulness. Circadian phase was estimated from core body temperature (fitted temperature minimum assigned 0 degrees ). Data were segregated according to: (1) circadian phase (60 degrees bins); (2) sleep stage; and (3) 3rd of the night after which awakenings occurred (i.e., tertiary 1, 2, or 3). To control for any effect of sleep stage, the circadian rhythm of sleep inertia was initially assessed following awakenings from Stage 2 (62% of awakening occurred from this stage; n = 110). This revealed a significant circadian rhythm in the sleep inertia of cognitive performance (p = 0.007), which was 3.6 times larger during the biological night (circadian bin 300 degrees , approximately 2300-0300 h in these subjects) than during the biological day (bin 180 degrees , approximately 1500-1900 h). The circadian rhythm in sleep inertia was still present when awakenings from all sleep stages were included (p = 0.004), and this rhythm could not be

  15. Circadian rhythm of glycoprotein secretion in the vas deferens of the moth, Spodoptera littoralis

    Directory of Open Access Journals (Sweden)

    Gvakharia B

    2002-09-01

    Full Text Available Abstract Background Reproductive systems of male moths contain circadian clocks, which time the release of sperm bundles from the testis to the upper vas deferens (UVD and their subsequent transfer from the UVD to the seminal vesicles. Sperm bundles are released from the testis in the evening and are retained in the vas deferens lumen overnight before being transferred to the seminal vesicles. The biological significance of periodic sperm retention in the UVD lumen is not understood. In this study we asked whether there are circadian rhythms in the UVD that are correlated with sperm retention. Results We investigated the carbohydrate-rich material present in the UVD wall and lumen during the daily cycle of sperm release using the periodic acid-Shiff reaction (PAS. Males raised in 16:8 light-dark cycles (LD showed a clear rhythm in the levels of PAS-positive granules in the apical portion of the UVD epithelium. The peak of granule accumulation occurred in the middle of the night and coincided with the maximum presence of sperm bundles in the UVD lumen. These rhythms persisted in constant darkness (DD, indicating that they have circadian nature. They were abolished, however, in constant light (LL resulting in random patterns of PAS-positive material in the UVD wall. Gel-separation of the UVD homogenates from LD moths followed by detection of carbohydrates on blots revealed daily rhythms in the abundance of specific glycoproteins in the wall and lumen of the UVD. Conclusion Secretory activity of the vas deferens epithelium is regulated by the circadian clock. Daily rhythms in accumulation and secretion of several glycoproteins are co-ordinated with periodic retention of sperm in the vas deferens lumen.

  16. Work related injuries; impact of circadian rhythm

    Directory of Open Access Journals (Sweden)

    Mostafa Hosseini

    2017-04-01

    Full Text Available Work related injuries make up a major part of traumatic injuries, which inflict a financial burden and huge costs on the family and society. Work related injuries result in loss of a work force of a country on one hand and cause the family to lose its financial support on the other. Therefore, this type of injury has attracted much attention. Although numerous variables play a role in occurrence of these accidents, the effect of physiologic factors cannot be overlooked in this regard. For example interference of night working shifts with the natural circadian rhythm of the body is among these factors. Age, decreased physical strength, tiredness and extent of light are among other factors that affect the level of consciousness in an individual and may lead to work related traumas. In recent years, the role of circadian rhythm in occurrence of work related traumas has been widely considered. Circadian rhythm is formed as a result of a number of clock genes in suprachiasmatic nucleus and other organs of the body. Circadian rhythm is associated with significant changes in hormone secretion and level of consciousness in an individual. Rhythms desynchrony is a phenomenon seen in those that work during the night and sleep during the day and is accompanied by increased risk of work related accidents. For example in a systematic review assessing 13 studies, it was revealed that working night shifts is associated with increased risk of work related accidents. However, there is still controversy regarding the net effect of night shifts in incidence of work related accidents. One question that has not been answered yet is that if an individual works night shifts for a long time, is their circadian rhythm affected or not? On the other hand, can using strategies that improve level of consciousness (such as using blue light in the work place decrease the incidence of these accidents? Are changes in sleep and wake conditions alone able to alter the expression

  17. Influence of weeks of circadian misalignment on leptin levels

    Directory of Open Access Journals (Sweden)

    June Nguyen

    2009-12-01

    Full Text Available June Nguyen, Kenneth P Wright JrDepartment of Integrative Physiology, Sleep and Chronobiology Laboratory, University of Colorado, Boulder, CO, USAAbstract: The neurobiology of circadian, wakefulness–sleep, and feeding systems interact to influence energy homeostasis. Sleep and circadian disruptions are reported to be associated with increased risk of diabetes and obesity, yet the roles of energy balance hormones in these associations are largely unknown. Therefore, in the current study we aimed to assess the influence of several weeks of circadian misalignment (sleep and wakefulness occurring at an inappropriate biological time on the anorexigenic adipocyte hormone leptin. We utilized data from a previous study designed to assess physiological and cognitive consequences of changes in day length and light exposure as may occur during space flight, including exploration class space missions and exposure to the Martian Sol (day length. We hypothesized that circadian misalignment during an exploration class spaceflight simulation would reduce leptin levels. Following a three-week ~8 hours per night home sleep schedule, 14 healthy participants lived in the laboratory for more than one month. After baseline data collection, participants were scheduled to either 24.0 or 24.6 hours of wakefulness–sleep schedules for 25 days. Changes in the phase of the circadian melatonin rhythm, sleep, and leptin levels were assessed. Half of participants analyzed exhibited circadian misalignment with an average change in phase angle from baseline of ~4 hours and these participants showed reduced leptin levels, sleep latency, stage 2 and total sleep time (7.3 to 6.6 hours and increased wakefulness after sleep onset (all P < 0.05. The control group remained synchronized and showed significant increases in sleep latency and leptin levels. Our findings indicate that weeks of circadian misalignment, such as that which occurs in circadian sleep disorders, alters leptin

  18. [Finite element analysis of the maxillary central incisor with traditional and modified crown lengthening surgery and post-core restoration in management of crown-root fracture].

    Science.gov (United States)

    Zhen, M; Wei, Y P; Hu, W J; Rong, Q G; Zhang, H

    2016-06-01

    To construct three-dimensional finite element models with modified crown lengthening surgery and post-core restoration in management of various crown-root fracture types, to investigate the intensity and distribution of stressin models mentioned above, and to compare and analyze the indications of traditional and modified crown lengthening surgeries from the mechanic point of view. Nine three-dimensional finite element models with modified crown lengthening surgery and post-core restoration were established and analyzed by micro-CT scanning technique, dental impression scanner, Mimics 10.0, Geomagic studio 9.0 and ANSYS 14.0 software. The von Mises stress of dentin, periodontal ligament, alveolar bone, post and core, as well as the periodontal ligament area and threshold limit value were calculated and compared with the findings of traditional crown lengthening models which had been published earlierby our research group. The von Mises stress intensity of modified crown lengthening models were: dentin>post>core>alveolar bone>periodontal ligament. The maximum von Mises stress of dentin(44.37-80.58 MPa)distributed in lingual central shoulder. The periodontal ligament area of the modified crown lengthening surgery was reduced by 6% to 28%, under the same crown-root fracture conditions, the periodontal ligament area of modified crown lengthening models was larger than that of the traditional crown lengthening models. In modified crown lengthening surgery models, the von Mises stress of periodontal ligament of B3L1m, B3L2m, B3L3m models exceeded their limit values, however, the von Mises stress of periodontal ligament of the B2L2c, B2L3c, B3L1c, B3L2c, B3L3c models exceeded their limit values in traditional crown lengthening surgery models. The modified crown lengthening surgery conserves more periodontal supporting tissues, which facilitates the long-term survival of teeth. The indication of modified crown lengthening surgery is wider than traditional method. The

  19. Central control of circadian phase in arousal-promoting neurons.

    Directory of Open Access Journals (Sweden)

    Carrie E Mahoney

    Full Text Available Cells of the dorsomedial/lateral hypothalamus (DMH/LH that produce hypocretin (HCRT promote arousal in part by activation of cells of the locus coeruleus (LC which express tyrosine hydroxylase (TH. The suprachiasmatic nucleus (SCN drives endogenous daily rhythms, including those of sleep and wakefulness. These circadian oscillations are generated by a transcriptional-translational feedback loop in which the Period (Per genes constitute critical components. This cell-autonomous molecular clock operates not only within the SCN but also in neurons of other brain regions. However, the phenotype of such neurons and the nature of the phase controlling signal from the pacemaker are largely unknown. We used dual fluorescent in situ hybridization to assess clock function in vasopressin, HCRT and TH cells of the SCN, DMH/LH and LC, respectively, of male Syrian hamsters. In the first experiment, we found that Per1 expression in HCRT and TH oscillated in animals held in constant darkness with a peak phase that lagged that in AVP cells of the SCN by several hours. In the second experiment, hamsters induced to split their locomotor rhythms by exposure to constant light had asymmetric Per1 expression within cells of the middle SCN at 6 h before activity onset (AO and in HCRT cells 9 h before and at AO. We did not observe evidence of lateralization of Per1 expression in the LC. We conclude that the SCN communicates circadian phase to HCRT cells via lateralized neural projections, and suggests that Per1 expression in the LC may be regulated by signals of a global or bilateral nature.

  20. Air Travel, Circadian Rhythms/Hormones, and Autoimmunity.

    Science.gov (United States)

    Torres-Ruiz, J; Sulli, A; Cutolo, M; Shoenfeld, Y

    2017-08-01

    Biological rhythms are fundamental for homeostasis and have recently been involved in the regulatory processes of various organs and systems. Circadian cycle proteins and hormones have a direct effect on the inflammatory response and have shown pro- or anti-inflammatory effects in animal models of autoimmune diseases. The cells of the immune system have their own circadian rhythm, and the light-dark cycle directly influences the inflammatory response. On the other hand, patients with autoimmune diseases characteristically have sleep disorders and fatigue, and in certain disease, such as rheumatoid arthritis (RA), a frank periodicity in the signs and symptoms is recognized. The joint symptoms predominate in the morning, and apparently, subjects with RA have relative adrenal insufficiency, with a cortisol peak unable to control the late night load of pro-inflammatory cytokines. Transatlantic flights represent a challenge in the adjustment of biological rhythms, since they imply sleep deprivation, time zone changes, and potential difficulties for drug administration. In patients with autoimmune diseases, the use of DMARDs and prednisone at night is probably best suited to lessen morning symptoms. It is also essential to sleep during the trip to improve adaptation to the new time zone and to avoid, as far as possible, works involving flexible or nocturnal shifts. The study of proteins and hormones related to biological rhythms will demonstrate new pathophysiological pathways of autoimmune diseases, which will emphasize the use of general measures for sleep respect and methods for drug administration at key daily times to optimize their anti-inflammatory and immune modulatory effects.

  1. Clocks for sex: loss of circadian rhythms in ants after mating?

    Science.gov (United States)

    Sharma, Vijay Kumar; Lone, Shahnaz Rahman; Goel, Anubhuthi

    This paper describes experiments on the locomotor activity rhythm of queens of the ant species Camponotus compressus, which were performed to investigate the consequences of mating on circadian clocks. Locomotor activity rhythm of virgin and mated queens was monitored individually under constant conditions of the laboratory. The locomotor activity rhythm of virgin queens entrained to a 24 h (12:12 h) laboratory light/dark (LD) cycle and free-ran under constant dim red light (RR) with a free-running period (τ) of approximately 24 h. The locomotor activity of the mated queens on the other hand was arrhythmic during the period when they were laying eggs, and robust rhythmicity appeared soon after the egg-laying phase was over. The τ of the locomotor activity rhythm of mated queens was significantly greater than that of virgin queens. These results are contrary to the commonly held belief that the role of circadian clocks in ant queens ceases after mating flights, thus suggesting that circadian clocks of ant queens are adaptively plastic and display activity patterns, perhaps depending on their physiological state and tasks in the colony.

  2. Role for circadian clock genes in seasonal timing: testing the Bünning hypothesis.

    Directory of Open Access Journals (Sweden)

    Mirko Pegoraro

    2014-09-01

    Full Text Available A major question in chronobiology focuses around the "Bünning hypothesis" which implicates the circadian clock in photoperiodic (day-length measurement and is supported in some systems (e.g. plants but disputed in others. Here, we used the seasonally-regulated thermotolerance of Drosophila melanogaster to test the role of various clock genes in day-length measurement. In Drosophila, freezing temperatures induce reversible chill coma, a narcosis-like state. We have corroborated previous observations that wild-type flies developing under short photoperiods (winter-like exhibit significantly shorter chill-coma recovery times (CCRt than flies that were raised under long (summer-like photoperiods. Here, we show that arrhythmic mutant strains, per01, tim01 and ClkJrk, as well as variants that speed up or slow down the circadian period, disrupt the photoperiodic component of CCRt. Our results support an underlying circadian function mediating seasonal daylength measurement and indicate that clock genes are tightly involved in photo- and thermo-periodic measurements.

  3. Control of daily transcript oscillations in Drosophila by light and the circadian clock.

    Directory of Open Access Journals (Sweden)

    Herman Wijnen

    2006-03-01

    Full Text Available The transcriptional circuits of circadian clocks control physiological and behavioral rhythms. Light may affect such overt rhythms in two ways: (1 by entraining the clock circuits and (2 via clock-independent molecular pathways. In this study we examine the relationship between autonomous transcript oscillations and light-driven transcript responses. Transcript profiles of wild-type and arrhythmic mutant Drosophila were recorded both in the presence of an environmental photocycle and in constant darkness. Systematic autonomous oscillations in the 12- to 48-h period range were detectable only in wild-type flies and occurred preferentially at the circadian period length. However, an extensive program of light-driven expression was confirmed in arrhythmic mutant flies. Many light-responsive transcripts are preferentially expressed in the compound eyes and the phospholipase C component of phototransduction, NORPA (no receptor potential, is required for their light-dependent regulation. Although there is evidence for the existence of multiple molecular clock circuits in cyanobacteria, protists, plants, and fungi, Drosophila appears to possess only one such system. The sustained photic expression responses identified here are partially coupled to the circadian clock and may reflect a mechanism for flies to modulate functions such as visual sensitivity and synaptic transmission in response to seasonal changes in photoperiod.

  4. Circadian variation of the effects of immobility on symptoms of restless legs syndrome.

    Science.gov (United States)

    Michaud, Martin; Dumont, Marie; Paquet, Jean; Desautels, Alex; Fantini, Maria Livia; Montplaisir, Jacques

    2005-07-01

    It is now well established that symptoms of restless legs syndrome (RLS) are worsened by immobility and that their severity fluctuates according to a circadian pattern with a maximum occurring in the late evening or during the night. However, no study has ever attempted to dissociate these two effects. The objective of this study was to evaluate the nycthemeral variations in the effects of duration of immobility on symptoms of RLS. A 28-hour modified constant routine protocol. Sleep Disorders Center, Montreal Sacré-Coeur Hospital. Seven patients with primary RLS (3 men, 4 women; mean age: 43.9 years) and seven controls matched for age (42.4 years) and gender. None. A 40-minute Suggested Immobilization Test (SIT) was repeated every 2 hours during the 28-hour protocol in order to quantify both subjective leg discomfort and periodic leg movements (PLM). Regarding leg discomfort, a two-way ANOVA performed on patients' data revealed a significant interaction (p = 0.037) between Time within the SIT and Time of day. Simple effect analyses performed to decompose the interaction showed that the increase in leg discomfort with duration of immobility was found only on SIT 7, 8, 9, 10 and 12, which corresponds to the period between 21:20 and 08:00. In addition, in patients, a significant circadian variation (p immobility is closely linked to their intrinsic circadian variation.

  5. Dynamics of the Drosophila circadian clock: theoretical anti-jitter network and controlled chaos.

    Directory of Open Access Journals (Sweden)

    Hassan M Fathallah-Shaykh

    Full Text Available BACKGROUND: Electronic clocks exhibit undesirable jitter or time variations in periodic signals. The circadian clocks of humans, some animals, and plants consist of oscillating molecular networks with peak-to-peak time of approximately 24 hours. Clockwork orange (CWO is a transcriptional repressor of Drosophila direct target genes. METHODOLOGY/PRINCIPAL FINDINGS: Theory and data from a model of the Drosophila circadian clock support the idea that CWO controls anti-jitter negative circuits that stabilize peak-to-peak time in light-dark cycles (LD. The orbit is confined to chaotic attractors in both LD and dark cycles and is almost periodic in LD; furthermore, CWO diminishes the Euclidean dimension of the chaotic attractor in LD. Light resets the clock each day by restricting each molecular peak to the proximity of a prescribed time. CONCLUSIONS/SIGNIFICANCE: The theoretical results suggest that chaos plays a central role in the dynamics of the Drosophila circadian clock and that a single molecule, CWO, may sense jitter and repress it by its negative loops.

  6. Dynamics of the Drosophila circadian clock: theoretical anti-jitter network and controlled chaos.

    Science.gov (United States)

    Fathallah-Shaykh, Hassan M

    2010-10-13

    Electronic clocks exhibit undesirable jitter or time variations in periodic signals. The circadian clocks of humans, some animals, and plants consist of oscillating molecular networks with peak-to-peak time of approximately 24 hours. Clockwork orange (CWO) is a transcriptional repressor of Drosophila direct target genes. Theory and data from a model of the Drosophila circadian clock support the idea that CWO controls anti-jitter negative circuits that stabilize peak-to-peak time in light-dark cycles (LD). The orbit is confined to chaotic attractors in both LD and dark cycles and is almost periodic in LD; furthermore, CWO diminishes the Euclidean dimension of the chaotic attractor in LD. Light resets the clock each day by restricting each molecular peak to the proximity of a prescribed time. The theoretical results suggest that chaos plays a central role in the dynamics of the Drosophila circadian clock and that a single molecule, CWO, may sense jitter and repress it by its negative loops.

  7. Circadian Rhythm of Hepatic Cytosolic and Nuclear Estrogen and Androgen Receptors

    Science.gov (United States)

    FRANCAVILLA, ANTONIO; EAGON, PATRICIA K.; DiLEO, ALFREDO; VAN THIEL, DAVID H.; PANELLA, CARMINE; POLIMENO, LORENZO; AMORUSO, CINZIA; INGROSSO, MARCELLO; AQUILINO, A. MARIA; STARZL, THOMAS E.

    2010-01-01

    Mammalian liver is a sex steroid-responsive tissue. The effects of these hormones presumably are mediated by hepatic estrogen receptors (ER) and androgen receptors (AR). Serum levels of sex hormones display circadian rhythms. Further, estrogens and androgens are commonly administered; administration of these agents is associated frequently with liver disease. Therefore, we investigated whether the cytosolic and nuclear sex steroid receptors also display a similar circadian rhythm, and whether variations occurred in the distribution of receptors between cytosolic and nuclear compartments. Animals were killed every 4 h from midnight till the following midnight; cytosolic and nuclear levels of both ER and AR were measured. Cytosolic ER reached a maximum level at 4 AM, and a minimum at 8 PM and midnight of both days. Nuclear ER was highest at 8 AM and lowest at 4 PM and 8 PM, a pattern which parallels variations in serum estradiol levels. Cytosolic AR was highest at 8 PM and lowest at midnight and 4 AM. Nuclear AR was highest at 4 AM and lowest at 4 PM and 8 PM. The highest level of nuclear AR does not correspond to the maximum serum testosterone level, which occurred at 4 PM. The total hepatic content of both ER and AR was not constant over the 24-h period, but varied considerably with time of day. These studies suggest that both ER and AR show a distinct circadian rhythm in subcellular compartmentalization, and that total hepatic content of ER and AR varies significantly during a 24-h period. PMID:3710067

  8. Rats with minimal hepatic encephalopathy show reduced cGMP-dependent protein kinase activity in hypothalamus correlating with circadian rhythms alterations.

    Science.gov (United States)

    Felipo, Vicente; Piedrafita, Blanca; Barios, Juan A; Agustí, Ana; Ahabrach, Hanan; Romero-Vives, María; Barrio, Luis C; Rey, Beatriz; Gaztelu, Jose M; Llansola, Marta

    2015-01-01

    Patients with liver cirrhosis show disturbances in sleep and in its circadian rhythms which are an early sign of minimal hepatic encephalopathy (MHE). The mechanisms of these disturbances are poorly understood. Rats with porta-caval shunt (PCS), a model of MHE, show sleep disturbances reproducing those of cirrhotic patients. The aims of this work were to characterize the alterations in circadian rhythms in PCS rats and analyze the underlying mechanisms. To reach these aims, we analyzed in control and PCS rats: (a) daily rhythms of spontaneous and rewarding activity and of temperature, (b) timing of the onset of activity following turning-off the light, (c) synchronization to light after a phase advance and (d) the molecular mechanisms contributing to these alterations in circadian rhythms. PCS rats show altered circadian rhythms of spontaneous and rewarding activities (wheel running). PCS rats show more rest bouts during the active phase, more errors in the onset of motor activity and need less time to re-synchronize after a phase advance than control rats. Circadian rhythm of body temperature is also slightly altered in PCS rats. The internal period length (tau) of circadian rhythm of motor activity is longer in PCS rats. We analyzed some mechanisms by which hypothalamus modulate circadian rhythms. PCS rats show increased content of cGMP in hypothalamus while the activity of cGMP-dependent protein kinase was reduced by 41% compared to control rats. Altered cGMP-PKG pathway in hypothalamus would contribute to altered circadian rhythms and synchronization to light.

  9. Elucidation of the role of clp protease components in circadian rhythm by genetic deletion and overexpression in cyanobacteria.

    Science.gov (United States)

    Imai, Keiko; Kitayama, Yohko; Kondo, Takao

    2013-10-01

    In the cyanobacterium Synechococcus elongatus PCC7942, KaiA, KaiB, and KaiC are essential elements of the circadian clock, and Kai-based oscillation is thought to be the basic circadian timing mechanism. The Kai-based oscillator coupled with transcription/translation feedback and other intercellular factors maintains the stability of the 24-hour period in vivo. In this study, we showed that disruption of the Clp protease family genes clpP1, clpP2, and clpX and the overexpression of clpP3 cause long-period phenotypes. There were no significant changes in the levels of the clock proteins in these mutants. The overexpression of clpX led to a decrease in kaiBC promoter activity, the disruption of the circadian rhythm, and eventually cell death. However, after the transient overexpression of clpX, the kaiBC gene expression rhythm recovered after a few days. The rhythm phase after recovery was almost the same as the phase before clpX overexpression. These results suggest that the core Kai-based oscillation was not affected by clpX overexpression. Moreover, we showed that the overexpression of clpX sequentially upregulated ribosomal protein subunit mRNA levels, followed by upregulation of other genes, including the clock genes. Additionally, we found that the disruption of clpX decreased the expression of the ribosomal protein subunits. Finally, we showed that the circadian period was prolonged following the addition of a translation inhibitor at a low concentration. These results suggest that translational efficiency affects the circadian period and that clpX participates in the control of translation efficiency by regulating the transcription of ribosomal protein genes.

  10. Low-Salt Diet and Circadian Dysfunction Synergize to Induce Angiotensin II-Dependent Hypertension in Mice.

    Science.gov (United States)

    Pati, Paramita; Fulton, David J R; Bagi, Zsolt; Chen, Feng; Wang, Yusi; Kitchens, Julia; Cassis, Lisa A; Stepp, David W; Rudic, R Daniel

    2016-03-01

    Blood pressure exhibits a robust circadian rhythm in health. In hypertension, sleep apnea, and even shift work, this balanced rhythm is perturbed via elevations in night-time blood pressure, inflicting silent damage to the vasculature and body organs. Herein, we examined the influence of circadian dysfunction during experimental hypertension in mice. Using radiotelemetry to measure ambulatory blood pressure and activity, the effects of angiotensin II administration were studied in wild-type (WT) and period isoform knockout (KO) mice (Per2-KO, Per2, 3-KO, and Per1, 2, 3-KO/Per triple KO [TKO] mice). On a normal diet, administration of angiotensin II caused nondipping blood pressure and exacerbated vascular hypertrophy in the Period isoform KO mice relative to WT mice. To study the endogenous effects of angiotensin II stimulation, we then administered a low-salt diet to the mice, which does stimulate endogenous angiotensin II in addition to lowering blood pressure. A low-salt diet decreased blood pressure in wild-type mice. In contrast, Period isoform KO mice lost their circadian rhythm in blood pressure on a low-salt diet, because of an increase in resting blood pressure, which was restorable to rhythmicity by the angiotensin receptor blocker losartan. Chronic administration of low salt caused vascular hypertrophy in Period isoform KO mice, which also exhibited increased renin levels and altered angiotensin 1 receptor expression. These data suggest that circadian clock genes may act to inhibit or control renin/angiotensin signaling. Moreover, circadian disorders such as sleep apnea and shift work may alter the homeostatic responses to sodium restriction to potentially influence nocturnal hypertension. © 2016 American Heart Association, Inc.