WorldWideScience

Sample records for length scales ranging

  1. Nearly constant ratio between the proton inertial scale and the spectrum break length scale in the plasma beta range from 0.2 to 1.4 in the solar wind turbulence

    Science.gov (United States)

    Wang, X.; Tu, C. Y.; He, J.; Wang, L.

    2017-12-01

    The spectrum break at the ion scale of the solar wind magnetic fluctuations are considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable ones are the two mechanisms that related respectively with proton thermal gyro-radius and proton inertial length. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar values in the normal plasma beta range. Here we do a statistical study for the first time to see if the two mechanism predictions have different dependence on the solar wind velocity and on the plasma beta in the normal plasma beta range in the solar wind at 1 AU. From magnetic measurements by Wind, Ulysses and Messenger, we select 60 data sets with duration longer than 8 hours. We found that the ratio between the proton inertial scale and the spectrum break scale do not change considerably with both varying the solar wind speed from 300km/s to 800km/s and varying the plasma beta from 0.2 to 1.4. The average value of the ratio times 2pi is 0.46 ± 0.08. However, the ratio between the proton gyro-radius and the break scale changes clearly. This new result shows that the proton inertial scale could be a single factor that determines the break length scale and hence gives a strong evidence to support the dissipation mechanism related to it in the normal plasma beta range. The value of the constant ratio may relate with the dissipation mechanism, but it needs further theoretical study to give detailed explanation.

  2. Length-scale dependent phonon interactions

    CERN Document Server

    Srivastava, Gyaneshwar

    2014-01-01

    This book presents  a comprehensive description of phonons and their interactions in systems with different dimensions and length scales. Internationally-recognized leaders describe theories and measurements of phonon interactions  in relation to the design of materials with exotic properties such as metamaterials, nano-mechanical systems, next-generation electronic, photonic, and acoustic devices, energy harvesting, optical information storage, and applications of phonon lasers in a variety of fields. The emergence of techniques for control of semiconductor properties and geometry has enabled engineers to design structures in which functionality is derived from controlling electron behavior. As manufacturing techniques have greatly expanded the list of available materials and the range of attainable length scales, similar opportunities now exist for designing devices whose functionality is derived from controlling phonon behavior. However, progress in this area is hampered by gaps in our knowledge of phono...

  3. Determining multiple length scales in rocks

    Science.gov (United States)

    Song, Yi-Qiao; Ryu, Seungoh; Sen, Pabitra N.

    2000-07-01

    Carbonate reservoirs in the Middle East are believed to contain about half of the world's oil. The processes of sedimentation and diagenesis produce in carbonate rocks microporous grains and a wide range of pore sizes, resulting in a complex spatial distribution of pores and pore connectivity. This heterogeneity makes it difficult to determine by conventional techniques the characteristic pore-length scales, which control fluid transport properties. Here we present a bulk-measurement technique that is non-destructive and capable of extracting multiple length scales from carbonate rocks. The technique uses nuclear magnetic resonance to exploit the spatially varying magnetic field inside the pore space itself-a `fingerprint' of the pore structure. We found three primary length scales (1-100µm) in the Middle-East carbonate rocks and determined that the pores are well connected and spatially mixed. Such information is critical for reliably estimating the amount of capillary-bound water in the rock, which is important for efficient oil production. This method might also be used to complement other techniques for the study of shaly sand reservoirs and compartmentalization in cells and tissues.

  4. Mixing lengths scaling in a gravity flow

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory; Rivera, Micheal [Los Alamos National Laboratory; Chen, Jun [Los Alamos National Laboratory; Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    We present an experimental study of the mixing processes in a gravity current. The turbulent transport of momentum and buoyancy can be described in a very direct and compact form by a Prandtl mixing length model [1]: the turbulent vertical fluxes of momentum and buoyancy are found to scale quadraticatly with the vertical mean gradients of velocity and density. The scaling coefficient is the square of the mixing length, approximately constant over the mixing zone of the stratified shear layer. We show in this paper how, in different flow configurations, this length can be related to the shear length of the flow {radical}({var_epsilon}/{partial_derivative}{sub z}u{sup 3}).

  5. Minimal Length Scale Scenarios for Quantum Gravity.

    Science.gov (United States)

    Hossenfelder, Sabine

    2013-01-01

    We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.

  6. Minimal Length Scale Scenarios for Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Sabine Hossenfelder

    2013-01-01

    Full Text Available We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.

  7. Topographical length scales of hierarchical superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dhillon, P.K. [Department of Physics, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001 (India); Brown, P.S.; Bain, C.D.; Badyal, J.P.S. [Department of Chemistry, Science Laboratories, Durham University, Durham DH1 3LE, England (United Kingdom); Sarkar, S., E-mail: sarkar@iitrpr.ac.in [Department of Physics, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001 (India)

    2014-10-30

    Highlights: • Hydrophobic CF{sub 4} plasma fluorinated polybutadiene surfaces has been characterised using AFM. • Micro, Nano, and Micro + Nano topographies generated by altering plasma power and duration. • Dynamic scaling theory and FFT analysis used to characterize these surfaces quantitatively. • Roughnesses are different for different length scales of the surfaces considered. • Highest local roughness obtained from scaling analysis for shorter length scales of about 500 nm explains the superhydrophobicity for the Micro + Nano surface. - Abstract: The morphology of hydrophobic CF{sub 4} plasma fluorinated polybutadiene surfaces has been characterised using atomic force microscopy (AFM). Judicious choice of the plasma power and exposure duration leads to formation of three different surface morphologies (Micro, Nano, and Micro + Nano). Scaling theory analysis shows that for all three surface topographies, there is an initial increase in roughness with length scale followed by a levelling-off to a saturation level. At length scales around 500 nm, it is found that the roughness is very similar for all three types of surfaces, and the saturation roughness value for the Micro + Nano morphology is found to be intermediate between those for the Micro and Nano surfaces. Fast Fourier Transform (FFT) analysis has shown that the Micro + Nano topography comprises a hierarchical superposition of Micro and Nano morphologies. Furthermore, the Micro + Nano surfaces display the highest local roughness (roughness exponent α = 0.42 for length scales shorter than ∼500 nm), which helps to explain their superhydrophobic behaviour (large water contact angle (>170°) and low hysteresis (<1°))

  8. Maximum length scale in density based topology optimization

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Wang, Fengwen

    2017-01-01

    The focus of this work is on two new techniques for imposing maximum length scale in topology optimization. Restrictions on the maximum length scale provide designers with full control over the optimized structure and open possibilities to tailor the optimized design for broader range...... of manufacturing processes by fulfilling the associated technological constraints. One of the proposed methods is based on combination of several filters and builds on top of the classical density filtering which can be viewed as a low pass filter applied to the design parametrization. The main idea...

  9. Length Scales in Bayesian Automatic Adaptive Quadrature

    Directory of Open Access Journals (Sweden)

    Adam Gh.

    2016-01-01

    Full Text Available Two conceptual developments in the Bayesian automatic adaptive quadrature approach to the numerical solution of one-dimensional Riemann integrals [Gh. Adam, S. Adam, Springer LNCS 7125, 1–16 (2012] are reported. First, it is shown that the numerical quadrature which avoids the overcomputing and minimizes the hidden floating point loss of precision asks for the consideration of three classes of integration domain lengths endowed with specific quadrature sums: microscopic (trapezoidal rule, mesoscopic (Simpson rule, and macroscopic (quadrature sums of high algebraic degrees of precision. Second, sensitive diagnostic tools for the Bayesian inference on macroscopic ranges, coming from the use of Clenshaw-Curtis quadrature, are derived.

  10. Length Scales in Bayesian Automatic Adaptive Quadrature

    Science.gov (United States)

    Adam, Gh.; Adam, S.

    2016-02-01

    Two conceptual developments in the Bayesian automatic adaptive quadrature approach to the numerical solution of one-dimensional Riemann integrals [Gh. Adam, S. Adam, Springer LNCS 7125, 1-16 (2012)] are reported. First, it is shown that the numerical quadrature which avoids the overcomputing and minimizes the hidden floating point loss of precision asks for the consideration of three classes of integration domain lengths endowed with specific quadrature sums: microscopic (trapezoidal rule), mesoscopic (Simpson rule), and macroscopic (quadrature sums of high algebraic degrees of precision). Second, sensitive diagnostic tools for the Bayesian inference on macroscopic ranges, coming from the use of Clenshaw-Curtis quadrature, are derived.

  11. Length and time scales of atmospheric moisture recycling

    Directory of Open Access Journals (Sweden)

    R. J. van der Ent

    2011-03-01

    Full Text Available It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to quantify the spatial and temporal scale of moisture recycling, independent of the size and shape of the region under study. In contrast to previous studies, which essentially used curve fitting, the scaling laws presented by us follow directly from the process equation. thus allowing a fair comparison between regions and seasons. The calculation is based on ERA-Interim reanalysis data for the period 1999 to 2008. It is shown that in the tropics or in mountainous terrain the length scale of recycling can be as low as 500 to 2000 km. In temperate climates the length scale is typically between 3000 to 5000 km whereas it amounts to more than 7000 km in desert areas. The time scale of recycling ranges from 3 to 20 days, with the exception of deserts, where it is much longer. The most distinct seasonal differences can be observed over the Northern Hemisphere: in winter, moisture recycling is insignificant, whereas in summer it plays a major role in the climate. The length and time scales of atmospheric moisture recycling can be useful metrics to quantify local climatic effects of land use change.

  12. Interplay between multiple length and time scales in complex ...

    Indian Academy of Sciences (India)

    Administrator

    micelles and enzymes, can span several orders of magnitude in length and time scales. The length and time scales of ... length and time scales is required in order to understand and predict structure and dynamics in such com- plex systems. This review .... The late 1980s saw the birth of femtochemistry with Ahmed Zewail ...

  13. Scattering Length Scaling Laws for Ultracold Three-Body Collisions

    International Nuclear Information System (INIS)

    D'Incao, J.P.; Esry, B.D.

    2005-01-01

    We present a simple and unifying picture that provides the energy and scattering length dependence for all inelastic three-body collision rates in the ultracold regime for three-body systems with short-range two-body interactions. Here, we present the scaling laws for vibrational relaxation, three-body recombination, and collision-induced dissociation for systems that support s-wave two-body collisions. These systems include three identical bosons, two identical bosons, and two identical fermions. Our approach reproduces all previous results, predicts several others, and gives the general form of the scaling laws in all cases

  14. Multi length-scale characterisation inorganic materials series

    CERN Document Server

    Bruce, Duncan W; Walton, Richard I

    2013-01-01

    Whereas the first five volumes in the Inorganic Materials Series focused on particular classes of materials (synthesis, structures, chemistry, and properties), it is now very timely to provide complementary volumes that introduce and review state-of-the-art techniques for materials characterization. This is an important way of emphasizing the interplay of chemical synthesis and physical characterization. The methods reviewed include spectroscopic, diffraction, and surface techniques that examine the structure of materials on all length scales, from local atomic structure to long-range crystall

  15. Interaction of turbulent length scales with wind turbine blades

    Science.gov (United States)

    Torres-Nieves, Sheilla N.

    wind turbine blade as a consequence of its geometry) on the behavior of turbulent boundary layers and to identify and quantify the length scales that are affected by these external conditions. Laser Doppler and hot-wire anemometry measurements, for smooth and rough surfaces, confirmed that FST and FPG cause a reduction in the wake of the boundary layer. Moreover, results show a discrepancy in the behavior of the stream-wise and wall-normal variances due to free-stream turbulence. As a result, the addition of FST increases the anisotropy in the body of the boundary layer. For FPG flows, a budget analysis of the Reynolds stresses shows that turbulent transport and pressure strain terms are responsible for the increase in the stream-wise Reynolds stress component when FST is present. Second-order structure functions and energy spectra are examined to identify and quantify which turbulence length-scales contribute mostly to the increased anisotropy, and to compare these effects to the case of a zero pressure gradient (ZPG) boundary layer. For ZPG flows, it is shown that the anisotropy created by adding nearly isotropic turbulence in the free-stream resides mostly in the larger scales of the flow, in a range between r/delta95 = 3 and 10. With an imposed FPG, the effect of FST resides in the very-largest length scales of the flow, r ≥ 4.3delta95, corresponding to scales of the same size, and even larger, than the integral scale of the outer free-stream turbulence. However, the free-stream turbulence is not increasing the anisotropy to the extent that it did for the ZPG case. The effects of surface roughness on the different length scales of the flow, when a FPG and additional levels of FST are present, are also examined. Second-order structure functions and energy spectra analysis suggests that for highly turbulent favorable pressure gradient flows, the effect of roughness at the surface is felt, not only by the small length scales of the flow, but also by large (e.g. r

  16. Chemical theory and modelling through density across length scales

    International Nuclear Information System (INIS)

    Ghosh, Swapan K.

    2016-01-01

    One of the concepts that has played a major role in the conceptual as well as computational developments covering all the length scales of interest in a number of areas of chemistry, physics, chemical engineering and materials science is the concept of single-particle density. Density functional theory has been a versatile tool for the description of many-particle systems across length scales. Thus, in the microscopic length scale, an electron density based description has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids. Density concept has been used in the form of single particle number density in the intermediate mesoscopic length scale to obtain an appropriate picture of the equilibrium and dynamical processes, dealing with a wide class of problems involving interfacial science and soft condensed matter. In the macroscopic length scale, however, matter is usually treated as a continuous medium and a description using local mass density, energy density and other related property density functions has been found to be quite appropriate. The basic ideas underlying the versatile uses of the concept of density in the theory and modelling of materials and phenomena, as visualized across length scales, along with selected illustrative applications to some recent areas of research on hydrogen energy, soft matter, nucleation phenomena, isotope separation, and separation of mixture in condensed phase, will form the subject matter of the talk. (author)

  17. On transition in plasma turbulence with multiple scale lengths

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K.; Spineanu, F.; Vlad, M.O. [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, S.-I.; Kawasaki, M. [Kyushu Univ., Research Institute for Applied Mechanics, Kasuga, Fukuoka (Japan)

    2003-05-01

    A statistical theory of plasma turbulence which is composed of multiple-scale fluctuations is examined. Influences of statistical noise and variance of rapidly-changing variable in an adiabatic approximation are investigated. It is confirmed that the contributions of noise and variance remain higher order corrections. Transition rate of the turbulence with multiple scale lengths is obtained under the refined adiabatic approximation. (author)

  18. Critical length scales for flow phenomena in liquid metal batteries

    Science.gov (United States)

    Kelley, Douglas; Weier, Tom

    2017-11-01

    Liquid metal batteries, a new technology for grid-scale energy storage, are composed of three liquid layers and therefore subject to a wide variety of fluid dynamical phenomena, both beneficial and detrimental. Some, like thermal convection and electrovortex flow, drive finite flow regardless of the size, current density, and temperature of the battery. Others, like the Tayler instability and the metal pad instability, occur only in certain parameter regimes - almost always dependent on length scale. I will discuss critical length scales, considering implications for battery design in light of fundamental fluid dynamics. This work was supported by the National Science Foundation under Award Number CBET-1552182.

  19. Analysis Models for Polymer Composites Across Different Length Scales

    Science.gov (United States)

    Camanho, Pedro P.; Arteiro, Albertino

    This chapter presents the analysis models, developed at different length scales, for the prediction of inelastic deformation and fracture of polymer composite materials reinforced by unidirectional fibers. Three different length scales are covered. Micro-mechanical models are used to understand in detail the effects of the constituents on the response of the composite material, and to support the development of analysis models based on homogenized representations of composite materials. Meso-mechanical models are used to predict the strength of composite structural components under general loading conditions. Finally, macro-mechanical models based on Finite Fracture Mechanics, which enable fast strength predictions of simple structural details, are discussed.

  20. Length scales and selforganization in dense suspension flows

    NARCIS (Netherlands)

    Düring, G.; Lerner, E.; Wyart, M.

    2014-01-01

    Dense non-Brownian suspension flows of hard particles display mystifying properties: As the jamming threshold is approached, the viscosity diverges, as well as a length scale that can be identified from velocity correlations. To unravel the microscopic mechanism governing dissipation and its

  1. Progress in Long Scale Length Laser-Plasma Interactions

    International Nuclear Information System (INIS)

    Glenzer, S H; Arnold, P; Bardsley, G; Berger, R L; Bonanno, G; Borger, T; Bower, D E; Bowers, M; Bryant, R; Buckman, S.; Burkhart, S C; Campbell, K; Chrisp, M P; Cohen, B I; Constantin, G; Cooper, F; Cox, J; Dewald, E; Divol, L; Dixit, S; Duncan, J; Eder, D; Edwards, J; Erbert, G; Felker, B; Fornes, J; Frieders, G; Froula, D H; Gardner, S D; Gates, C; Gonzalez, M; Grace, S; Gregori, G; Greenwood, A; Griffith, R; Hall, T; Hammel, B A; Haynam, C; Heestand, G; Henesian, M; Hermes, G; Hinkel, D; Holder, J; Holdner, F; Holtmeier, G; Hsing, W; Huber, S; James, T; Johnson, S; Jones, O S; Kalantar, D; Kamperschroer, J H; Kauffman, R; Kelleher, T; Knight, J; Kirkwood, R K; Kruer, W L; Labiak, W; Landen, O L; Langdon, A B; Langer, S; Latray, D; Lee, A; Lee, F D; Lund, D; MacGowan, B; Marshall, S; McBride, J; McCarville, T; McGrew, L; Mackinnon, A J; Mahavandi, S; Manes, K; Marshall, C; Mertens, E; Meezan, N; Miller, G; Montelongo, S; Moody, J D; Moses, E; Munro, D; Murray, J; Neumann, J; Newton, M; Ng, E; Niemann, C; Nikitin, A; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rekow, V; Rinnert, R; Riordan, B; Rhodes, M.

    2003-01-01

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 mm and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3ω) with a total intensity of 2 x 10 15 W cm -2 . The targets were filled with 1 atm of CO 2 producing of up to 7 mm long homogeneously heated plasmas with densities of n e = 6 x 10 20 cm -3 and temperatures of T e = 2 keV. The high energy in a NIF quad of beams of 16kJ, illuminating the target from one direction, creates unique conditions for the study of laser plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last ∼1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 6% for the smallest length (∼2 mm). increasing to 12% for ∼7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modeling of the laser-plasma interactions at ignition-size scale lengths

  2. Progress in long scale length laser plasma interactions

    Science.gov (United States)

    Glenzer, S. H.; Arnold, P.; Bardsley, G.; Berger, R. L.; Bonanno, G.; Borger, T.; Bower, D. E.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S. C.; Campbell, K.; Chrisp, M. P.; Cohen, B. I.; Constantin, C.; Cooper, F.; Cox, J.; Dewald, E.; Divol, L.; Dixit, S.; Duncan, J.; Eder, D.; Edwards, J.; Erbert, G.; Felker, B.; Fornes, J.; Frieders, G.; Froula, D. H.; Gardner, S. D.; Gates, C.; Gonzalez, M.; Grace, S.; Gregori, G.; Greenwood, A.; Griffith, R.; Hall, T.; Hammel, B. A.; Haynam, C.; Heestand, G.; Henesian, M.; Hermes, G.; Hinkel, D.; Holder, J.; Holdner, F.; Holtmeier, G.; Hsing, W.; Huber, S.; James, T.; Johnson, S.; Jones, O. S.; Kalantar, D.; Kamperschroer, J. H.; Kauffman, R.; Kelleher, T.; Knight, J.; Kirkwood, R. K.; Kruer, W. L.; Labiak, W.; Landen, O. L.; Langdon, A. B.; Langer, S.; Latray, D.; Lee, A.; Lee, F. D.; Lund, D.; MacGowan, B.; Marshall, S.; McBride, J.; McCarville, T.; McGrew, L.; Mackinnon, A. J.; Mahavandi, S.; Manes, K.; Marshall, C.; Menapace, J.; Mertens, E.; Meezan, N.; Miller, G.; Montelongo, S.; Moody, J. D.; Moses, E.; Munro, D.; Murray, J.; Neumann, J.; Newton, M.; Ng, E.; Niemann, C.; Nikitin, A.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rekow, V.; Rinnert, R.; Riordan, B.; Rhodes, M.; Roberts, V.; Robey, H.; Ross, G.; Sailors, S.; Saunders, R.; Schmitt, M.; Schneider, M. B.; Shiromizu, S.; Spaeth, M.; Stephens, A.; Still, B.; Suter, L. J.; Tietbohl, G.; Tobin, M.; Tuck, J.; Van Wonterghem, B. M.; Vidal, R.; Voloshin, D.; Wallace, R.; Wegner, P.; Whitman, P.; Williams, E. A.; Williams, K.; Winward, K.; Work, K.; Young, B.; Young, P. E.; Zapata, P.; Bahr, R. E.; Seka, W.; Fernandez, J.; Montgomery, D.; Rose, H.

    2004-12-01

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3ω) with a total intensity of 2 × 1015 W cm-2. The targets were filled with 1 atm of CO2 producing up to 7 mm long homogeneously heated plasmas with densities of ne = 6 × 1020 cm-3 and temperatures of Te = 2 keV. The high energy in an NIF quad of beams of 16 kJ, illuminating the target from one direction, creates unique conditions for the study of laser-plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x-rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last ~1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 3% for the smallest length (~2 mm), increasing to 10-12% for ~7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modelling of the laser-plasma interactions at ignition-size scale lengths.

  3. Transition in multiple-scale-lengths turbulence in plasmas

    International Nuclear Information System (INIS)

    Itoh, S.-I.; Yagi, M.; Kawasaki, M.; Kitazawa, A.

    2002-02-01

    The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Statistical nonlinear interactions between semi-micro and micro modes are first kept in the analysis as the drag, noise and drive. The nonlinear dynamics determines both the fluctuation levels and the cross field turbulent transport for the fixed global parameters. A quenching or suppressing effect is induced by their nonlinear interplay, even if both modes are unstable when analyzed independently. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. The thermal fluctuation of the scale length of λ D is assumed to be statistically independent. The hierarchical structure is constructed according to the scale lengths. Transitions in turbulence are found and phase diagrams with cusp type catastrophe are obtained. Dynamics is followed. Statistical properties of the subcritical excitation are discussed. The probability density function (PDF) and transition probability are obtained. Power-laws are obtained in the PDF as well as in the transition probability. Generalization for the case where turbulence is composed of three-classes of modes is also developed. A new catastrophe of turbulent sates is obtained. (author)

  4. Length scale and manufacturability in density-based topology optimization

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Wang, Fengwen; Sigmund, Ole

    2016-01-01

    Since its original introduction in structural design, density-based topology optimization has been applied to a number of other fields such as microelectromechanical systems, photonics, acoustics and fluid mechanics. The methodology has been well accepted in industrial design processes where it can...... performance and in many cases can completely destroy the optimality of the solution. Therefore, the goal of this paper is to review recent advancements in obtaining manufacturable topology-optimized designs. The focus is on methods for imposing minimum and maximum length scales, and ensuring manufacturable...

  5. Efficient coupling of 527 nm laser beam power to a long scale-length plasma

    International Nuclear Information System (INIS)

    Moody, J.D.; Divol, L.; Glenzer, S.H.; MacKinnon, A.J.; Froula, D.H.; Gregori, G.; Kruer, W.L.; Meezan, N.B.; Suter, L.J.; Williams, E.A.; Bahr, R.; Seka, W.

    2006-01-01

    We experimentally demonstrate that application of laser smoothing schemes including smoothing by spectral dispersion (SSD) and polarization smoothing (PS) increases the intensity range for efficient coupling of frequency doubled (527 nm) laser light to a long scale-length plasma with n e /n cr equals 0.14 and T e equals 2 keV. (authors)

  6. Analytic determination of dynamical and mosaic length scales in a Kac glass model

    Energy Technology Data Exchange (ETDEWEB)

    Franz, S [Abdus Salam ICTP, Strada Costiera 11, PO Box 586, I-34100 Trieste (Italy); Montanari, A [Isaac Newton Institute for Mathematical Sciences 20 Clarkson Road, Cambridge, CB3 0EH (United Kingdom)

    2007-03-16

    We consider a disordered spin model with multi-spin interactions undergoing a glass transition. We introduce dynamic and static length scales and compute them in the Kac limit (long-but-finite range interactions). They diverge at the dynamic and static phase transition with exponents -1/4 and -1 (respectively). The two length scales are approximately equal well above the mode coupling transition. Their discrepancy increases rapidly as this transition is approached. We argue that this signals a crossover from mode coupling to activated dynamics. (fast track communication)

  7. Cosmogenesis and the origin of the fundamental length scale

    CERN Document Server

    Brout, R; Frère, J M; Gunzig, E; Nardone, P; Truffin, C; Spindel, P

    1980-01-01

    The creation of the universe is regarded as a self-consistent process in which matter is engendered by the space-time varying cosmological gravitational field and vice versa. Abundant production can occur only if the mass of the particles so created is of the order of the Planck mass $(=K^{-1/2})$. We conjecture that this is the origin of the fundamental length scale in field theory, as it is encountered, for example, in present efforts towards grandunification. The region of particle production is steady state in character. It ceases when the produced particles decay. The geometry of this steady state is characteristic of a de Sitter space. It permits one to estimate the number of ordinary particles presently observed, N. We find log N = O (mτ$_{decay}$) = O(g$^{−2}$) = O(10$^2$), with the usual estimate of g = O(10$^{−1}$) at the Planck length scale. This is not inconsistent with the experimental estimate $N \\approx O(10^{90})$. After production, cosmological history gives way to the more conventional ...

  8. Microstructural characterization of transformable Fe-Mn alloys at different length scales

    International Nuclear Information System (INIS)

    Liang, X.; Wang, X.; Zurob, H.S.

    2009-01-01

    The as-annealed and deformed Microstructure of transformable Fe-Mn alloys were, comprehensively, characterized over a wide range of length scales. Differential interference contrast optical metallography, combined with a tinting etching method, was employed to examine the grain morphology. A new specimen preparation method, involving electro-polishing and electro-etching, was developed for scanning electron microscopy and electron back-scattered diffraction analysis. This method leads to a very good imaging contrast and thus bridges the length scale gap between optical metallography and transmission electron microscopy. Moreover, it enables simultaneous scanning electron microscopy and electron backscatter diffraction analysis which allows correlations among morphology, crystal orientation and phase analysis in the length scale of microns. Transmission electron microscopy investigations were also made to evaluate the thermal and mechanical transformation products as well as defect structures.

  9. Dynamic Leidenfrost Effect: Relevant Time and Length Scales

    Science.gov (United States)

    Shirota, Minori; van Limbeek, Michiel A. J.; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2016-02-01

    When a liquid droplet impacts a hot solid surface, enough vapor may be generated under it to prevent its contact with the solid. The minimum solid temperature for this so-called Leidenfrost effect to occur is termed the Leidenfrost temperature, or the dynamic Leidenfrost temperature when the droplet velocity is non-negligible. We observe the wetting or drying and the levitation dynamics of the droplet impacting on an (isothermal) smooth sapphire surface using high-speed total internal reflection imaging, which enables us to observe the droplet base up to about 100 nm above the substrate surface. By this method we are able to reveal the processes responsible for the transitional regime between the fully wetting and the fully levitated droplet as the solid temperature increases, thus shedding light on the characteristic time and length scales setting the dynamic Leidenfrost temperature for droplet impact on an isothermal substrate.

  10. Density Functional Theory and Materials Modeling at Atomistic Length Scales

    Directory of Open Access Journals (Sweden)

    Swapan K. Ghosh

    2002-04-01

    Full Text Available Abstract: We discuss the basic concepts of density functional theory (DFT as applied to materials modeling in the microscopic, mesoscopic and macroscopic length scales. The picture that emerges is that of a single unified framework for the study of both quantum and classical systems. While for quantum DFT, the central equation is a one-particle Schrodinger-like Kohn-Sham equation, the classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential, the exact functional form of which is unknown. One therefore approximates the exchange-correlation potential for quantum systems and the excess free energy density functional or the direct correlation functions for classical systems. Illustrative applications of quantum DFT to microscopic modeling of molecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are highlighted.

  11. Observation of two length scales in the magnetic critical fluctuations of holmium

    International Nuclear Information System (INIS)

    Thurston, T.R.; Helgesen, G.; Gibbs, D.; Hill, J.P.; Gaulin, B.D.; Shirane, G.

    1993-01-01

    The short-ranged correlations associated with magneitc ordering in the rare earth antiferromagnet holmium have been characterized in high-resolution x-ray and neutron scattering studies. We find that within about 2 K of T c , the magnetic fluctuations exhibit two length scales, instead of one as expected in an ideal system. This result is reminiscent of behavior observed at the cubic-to-tegragonal structural phase transitions of the perovskites

  12. Length Scale of Leidenfrost Ratchet Switches Droplet Directionality

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, Rebecca L [ORNL; Boreyko, Jonathan B [ORNL; Briggs, Dayrl P [ORNL; Srijanto, Bernadeta R [ORNL; Retterer, Scott T [ORNL; Collier, Pat [ORNL; Lavrik, Nickolay V [ORNL

    2014-01-01

    Arrays of tilted pillars with characteristic heights spanning from hundreds of nanometers to tens of micrometers were created using wafer level processing and used as Leidenfrost ratchets to control droplet directionality. Dynamic Leidenfrost droplets on the ratchets with nanoscale features were found to move in the direction of the pillar tilt while the opposite directionality was observed on the microscale ratchets. This remarkable switch in the droplet directionality can be explained by varying contributions from the two distinct mechanisms controlling droplet motion on Leidenfrost ratchets with nanoscale and microscale features. In particular, asymmetric wettability of dynamic Leidenfrost droplets upon initial impact appears to be the dominant mechanism determining their directionality on tilted nanoscale pillar arrays. By contrast, asymmetric wetting does not provide a strong enough driving force compared to the forces induced by asymmetric vapour flow on arrays of much taller tilted microscale pillars. Furthermore, asymmetric wetting plays a role only in the dynamic Leidenfrost regime, for instance when droplets repeatedly jump after their initial impact. The point of crossover between the two mechanisms coincides with the pillar heights comparable to the values of the thinnest vapor layers still capable of cushioning Leidenfrost droplets upon their initial impact. The proposed model of the length scale dependent interplay between the two mechanisms points to the previously unexplored ability to bias movement of dynamic Leidenfrost droplets and even switch their directionality.

  13. Length scale of Leidenfrost ratchet switches droplet directionality.

    Science.gov (United States)

    Agapov, Rebecca L; Boreyko, Jonathan B; Briggs, Dayrl P; Srijanto, Bernadeta R; Retterer, Scott T; Collier, C Patrick; Lavrik, Nickolay V

    2014-08-07

    Arrays of tilted pillars with characteristic heights spanning from hundreds of nanometers to tens of micrometers were created using wafer level processing and used as Leidenfrost ratchets to control droplet directionality. Dynamic Leidenfrost droplets on the ratchets with nanoscale features were found to move in the direction of the pillar tilt while the opposite directionality was observed on the microscale ratchets. This remarkable switch in the droplet directionality can be explained by varying contributions from the two distinct mechanisms controlling droplet motion on Leidenfrost ratchets with nanoscale and microscale features. In particular, asymmetric wettability of dynamic Leidenfrost droplets upon initial impact appears to be the dominant mechanism determining their directionality on tilted nanoscale pillar arrays. By contrast, asymmetric wetting does not provide a strong enough driving force compared to the forces induced by asymmetric vapour flow on arrays of much taller tilted microscale pillars. Furthermore, asymmetric wetting plays a role only in the dynamic Leidenfrost regime, for instance when droplets repeatedly jump after their initial impact. The point of crossover between the two mechanisms coincides with the pillar heights comparable to the values of the thinnest vapor layers still capable of cushioning Leidenfrost droplets upon their initial impact. The proposed model of the length scale dependent interplay between the two mechanisms points to the previously unexplored ability to bias movement of dynamic Leidenfrost droplets and even switch their directionality.

  14. A New Universal Gas Breakdown Theory for Classical Length Scales

    Science.gov (United States)

    Loveless, Amanda Mae

    While Paschen's law is commonly used to predict breakdown voltage, it fails at microscale gaps when field emission becomes important. Accurate breakdown voltage predictions at microscale are even more important as electronic device dimensions decrease. Developing analytic models to accurately predict breakdown at microscale is vital for understanding the underlying physics occurring within the system and to either prevent or produce a discharge, depending on the application. We first take a pre-existing breakdown model coupling field emission and Townsend breakdown and perform a matched asymptotic analysis to obtain analytic equations for breakdown voltage in argon at atmospheric pressure. Next, we extend this model to generalize for gas and further explore the independent contributions of field emission and Townsend discharge. Finally, we present analytic expressions for breakdown voltage valid for any gas at any pressure, and discuss the modified Paschen minimum at microscale. The presented models agree well with numerical simulations and experimental data when using the field enhancement factor as a fitting parameter. The work presented in this thesis is a first step in unifying gas breakdown across length scales and breakdown mechanisms. Future work will aim to incorporate other breakdown mechanisms, such as quantum effects and space charge, to provide a more complete unified model for gas breakdown.

  15. Scale and time dependence of serial correlations in word-length time series of written texts

    Science.gov (United States)

    Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.

    2014-11-01

    This work considered the quantitative analysis of large written texts. To this end, the text was converted into a time series by taking the sequence of word lengths. The detrended fluctuation analysis (DFA) was used for characterizing long-range serial correlations of the time series. To this end, the DFA was implemented within a rolling window framework for estimating the variations of correlations, quantified in terms of the scaling exponent, strength along the text. Also, a filtering derivative was used to compute the dependence of the scaling exponent relative to the scale. The analysis was applied to three famous English-written literary narrations; namely, Alice in Wonderland (by Lewis Carrol), Dracula (by Bram Stoker) and Sense and Sensibility (by Jane Austen). The results showed that high correlations appear for scales of about 50-200 words, suggesting that at these scales the text contains the stronger coherence. The scaling exponent was not constant along the text, showing important variations with apparent cyclical behavior. An interesting coincidence between the scaling exponent variations and changes in narrative units (e.g., chapters) was found. This suggests that the scaling exponent obtained from the DFA is able to detect changes in narration structure as expressed by the usage of words of different lengths.

  16. Chirality transfer across length-scales in nematic liquid crystals: fundamentals and applications.

    Science.gov (United States)

    Pieraccini, Silvia; Masiero, Stefano; Ferrarini, Alberta; Piero Spada, Gian

    2011-01-01

    When a chiral dopant is dissolved in an achiral liquid crystal medium, the whole sample organizes into a helical structure with a characteristic length-scale of the order of microns. The relation between chirality at these quite different length-scales can be rationalized by a relatively simple model, which retains the relevant factors coming into play: the molecular shape of the chiral dopant, which controls the chirality of short range intermolecular interactions, and the elastic properties of the nematic environment, which control the restoring torques opposing distortion of the director. In this tutorial review the relation between molecular and phase chirality will be reviewed and several applications of the chiral doping of nematic LCs will be discussed. These range from the exploitation of the amplified molecular chirality for stereochemical purposes (e.g., the determination of the absolute configuration or the enantiomeric excess), to newer applications in physico-chemical fields. The latter take advantage of the periodicity of the chiral field, with length-scales ranging from hundreds to thousands of nanometres, which characterise the cholesteric phase.

  17. Determination of Longitudinal Electron Bunch Lengths on Picosecond Time Scales

    CERN Document Server

    Martínez, C; Calviño, F

    1999-01-01

    At CERN (European Laboratory for Particle Physics) the CLIC (Compact Linear Collider) study is pursuing the design of an electron-positron high-energy linear collider using an innovative concept for the RF (Radio Frequency) power production, the socalled two-beam acceleration scheme. In order to keep the length of the collider in a reasonable range while being able of accelerating electrons and positrons up to 5 TeV, the normal-conducting accelerating structures should operate at very high frequency (in this case 30 GHz). The RF power necessary to feed the accelerating cavities is provided by a second electron beam, the drive beam, running parallel to the main beam. The CLIC Test Facility (CTF) was build with the main aim of studying and demonstrating the feasibility of the two beam acceleration scheme and technology. It is composed of two beams, the drive beam that will generate the 30 GHz RF power and the main beam which will be accelerated by this power. In order to have a good efficiency for the power gen...

  18. Characterizing the Surface Roughness Length Scales of Lactose Carrier Particles in Dry Powder Inhalers.

    Science.gov (United States)

    Tan, Bernice Mei Jin; Chan, Lai Wah; Heng, Paul Wan Sia

    2018-03-06

    Surface roughness is well recognized as a critical physical property of particulate systems, particularly in relation to adhesion, friction, and flow. An example is the surface property of carrier particles in carrier-based dry powder inhaler (DPI) formulations. The numerical characterization of roughness remains rather unsatisfactory due to the lack of spatial (or length scale) information about surface features when a common amplitude parameter such as average roughness ( R a ) is used. An analysis of the roughness of lactose carrier particles at three different length scales, designed for specificity to the study of interactive mixtures in DPI, was explored in this study. Three R a parameters were used to represent the microscale, intermediate scale, and macroscale roughness of six types of surface-modified carriers. Coating of micronized lactose fines on coarse carrier particles increased their microroughness from 389 to 639 nm while the macroroughness was not affected. Roller compaction at higher roll forces led to very effective surface roughening, particularly at longer length scales. Changes in R a parameters corroborated the visual observations of particles under the scanning electron microscope. Roughness at the intermediate scale showed the best correlation with the fine particle fraction (FPF) of DPI formulations. From the range of 250 to 650 nm, every 100 nm increase in the intermediate roughness led to ∼8% increase in the FPF. However, the effect of surface roughness was greatly diminished when fine lactose (median size, 9 μm) of comparable amounts to the micronized drug were added to the formulation. The combination of roughness parameters at various length scales provided much discriminatory surface information, which then revealed the "quality" of roughness necessary for improving DPI performance.

  19. Explanation of the values of Hack's drainage basin, river length scaling exponent

    Science.gov (United States)

    Hunt, A. G.

    2015-08-01

    Percolation theory can be used to find water flow paths of least resistance. The application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law allows interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  20. Brief communication: Possible explanation of the values of Hack's drainage basin, river length scaling exponent

    Science.gov (United States)

    Hunt, Allen G.

    2016-04-01

    Percolation theory can be used to find water flow paths of least resistance. Application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law may allow interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  1. Logarithmic scaling in the near-dissipation range of turbulence

    Indian Academy of Sciences (India)

    From experimental data at moderate Reynolds numbers, it is shown that the logarithmic scaling, deduced from general considerations for the near-dissipation range, covers almost the entire range of scales (about two decades) of structure functions, for both velocity and passive scalar fields. This new scaling requires two ...

  2. Correlation of normal-range FMR1 repeat length or genotypes and reproductive parameters.

    Science.gov (United States)

    Maslow, Bat-Sheva L; Davis, Stephanie; Engmann, Lawrence; Nulsen, John C; Benadiva, Claudio A

    2016-09-01

    This study aims to ascertain whether the length of normal-ranged CGG repeats on the FMR1 gene correlates with abnormal reproductive parameters. We performed a retrospective, cross-sectional study of all FMR1 carrier screening performed as part of routine care at a large university-based fertility center from January 2011 to March 2014. Correlations were performed between normal-range FMR1 length and baseline serum anti-Müllerian hormone (AMH), cycle day 3 follicle stimulating hormone (FSH), ovarian volumes (OV), antral follicle counts (AFC), and incidence of diminished ovarian reserve (DOR), while controlling for the effect of age. Six hundred three FMR1 screening results were collected. One subject was found to be a pre-mutation carrier and was excluded from the study. Baseline serum AMH, cycle day 3 FSH, OV, and AFC data were collected for the 602 subjects with normal-ranged CGG repeats. No significant difference in median age was noted amongst any of the FMR1 repeat genotypes. No significant correlation or association was found between any allele length or genotype, with any of the reproductive parameters or with incidence of DOR at any age (p > 0.05). However, subjects who were less than 35 years old with low/low genotype were significantly more likely to have below average AMH levels compared to those with normal/normal genotype (RR 3.82; 95 % CI 1.38-10.56). This large study did not demonstrate any substantial association between normal-range FMR1 repeat lengths and reproductive parameters.

  3. Length scales for the Navier-Stokes equations on a rotating sphere

    International Nuclear Information System (INIS)

    Kyrychko, Yuliya N.; Bartuccelli, Michele V.

    2004-01-01

    In this Letter we obtain the dissipative length scale for the Navier-Stokes equations on a two-dimensional rotating sphere S 2 . This system is a fundamental model of the large scale atmospheric dynamics. Using the equations of motion in their vorticity form, we construct the ladder inequalities from which a set of time-averaged length scales is obtained

  4. Determination of length scale effects in nonlocal media

    NARCIS (Netherlands)

    Simone, A; Iacono, C; Sluys, LJ; Yao, ZH; Yuan, MW; Zhong, WX

    2004-01-01

    A combined continuous-discontinuous framework for failure is presented. Continuous failure is described with a gradient enhanced damage model and discontinuous failure is introduced by adding discontinuities to finite elements through a node-based enhancement. The continuous model contains a length

  5. On the length-scale of the wind profile

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Mann, Jakob

    2010-01-01

    We present the results of an analysis of simultaneous sonic anemometer observations of wind speed and velocity spectra over flat and homogeneous terrain from 10 up to 160 m height performed at the National Test Station for Wind Turbines at Høvsøre, Denmark. The mixing length, l, derived from the ...

  6. Non-perturbative gravity at different length scales

    International Nuclear Information System (INIS)

    Folkerts, Sarah

    2013-01-01

    problem. Since the axion is the (pseudo-) Goldstone boson of a broken U(1) global symmetry, quantum gravitational global symmetry violations could reinstate the CP problem even in the presence of the axion. We show that in the presence of massless neutrinos possible conflicts with the axion solution can be resolved. Demanding a viable axion solution of the strong CP problem, we derive new bounds on neutrino masses. In addition, we investigate the QCD vacuum energy screening mechanism for light quarks. It is well-known that the θ-dependence of the QCD vacuum vanishes linearly with the lightest quark mass. By an analogy with Schwinger pair creation in a strong electric field, we consider vacuum screening by η' bubble nucleation. We find that using the standard instanton approximation for the η' potential, the linear dependence is not recovered. We take this as an indication for the non-analyticity of the QCD vacuum energy proposed by Witten. In the last part of this thesis, we are concerned with gravitational effects on cosmological scales. The recent Planck data indicate that one of the best motivated dark matter candidates, the axion, is in conflict with bounds on isocurvature perturbations. We show that the isocurvature fluctuations can be efficiently suppressed when introducing a non-minimal kinetic coupling for the axion field during inflation. Thus, the axion can be a viable dark matter candidate for a large range of parameters. We show that the same coupling allows for the Standard Model Higgs to drive inflation and the dark matter density to be produced by the axion. Gravitational effects on large scales would also be sensitive to a possible mass for the graviton. However, such a modification has been known to be plagued by inconsistencies. In light of the recent proposal of a ghost-free theory of massive gravity by de Rham, Gabadadze and Tolley, we investigate the cubic order interactions of this theory in terms of helicities of a massive spin-2

  7. Non-perturbative gravity at different length scales

    Energy Technology Data Exchange (ETDEWEB)

    Folkerts, Sarah

    2013-12-18

    problem. Since the axion is the (pseudo-) Goldstone boson of a broken U(1) global symmetry, quantum gravitational global symmetry violations could reinstate the CP problem even in the presence of the axion. We show that in the presence of massless neutrinos possible conflicts with the axion solution can be resolved. Demanding a viable axion solution of the strong CP problem, we derive new bounds on neutrino masses. In addition, we investigate the QCD vacuum energy screening mechanism for light quarks. It is well-known that the θ-dependence of the QCD vacuum vanishes linearly with the lightest quark mass. By an analogy with Schwinger pair creation in a strong electric field, we consider vacuum screening by η' bubble nucleation. We find that using the standard instanton approximation for the η' potential, the linear dependence is not recovered. We take this as an indication for the non-analyticity of the QCD vacuum energy proposed by Witten. In the last part of this thesis, we are concerned with gravitational effects on cosmological scales. The recent Planck data indicate that one of the best motivated dark matter candidates, the axion, is in conflict with bounds on isocurvature perturbations. We show that the isocurvature fluctuations can be efficiently suppressed when introducing a non-minimal kinetic coupling for the axion field during inflation. Thus, the axion can be a viable dark matter candidate for a large range of parameters. We show that the same coupling allows for the Standard Model Higgs to drive inflation and the dark matter density to be produced by the axion. Gravitational effects on large scales would also be sensitive to a possible mass for the graviton. However, such a modification has been known to be plagued by inconsistencies. In light of the recent proposal of a ghost-free theory of massive gravity by de Rham, Gabadadze and Tolley, we investigate the cubic order interactions of this theory in terms of helicities of a massive spin-2

  8. Internal Length Gradient (ILG) Material Mechanics Across Scales & Disciplines

    OpenAIRE

    Aifantis, Elias C.

    2016-01-01

    A combined theoretical/numerical/experimental program is outlined for extending the ILG approach to consider time lags, stochasticity and multiphysics couplings. Through this extension it is possible to discuss the interplay between deformation internal lengths (ILs) and ILs induced by thermal, diffusion or electric field gradients. Size-dependent multiphysics stability diagrams are obtained, and size-dependent serrated stress-strain curves are interpreted through combined gradient-stochastic...

  9. Toward the Physical Basis of Complex Systems: Dielectric Analysis of Porous Silicon Nanochannels in the Electrical Double Layer Length Range

    Directory of Open Access Journals (Sweden)

    Radu Mircea Ciuceanu

    2011-01-01

    Full Text Available Dielectric analysis (DEA shows changes in the properties of
    a materials as a response to the application on it of a time dependent electric field. Dielectric measurements are extremely sensitive to small changes in materials properties, that molecular relaxation, dipole changes, local motions that involve the reorientation of dipoles, and so can be observed by DEA. Electrical double layer (EDL, consists in a shielding layer that is naturally created within the liquid near a charged surface. The thickness of the EDL is given by the characteristic Debye length what grows less with the ionic strength defined by half summ products of concentration with square of charge for all solvent
    ions (co-ions, counterions, charged molecules. The typical length scale for the Debye length is on the order of 1 nm, depending on the ionic contents in the solvent; thus, the EDL becomes significant for nano-capillaries that nanochannels. The electrokinetic e®ects in the nanochannels depend essentialy on the distribution of charged species in EDL, described by the Poisson-Boltzmann equation those solutions require the solvent dielectric permittivity. In this work we propose a model for solvent low-frequency permittivity and a DEA profile taking into account both the porous silicon electrode and aqueous solvent properties in the Debye length range.

  10. SQUID magnetometry from nanometer to centimeter length scales

    International Nuclear Information System (INIS)

    Hatridge, Michael J.

    2010-01-01

    The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.

  11. SQUID magnetometry from nanometer to centimeter length scales

    Energy Technology Data Exchange (ETDEWEB)

    Hatridge, Michael J. [Univ. of California, Berkeley, CA (United States)

    2010-06-01

    The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.

  12. Length and time scales of atmospheric moisture recycling

    NARCIS (Netherlands)

    Van der Ent, R.J.; Savenije, H.H.G.

    2011-01-01

    It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling) due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to

  13. Self-Consistent Field Theories for the Role of Large Length-Scale Architecture in Polymers

    Science.gov (United States)

    Wu, David

    At large length-scales, the architecture of polymers can be described by a coarse-grained specification of the distribution of branch points and monomer types within a molecule. This includes molecular topology (e.g., cyclic or branched) as well as distances between branch points or chain ends. Design of large length-scale molecular architecture is appealing because it offers a universal strategy, independent of monomer chemistry, to tune properties. Non-linear analogs of linear chains differ in molecular-scale properties, such as mobility, entanglements, and surface segregation in blends that are well-known to impact rheological, dynamical, thermodynamic and surface properties including adhesion and wetting. We have used Self-Consistent Field (SCF) theories to describe a number of phenomena associated with large length-scale polymer architecture. We have predicted the surface composition profiles of non-linear chains in blends with linear chains. These predictions are in good agreement with experimental results, including from neutron scattering, on a range of well-controlled branched (star, pom-pom and end-branched) and cyclic polymer architectures. Moreover, the theory allows explanation of the segregation and conformations of branched polymers in terms of effective surface potentials acting on the end and branch groups. However, for cyclic chains, which have no end or junction points, a qualitatively different topological mechanism based on conformational entropy drives cyclic chains to a surface, consistent with recent neutron reflectivity experiments. We have also used SCF theory to calculate intramolecular and intermolecular correlations for polymer chains in the bulk, dilute solution, and trapped at a liquid-liquid interface. Predictions of chain swelling in dilute star polymer solutions compare favorably with existing PRISM theory and swelling at an interface helps explain recent measurements of chain mobility at an oil-water interface. In collaboration

  14. Strain rate, temperature and representative length scale influence on plasticity and yield stress in copper

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Virginie [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory

    2011-01-18

    Shock compression of materials constitutes a complex process involving high strain rates, elevated temperatures and compression of the lattice. Materials properties are greatly affected by temperature, the representative length scale and the strain rate of the deformation. Experimentally, it is difficult to study the dynamic microscopic mechanisms that affect materials properties following high intensity shock loading, but they can be investigated using molecular dynamics (MD) simulations. Moreover, MD allows a better control over some parameters. We are using MD simulations to study the effect of the strain rate, representative length scale and temperature on the properties of metals during compression. A half-million-atom Cu sample is subjected to strain rates ranging from 10{sup 7} s{sup -1} to 10{sup 12} s{sup -1} at different temperatures ranging from 50K to 1500K. Single crystals as well as polycrystals are investigated. Plasticity mechanisms as well as the evolution of the micro- and macro-yield stress are observed. Our results show that the yield stress increases with increasing strain rate and decreasing temperature. We also show that the strain rate at which the transition between constant and increasing yield stress as a function of the temperature occurs increases with increasing temperature. Calculations at different grain sizes will give an insight into the grain size effect on the plasticity mechanisms and the yield stress.

  15. Lead Selenide Nanostructures Self-Assembled across Multiple Length Scales and Dimensions

    Directory of Open Access Journals (Sweden)

    Evan K. Wujcik

    2016-01-01

    Full Text Available A self-assembly approach to lead selenide (PbSe structures that have organized across multiple length scales and multiple dimensions has been achieved. These structures consist of angstrom-scale 0D PbSe crystals, synthesized via a hot solution process, which have stacked into 1D nanorods via aligned dipoles. These 1D nanorods have arranged into nanoscale 2D sheets via directional short-ranged attraction. The nanoscale 2D sheets then further aligned into larger 2D microscale planes. In this study, the authors have characterized the PbSe structures via normal and cryo-TEM and EDX showing that this multiscale multidimensional self-assembled alignment is not due to drying effects. These PbSe structures hold promise for applications in advanced materials—particularly electronic technologies, where alignment can aid in device performance.

  16. Interplay between multiple length and time scales in complex ...

    Indian Academy of Sciences (India)

    of liquids and solvation, protein folding and aggregation and phase transitions, nucleation and self- assembly. 1. Introduction. An understanding of the diverse range of structures and dynamical processes seen in chemical systems is necessary in order to comprehend many phenom- ena in physics, chemistry and biology.

  17. Displacement-length scaling of brittle faults in ductile shear.

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  18. Displacement–length scaling of brittle faults in ductile shear

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  19. Vortex scaling ranges in two-dimensional turbulence

    Science.gov (United States)

    Burgess, B. H.; Dritschel, D. G.; Scott, R. K.

    2017-11-01

    We survey the role of coherent vortices in two-dimensional turbulence, including formation mechanisms, implications for classical similarity and inertial range theories, and characteristics of the vortex populations. We review early work on the spatial and temporal scaling properties of vortices in freely evolving turbulence and more recent developments, including a spatiotemporal scaling theory for vortices in the forced inverse energy cascade. We emphasize that Kraichnan-Batchelor similarity theories and vortex scaling theories are best viewed as complementary and together provide a more complete description of two-dimensional turbulence. In particular, similarity theory has a continued role in describing the weak filamentary sea between the vortices. Moreover, we locate both classical inertial and vortex scaling ranges within the broader framework of scaling in far-from-equilibrium systems, which generically exhibit multiple fixed point solutions with distinct scaling behaviour. We describe how stationary transport in a range of scales comoving with the dilatation of flow features, as measured by the growth in vortex area, constrains the vortex number density in both freely evolving and forced two-dimensional turbulence. The new theories for coherent vortices reveal previously hidden nontrivial scaling, point to new dynamical understanding, and provide a novel exciting window into two-dimensional turbulence.

  20. Stimulated Brillouin scattering in long-scale-length laser plasmas

    International Nuclear Information System (INIS)

    Chirokikh, A.; Seka, W.; Simon, A.; Craxton, R.S.; Tikhonchuk, V.T.

    1998-01-01

    Brillouin scattering from a preformed, inhomogeneous, expanding plasma has been investigated. Backscattered light near the incident laser wavelength (λ=1054 nm) from CH planar targets has been spectrally and temporally resolved. By varying the time delay of the interaction beam, the scattering was studied for different plasma conditions. The backscattered light is predominantly blue-shifted and appears before the peak of the laser pulse. The experimental time-integrated reflectivity of backscattered light is in the range of 1%endash 10% and decreases with the plasma density. The time-resolved spectra and total reflectivity were calculated using a theory of convective stimulated Brillouin scattering (SBS) in a flowing inhomogeneous plasma combined with a statistical hot spot model for the interaction beam. The plasma parameters for these calculations were provided by simulations using a two-dimensional hydrodynamic code. The calculated SBS spectra are similar to the experimental observations. The time-integrated reflectivities agree well with the experimental results for the higher peak density interactions, but are below the observations by orders of magnitude for the lowest peak density cases. copyright 1998 American Institute of Physics

  1. Origin of the second length scale found above TN in UO2

    International Nuclear Information System (INIS)

    Watson, G.M.; Gaulin, B.D.; Gibbs, D.; Thurston, T.R.; Simpson, P.J.; Shapiro, S.M.; Lander, G.H.; Matzke, H.; Wang, S.; Dudley, M.

    1996-01-01

    We present the results of x-ray- and neutron-scattering studies of the temperature dependence of the magnetic scattering exhibited by the type-I, triple-Q antiferromagnet UO 2 . Our neutron-scattering results are consistent with those of earlier studies, including the observation of short-ranged magnetic correlations at temperatures near and above T N . However, it is found by x-ray diffraction that a second, longer length scale is induced near T N when the near-surface volume of the sample is mechanically roughened. The longitudinal and transverse widths of the additional scattering increase continuously with increasing temperature above T N , similar to that which has been observed near the magnetic ordering transitions of Ho, Tb, and NpAs and near the tetragonal-to-cubic transitions of various perovskites. Another unusual feature of the present results for UO 2 involves the apparent shift with temperature of the magnetic scattering along the surface normal direction at the (1,1,0) reflection, but not at the (2,1,0) reflection. To our knowledge, this is the first observation of a second length scale near a first-order transition. copyright 1996 The American Physical Society

  2. Kelvin Absolute Temperature Scale Identified as Length Scale and Related to de Broglie Thermal Wavelength

    Science.gov (United States)

    Sohrab, Siavash

    Thermodynamic equilibrium between matter and radiation leads to de Broglie wavelength λdβ = h /mβvrβ and frequency νdβ = k /mβvrβ of matter waves and stochastic definitions of Planck h =hk =mk c and Boltzmann k =kk =mk c constants, λrkνrk = c , that respectively relate to spatial (λ) and temporal (ν) aspects of vacuum fluctuations. Photon massmk =√{ hk /c3 } , amu =√{ hkc } = 1 /No , and universal gas constant Ro =No k =√{ k / hc } result in internal Uk = Nhνrk = Nmkc2 = 3 Nmkvmpk2 = 3 NkT and potential pV = uN\\vcirc / 3 = N\\ucirc / 3 = NkT energy of photon gas in Casimir vacuum such that H = TS = 4 NkT . Therefore, Kelvin absolute thermodynamic temperature scale [degree K] is identified as length scale [meter] and related to most probable wavelength and de Broglie thermal wavelength as Tβ =λmpβ =λdβ / 3 . Parallel to Wien displacement law obtained from Planck distribution, the displacement law λwS T =c2 /√{ 3} is obtained from Maxwell -Boltzmann distribution of speed of ``photon clusters''. The propagation speeds of sound waves in ideal gas versus light waves in photon gas are described in terms of vrβ in harmony with perceptions of Huygens. Newton formula for speed of long waves in canals √{ p / ρ } is modified to √{ gh } =√{ γp / ρ } in accordance with adiabatic theory of Laplace.

  3. Morphology Characterization of PP/Clay Nanocomposites Across the Length Scales of the Structural Architecture

    NARCIS (Netherlands)

    Szazdi, Laszlo; Abranyi, Agnes; Pukansky Jr, Bela; Vancso, Gyula J.; Pukanszky, B.; Pukanszky, Bela

    2006-01-01

    The structure and rheological properties of a large number of layered silicate poly(propylene) nanocomposites were studied with widely varying compositions. Morphology characterization at different length scales was achieved by SEM, TEM, and XRD. Rheological measurements supplied additional

  4. A parameterization of momentum roughness length and displacement height for a wide range of canopy densities

    Directory of Open Access Journals (Sweden)

    A. Verhoef

    1997-01-01

    Full Text Available Values of the momentum roughness length, z0, and displacement height, d, derived from wind profiles and momentum flux measurements, are selected from the literature for a variety of sparse canopies. These include savannah, tiger-bush and several row crops. A quality assessment of these data, conducted using criteria such as available fetch, height of wind speed measurement and homogeneity of the experimental site, reduced the initial total of fourteen sites to eight. These datapoints, combined with values carried forward from earlier studies on the parameterization of z0 and d, led to a maximum number of 16 and 24 datapoints available for d and z0, respectively. The data are compared with estimates of roughness length and displacement height as predicted from a detailed drag partition model, R92 (Raupach, 1992, and a simplified version of this model, R94 (Raupach, 1994. A key parameter in these models is the roughness density or frontal area index, λ. Both the comprehensive and the simplified model give accurate predictions of measured z0 and d values, but the optimal model coefficients are significantly different from the ones originally proposed in R92 and R94. The original model coefficients are based predominantly on measured aerodynamic parameters of relatively closed canopies and they were fitted `by eye'. In this paper, best-fit coefficients are found from a least squares minimization using the z0 and d values of selected good-quality data for sparse canopies and for the added, mainly closed canopies. According to a statistical analysis, based on the coefficient of determination (r2, the number of observations and the number of fitted model coefficients, the simplified model, R94, is deemed to be the most appropriate for future z0 and d predictions. A CR value of 0.35 and a cd1 value of about 20 are found to be appropriate for a large range of canopies varying in density from closed to very sparse. In this case, 99% of the total variance

  5. Logarithmic scaling in the near-dissipation range of turbulence

    Indian Academy of Sciences (India)

    physics pp. 315–321. Logarithmic scaling in the near-dissipation range of turbulence. K R SREENIVASAN1 and A BERSHADSKII1,2. 1The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11,. 34100 Trieste, Italy. 2ICAR, P.O. Box 31155, Jerusalem 91000, Israel. E-mail: krs@ictp.it. Abstract.

  6. Range of motion, muscle length, and balance performance in older adults with normal, pronated, and supinated feet.

    Science.gov (United States)

    Justine, Maria; Ruzali, Dhiya; Hazidin, Ezzaty; Said, Aisyah; Bukry, Saiful Adli; Manaf, Haidzir

    2016-03-01

    [Purpose] To compare the lower limb joint range of motion and muscle length between different types of foot posture, and determine the correlation of range of motion and muscle length with balance performance. [Subjects and Methods] Ninety individuals (age, 65.2±4.6 years) were assessed using the Foot Posture Index to determine their type of foot (Normal [0 to +5], pronated [+6 to +9], and supinated [-1 to -4]; n=30 per group). The range of motion (goniometer), muscle length (goniometer and tape measure), and balance performance (functional reach test and four square step test) were measured for each participant. Data were analyzed using the Kruskal-Wallis test and Spearman's rank-order correlation. [Results] No significant differences were found in range of motion, muscle length, and balance performance among different types of foot posture, except for right and left ankle dorsiflexion range of motion. Balance performance was significantly correlated with selected muscle length and range of motion, especially in the supinated foot. [Conclusion] Range of motion and muscle length of the lower limb may be associated with balance performance in older adults with foot deformities. These findings may guide physiotherapists in choosing intervention based on specific assessments for older adults with foot deformity.

  7. Flame Treatment of Low-Density Polyethylene: Surface Chemistry Across the Length Scale

    NARCIS (Netherlands)

    Song, Jing; Gunst, Ullrich; Arlinghaus, Heinrich F.; Vancso, Gyula J.

    2007-01-01

    The relationship between surface chemistry and morphology of flame treated low-density polyethylene (LDPE) was studied by various characterization techniques across different length scales. The chemical composition of the surface was determined on the micrometer scale by X-ray photoelectron

  8. The PVC technique a method to estimate the dissipation length scale in turbulent flows

    Science.gov (United States)

    Ho, Chih-Ming; Zohar, Yitshak

    1997-12-01

    A time-averaged length scale can be defined by a pair of successive turbulent-velocity derivatives, i.e. [dnu(x)/ dxn][prime prime or minute]/ [dn+1u(x)/ dxn+1][prime prime or minute]. The length scale associated with the zeroth- and the first-order derivatives, u[prime prime or minute]/u[prime prime or minute]x, is the Taylor microscale. In isotropic turbulence, this scale is the average length between zero crossings of the velocity signal. The average length between zero crossings of the first velocity derivative, i.e. u[prime prime or minute]x/u[prime prime or minute]xx, can be reliably obtained by using the peak-valley-counting (PVC) technique. We have found that the most probable scale, rather than the average, equals the wavelength at the peak of the dissipation spectrum in a plane mixing layer (Zohar & Ho 1996). In this study, we experimentally investigate the generality of applying the PVC technique to estimate the dissipation scale in three basic turbulent shear flows: a flat-plate boundary layer, a wake behind a two-dimensional cylinder and a plane mixing layer. We also analytically explore the quantitative relationships among this length scale and the Kolmogorov and Taylor microscales.

  9. SCALING OF THE ELECTRON DISSIPATION RANGE OF SOLAR WIND TURBULENCE

    International Nuclear Information System (INIS)

    Sahraoui, F.; Belmont, G.; Rétino, A.; Robert, P.; De Patoul, J.; Huang, S. Y.; Goldstein, M. L.

    2013-01-01

    Electron scale solar wind (SW) turbulence has attracted great interest in recent years. Considerable evidence exists that the turbulence is not fully dissipated near the proton scale, but continues cascading down to electron scales. However, the scaling of the magnetic energy spectra as well as the nature of the plasma modes involved at those small scales are still not fully determined. Here we survey 10 yr of the Cluster STAFF search-coil magnetometer waveforms measured in the SW and perform a statistical study of the magnetic energy spectra in the frequency range [1, 180] Hz. We found that 75% of the analyzed spectra exhibit breakpoints near the electron gyroscale ρ e , followed by steeper power-law-like spectra. We show that the scaling below the electron breakpoint cannot be determined unambiguously due to instrumental limitations that we discuss in detail. We compare our results to those reported in other studies and discuss their implications for the physical mechanisms involved and for theoretical modeling of energy dissipation in the SW

  10. Sub-pixel correlation length neutron imaging: Spatially resolved scattering information of microstructures on a macroscopic scale

    Science.gov (United States)

    Harti, Ralph P.; Strobl, Markus; Betz, Benedikt; Jefimovs, Konstantins; Kagias, Matias; Grünzweig, Christian

    2017-01-01

    Neutron imaging and scattering give data of significantly different nature and traditional methods leave a gap of accessible structure sizes at around 10 micrometers. Only in recent years overlap in the probed size ranges could be achieved by independent application of high resolution scattering and imaging methods, however without providing full structural information when microstructures vary on a macroscopic scale. In this study we show how quantitative neutron dark-field imaging with a novel experimental approach provides both sub-pixel resolution with respect to microscopic correlation lengths and imaging of macroscopic variations of the microstructure. Thus it provides combined information on multiple length scales. A dispersion of micrometer sized polystyrene colloids was chosen as a model system to study gravity induced crystallisation of microspheres on a macro scale, including the identification of ordered as well as unordered phases. Our results pave the way to study heterogeneous systems locally in a previously impossible manner. PMID:28303923

  11. Temperature range for critical scaling behavior in YBCO thin films

    Science.gov (United States)

    Deak, J.; Darwin, M. J.; McElfresh, M.

    1993-11-01

    The magnetic and transport properties of thin films and single crystals of YBa 2Cu 3O 7-δ are compared. For measurements on thin films, the apparent critical scaling behavior is observed to exist over a temperature range from 87 K down to the vortex-glass transition Tg = 84.2 K at 2.5 kOE and from 83 K to Tg = 70.4 K at 50 kOe. The inflection point ( Tinf) in temperature dependent resistivity measurements R( T) coincides with the highest temperature at which current-voltage ( I-V) characteristics are found to scale. The region between Tg and Tinf shows a behavior characteristics of thermally activated flux motion, while above TinfI-V curves show ohmic behavior. No similar scaling region is observed in some single crystal results, supporting recent claims that the phase transition in some single crystals may not be critical in nature (of order greater than one).

  12. Scaling of localization length of a quasi 1D system with longitudinal boundary roughness

    International Nuclear Information System (INIS)

    Abhijit Kar Gupta; Sen, A.K.

    1994-08-01

    We introduce irregularities on one of the longitudinal boundaries of a quasi 1D strip which has no bulk disorder. We calculate the localization length of such a system within the scope of tight-binding formalism and see how it behaves with the roughness introduced on the boundary and with the strip-width. We find that localization length scales with a composite one parameter. (author). 6 refs, 4 figs

  13. The length-force behavior and operating length range of squid muscle vary as a function of position in the mantle wall.

    Science.gov (United States)

    Thompson, Joseph T; Shelton, Ryan M; Kier, William M

    2014-06-15

    force. Sonomicrometry experiments revealed that the CMP circular muscle fibers operated in vivo primarily along the ascending limb of the length-tension curve. The CMP fibers functioned routinely over muscle lengths at which force output ranged from only 85% to 40% of P₀, and during escape jets from 100% to 30% of P₀. Our work shows that the functional diversity of obliquely striated muscles is much greater than previously recognized. © 2014. Published by The Company of Biologists Ltd.

  14. Natural Length Scales of Ecological Systems: Applications at Community and Ecosystem Levels

    Directory of Open Access Journals (Sweden)

    Craig R. Johnson

    2009-06-01

    Full Text Available The characteristic, or natural, length scales of a spatially dynamic ecological landscape are the spatial scales at which the deterministic trends in the dynamic are most sharply in focus. Given recent development of techniques to determine the characteristic length scales (CLSs of real ecological systems, I explore the potential for using CLSs to address three important and vexing issues in applied ecology, viz. (i determining the optimum scales to monitor ecological systems, (ii interpreting change in ecological communities, and (iii ascertaining connectivity between species in complex ecologies. In summarizing the concept of characteristic length scales as system-level scaling thresholds, I emphasize that the primary CLS is, by definition, the optimum scale at which to monitor a system if the objective is to observe its deterministic dynamics at a system level. Using several different spatially explicit individual-based models, I then explore predictions of the underlying theory of CLSs in the context of interpreting change and ascertaining connectivity among species in ecological systems. Analysis of these models support predictions that systems with strongly fluctuating community structure, but an otherwise stable long-term dynamic defined by a stationary attractor, indicate an invariant length scale irrespective of community structure at the time of analysis, and irrespective of the species analyzed. In contrast, if changes in the underlying dynamic are forcibly induced, the shift in dynamics is reflected by a change in the primary length scale. Thus, consideration of the magnitude of the CLS through time enables distinguishing between circumstances where there are temporal changes in community structure but not in the long-term dynamic, from that where changes in community structure reflect some kind of fundamental shift in dynamics. In this context, CLSs emerge as a diagnostic tool to identify phase shifts to alternative stable states

  15. Evaluating the accuracy of finite element models at reduced length scales

    Science.gov (United States)

    Kemp, Connor

    Finite element models are used frequently in both engineering and scientific research. While they can provide useful information as to the performance of materials, as length scales are decreased more sophisticated model descriptions are required. It is also important to develop methods by which existing models may be verified against experimental findings. The present study evaluates the ability of various finite element models to predict materials behaviour at length scales ranging from several microns to tens of nanometers. Considering this motivation, this thesis is provided in manuscript form with the bulk of material coming from two case studies. Following an overview of relevant literature in Chapter 2, Chapter 3 considers the nucleation of delta-zirconium hydrides in a Zircaloy-2 matrix. Zirconium hydrides are an important topic in the nuclear industry as they form a brittle phase which leads to delayed hydride cracking during reactor start-up and shut-down. Several FE models are used to compare present results with literature findings and illustrate the weaknesses of standard FE approaches. It is shown that standard continuum techniques do not sufficiently capture the interfacial effects of an inclusion-matrix system. By using nano-scale material descriptions, nucleation lattice strains are obtained which are in good agreement with previous experimental studies. The motivation for Chapter 4 stems from a recognized need to develop a method for modeling corrosion behaviour of materials. Corrosion is also an issue for reactor design and an ability to predict failure points is needed. Finite element models could be used for this purpose, provided model accuracy is verified first. In Chapter 4 a technique is developed which facilitates the extraction of sub-micron resolution strain data from correlation images obtained during in-situ tensile deformation. By comparing image correlation results with a crystal plasticity finite element code it is found that good

  16. Long-range scaling behaviours of human colonic pressure activities

    Science.gov (United States)

    Yan, Rongguo; Yan, Guozheng; Zhang, Wenqiang; Wang, Long

    2008-11-01

    The long-range scaling behaviours of human colonic pressure activities under normal physiological conditions are studied by using the method of detrended fluctuation analysis (DFA). The DFA is an effective period representation with a single quantitative scaling exponent α to accurately quantify long-range correlations naturally presented in a complex non-stationary time series. The method shows that the colonic activities of the healthy subjects exhibit long-range power-law correlations; however such correlations either will be destroyed if we randomly shuffle the original data or will cease to be of a power-law form if we chop some high-amplitude spikes off. These facts indicate that the colonic tissue or enteric nervous system (ENS) with a good functional motility has a good memory to its past behaviours and generates well-organized colonic spikes; however such good memory becomes too long to be remembered for the colonic activity of the slow transit constipation (STC) patient and colonic dysmotility occurs.

  17. On the exact calculation of the scattering lengths for long range potentials

    International Nuclear Information System (INIS)

    Szmytkowski, R.

    1991-01-01

    The potentials vanishing asymptotically as Lenz potentials are considered and an exact method of calculating of the scattering lengths for them is presented. This method is especially useful for Buckingham polarization potential. Formulae obtained are the generalization of those derived in the previous paper for the inverse power potentials. (author)

  18. Electropolishing effect on roughness metrics of ground stainless steel: a length scale study

    Science.gov (United States)

    Nakar, Doron; Harel, David; Hirsch, Baruch

    2018-03-01

    Electropolishing is a widely-used electrochemical surface finishing process for metals. The electropolishing of stainless steel has vast commercial application, such as improving corrosion resistance, improving cleanness, and brightening. The surface topography characterization is performed using several techniques with different lateral resolutions and length scales, from atomic force microscopy in the nano-scale (process in the micro and meso lateral scales. Both stylus and optical profilometers are used, and multiple cut-off lengths of the standard Gaussian filter are adopted. While the commonly used roughness amplitude parameters (Ra, Rq and Rz) fail to characterize electropolished textures, the root mean square slope (RΔq) is found to better describe the electropolished surfaces and to be insensitive to scale.

  19. Anatomic ACL reconstruction produces greater graft length change during knee range-of-motion than transtibial technique.

    Science.gov (United States)

    Lubowitz, James H

    2014-05-01

    Because distance between the knee ACL femoral and tibial footprint centrums changes during knee range-of-motion, surgeons must understand the effect of ACL socket position on graft length, in order to avoid graft rupture which may occur when tensioning and fixation is performed at the incorrect knee flexion angle. The purpose of this study is to evaluate change in intra-articular length of a reconstructed ACL during knee range-of-motion comparing anatomic versus transtibial techniques. After power analysis, seven matched pair cadaveric knees were tested. The ACL was debrided, and femoral and tibial footprint centrums for anatomic versus transtibial techniques were identified and marked. Asuture anchor was placed at the femoral centrum and a custom, cannulated suture-centring device at the tibial centrum, and excursion of the suture, representing length change of an ACL graft during knee range-of-motion, was measured in millimeters and recorded using a digital transducer. Mean increase in length as the knee was ranged 120°–0° (full extension) was 4.5 mm (±2.0 mm) for transtibial versus 6.7 mm (±0.9 mm) for anatomic ACL technique. A significant difference in length change occurs during knee range-of-motion both within groups and between the two groups. Change in length of the ACL intra-articular distance during knee range-of-motion is greater for anatomic socket position compared to transtibial position. Surgeons performing anatomic single-bundle ACL reconstruction may tension and fix grafts with the knee in full extension to minimize risk of graft stretch or rupture or knee capture during full extension. This technique may also result in knee anterior–posterior laxity in knee flexion.

  20. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    Science.gov (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  1. A multi-resolution analysis of lidar-DTMs to identify geomorphic processes from characteristic topographic length scales

    Science.gov (United States)

    Sangireddy, H.; Passalacqua, P.; Stark, C. P.

    2013-12-01

    Characteristic length scales are often present in topography, and they reflect the driving geomorphic processes. The wide availability of high resolution lidar Digital Terrain Models (DTMs) allows us to measure such characteristic scales, but new methods of topographic analysis are needed in order to do so. Here, we explore how transitions in probability distributions (pdfs) of topographic variables such as (log(area/slope)), defined as topoindex by Beven and Kirkby[1979], can be measured by Multi-Resolution Analysis (MRA) of lidar DTMs [Stark and Stark, 2001; Sangireddy et al.,2012] and used to infer dominant geomorphic processes such as non-linear diffusion and critical shear. We show this correlation between dominant geomorphic processes to characteristic length scales by comparing results from a landscape evolution model to natural landscapes. The landscape evolution model MARSSIM Howard[1994] includes components for modeling rock weathering, mass wasting by non-linear creep, detachment-limited channel erosion, and bedload sediment transport. We use MARSSIM to simulate steady state landscapes for a range of hillslope diffusivity and critical shear stresses. Using the MRA approach, we estimate modal values and inter-quartile ranges of slope, curvature, and topoindex as a function of resolution. We also construct pdfs at each resolution and identify and extract characteristic scale breaks. Following the approach of Tucker et al.,[2001], we measure the average length to channel from ridges, within the GeoNet framework developed by Passalacqua et al.,[2010] and compute pdfs for hillslope lengths at each scale defined in the MRA. We compare the hillslope diffusivity used in MARSSIM against inter-quartile ranges of topoindex and hillslope length scales, and observe power law relationships between the compared variables for simulated landscapes at steady state. We plot similar measures for natural landscapes and are able to qualitatively infer the dominant geomorphic

  2. Length-scale dependent ensemble-averaged conductance of a 1D disordered conductor: Conductance minimum

    International Nuclear Information System (INIS)

    Tit, N.; Kumar, N.; Pradhan, P.

    1993-07-01

    Exact numerical calculation of ensemble averaged length-scale dependent conductance for the 1D Anderson model is shown to support an earlier conjecture for a conductance minimum. Numerical results can be understood in terms of the Thouless expression for the conductance and the Wigner level-spacing statistics. (author). 8 refs, 2 figs

  3. Wind direction variations in the natural wind – A new length scale

    DEFF Research Database (Denmark)

    Johansson, Jens; Christensen, Silas Sverre

    2018-01-01

    During an observation period of e.g. 10min, the wind direction will differ from its mean direction for short periods of time, and a body of air will pass by from that direction before the direction changes once again. The present paper introduces a new length scale which we have labeled the angul...

  4. Channel length scaling and the impact of metal gate work function ...

    Indian Academy of Sciences (India)

    Channel length decreases and becomes crucial in deep-submicrometre technologies. In this work, we study the effect of short channel and the influences of quantum mechanical on nanoscale DG-MOSFETs. As CMOS technology continues to scale, metal gate electrodes need to be intro- duced to overcome the deleterious ...

  5. Numerical scalings of the decay lengths in the scrape-off layer

    DEFF Research Database (Denmark)

    Militello, F.; Naulin, V; Nielsen, Anders Henry

    2013-01-01

    Numerical simulations of L-mode turbulence in the scrape-off layer (SOL) are used to construct power scaling laws for the characteristic decay lengths of the temperature, density and heat flux at the outer mid-plane. Most of the results obtained are in qualitative agreement with the experimental...

  6. Studying fractal geometry on submicron length scales by small-angle scattering

    International Nuclear Information System (INIS)

    Wong, P.; Lin, J.

    1988-01-01

    Recent studies have shown that internal surfaces of porous geological materials, such as rocks and lignite coals, can be described by fractals down to atomic length scales. In this paper, the basic properties of self-similar and self-affine fractals are reviewed and how fractal dimensions can be measured by small-angle scattering experiments are discussed

  7. Low frequency energy scavenging using sub-wave length scale acousto-elastic metamaterial

    Directory of Open Access Journals (Sweden)

    Riaz U. Ahmed

    2014-11-01

    Full Text Available This letter presents the possibility of energy scavenging (ES utilizing the physics of acousto-elastic metamaterial (AEMM at low frequencies (<∼3KHz. It is proposed to use the AEMM in a dual mode (Acoustic Filter and Energy Harvester, simultaneously. AEMM’s are typically reported for filtering acoustic waves by trapping or guiding the acoustic energy, whereas this letter shows that the dynamic energy trapped inside the soft constituent (matrix of metamaterials can be significantly harvested by strategically embedding piezoelectric wafers in the matrix. With unit cell AEMM model, we experimentally asserted that at lower acoustic frequencies (< ∼3 KHz, maximum power in the micro Watts (∼35µW range can be generated, whereas, recently reported phononic crystal based metamaterials harvested only nano Watt (∼30nW power against 10KΩ resistive load. Efficient energy scavengers at low acoustic frequencies are almost absent due to large required size relevant to the acoustic wavelength. Here we report sub wave length scale energy scavengers utilizing the coupled physics of local, structural and matrix resonances. Upon validation of the argument through analytical, numerical and experimental studies, a multi-frequency energy scavenger (ES with multi-cell model is designed with varying geometrical properties capable of scavenging energy (power output from ∼10µW – ∼90µW between 0.2 KHz and 1.5 KHz acoustic frequencies.

  8. Revisiting the Scale Length-μ0 Plane and the Freeman Law in the Local Universe

    Science.gov (United States)

    Fathi, Kambiz

    2010-10-01

    We have used Virtual Observatory technology to analyze the disk scale length rd and central surface brightness μ0 for a sample of 29,955 bright disk galaxies from the Sloan Digital Sky Survey. We use the results in the r band and revisit the relation between these parameters and the galaxy morphology, and find the average value langμ0rang = 20.2 ± 0.7 mag arcsec-2. We confirm that late-type spirals populate the lower left corner of the rd -μ0 plane and that the early and intermediate spirals are mixed in this diagram, with disky ellipticals at the top left corner. We further investigate the Freeman Law and confirm that it indeed defines an upper limit for μ0 in bright disk galaxies with r mag = 6) have fainter central surface brightness. Our results are based on a volume-corrected sample of galaxies in the local universe (z numerical simulations of galaxy formation and evolution.

  9. Dependence of exponents on text length versus finite-size scaling for word-frequency distributions

    Science.gov (United States)

    Corral, Álvaro; Font-Clos, Francesc

    2017-08-01

    Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.

  10. Determining the minimal length scale of the generalized uncertainty principle from the entropy-area relationship

    International Nuclear Information System (INIS)

    Kim, Wontae; Oh, John J.

    2008-01-01

    We derive the formula of the black hole entropy with a minimal length of the Planck size by counting quantum modes of scalar fields in the vicinity of the black hole horizon, taking into account the generalized uncertainty principle (GUP). This formula is applied to some intriguing examples of black holes - the Schwarzschild black hole, the Reissner-Nordstrom black hole, and the magnetically charged dilatonic black hole. As a result, it is shown that the GUP parameter can be determined by imposing the black hole entropy-area relationship, which has a Planck length scale and a universal form within the near-horizon expansion

  11. Range to cone length relations for light ions in CR-39

    International Nuclear Information System (INIS)

    Gil, L.R.; Marques, A.

    1988-01-01

    Curves ''range x cone lenght'' and ''diameter x cone lenght'' are calculated for tracks left by low energy light ions in CR-39. The calculations cover ions from helium to iron and are performed for 6.25 N NaOH at 70 0 C and a standard etching time but can be easily extended to other etching conditions. (author) [pt

  12. Length-scale effect due to periodic variation of geometrically necessary dislocation densities

    DEFF Research Database (Denmark)

    Oztop, M. S.; Niordson, Christian Frithiof; Kysar, J. W.

    2013-01-01

    Strain gradient plasticity theories have been successful in predicting qualitative aspects of the length scale effect, most notably the increase in yield strength and hardness as the size of the deforming volume decreases. However new experimental methodologies enabled by recent developments...... the microstructure of deformed metals in addition to the size effect. Recent GND measurements have revealed a distribution of length scales that evolves within a metal undergoing plastic deformation. Furthermore, these experiments have shown an accumulation of GND densities in cell walls as well as a variation...... of the saturation value of dislocation densities in these cell walls and dislocation structures. In this study, a strain gradient plasticity framework is extended by incorporating the physical quantities obtained from experimental observations: the quasi-periodicity and the saturation value of GND densities...

  13. The "lotus effect" explained: two reasons why two length scales of topography are important.

    Science.gov (United States)

    Gao, Lichao; McCarthy, Thomas J

    2006-03-28

    Surfaces containing 4 x 8 x 40 microm staggered rhombus posts were hydrophobized using two methods. One, using a dimethyldichlorosilane reaction in the vapor phase, introduces a smooth modified layer, and the other, a solution reaction using methyltrichlorosilane, imparts a second (nanoscopic) length scale of topography. The smooth modified surface exhibits contact angles of thetaA/thetaR = 176 degrees /156 degrees . Arguments are made that the pinning of the receding contact line by the post tops (with thetaA/thetaR = 104 degrees /103 degrees ) is responsible for the hysteresis. The second level of topography raises the contact angles of the post tops and the macroscopic sample to theta(A)/theta(R) = >176 degrees />176 degrees and eliminates hysteresis. The increase in Laplace pressure due to the increase in the advancing contact angle of the post tops is a second reason that two length scales of topography are important.

  14. The length-scale dependence of strain in networks by SANS

    CERN Document Server

    Pyckhout-Hintzen, W; Heinrich, M; Richter, D; Westermann, S; Straube, E

    2002-01-01

    We present a SANS study of the length-scale dependence of chain deformation by means of a suitable labeling in dense, cross-linked elastomers of the HDH-type. This length scale is controlled by the size of the label as well as the cross-link density. The results are compared to long homopolymers. The data are analyzed by means of the tube model of topology in rubber elasticity in combination with the random-phase approximation (RPA) to account for interchain correlations. Chain degradation during cross linking is treated by the standard RPA approach for polydisperse multicomponent systems. A transition from locally freely fluctuating to tube-constrained segmental motion was observed. (orig.)

  15. Length scale effects and multiscale modeling of thermally induced phase transformation kinetics in NiTi SMA

    Science.gov (United States)

    Frantziskonis, George N.; Gur, Sourav

    2017-06-01

    Thermally induced phase transformation in NiTi shape memory alloys (SMAs) shows strong size and shape, collectively termed length scale effects, at the nano to micrometer scales, and that has important implications for the design and use of devices and structures at such scales. This paper, based on a recently developed multiscale model that utilizes molecular dynamics (MDs) simulations at small scales and MD-verified phase field (PhF) simulations at larger scales, reports results on specific length scale effects, i.e. length scale effects in martensite phase fraction (MPF) evolution, transformation temperatures (martensite and austenite start and finish) and in the thermally cyclic transformation between austenitic and martensitic phase. The multiscale study identifies saturation points for length scale effects and studies, for the first time, the length scale effect on the kinetics (i.e. developed internal strains) in the B19‧ phase during phase transformation. The major part of the work addresses small scale single crystals in specific orientations. However, the multiscale method is used in a unique and novel way to indirectly study length scale and grain size effects on evolution kinetics in polycrystalline NiTi, and to compare the simulation results to experiments. The interplay of the grain size and the length scale effect on the thermally induced MPF evolution is also shown in this present study. Finally, the multiscale coupling results are employed to improve phenomenological material models for NiTi SMA.

  16. Image processing for quantifying fracture orientation and length scale transitions during brittle deformation

    Science.gov (United States)

    Rizzo, R. E.; Healy, D.; Farrell, N. J.

    2017-12-01

    We have implemented a novel image processing tool, namely two-dimensional (2D) Morlet wavelet analysis, capable of detecting changes occurring in fracture patterns at different scales of observation, and able of recognising the dominant fracture orientations and the spatial configurations for progressively larger (or smaller) scale of analysis. Because of its inherited anisotropy, the Morlet wavelet is proved to be an excellent choice for detecting directional linear features, i.e. regions where the amplitude of the signal is regular along one direction and has sharp variation along the perpendicular direction. Performances of the Morlet wavelet are tested against the 'classic' Mexican hat wavelet, deploying a complex synthetic fracture network. When applied to a natural fracture network, formed triaxially (σ1>σ2=σ3) deforming a core sample of the Hopeman sandstone, the combination of 2D Morlet wavelet and wavelet coefficient maps allows for the detection of characteristic scale orientation and length transitions, associated with the shifts from distributed damage to the growth of localised macroscopic shear fracture. A complementary outcome arises from the wavelet coefficient maps produced by increasing the wavelet scale parameter. These maps can be used to chart the variations in the spatial distribution of the analysed entities, meaning that it is possible to retrieve information on the density of fracture patterns at specific length scales during deformation.

  17. Differential scaling patterns of vertebrae and the evolution of neck length in mammals.

    Science.gov (United States)

    Arnold, Patrick; Amson, Eli; Fischer, Martin S

    2017-06-01

    Almost all mammals have seven vertebrae in their cervical spines. This consistency represents one of the most prominent examples of morphological stasis in vertebrae evolution. Hence, the requirements associated with evolutionary modifications of neck length have to be met with a fixed number of vertebrae. It has not been clear whether body size influences the overall length of the cervical spine and its inner organization (i.e., if the mammalian neck is subject to allometry). Here, we provide the first large-scale analysis of the scaling patterns of the cervical spine and its constituting cervical vertebrae. Our findings reveal that the opposite allometric scaling of C1 and C2-C7 accommodate the increase of neck bending moment with body size. The internal organization of the neck skeleton exhibits surprisingly uniformity in the vast majority of mammals. Deviations from this general pattern only occur under extreme loading regimes associated with particular functional and allometric demands. Our results indicate that the main source of variation in the mammalian neck stems from the disparity of overall cervical spine length. The mammalian neck reveals how evolutionary disparity manifests itself in a structure that is otherwise highly restricted by meristic constraints. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  18. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    Science.gov (United States)

    Javvaji, Brahmanandam; Raha, S.; Mahapatra, D. Roy

    2017-02-01

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  19. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Javvaji, Brahmanandam [Indian Institute of Science, Department of Aerospace Engineering (India); Raha, S. [Indian Institute of Science, Department of Computational and Data Sciences (India); Mahapatra, D. Roy, E-mail: droymahapatra@aero.iisc.ernet.in [Indian Institute of Science, Department of Aerospace Engineering (India)

    2017-02-15

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  20. Lower Length Scale Model Development for Embrittlement of Reactor Presure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the lower-length-scale effort during FY 2016 in developing mesoscale capabilities for microstructure evolution, plasticity and fracture in reactor pressure vessel steels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation induced defect accumulation and irradiation enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. A crystal plasticity model to capture defect-dislocation interaction and a damage model for cleavage micro-crack propagation is also provided.

  1. Length of FMR1 repeat alleles within the normal range does not substantially affect the risk of early menopause

    Science.gov (United States)

    Ruth, Katherine S.; Bennett, Claire E.; Schoemaker, Minouk J.; Weedon, Michael N.; Swerdlow, Anthony J.; Murray, Anna

    2016-01-01

    STUDY QUESTION Is the length of FMR1 repeat alleles within the normal range associated with the risk of early menopause? SUMMARY ANSWER The length of repeat alleles within the normal range does not substantially affect risk of early menopause. WHAT IS KNOWN ALREADY There is a strong, well-established relationship between length of premutation FMR1 alleles and age at menopause, suggesting that this relationship could continue into the normal range. Within the normal range, there is conflicting evidence; differences in ovarian reserve have been identified with FMR1 repeat allele length, but a recent population-based study did not find any association with age at menopause as a quantitative trait. STUDY DESIGN, SIZE, DURATION We analysed cross-sectional baseline survey data collected at recruitment from 2004 to 2010 from a population-based, prospective epidemiological cohort study of >110 000 women to investigate whether repeat allele length was associated with early menopause. PARTICIPANTS/MATERIALS, SETTING, METHOD We included 4333 women from the Breakthrough Generations Study (BGS), of whom 2118 were early menopause cases (menopause under 46 years) and 2215 were controls. We analysed the relationship between length of FMR1 alleles and early menopause using logistic regression with allele length as continuous and categorical variables. We also conducted analyses with the outcome age at menopause as a quantitative trait as well as appropriate sensitivity and exploratory analyses. MAIN RESULTS AND THE ROLE OF CHANCE There was no association of the shorter or longer FMR1 allele or their combined genotype with the clinically relevant end point of early menopause in our main analysis. Likewise, there were no associations with age at menopause as a quantitative trait in our secondary analysis. LIMITATIONS, REASONS FOR CAUTION Women with homozygous alleles in the normal range may have undetected FMR1 premutation alleles, although there was no evidence to suggest this. We

  2. Second-moment closures and length scales for weakly stratified turbulent shear flows

    Science.gov (United States)

    Baumert, Helmut; Peters, Hartmut

    2000-03-01

    For the special hydrodynamic situation of unbounded homogeneous shear layers, turbulence closure models of Mellor-Yamada type (MY) and k-ɛ type are put into a single canonical form. For this situation we show that conventional versions of MY and various k-ɛ versions lack a proper steady state, and are unable to simulate the most basic properties of stratified shear flows exemplified in, for example, the Rohr et al. [1988] experiments: exponential growth at sufficiently low gradient Richardson number (Rg), exponential decay at sufficiently large Rg, and a steady state in between. Proper choice of one special model parameter readily solves the problems. In the fairly general case of structural equilibrium (state of exponential evolution) in weakly to moderately stratified turbulence (Rg ≲ 0.25), the ratio between the Thorpe scale (or Ellison scale) and the Ozmidov scale varies like the gradient Richardson number (Rg) to the power 3/4, and the ratio of the Thorpe scale to the buoyancy scale varies like Rg1/2. Length scales predicted by our current model are consistent with laboratory measurements of Rohr et al. [1988], with large-eddy numerical simulations of Schumann and Gerz [1995], and with microstructure measurements from the 1987 Tropic Heat Experiment in the equatorial Pacific by Peters et al. [1995].

  3. Nature of the spin-glass phase at experimental length scales

    International Nuclear Information System (INIS)

    Alvarez Baños, R; Cruz, A; Fernandez, L A; Gil-Narvion, J M; Gordillo-Guerrero, A; Maiorano, A; Martin-Mayor, V; Monforte-Garcia, J; Perez-Gaviro, S; Ruiz-Lorenzo, J J; Seoane, B; Tarancon, A; Guidetti, M; Mantovani, F; Schifano, S F; Tripiccione, R; Marinari, E; Parisi, G; Muñoz Sudupe, A; Navarro, D

    2010-01-01

    We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L = 32 lattices down to T ≈ 0.64T c . We demonstrate the relevance of equilibrium finite size simulations to understanding experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a timescale of 1 h can be matched with equilibrium results on L ≈ 110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies in ensuring equilibration in parallel tempering simulations

  4. Longer wings for faster springs - wing length relates to spring phenology in a long-distance migrant across its range.

    Science.gov (United States)

    Hahn, Steffen; Korner-Nievergelt, Fränzi; Emmenegger, Tamara; Amrhein, Valentin; Csörgő, Tibor; Gursoy, Arzu; Ilieva, Mihaela; Kverek, Pavel; Pérez-Tris, Javier; Pirrello, Simone; Zehtindjiev, Pavel; Salewski, Volker

    2016-01-01

    In migratory birds, morphological adaptations for efficient migratory flight often oppose morphological adaptations for efficient behavior during resident periods. This includes adaptations in wing shape for either flying long distances or foraging in the vegetation and in climate-driven variation of body size. In addition, the timing of migratory flights and particularly the timely arrival at local breeding sites is crucial because fitness prospects depend on site-specific phenology. Thus, adaptations for efficient long-distance flights might be also related to conditions at destination areas. For an obligatory long-distance migrant, the common nightingale, we verified that wing length as the aerodynamically important trait, but not structural body size increased from the western to the eastern parts of the species range. In contrast with expectation from aerodynamic theory, however, wing length did not increase with increasing migration distances. Instead, wing length was associated with the phenology at breeding destinations, namely the speed of local spring green-up. We argue that longer wings are beneficial for adjusting migration speed to local conditions for birds breeding in habitats with fast spring green-up and thus short optimal arrival periods. We suggest that the speed of spring green-up at breeding sites is a fundamental variable determining the timing of migration that fine tune phenotypes in migrants across their range.

  5. Characteristic length scale of input data in distributed models: implications for modeling grid size

    Science.gov (United States)

    Artan, G. A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  6. Characteristic length scale of input data in distributed models: implications for modeling grain size

    Science.gov (United States)

    Artan, Guleid A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  7. Length Scale Dependence of the Dynamic Properties of Hyaluronic Acid Solutions in the Presence of Salt

    Energy Technology Data Exchange (ETDEWEB)

    Horkay, Ferenc; Falus, Peter; Hecht, Anne-Marie; Geissler, Erik (CNRS-UMR); (NIH); (ILL)

    2010-12-07

    In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D{sub NSE} measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D{sub DLS}. This behavior contrasts with neutral polymer solutions. With increasing salt content, D{sub DLS} approaches D{sub NSE}, which is independent of ionic strength. Contrary to theoretical expectation, the ion-polymer coupling, which dominates the low q dynamics of polyelectrolyte solutions, already breaks down at distance scales greater than the Debye-Hueckel length.

  8. Synchrotron X-Ray Scattering as a Tool for Characterising Catalysts on Multiple Length Scales

    International Nuclear Information System (INIS)

    Hudspeth, Jessica M.; Kvashnina, Kristina O.; Kimber, Simon A.J.; Mitchell, Edward P.

    2015-01-01

    Optimising the properties of catalysts for industrial processes requires a detailed knowledge of their structure and properties on multiple length scales. Synchrotron light sources are ideal tools for characterising catalysts for industrial R and D, providing data with high temporal and spatial resolution, under realistic operating conditions, in a non-destructive way. Here, we describe the different synchrotron techniques that can be employed to gain a wealth of complementary information, and highlight recent developments that have allowed remarkable insight to be gained into working catalytic systems. These techniques have the potential to guide future industrial catalyst design. (authors)

  9. A multiple length scale description of the mechanism of elastomer stretching

    DEFF Research Database (Denmark)

    Neuefeind, J.; Skov, Anne Ladegaard; Daniels, J. E.

    2016-01-01

    Conventionally, the stretching of rubber is modeled exclusively by rotations of segments of the embedded polymer chains; i.e. changes in entropy. However models have not been tested on all relevant length scales due to a lack of appropriate probes. Here we present a universal X-ray based method...... within the individual monomers, but among the contributions is also an elastic strain, acting between chains, which is 3-4 orders of magnitude smaller than the macroscopic strain, and of the opposite sign, i.e. extension of polymer chains in the direction perpendicular to the stretch. This may be due...

  10. Influence of Growth Rate on Microstructural Length Scales in Directionally Solidified NiAl-Mo Hypo-Eutectic Alloy

    Science.gov (United States)

    Zhang, Jianfei; Ma, Xuewei; Ren, Huiping; Chen, Lin; Jin, Zili; Li, Zhenliang; Shen, Jun

    2016-01-01

    In this article, the Ni-46.1Al-7.8Mo (at.%) alloy was directionally solidified at different growth rates ranging from 15 μm/s to 1000 μm/s under a constant temperature gradient (334 K/cm). The dependence of microstructural length scales on the growth rate was investigated. The results show that, with the growth rate increasing, the primary dendritic arm spacings (PDAS) and secondary dendritic arm spacings (SDAS) decreased. There exists a large distribution range in PDAS under directional solidification conditions at a constant temperature gradient. The average PDAS and SDAS as a function of growth rate can be given as λ1 = 848.8967 V-0.4509 and λ2 = 64.2196 V-0.4140, respectively. In addition, a comparison of our results with the current theoretical models and previous experimental results has also been made.

  11. Reduced 3d modeling on injection schemes for laser wakefield acceleration at plasma scale lengths

    Science.gov (United States)

    Helm, Anton; Vieira, Jorge; Silva, Luis; Fonseca, Ricardo

    2017-10-01

    Current modelling techniques for laser wakefield acceleration (LWFA) are based on particle-in-cell (PIC) codes which are computationally demanding. In PIC simulations the laser wavelength λ0, in μm-range, has to be resolved over the acceleration lengths in meter-range. A promising approach is the ponderomotive guiding center solver (PGC) by only considering the laser envelope for laser pulse propagation. Therefore only the plasma skin depth λp has to be resolved, leading to speedups of (λp /λ0) 2. This allows to perform a wide-range of parameter studies and use it for λ0 Tecnologia (FCT), Portugal, through Grant No. PTDC/FIS-PLA/2940/2014 and PD/BD/105882/2014.

  12. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  13. A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales

    International Nuclear Information System (INIS)

    Atzberger, Paul J.; Kramer, Peter R.; Peskin, Charles S.

    2007-01-01

    In modeling many biological systems, it is important to take into account flexible structures which interact with a fluid. At the length scale of cells and cell organelles, thermal fluctuations of the aqueous environment become significant. In this work, it is shown how the immersed boundary method of [C.S. Peskin, The immersed boundary method, Acta Num. 11 (2002) 1-39.] for modeling flexible structures immersed in a fluid can be extended to include thermal fluctuations. A stochastic numerical method is proposed which deals with stiffness in the system of equations by handling systematically the statistical contributions of the fastest dynamics of the fluid and immersed structures over long time steps. An important feature of the numerical method is that time steps can be taken in which the degrees of freedom of the fluid are completely underresolved, partially resolved, or fully resolved while retaining a good level of accuracy. Error estimates in each of these regimes are given for the method. A number of theoretical and numerical checks are furthermore performed to assess its physical fidelity. For a conservative force, the method is found to simulate particles with the correct Boltzmann equilibrium statistics. It is shown in three dimensions that the diffusion of immersed particles simulated with the method has the correct scaling in the physical parameters. The method is also shown to reproduce a well-known hydrodynamic effect of a Brownian particle in which the velocity autocorrelation function exhibits an algebraic (τ -3/2 ) decay for long times [B.J. Alder, T.E. Wainwright, Decay of the Velocity Autocorrelation Function, Phys. Rev. A 1(1) (1970) 18-21]. A few preliminary results are presented for more complex systems which demonstrate some potential application areas of the method. Specifically, we present simulations of osmotic effects of molecular dimers, worm-like chain polymer knots, and a basic model of a molecular motor immersed in fluid subject to a

  14. Chemical immobilization of free-ranging fallow deer (Dama dama): effect of needle length on induction time.

    Science.gov (United States)

    Bergvall, Ulrika A; Kjellander, Petter; Ahlqvist, Per; Johansson, Örjan; Sköld, Kent; Arnemo, Jon M

    2015-04-01

    We evaluated impact of the needle length, sex, and body condition on chemical immobilization induction time in 50 (29 males and 21 females) free-ranging fallow deer (Dama dama) in Sweden, 2006-11. Induction time is probably the single most important factor when immobilizing free-ranging wildlife with the use of a remote drug-delivery system. Induction times should be short to minimize stress and risk of injury, and to ensure that immobilized animals can be found and clinically monitored as soon as possible. We measured the distance between the darting location and where we recovered the immobilized animal and also the time occurring between the two events. We used two types of needles: 2.0 × 30- or 2.0 × 40-mm barbed needles with side ports. The most important result is that a 10-mm-longer dart needle can reduce the retrieval time substantially (>20 min) until an animal is under monitoring. On average after the darting, the retrieval time decreased from 51 to 29 min and the distance decreased from 519 m from the darting location to 294 m. We suggest that a needle length of 40 mm is preferable for immobilization of wild fallow deer, especially for animals in over-average-to-fat body condition.

  15. On the Evolution of the Integral Length Scale in the Wake of Wind Turbines and within Wind Farms

    Science.gov (United States)

    Liu, Huiwen; Jin, Yaqing; Hayat, Imran; Chamorro, Leonardo P.

    2017-11-01

    Wind tunnel experiments were performed to characterize the evolution of integral length scale in the wake of a single turbine, and around wind farms. Hotwire anemometry was used to obtain high-resolution measurements of the streamwise velocity fluctuation at various locations. Negligible and high freestream turbulence levels were considered in the case of single turbine. The integral length scale along the rotor axis is found to grow nearly linearly with distance independent of the incoming turbulence levels, and appears to reach the incoming level in the high turbulence case at about 35-40 rotor diameters downstream. In the wind farm, results suggest that the distribution of integral length scale can be roughly described by a power-law growth with distance within consecutive turbines. Approximately past the third row, the integral length scale appears to reach equilibrium of the spatial distribution.

  16. Statistical theory and transition in multiple-scale-lengths turbulence in plasmas

    International Nuclear Information System (INIS)

    Itoh, Sanae-I.; Itoh, Kimitaka

    2001-06-01

    The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Nonlinear interactions in the same kind of fluctuations as well as nonlinear interplay between different classes of fluctuations are kept in the analysis. Nonlinear interactions are modelled as turbulent drag, nonlinear noise and nonlinear drive, and a set of Langevin equations is formulated. With the help of an Ansatz of a large number of degrees of freedom with positive Lyapunov number, Langevin equations are solved and the fluctuation dissipation theorem in the presence of strong plasma turbulence has been derived. A case where two driving mechanisms (one for micro mode and the other for semi-micro mode) coexist is investigated. It is found that there are several states of fluctuations: in one state, the micro mode is excited and the semi-micro mode is quenched; in the other state, the semi-micro mode is excited, and the micro mode remains at finite but suppressed level. New type of turbulence transition is obtained, and a cusp type catastrophe is revealed. A phase diagram is drawn for turbulence which is composed of multiple classes of fluctuations. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. Finally, the nonlocal heat transport due to the long-wave-length fluctuations, which are noise-pumped by shorter-wave-length ones, is analyzed and the impact on transient transport problems is discussed. (author)

  17. Fabrication of Cu-induced networks of linear nanostructures on different length scales

    International Nuclear Information System (INIS)

    Adelung, R.; Hartung, W.; Ernst, F.

    2002-01-01

    Scanning electron microscopy and atomic force microscopy revealed that the deposition Cu onto VSe 2 substrates in ultra-high vacuum leads to the self-organized formation of linear nanostructures, nanowires and nanotunnels, on the substrate surface. The nanowires and nanotunnels are approximately equi-axed and form networks with a mesh width much larger than their diameter. Surprisingly, systematic increase of the Cu coverage studied here does not simply increase the thickness of the nanowires and nanotunnels, but induces the formation of further, distinct networks with increased feature size and increased mesh width. At very high Cu coverages, eventually, we obtained a hierarchy of apparently independent nanowire and nanotunnel networks on different length scales. A model is presented for the micromechanism that leads to this complex arrangement of nanostructures

  18. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering

    Science.gov (United States)

    Kelley, Shana O.; Mirkin, Chad A.; Walt, David R.; Ismagilov, Rustem F.; Toner, Mehmet; Sargent, Edward H.

    2014-12-01

    Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices.

  19. Hierarchical self-assembly of two-length-scale multiblock copolymers

    International Nuclear Information System (INIS)

    Brinke, Gerrit ten; Loos, Katja; Vukovic, Ivana; Du Sart, Gerrit Gobius

    2011-01-01

    The self-assembly in diblock copolymer-based supramolecules, obtained by hydrogen bonding short side chains to one of the blocks, as well as in two-length-scale linear terpolymers results in hierarchical structure formation. The orientation of the different domains, e.g. layers in the case of a lamellar-in-lamellar structure, is determined by the molecular architecture, graft-like versus linear, and the relative magnitude of the interactions involved. In both cases parallel and perpendicular arrangements have been observed. The comb-shaped supramolecules approach is ideally suited for the preparation of nanoporous structures. A bicontinuous morphology with the supramolecular comb block forming the channels was finally achieved by extending the original approach to suitable triblock copolymer-based supramolecules.

  20. Comparison of relativity theories with observer-independent scales of both velocity and length/mass

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Benedetti, Dario; D'Andrea, Francesco; Procaccini, Andrea

    2003-01-01

    We consider the two most studied proposals of relativity theories with observer-independent scales of both velocity and length/mass: the one discussed by Amelino-Camelia as an illustrative example for the original proposal (Preprint gr-qc/0012051) of theories with two relativistic invariants, and an alternative more recently proposed by Magueijo and Smolin (Preprint hep-th/0112090). We show that these two relativistic theories are much more closely connected than it would appear on the basis of a naive analysis of their original formulations. In particular, in spite of adopting a rather different formal description of the deformed boost generators, they end up assigning the same dependence of momentum on rapidity, which can be described as the core feature of these relativistic theories. We show that this observation can be used to clarify the concepts of particle mass, particle velocity and energy-momentum conservation rules in these theories with two relativistic invariants

  1. In Situ Observation of Strain Evolution in Cp-Ti Over Multiple Length Scales

    Science.gov (United States)

    Bettles, C. J.; Lynch, P. A.; Stevenson, A. W.; Tomus, D.; Gibson, M. A.; Wallwork, K.; Kimpton, J.

    2011-01-01

    The strain evolution in polycrystalline CP-Ti strip under tension was studied in situ and at two length scales using Synchrotron X-ray diffraction. To establish the bulk material behavior, experiments were performed at the Australian Synchrotron facility. Because of the relatively large grain size, discontinuous "spotty" Debye ring patterns were observed, and a peak fitting algorithm was developed to determine the individual spot positions with the necessary precision for strain determination. The crystallographic directional dependence of strain anisotropy during the loading cycle was determined. Strain anisotropy and yielding of individual crystallographic planes prior to the macroscopic yield point were further clarified by in situ loading experiments performed at the Advanced Light Source (ALS). The deviatoric strain accumulation and plastic response were mapped on a grain-by-grain basis. The onset of microscopic yielding in the grains was identified and correlated with the relative orientation of the grains with respect to the loading direction.

  2. Multi-length scale porous polymer films from hypercrosslinked breath figure arrays.

    Science.gov (United States)

    Ding, Lei; Zhang, Aijuan; Li, Wenqing; Bai, Hua; Li, Lei

    2016-01-01

    Multi-length scale porous polymer (MLSPP) films were fabricated using commercially available polystyrene (PS) via static breath figure (BF) process and sequent hypercrosslinking reaction. One level of ordered pores in microscale were introduced using static BF process, and the other level in nanoscale were produced by the sequent Friedel-Crafts hypercrosslinking reaction. The chemical structure of the PS MLSPP film was investigated by Fourier transformation infrared spectrometry and solid state nuclear magnetic resonance, and the morphology of the film was observed with electron microscopes. The MLSPP films showed large specific surface areas and excellent chemical and thermal stabilities, owing to the micropores and the crosslinked chemical structure produced by the Friedel-Crafts reaction. The methodology reported in this paper is a template-free, low cost and general strategy for the preparation of MLSPP films, which has potential applications in the areas of environment and energy. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Zebrafish brain mapping--standardized spaces, length scales, and the power of N and n.

    Science.gov (United States)

    Hunter, Paul R; Hendry, Aenea C; Lowe, Andrew S

    2015-06-01

    Mapping anatomical and functional parameters of the zebrafish brain is moving apace. Research communities undertaking such studies are becoming ever larger and more diverse. The unique features, tools, and technologies associated with zebrafish are propelling them as the 21st century model organism for brain mapping. Uniquely positioned as a vertebrate model system, the zebrafish enables imaging of anatomy and function at different length scales from intraneuronal compartments to sparsely distributed whole brain patterns. With a variety of diverse and established statistical modeling and analytic methods available from the wider brain mapping communities, the richness of zebrafish neuroimaging data is being realized. The statistical power of population observations (N) within and across many samples (n) projected onto a standardized space will provide vast databases for data-driven biological approaches. This article reviews key brain mapping initiatives at different levels of scale that highlight the potential of zebrafish brain mapping. By way of introduction to the next wave of brain mappers, an accessible introduction to the key concepts and caveats associated with neuroimaging are outlined and discussed. © 2014 Wiley Periodicals, Inc.

  4. Influence of the course boundary value problem on length scale parmeters for second-gradient continuum theories

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Darby J [Los Alamos National Laboratory; Bronkhorst, Curt A [Los Alamos National Laboratory; Mc Dowell, David L [GEORGIA TECH

    2010-12-20

    All nonlocal continuum descriptions of inelastic material response involve length scale parameters that either directly or implicitly quantify the physical dimensions of a neighborhood of response which influences the behavior at a particular point. The second-gradient continuum theories such as those developed by Germain, Toupin and Mindlin, and Eringen, and giving rise to strain-gradient plasticity, is becoming a common coarse-scale basis for homogenization of material response that respects the non local nature of heterogeneous material response. Ideally, the length scale parameters involved in such homogenization would be intrinsically associated with dominant aspects of the microstructure. However, these parameters, at least in some cases, are inextricably linked to the details of the coarse scale boundary value problem. Accordingly, they cannot be viewed as pure constitutive parameters. An example problem of multiscale homogenization is presented to underscore the dependence of second-gradient length scale parameters on the coarse scale boundary value problem, namely the multiscale response of an idealized porous microstructure. The fine scale (microstructure) comprises elastic perfectly plastic matrix with a periodic array of circular voids. This fine scale description of the problem is identical for two separate classes of coarse scale boundary value problem, viz. an extruded channel subject to compression and eventually developing plastic shear bands and a thin layer of material with larger (coarse scale) elliptical voids subject to shear deformation. Implications of the relationship between length scale parameters and the details of the coarse scale boundary value problem are discussed and ideas to ascertain such length parameters from evolving response fields are presented.

  5. Correlated continuous time random walks: combining scale-invariance with long-range memory for spatial and temporal dynamics

    International Nuclear Information System (INIS)

    Schulz, Johannes H P; Chechkin, Aleksei V; Metzler, Ralf

    2013-01-01

    Standard continuous time random walk (CTRW) models are renewal processes in the sense that at each jump a new, independent pair of jump length and waiting time are chosen. Globally, anomalous diffusion emerges through scale-free forms of the jump length and/or waiting time distributions by virtue of the generalized central limit theorem. Here we present a modified version of recently proposed correlated CTRW processes, where we incorporate a power-law correlated noise on the level of both jump length and waiting time dynamics. We obtain a very general stochastic model, that encompasses key features of several paradigmatic models of anomalous diffusion: discontinuous, scale-free displacements as in Lévy flights, scale-free waiting times as in subdiffusive CTRWs, and the long-range temporal correlations of fractional Brownian motion (FBM). We derive the exact solutions for the single-time probability density functions and extract the scaling behaviours. Interestingly, we find that different combinations of the model parameters lead to indistinguishable shapes of the emerging probability density functions and identical scaling laws. Our model will be useful for describing recent experimental single particle tracking data that feature a combination of CTRW and FBM properties. (paper)

  6. Failure analysis of fuel cell electrodes using three-dimensional multi-length scale X-ray computed tomography

    Science.gov (United States)

    Pokhrel, A.; El Hannach, M.; Orfino, F. P.; Dutta, M.; Kjeang, E.

    2016-10-01

    X-ray computed tomography (XCT), a non-destructive technique, is proposed for three-dimensional, multi-length scale characterization of complex failure modes in fuel cell electrodes. Comparative tomography data sets are acquired for a conditioned beginning of life (BOL) and a degraded end of life (EOL) membrane electrode assembly subjected to cathode degradation by voltage cycling. Micro length scale analysis shows a five-fold increase in crack size and 57% thickness reduction in the EOL cathode catalyst layer, indicating widespread action of carbon corrosion. Complementary nano length scale analysis shows a significant reduction in porosity, increased pore size, and dramatically reduced effective diffusivity within the remaining porous structure of the catalyst layer at EOL. Collapsing of the structure is evident from the combination of thinning and reduced porosity, as uniquely determined by the multi-length scale approach. Additionally, a novel image processing based technique developed for nano scale segregation of pore, ionomer, and Pt/C dominated voxels shows an increase in ionomer volume fraction, Pt/C agglomerates, and severe carbon corrosion at the catalyst layer/membrane interface at EOL. In summary, XCT based multi-length scale analysis enables detailed information needed for comprehensive understanding of the complex failure modes observed in fuel cell electrodes.

  7. Length Scales of Reactive Transport in Basalt: Hydrothermal Flow-through Experiments and Anhydrite Precipitation

    Science.gov (United States)

    Los, C.; Kahl, W. A.; Bach, W.

    2017-12-01

    Hydrothermal circulation is a large contributor to mass and heat exchange between oceanic lithosphere and hydrosphere. Cold, unaltered seawater infiltrates in the shallow basaltic crust, leading to sulfate precipitation and clogging of fluid pathways. Anhydrite (CaSO4) veins are common in hydrothermal discharge zones, where entrained seawater is heated and anhydrite quickly forms. Anhydrite is also found in hydrothermal recharge zones, but questions regarding time and length scale in this setting remain. To investigate element transport and anhydrite precipitation we have conducted flow-through experiments using a gypsum-undersaturated CaSO4 solution in pre-fractured basalt at 95, 110 and 140°C. Each run was terminated upon clogging of the input tubes, which took 2-8 weeks. The rock core was scanned before the run and weekly during the experiment using X-ray tomography. Fluid major element chemistry was analyzed using ICP-OES. Geochemical modeling with the software package EQ3/6 showed that the starting solution became supersaturated in anhydrite (SI=IAP/K of 2.5 or higher) in all cases upon heating to the experimental temperature. The software CRUNCH FLOW was used to analyze chemical effects over the length of the core (3cm). The 95°C run and a first run at 110°C did not show any anhydrite. Instead, hematite rosettes and sulfur-bearing (maximum of 1 wt.%) globular Fe-rich structures were present. Tomography images showed that fractures and pores were slightly thinned over the whole core length. Single pores in a second 110°C run and fractures in the 140°C run did show formation of anhydrite and quartz close to the outlet. CRUNCH FLOW modeling predicts the observed release of Mg, Fe, Si, Al, Na and K due to silicate dissolution close to the inlet, while the outlet area should contain some anhydrite. No other sulfur-bearing phases were predicted. The results of this study show that anhydrite needs a large supersaturation (SI>2.5) to precipitate at temperatures

  8. On mechanics and material length scales of failure in heterogeneous interfaces using a finite strain high performance solver

    Science.gov (United States)

    Mosby, Matthew; Matouš, Karel

    2015-12-01

    Three-dimensional simulations capable of resolving the large range of spatial scales, from the failure-zone thickness up to the size of the representative unit cell, in damage mechanics problems of particle reinforced adhesives are presented. We show that resolving this wide range of scales in complex three-dimensional heterogeneous morphologies is essential in order to apprehend fracture characteristics, such as strength, fracture toughness and shape of the softening profile. Moreover, we show that computations that resolve essential physical length scales capture the particle size-effect in fracture toughness, for example. In the vein of image-based computational materials science, we construct statistically optimal unit cells containing hundreds to thousands of particles. We show that these statistically representative unit cells are capable of capturing the first- and second-order probability functions of a given data-source with better accuracy than traditional inclusion packing techniques. In order to accomplish these large computations, we use a parallel multiscale cohesive formulation and extend it to finite strains including damage mechanics. The high-performance parallel computational framework is executed on up to 1024 processing cores. A mesh convergence and a representative unit cell study are performed. Quantifying the complex damage patterns in simulations consisting of tens of millions of computational cells and millions of highly nonlinear equations requires data-mining the parallel simulations, and we propose two damage metrics to quantify the damage patterns. A detailed study of volume fraction and filler size on the macroscopic traction-separation response of heterogeneous adhesives is presented.

  9. Instantaneous equations for multiphase flow in porous media without length-scale restrictions using a non-local averaging volume

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto

    2010-01-01

    The aim of this paper is to propose a framework to obtain a new formulation for multiphase flow conservation equations without length-scale restrictions, based on the non-local form of the averaged volume conservation equations. The simplification of the local averaging volume of the conservation equations to obtain practical equations is subject to the following length-scale restrictions: d << l << L, where d is the characteristic length of the dispersed phases, l is the characteristic length of the averaging volume, and L is the characteristic length of the physical system. If the foregoing inequality does not hold, or if the scale of the problem of interest is of the order of l, the averaging technique and therefore, the macroscopic theories of multiphase flow should be modified in order to include appropriate considerations and terms in the corresponding equations. In these cases the local form of the averaged volume conservation equations are not appropriate to describe the multiphase system. As an example of the conservation equations without length-scale restrictions, the natural circulation boiling water reactor was consider to study the non-local effects on the thermal-hydraulic core performance during steady-state and transient behaviors, and the results were compared with the classic local averaging volume conservation equations.

  10. Length-scales of chemical and isotopic heterogeneity in the mantle section of the Shetland Ophiolite Complex, Scotland

    Science.gov (United States)

    O'Driscoll, B.; Walker, R. J.; Clay, P. L.; Day, J. M. D.; Ash, R. D.; Daly, J. S.

    2018-04-01

    Kilometre to sub-metre scale heterogeneities have been inferred in the oceanic mantle based on sampling of both ophiolites and abyssal peridotites. The ∼492 Ma Shetland Ophiolite Complex (SOC) contains a well-preserved mantle section that is dominated by harzburgite (∼70 vol.%) previously reported to have variable major and trace element compositions, yet dominantly chondritic initial 187Os/188Os compositions. To assess the preservation of compositional heterogeneities at sub-metre length-scales in the oceanic mantle, a ∼45 m2 area of the SOC mantle section was mapped and sampled in detail. Harzburgites, dunites and a pyroxenite from this area were analysed for lithophile and highly-siderophile element (HSE) abundances, as well as for 187Os/188Os ratios. Lithophile element data for most rocks are characteristic of supra-subduction zone (SSZ) metasomatic processes. Two dunites have moderately fractionated HSE patterns and suprachondritic γOs(492 Ma) values (+5.1 and +7.5) that are also typical of ophiolitic dunites generated by SSZ melt-rock interactions. By contrast, six harzburgites and four dunites have approximately chondritic-relative abundances of Os, Ir and Ru, and γOs(492 Ma) values ranging only from -0.6 to +2.7; characteristics that imply no significant influence during SSZ processes. Two harzburgites are also characterised by significantly less radiogenic γOs(492 Ma) values (-3.5 and -4), and yield Mesoproterozoic time of Re depletion (TRD) model ages. The range of Os isotope compositions in the studied area is comparable to the range reported for a suite of samples representative of the entire SOC mantle section, and approaches the total isotopic variation of the oceanic mantle, as observed in abyssal peridotites. Mechanisms by which this heterogeneity can be formed and preserved involve inefficient and temporally distinct melt extraction events and strong localised channelling of these melts.

  11. Genetic variability of the stable fly assessed on a global scale using amplified fragment length polymorphism.

    Science.gov (United States)

    Kneeland, Kathleen M; Skoda, Steven R; Foster, John E

    2016-10-01

    The stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), is a blood-feeding, economically important pest of animals and humans worldwide. Improved management strategies are essential and their development would benefit from studies on genetic diversity of stable flies. Especially if done on a global scale, such research could generate information necessary for the development and application of more efficient control methods. Herein we report on a genetic study of stable flies using amplified fragment length polymorphism, with samples of 10-40 individuals acquired from a total of 25 locations in the Nearctic, Neotropic, Palearctic, Afrotropic and Australasian biogeographical regions. We hypothesized that genetic differentiation would exist across geographical barriers. Although FST (0.33) was moderately high, the GST (0.05; representing genetic diversity between individuals) was very low; Nm values (representing gene flow) were high (9.36). The mismatch distribution and tests of neutrality suggested population expansion, with no genetic differentiation between locations. The analysis of molecular variance (AMOVA) results showed the majority of genetic diversity was within groups. The mantel test showed no correlation between geographic and genetic distance; this strongly supports the AMOVA results. These results suggest that stable flies did not show genetic differentiation but are panmictic, with no evidence of isolation by distance or across geographical barriers. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  12. Relevant time- and length scale of touch-down for drops impacting on a heated surface

    Science.gov (United States)

    van Limbeek, Michiel A. J.; Shirota, Minori; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2015-11-01

    The vapor generated from a liquid drop impacting a hot solid surface can prevent it to make contact, depending on the solid temperature. The minimum temperature when no contact is made between the drop and the solid is called the dynamic Leidenfrost temperature. The latent heat needed to generated the vapor is drawn from the solid, and in general the Leidenfrost temperature depends on the solid thermal properties. Here we show experiments conducted on a sapphire plate, to minimize the cooling of the solid and ensuring nearly isothermal conditions. By using high speed total internal reflection imaging, we observe the drop base during impact up to about 100nm above the substrate surface. By this technique we are able to study the processes responsible for the transition between fully wetting and fully levitating drop impact conditions as the solid temperature increases. We reveal the relevant length- and time-scales for the dimple formation under the drop and explain their relevance for the late-time dynamics. As the transition regime is traversed from low to high temperature, the liquid-solid contact gradually decreases which reduces the friction with the solid, enhancing the spreading of the drop considerably.

  13. Extending the length and time scales of Gram–Schmidt Lyapunov vector computations

    International Nuclear Information System (INIS)

    Costa, Anthony B.; Green, Jason R.

    2013-01-01

    Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram–Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N 2 (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram–Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard–Jones fluids from N=100 to 1300 between Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram–Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra

  14. Bifurcation and phase diagram of turbulence constituted from three different scale-length modes

    International Nuclear Information System (INIS)

    Itoh, S.-I.; Kitazawa, A.; Yagi, M.; Itoh, K.

    2002-04-01

    Cases where three kinds of fluctuations having the different typical scale-lengths coexist are analyzed, and the statistical theory of strong turbulence in inhomogeneous plasmas is developed. Statistical nonlinear interactions between fluctuations are kept in the analysis as the renormalized drag, statistical noise and the averaged drive. The nonlinear interplay through them induces a quenching or suppressing effect, even if all the modes are unstable when they are analyzed independently. Variety in mode appearance takes place: one mode quenches the other two modes, or one mode is quenched by the other two modes, etc. The bifurcation of turbulence is analyzed and a phase diagram is drawn. Phase diagrams with cusp type catastrophe and butterfly type catastrophe are obtained. The subcritical bifurcation is possible to occur through the nonlinear interplay, even though each one is supercritical turbulence when analyzed independently. Analysis reveals that the nonlinear stability boundary (marginal point) and the amplitude of each mode may substantially shift from the conventional results of independent analyses. (author)

  15. Cellular adaptation to biomechanical stress across length scales in tissue homeostasis and disease.

    Science.gov (United States)

    Gilbert, Penney M; Weaver, Valerie M

    2017-07-01

    Human tissues are remarkably adaptable and robust, harboring the collective ability to detect and respond to external stresses while maintaining tissue integrity. Following injury, many tissues have the capacity to repair the damage - and restore form and function - by deploying cellular and molecular mechanisms reminiscent of developmental programs. Indeed, it is increasingly clear that cancer and chronic conditions that develop with age arise as a result of cells and tissues re-implementing and deregulating a selection of developmental programs. Therefore, understanding the fundamental molecular mechanisms that drive cell and tissue responses is a necessity when designing therapies to treat human conditions. Extracellular matrix stiffness synergizes with chemical cues to drive single cell and collective cell behavior in culture and acts to establish and maintain tissue homeostasis in the body. This review will highlight recent advances that elucidate the impact of matrix mechanics on cell behavior and fate across these length scales during times of homeostasis and in disease states. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Quantum chaos of a particle in a square well: Competing length scales and dynamical localization

    Science.gov (United States)

    Sankaranarayanan, R.; Lakshminarayan, A.; Sheorey, V. B.

    2001-10-01

    The classical and quantum dynamics of a particle trapped in a one-dimensional infinite square well with a time-periodic pulsed field is investigated. This is a two-parameter non-KAM (Kolmogorov-Arnold-Moser) generalization of the kicked rotor, which can be seen as the standard map of particles subjected to both smooth and hard potentials. The virtue of the generalization lies in the introduction of an extra parameter R, which is the ratio of two length scales, namely, the well width and the field wavelength. If R is a noninteger the dynamics is discontinuous and non-KAM. We have explored the role of R in controlling the localization properties of the eigenstates. In particular, the connection between classical diffusion and localization is found to generalize reasonably well. In unbounded chaotic systems such as these, while the nearest neighbor spacing distribution of the eigenvalues is less sensitive to the nature of the classical dynamics, the distribution of participation ratios of the eigenstates proves to be a sensitive measure; in the chaotic regimes the latter is log-normal. We find that the tails of the well converged localized states are exponentially localized despite the discontinuous dynamics while the bulk part shows fluctuations that tend to be closer to random matrix theory predictions. Time evolving states show considerable R dependence, and tuning R to enhance classical diffusion can lead to significantly larger quantum diffusion for the same field strengths, an effect that is potentially observable in present day experiments.

  17. Surface-immobilized hydrogel patterns on length scales from micrometer to nanometer

    Science.gov (United States)

    Zeira, Assaf

    The present work concentrates on the study of pattern generation and transfer processes of monolayer covered surfaces, deriving from the basic working concept of Constructive Lithography. As an advancement of constructive lithography, we developed a direct, one-step printing (contact electrochemical printing, CEP) and replication (contact electrochemical replication, CER) of hydrophilic organic monolayer patterns surrounded by a hydrophobic monolayer background. In addition, we present a process of transfer of metal between two contacting solid surfaces to predefined monolayer template pattern sites (contact electrochemical transfer, CET). This thesis shows that CEP, CER, and CET may be implemented under a variety of different experimental conditions, regardless of whether the initial "master" pattern was created by a parallel (fast) or serial (slow) patterning process. CEP and CER also posses the unique attractive property that each replica may equally function as master stamp in the fabrication of additional replicas. Moreover, due to a mechanism of selfcorrection patterned surfaces produced these process are often free of defects that the initial "master" stamp may had. We finally show that the electrochemical patterning of OTS monolayers on silicon can be further extended to flexible polymeric substrate materials as well as to a variety of chemical manipulations, allowing the fabrication of tridimensional (3D) composite structures made on the basis of readily available OTS compound. The results obtained suggest that such contact electrochemical processes could be used to rapidly generate multiple copies of surface patterns spanning variable length scales, this basic approach being applicable to rigid as well as flexible substrate materials.

  18. Comparison of the Effects of the Different Methods for Computing the Slope Length Factor at a Watershed Scale

    Directory of Open Access Journals (Sweden)

    Fu Suhua

    2013-09-01

    Full Text Available The slope length factor is one of the parameters of the Universal Soil Loss Equation (USLE and the Revised Universal Soil Loss Equation (RUSLE and is sometimes calculated based on a digital elevation model (DEM. The methods for calculating the slope length factor are important because the values obtained may depend on the methods used for calculation. The purpose of this study was to compare the difference in spatial distribution of the slope length factor between the different methods at a watershed scale. One method used the uniform slope length factor equation (USLFE where the effects of slope irregularities (such as slope gradient, etc. on soil erosion by water were not considered. The other method used segmented slope length factor equation(SSLFE which considered the effects of slope irregularities on soil erosion by water. The Arc Macro Language (AML Version 4 program for the revised universal soil loss equation(RUSLE.which uses the USLFE, was chosen to calculate the slope length factor. In a parallel analysis, the AML code of RUSLE Version 4 was modified according to the SSLFE to calculate the slope length factor. Two watersheds with different slope and gully densities were chosen. The results show that the slope length factor and soil loss using the USLFE method were lower than those using the SSLFE method, especially on downslopes watershed with more frequent steep slopes and higher gully densities. In addition, the slope length factor and soil loss calculated by the USLFE showed less spatial variation.

  19. The Effect of the Accelerometer Operating Range on Biomechanical Parameters: Stride Length, Velocity, and Peak Tibial Acceleration during Running

    Directory of Open Access Journals (Sweden)

    Christian Mitschke

    2018-01-01

    Full Text Available Previous studies have used accelerometers with various operating ranges (ORs when measuring biomechanical parameters. However, it is still unclear whether ORs influence the accuracy of running parameters, and whether the different stiffnesses of footwear midsoles influence this accuracy. The purpose of the present study was to systematically investigate the influence of OR on the accuracy of stride length, running velocity, and on peak tibial acceleration. Twenty-one recreational heel strike runners ran on a 15-m indoor track at self-selected running speeds in three footwear conditions (low to high midsole stiffness. Runners were equipped with an inertial measurement unit (IMU affixed to the heel cup of the right shoe and with a uniaxial accelerometer at the right tibia. Accelerometers (at the tibia and included in the IMU with a high OR of ±70 g were used as the reference and the data were cut at ±32, ±16, and at ±8 g in post-processing, before calculating parameters. The results show that the OR influenced the outcomes of all investigated parameters, which were not influenced by tested footwear conditions. The lower ORs were associated with an underestimation error for all biomechanical parameters, which increased noticeably with a decreasing OR. It can be concluded that accelerometers with a minimum OR of ±32 g should be used to avoid inaccurate measurements.

  20. Reference range of the weekly uterine cervical length at 8 to 38 weeks of gestation in the center of Iran

    Directory of Open Access Journals (Sweden)

    Esmat Jafari-Dehkordi

    2015-01-01

    Conclusion: Our study provides a new chart and reference values for normal uterine cervical length throughout gestation based on a large sample in the center of Iran. There was a progressive decrease in mean uterine cervical length with increasing gestational age in the population of this study. Our established charts for uterine cervical length throughout gestation might be more useful than a single cut-off value for more efficient prevention and management of preterm birth.

  1. Reference range of the weekly uterine cervical length at 8 to 38 weeks of gestation in the center of Iran

    OpenAIRE

    Jafari-Dehkordi, Esmat; Adibi, Atoosa; Sirus, Mehri

    2015-01-01

    Background: There is an inverse relation between the uterine cervical length during pregnancy and the frequency of preterm delivery. The purpose of this study was to construct a chart and evaluate the cervical length at 8 to 38 weeks of normal gestation in the center of Iran. Materials and Methods: Uterine cervical length was measured on 930 asymptomatic pregnant women by abdominal ultrasonographic technique. For statistical evaluation, regression analysis and calculation of percentiles w...

  2. Diffusion effects on volume-selective NMR at small length scales

    International Nuclear Information System (INIS)

    Gaedke, Achim

    2009-01-01

    In this thesis, the interplay between diffusion and relaxation effects in spatially selective NMR experiments at short length scales is explored. This is especially relevant in the context of both conventional and mechanically detected MRI at (sub)micron resolution in biological specimens. Recent results on selectively excited very thin slices showed an in-slice-magnetization recovery orders of magnitude faster than the longitudinal relaxation time T1. However, those experiments were run on fully relaxed samples while MRI and especially mechanically detected NMR experiments are typically run in a periodic fashion with repetition times far below T1. The main purpose of this work therefore was to extend the study of the interplay between diffusion and longitudinal relaxation to periodic excitations. In some way, this is inverse phenomenon to the DESIRE (Diffusive Enhancement of SIgnal and REsolution) approach, proposed 1992 by Lauterbur. Experiments on periodically excited thin slices were carried out at a dedicated static field gradient cryomagnet with magnetic field gradients up to 180 T/m. In order to obtain plane slices, an appropriate isosurface of the gradient magnet had to be identified. It was found at a field of 3.8 T with a gradient of 73 T/m. In this field, slices down to a thickness of 3.2 μm could be excited. The detection of the NMR signal was done using FIDs instead of echoes as the excitation bandwidth of those thin slices is sufficiently small to observe FIDs which are usually considered to be elusive to detection in such strong static field gradients. A simulation toolbox based on the full Bloch-Torrey-equation was developed to describe the excitation and the formation of NMR signals under those unusual conditions as well as the interplay of diffusion and magnetization recovery. Both the experiments and the simulations indicate that diffusion effects lead to a strongly enhanced magnetization modulation signal also under periodic excitation

  3. Reference range of the weekly uterine cervical length at 8 to 38 weeks of gestation in the center of Iran

    Science.gov (United States)

    Jafari-Dehkordi, Esmat; Adibi, Atoosa; Sirus, Mehri

    2015-01-01

    Background: There is an inverse relation between the uterine cervical length during pregnancy and the frequency of preterm delivery. The purpose of this study was to construct a chart and evaluate the cervical length at 8 to 38 weeks of normal gestation in the center of Iran. Materials and Methods: Uterine cervical length was measured on 930 asymptomatic pregnant women by abdominal ultrasonographic technique. For statistical evaluation, regression analysis and calculation of percentiles were performed. Results: Our data show a significant decrease in uterine cervical length with increasing gestational age. The mean uterine cervical length exhibits minimal changes from 10 to 24 weeks for most women in this study, although the shortening is more prominent at 33 to 38 weeks’ gestation. The mean shortening of the uterine cervical length between the second and the ninth months was 14.82% (P < 0.05). Also, the cervical length means in trimesters 1, 2 and 3 were 39.30 ± 4.33, 38.28 ± 5.13 and 36.58 ± 4.58 mm, respectively. The third trimester showed a significant reduction (P < 0.05) in cervical length compared to the first and second trimesters (6.92% and 4.44%, respectively). New charts with the 5th, 10th, 50th, 90th, and 95th percentile are presented. Conclusion: Our study provides a new chart and reference values for normal uterine cervical length throughout gestation based on a large sample in the center of Iran. There was a progressive decrease in mean uterine cervical length with increasing gestational age in the population of this study. Our established charts for uterine cervical length throughout gestation might be more useful than a single cut-off value for more efficient prevention and management of preterm birth. PMID:26261817

  4. Length-Displacement Scaling of Lunar Thrust Faults and the Formation of Uphill-Facing Scarps

    Science.gov (United States)

    Hiesinger, Harald; Roggon, Lars; Hetzel, Ralf; Clark, Jaclyn D.; Hampel, Andrea; van der Bogert, Carolyn H.

    2017-04-01

    Lobate scarps are straight to curvilinear positive-relief landforms that occur on all terrestrial bodies [e.g., 1-3]. They are the surface manifestation of thrust faults that cut through and offset the upper part of the crust. Fault scarps on planetary surfaces provide the opportunity to study the growth of faults under a wide range of environmental conditions (e.g., gravity, temperature, pore pressure) [4]. We studied four lunar thrust-fault scarps (Simpelius-1, Morozov (S1), Fowler, Racah X-1) ranging in length from 1.3 km to 15.4 km [5] and found that their maximum total displacements are linearly correlated with length over one order of magnitude. We propose that during the progressive accumulation of slip, lunar faults propagate laterally and increase in length. On the basis of our measurements, the ratio of maximum displacement, D, to fault length, L, ranges from 0.017 to 0.028 with a mean value of 0.023 (or 2.3%). This is an order of magnitude higher than the value of 0.1% derived by theoretical considerations [4], and about twice as large as the value of 0.012-0.013 estimated by [6,7]. Our results, in addition to recently published findings for other lunar scarps [2,8], indicate that the D/L ratios of lunar thrust faults are similar to those of faults on Mercury and Mars (e.g., 1, 9-11], and almost as high as the average D/L ratio of 3% for faults on Earth [16,23]. Three of the investigated thrust fault scarps (Simpelius-1, Morozov (S1), Fowler) are uphill-facing scarps generated by slip on faults that dip in the same direction as the local topography. Thrust faults with such a geometry are common ( 60% of 97 studied scarps) on the Moon [e.g., 2,5,7]. To test our hypothesis that the surface topography plays an important role in the formation of uphill-facing fault scarps by controlling the vertical load on a fault plane, we simulated thrust faulting and its relation to topography with two-dimensional finite-element models using the commercial code ABAQUS

  5. Quantitative atom probe analysis of nanostructure containing clusters and precipitates with multiple length scales

    International Nuclear Information System (INIS)

    Marceau, R.K.W.; Stephenson, L.T.; Hutchinson, C.R.; Ringer, S.P.

    2011-01-01

    A model Al-3Cu-(0.05 Sn) (wt%) alloy containing a bimodal distribution of relatively shear-resistant θ' precipitates and shearable GP zones is considered in this study. It has recently been shown that the addition of the GP zones to such microstructures can lead to significant increases in strength without a decrease in the uniform elongation. In this study, atom probe tomography (APT) has been used to quantitatively characterise the evolution of the GP zones and the solute distribution in the bimodal microstructure as a function of applied plastic strain. Recent nuclear magnetic resonance (NMR) analysis has clearly shown strain-induced dissolution of the GP zones, which is supported by the current APT data with additional spatial information. There is significant repartitioning of Cu from the GP zones into the solid solution during deformation. A new approach for cluster finding in APT data has been used to quantitatively characterise the evolution of the sizes and shapes of the Cu containing features in the solid solution solute as a function of applied strain. -- Research highlights: → A new approach for cluster finding in atom probe tomography (APT) data has been used to quantitatively characterise the evolution of the sizes and shapes of the Cu containing features with multiple length scales. → In this study, a model Al-3Cu-(0.05 Sn) (wt%) alloy containing a bimodal distribution of relatively shear-resistant θ' precipitates and shearable GP zones is considered. → APT has been used to quantitatively characterise the evolution of the GP zones and the solute distribution in the bimodal microstructure as a function of applied plastic strain. → It is clearly shown that there is strain-induced dissolution of the GP zones with significant repartitioning of Cu from the GP zones into the solid solution during deformation.

  6. Ion-beam induced transformations in nanoscale multilayers: Evolution of clusters with preferred length scales

    Science.gov (United States)

    Bera, S.; Satpati, B.; Goswami, D. K.; Bhattacharjee, K.; Satyam, P. V.; Dev, B. N.

    2006-04-01

    Ion-irradiation-induced modifications of a periodic Pt/C multilayer system containing a small amount of Fe have been analyzed by transmission electron microscopy and grazing incidence x-ray diffraction (GIXRD) studies. The multilayer stack with 16 Pt/C layer pairs (period of 4.23 nm) was fabricated on a glass substrate. A 2 MeV Au2+ ion beam was rastered on the sample to obtain uniformly irradiated strips with fluences from 1×1014 to 1×1015 ions/cm2. Ion irradiation has been found to cause preferential migration of Fe towards Pt layers [Bera et al., Nucl. Instrum. Methods Phys. Res. B 212, 530 (2003)]. Cross-sectional transmission electron microscopy (XTEM) shows considerable atomic redistribution for irradiation at the highest ion fluence (1×1015 ions/cm2). This structure is composed of small clusters. Phase separation and cluster formation processes are discussed. Periodic multilayers have periodicity only in the direction normal to the multilayer surface. However, Fourier transform (FT) of the XTEM images of the sample irradiated at the highest fluence shows extra off-normal Fourier components of superlattice periodicities arising due to ion irradiation. These extra spots in the FT are due to preferential length scales in intercluster separation in three dimensions. With a proper understanding of this phenomenon it may be possible to fabricate useful three-dimensional self-assembled structures of nanoclusters. Our high resolution transmission electron microscopy and GIXRD results reveal the formation of an FePt alloy. As FePt is a magnetic alloy, our observation raises the possibility of fabrication of ion-beam induced magnetic nanocluster lattices.

  7. Ion-beam induced transformations in nanoscale multilayers: Evolution of clusters with preferred length scales

    International Nuclear Information System (INIS)

    Bera, S.; Satpati, B.; Goswami, D. K.; Bhattacharjee, K.; Satyam, P. V.; Dev, B. N.

    2006-01-01

    Ion-irradiation-induced modifications of a periodic Pt/C multilayer system containing a small amount of Fe have been analyzed by transmission electron microscopy and grazing incidence x-ray diffraction (GIXRD) studies. The multilayer stack with 16 Pt/C layer pairs (period of 4.23 nm) was fabricated on a glass substrate. A 2 MeV Au 2+ ion beam was rastered on the sample to obtain uniformly irradiated strips with fluences from 1x10 14 to 1x10 15 ions/cm 2 . Ion irradiation has been found to cause preferential migration of Fe towards Pt layers [Bera et al., Nucl. Instrum. Methods Phys. Res. B 212, 530 (2003)]. Cross-sectional transmission electron microscopy (XTEM) shows considerable atomic redistribution for irradiation at the highest ion fluence (1x10 15 ions/cm 2 ). This structure is composed of small clusters. Phase separation and cluster formation processes are discussed. Periodic multilayers have periodicity only in the direction normal to the multilayer surface. However, Fourier transform (FT) of the XTEM images of the sample irradiated at the highest fluence shows extra off-normal Fourier components of superlattice periodicities arising due to ion irradiation. These extra spots in the FT are due to preferential length scales in intercluster separation in three dimensions. With a proper understanding of this phenomenon it may be possible to fabricate useful three-dimensional self-assembled structures of nanoclusters. Our high resolution transmission electron microscopy and GIXRD results reveal the formation of an FePt alloy. As FePt is a magnetic alloy, our observation raises the possibility of fabrication of ion-beam induced magnetic nanocluster lattices

  8. In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale.

    Directory of Open Access Journals (Sweden)

    Min Jae Song

    2010-09-01

    Full Text Available A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms.

  9. Ion-Scale Spectral Break in the Normal Plasma Beta Range in the Solar Wind Turbulence

    Science.gov (United States)

    Wang, X.; Tu, C.-Y.; He, J.-S.; Wang, L.-H.

    2018-01-01

    The spectral break (fb) of magnetic fluctuations at the ion scale in the solar wind is considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable two are related respectively to proton thermal gyroradius ρi and proton inertial length di. The corresponding frequencies of them are fρi=VSW/(2πρi) and fdi=VSW/(2πdi), respectively, where VSW is the solar wind speed. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar value when plasma beta β ˜ 1. Here we do a statistical study to see if the two ratios fb/fρi and fb/fdi have different dependence on β in the solar wind turbulence with 0.1 fdi is statistically not dependent on β, and the average value of it is 0.48 ± 0.06. However, fb/fρi increases with increasing β clearly and is significantly smaller than fb/fdi when β fdi, and the influence of β could be negligible in the studied β range. It indicates a preference of the dissipation mechanism associated with di in the solar wind with 0.1 < β < 0.8. Further theoretical studies are needed to give detailed explanation.

  10. Manufacturing test of large scale hollow capsule and long length cladding in the large scale oxide dispersion strengthened (ODS) martensitic steel

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2004-04-01

    Mass production capability of oxide dispersion strengthened (ODS) martensitic steel cladding (9Cr) has being evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube (raw materials powder production, mechanical alloying (MA) by ball mill, canning, hot extrusion, and machining) is a dominant factor in the total cost for manufacturing ODS ferritic steel cladding. In this study, the large-sale 9Cr-ODS martensitic steel mother tube which is made with a large-scale hollow capsule, and long length claddings were manufactured, and the applicability of these processes was evaluated. Following results were obtained in this study. (1) Manufacturing the large scale mother tube in the dimension of 32 mm OD, 21 mm ID, and 2 m length has been successfully carried out using large scale hollow capsule. This mother tube has a high degree of accuracy in size. (2) The chemical composition and the micro structure of the manufactured mother tube are similar to the existing mother tube manufactured by a small scale can. And the remarkable difference between the bottom and top sides in the manufactured mother tube has not been observed. (3) The long length cladding has been successfully manufactured from the large scale mother tube which was made using a large scale hollow capsule. (4) For reducing the manufacturing cost of the ODS steel claddings, manufacturing process of the mother tubes using a large scale hollow capsules is promising. (author)

  11. Taylor-plasticity-based analysis of length scale effects in void growth

    KAUST Repository

    Liu, Junxian

    2014-09-25

    We have studied the void growth problem by employing the Taylor-based strain gradient plasticity theories, from which we have chosen the following three, namely, the mechanism-based strain gradient (MSG) plasticity (Gao et al 1999 J. Mech. Phys. Solids 47 1239, Huang et al 2000 J. Mech. Phys. Solids 48 99-128), the Taylor-based nonlocal theory (TNT; 2001 Gao and Huang 2001 Int. J. Solids Struct. 38 2615) and the conventional theory of MSG (CMSG; Huang et al 2004 Int. J. Plast. 20 753). We have addressed the following three issues which occur when plastic deformation at the void surface is unconstrained. (1) Effects of elastic deformation. Elasticity is essential for cavitation instability. It is therefore important to guarantee that the gradient term entering the Taylor model is the effective plastic strain gradient instead of the total strain gradient. We propose a simple elastic-plastic decomposition method. When the void size approaches the minimum allowable initial void size related to the maximum allowable geometrically necessary dislocation density, overestimation of the flow stress due to the negligence of the elastic strain gradient is on the order of lεY/R0 near the void surface, where l, εY and R0 are, respectively, the intrinsic material length scale, the yield strain and the initial void radius. (2) MSG intrinsic inconsistency, which was initially mentioned in Gao et al (1999 J. Mech. Phys. Solids 47 1239) but has not been the topic of follow-up studies. We realize that MSG higher-order stress arises due to the linear-strain-field approximation within the mesoscale cell with a nonzero size, lε. Simple analysis shows that within an MSG mesoscale cell near the void surface, the difference between microscale and mesoscale strains is on the order of (lε/R0)2, indicating that when lε/R0 ∼ 1.0, the higher-order stress effect can make the MSG result considerably different from the TNT or CMSG results. (3) Critical condition for cavitation instability

  12. Hierarchical Self-Assembly of Peptide Amphiphiles: Form and Function at Multiple Length Scales

    Science.gov (United States)

    Zha, Runye Helen

    Hierarchical self-assembly, the organization of molecules into supramolecular structures of increasing size and complexity, is a potent tool for materials synthesis and requires understanding the connections of structure across multiple length scales. Herein, self-assembly of peptide amphiphiles (PAs) into nanoscopic and macroscopic materials is explored, and their anti-cancer applications are investigated. First, nanoscale assembly is examined in the context of an anti-angiogenic PA bearing the G-helix motif of maspin, a tumor suppressor protein. Assembly of this maspin-mimetic PA (MMPA) stabilizes the native G-helix conformation and improves binding to endothelial cells. Furthermore, PA nanostructures significantly increase cell adhesion to fibronectin as compared to G-helix peptide alone. Combined with its inhibitory effect on cell migration, MMPA nanostructures thus show anti-angiogenic activity on par with maspin protein in vitro and in vivo. Second, assembly of cationic PAs with hyaluronic acid (HA), an anionic polyelectrolyte, into macroscopic membranes is explored using PAs with identical formal charge but systematically varied self-assembly domains. Results suggest that membrane formation is dictated by the initial moments of component aggregation and is highly sensitive to PA molecular structure via nanoscale assembly. Specifically, PAs with beta-sheet forming residues are nanofibrous and have high surface charge density, leading to robust membranes with aligned-fiber microstructure. PAs without beta-sheet forming residues are nanospherical and have low surface charge density, leading to weak membranes with non-fibrous finger-like microstructure. Lastly, the principles of PA-HA membrane assembly are applied towards development of anti-cancer therapeutic biomaterials. Here, cytotoxic PAs bearing the epitope (KLAKLAKbeta)2 are co-assembled with non-bioactive cationic PA in order to achieve varying nanoscale morphology. These nanostructures are then

  13. Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model.

    Science.gov (United States)

    Kalwarczyk, Tomasz; Sozanski, Krzysztof; Ochab-Marcinek, Anna; Szymanski, Jedrzej; Tabaka, Marcin; Hou, Sen; Holyst, Robert

    2015-09-01

    This paper deals with the recent phenomenological model of the motion of nanoscopic objects (colloidal particles, proteins, nanoparticles, molecules) in complex liquids. We analysed motion in polymer, micellar, colloidal and protein solutions and the cytoplasm of living cells using the length-scale dependent viscosity model. Viscosity monotonically approaches macroscopic viscosity as the size of the object increases and thus gives a single, coherent picture of motion at the nano and macro scale. The model includes interparticle interactions (solvent-solute), temperature and the internal structure of a complex liquid. The depletion layer ubiquitously occurring in complex liquids is also incorporated into the model. We also discuss the biological aspects of crowding in terms of the length-scale dependent viscosity model. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A micromechanical approach of suffusion based on a length scale analysis of the grain detachment and grain transport processes.

    Science.gov (United States)

    Wautier, Antoine; Bonelli, Stéphane; Nicot, François

    2017-06-01

    Suffusion is the selective erosion of the finest particles of a soil subjected to an internal flow. Among the four types of internal erosion and piping identified today, suffusion is the least understood. Indeed, there is a lack of micromechanical approaches for identifying the critical microstructural parameters responsible for this process. Based on a discrete element modeling of non cohesive granular assemblies, specific micromechanical tools are developed in a unified framework to account for the two first steps of suffusion, namely the grain detachment and the grain transport processes. Thanks to the use of an enhanced force chain definition and autocorrelation functions the typical lengths scales associated with grain detachment are characterized. From the definition of transport paths based on a graph description of the pore space the typical lengths scales associated with grain transport are recovered. For a uniform grain size distribution, a separation of scales between these two processes exists for the finest particles of a soil

  15. A micromechanical approach of suffusion based on a length scale analysis of the grain detachment and grain transport processes.

    Directory of Open Access Journals (Sweden)

    Wautier Antoine

    2017-01-01

    Full Text Available Suffusion is the selective erosion of the finest particles of a soil subjected to an internal flow. Among the four types of internal erosion and piping identified today, suffusion is the least understood. Indeed, there is a lack of micromechanical approaches for identifying the critical microstructural parameters responsible for this process. Based on a discrete element modeling of non cohesive granular assemblies, specific micromechanical tools are developed in a unified framework to account for the two first steps of suffusion, namely the grain detachment and the grain transport processes. Thanks to the use of an enhanced force chain definition and autocorrelation functions the typical lengths scales associated with grain detachment are characterized. From the definition of transport paths based on a graph description of the pore space the typical lengths scales associated with grain transport are recovered. For a uniform grain size distribution, a separation of scales between these two processes exists for the finest particles of a soil

  16. A new faces scale in pain measurement: a test of bias from current mood, trait affectivity, and scale range.

    Science.gov (United States)

    Elfering, Achim; Grebner, Simone

    2012-01-01

    Faces pain rating scales used among children have been criticized to confound affective states with pain when smiling faces are included. This experimental study is an attempt to examine the possible confounding of affective states with pain when smiling faces are used as part of a faces scale. The meaning of the faces was tested to depend on current mood, current pain, trait affectivity, and inclusion versus exclusion of smiling faces. Sixty-four participants made 6,720 two-categorical pain judgments on faces with different mouth curvature. In multilevel regression analysis, current level of pain and negative trait affectivity biased faces' meaning only when the smiling faces were excluded from the scale. In adults, the new full range faces pain scale including a midpoint neutral face and smiling faces was more robust than the restricted scale. The faces scale that was tested in this study is not applicable for patient measurement but it is an interesting tool for psychological research.

  17. Electron beam absorption in solid and in water phantoms: depth scaling and energy-range relations

    International Nuclear Information System (INIS)

    Grosswendt, B.; Roos, M.

    1989-01-01

    In electron dosimetry energy parameters are used with values evaluated from ranges in water. The electron ranges in water may be deduced from ranges measured in solid phantoms. Several procedures recommended by national and international organisations differ both in the scaling of the ranges and in the energy-range relations for water. Using the Monte Carlo method the application of different procedures for electron energies below 10 MeV is studied for different phantom materials. It is shown that deviations in the range scaling and in the energy-range relations for water may accumulate to give energy errors of several per cent. In consequence energy-range relations are deduced for several solid phantom materials which enable a single-step energy determination. (author)

  18. Channel length scaling and the impact of metal gate work function ...

    Indian Academy of Sciences (India)

    port and experimental data extracted in DG-MOSFETs devices. At these channel length limits, the susceptibility of the transistor to short-channel effects (SCE) is monitored in several ways such as threshold voltage (VTH), subthreshold voltage slope (S), leakage current (IOFF) and the drain-induced barrier lowering (DIBL).

  19. Modelling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks

    International Nuclear Information System (INIS)

    Amanifard, N.; Nariman-Zadeh, N.; Farahani, M.H.; Khalkhali, A.

    2008-01-01

    Over the past 15 years there have been several research efforts to capture the stall inception nature in axial flow compressors. However previous analytical models could not explain the formation of short-length-scale stall cells. This paper provides a new model based on evolved GMDH neural network for transient evolution of multiple short-length-scale stall cells in an axial compressor. Genetic Algorithms (GAs) are also employed for optimal design of connectivity configuration of such GMDH-type neural networks. In this way, low-pass filter (LPF) pressure trace near the rotor leading edge is modelled with respect to the variation of pressure coefficient, flow rate coefficient, and number of rotor rotations which are defined as inputs

  20. Morphological quantification of hierarchical geomaterials by X-ray nano-CT bridges the gap from nano to micro length scales

    KAUST Repository

    Brisard, S.

    2012-01-30

    Morphological quantification of the complex structure of hierarchical geomaterials is of great relevance for Earth science and environmental engineering, among others. To date, methods that quantify the 3D morphology on length scales ranging from a few tens of nanometers to several hun-dred nanometers have had limited success. We demonstrate, for the first time, that it is possible to go beyond visualization and to extract quantitative morphological information from X-ray images in the aforementioned length scales. As examples, two different hierarchical geomaterials exhibiting complex porous structures ranging from nanometer to macroscopic scale are studied: a flocculated clay water suspension and two hydrated cement pastes. We show that from a single projection image it is possible to perform a direct computation of the ultra-small angle-scattering spectra. The predictions matched very well the experimental data obtained by the best ultra-small angle-scattering experimental setups as observed for the cement paste. In this context, we demonstrate that the structure of flocculated clay suspension exhibit two well-distinct regimes of aggregation, a dense mass fractal aggregation at short distance and a more open structure at large distance, which can be generated by a 3D reaction limited cluster-cluster aggregation process. For the first time, a high-resolution 3D image of fibrillar cement paste cluster was obtained from limited angle nanotomography.

  1. Distinct Length Scales in the VO2 Metal-Insulator Transition Revealed by Bi-chromatic Optical Probing

    International Nuclear Information System (INIS)

    Wang, Lei; Novikova, Irina B.; Klopf, John M.; Madaras, Scott E.; Williams, Gwyn P.; Madaras, Eric; Lu, Liwei; Wolf, Stuart A.; Lukaszew, Rosa A.

    2014-01-01

    Upon a heating-induced metal-insulator transition (MIT) in VO 2 , microscopic metallic VO 2 puddles nucleate and coarsen within the insulating matrix. This coexistence of the two phases across the transition spans distinct length scales as their relative domain sizes change. Far-field optical probing is applied to follow the dynamic evolution of the highly correlated metallic domains as the MIT progresses

  2. Correlation Lengths for Estimating the Large-Scale Carbon and Heat Content of the Southern Ocean

    Science.gov (United States)

    Mazloff, M. R.; Cornuelle, B. D.; Gille, S. T.; Verdy, A.

    2018-02-01

    The spatial correlation scales of oceanic dissolved inorganic carbon, heat content, and carbon and heat exchanges with the atmosphere are estimated from a realistic numerical simulation of the Southern Ocean. Biases in the model are assessed by comparing the simulated sea surface height and temperature scales to those derived from optimally interpolated satellite measurements. While these products do not resolve all ocean scales, they are representative of the climate scale variability we aim to estimate. Results show that constraining the carbon and heat inventory between 35°S and 70°S on time-scales longer than 90 days requires approximately 100 optimally spaced measurement platforms: approximately one platform every 20° longitude by 6° latitude. Carbon flux has slightly longer zonal scales, and requires a coverage of approximately 30° by 6°. Heat flux has much longer scales, and thus a platform distribution of approximately 90° by 10° would be sufficient. Fluxes, however, have significant subseasonal variability. For all fields, and especially fluxes, sustained measurements in time are required to prevent aliasing of the eddy signals into the longer climate scale signals. Our results imply a minimum of 100 biogeochemical-Argo floats are required to monitor the Southern Ocean carbon and heat content and air-sea exchanges on time-scales longer than 90 days. However, an estimate of formal mapping error using the current Argo array implies that in practice even an array of 600 floats (a nominal float density of about 1 every 7° longitude by 3° latitude) will result in nonnegligible uncertainty in estimating climate signals.

  3. Calibration of Eringen's small length scale coefficient for initially stressed vibrating nonlocal Euler beams based on microstructured beam model

    International Nuclear Information System (INIS)

    Wang, C M; Zhang, Z; Challamel, N; Duan, W H

    2013-01-01

    In this paper, we calibrate Eringen's small length scale coefficient e 0 for an initially stressed vibrating nonlocal Euler beam via a microstructured beam modelled by some repetitive cells comprising finite rigid segments and elastic rotational springs. By adopting the pseudo-differential operator and Padé's approximation, an analytical solution for the vibration frequency in terms of initial stress may be developed for the microstructured beam model. When comparing this analytical solution with the established exact vibration solution from the nonlocal beam theory, one finds that the calibrated Eringen's small length scale coefficient e 0 is given by e 0 = √(1/6)-(1/12)(σ 0 /σ-breve m ) where σ 0 is the initial stress and σ-breve m is the mth mode buckling stress of the corresponding local Euler beam. It is shown that e 0 varies with respect to the initial axial stress, from 1/√(12)∼0.289 at the buckling compressive stress to 1/√6∼0.408 when the axial stress is zero and it monotonically increases with increasing initial tensile stress. The small length scale coefficient e 0 , however, does not depend on the vibration/buckling mode considered. (paper)

  4. Evolution of deformation heterogeneity at multiple length scales in a strongly textured zinc layer on galvanized steel

    International Nuclear Information System (INIS)

    Ghosh, A; Gurao, N P

    2015-01-01

    The evolution of heterogeneity of plastic deformation in a zinc layer has been probed at multiple length scales using a battery of characterization tools like X-ray diffraction, electron back scatter diffraction (EBSD) and digital image correlation. The experimental results indicate that plastic deformation is heterogeneous at different length scales and the value of micro, meso and macro strain by different characterization techniques shows a different value. The value of strain determined at the meso and micro length scale from EBSD and X-ray diffraction was negligible, however, the macro-strain as determined from X-ray peak shift was significant. EBSD results showed evidence of profuse {101-bar2} <101-bar1> contraction twinning in the zinc layer with higher intragranular misorientation in the twin compared to the matrix. It is therefore, inferred that the evolution of higher intergranular (between matrix and twin) strain due to prolific contraction twinning contributes to the failure of zinc layer on galvanized steel. (paper)

  5. Evolution of critical day length for diapause induction enables range expansion of Diorhabda carinulata, a biological control agent against tamarisk (Tamarix spp.).

    Science.gov (United States)

    Bean, Dan W; Dalin, Peter; Dudley, Tom L

    2012-07-01

    In classical weed biological control, small collections of arthropods are made from one or a few sites in the native range of the target plant and are introduced to suppress the plant where it has become invasive, often across a wide geographic range. Ecological mismatches in the new range are likely, and success using the biocontrol agent may depend on postrelease evolution of beneficial life history traits. In this study, we measure the evolution of critical day length for diapause induction (day length at which 50% of the population enters dormancy), in a beetle (Diorhabda carinulata) introduced into North America from China to control an exotic shrub, Tamarix spp. Beetle populations were sampled from four sites in North America 7 years after introduction, and critical day length was shown to have declined, forming a cline over a latitudinal gradient At one field site, decreased critical day length was correlated with 16 additional days of reproductive activity, resulting in a closer match between beetle life history and the phenology of Tamarix. These findings indicate an enhanced efficacy and an increasingly wider range for D. carinulata in Tamarix control.

  6. Long-range μPIV to resolve the small scales in a jet at high Reynolds number

    Science.gov (United States)

    Fiscaletti, D.; Westerweel, J.; Elsinga, G. E.

    2014-09-01

    The investigation of flows at high Reynolds number is of great interest for the theory of turbulence, in that the large and the small scales of turbulence show a clear separation. But, as the Reynolds number of the flow increases, the size of the Kolmogorov length scale () drops almost proportionally. Aiming at achieving the adequate spatial resolution in the central region of a self-similar round jet at high Reynolds numbers (), a long-range μPIV system was applied. A vector spacing of was achieved, where the Kolmogorov length scale was estimated to be . The resulting velocity fields were used to characterize the small-scale flow structures in this jet. The autocorrelation maps of vorticity and (the imaginary part of the eigenvalue of the reduced velocity gradient tensor) reveal that the structures of intense vorticity have a characteristic diameter of approximately . From the autocorrelation map of the reduced (2D) rate of dissipation, it is inferred that the regions of intense dissipation tend to organize in the form of sheets with a characteristic thickness of approximately . The regions of intense dissipation have the tendency to appear in the vicinity of intense vortices. Furthermore, the joint pdf of the two invariants of the reduced velocity gradient tensor exhibits the characteristic teapot-shape. These results, based on a statistical analysis of the data, are in agreement with previous numerical and experimental studies at lower Reynolds number, which validates the suitability of long-range μPIV for characterizing turbulent flow structures at high Reynolds number.

  7. CHANG-ES. IX. Radio scale heights and scale lengths of a consistent sample of 13 spiral galaxies seen edge-on and their correlations

    Science.gov (United States)

    Krause, Marita; Irwin, Judith; Wiegert, Theresa; Miskolczi, Arpad; Damas-Segovia, Ancor; Beck, Rainer; Li, Jiang-Tao; Heald, George; Müller, Peter; Stein, Yelena; Rand, Richard J.; Heesen, Volker; Walterbos, Rene A. M.; Dettmar, Ralf-Jürgen; Vargas, Carlos J.; English, Jayanne; Murphy, Eric J.

    2018-03-01

    Aim. The vertical halo scale height is a crucial parameter to understand the transport of cosmic-ray electrons (CRE) and their energy loss mechanisms in spiral galaxies. Until now, the radio scale height could only be determined for a few edge-on galaxies because of missing sensitivity at high resolution. Methods: We developed a sophisticated method for the scale height determination of edge-on galaxies. With this we determined the scale heights and radial scale lengths for a sample of 13 galaxies from the CHANG-ES radio continuum survey in two frequency bands. Results: The sample average values for the radio scale heights of the halo are 1.1 ± 0.3 kpc in C-band and 1.4 ± 0.7 kpc in L-band. From the frequency dependence analysis of the halo scale heights we found that the wind velocities (estimated using the adiabatic loss time) are above the escape velocity. We found that the halo scale heights increase linearly with the radio diameters. In order to exclude the diameter dependence, we defined a normalized scale height h˜ which is quite similar for all sample galaxies at both frequency bands and does not depend on the star formation rate or the magnetic field strength. However, h˜ shows a tight anticorrelation with the mass surface density. Conclusions: The sample galaxies with smaller scale lengths are more spherical in the radio emission, while those with larger scale lengths are flatter. The radio scale height depends mainly on the radio diameter of the galaxy. The sample galaxies are consistent with an escape-dominated radio halo with convective cosmic ray propagation, indicating that galactic winds are a widespread phenomenon in spiral galaxies. While a higher star formation rate or star formation surface density does not lead to a higher wind velocity, we found for the first time observational evidence of a gravitational deceleration of CRE outflow, e.g. a lowering of the wind velocity from the galactic disk.

  8. Long-gauge length embedded fiber optic ultrasonic sensor for large-scale concrete structures

    Science.gov (United States)

    Yuan, Libo; Zhou, Limin; Jin, Wei

    2004-02-01

    A fiber optic ultrasonic sensor based on Fizeau interferometer has been developed and demonstrated. A helium-neon laser light source with wavelength 0.6328 μm is used in our experiment. A special feature is its Fizeau configuration, which enables one to eliminate much undesirable noise by combining both the reference arm and the sensing arm within the same length of fiber. The dynamic response model of photo-elastic effect of ultrasonic wave and optical fiber is established. The fiber optic ultrasonic sensor experimental results are obtained and compared with the convenient PZT transducer.

  9. Dyson-Schwinger equations: connecting small and large length-scales

    International Nuclear Information System (INIS)

    The phenomenological application of Dyson-Schwinger equations to the calculation of meson properties observable at TJNAF is illustrated. Particular emphasis is given to the ability of this framework to unify long-range effects constrained by chiral symmetry with short-range effects prescribed by perturbation theory, and interpolate between them

  10. On the performance of a generic length scale turbulence model within an adaptive finite element ocean model

    Science.gov (United States)

    Hill, Jon; Piggott, M. D.; Ham, David A.; Popova, E. E.; Srokosz, M. A.

    2012-10-01

    Research into the use of unstructured mesh methods for ocean modelling has been growing steadily in the last few years. One advantage of using unstructured meshes is that one can concentrate resolution where it is needed. In addition, dynamic adaptive mesh optimisation (DAMO) strategies allow resolution to be concentrated when this is required. Despite the advantage that DAMO gives in terms of improving the spatial resolution where and when required, small-scale turbulence in the oceans still requires parameterisation. A two-equation, generic length scale (GLS) turbulence model (one equation for turbulent kinetic energy and another for a generic turbulence length-scale quantity) adds this parameterisation and can be used in conjunction with adaptive mesh techniques. In this paper, an implementation of the GLS turbulence parameterisation is detailed in a non-hydrostatic, finite-element, unstructured mesh ocean model, Fluidity-ICOM. The implementation is validated by comparing to both a laboratory-scale experiment and real-world observations, on both fixed and adaptive meshes. The model performs well, matching laboratory and observed data, with resolution being adjusted as necessary by DAMO. Flexibility in the prognostic fields used to construct the error metric used in DAMO is required to ensure best performance. Moreover, the adaptive mesh models perform as well as fixed mesh models in terms of root mean square error to observation or theoretical mixed layer depths, but uses fewer elements and hence has a reduced computational cost.

  11. Studying Soft-matter and Biological Systems over a Wide Length-scale from Nanometer and Micrometer Sizes at the Small-angle Neutron Diffractometer KWS-2

    Science.gov (United States)

    Radulescu, Aurel; Szekely, Noemi Kinga; Appavou, Marie-Sousai; Pipich, Vitaliy; Kohnke, Thomas; Ossovyi, Vladimir; Staringer, Simon; Schneider, Gerald J.; Amann, Matthias; Zhang-Haagen, Bo; Brandl, Georg; Drochner, Matthias; Engels, Ralf; Hanslik, Romuald; Kemmerling, Günter

    2016-01-01

    The KWS-2 SANS diffractometer is dedicated to the investigation of soft matter and biophysical systems covering a wide length scale, from nm to µm. The instrument is optimized for the exploration of the wide momentum transfer Q range between 1x10-4 and 0.5 Å-1 by combining classical pinhole, focusing (with lenses), and time-of-flight (with chopper) methods, while simultaneously providing high-neutron intensities with an adjustable resolution. Because of its ability to adjust the intensity and the resolution within wide limits during the experiment, combined with the possibility to equip specific sample environments and ancillary devices, the KWS-2 shows a high versatility in addressing the broad range of structural and morphological studies in the field. Equilibrium structures can be studied in static measurements, while dynamic and kinetic processes can be investigated over time scales between minutes to tens of milliseconds with time-resolved approaches. Typical systems that are investigated with the KWS-2 cover the range from complex, hierarchical systems that exhibit multiple structural levels (e.g., gels, networks, or macro-aggregates) to small and poorly-scattering systems (e.g., single polymers or proteins in solution). The recent upgrade of the detection system, which enables the detection of count rates in the MHz range, opens new opportunities to study even very small biological morphologies in buffer solution with weak scattering signals close to the buffer scattering level at high Q. In this paper, we provide a protocol to investigate samples with characteristic size levels spanning a wide length scale and exhibiting ordering in the mesoscale structure using KWS-2. We present in detail how to use the multiple working modes that are offered by the instrument and the level of performance that is achieved. PMID:28060296

  12. Introduction of the Abbreviated Westmead Post-Traumatic Amnesia Scale and Impact on Length of Stay

    NARCIS (Netherlands)

    Watson, C. E.; Clous, E. A.; Jaeger, M.; D'Amours, S. K.

    2017-01-01

    Mild traumatic brain injury is a common presentation to Emergency Departments. Early identification of patients with cognitive deficits and provision of discharge advice are important. The Abbreviated Westmead Post-traumatic Amnesia Scale provides an early and efficient assessment of post-traumatic

  13. Gate length scaling trends of drive current enhancement in CMOSFETs with dual stress overlayers and embedded-SiGe

    International Nuclear Information System (INIS)

    Flachowsky, S.; Wei, A.; Herrmann, T.; Illgen, R.; Horstmann, M.; Richter, R.; Salz, H.; Klix, W.; Stenzel, R.

    2008-01-01

    Strain engineering in MOSFETs using tensile nitride overlayer (TOL) films, compressive nitride overlayer (COL) films, and embedded-SiGe (eSiGe) is studied by extensive device experiments and numerical simulations. The scaling behavior was analyzed by gate length reduction down to 40 nm and it was found that drive current strongly depends on the device dimensions. The reduction of drain-current enhancement for short-channel devices can be attributed to two competing factors: shorter gate length devices have increased longitudinal and vertical stress components which should result in improved drain-currents. However, there is a larger degradation from external resistance as the gate length decreases, due to a larger voltage dropped across the external resistance. Adding an eSiGe stressor reduces the external resistance in the p-MOSFET, to the extent that the drive current improvement from COL continues to increase even down the shortest gate length studied. This is due to the reduced resistivity of SiGe itself and the SiGe valence band offset relative to Si, leading to a smaller silicide-active contact resistance. It demonstrates the advantage of combining eSiGe and COL, not only for increased stress, but also for parasitic resistance reduction to enable better COL drive current benefit

  14. Influence of scaling range on vibrotactile power function exponents for the tongue and hand.

    Science.gov (United States)

    Fucci, D; Petrosino, L; Harris, D

    1983-10-01

    Intramodal range has been studied by R. Teghtsoonian (1973), who found that for magnitude-estimation procedures an increase in the scaling range will cause a decrease in the exponent of the power function. For magnitude production procedures, an increase in the scaling range will decrease the magnitude of the exponent of the power function (Teghtsoonian, 1973). The purpose of this pilot study was to investigate the influence of scaling range on the psychophysical functions obtained by the method of magnitude production for vibrotaction. Twenty subjects were randomly selected and divided into two groups of 10 subjects each. Subjects' ages ranged from 17 to 23 yr. A detailed description of the vibrotactile equipment can be found elsewhere (1). The psychophysical method of magnitude production was used to establish suprathreshold magnitude functions from the anterior midline section of the tongue dorsum and the thenar eminence of the right hand. Each subject in Group 1 received a random order of six numbers (5, 10, 15, 20, 25, 30) and was asked to adjust the magnitude of the stimulus that he was feeling to the number being presented. Each subject in Group 2 received the same random series of six numbers as Group 1, but other numbers were also randomly interspersed above, between, or below the series of six to present an expanded range of numbers for scaling. For both groups the randomized series of numbers was presented three times at each test site.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Membrane undulations in a structured fluid: Universal dynamics at intermediate length and time scales.

    Science.gov (United States)

    Granek, Rony; Diamant, Haim

    2018-01-05

    The dynamics of membrane undulations inside a viscous solvent is governed by distinctive, anomalous, power laws. Inside a viscoelastic continuous medium these universal behaviors are modified by the specific bulk viscoelastic spectrum. Yet, in structured fluids the continuum limit is reached only beyond a characteristic correlation length. We study the crossover to this asymptotic bulk dynamics. The analysis relies on a recent generalization of the hydrodynamic interaction in structured fluids, which shows a slow spatial decay of the interaction toward the bulk limit. For membranes which are weakly coupled to the structured medium we find a wide crossover regime characterized by different, universal, dynamic power laws. We discuss various systems for which this behavior is relevant, and delineate the time regime over which it may be observed.

  16. The role of discharge variation in scaling of drainage area and food chain length in rivers

    Science.gov (United States)

    Sabo, John L.; Finlay, Jacques C.; Kennedy, Theodore A.; Post, David M.

    2010-01-01

    Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

  17. Accurate switching intensities and length scales in quasi-phase-matched materials

    DEFF Research Database (Denmark)

    Bang, Ole; Graversen, Torben Winther; Corney, Joel Frederick

    2001-01-01

    We consider unseeded typeI second-harmonic generation in quasi-phase-matched quadratic nonlinear materials and derive an accurate analytical expression for the evolution of the average intensity. The intensity- dependent nonlinear phase mismatch that is due to the cubic nonlinearity induced...... by quasi phase matching is found. The equivalent formula for the intensity of maximum conversion, the crossing of which changes the one-period nonlinear phase shift of the fundamental abruptly by p , corrects earlier estimates [Opt.Lett. 23, 506 (1998)] by a factor of 5.3. We find the crystal lengths...... that are necessary to obtain an optimal flat phase versus intensity response on either side of this separatrix intensity....

  18. Chain length distributions in linear polyaddition proceeding in nano-scale small volumes without mass transfer

    Science.gov (United States)

    Szymanski, R.; Sosnowski, S.

    2017-01-01

    Computer simulations (Monte Carlo and numerical integration of differential equations) and theoretical analysis show that the statistical nature of polyaddition, both irreversible and reversible one, affects the way the macromolecules of different lengths are distributed among the small volume nano-reactors (droplets in this study) at any reaction time. The corresponding droplet distributions in respect to the number of reacting chains as well as the chain length distributions depend, for the given reaction time, on rate constants of polyaddition kp and depolymerization kd (reversible process), and the initial conditions: monomer concentration and the number of its molecules in a droplet. As a model reaction, a simple polyaddition process (M)1+(M)1 ⟶ ⟵ (M)2 , (M)i+(M)j ⟶ ⟵ (M)i+j was chosen, enabling to observe both kinetic and thermodynamic (apparent equilibrium constant) effects of a small number of reactant molecules in a droplet. The average rate constant of polymerization is lower than in a macroscopic system, depending on the average number of reactant molecules in a droplet. The apparent equilibrium constants of polymerization Ki j=[(M)i +j] ¯ /([(M)i] ¯ [(M)j] ¯ ) appear to depend on oligomer/polymer sizes as well as on the initial number of monomer molecules in a droplet. The corresponding equations, enabling prediction of the equilibrium conditions, were derived. All the analyzed effects are observed not only for ideally dispersed systems, i.e. with all droplets containing initially the same number of monomer (M)1 molecules, but also when initially the numbers of monomer molecules conform the Poisson distribution, expected for dispersions of reaction mixtures.

  19. Multi-scale variability and long-range memory in indoor Radon concentrations from Coimbra, Portugal

    Science.gov (United States)

    Donner, Reik V.; Potirakis, Stelios; Barbosa, Susana

    2014-05-01

    The presence or absence of long-range correlations in the variations of indoor Radon concentrations has recently attracted considerable interest. As a radioactive gas naturally emitted from the ground in certain geological settings, understanding environmental factors controlling Radon concentrations and their dynamics is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we re-analyze two high-resolution records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements. In order to evaluate the presence of long-range correlations and fractal scaling, we utilize a multiplicity of complementary methods, including power spectral analysis, ARFIMA modeling, classical and multi-fractal detrended fluctuation analysis, and two different estimators of the signals' fractal dimensions. Power spectra and fluctuation functions reveal some complex behavior with qualitatively different properties on different time-scales: white noise in the high-frequency part, indications of some long-range correlated process dominating time scales of several hours to days, and pronounced low-frequency variability associated with tidal and/or meteorological forcing. In order to further decompose these different scales of variability, we apply two different approaches. On the one hand, applying multi-resolution analysis based on the discrete wavelet transform allows separately studying contributions on different time scales and characterize their specific correlation and scaling properties. On the other hand, singular system analysis (SSA) provides a reconstruction of the essential modes of variability. Specifically, by considering only the first leading SSA modes, we achieve an efficient de-noising of our environmental signals, highlighting the low-frequency variations together with some distinct scaling on sub-daily time-scales resembling

  20. Low Parametric Sensitivity Realizations with relaxed L2-dynamic-range-scaling constraints

    OpenAIRE

    Hilaire , Thibault

    2009-01-01

    This paper presents a new dynamic-range scaling for the implementation of filters/controllers in state-space form. Relaxing the classical L2-scaling constraints by specific fixed-point considerations allows for a higher degree of freedom for the optimal L2-parametric sensitivity problem. However, overflows in the implementation are still prevented. The underlying constrained problem is converted into an unconstrained problem for which a solution can be provided. This leads to realizations whi...

  1. Scaling range sizes to threats for robust predictions of risks to biodiversity.

    Science.gov (United States)

    Keith, David A; Akçakaya, H Resit; Murray, Nicholas J

    2017-07-13

    Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range-size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive to measurement scale, prompting proposals to measure them at finer scales or at different scales based on the shape of the distribution or ecological characteristics of the biota. Despite its dominant role in red-list assessments for decades, appropriate spatial scales of AOO for predicting risks of species' extinction or ecosystem collapse remain untested and contentious. There are no quantitative evaluations of the scale-sensitivity of AOO as a predictor of risks, the relationship between optimal AOO scale and threat scale, or the effect of grid uncertainty. We used stochastic simulation models to explore risks to ecosystems and species with clustered, dispersed, and linear distribution patterns subject to regimes of threat events with different frequency and spatial extent. Area of occupancy was an accurate predictor of risk (0.81<|r|<0.98) and performed optimally when measured with grid cells 0.1-1.0 times the largest plausible area threatened by an event. Contrary to previous assertions, estimates of AOO at these relatively coarse scales were better predictors of risk than finer-scale estimates of AOO (e.g., when measurement cells are <1% of the area of the largest threat). The optimal scale depended on the spatial scales of threats more than the shape or size of biotic distributions. Although we found appreciable potential for grid-measurement errors, current IUCN guidelines for estimating AOO neutralize geometric uncertainty and incorporate effective scaling procedures for assessing risks posed by landscape-scale threats to species and ecosystems. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  2. Estimating microstructural length scales in k-carrageenan hydrogels by PFG NMR nanoprobe diffusometry

    NARCIS (Netherlands)

    Kort, de D.W.; As, van H.; Duynhoven, van J.P.M.

    2016-01-01

    We use PFG NMR to measure hindered self-diffusion of spherical, monodisperse diffusional nanoprobes in a polysaccharide network.
    These nanoprobes have different diameters in the 1–10 nm range, but identical inert (PEG) surfaces. We use Johnson’s model of
    particle self-diffusion in fibrous

  3. Scaling the chord and Hellinger distances in the range [0,1]: An option to consider

    Directory of Open Access Journals (Sweden)

    Anxo Conde

    2018-03-01

    Full Text Available The chord and Hellinger distances are commonly used as measures of resemblance in ecological studies. Both distances are bound within the range [0,√2]. We propose to scale them within the range [0,1]. The scaling is mainly justified to report beta diversity values in the range [0,1] properly. Moreover, results for both unscaled distances in multivariate techniques such as cluster analysis or ordinations are not directly comparable with similar graphical displays obtained with indices bound in the range [0,1]. Although comparability and/or interpretability of values are compromised, the used of the unscaled Hellinger and chord distances do not void their validity in ecological studies. Nonetheless, we have found one exception when comparing clustering models using the Gower distance criterion.

  4. Screening methods for linear-scaling short-range hybrid calculations on CPU and GPU architectures.

    Science.gov (United States)

    Beuerle, Matthias; Kussmann, Jörg; Ochsenfeld, Christian

    2017-04-14

    We present screening schemes that allow for efficient, linear-scaling short-range exchange calculations employing Gaussian basis sets for both CPU and GPU architectures. They are based on the LinK [C. Ochsenfeld et al., J. Chem. Phys. 109, 1663 (1998)] and PreLinK [J. Kussmann and C. Ochsenfeld, J. Chem. Phys. 138, 134114 (2013)] methods, but account for the decay introduced by the attenuated Coulomb operator in short-range hybrid density functionals. Furthermore, we discuss the implementation of short-range electron repulsion integrals on GPUs. The introduction of our screening methods allows for speedups of up to a factor 7.8 as compared to the underlying linear-scaling algorithm, while retaining full numerical control over the accuracy. With the increasing number of short-range hybrid functionals, our new schemes will allow for significant computational savings on CPU and GPU architectures.

  5. Continuum and crystal strain gradient plasticity with energetic and dissipative length scales

    Science.gov (United States)

    Faghihi, Danial

    This work, standing as an attempt to understand and mathematically model the small scale materials thermal and mechanical responses by the aid of Materials Science fundamentals, Continuum Solid Mechanics, Misro-scale experimental observations, and Numerical methods. Since conventional continuum plasticity and heat transfer theories, based on the local thermodynamic equilibrium, do not account for the microstructural characteristics of materials, they cannot be used to adequately address the observed mechanical and thermal response of the micro-scale metallic structures. Some of these cases, which are considered in this dissertation, include the dependency of thin films strength on the width of the sample and diffusive-ballistic response of temperature in the course of heat transfer. A thermodynamic-based higher order gradient framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. The concept of the thermal activation energy, the dislocations interaction mechanisms, nonlocal energy exchange between energy carriers and phonon-electrons interactions are taken into consideration in proposing the thermodynamic potentials such as Helmholtz free energy and rate of dissipation. The same approach is also adopted to incorporate the effect of the material microstructural interface between two materials (e.g. grain boundary in crystals) into the formulation. The developed grain boundary flow rule accounts for the energy storage at the grain boundary due to the dislocation pile up as well as energy dissipation caused by the dislocation transfer through the grain boundary. Some of the abovementioned responses of small scale metallic compounds are addressed by means of the numerical implementation of the developed framework within the finite element context. In this regard, both displacement and plastic strain fields are independently discretized and the numerical implementation is performed in

  6. The Sensitivity of Income Polarization - Time, length of accounting periods, equivalence scales, and income definitions

    DEFF Research Database (Denmark)

    Azhar, Hussain

    This study looks at polarization and its components’ sensitivity to assumptions about equivalence scales, income definition, ethical income distribution parameters, and the income accounting period. A representative sample of Danish individual incomes from 1984 to 2002 is utilised. Results show...... that polarization has increased over time, regardless of the applied measure, when the last part of the period is compared to the first part of the period. Primary causes being increased inequality (alienation) and faster income growth among high incomes relative to those in the middle of the distribution...

  7. Nano-regime Length Scales Extracted from the First Sharp Diffraction Peak in Non-crystalline SiO2 and Related Materials: Device Applications

    Directory of Open Access Journals (Sweden)

    Phillips James

    2010-01-01

    Full Text Available Abstract This paper distinguishes between two different scales of medium range order, MRO, in non-crystalline SiO2: (1 the first is ~0.4 to 0.5 nm and is obtained from the position of the first sharp diffraction peak, FSDP, in the X-ray diffraction structure factor, S(Q, and (2 the second is ~1 nm and is calculated from the FSDP full-width-at-half-maximum FWHM. Many-electron calculations yield Si–O third- and O–O fourth-nearest-neighbor bonding distances in the same 0.4–0.5 nm MRO regime. These derive from the availability of empty Si dπ orbitals for back-donation from occupied O pπ orbitals yielding narrow symmetry determined distributions of third neighbor Si–O, and fourth neighbor O–O distances. These are segments of six member rings contributing to connected six-member rings with ~1 nm length scale within the MRO regime. The unique properties of non-crystalline SiO2 are explained by the encapsulation of six-member ring clusters by five- and seven-member rings on average in a compliant hard-soft nano-scaled inhomogeneous network. This network structure minimizes macroscopic strain, reducing intrinsic bonding defects as well as defect precursors. This inhomogeneous CRN is enabling for applications including thermally grown ~1.5 nm SiO2 layers for Si field effect transistor devices to optical components with centimeter dimensions. There are qualitatively similar length scales in nano-crystalline HfO2 and phase separated Hf silicates based on the primitive unit cell, rather than a ring structure. Hf oxide dielectrics have recently been used as replacement dielectrics for a new generation of Si and Si/Ge devices heralding a transition into nano-scale circuits and systems on a Si chip.

  8. Measurement and prediction of post-fire erosion at the hillslope scale, Colorado Front Range

    Science.gov (United States)

    Juan de Dios Benavides-Solorio; Lee H. MacDonald

    2005-01-01

    Post-fire soil erosion is of considerable concern because of the potential decline in site productivity and adverse effects on downstream resources. For the Colorado Front Range there is a paucity of post-fire erosion data and a corresponding lack of predictive models. This study measured hillslope-scale sediment production rates and site characteristics for three wild...

  9. Avalanching Systems with Longer Range Connectivity: Occurrence of a Crossover Phenomenon and Multifractal Finite Size Scaling

    Directory of Open Access Journals (Sweden)

    Simone Benella

    2017-07-01

    Full Text Available Many out-of-equilibrium systems respond to external driving with nonlinear and self-similar dynamics. This near scale-invariant behavior of relaxation events has been modeled through sand pile cellular automata. However, a common feature of these models is the assumption of a local connectivity, while in many real systems, we have evidence for longer range connectivity and a complex topology of the interacting structures. Here, we investigate the role that longer range connectivity might play in near scale-invariant systems, by analyzing the results of a sand pile cellular automaton model on a Newman–Watts network. The analysis clearly indicates the occurrence of a crossover phenomenon in the statistics of the relaxation events as a function of the percentage of longer range links and the breaking of the simple Finite Size Scaling (FSS. The more complex nature of the dynamics in the presence of long-range connectivity is investigated in terms of multi-scaling features and analyzed by the Rank-Ordered Multifractal Analysis (ROMA.

  10. A multiple length scale description of the mechanism of elastomer stretching

    DEFF Research Database (Denmark)

    Neuefeind, J.; Skov, Anne Ladegaard; Daniels, J. E.

    2016-01-01

    for providing data on the structure of rubbers in the 2-50 angstrom range. First results relate to the elongation of a silicone rubber. We identify several non-entropic contributions to the free energy and describe the associated structural changes. By far the largest contribution comes from structural changes...... within the individual monomers, but among the contributions is also an elastic strain, acting between chains, which is 3-4 orders of magnitude smaller than the macroscopic strain, and of the opposite sign, i.e. extension of polymer chains in the direction perpendicular to the stretch. This may be due...

  11. Characterizing the reinforcement mechanisms in multiwall nanotube/polycarbonate composites across different length and time scales

    Science.gov (United States)

    Duncan, Renee Kelly

    The enthusiasm and interest in the potential properties of nanotube (NT)/polymer composites are based on several factors, including the potential for unsurpassed enhancements in mechanical properties together with electrical, thermal and optical properties. Using multiwall nanotubes (MWNTs) grown to a long aspect ratio, the study found that fragmentation tests can be completed in a similar manner to traditional fiber composites. It was found that the fragmentation length does not depend on the angle of the nanotube to the loading direction hence the ISS does not change with the orientation angle of the nanotube in the composite. A critical aspect ratio of 100 and 300 for untreated nanotubes (ARNT) and treated nanotubes (EPNT), respectively was also measured. For nanotubes that are well dispersed in the polycarbonate, it was observed at a critical angle of 60° that there was a change in failure mechanism from pullout to fracture of the nanotubes due to bending shear. Because the tensile strength of a MWNT is unknown a cumulative distribution was used to characterize the relative interfacial shear strength as a function of nanotube chemical modification. The second goal of this thesis is to use Dynamic Mechanical Thermal Analysis (DMTA) with controlled aspect ratios of multiwall nanotubes (MWNT) to isolate and quantify the effects of the interfacial region on modulus enhancements in nanotube-reinforced composites. One major finding of this study was that the shortest aspect ratio showed a significantly broadened relaxation spectrum than the longer aspect ratio nanotubes, despite the longer aspect ratio nanotubes being more percolated at the given weight percent. There is also a direct correlation between the free space parameter of the short aspect ratio nantoubes network and broadening of the relaxation spectrum, concluded to be a result of increased interaction of the interfacial polymer. The study found agreement with the premise that at a constant filler weight

  12. Electrochemical and Friction Characteristics of Metallic Glass Composites at the Microstructural Length-scales.

    Science.gov (United States)

    Ayyagari, Aditya; Hasannaeimi, Vahid; Arora, Harpreet; Mukherjee, Sundeep

    2018-01-17

    Metallic glass composites represent a unique alloy design strategy comprising of in situ crystalline dendrites in an amorphous matrix to achieve damage tolerance unseen in conventional structural materials. They are promising for a range of advanced applications including spacecraft gears, high-performance sporting goods and bio-implants, all of which demand high surface degradation resistance. Here, we evaluated the phase-specific electrochemical and friction characteristics of a Zr-based metallic glass composite, Zr 56.2 Ti 13.8 Nb 5.0 Cu 6.9 Ni 5.6 Be 12.5 , which comprised roughly of 40% by volume crystalline dendrites in an amorphous matrix. The amorphous matrix showed higher hardness and friction coefficient compared to the crystalline dendrites. But sliding reciprocating tests for the composite revealed inter-phase delamination rather than preferred wearing of one phase. Pitting during potentiodynamic polarization in NaCl solution was prevalent at the inter-phase boundary, confirming that galvanic coupling was the predominant corrosion mechanism. Scanning vibration electrode technique demonstrated that the amorphous matrix corroded much faster than the crystalline dendrites due to its unfavorable chemistry. Relative work function values measured using scanning kelvin probe showed the amorphous matrix to be more electropositive, which explain its preferred corrosion over the crystalline dendrites as well as its characteristic friction behavior. This study paves the way for careful partitioning of elements between the two phases in a metallic glass composite to tune its surface degradation behavior for a range of advanced applications.

  13. Independent and collective roles of surface structures at different length scales on pool boiling heat transfer

    Science.gov (United States)

    Li, Calvin H.; Rioux, Russell P.

    2016-01-01

    Spherical Cu nanocavity surfaces are synthesized to examine the individual role of contact angles in connecting lateral Rayleigh-Taylor wavelength to vertical Kevin-Helmholtz wavelength on hydrodynamic instability for the onset of pool boiling Critical Heat Flux (CHF). Solid and porous Cu pillar surfaces are sintered to investigate the individual role of pillar structure pitch at millimeter scale, named as module wavelength, on hydrodynamic instability at CHF. Last, spherical Cu nanocavities are coated on the porous Cu pillars to create a multiscale Cu structure, which is studied to examine the collective role and relative significance of contact angles and module wavelength on hydrodynamic instability at CHF, and the results indicate that module wavelength plays the dominant role on hydrodynamic instability at CHF when the height of surface structures is equal or above ¼ Kelvin-Helmholtz wavelength. Pool boiling Heat Transfer Coefficient (HTC) enhancements on spherical Cu nanocavity surfaces, solid and porous Cu pillar surfaces, and the integrated multiscale structure have been investigated, too. The experimental results reveal that the nanostructures and porous pillar structures can be combined together to achieve even higher enhancement of HTC than that of individual structures. PMID:27841322

  14. Grip strength in a cohort of older medical inpatients in Malaysia: a pilot study to describe the range, determinants and association with length of hospital stay.

    Science.gov (United States)

    Keevil, Victoria; Mazzuin Razali, Rizah; Chin, Ai-Vyrn; Jameson, Karen; Aihie Sayer, Avan; Roberts, Helen

    2013-01-01

    Grip strength is a marker of sarcopenia, the age-related decline in muscle mass and function, and has been little researched in Asian populations. We aimed to describe the feasibility and acceptability of measuring grip strength in hospitalized, older people in Malaysia and to explore its range, determinants and association with length of stay. Patients admitted acutely to the geriatrics ward of a teaching hospital were consecutively recruited. Inability to consent or use the dynamometer led to exclusion. Maximum grip strength, anthropometric data, length of hospital stay, discharge destination, 3-point Barthel score, mini-mental state examination, falls history and number of co-morbidities and medications on admission were recorded. 80/153 (52%) eligible patients were recruited (52 women; age range 64-100 years). 9/153 (6%) refused to participate and 64/153 (42%) were excluded (34 too unwell, 24 unable to consent, 4 unable to use the dynamometer, 2 other reasons). 76/80 patients (95%) reported that they would undergo grip strength measurement again. Determinants were similar to those of Caucasian populations but grip strength values were lower. After adjustment for sex, age and height, stronger grip strength was associated with shorter length of stay [hazard ratio 1.05 (95% CI 1.00, 1.09; P=0.03)]. This is the first report of grip strength measurement in hospitalized older people in Malaysia. It was feasible, acceptable to participants and associated with length of stay. Further research is warranted to elucidate the normative range in different ethnic groups and explore its potential use in clinical practice in Malaysia. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Role of Length Scales on Environmental Performance Metrics for Statistical Characterization of Well-Head Protection Regions

    Science.gov (United States)

    de Barros, F.; Guadagnini, A.; Fernandez-Garcia, D.; Riva, M.; Sanchez-Vila, X.

    2012-12-01

    We address the value of typically available hydrogeological information on environmental performance metrics (EPMs) as a function of several characteristic length scales that define groundwater flow and nonreactive solute transport in the presence of a pumping well. Improvement in the delineation of the well region of influence and reduction of the uncertainty associated with transport predictions is usually performed by means of hydrogeological sampling campaigns. We model aquifer heterogeneity through a spatially random hydraulic conductivity distribution and assess the ensuing uncertainty associated with predictions of key transport quantities conditioned to the probability that a distributed contaminant spill is captured by the well. We focus on the assessment of the impact of the acquisition of typical hydrogeological data on the reduction of uncertainty linked to the environmental scenario analyzed. We present a numerical investigation of the significance of the amount of available transmissivity measurements to yield predictions at a desired level of uncertainty of the following EPMs: (a) characteristic solute residence times in the system, and (b) the total mass exceeding a given threshold which is recovered by the well. We elucidate the role of the main (dimensionless) length scales that define and control the uncertainty associated with the target EPMs and infer a probabilistic model characterizing such uncertainty.

  16. Beam displacement as a function of temperature and turbulence length scale at two different laser radiation wavelengths.

    Science.gov (United States)

    Isterling, William M; Dally, Bassam B; Alwahabi, Zeyad T; Dubovinsky, Miro; Wright, Daniel

    2012-01-01

    Narrow laser beams directed from aircraft may at times pass through the exhaust plume of the engines and potentially degrade some of the laser beam characteristics. This paper reports on controlled studies of laser beam deviation arising from propagation through turbulent hot gases, in a well-characterized laboratory burner, with conditions of relevance to aircraft engine exhaust plumes. The impact of the temperature, laser wavelength, and turbulence length scale on the beam deviation has been investigated. It was found that the laser beam displacement increases with the turbulent integral length scale. The effect of temperature on the laser beam angular deviation, σ, using two different laser wavelengths, namely 4.67 μm and 632.8 nm, was recorded. It was found that the beam deviation for both wavelengths may be semiempirically modeled using a single function of the form, σ=a(b+(1/T)(2))(-1), with two parameters only, a and b, where σ is in microradians and T is the temperature in °C. © 2012 Optical Society of America

  17. Psoas muscle architectural design, in vivo sarcomere length range, and passive tensile properties support its role as a lumbar spine stabilizer.

    Science.gov (United States)

    Regev, Gilad J; Kim, Choll W; Tomiya, Akihito; Lee, Yu Po; Ghofrani, Hossein; Garfin, Steven R; Lieber, Richard L; Ward, Samuel R

    2011-12-15

    Controlled laboratory and cross-sectional study designs. To determine psoas major (PM) muscle architectural properties, in vivo sarcomere-length operating range, and passive mechanical properties. PM is an important hip flexor but its role in lumbar spine function is not fully understood. Several investigators have detailed the gross anatomy of PM, but comprehensive architectural data and in vivo length-tension and passive mechanical behaviors have not been documented. PM was isolated in 13 cadaver specimens, permitting architectural measurements of physiological cross-sectional area (PCSA), normalized fiber length (Lf), and Lf:muscle length (Lm) ratio. Sarcomere lengths were measured in vivo from intraoperative biopsies taken with the hip joint in flexed and extended positions. Single-fiber and fiber bundle tensile properties and titin molecular weight were then measured from separate biopsies. Architecturally, average PCSA was 18.45 ± 1.32 cm2, average Lf was 12.70 ± 2 cm, and average Lf: Lm was 0.48 ± 0.06. Intraoperative sarcomere length measurements revealed that the muscle operates from 3.18 ± 0.20 μm with hip flexed at 10.7° ± 13.9° to 3.03 ± 0.22 μm with hip flexed at 55.9° ± 21.4°. Passive mechanical data demonstrated that the elastic modulus of the PM muscle fibers was 37.44 ± 9.11 kPa and of fiber bundles was 55.3 ± 11.8 kPa. Analysis of PM architecture demonstrates that its average Lf and passive biomechanical properties resemble those of the lumbar erector spinae muscles. In addition, PM sarcomere lengths were confined to the descending portion of the length-tension curve allowing the muscle to become stronger as the hip is flexed and the spine assumes a forward leaning posture. These findings suggest that the human PM has architectural and physiologic features that support its role as both a flexor of the hip and a dynamic stabilizer of the lumbar spine.

  18. A dual length scale method for plane-wave-based, simulation studies of chemical systems modeled using mixed ab initio/empirical force field descriptions

    Science.gov (United States)

    Yarne, Dawn A.; Tuckerman, Mark E.; Martyna, Glenn J.

    2001-08-01

    Mixed ab initio/empirical force-field simulation studies, calculations in which one part of the system is treated using a fully ab initio description and another part is treated using an empirical description, are becoming increasingly popular. Here, the ability of the commonly used, plane wave-based generalized gradient approximation to density functional theory is extended to model systems in which the electrons are assumed to be localized in a single small region of space, that is, itself, embedded within a large chemically inert bath. This is accomplished by introducing two length scales, so that the rapidly varying, short range, electron-electron and electron-atom interactions, arising from the region where the electrons are localized, can be treated using an appropriately large plane wave basis, while the corresponding, slowly varying, long range interactions of the electrons with the full system or bath, can be treated using a small basis. Briefly, a novel Cardinal B-spline based formalism is employed to derive a smooth, differentiable, and rapidly convergent (with respect to the small basis) expression for the total electronic energy, which explicitly contains the two length scales. The method allows reciprocal space based techniques designed to treat clusters, wires, surfaces and solids/liquids (open, and 1-D and 2-D periodic boundary conditions, respectively) to be utilized. Other plane wave-based "mixed" methods are restricted to clusters. The new methodology, which scales as N log N at fixed size of the chemically active region, has been implemented for parallel computing platforms and tested through applications to both model and realistic problems including an enzyme, human carbonic anhydrase II solvated in an explicit bath of water molecules.

  19. Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30–200 nm and Comparison of Their Optical Properties

    Science.gov (United States)

    Zhang, Qiang; Li, Weiyang; Moran, Christine; Zeng, Jie; Chen, Jingyi; Wen, Long-Ping; Xia, Younan

    2010-01-01

    Silver nanocubes with edge lengths controllable in the range of 30–200 nm were synthesized using an approach based on seeded growth. The key to the success of this synthesis is the use of single-crystal Ag seeds to direct the growth and the use of AgNO3 as a precursor to elemental Ag where the by-product HNO3 can block both the homogeneous nucleation and evolution of single-crystal seeds into twinned nanoparticles. Either spherical (in the shape of cubooctahedron) or cubic seeds could be employed for this growth process. The edge length of resultant Ag nanocubes can be readily controlled by varying the amount of Ag seeds used, the amount of AgNO3 added, or both. For the first time, we could obtain Ag nanocubes with uniform edge lengths controllable in the range of 30–200 nm and then compare their localized surface plasmon resonance and surface-enhanced Raman scattering properties. PMID:20698704

  20. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties.

    Science.gov (United States)

    Zhang, Qiang; Li, Weiyang; Moran, Christine; Zeng, Jie; Chen, Jingyi; Wen, Long-Ping; Xia, Younan

    2010-08-18

    Silver nanocubes with edge lengths controllable in the range of 30-200 nm were synthesized using an approach based on seeded growth. The keys to the success of this synthesis are the use of single-crystal Ag seeds to direct the growth and the use of AgNO(3) as a precursor to elemental Ag, where the byproduct HNO(3) can block both the homogeneous nucleation and evolution of single-crystal seeds into twinned nanoparticles. Either spherical (in the shape of a cuboctahedron) or cubic seeds could be employed for this growth process. The edge length of the resultant Ag nanocubes can be readily controlled by varying the amount of Ag seeds used, the amount of AgNO(3) added, or both. For the first time, we could obtain Ag nanocubes with uniform edge lengths controllable in the range of 30-200 nm and then compare their localized surface plasmon resonance and surface-enhanced Raman scattering properties.

  1. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.

  2. Kuppuswamy’s Socio-economic Status Scale: Updating Income Ranges for the Year 2015

    Directory of Open Access Journals (Sweden)

    Hema Thakkar

    2015-12-01

    Full Text Available Community and hospital based studies require assessment of socio-economic status of an individual/family. Socioeconomic status (SES is an important determinant of the health, nutritional status, mortality, and morbidity of an individual. SES also influences the accessibility, affordability, acceptability, and actual utilization of available health facilities. (1There are many different scales to measure the SES of a family: Rahudkar scale 1960, Udai Parikh scale 1964, Jalota Scale 1970, Kulshrestha scale 1972, Kuppuswamy scale 1976, Shrivastava scale 1978, Bharadwaj scale 2001. (2,3,4,5,6,7,8 However, social transition and fast growing economy have reduced these scales effectiveness in measuring the SES over the years.Kuppuswamy’s socio-economic status scale is an important tool to measure socioeconomic status of families in urban areas. It was first proposed by Kuppuswamy in the in the year 1976. (6 (Table-1 This scale takes into account education, occupation of the head of the family and total income of the family per month from all the sources to categorise families into 5 groups; namely upper, upper middle, lower middle, upper lower and lower socioeconomic status. It is used by students and researchers in India for hospital and community based research. Mishra D and Singh HP (9 in their article on revision of Kuppuswamy’s Socio-economic status scale have pointed that an income scale usually has relevance only for the period under study. They further clarified that due to the steady inflation and consequent fall in the value of the rupee, the income criteria in the scale lose their relevance. There is an unprecedented demand from researchers for the updated version of this because changes in inflation rate change the monetary values of the monthly income range scores. Attempts to revise the original scale to bring the income subscale up to date are done by various authors.The year wise reference indices are shown in Table -2. It tell us

  3. Effective Electrostatic Interactions Between Two Overall Neutral Surfaces with Quenched Charge Heterogeneity Over Atomic Length Scale

    Science.gov (United States)

    Zhou, S.

    2017-12-01

    Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of

  4. Dark matter, long-range forces, and large-scale structure

    Science.gov (United States)

    Gradwohl, Ben-Ami; Frieman, Joshua A.

    1992-01-01

    If the dark matter in galaxies and clusters is nonbaryonic, it can interact with additional long-range fields that are invisible to experimental tests of the equivalence principle. We discuss the astrophysical and cosmological implications of a long-range force coupled only to the dark matter and find rather tight constraints on its strength. If the force is repulsive (attractive), the masses of galaxy groups and clusters (and the mean density of the universe inferred from them) have been systematically underestimated (overestimated). We explore the consequent effects on the two-point correlation function, large-scale velocity flows, and microwave background anisotropies, for models with initial scale-invariant adiabatic perturbations and cold dark matter.

  5. Magneto-Induced ac Electrical Permittivity of Metal-Dielectric Composites with a Two Characteristic Length Scales Periodic Microstructure

    International Nuclear Information System (INIS)

    Strelniker, Y.M.; Bergman, D.J.

    1998-01-01

    A new effect was recently predicted in conducting composites that have a periodic microstructure: an induced strongly anisotropic dc magneto-resistance. This phenomenon is already verified on high mobility n-GaAs films. Here we discuss the possibility of observing analogous behavior in the ac electric permittivity of a metal-dielectric composite with a periodic microstructure in the presence of a strong magnetic field. We developed new analytical and numerical methods to treat the low-frequency magneto-optical properties in composite media with both disordered and periodic conducting micro-structures. Those methods allow us to study composites with inclusions of arbitrary shape (and arbitrary volume fraction) at arbitrarily strong magnetic field. This is exploited in order to calculate an effective dielectric tensor for this system as a function of applied magnetic field and ac frequency. We show that in a non-dilute metal-dielectric composite medium the magneto-plasma resonance and the cyclotron resonance depend upon both the applied magnetic field as well as on the geometric shape of the inclusion. Near such a resonance, it is possible to achieve large values for the ratio of the off-diagonal-to-diagonal electric permittivity tensor components, ε xy /ε xx , (since ε xx →0, while ε xy ≠0), which is analogous to similar ratio of the resistivity tensor components, ρ xy /ρ xx , in the case of dc magneto-transport problem. Motivated by this observation and by results of previous studies of dc magneto-transport in composite conductors, we then performed a numerical study of the ac magneto-electric properties of a particular metal-dielectric composite film with a periodic columnar microstructure which has a two characteristic length scales. The unit cell of such composite is prepared as follows: We placed the conducting square (in cross section) rods (first characteristic length scale) along the perimeter of the unit cell in order to create a dielectric host

  6. Long-range lPIV to resolve the small scales in a jet at high Reynolds number

    NARCIS (Netherlands)

    Fiscaletti, D.; Westerweel, J.; Elsinga, G.E.

    2014-01-01

    The investigation of flows at high Reynolds number is of great interest for the theory of turbulence, in that the large and the small scales of turbulence show a clear separation. But, as the Reynolds number of the flow increases, the size of the Kolmogorov length scale ( ? ) drops almost

  7. Short-range interactions and scaling near integer quantum Hall transitions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziqiang [Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467 (United States); Fisher, Matthew P. A. [Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030 (United States); Girvin, S. M. [Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States); Chalker, J. T. [Theoretical Physics, Oxford University, Oxford OX1 3NP, (United Kingdom)

    2000-03-15

    We study the influence of short-range electron-electron interactions on scaling behavior near the integer quantum Hall plateau transitions. Short-range interactions are known to be irrelevant at the renormalization group fixed point which represents the transition in the noninteracting system. We find, nevertheless, that transport properties change discontinuously when interactions are introduced. Most importantly, in the thermodynamic limit the conductivity at finite temperature is zero without interactions, but nonzero in the presence of arbitrarily weak interactions. In addition, scaling as a function of frequency {omega} and temperature T is determined by the scaling variable {omega}/T{sup p} (where p is the exponent for the temperature dependence of the inelastic scattering rate) and not by {omega}/T, as it would be at a conventional quantum phase transition described by an interacting fixed point. We express the inelastic exponent p and the thermal exponent z{sub T} in terms of the scaling dimension -{alpha}<0 of the interaction strength and the dynamical exponent z (which has the value z=2), obtaining p=1+2{alpha}/z and z{sub T}=2/p. (c) 2000 The American Physical Society.

  8. Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30–200 nm and Comparison of Their Optical Properties

    OpenAIRE

    Zhang, Qiang; Li, Weiyang; Moran, Christine; Zeng, Jie; Chen, Jingyi; Wen, Long-Ping; Xia, Younan

    2010-01-01

    Silver nanocubes with edge lengths controllable in the range of 30–200 nm were synthesized using an approach based on seeded growth. The key to the success of this synthesis is the use of single-crystal Ag seeds to direct the growth and the use of AgNO3 as a precursor to elemental Ag where the by-product HNO3 can block both the homogeneous nucleation and evolution of single-crystal seeds into twinned nanoparticles. Either spherical (in the shape of cubooctahedron) or cubic seeds could be empl...

  9. Predicting permeability of regular tissue engineering scaffolds: scaling analysis of pore architecture, scaffold length, and fluid flow rate effects.

    Science.gov (United States)

    Rahbari, A; Montazerian, H; Davoodi, E; Homayoonfar, S

    2017-02-01

    The main aim of this research is to numerically obtain the permeability coefficient in the cylindrical scaffolds. For this purpose, a mathematical analysis was performed to derive an equation for desired porosity in terms of morphological parameters. Then, the considered cylindrical geometries were modeled and the permeability coefficient was calculated according to the velocity and pressure drop values based on the Darcy's law. In order to validate the accuracy of the present numerical solution, the obtained permeability coefficient was compared with the published experimental data. It was observed that this model can predict permeability with the utmost accuracy. Then, the effect of geometrical parameters including porosity, scaffold pore structure, unit cell size, and length of the scaffolds as well as entrance mass flow rate on the permeability of porous structures was studied. Furthermore, a parametric study with scaling laws analysis of sample length and mass flow rate effects on the permeability showed good fit to the obtained data. It can be concluded that the sensitivity of permeability is more noticeable at higher porosities. The present approach can be used to characterize and optimize the scaffold microstructure due to the necessity of cell growth and transferring considerations.

  10. Large-scale amplification, cloning and sequencing of near full-length HIV-1 subtype C genomes.

    Science.gov (United States)

    Rousseau, Christine M; Birditt, Brian A; McKay, Angela R; Stoddard, Julia N; Lee, Tsan Chun; McLaughlin, Sherry; Moore, Sarah W; Shindo, Nice; Learn, Gerald H; Korber, Bette T; Brander, Christian; Goulder, Philip J R; Kiepiela, Photini; Walker, Bruce D; Mullins, James I

    2006-09-01

    Full-length HIV-1 genome sequencing provides important data needed to address several vaccine design, molecular epidemiologic and pathogenesis questions. A protocol is presented for obtaining near full-length genomes (NFLGs) from subjects infected with HIV-1 subtype C. This protocol was used to amplify NFLGs from 244 of 366 (67%) samples collected at two clinics in Durban, South Africa (SK and PS). Viral load was directly associated with frequency of successful NFLG amplification for both cohorts (PS; p = 0.005 and SK; p clones were obtained from all 244 NFLG-positive PCR products, and both strands of each genome were sequenced, using a primary set of 46 primers. These methods thus allow the large-scale collection of HIV-1 NFLGs from populations infected primarily with subtype C. The methods are readily adaptable to other HIV-1 subtypes, and provide materials for viral functional analyses and population-based molecular epidemiology studies that include analysis of viral genome chimerization.

  11. Length-scales of Slab-induced Asthenospheric Deformation from Geodynamic Modeling, Mantle Deformation Fabric, and Synthetic Shear Wave Splitting

    Science.gov (United States)

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2017-12-01

    The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear

  12. Spinodals, scaling, and ergodicity in a threshold model with long-range stress transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, C.D.; Klein, W. [Physics Department, Center for Polymer Physics, and Center for Computational Science, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 (United States); Rundle, J.B. [Department of Geological Sciences and CIRES, University of Colorado, Boulder, Colorado 80309 (United States)

    1999-08-01

    We present both theoretical and numerical analyses of a cellular automaton version of a slider-block model or threshold model that includes long-range interactions. Theoretically we develop a coarse-grained description in the mean-field (infinite range) limit and discuss the relevance of the metastable state, limit of stability (spinodal), and nucleation to the phenomenology of the model. We also simulate the model and confirm the relevance of the theory for systems with long- but finite-range interactions. Results of particular interest include the existence of Gutenberg-Richter-like scaling consistent with that found on real earthquake fault systems, the association of large events with nucleation near the spinodal, and the result that such systems can be described, in the mean-field limit, with techniques appropriate to systems in equilibrium. {copyright} {ital 1999} {ital The American Physical Society}

  13. Divergence of host range and biological properties between natural isolate and full-length infectious cDNA clone of the Beet mild yellowing virus 2ITB.

    Science.gov (United States)

    Klein, Elodie; Brault, Véronique; Klein, Delphine; Weyens, Guy; Lefèbvre, Marc; Ziegler-Graff, Véronique; Gilmer, David

    2014-01-01

    Plant infection by poleroviruses is restricted to phloem tissues, preventing any classical leaf rub inoculation with viral RNA or virions. Efficient virus inoculation to plants is achieved by viruliferous aphids that acquire the virus by feeding on infected plants. The use of promoter-driven infectious cDNA is an alternative means to infect plants and allows reverse genetic studies to be performed. Using Beet mild yellowing virus isolate 2ITB (BMYV-2ITB), we produced a full-length infectious cDNA clone of the virus (named BMYV-EK) placed under the control of the T7 RNA polymerase and the Cauliflower mosaic virus 35S promoters. Infectivity of the engineered BMYV-EK virus was assayed in different plant species and compared with that of the original virus. We showed that in vitro- or in planta-derived transcripts were infectious in protoplasts and in whole plants. Importantly, the natural aphid vector Myzus persicae efficiently transmitted the viral progeny produced in infected plants. By comparing agroinoculation and aphid infection in a host range assay, we showed that the engineered BMYV-EK virus displayed a similar host range to BMYV-2ITB, except for Nicotiana benthamiana, which proved to be resistant to systemic infection with BMYV-EK. Finally, both the BMYV-EK P0 and the full-length clone were able to strongly interfere with post-transcriptional gene silencing. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  14. Automatic control of scale range applied for analog study of reactor kinetics

    International Nuclear Information System (INIS)

    Sergent, O.; Tellier, N.

    1967-01-01

    We study the response of a reactor, initially in a sub-critical state, for linear release of reactivity obeying to the following criteria, a rod drop comes in 10 seconds after the moment when the neutron power becomess equal to 10 -3 times the nominal power. We are interested in the maximum reactivity reached and in the energy released during the power excursion. For the power varying in a range from 1 to 10 10 we have used the method of automatic change scale which was installed and described in a previous report [fr

  15. Large-Scale Hollow Retroreflectors for Lunar Laser Ranging at Goddard Space Flight Center

    Science.gov (United States)

    Preston, Alix

    2012-01-01

    Laser ranging to the retroreflector arrays placed on the lunar surface by the Apollo astronauts and the Soviet Luna missions have dramatically increased our understanding of gravitational physics along with Earth and Moon geophysics, geodesy, and dynamics. Although the precision of the range measurements has historically been limited by the ground station capabilities, advances in the APOLLO instrument at the Apache Point facility in New Mexico is beginning to be limited by errors associated with the lunar arrays. We report here on efforts at Goddard Space Flight Center to develop the next generation of lunar retroreflectors. We will describe a new facility that is being used to design, assemble, and test large-scale hollow retroreflectors. We will also describe results from investigations into various bonding techniques used to assemble the open comer cubes and mirror coatings that have dust mitigation properties.

  16. Large-Scale Hollow Retroreflectors for Lunar Laser Ranging at Goddard Space Flight Center

    Science.gov (United States)

    Preston, Alix M.

    2012-05-01

    Laser ranging to the retroreflector arrays placed on the lunar surface by the Apollo astronauts and the Soviet Luna missions have dramatically increased our understanding of gravitational physics along with Earth and Moon geophysics, geodesy, and dynamics. Although the precision of the range measurements has historically been limited by the ground station capabilities, advances in the APOLLO instrument at the Apache Point facility in New Mexico is beginning to be limited by errors associated with the lunar arrays. We report here on efforts at Goddard Space Flight Center to develop the next generation of lunar retroreflectors. We will describe a new facility that is being used to design, assemble, and test large-scale hollow retroreflectors. We will also describe results from investigations into various bonding techniques used to assemble the open corner cubes and mirror coatings that have dust mitigation properties.

  17. Bedload transport flux fluctuations over a wide range of time scales

    Science.gov (United States)

    Ma, H.; Fu, X.; Ancey, C.

    2014-12-01

    Bedload transport is a highly fluctuating process. Our previous study (Ma et al., 2014) demonstrated a three-regime relation of the variance of bedload transport flux across a wide range of sampling time scales. This study further explored the fluctuation spectrum of at-a-point bedload transport flux with different sampling times. We derived out analytical solutions of the third- and fourth-order moments of bedload transport flux, based on a physically-based formulation (Ancey et al., 2008; Ma et al., 2014). A formulation of the probability density function of bedload transport flux was constructed based on the 1st through 4th order moments. Experimental data were used to test against the solutions of both the moments and PDF. Interestingly, the higher order statistical moments were found to exhibit the three-regime pattern as well. This study contributes to a comprehensive understanding of bedload transport flux fluctuation and emphasizes its timescale-dependent features resulting from the discrete nature and correlated motion of bedload material. The correlated structures of bedload transport, such as bed forms and particle clusters, deserve to be further exploration in future studies. Keywords: bedload transport; stochastic theory; high order moment; fluctuation; time scale; PDF. Ancey, C., Davison, A. C., Bohm, T., Jodeau, M., and Frey, P. Entrainment and motion of coarse particles in a shallow water stream down a steep slope, Journal of Fluid Mechanics, 2008, 595, 83-114, doi: 10.1017/S0022112007008774. Ma, H. B., Heyman, J., Fu, X. D., Mettra, F., Ancey, C. and Parker, G. Bedload transport over a broad range of time scales: determination of three regimes of fluctuations. Journal of Geophysical Research-Earth Surface, 2014. (under review)

  18. Magnetoresistance of untwinned YBa(2)Cu(3)O(y) single crystals in a wide range of doping: anomalous hole-doping dependence of the coherence length.

    Science.gov (United States)

    Ando, Yoichi; Segawa, Kouji

    2002-04-22

    Magnetoresistance (MR) in the a-axis resistivity of untwinned YBa(2)Cu(3)O(y) single crystals is measured for a wide range of doping ( y = 6.45-7.0). The y dependence of the in-plane coherence length xi(ab) estimated from the fluctuation magnetoconductance indicates that the superconductivity is anomalously weakened in the 60-K phase; this observation, together with the Hall coefficient and the a-axis thermopower data which suggest the hole doping to be 12% for y approximately equal to 6.65, gives evidence that the origin of the 60-K plateau is the 1/8 anomaly. At high temperatures, the normal-state MR data show signatures of the Zeeman effect on the pseudogap in underdoped samples.

  19. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales.

    Science.gov (United States)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A L David; Belcher, Warwick J; Dastoor, Paul C

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  20. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Science.gov (United States)

    Burke, Kerry B.; Stapleton, Andrew J.; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A. L. David; Belcher, Warwick J.; Dastoor, Paul C.

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  1. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    International Nuclear Information System (INIS)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C; Kilcoyne, A L David

    2011-01-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N ' -(4-butylphenyl)-bis-N, N ' -phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  2. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia); Kilcoyne, A L David, E-mail: Paul.Dastoor@newcastle.edu.au [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N{sup '}-(4-butylphenyl)-bis-N, N{sup '}-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  3. Contact damage and fracture micromechanisms of multilayered TiN/CrN coatings at micro- and nano-length scales

    Energy Technology Data Exchange (ETDEWEB)

    Roa, J.J., E-mail: joan.josep.roa@upc.edu [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Universitat Politècnica de Catalunya, C. Pasqual i Vila 15, 08028 Barcelona (Spain); Jiménez-Piqué, E. [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Universitat Politècnica de Catalunya, C. Pasqual i Vila 15, 08028 Barcelona (Spain); Martínez, R. [Centro de Ingeniería Avanzada de Superfícies, Asociación de la Industria Navarra — AIN, Crta. Pamplona, 1, Edificio AIN, 31191 Cordovilla (Spain); Ramírez, G. [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnològic, Avda. Bases de Manresa 1, 08243 Manresa (Spain); Tarragó, J.M. [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Universitat Politècnica de Catalunya, C. Pasqual i Vila 15, 08028 Barcelona (Spain); and others

    2014-11-28

    In this study, systematic nanomechanical and micromechanical studies have been conducted in three multilayer TiN/CrN systems with different bilayer periods (8, 19 and 25 nm). Additionally, experimental work has been performed on corresponding TiN and CrN single layers, for comparison purposes. The investigation includes the use of different indenter tip geometries as well as contact loading conditions (i.e. indentation/scratch) such to induce different stress field and damage scenarios within the films. The surface and subsurface damage under the different indentation imprints and scratch tracks have been observed by atomic force microscopy, field emission scanning electron microscopy and focused ion beam. Multilayer TiN/CrN coated systems are found to exhibit higher adhesion strength (under sliding contact load) and cracking resistance (under spherical indentation) than those coated with reference TiN and CrN monolayers. The main reason behind these findings is the effective development of microstructurally-driven deformation and cracking resistant micromechanisms: rotation of columnar grains (and associated distortion of bilayer period) and crack deflection of interlayer thickness length scale, respectively. - Highlights: • Nanomechanical and micromechanical study in TiN/CrN systems • TiN/CrN coated systems exhibit higher adhesion strength and cracking resistance. • Main deformation and cracking micromechanisms: columnar grain rotation and crack deflection.

  4. Soft x-ray microscopy - a powerful analytical tool to image magnetism down to fundamental length and times scales

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Peter

    2008-08-01

    The magnetic properties of low dimensional solid state matter is of the utmost interest both scientifically as well as technologically. In addition to the charge of the electron which is the base for current electronics, by taking into account the spin degree of freedom in future spintronics applications open a new avenue. Progress towards a better physical understanding of the mechanism and principles involved as well as potential applications of nanomagnetic devices can only be achieved with advanced analytical tools. Soft X-ray microscopy providing a spatial resolution towards 10nm, a time resolution currently in the sub-ns regime and inherent elemental sensitivity is a very promising technique for that. This article reviews the recent achievements of magnetic soft X-ray microscopy by selected examples of spin torque phenomena, stochastical behavior on the nanoscale and spin dynamics in magnetic nanopatterns. The future potential with regard to addressing fundamental magnetic length and time scales, e.g. imaging fsec spin dynamics at upcoming X-ray sources is pointed out.

  5. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development.

    Science.gov (United States)

    Lorite, Gabriela S; Janissen, Richard; Clerici, João H; Rodrigues, Carolina M; Tomaz, Juarez P; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A; Cotta, Mônica A

    2013-01-01

    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.

  6. A study of small-scale foliation in lengths of core enclosing fault zones in borehole WD-3, Permit Area D, Lac du Bonnet Batholith

    Energy Technology Data Exchange (ETDEWEB)

    Ejeckam, R.B.

    1992-12-01

    Small-scale foliation measurements in lengths of core from borehole WD-3 of Permit Area D of the Lac du Bonnet Batholith have defined five major mean orientation sets. They strike NW, N and NE. The orientations (strike to the left of the dip direction/dip) of these sets are as follows: Set I - 028/74 deg; II - 001/66 deg; III - 100/58 deg; IV - 076/83 deg; and V - 210/40 deg. The small-scale foliations were defined by different mineral types such as biotite crystals, plagioclase, mineral banding and quartz lenses. Well-developed biotite foliation is commonly present whenever well-developed plagioclase foliation exists, but as the strength of development weakens, the preferred orientations of plagioclase foliation do not correspond to those of biotite. It is also noted that the foliations appear to strike in directions orthogonal to the fractures in the fracture zones in the same depth interval. No significant change in foliation orientation was observed in Zones I to IV. Set V, however, whose mean orientation is 210/40 deg, is absent from the Zone IV interval, ranging from 872 to 905 m. (auth)

  7. Length-displacement scaling of thrust faults on the Moon and the formation of uphill-facing scarps

    Science.gov (United States)

    Roggon, Lars; Hetzel, Ralf; Hiesinger, Harald; Clark, Jaclyn D.; Hampel, Andrea; van der Bogert, Carolyn H.

    2017-08-01

    Fault populations on terrestrial planets exhibit a linear relationship between their length, L, and the maximum displacement, D, which implies a constant D/L ratio during fault growth. Although it is known that D/L ratios of faults are typically a few percent on Earth and 0.2-0.8% on Mars and Mercury, the D/L ratios of lunar faults are not well characterized. Quantifying the D/L ratios of faults on the Moon is, however, crucial for a better understanding of lunar tectonics, including for studies of the amount of global lunar contraction. Here, we use high-resolution digital terrain models to perform a topographic analysis of four lunar thrust faults - Simpelius-1, Morozov (S1), Fowler, and Racah X-1 - that range in length from 1.3 km to 15.4 km. First, we determine the along-strike variation of the vertical displacement from ≥ 20 topographic profiles across each fault. For measuring the vertical displacements, we use a method that is commonly applied to fault scarps on Earth and that does not require detrending of the profiles. The resulting profiles show that the displacement changes gradually along these faults' strike, with maximum vertical displacements ranging from 17 ± 2 m for Simpelius-1 to 192 ± 30 m for Racah X-1. Assuming a fault dip of 30° yields maximum total displacements (D) that are twice as large as the vertical displacements. The linear relationship between D and L supports the inference that lunar faults gradually accumulate displacement as they propagate laterally. For the faults we investigated, the D/L ratio is ∼2.3%, an order of magnitude higher than theoretical predictions for the Moon, but a value similar for faults on Earth. We also employ finite-element modeling and a Mohr circle stress analysis to investigate why many lunar thrust faults, including three of those studied here, form uphill-facing scarps. Our analysis shows that fault slip is preferentially initiated on planes that dip in the same direction as the topography, because

  8. Diffusion effects on volume-selective NMR at small length scales; Diffusionseffekte in volumenselektiver NMR auf kleinen Laengenskalen

    Energy Technology Data Exchange (ETDEWEB)

    Gaedke, Achim

    2009-01-21

    In this thesis, the interplay between diffusion and relaxation effects in spatially selective NMR experiments at short length scales is explored. This is especially relevant in the context of both conventional and mechanically detected MRI at (sub)micron resolution in biological specimens. Recent results on selectively excited very thin slices showed an in-slice-magnetization recovery orders of magnitude faster than the longitudinal relaxation time T1. However, those experiments were run on fully relaxed samples while MRI and especially mechanically detected NMR experiments are typically run in a periodic fashion with repetition times far below T1. The main purpose of this work therefore was to extend the study of the interplay between diffusion and longitudinal relaxation to periodic excitations. In some way, this is inverse phenomenon to the DESIRE (Diffusive Enhancement of SIgnal and REsolution) approach, proposed 1992 by Lauterbur. Experiments on periodically excited thin slices were carried out at a dedicated static field gradient cryomagnet with magnetic field gradients up to 180 T/m. In order to obtain plane slices, an appropriate isosurface of the gradient magnet had to be identified. It was found at a field of 3.8 T with a gradient of 73 T/m. In this field, slices down to a thickness of 3.2 {mu}m could be excited. The detection of the NMR signal was done using FIDs instead of echoes as the excitation bandwidth of those thin slices is sufficiently small to observe FIDs which are usually considered to be elusive to detection in such strong static field gradients. A simulation toolbox based on the full Bloch-Torrey-equation was developed to describe the excitation and the formation of NMR signals under those unusual conditions as well as the interplay of diffusion and magnetization recovery. Both the experiments and the simulations indicate that diffusion effects lead to a strongly enhanced magnetization modulation signal also under periodic excitation

  9. Wetting at the nanometer scale: effects of long-range forces and substrate heterogeneities

    International Nuclear Information System (INIS)

    Checco, Antonio

    2003-01-01

    Wetting phenomena on the nano-scale remain poorly understood in spite of their growing theoretical and practical interest. In this context, the present work aimed at studying partial wetting of nanometer-sized alkane droplets on 'model' surfaces build by self-assembly of organic monolayers. For this purpose a novel technique, based on 'noncontact' Atomic Force Microscopy (AFM), has been developed to image, with minimal artefacts, drops of adjustable size directly condensed on so- lid surfaces. We have thus shown that contact angle of alkanes, wetting a weakly heterogeneous, silanized substrate, noticeably decreases from its macroscopic value for droplets sizes in the submicron range. The line tension, arising in this case from purely dispersive long-range interactions between the liquid and the substrate, is theoretically too weak to be responsible for the observed effect. Therefore we have supposed that contact angle is affected by mesoscopic chemical heterogeneities of the substrate whenever the droplets size becomes sufficiently small. This scenario has been supported by numerical simulations based on a simplified model of the spatial distribution of surface defects. Similar experiments, performed on different substrates (monolayers made of alkane-thiols self-assembled on gold and of alkyl chains covalently bound onto a silicon surface), have also shown that wetting on small scales is strongly affected by minimal physical and chemical surface heterogeneities. Finally, to provide further examples of the potential of the above mentioned AFM technique, we have studied the wettability of nano-structured surfaces and the local wetting properties of hair. (author) [fr

  10. Oven controlled N++ [1 0 0] length-extensional mode silicon resonator with frequency stability of 1 ppm over industrial temperature range

    Science.gov (United States)

    You, Weilong; Pei, Binbin; Sun, Ke; Zhang, Lei; Yang, Heng; Li, Xinxin

    2017-10-01

    This paper presents an oven controlled N++ [1 0 0] length-extensional mode silicon resonator, with a lookup-table based control algorithm. The temperature coefficient of resonant frequency (TCF) of the N++ doped resonator is nonlinear, and there is a turnover temperature point at which the TCF is equal to zero. The resonator is maintained at the turnover point by Joule heating; this temperature is a little higher than the upper limit of the industrial temperature range. It is demonstrated that the control algorithm based on the thermoresistor on the substrate and the lookup table for heating voltage versus chip temperature is sufficiently accurate to achieve a frequency stability of  ±0.5 ppm over the industrial temperature range. Because only two leads are required for electrical heating and piezoresistive sensing, the power required for heating of this resonator can be potentially lower than that of the oscillators with closed-loop oven control algorithm. It is also shown that the phase noise can be suppressed at the turnover temperature because of the very low value of the TCF, which justifies the usage of the heating voltage as the excitation voltage of the Wheatstone half-bridge.

  11. Accessible length scale of the in-plane structure in polarized neutron off-specular and grazing-incidence small-angle scattering measurements

    Science.gov (United States)

    Maruyama, R.; Bigault, T.; Wildes, A. R.; Dewhurst, C. D.; Saerbeck, T.; Honecker, D.; Yamazaki, D.; Soyama, K.; Courtois, P.

    2017-06-01

    Polarized neutron off-specular and grazing-incidence small-angle scattering measurements are useful methods to investigate the in-plane structure and its correlation of layered systems. Although these measurements give information on complementary and overlapping length scale, the different characteristics between them need to be taken into account when performed. In this study, the difference in the accessible length scale of the in-plane structure, which is one of the most important characteristics, was discussed using an Fe/Si multilayer together with simulations based on the distorted wave Born approximation.

  12. Stretching position can affect levator scapular muscle activity, length, and cervical range of motion in people with a shortened levator scapulae.

    Science.gov (United States)

    Jeong, Hyo-Jung; Cynn, Heon-Seock; Yi, Chung-Hwi; Yoon, Jang-Whon; Lee, Ji-Hyun; Yoon, Tae-Lim; Kim, Bo-Been

    2017-07-01

    Levator scapulae (LS) muscle stretching exercises are a common method of lengthening a shortened muscle; however, the appropriate stretching position for lengthening the LS in people with a shortened LS remains unclear. The purpose of this study was to compare the effects of different stretching exercise positions on the LS and introduce effective stretching exercise methods to clinicians. Twenty-four university students (12 men, 12 women) with a shortened LS were recruited. LS muscle activity, LS index (LSI), and cervical range of motion (ROM) were measured pre (baseline) and post three different stretching exercise positions (sitting, quadruped, and prone). The LSI and cervical ROM exceeded the minimal detectable change and had significant changes. The LSI was greater in the sitting position than at the baseline (p = 0.01), quadruped position (p Stretching the LS in the sitting position was the most effective exercise for improving LS muscle length and cervical ROM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of polydispersity on the structure factor of a melt of binary multiblock copolymers with a two-length-scale macromolecular architecture

    NARCIS (Netherlands)

    Kuchanov, S.; Zharnikov, T.; Brinke, G. ten

    2011-01-01

    A theoretical study on the effect of polydispersity of two-length-scale binary multiblock copolymers on the shape of the structure factor is presented. A bifurcation diagram is constructed showing the partition of the parameter space into domains differing in the way in which the homogeneous melt

  14. On the validity of 2D critical taper theory in 3D wedges: defining a lateral deformation length scale

    Science.gov (United States)

    Leever, Karen; Oncken, Onno; Thorden Haug, Øystein

    2015-04-01

    For 2D critical taper theory to be applicable to 3D natural cases, cylindric deformation is a requirement. The assumption of cylindricity is violated in case of localized perturbations (subducting seamount, localized sedimentation) or due to a lateral change in decollement strength or depth. In natural accretionary wedges and fold-and-thrust belts, along strike changes may occur in a variety of ways: geometrical (due to a protruding indenter or a change in decollement depth), through a lateral change in basal friction (leading to laterally different tapers), or through a change in surface slope (by strongly localized fan sedimentation on accretionary wedges). Recent numerical modelling results (Ruh et al., 2013) have shown that lateral coupling preferentially occurs for relatively small perturbations, i.e. the horizontal shear stress caused by the perturbation is supported by the system. Lateral linking of the wedge in front of a protruding indenter to the wedge in front of the trailing edge of the back stop leads to curved thrust fronts and importantly it has been noted that even outside the curved zone, where the wedge front is again parallel to the direction of tectonic transport, the lateral effect is still evident: both tapers are different from the analytical prediction. We present results from a 3D analogue modelling parameter study to investigate this behavior more quantitatively, with the objective of empirically finding a lateral length scale of deformation in brittle contractional wedges. For a given wedge strength (angle of internal friction), we infer this to be a function of the size (width) of the perturbation and its magnitude (difference in basal friction). To this end we run different series of models in which we systematically vary the width and/or magnitude of a local perturbation. In the first series, the width of a zone of high basal friction is varied, in the second series we vary the width of an indenter and in the third series

  15. 'Length'at Length

    Indian Academy of Sciences (India)

    Admin

    He was interested to know how `large' is the set of numbers x for which the series is convergent. Here large refers to its length. But his set is not in the class ♢. Here is another problem discussed by Borel. Consider .... have an infinite collection of pairs of new shoes and want to choose one shoe from each pair. We have an ...

  16. Introducing close-range photogrammetry for characterizing forest understory plant diversity and surface fuel structure at fine scales

    Science.gov (United States)

    Benjamin C. Bright; E. Louise Loudermilk; Scott M. Pokswinski; Andrew T. Hudak; Joseph J. O' Brien

    2016-01-01

    Methods characterizing fine-scale fuels and plant diversity can advance understanding of plant-fire interactions across scales and help in efforts to monitor important ecosystems such as longleaf pine (Pinus palustris Mill.) forests of the southeastern United States. Here, we evaluate the utility of close-range photogrammetry for measuring fuels and plant...

  17. Logistic regression accuracy across different spatial and temporal scales for a wide-ranging species, the marbled murrelet

    Science.gov (United States)

    Carolyn B. Meyer; Sherri L. Miller; C. John Ralph

    2004-01-01

    The scale at which habitat variables are measured affects the accuracy of resource selection functions in predicting animal use of sites. We used logistic regression models for a wide-ranging species, the marbled murrelet, (Brachyramphus marmoratus) in a large region in California to address how much changing the spatial or temporal scale of...

  18. Effect of artificial length scales in large eddy simulation of a neutral atmospheric boundary layer flow: A simple solution to log-layer mismatch

    Science.gov (United States)

    Chatterjee, Tanmoy; Peet, Yulia T.

    2017-07-01

    A large eddy simulation (LES) methodology coupled with near-wall modeling has been implemented in the current study for high Re neutral atmospheric boundary layer flows using an exponentially accurate spectral element method in an open-source research code Nek 5000. The effect of artificial length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and structure of the inner and outer layer eddies is studied using varying SGS and NWM parameters in the spectral element framework. The study provides an understanding of the various length scales and dynamics of the eddies affected by the LES model and also the fundamental physics behind the inner and outer layer eddies which are responsible for the correct behavior of the mean statistics in accordance with the definition of equilibrium layers by Townsend. An economical and accurate LES model based on capturing the near wall coherent eddies has been designed, which is successful in eliminating the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the streamwise variance.

  19. Spatial and Temporal Scales of Range Expansion in Wild Phaseolus vulgaris

    Science.gov (United States)

    Ariani, Andrea; Berny Mier y Teran, Jorge Carlos

    2018-01-01

    Abstract The wild progenitor of common-bean has an exceptionally large distribution from northern Mexico to northwestern Argentina, unusual among crop wild progenitors. This research sought to document major events of range expansion that led to this distribution and associated environmental changes. Through the use of genotyping-by-sequencing (∼20,000 SNPs) and geographic information systems applied to a sample of 246 accessions of wild Phaseolus vulgaris, including 157 genotypes of the Mesoamerican, 77 of the southern Andean, and 12 of the Northern Peru–Ecuador gene pools, we identified five geographically distinct subpopulations. Three of these subpopulations belong to the Mesoamerican gene pool (Northern and Central Mexico, Oaxaca, and Southern Mexico, Central America and northern South America) and one each to the Northern Peru–Ecuador (PhI) and the southern Andean gene pools. The five subpopulations were distributed in different floristic provinces of the Neotropical seasonally dry forest and showed distinct distributions for temperature and rainfall resulting in decreased local potential evapotranspiration (PhI and southern Andes groups) compared with the two Mexican groups. Three of these subpopulations represent long-distance dispersal events from Mesoamerica into Northern Peru–Ecuador, southern Andes, and Central America and Colombia, in chronological order. Of particular note is that the dispersal to Northern Peru–Ecuador markedly predates the dispersal to the southern Andes (∼400 vs. ∼100 ky), consistent with the ancestral nature of the phaseolin seed protein and chloroplast sequences observed in the PhI group. Seed dispersal in common bean can be, therefore, described at different spatial and temporal scales, from localized, annual seed shattering to long‐distance, evolutionarily rare migration. PMID:29069389

  20. Spatial and Temporal Scales of Range Expansion in Wild Phaseolus vulgaris.

    Science.gov (United States)

    Ariani, Andrea; Berny Mier Y Teran, Jorge Carlos; Gepts, Paul

    2018-01-01

    The wild progenitor of common-bean has an exceptionally large distribution from northern Mexico to northwestern Argentina, unusual among crop wild progenitors. This research sought to document major events of range expansion that led to this distribution and associated environmental changes. Through the use of genotyping-by-sequencing (∼20,000 SNPs) and geographic information systems applied to a sample of 246 accessions of wild Phaseolus vulgaris, including 157 genotypes of the Mesoamerican, 77 of the southern Andean, and 12 of the Northern Peru-Ecuador gene pools, we identified five geographically distinct subpopulations. Three of these subpopulations belong to the Mesoamerican gene pool (Northern and Central Mexico, Oaxaca, and Southern Mexico, Central America and northern South America) and one each to the Northern Peru-Ecuador (PhI) and the southern Andean gene pools. The five subpopulations were distributed in different floristic provinces of the Neotropical seasonally dry forest and showed distinct distributions for temperature and rainfall resulting in decreased local potential evapotranspiration (PhI and southern Andes groups) compared with the two Mexican groups. Three of these subpopulations represent long-distance dispersal events from Mesoamerica into Northern Peru-Ecuador, southern Andes, and Central America and Colombia, in chronological order. Of particular note is that the dispersal to Northern Peru-Ecuador markedly predates the dispersal to the southern Andes (∼400 vs. ∼100 ky), consistent with the ancestral nature of the phaseolin seed protein and chloroplast sequences observed in the PhI group. Seed dispersal in common bean can be, therefore, described at different spatial and temporal scales, from localized, annual seed shattering to long-distance, evolutionarily rare migration. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Current increment of tunnel field-effect transistor using InGaAs nanowire/Si heterojunction by scaling of channel length

    OpenAIRE

    Tomioka, Katsuhiro; Fukui, Takashi

    2014-01-01

    We report on a fabrication of tunnel field-effect transistors using InGaAs nanowire/Si heterojunctions and the characterization of scaling of channel lengths. The devices consisted of single InGaAs nanowires with a diameter of 30 nm grown on p-type Si(111) substrates. The switch demonstrated steep subthreshold-slope (30 mV/decade) at drain-source voltage (V-DS) of 0.10 V. Also, pinch-off behavior appeared at moderately low VDS, below 0.10 V. Reducing the channel length of the transistors atta...

  2. Dynamics of an elastic sphere containing a thin creeping region and immersed in an acoustic region for similar viscous-elastic and acoustic time- and length-scales

    Science.gov (United States)

    Gat, Amir; Friedman, Yonathan

    2017-11-01

    The characteristic time of low-Reynolds number fluid-structure interaction scales linearly with the ratio of fluid viscosity to solid Young's modulus. For sufficiently large values of Young's modulus, both time- and length-scales of the viscous-elastic dynamics may be similar to acoustic time- and length-scales. However, the requirement of dominant viscous effects limits the validity of such regimes to micro-configurations. We here study the dynamics of an acoustic plane wave impinging on the surface of a layered sphere, immersed within an inviscid fluid, and composed of an inner elastic sphere, a creeping fluid layer and an external elastic shell. We focus on configurations with similar viscous-elastic and acoustic time- and length-scales, where the viscous-elastic speed of interaction between the creeping layer and the elastic regions is similar to the speed of sound. By expanding the linearized spherical Reynolds equation into the relevant spectral series solution for the hyperbolic elastic regions, a global stiffness matrix of the layered elastic sphere was obtained. This work relates viscous-elastic dynamics to acoustic scattering and may pave the way to the design of novel meta-materials with unique acoustic properties. ISF 818/13.

  3. Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws

    NARCIS (Netherlands)

    Palva, M.J.; Zhigalov, A.; Hirvonen, J.; Korhonen, O.; Palva, S.; Linkenkaer-Hansen, K.

    2013-01-01

    Scale-free fluctuations are ubiquitous in behavioral performance and neuronal activity. In time scales from seconds to hundreds of seconds, psychophysical dynamics and the amplitude fluctuations of neuronal oscillations are governed by power-law-form longrange temporal correlations (LRTCs). In

  4. Large Strain Range Dynamic Testing at High and Medium Strain Rates, Using a Common Scale SHPB

    OpenAIRE

    Zhao, H.; Gary, G.

    1997-01-01

    The measuring duration of a SHPB (Split Hopkinson Pressure Bar) set-up is limited by the length of the bars because of the superimposition of the waves propagating in opposite directions, so that there exists a limitation of maximum measurable strains in material testing applications. This paper presents a new two-gauges measurement method taking account of the correction of wave dispersion effects, as it is indeed indispensable for long time measurements. Using bars of common dimensions, it ...

  5. Step length after discrete perturbation predicts accidental falls and fall-related injury in elderly people with a range of peripheral neuropathy

    Science.gov (United States)

    Allet, L; Kim, H; Ashton-Miller, JA; De Mott, T; Richardson, JK

    2013-01-01

    Aims Distal symmetric polyneuropathy increases fall risk due to inability to cope with perturbations. We aimed to 1) identify the frontal plane lower limb sensorimotor functions which are necessary for robustness to a discrete, underfoot perturbation during gait; and 2) determine whether changes in the post-perturbed step parameters could distinguish between fallers and non fallers. Methods Forty-two subjects (16 healthy old and 26 with diabetic PN) participated. Frontal plane lower limb sensorimotor functions were determined using established laboratory-based techniques. The subjects' most extreme alterations in step width or step length in response to a perturbation were measured. In addition, falls and fall-related injuries were prospectively recorded. Results Ankle proprioceptive threshold (APrT; p=.025) and hip abduction rate of torque generation (RTG; p=.041) independently predicted extreme step length after medial perturbation, with precise APrT and greater hip RTG allowing maintenance of step length. Fallers demonstrated greater extreme step length changes after medial perturbation than non fallers (percent change = 16.41±8.42 vs 11.0±4.95; p=.06) Conclusions The ability to rapidly generate frontal plane hip strength and/or precisely perceive motion at the ankle is needed to maintain a normal step length after perturbation, a parameter, which distinguishes between fallers and non fallers. PMID:24183899

  6. Development of Lab-to-Fab Production Equipment Across Several Length Scales for Printed Energy Technologies, Including Solar Cells

    DEFF Research Database (Denmark)

    Hösel, Markus; Dam, Henrik Friis; Krebs, Frederik C

    2015-01-01

    We describe and review how the scaling of printed energy technologies not only requires scaling of the input materials but also the machinery used in the processes. The general consensus that ultrafast processing of technologies with large energy capacity can only be realized using roll-to-roll m......We describe and review how the scaling of printed energy technologies not only requires scaling of the input materials but also the machinery used in the processes. The general consensus that ultrafast processing of technologies with large energy capacity can only be realized using roll...... the lower end of the industrial scale. The machinery bridges the gap through firstly achieving improved ink efficiency without surface contact, followed by better ink efficiency at higher speeds, and finally large-area processing at high speed with very high ink efficiency....

  7. A 160 GHZ Polarimetric Compact Range for Scale Model RCS Measurements

    National Research Council Canada - National Science Library

    Coulombe, Michael J; Horgan, T; Waldman, Jerry; Neilson, J; Carter, S; Nixon, William

    1996-01-01

    ...:16th scale-model targets. The transceiver consists of a fast switching, stepped, continuous wave, X-band synthesizer driving dual X16 transmit multiplier chains and dual X16 local oscillator multiplier chains...

  8. How do parcellation size and short-range connectivity affect dynamics in large-scale brain network models?

    Science.gov (United States)

    Proix, Timothée; Spiegler, Andreas; Schirner, Michael; Rothmeier, Simon; Ritter, Petra; Jirsa, Viktor K

    2016-11-15

    Recent efforts to model human brain activity on the scale of the whole brain rest on connectivity estimates of large-scale networks derived from diffusion magnetic resonance imaging (dMRI). This type of connectivity describes white matter fiber tracts. The number of short-range cortico-cortical white-matter connections is, however, underrepresented in such large-scale brain models. It is still unclear on the one hand, which scale of representation of white matter fibers is optimal to describe brain activity on a large-scale such as recorded with magneto- or electroencephalography (M/EEG) or functional magnetic resonance imaging (fMRI), and on the other hand, to which extent short-range connections that are typically local should be taken into account. In this article we quantified the effect of connectivity upon large-scale brain network dynamics by (i) systematically varying the number of brain regions before computing the connectivity matrix, and by (ii) adding generic short-range connections. We used dMRI data from the Human Connectome Project. We developed a suite of preprocessing modules called SCRIPTS to prepare these imaging data for The Virtual Brain, a neuroinformatics platform for large-scale brain modeling and simulations. We performed simulations under different connectivity conditions and quantified the spatiotemporal dynamics in terms of Shannon Entropy, dwell time and Principal Component Analysis. For the reconstructed connectivity, our results show that the major white matter fiber bundles play an important role in shaping slow dynamics in large-scale brain networks (e.g. in fMRI). Faster dynamics such as gamma oscillations (around 40 Hz) are sensitive to the short-range connectivity if transmission delays are considered. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Joint Cross-Range Scaling and 3D Geometry Reconstruction of ISAR Targets Based on Factorization Method.

    Science.gov (United States)

    Lei Liu; Feng Zhou; Xue-Ru Bai; Ming-Liang Tao; Zi-Jing Zhang

    2016-04-01

    Traditionally, the factorization method is applied to reconstruct the 3D geometry of a target from its sequential inverse synthetic aperture radar images. However, this method requires performing cross-range scaling to all the sub-images and thus has a large computational burden. To tackle this problem, this paper proposes a novel method for joint cross-range scaling and 3D geometry reconstruction of steadily moving targets. In this method, we model the equivalent rotational angular velocity (RAV) by a linear polynomial with time, and set its coefficients randomly to perform sub-image cross-range scaling. Then, we generate the initial trajectory matrix of the scattering centers, and solve the 3D geometry and projection vectors by the factorization method with relaxed constraints. After that, the coefficients of the polynomial are estimated from the projection vectors to obtain the RAV. Finally, the trajectory matrix is re-scaled using the estimated rotational angle, and accurate 3D geometry is reconstructed. The two major steps, i.e., the cross-range scaling and the factorization, are performed repeatedly to achieve precise 3D geometry reconstruction. Simulation results have proved the effectiveness and robustness of the proposed method.

  10. Fast neutron relaxation length in concretes in the range of neutron energies En=0.5 - 17.5 MeV

    International Nuclear Information System (INIS)

    Desdin, L.F.; Garcia, L.; Perez, G.; Hernandez, A.; Herrera, E.; Tellez, E.

    1998-01-01

    In the present research were determined the fast neutron relaxation length y in different type of concretes, having special interest for biological shielding as well as for ordinary construction purposes, in the energy interval of 0.5-17.5 MeV. The values of Y concrete are reported with an accuracy of 6 %

  11. Scaling Properties of the D-Short Range Order in PdDx for Higher D Concentrations

    DEFF Research Database (Denmark)

    Krexner, G.; Ernst, G; Fratzl, P.

    1984-01-01

    New measurements of D-short range order (SRO) in PdDx and Pd1−yAgyDx−y are presented. A scaling behaviour of the complicated SRO- features with temperature and electronic concentration is proposed and discussed with respect to the Clapp-Moss-de Fontaine theory of ordering.......New measurements of D-short range order (SRO) in PdDx and Pd1−yAgyDx−y are presented. A scaling behaviour of the complicated SRO- features with temperature and electronic concentration is proposed and discussed with respect to the Clapp-Moss-de Fontaine theory of ordering....

  12. Implementation of two telemeter designs for high accuracy laser ranging of kilometer scale distances in space

    Science.gov (United States)

    Courde, C.; Phung, D. H.; Brillet, A.; Lintz, M.

    2017-11-01

    We present two different laser ranging systems under development, both based on the use of a high frequency modulated beam. The first range meter makes no use of interferometry: only the phase of the return beam is detected, in a way that rejects cyclic errors due to optical and electronic crosstalk. An Allan deviation slightly better than 10nm has been obtained with this simple system. The other range meter should provide better resolution, at the expense of a somewhat more sophisticated procedure, as it involves both time-of-flight and interferometry measurements.

  13. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition

    International Nuclear Information System (INIS)

    Jiang, L.; Li, J.K.; Liu, G.; Wang, R.H.; Chen, B.A.; Zhang, J.Y.; Sun, J.; Yang, M.X.; Yang, G.; Yang, J.; Cao, X.Z.

    2015-01-01

    Heat-treatable Al alloys containing Al–2.5 wt% Cu (Al–Cu) and Al–2.5 wt% Cu–0.3 wt% Sc (Al–Cu–Sc) with different grain length scales, i.e., average grain size >10 μm ( defined coarse grained, CG), 1–2 μm (fine grained, FG), and <1 μm (ultrafine grained, UFG), were prepared by equal-channel angular pressing (ECAP). The length scale and Sc microalloying effects and their interplay on the precipitation behavior and mechanical properties of the Al–Cu alloys were systematically investigated. In the Al–Cu alloys, intergranular θ-Al 2 Cu precipitation gradually dominated by sacrificing the intragranular θ′-Al 2 Cu precipitation with reducing the length scale. Especially in the UFG regime, only intergranular θ-Al 2 Cu particles were precipitated and intragranular θ′-Al 2 Cu precipitation was completely disappeared. This led to a remarkable reduction in yield strength and ductility due to insufficient dislocation storage capacity. The minor Sc addition resulted in a microalloying effect in the Al–Cu alloy, which, however, is strongly dependent on the length scale. The smaller is the grain size, the more active is the microalloying effect that promotes the intragranular precipitation while reduces the intergranular precipitation. Correspondingly, compared with their Sc-free counterparts, the yield strength of post-aged CG, FG, and UFG Al–Cu alloys with Sc addition increased by ~36 MPa, ~56 MPa, and ~150 MPa, simultaneously in tensile elongation by ~20%, ~30%, and 280%, respectively. The grain size-induced evolutions in vacancy concentration/distribution and number density of vacancy-solute/solute–solute clusters and their influences on precipitation nucleation and kinetics have been comprehensively considered to rationalize the length scale-dependent Sc microalloying mechanisms using positron annihilation lifetime spectrum and three dimension atom probe. The increase in ductility was analyzed in the light of Sc microalloying effect and the

  14. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L.; Li, J.K. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, G., E-mail: lgsammer@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, R.H. [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Chen, B.A.; Zhang, J.Y. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Sun, J., E-mail: junsun@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Yang, M.X.; Yang, G. [Central Iron and Steel Research Institute, Beijing 100081 (China); Yang, J.; Cao, X.Z. [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-06-18

    Heat-treatable Al alloys containing Al–2.5 wt% Cu (Al–Cu) and Al–2.5 wt% Cu–0.3 wt% Sc (Al–Cu–Sc) with different grain length scales, i.e., average grain size >10 μm ( defined coarse grained, CG), 1–2 μm (fine grained, FG), and <1 μm (ultrafine grained, UFG), were prepared by equal-channel angular pressing (ECAP). The length scale and Sc microalloying effects and their interplay on the precipitation behavior and mechanical properties of the Al–Cu alloys were systematically investigated. In the Al–Cu alloys, intergranular θ-Al{sub 2}Cu precipitation gradually dominated by sacrificing the intragranular θ′-Al{sub 2}Cu precipitation with reducing the length scale. Especially in the UFG regime, only intergranular θ-Al{sub 2}Cu particles were precipitated and intragranular θ′-Al{sub 2}Cu precipitation was completely disappeared. This led to a remarkable reduction in yield strength and ductility due to insufficient dislocation storage capacity. The minor Sc addition resulted in a microalloying effect in the Al–Cu alloy, which, however, is strongly dependent on the length scale. The smaller is the grain size, the more active is the microalloying effect that promotes the intragranular precipitation while reduces the intergranular precipitation. Correspondingly, compared with their Sc-free counterparts, the yield strength of post-aged CG, FG, and UFG Al–Cu alloys with Sc addition increased by ~36 MPa, ~56 MPa, and ~150 MPa, simultaneously in tensile elongation by ~20%, ~30%, and 280%, respectively. The grain size-induced evolutions in vacancy concentration/distribution and number density of vacancy-solute/solute–solute clusters and their influences on precipitation nucleation and kinetics have been comprehensively considered to rationalize the length scale-dependent Sc microalloying mechanisms using positron annihilation lifetime spectrum and three dimension atom probe. The increase in ductility was analyzed in the light of Sc microalloying

  15. Adaptation during northern range expansion in the elongate hemlock scale Fiorinia externa

    Science.gov (United States)

    Evan Preisser; Alexandra Lodge; David Orwig; Joseph Elkinton

    2007-01-01

    The elongate hemlock scale Fiorinia externa, (EHS) an invasive pest from Japan, was first found in the eastern United States in 1908. It feeds on a variety of plants, most notably the eastern hemlock Tsuga canadensis, and has been spreading slowly into southern New England. In order to examine the northern spread of EHS and the...

  16. Ontogenetic scaling of fish metabolism in the mouse-to-elephant mass magnitude range

    DEFF Research Database (Denmark)

    Moran, Damian; Wells, R.M.G.

    2007-01-01

    coefficient. Statistical and information theory comparisons of three other models showed that a segmented linear regression and curvilinear quadratic function were an improvement over a simple linear regression. This confirmed previous observations that the metabolic scaling exponent of fish changes during...

  17. Fine-scale movements of rural free-ranging dogs in conservation areas in the temperate rainforest of the coastal range of southern Chile

    Science.gov (United States)

    Sepulveda, Maximiliano; Pelican, Katherine; Cross, Paul C.; Eguren, Antonieta; Singer, Randall S.

    2015-01-01

    Domestic dogs can play a variety of important roles for farmers. However, when in proximity to conservation areas, the presence of rural free-ranging dogs can be problematic due to the potential for predation of, competition with, or transmission of infectious disease to local threatened fauna. We used a frequent location radio tracking technology to study rural free-ranging dog movements and habitat use into sensitive conservation habitats. To achieve a better understanding of foray behaviors in dogs we monitored dogs (n = 14) in rural households located in an isolated area between the Valdivian Coastal Reserve and the Alerce Costero National Park in southern Chile. Dogs were mostly located near households (Dogs spent, on average, 5.3% of their time in forays with average per dog foray distances from the house ranging 0.5–1.9 km (maximum distance detected 4.3 km). Foraying behavior was positively associated with pasture habitat compared to forest habitat including protected lands. Foraying dogs rarely used forest habitat and, when entered, trails and/or roads were selected for movement. Our study provides important information about how dogs interact in a fine-scale with wildlife habitat, and, in particular, protected lands, providing insight into how dog behavior might drive wildlife interactions, and, in turn, how an understanding of dog behavior can be used to manage these interactions.

  18. Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, Thellungiella halophila

    Directory of Open Access Journals (Sweden)

    Seki Motoaki

    2008-11-01

    Full Text Available Abstract Background Thellungiella halophila (also known as Thellungiella salsuginea is a model halophyte with a small plant size, short life cycle, and small genome. It easily undergoes genetic transformation by the floral dipping method used with its close relative, Arabidopsis thaliana. Thellungiella genes exhibit high sequence identity (approximately 90% at the cDNA level with Arabidopsis genes. Furthermore, Thellungiella not only shows tolerance to extreme salinity stress, but also to chilling, freezing, and ozone stress, supporting the use of Thellungiella as a good genomic resource in studies of abiotic stress tolerance. Results We constructed a full-length enriched Thellungiella (Shan Dong ecotype cDNA library from various tissues and whole plants subjected to environmental stresses, including high salinity, chilling, freezing, and abscisic acid treatment. We randomly selected about 20 000 clones and sequenced them from both ends to obtain a total of 35 171 sequences. CAP3 software was used to assemble the sequences and cluster them into 9569 nonredundant cDNA groups. We named these cDNAs "RTFL" (RIKEN Thellungiella Full-Length cDNAs. Information on functional domains and Gene Ontology (GO terms for the RTFL cDNAs were obtained using InterPro. The 8289 genes assigned to InterPro IDs were classified according to the GO terms using Plant GO Slim. Categorical comparison between the whole Arabidopsis genome and Thellungiella genes showing low identity to Arabidopsis genes revealed that the population of Thellungiella transport genes is approximately 1.5 times the size of the corresponding Arabidopsis genes. This suggests that these genes regulate a unique ion transportation system in Thellungiella. Conclusion As the number of Thellungiella halophila (Thellungiella salsuginea expressed sequence tags (ESTs was 9388 in July 2008, the number of ESTs has increased to approximately four times the original value as a result of this effort. Our

  19. Scaling and charge ratio in the energy range 1-10 TeV

    International Nuclear Information System (INIS)

    Baradzej, L.T.; Kanevskaya, E.A.; Smorodin, Yu.A.

    1976-01-01

    The purpose of the investigation was to study the spectra of generation of neutral and charged pions in the upper atmosphere in order to establish the scaling behaviour of the multiple birth of particles at primary particle energies above the acceleration energies. The study of the spectrum gamma-quanta in the atmosphere and the muon spectrum at the sea level made it possible to adjust the pion generation spectrum. In experiments with emulsion chambers the spectra of gamma-quanta and electrons at different zenith angles at two levels in the atmosphere (225 and 700 gxcm -2 ) and the muon spectrum at the sea level were determined. The obtained data on pion birth in the atmosphere pointed to the conservation of scale and charge invariance in pion birth at nucleon energies of 10 12 -10 14 eV

  20. Criterion Noise in Ratings-Based Recognition: Evidence from the Effects of Response Scale Length on Recognition Accuracy

    Science.gov (United States)

    Benjamin, Aaron S.; Tullis, Jonathan G.; Lee, Ji Hae

    2013-01-01

    Rating scales are a standard measurement tool in psychological research. However, research has suggested that the cognitive burden involved in maintaining the criteria used to parcel subjective evidence into ratings introduces "decision noise" and affects estimates of performance in the underlying task. There has been debate over whether…

  1. A 160 GHZ Polarimetric Compact Range for Scale Model RCS Measurements

    National Research Council Canada - National Science Library

    Coulombe, Michael J; Horgan, T; Waldman, Jerry; Neilson, J; Carter, S; Nixon, William

    1996-01-01

    .... Cross-polarization rejection ratios of better than 40 dB are routinely achieved. The compact range reflector consists of a 60-inch diameter, CNC-machined aluminum mirror fed from the side to produce a clean 20-inch quiet zone...

  2. Quasi-Continuum Reduction of Field Theories: A Route to Seamlessly Bridge Quantum and Atomistic Length-Scales with Continuum

    Science.gov (United States)

    2016-04-01

    this form contains classified information, stamp classification level on the top and bottom of this page. 17. LIMITATION OF ABSTRACT. This block... techniques have been developed that enable large-scale real-space electronic structure calculations using Kohn-Sham density functional theory. In...particular, the various components of the developed techniques include (i) real-space formulation of Kohn-Sham density-functional theory (DFT) for both

  3. Current increment of tunnel field-effect transistor using InGaAs nanowire/Si heterojunction by scaling of channel length

    Science.gov (United States)

    Tomioka, Katsuhiro; Fukui, Takashi

    2014-02-01

    We report on a fabrication of tunnel field-effect transistors using InGaAs nanowire/Si heterojunctions and the characterization of scaling of channel lengths. The devices consisted of single InGaAs nanowires with a diameter of 30 nm grown on p-type Si(111) substrates. The switch demonstrated steep subthreshold-slope (30 mV/decade) at drain-source voltage (VDS) of 0.10 V. Also, pinch-off behavior appeared at moderately low VDS, below 0.10 V. Reducing the channel length of the transistors attained a steep subthreshold slope (<60 mV/decade) and enhanced the drain current, which was 100 higher than that of the longer channels.

  4. Scanning Thermal Lithography for Nanopatterning of Polymers. Transient Heat Transport and Thermal Chemical Functionalization Across the Length Scales

    NARCIS (Netherlands)

    Duvigneau, Joost

    2011-01-01

    The research described in this Thesis comprises the development of Scanning Thermal Lithography (SThL) as an alternative approach for the spatially controlled, highly localized thermal chemical surface modification of polymer films for the development of e.g. (bio)sensors. In the Thesis, the range

  5. Bond length (Ti-O) dependence of nano ATO3-based (A = Pb, Ba, Sr) perovskite structures: Optical investigation in IR range

    Science.gov (United States)

    Ghasemifard, Mahdi; Ghamari, Misagh; Okay, Cengiz

    2018-01-01

    In the current study, ABO3 (A = Pb, Ba, Sr and B = Ti) perovskite structures are produced by the auto-combustion route by using citric acid (CA) and nitric acid (NA) as fuel and oxidizer. The X-ray diffraction (XRD) patterns confirmed the perovskite nanostructure with cubic, tetragonal, and rhombohedral for SrTiO3, PbTiO3, and BaTiO3, respectively. Using Scherrer’s equation and XRD pattern, the average crystallite size of the samples were acquired. The effect of Ti-O bond length on the structure of the samples was evaluated. The type of structures obtained depends on Ti-O bond length which is in turn influenced by A2+ substitutions. Microstructural studies of nanostructures calcined at 850∘C confirmed the formation of polyhedral particles with a narrow size distribution. The values of optical band gaps were measured and the impact of A2+ was discussed. The optical properties such as the complex refractive index and dielectric function were calculated by IR spectroscopy and Kramers-Kronig (K-K) relations. Lead, as the element with the highest density as compared to other elements, changes the optical constants, remarkably due to altering titanium and oxygen distance in TO6 groups.

  6. Search for Screened Interactions Associated with Dark Energy below the 100 μm Length Scale.

    Science.gov (United States)

    Rider, Alexander D; Moore, David C; Blakemore, Charles P; Louis, Maxime; Lu, Marie; Gratta, Giorgio

    2016-09-02

    We present the results of a search for unknown interactions that couple to mass between an optically levitated microsphere and a gold-coated silicon cantilever. The scale and geometry of the apparatus enable a search for new forces that appear at distances below 100  μm and which would have evaded previous searches due to screening mechanisms. The data are consistent with electrostatic backgrounds and place upper limits on the strength of new interactions at 5.6×10^{4} in the region of parameter space where the self-coupling Λ≳5  meV and the microspheres are not fully screened.

  7. Multi-length-scale Material Model for SiC/SiC Ceramic-Matrix Composites (CMCs): Inclusion of In-Service Environmental Effects

    Science.gov (United States)

    Grujicic, M.; Galgalikar, R.; Snipes, J. S.; Ramaswami, S.

    2016-01-01

    In our recent work, a multi-length-scale room-temperature material model for SiC/SiC ceramic-matrix composites (CMCs) was derived and parameterized. The model was subsequently linked with a finite-element solver so that it could be used in a general room-temperature, structural/damage analysis of gas-turbine engine CMC components. Due to its multi-length-scale character, the material model enabled inclusion of the effects of fiber/tow (e.g., the volume fraction, size, and properties of the fibers; fiber-coating material/thickness; decohesion properties of the coating/matrix interfaces; etc.) and ply/lamina (e.g., the 0°/90° cross-ply versus plain-weave architectures, the extent of tow crimping in the case of the plain-weave plies, cohesive properties of the inter-ply boundaries, etc.) length-scale microstructural/architectural parameters on the mechanical response of the CMCs. One of the major limitations of the model is that it applies to the CMCs in their as-fabricated conditions (i.e., the effect of prolonged in-service environmental exposure and the associated material aging-degradation is not accounted for). In the present work, the model is upgraded to include such in-service environmental-exposure effects. To demonstrate the utility of the upgraded material model, it is used within a finite-element structural/failure analysis involving impact of a toboggan-shaped turbine shroud segment by a foreign object. The results obtained clearly revealed the effects that different aspects of the in-service environmental exposure have on the material degradation and the extent of damage suffered by the impacted CMC toboggan-shaped shroud segment.

  8. Energy scaling of passively Q-switched lasers In the Mj-range

    Science.gov (United States)

    Neumann, J.; Huss, R.; Kolleck, C.; Kracht, Dietmar

    2017-11-01

    Q-switched lasers systems with ns pulse duration and energies ranging from 1 to more than 100mJ are utilized for many spaceborne applications such as altimetry of planets and moons. Furthermore, Q-switched lasers can be used for distance measurements during docking and landing manoeuvres. To keep the diameter of the beam small over a large distance and to consequently achieve a good lateral resolution, a good beam propagation factor M² is required. Moreover, Q-switched lasers can be used directly on the planetary surface for exploration by laser-induced breakdown spectroscopy or laser desorption mass spectrometry.

  9. Establishing the cut-off score for remission and severity-ranges on the Psychotic Depression Assessment Scale (PDAS)

    DEFF Research Database (Denmark)

    Østergaard, Søren D; Rothschild, Anthony J; Flint, Alastair J

    2016-01-01

    BACKGROUND: The Psychotic Depression Assessment Scale (PDAS) is a rating scale dedicated to the measurement of severity in psychotic depression (PD). The aim of this study was to establish the PDAS cut-off for remission of PD as well as PDAS score-ranges for mild, moderate, and severe PD....... The secondary aim was to test how remission, as defined by the PDAS, would perform as outcome measure when applied to the data from a large randomized controlled trial (RCT) in PD. METHODS: The study was based on data from the Study of Pharmacotherapy in Psychotic Depression (STOP-PD). The cut-off for remission...

  10. Long-range pulselength scaling of 351nm laser damage thresholds

    Science.gov (United States)

    Foltyn, S. R.; Jolin, L. J.

    1986-12-01

    In a series of experiments incorporating 351nm pulselength of 9, 26, 54, and 625ns, it was found that laser damage thresholds increased as (pulselength)/sup x/, and that the exponent averaged 0.36 and ranged, for different samples, from 0.23 to 0.48. Similar results were obtained when only catastrophic damage was considered. Samples included Al2O3/SiO2 in both AR and HR multilayers, HR's of Sc2O3/SiO2 and HfO2/SiO2, and Al-on-pyrex mirror; 9ns thresholds were between 0.2 to 5.6 J/sq cm. When these data were compared with a wide range of other results - for wavelengths from 0.25 to 10.6 microns and pulselengths down to 4ps - a remarkably consistent picture emerged. Damage thresholds, on average, increase approximately as the cube-root of pulselength from picoseconds to nearly a microsecond, and do so regardless of wavelength or material under test.

  11. Intensity limits for propagation of 0.527 μm laser beams through large-scale-length plasmas for inertial confinement fusion

    International Nuclear Information System (INIS)

    Niemann, C.; Divol, L.; Froula, D.H.; Gregori, G.; Jones, O.; Kirkwood, R.K.; MacKinnon, A.J.; Meezan, N.B.; Moody, J.D.; Sorce, C.; Suter, L.J.; Glenzer, S.H.; Bahr, R.; Seka, W.

    2005-01-01

    We have established the intensity limits for propagation of a frequency-doubled (2ω, 527 nm) high intensity interaction beam through an underdense large-scale-length plasma. We observe good beam transmission at laser intensities at or below 2x10 14 W/cm 2 and a strong reduction at intensities up to 10 15 W/cm 2 due to the onset of parametric scattering instabilities. We show that temporal beam smoothing by spectral dispersion allows a factor of 2 higher intensities while keeping the beam spray constant, which establishes frequency-doubled light as an option for ignition and burn in inertial confinement fusion experiments

  12. Close-range laser scanning in forests: towards physically based semantics across scales.

    Science.gov (United States)

    Morsdorf, F; Kükenbrink, D; Schneider, F D; Abegg, M; Schaepman, M E

    2018-04-06

    Laser scanning with its unique measurement concept holds the potential to revolutionize the way we assess and quantify three-dimensional vegetation structure. Modern laser systems used at close range, be it on terrestrial, mobile or unmanned aerial platforms, provide dense and accurate three-dimensional data whose information just waits to be harvested. However, the transformation of such data to information is not as straightforward as for airborne and space-borne approaches, where typically empirical models are built using ground truth of target variables. Simpler variables, such as diameter at breast height, can be readily derived and validated. More complex variables, e.g. leaf area index, need a thorough understanding and consideration of the physical particularities of the measurement process and semantic labelling of the point cloud. Quantified structural models provide a framework for such labelling by deriving stem and branch architecture, a basis for many of the more complex structural variables. The physical information of the laser scanning process is still underused and we show how it could play a vital role in conjunction with three-dimensional radiative transfer models to shape the information retrieval methods of the future. Using such a combined forward and physically based approach will make methods robust and transferable. In addition, it avoids replacing observer bias from field inventories with instrument bias from different laser instruments. Still, an intensive dialogue with the users of the derived information is mandatory to potentially re-design structural concepts and variables so that they profit most of the rich data that close-range laser scanning provides.

  13. Length of the intense vorticity structures in isotropic turbulence

    Science.gov (United States)

    Ghira, Afonso; Silva, Carlos; Elsinga, Gerrit; Lasef Collaboration

    2017-11-01

    The length scale l of the intense vorticity structures or 'worms' of isotropic turbulence is reassessed using new direct numerical simulations (DNS). The new simulations cover a Reynolds number range from 96 Portuguese Foundation for Science and Technology (FST); PRACE.

  14. The Tampa Scale of Kinesiophobia and neck pain, disability and range of motion: a narrative review of the literature

    Science.gov (United States)

    Hudes, Karen

    2011-01-01

    Background: The Tampa Scale of Kinesiophobia (TSK) that was developed in 1990 is a 17 item scale originally developed to measure the fear of movement related to chronic lower back pain. Objective: To review the literature regarding TSK and neck pain, perceived disability and range of motion of the cervical spine. Methods: Medline, MANTIS, Index to Chiropractic Literature and CINAHL were searched. Results: A total of 16 related articles were found and divided into four categories: TSK and Neck Pain; TSK, Neck Pain and Disability; TSK, Neck Pain, Disability and Strength; and TSK, Neck Pain and Surface Electromyography. Conclusion: The fear avoidance model can be applied to neck pain sufferers and there is value from a psychometric perspective in using the TSK to assess kinesiophobia. Future research should investigate if, and to what extent, other measureable factors commonly associated with neck pain, such as decreased range of motion, correlate with kinesiophobia. PMID:21886284

  15. Surface accuracy of a large-scale compact antenna test range considering mechanism, metrology and alignment

    International Nuclear Information System (INIS)

    Zhou, Guofeng; Li, Xiaoxing; Li, Dongsheng; Luan, Jingdong; Zhao, Jinze

    2014-01-01

    A large compact range (CR) having a width of 23 m and height of 16 m that will generate a Φ15 m quiet zone is presented. The antenna consists of 30 blocks and 76 serrated reflectors. Its mechanical accuracy is reflected in two aspects: surface precision and gap precision. In addition, the root-mean-square (RMS) surface accuracy should be less than or equal to 0.075 mm for achieving the highest operating frequency of 40 GHz, and the gaps between two segments should be controlled strictly to the tolerance of 0.4 ± 0.2 mm for avoiding gap diffraction and compensating for inter-block interference due to thermal deformation. The surface accuracy in terms of mechanical structure, metrology and alignment approach is very tight. First, a high-accuracy honeycomb sandwich panel, anisotropic back structure and spatial parallel adjustment mechanism are introduced, and the error contributions of these three mechanisms are 0.03 mm, 0.01 mm and 0.005 mm, respectively. Second, a measurement network based on laser tracker metrology was established, and the RMS error of the measurement system is controlled to 0.025 mm through the optimization of the measuring stations and weighted coordinate regression. Third, an original alignment approach that divides the entire assembly into three key phases by marked point edge-constrained surface is proposed. By performing a few iterations of onsite adjustment, the reflectors were aligned in the prescribed positions, and the gap quality was controlled effectively. Finally, the on-site alignment of the large CR is introduced. The final antenna surface RMS accuracy was up to 0.054 mm, and the gaps achieved the desired design index. (paper)

  16. Phase Behavior of Blends of Linear and Branched Polyethylenes on Micron-Length Scales via Ultra-Small-Angle Neutron Scattering (USANS)

    International Nuclear Information System (INIS)

    Agamalian, M.M.; Alamo, R.G.; Londono, J.D.; Mandelkern, L.; Wignall, G.D.

    1999-01-01

    SANS experiments on blends of linear, high density (HD) and long chain branched, low density (LD) polyethylenes indicate that these systems form a one-phase mixture in the melt. However, the maximum spatial resolution of pinhole cameras is approximately equal to 10 3 and it has therefore been suggested that data might also be interpreted as arising from a bi-phasic melt with large a particle size ( 1 m), because most of the scattering from the different phases would not be resolved. We have addressed this hypothesis by means of USANS experiments, which confirm that HDPEILDPE blends are homogenous in the melt on length scales up to 20 m. We have also studied blends of HDPE and short-chain branched linear low density polyethylenes (LLDPEs), which phase separate when the branch content is sufficiently high. LLDPEs prepared with Ziegler-Natta catalysts exhibit a wide distribution of compositions, and may therefore be thought of as a blend of different species. When the composition distribution is broad enough, a fraction of highly branched chains may phase separate on m-length scales, and USANS has also been used to quantify this phenomenon

  17. Mechanical Behavior of UO2 at Sub-grain Length Scales: Quantification of Elastic, Plastic and Creep Properties via Microscale Testing

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, Pedro

    2018-04-16

    concluded successfully, resulting in: 1) the successful fabrication, processing, and characterization of large-grained samples with various orientations (up to and including single crystals) having stoichiometric and hyper-stoichiometric O/U ratios; 2) formulation, calibration, and validation of a crystal plasticity constitutive model to describe the creep deformation of UO2 at the sub-grain length scale (single crystal level) at intermediate temperatures; 3) the successful calibration of a crystal plasticity constitutive model to describe the elasto-plastic deformation of microcantilever beams, also at moderate temperatures. Samples were prepared from natural uranium oxide powder of production-quality provided by Areva. The powder was pressed in a die to a pressure of 100 MPa to produce green pellets with no sintering aids, lubricants, or any other additives. The green pellets were then heated up to 1700 °C under ultra-high purity argon atmosphere (~1 ppm O2). The atmosphere was then changed to 79% Argon, 21% O2 and the temperature was held at 1700 °C for 2 hours to sinter the pellets under oxidative conditions [1] that are known to increase grain growth kinetics in UO2 [2]. Samples were then cooled down under Ar-4%H2 atmosphere to reduce the samples back to stoichiometric UO2. For macro-scale procedures, testing of UO2 samples with large grains was performed at 1200 °C using a modified load frame capable of applying dead-weight loads to ensure constant stress conditions, while displacement of the sample produced by the applied load was measured with high precision micrometers to obtain strains. Stress steps were used during testing and the strains were monitored to measured creep strain rates under steady state for each level of stress used, so that stress exponents could be obtained. The results of the mechanical testing, along with sample geometry and crystal orientation of the grains in the samples, as well as post-test sample characterization were used to formulate

  18. Detour factors in water and plastic phantoms and their use for range and depth scaling in electron-beam dosimetry

    International Nuclear Information System (INIS)

    Fernandez-Varea, J.M.; Andreo, P.; Tabata, T.

    1996-01-01

    Average penetration depths and detour factors of 1-50 MeV electrons in water and plastic materials have been computed by means of analytical calculation, within the continuous-slowing-down approximation and including multiple scattering, and using the Monte Carlo codes ITS and PENELOPE. Results are compared to detour factors from alternative definitions previously proposed in the literature. Different procedures used in low-energy electron-beam dosimetry to convert ranges and depths measured in plastic phantoms into water-equivalent ranges and depths are analysed. A new simple and accurate scaling method, based on Monte Carlo-derived ratios of average electron penetration depths and thus incorporating the effect of multiple scattering, is presented. Data are given for most plastics used in electron-beam dosimetry together with a fit which extends the method to any other low-Z plastic material. A study of scaled depth - dose curves and mean energies as a function of depth for some plastics of common usage shows that the method improves the consistency and results of other scaling procedures in dosimetry with electron beams at therapeutic energies. (author)

  19. Knowing the dense plasma focus - The coming of age (of the PF) with broad-ranging scaling laws

    Science.gov (United States)

    Saw, S. H.; Lee, S.

    2017-03-01

    The dense plasma focus is blessed not only with copious multi-radiations ranging from electron and ion beams, x-rays both soft and hard, fusion neutrons D-D and D-T but also with the property of enhanced compression from radiative collapse leading to HED (high energy density) states. The Lee code has been used in extensive systematic numerical experiments tied to reality through fitting with measured current waveforms and verified through comparison of measured and computed yields and measurements of multi-radiation. The studies have led to establishment of scaling laws with respect to storage energy, discharge current and pinch currents for fusion neutrons, characteristic soft x-rays, all-line radiation and ion beams. These are summarized here together with a first-time presentation of a scaling law of radiatively enhanced compression as a function of atomic number of operational gas. This paper emphasizes that such a broad range of scaling laws signals the coming of age of the DPF and presents a reference platform for planning the many potential applications such as in advanced SXR lithography, materials synthesizing and testing, medical isotopes, imaging and energy and high energy density (HED).

  20. Species richness of vascular plants along the climatic range of the Spanish dehesas at two spatial scales

    Directory of Open Access Journals (Sweden)

    Jose M. Garcia del Barrio

    2014-04-01

    Full Text Available Aims of study: The goals of this paper are to summarize and to compare plant species richness and floristic similarity at two spatial scales; mesohabitat (normal, eutrophic, and oligotrophic dehesas and dehesa habitat; and to establish guidelines for conserving species diversity in dehesas.Area of study: We considered four dehesa sites in the western Peninsular Spain, located along a climatic and biogeographic gradient from north to south. Main results: Average alpha richness for mesohabitats was 75.6 species, and average alpha richness for dehesa sites was 146.3. Gamma richness assessed for the overall dehesa habitat was 340.0 species. The species richness figures of normal dehesa mesohabitat were significantly lesser than of the eutrophic mesohabitat and lesser than the oligotrophic mesohabitat too. No significant differences were found for species richness among dehesa sites. We have found more dissimilarity at local scale (mesohabitat than at regional scale (habitat. Finally, the results of the similarity assessment between dehesa sites reflected both climatic and biogeographic gradients.Research highlights: An effective conservation of dehesas must take into account local and regional conditions all along their distribution range for ensuring the conservation of the main vascular plant species assemblages as well as the associated fauna.Keywords: Agroforestry systems; mesohabitat; non-parametric estimators; alpha richness; gamma richness; floristic similarity; climatic and biogeographic range.

  1. Comparison of Path Length and Ranges of Movement of the Center of Pressure and Reaction Time and Between Paired-Play and Solo-Play of a Virtual Reality Game.

    Science.gov (United States)

    Portnoy, Sigal; Hersch, Ayelet; Sofer, Tal; Tresser, Sarit

    2017-06-01

    To test whether paired-play will induce longer path length and ranges of movement of the center of pressure (COP), which reflects on balance performance and stability, compared to solo-play and to test the difference in the path length and ranges of movement of the COP while playing the virtual reality (VR) game with the dominant hand compared to playing it with the nondominant hand. In this cross-sectional study 20 children (age 6.1 ± 0.7 years old) played an arm movement controlled VR game alone and with a peer while each of them stood on a pressure measuring pad to track the path length and ranges of movement of the COP. The total COP path was significantly higher during the paired-play (median 295.8 cm) compared to the COP path during the solo-play (median 189.2 cm). No significant differences were found in the reaction time and the mediolateral and anterior-posterior COP ranges between solo-play and paired-play. No significant differences were found between the parameters extracted during paired-play with the dominant or nondominant hand. Our findings imply that the paired-play is advantageous compared to solo-play since it induces a greater movement for the child, during which, higher COP velocities are reached that may contribute to improving the balance control of the child. Apart from the positive social benefits of paired-play, this positive effect on the COP path length is a noteworthy added value in the clinical setting when treating children with balance disorder.

  2. Overview of lower length scale model development for accident tolerant fuels regarding U3Si2 fuel and FeCrAl cladding

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Laboratory

    2016-09-01

    U3Si2 and FeCrAl have been proposed as fuel and cladding concepts, respectively, for accident tolerance fuels with higher tolerance to accident scenarios compared to UO2. However, a lot of key physics and material properties regarding their in-pile performance are yet to be explored. To accelerate the understanding and reduce the cost of experimental studies, multiscale modeling and simulation are used to develop physics-based materials models to assist engineering scale fuel performance modeling. In this report, the lower-length-scale efforts in method and material model development supported by the Accident Tolerance Fuel (ATF) high-impact-problem (HIP) under the NEAMS program are summarized. Significant progresses have been made regarding interatomic potential, phase field models for phase decomposition and gas bubble formation, and thermal conductivity for U3Si2 fuel, and precipitation in FeCrAl cladding. The accomplishments are very useful by providing atomistic and mesoscale tools, improving the current understanding, and delivering engineering scale models for these two ATF concepts.

  3. Intra- and interobserver reliability of gray scale/dynamic range evaluation of ultrasonography using a standardized phantom

    International Nuclear Information System (INIS)

    Lee, Song; Choi, Joon Il; Park, Michael Yong; Yeo, Dong Myung; Byun, Jae Young; Jung, Seung Eun; Rha, Sung Eun; Oh, Soon Nam; Lee, Young Joon

    2014-01-01

    To evaluate intra- and interobserver reliability of the gray scale/dynamic range of the phantom image evaluation of ultrasonography using a standardized phantom, and to assess the effect of interactive education on the reliability. Three radiologists (a resident, and two board-certified radiologists with 2 and 7 years of experience in evaluating ultrasound phantom images) performed the gray scale/dynamic range test for an ultrasound machine using a standardized phantom. They scored the number of visible cylindrical structures of varying degrees of brightness and made a pass or fail decision. First, they scored 49 phantom images twice from a 2010 survey with limited knowledge of phantom images. After this, the radiologists underwent two hours of interactive education for the phantom images and scored another 91 phantom images from a 2011 survey twice. Intra- and interobserver reliability before and after the interactive education session were analyzed using K analyses. Before education, the K-value for intraobserver reliability for the radiologist with 7 years of experience, 2 years of experience, and the resident was 0.386, 0.469, and 0.465, respectively. After education, the K-values were improved (0.823, 0.611, and 0.711, respectively). For interobserver reliability, the K-value was also better after the education for the 3 participants (0.067, 0.002, and 0.547 before education; 0.635, 0.667, and 0.616 after education, respectively). The intra- and interobserver reliability of the gray scale/dynamic range was fair to substantial. Interactive education can improve reliability. For more reliable results, double- checking of phantom images by multiple reviewers is recommended.

  4. Vortex matter beyond SANS. Neutron studies of vortex structures covering a length scale of 0.01 ti 10 μm

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Tommy

    2017-01-09

    This thesis is concerned with different generic types of vortex matter arising in the intermediate state of the type-I superconductor lead, the intermediate mixed state of the type-II superconductor niobium, and the helimagnetic phase of the compound manganese silicide. It is demonstrated and explained how a combination of i) the radiographic techniques neutron grating interferometry and neutron diffractive imaging with ii) scattering methods such as small-angle-neutron scattering and ultra-small-angle neutron scattering can provide novel insight into the bulk behavior of these vortex systems. By means of the used scattering methods, detailed information on the morphology of the vortex phases covering a length scale of 0.01 to 10 μm are obtained, while the radiographic approaches additionally map the spatial distribution of vortices within the sample. In particular, this thesis focuses on the strong influences of demagnetization, geometric barriers and pinning on the vortex configuration.

  5. The Extended Relativity Theory in Born-Clifford Phase Spaces with a Lower and Upper Length Scales and Clifford Group Geometric Unification

    CERN Document Server

    Castro, C

    2004-01-01

    We construct the Extended Relativity Theory in Born-Clifford-Phase spaces with an upper and lower length scales (infrared/ultraviolet cutoff). The invariance symmetry leads naturally to the real Clifford algebra Cl (2, 6, R ) and complexified Clifford Cl_C ( 4 ) algebra related to Twistors. We proceed with an extensive review of Smith's 8D model based on the Clifford algebra Cl ( 1 ,7) that reproduces at low energies the physics of the Standard Model and Gravity; including the derivation of all the coupling constants, particle masses, mixing angles, ....with high precision. Further results by Smith are discussed pertaining the interplay among Clifford, Jordan, Division and Exceptional Lie algebras within the hierarchy of dimensions D = 26, 27, 28 related to bosonic string, M, F theory. Two Geometric actions are presented like the Clifford-Space extension of Maxwell's Electrodynamics, Brandt's action related the 8D spacetime tangent-bundle involving coordinates and velocities (Finsler geometries) followed by a...

  6. Vortex matter beyond SANS. Neutron studies of vortex structures covering a length scale of 0.01 ti 10 μm

    International Nuclear Information System (INIS)

    Reimann, Tommy

    2017-01-01

    This thesis is concerned with different generic types of vortex matter arising in the intermediate state of the type-I superconductor lead, the intermediate mixed state of the type-II superconductor niobium, and the helimagnetic phase of the compound manganese silicide. It is demonstrated and explained how a combination of i) the radiographic techniques neutron grating interferometry and neutron diffractive imaging with ii) scattering methods such as small-angle-neutron scattering and ultra-small-angle neutron scattering can provide novel insight into the bulk behavior of these vortex systems. By means of the used scattering methods, detailed information on the morphology of the vortex phases covering a length scale of 0.01 to 10 μm are obtained, while the radiographic approaches additionally map the spatial distribution of vortices within the sample. In particular, this thesis focuses on the strong influences of demagnetization, geometric barriers and pinning on the vortex configuration.

  7. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  8. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  9. Predictors of extended length of stay, discharge to inpatient rehab, and hospital readmission following elective lumbar spine surgery: introduction of the Carolina-Semmes Grading Scale.

    Science.gov (United States)

    McGirt, Matthew J; Parker, Scott L; Chotai, Silky; Pfortmiller, Deborah; Sorenson, Jeffrey M; Foley, Kevin; Asher, Anthony L

    2017-10-01

    OBJECTIVE Extended hospital length of stay (LOS), unplanned hospital readmission, and need for inpatient rehabilitation after elective spine surgery contribute significantly to the variation in surgical health care costs. As novel payment models shift the risk of cost overruns from payers to providers, understanding patient-level risk of LOS, readmission, and inpatient rehabilitation is critical. The authors set out to develop a grading scale that effectively stratifies risk of these costly events after elective surgery for degenerative lumbar pathologies. METHODS The Quality and Outcomes Database (QOD) registry prospectively enrolls patients undergoing surgery for degenerative lumbar spine disease. This registry was queried for patients who had undergone elective 1- to 3-level lumbar surgery for degenerative spine pathology. The association between preoperative patient variables and extended postoperative hospital LOS (LOS ≥ 7 days), discharge status (inpatient facility vs home), and 90-day hospital readmission was assessed using stepwise multivariate logistic regression. The Carolina-Semmes grading scale was constructed using the independent predictors for LOS (0-12 points), discharge to inpatient facility (0-18 points), and 90-day readmission (0-6 points), and its performance was assessed using the QOD data set. The performance of the grading scale was then confirmed separately after using it in 2 separate neurosurgery practice sites (Carolina Neurosurgery & Spine Associates [CNSA] and Semmes Murphey Clinic). RESULTS A total of 6921 patients were analyzed. Overall, 290 (4.2%) patients required extended LOS, 654 (9.4%) required inpatient facility care/rehabilitation on hospital discharge, and 474 (6.8%) were readmitted to the hospital within 90 days postdischarge. Variables that remained as independently associated with these unplanned events in multivariate analysis included age ≥ 70 years, American Society of Anesthesiologists Physical Classification System

  10. Charge Separation in Intermixed Polymer:PC70BM Photovoltaic Blends: Correlating Structural and Photophysical Length Scales as a Function of Blend Composition

    KAUST Repository

    Utzat, Hendrik

    2017-04-24

    A key challenge in achieving control over photocurrent generation by bulk-heterojunction organic solar cells is understanding how the morphology of the active layer impacts charge separation and in particular the separation dynamics within molecularly intermixed donor-acceptor domains versus the dynamics between phase-segregated domains. This paper addresses this issue by studying blends and devices of the amorphous silicon-indacenodithiophene polymer SiIDT-DTBT and the acceptor PCBM. By changing the blend composition, we modulate the size and density of the pure and intermixed domains on the nanometer length scale. Laser spectroscopic studies show that these changes in morphology correlate quantitatively with the changes in charge separation dynamics on the nanosecond time scale and with device photocurrent densities. At low fullerene compositions, where only a single, molecularly intermixed polymer-fullerene phase is observed, photoexcitation results in a ∼ 30% charge loss from geminate polaron pair recombination, which is further studied via light intensity experiments showing that the radius of the polaron pairs in the intermixed phase is 3-5 nm. At high fullerene compositions (≥67%), where the intermixed domains are 1-3 nm and the pure fullerene phases reach ∼4 nm, the geminate recombination is suppressed by the reduction of the intermixed phase, making the fullerene domains accessible for electron escape.

  11. Long length scales of element transport during reaction texture development in orthoamphibole-cordierite gneiss: Thor-Odin dome, British Columbia, Canada

    Science.gov (United States)

    Goergen, Eric T.; Whitney, Donna L.

    2012-02-01

    First-order factors controlling the textural and chemical evolution of metamorphic rocks are bulk composition and pressure-temperature-time ( P- T- t) path. Although it is common to assume that major element bulk composition does not change during regional metamorphism, rocks with reaction textures such as corona structures record evidence for major changes in effective bulk composition (EBC) and therefore provide significant insight into the scale, pathways, and mechanisms of element transport during metamorphism. Quantifying changes in EBC is essential for petrologic applications such as calculation of phase diagrams (pseudosections). The progressive growth of complex corona structures on garnet and Al2SiO5 porphyroblasts in orthoamphibole-cordierite gneiss Thor-Odin dome (British Columbia, Canada) reduced the EBC volume of the rock during metamorphism and therefore had a dramatic effect on the evolution of the stable mineral assemblage. These rocks contain a chemical and textural record of metamorphic reactions and preserve 3D networks (reaction pathways) connecting corona structures. These coronal networks record long (>cm) length scales of localized element transport during metamorphism. P- T, T- X, and P- X pseudosections are used to investigate the control of effective bulk composition on phase assemblage evolution. Despite textural complexity and evidence for disequilibrium, mineral assemblages and compositions were successfully modeled and peak metamorphic conditions estimated at 750°C and 9 kbar. These results illustrate how textural and chemical changes during metamorphism can be evaluated using an integrated petrographic and pseudosection approach, highlight the importance of effective bulk composition choice for application of phase equilibria methods in metamorphic rocks, and show how corona structures can be used to understand the scale of compositional change and element transport during metamorphism.

  12. Correlations of properties and structures at different length scales of hydro- and organo-gels based on N-alkyl-(R)-12-hydroxyoctadecylammonium chlorides.

    Science.gov (United States)

    Mallia, V Ajay; Terech, Pierre; Weiss, Richard G

    2011-11-03

    The self-assembly and gelating ability of a set of N-alkyl-(R)-12-hydroxyoctadecylammonium chlorides (NCl-n, where n = 0-6, 18 is the length of the alkyl chain on nitrogen) are described. Several are found to be ambidextrous (gelating both water and a variety of organic liquids) and very efficient (needing less than ca. 0.5 wt % at room temperature). Structure-property correlations at different distance scales of the NCl-n in their hydro- and organo-gels and neat, solid states have been made using X-ray diffraction, neutron scattering, thermal, optical, cryo-SEM and rheological techniques. The self-assembled fibrillar networks consist of spherulitic objects with fibers whose diameters and degrees of twisting differ in the hydro- and organo-gels. Increasing n (and, thus, the molecular length) increases the width of the fibers in their hydrogels; an irregular, less pronounced trend between n and fiber width is observed in the corresponding toluene gels. Time-dependent, small angle neutron scattering data for the isothermal sol-to-gel transformation of sols of NCl-18/toluene to their gels, treated according to Avrami theory, indicate heterogeneous nucleation involving rodlike growth. Rheological studies of gels of NCl-3 in water and toluene confirm their viscoelastic nature and show that the hydrogel is mechanically stronger than the toluene gel. Models for the different molecular packing arrangements within the fibrillar gel networks of the hydro- and organogels have been inferred from X-ray diffraction. The variations in the fibrillar networks provide a comprehensive picture and detailed insights into why seemingly very similar NCl-n behave very differently during their self-assembly processes in water and organic liquids. It is shown that the NCl-n provide a versatile platform for interrogating fundamental questions regarding the links between molecular structure and one-dimensional self-aggregation, leading to gelation.

  13. Generation and analysis of a large-scale expressed sequence tags from a full-length enriched cDNA library of Siberian tiger (Panthera tigris altaica).

    Science.gov (United States)

    Guo, Yu; Liu, Changqing; Lu, Taofeng; Liu, Dan; Bai, Chunyu; Li, Xiangchen; Ma, Yuehui; Guan, Weijun

    2014-05-15

    In this study, a full-length enriched cDNA library was successfully constructed from Siberian tiger, the world's most endangered species. The titers of primary and amplified libraries were 1.28×10(6)pfu/mL and 1.59×10(10)pfu/mL respectively. The proportion of recombinants from unamplified library was 91.3% and the average length of exogenous inserts was 1.06kb. A total of 279 individual ESTs with sizes ranging from 316 to 1258bps were then analyzed. Furthermore, 204 unigenes were successfully annotated and involved in 49 functions of the GO classification, cell (175, 85.5%), cellular process (165, 80.9%), and binding (152, 74.5%) are the dominant terms. 198 unigenes were assigned to 156 KEGG pathways, and the pathways with the most representation are metabolic pathways (18, 9.1%). The proportion pattern of each COG subcategory was similar among Panthera tigris altaica, P. tigris tigris and Homo sapiens, and general function prediction only cluster (44, 15.8%) represents the largest group, followed by translation, ribosomal structure and biogenesis (33, 11.8%), replication, recombination and repair (24, 8.6%), and only 7.2% ESTs classified as novel genes. Moreover, the recombinant plasmid pET32a-TAT-COL6A2 was constructed, coded for the Trx-TAT-COL6A2 fusion protein with two 6× His-tags in N and C-terminal. After BCA assay, the concentration of soluble Trx-TAT-COL6A2 recombinant protein was 2.64±0.18mg/mL. This library will provide a useful platform for the functional genome and transcriptome research of for the P. tigris and other felid animals in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Fundamental length

    International Nuclear Information System (INIS)

    Pradhan, T.

    1975-01-01

    The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)

  15. Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics.

    Science.gov (United States)

    Aoki, Koh; Yano, Kentaro; Suzuki, Ayako; Kawamura, Shingo; Sakurai, Nozomu; Suda, Kunihiro; Kurabayashi, Atsushi; Suzuki, Tatsuya; Tsugane, Taneaki; Watanabe, Manabu; Ooga, Kazuhide; Torii, Maiko; Narita, Takanori; Shin-I, Tadasu; Kohara, Yuji; Yamamoto, Naoki; Takahashi, Hideki; Watanabe, Yuichiro; Egusa, Mayumi; Kodama, Motoichiro; Ichinose, Yuki; Kikuchi, Mari; Fukushima, Sumire; Okabe, Akiko; Arie, Tsutomu; Sato, Yuko; Yazawa, Katsumi; Satoh, Shinobu; Omura, Toshikazu; Ezura, Hiroshi; Shibata, Daisuke

    2010-03-30

    The Solanaceae family includes several economically important vegetable crops. The tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. Recently, a number of tomato resources have been developed in parallel with the ongoing tomato genome sequencing project. In particular, a miniature cultivar, Micro-Tom, is regarded as a model system in tomato genomics, and a number of genomics resources in the Micro-Tom-background, such as ESTs and mutagenized lines, have been established by an international alliance. To accelerate the progress in tomato genomics, we developed a collection of fully-sequenced 13,227 Micro-Tom full-length cDNAs. By checking redundant sequences, coding sequences, and chimeric sequences, a set of 11,502 non-redundant full-length cDNAs (nrFLcDNAs) was generated. Analysis of untranslated regions demonstrated that tomato has longer 5'- and 3'-untranslated regions than most other plants but rice. Classification of functions of proteins predicted from the coding sequences demonstrated that nrFLcDNAs covered a broad range of functions. A comparison of nrFLcDNAs with genes of sixteen plants facilitated the identification of tomato genes that are not found in other plants, most of which did not have known protein domains. Mapping of the nrFLcDNAs onto currently available tomato genome sequences facilitated prediction of exon-intron structure. Introns of tomato genes were longer than those of Arabidopsis and rice. According to a comparison of exon sequences between the nrFLcDNAs and the tomato genome sequences, the frequency of nucleotide mismatch in exons between Micro-Tom and the genome-sequencing cultivar (Heinz 1706) was estimated to be 0.061%. The collection of Micro-Tom nrFLcDNAs generated in this study will serve as a valuable genomic tool for plant biologists to bridge the gap between basic and applied studies. The nrFLcDNA sequences will help annotation of the tomato whole-genome sequence and aid in tomato functional

  16. Multi-length scale tomography for the determination and optimization of the effective microstructural properties in novel hierarchical solid oxide fuel cell anodes

    Science.gov (United States)

    Lu, Xuekun; Taiwo, Oluwadamilola O.; Bertei, Antonio; Li, Tao; Li, Kang; Brett, Dan J. L.; Shearing, Paul R.

    2017-11-01

    Effective microstructural properties are critical in determining the electrochemical performance of solid oxide fuel cells (SOFCs), particularly when operating at high current densities. A novel tubular SOFC anode with a hierarchical microstructure, composed of self-organized micro-channels and sponge-like regions, has been fabricated by a phase inversion technique to mitigate concentration losses. However, since pore sizes span over two orders of magnitude, the determination of the effective transport parameters using image-based techniques remains challenging. Pioneering steps are made in this study to characterize and optimize the microstructure by coupling multi-length scale 3D tomography and modeling. The results conclusively show that embedding finger-like micro-channels into the tubular anode can improve the mass transport by 250% and the permeability by 2-3 orders of magnitude. Our parametric study shows that increasing the porosity in the spongy layer beyond 10% enhances the effective transport parameters of the spongy layer at an exponential rate, but linearly for the full anode. For the first time, local and global mass transport properties are correlated to the microstructure, which is of wide interest for rationalizing the design optimization of SOFC electrodes and more generally for hierarchical materials in batteries and membranes.

  17. Derivation of effective fission gas diffusivities in UO2 from lower length scale simulations and implementation of fission gas diffusion models in BISON

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perriot, Romain Thibault [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tonks, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-07

    This report summarizes the development of new fission gas diffusion models from lower length scale simulations and assessment of these models in terms of annealing experiments and fission gas release simulations using the BISON fuel performance code. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations, continuum models for diffusion of xenon (Xe) in UO2 were derived for both intrinsic conditions and under irradiation. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and stability. These models were implemented in the MARMOT phase field code, which is used to calculate effective Xe diffusivities for various irradiation conditions. The effective diffusivities were used in BISON to calculate fission gas release for a number of test cases. The results are assessed against experimental data and future directions for research are outlined based on the conclusions.

  18. Characteristic length scale of the magnon accumulation in Fe{sub 3}O{sub 4}/Pt bilayer structures by incoherent thermal excitation

    Energy Technology Data Exchange (ETDEWEB)

    Anadón, A., E-mail: anadonb@unizar.es; Lucas, I.; Morellón, L. [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Ramos, R. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); Algarabel, P. A. [Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009 Zaragoza (Spain); Ibarra, M. R.; Aguirre, M. H. [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Laboratorio de Microscopías avanzadas, Universidad de Zaragoza, 50018 Zaragoza (Spain)

    2016-07-04

    The dependence of Spin Seebeck effect (SSE) with the thickness of the magnetic materials is studied by means of incoherent thermal excitation. The SSE voltage signal in Fe{sub 3}O{sub 4}/Pt bilayer structure increases with the magnetic material thickness up to 100 nm, approximately, showing signs of saturation for larger thickness. This dependence is well described in terms of a spin current pumped in the platinum film by the magnon accumulation in the magnetic material. The spin current is generated by a gradient of temperature in the system and detected by the Pt top contact by means of inverse spin Hall effect. Calculations in the frame of the linear response theory adjust with a high degree of accuracy the experimental data, giving a thermal length scale of the magnon accumulation (Λ) of 17 ± 3 nm at 300 K and Λ = 40 ± 10 nm at 70 K.

  19. Modeling Nonreactive Molecule-Surface Systems on Experimentally Relevant Time and Length Scales: Dynamics and Conductance of Polyfluorene on Au(111).

    Science.gov (United States)

    Li, Zhi; Tkatchenko, Alexandre; Franco, Ignacio

    2018-03-01

    We propose a computationally efficient strategy to accurately model nonreactive molecule-surface interactions that adapts density functional theory calculations with the Tkatchenko-Scheffler scheme for van der Waals interactions into a simple classical force field. The resulting force field requires just two adjustable parameters per atom type that are needed to capture short-range and polarization interactions. The developed strategy allows for classical molecular dynamics simulation of molecules on surfaces with the accuracy of high-level electronic structure methods but for system sizes (10 3 to 10 7 atoms) and timescales (picoseconds to microseconds) that go well beyond what can be achieved with first-principles methods. Parameters for H, sp 2 C, and O on Au(111) are developed and employed to atomistically model experiments that measure the conductance of a single polyfluorene on Au(111) as a continuous function of its length. The simulations qualitatively capture both the gross and fine features of the observed conductance decay during initial junction elongation and lead to a revised atomistic understanding of the experiment.

  20. Intraspecific differences in lipid content of calanoid copepods across fine-scale depth ranges within the photic layer.

    Directory of Open Access Journals (Sweden)

    Margarita Zarubin

    Full Text Available Copepods are among the most abundant and diverse groups of mesozooplankton in the world's oceans. Each species has a certain depth range within which different individuals (of the same life stage and sex are found. Lipids are accumulated in many calanoid copepods for energy storage and reproduction. Lipid content in some species increases with depth, however studies so far focused mostly on temperate and high-latitude seasonal vertically migrating copepods and compared lipid contents among individuals either from coarse layers or between diapausing, deep-dwelling copepods and individuals found in the photic, near-surface layer. Here we examined whether lipid contents of individual calanoid copepods of the same species, life stage/sex differ between finer depth layers within the upper water column of subtropical and Arctic seas. A total of 6 calanoid species were collected from samples taken at precise depths within the photic layer in both cold eutrophic and warm oligotrophic environments using SCUBA diving, MOCNESS and Multinet. Measurements of lipid content were obtained from digitized photographs of the collected individuals. The results revealed significant differences in lipid content across depth differences as small as 12-15 meters for Mecynocera clausi C5 and Ctenocalanus vanus C5 (Red Sea, Clausocalanus furcatus males and two clausocalanid C5s (Mediterranean Sea, and Calanus glacialis C5 (Arctic. We suggest two possible explanations for the differences in lipid content with depth on such a fine scale: predator avoidance and buoyancy.

  1. Size variation and collapse of emphysema holes at inspiration and expiration CT scan: evaluation with modified length scale method and image co-registration

    Directory of Open Access Journals (Sweden)

    Oh SY

    2017-07-01

    Full Text Available Sang Young Oh,1,* Minho Lee,1,* Joon Beom Seo,1,* Namkug Kim,1,2,* Sang Min Lee,1 Jae Seung Lee,3 Yeon Mok Oh3 1Department of Radiology, 2Department of Convergence Medicine, 3Department of Pulmonology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: A novel approach of size-based emphysema clustering has been developed, and the size variation and collapse of holes in emphysema clusters are evaluated at inspiratory and expiratory computed tomography (CT. Thirty patients were visually evaluated for the size-based emphysema clustering technique and a total of 72 patients were evaluated for analyzing collapse of the emphysema hole in this study. A new approach for the size differentiation of emphysema holes was developed using the length scale, Gaussian low-pass filtering, and iteration approach. Then, the volumetric CT results of the emphysema patients were analyzed using the new method, and deformable registration was carried out between inspiratory and expiratory CT. Blind visual evaluations of EI by two readers had significant correlations with the classification using the size-based emphysema clustering method (r-values of reader 1: 0.186, 0.890, 0.915, and 0.941; reader 2: 0.540, 0.667, 0.919, and 0.942. The results of collapse of emphysema holes using deformable registration were compared with the pulmonary function test (PFT parameters using the Pearson’s correlation test. The mean extents of low-attenuation area (LAA, E1 (<1.5 mm, E2 (<7 mm, E3 (<15 mm, and E4 (≥15 mm were 25.9%, 3.0%, 11.4%, 7.6%, and 3.9%, respectively, at the inspiratory CT, and 15.3%, 1.4%, 6.9%, 4.3%, and 2.6%, respectively at the expiratory CT. The extents of LAA, E2, E3, and E4 were found to be significantly correlated with the PFT ­parameters (r=−0.53, −0.43, −0.48, and −0.25, with forced expiratory volume in 1 second (FEV1; −0.81, −0.62, −0.75, and

  2. Evidence-Based Thresholds for the Volume and Length of Stay Relationship in Total Hip Arthroplasty: Outcomes and Economies of Scale.

    Science.gov (United States)

    Ramkumar, Prem N; Navarro, Sergio M; Frankel, William C; Haeberle, Heather S; Delanois, Ronald E; Mont, Michael A

    2018-02-05

    Several studies have indicated that high-volume surgeons and hospitals deliver higher value care. However, no evidence-based volume thresholds currently exist in total hip arthroplasty (THA). The primary objective of this study was to establish meaningful thresholds taking patient outcomes into consideration for surgeons and hospitals performing THA. A secondary objective was to examine the market share of THAs for each surgeon and hospital strata. Using 136,501 patients undergoing hip arthroplasty, we used stratum-specific likelihood ratio (SSLR) analysis of a receiver-operating characteristic curve to generate volume thresholds predictive of increased length of stay (LOS) for surgeons and hospitals. Additionally, we examined the relative proportion of annual THA cases performed by each surgeon and hospital strata established. SSLR analysis of LOS by annual surgeon THA volume produced 3 strata: 0-69 (low), 70-121 (medium), and 121 or more (high). Analysis by annual hospital THA volume produced strata at: 0-120 (low), 121-357 (medium), and 358 or more (high). LOS decreased significantly (P economies of scale in THA by demonstrating a direct relationship between volume and value for THA through risk-based volume stratification of surgeons and hospitals using SSLR analysis of receiver-operating characteristic curves to identify low-, medium-, and high-volume surgeons and hospitals. While the majority of primary THAs are performed at high-volume centers, low-volume surgeons are performing the majority of these cases, which may offer room for improvement in delivering value-based care. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Scale dependence in habitat selection: The case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain)

    Science.gov (United States)

    Maria C. Mateo Sanchez; Samuel A. Cushman; Santiago Saura

    2013-01-01

    Animals select habitat resources at multiple spatial scales. Thus, explicit attention to scale dependency in species-habitat relationships is critical to understand the habitat suitability patterns as perceived by organisms in complex landscapes. Identification of the scales at which particular environmental variables influence habitat selection may be as important as...

  4. Correlation lengths of electrostatic turbulence

    International Nuclear Information System (INIS)

    Guiziou, L.; Garbet, X.

    1995-01-01

    In this paper, the radial correlation length of an electrostatic drift wave turbulence is analytically determined in various regimes. The analysis relies on the calculation of a range of mode non linear interaction, which is an instantaneous correlation length. The link with the usual correlation length has not been investigated yet. (TEC). 5 refs

  5. Effect of Racial-Ethnic Grouping, Age, and IQ Range on the Validity of the Satz-Mogel Short Form of the Wechsler Adult Intelligence Scale

    Science.gov (United States)

    Adams, Russell L.; And Others

    1977-01-01

    Cross-validated the effectiveness of the Satz-Mogel short form of the Wechsler Adult Intelligence Scale controlling for the influence of age, racial-ethnic group, and IQ range. Results suggest that age and racial-ethnic group do not affect the short-form validity but that IQ range does. (Author)

  6. Telomere length and depression

    DEFF Research Database (Denmark)

    Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Rode, Line

    2017-01-01

    BACKGROUND: Depression has been cross-sectionally associated with short telomeres as a measure of biological age. However, the direction and nature of the association is currently unclear. AIMS: We examined whether short telomere length is associated with depression cross-sectionally as well...... as prospectively and genetically. METHOD: Telomere length and three polymorphisms, TERT, TERC and OBFC1, were measured in 67 306 individuals aged 20-100 years from the Danish general population and associated with register-based attendance at hospital for depression and purchase of antidepressant medication....... RESULTS: Attendance at hospital for depression was associated with short telomere length cross-sectionally, but not prospectively. Further, purchase of antidepressant medication was not associated with short telomere length cross-sectionally or prospectively. Mean follow-up was 7.6 years (range 0...

  7. Effects of magnetic order on the superconducting length scales and critical fields in single crystal ErNi2B2C

    DEFF Research Database (Denmark)

    Gammel, P.L.; Barber, B.P.; Ramirez, A.P.

    1999-01-01

    The flux line form factor in small angle neutron scattering and transport data determines the superconducting length scares and critical fields in single crystal ErNi2B2C. For H parallel to c, the coherence length xi increases and the penetration depth lambda decreases when crossing T-N = 6.0 K......, the Neel transition. The critical fields show corresponding anomalies near T-N. For H perpendicular to c, the fourfold modulation of the upper critical field H-c2 is strongly temperature dependent, changing sign near T-N, and can be modeled using the anisotropy of the sublattice magnetization....

  8. Reducing the item number to obtain the same-length self-assessment scales: a systematic approach using result of graphical loglinear rasch models

    DEFF Research Database (Denmark)

    Nielsen, Tine; Kreiner, Svend

    2011-01-01

    . For self-assessment, self-scoring and self-interpretational purposes it is deemed prudent that subscales measuring comparable constructs are of the same item length. Consequently, in order to obtain a self-assessment version of the R-D-LSI with an equal number of items in each subscale, a systematic...... approach to item reduction based on results of graphical loglinear Rasch modeling (GLLRM) was designed. This approach was then used to reduce the number of items in the subscales of the R-D-LSI which had an item-length of more than seven items, thereby obtaining the Danish Self-Assessment Learning Styles...

  9. Noninvariance of Space and Time Scale Ranges under a Lorentz Transformation and the Implications for the Numerical Study of Relativistic Systems

    International Nuclear Information System (INIS)

    Vay, J.-L.; Vay, J.-L.

    2007-01-01

    We present an analysis which shows that the ranges of space and time scales spanned by a system are not invariant under the Lorentz transformation. This implies the existence of a frame of reference which minimizes an aggregate measure of the range of space and time scales. Such a frame is derived for example cases: free electron laser, laser-plasma accelerator, and particle beam interacting with electron clouds. Implications for experimental, theoretical and numerical studies are discussed. The most immediate relevance is the reduction by orders of magnitude in computer simulation run times for such systems

  10. Fine-scale population genetic structure and short-range sex-biased dispersal in a solitary carnivore, Lutra lutra

    Czech Academy of Sciences Publication Activity Database

    Quaglietta, L.; Fonseca, V. C.; Hájková, Petra; Mira, A.; Boitani, L.

    2013-01-01

    Roč. 94, č. 3 (2013), s. 561-571 ISSN 0022-2372 Institutional support: RVO:68081766 Keywords : conservation genetics * dispersal distances * Eurasian otter * isolation by distance * radiotracking * restricted gene flow * spatial relatedness structure * spatiotemporal scale Subject RIV: EG - Zoology Impact factor: 2.225, year: 2013

  11. A GPU-based large-scale Monte Carlo simulation method for systems with long-range interactions

    Science.gov (United States)

    Liang, Yihao; Xing, Xiangjun; Li, Yaohang

    2017-06-01

    In this work we present an efficient implementation of Canonical Monte Carlo simulation for Coulomb many body systems on graphics processing units (GPU). Our method takes advantage of the GPU Single Instruction, Multiple Data (SIMD) architectures, and adopts the sequential updating scheme of Metropolis algorithm. It makes no approximation in the computation of energy, and reaches a remarkable 440-fold speedup, compared with the serial implementation on CPU. We further use this method to simulate primitive model electrolytes, and measure very precisely all ion-ion pair correlation functions at high concentrations. From these data, we extract the renormalized Debye length, renormalized valences of constituent ions, and renormalized dielectric constants. These results demonstrate unequivocally physics beyond the classical Poisson-Boltzmann theory.

  12. Large-scale range collapse of Hawaiian forest birds under climate change and the need 21st century conservation options

    Science.gov (United States)

    Fortini, Lucas B.; Vorsino, Adam E.; Amidon, Fred A.; Paxton, Eben H.; Jacobi, James D.

    2015-01-01

    Hawaiian forest birds serve as an ideal group to explore the extent of climate change impacts on at-risk species. Avian malaria constrains many remaining Hawaiian forest bird species to high elevations where temperatures are too cool for malaria's life cycle and its principal mosquito vector. The impact of climate change on Hawaiian forest birds has been a recent focus of Hawaiian conservation biology, and has centered on the links between climate and avian malaria. To elucidate the differential impacts of projected climate shifts on species with known varying niches, disease resistance and tolerance, we use a comprehensive database of species sightings, regional climate projections and ensemble distribution models to project distribution shifts for all Hawaiian forest bird species. We illustrate that, under a likely scenario of continued disease-driven distribution limitation, all 10 species with highly reliable models (mostly narrow-ranged, single-island endemics) are expected to lose >50% of their range by 2100. Of those, three are expected to lose all range and three others are expected to lose >90% of their range. Projected range loss was smaller for several of the more widespread species; however improved data and models are necessary to refine future projections. Like other at-risk species, Hawaiian forest birds have specific habitat requirements that limit the possibility of range expansion for most species, as projected expansion is frequently in areas where forest habitat is presently not available (such as recent lava flows). Given the large projected range losses for all species, protecting high elevation forest alone is not an adequate long-term strategy for many species under climate change. We describe the types of additional conservation actions practitioners will likely need to consider, while providing results to help with such considerations.

  13. Species richness of vascular plants along the climatic range of the Spanish dehesas at two spatial scales

    OpenAIRE

    Jose M. Garcia del Barrio; Rafael Alonso Ponce; Raquel Benavides; Sonia Roig

    2014-01-01

    Aims of study: The goals of this paper are to summarize and to compare plant species richness and floristic similarity at two spatial scales; mesohabitat (normal, eutrophic, and oligotrophic dehesas) and dehesa habitat; and to establish guidelines for conserving species diversity in dehesas.Area of study: We considered four dehesa sites in the western Peninsular Spain, located along a climatic and biogeographic gradient from north to south. Main results: Average alpha richness for mesohabitat...

  14. Fine-structured multi-scaling long-range correlations in completely sequenced genomes - features, origin and classification.

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); M. Göcker; R. Lohner (Rudolf); A. Abuseiris (Anis); F.G. Grosveld (Frank)

    2009-01-01

    textabstractThe sequential organization of genomes, i.e. the relations between distant base pairs and regions within sequences, and its connection to the three-dimensional organization of genomes is still a largely unresolved problem. Long-range power-law correlations were found using correlation

  15. Scales

    Science.gov (United States)

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that ...

  16. Assessment of biosecurity measures against highly pathogenic avian influenza risks in small-scale commercial farms and free-range poultry flocks in the northcentral Nigeria.

    Science.gov (United States)

    Alhaji, N B; Odetokun, I A

    2011-04-01

    There is considerable global concern over the emergence of highly pathogenic avian influenza (HPAI) that has affected domestic poultry flocks in Nigeria and other parts of the world. There have been little investigations on the proposition that free-range flocks are potentially at higher risk of HPAI than confined small-scale commercial enterprises. The objective is to analyse the biosecurity measures instituted in the small-scale commercial poultry farms and established free-range bird flocks owned by households in the rural areas and qualitatively assess the risk status at the two levels of poultry management systems in northcentral Nigeria. We used data collected through questionnaire administration to farms and flock owners and subjected them to a traffic light system model to test for relative risks of HPAI infection based on the biosecurity measures put in place at the farm and flock levels. The results indicate that free-range flocks are at lower risk compared to small-scale commercial operations. These findings are plausible as birds from free-range flocks have more opportunities to contact wild bird reservoirs of low-pathogenic avian influenza (LPAI) strains than small-scale commercial poultry, thus providing them with constant challenge and maintenance of flock immunity. The development of efficient and effective biosecurity measures against poultry diseases on small-scale commercial farms requires adequate placement of barriers to provide segregation, cleaning and disinfection, while concerted community-led sanitary measures are required for free-range poultry flocks in the developing topical and subtropical economies. © 2011 Blackwell Verlag GmbH.

  17. Characterization of a fluvial aquifer at a range of depths and scales: the Triassic St Bees Sandstone Formation, Cumbria, UK

    Science.gov (United States)

    Medici, Giacomo; West, L. J.; Mountney, N. P.

    2018-03-01

    Fluvial sedimentary successions represent porous media that host groundwater and geothermal resources. Additionally, they overlie crystalline rocks hosting nuclear waste repositories in rift settings. The permeability characteristics of an arenaceous fluvial succession, the Triassic St Bees Sandstone Formation in England (UK), are described, from core-plug to well-test scale up to 1 km depth. Within such lithified successions, dissolution associated with the circulation of meteoric water results in increased permeability ( K 10-1-100 m/day) to depths of at least 150 m below ground level (BGL) in aquifer systems that are subject to rapid groundwater circulation. Thus, contaminant transport is likely to occur at relatively high rates. In a deeper investigation (> 150 m depth), where the aquifer has not been subjected to rapid groundwater circulation, well-test-scale hydraulic conductivity is lower, decreasing from K 10-2 m/day at 150-400 m BGL to 10-3 m/day down-dip at 1 km BGL, where the pore fluid is hypersaline. Here, pore-scale permeability becomes progressively dominant with increasing lithostatic load. Notably, this work investigates a sandstone aquifer of fluvial origin at investigation depths consistent with highly enthalpy geothermal reservoirs ( 0.7-1.1 km). At such depths, intergranular flow dominates in unfaulted areas with only minor contribution by bedding plane fractures. However, extensional faults represent preferential flow pathways, due to presence of high connective open fractures. Therefore, such faults may (1) drive nuclear waste contaminants towards the highly permeable shallow (< 150 m BGL) zone of the aquifer, and (2) influence fluid recovery in geothermal fields.

  18. Characterization of a fluvial aquifer at a range of depths and scales: the Triassic St Bees Sandstone Formation, Cumbria, UK

    Science.gov (United States)

    Medici, Giacomo; West, L. J.; Mountney, N. P.

    2017-11-01

    Fluvial sedimentary successions represent porous media that host groundwater and geothermal resources. Additionally, they overlie crystalline rocks hosting nuclear waste repositories in rift settings. The permeability characteristics of an arenaceous fluvial succession, the Triassic St Bees Sandstone Formation in England (UK), are described, from core-plug to well-test scale up to 1 km depth. Within such lithified successions, dissolution associated with the circulation of meteoric water results in increased permeability (K 10-1-100 m/day) to depths of at least 150 m below ground level (BGL) in aquifer systems that are subject to rapid groundwater circulation. Thus, contaminant transport is likely to occur at relatively high rates. In a deeper investigation (> 150 m depth), where the aquifer has not been subjected to rapid groundwater circulation, well-test-scale hydraulic conductivity is lower, decreasing from K 10-2 m/day at 150-400 m BGL to 10-3 m/day down-dip at 1 km BGL, where the pore fluid is hypersaline. Here, pore-scale permeability becomes progressively dominant with increasing lithostatic load. Notably, this work investigates a sandstone aquifer of fluvial origin at investigation depths consistent with highly enthalpy geothermal reservoirs ( 0.7-1.1 km). At such depths, intergranular flow dominates in unfaulted areas with only minor contribution by bedding plane fractures. However, extensional faults represent preferential flow pathways, due to presence of high connective open fractures. Therefore, such faults may (1) drive nuclear waste contaminants towards the highly permeable shallow (< 150 m BGL) zone of the aquifer, and (2) influence fluid recovery in geothermal fields.

  19. Optimal smoothing length scale for actuator line models of wind turbine blades based on Gaussian body force distribution: Wind energy, actuator line model

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Tossas, L. A. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore 21218 MD USA; Churchfield, M. J. [National Renewable Energy Laboratory, Golden 80401 CO USA; Meneveau, C. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore 21218 MD USA

    2017-01-20

    The actuator line model (ALM) is a commonly used method to represent lifting surfaces such as wind turbine blades within large-eddy simulations (LES). In the ALM, the lift and drag forces are replaced by an imposed body force that is typically smoothed over several grid points using a Gaussian kernel with some prescribed smoothing width e. To date, the choice of e has most often been based on numerical considerations related to the grid spacing used in LES. However, especially for finely resolved LES with grid spacings on the order of or smaller than the chord length of the blade, the best choice of e is not known. In this work, a theoretical approach is followed to determine the most suitable value of e, based on an analytical solution to the linearized inviscid flow response to a Gaussian force. We find that the optimal smoothing width eopt is on the order of 14%-25% of the chord length of the blade, and the center of force is located at about 13%-26% downstream of the leading edge of the blade for the cases considered. These optimal values do not depend on angle of attack and depend only weakly on the type of lifting surface. It is then shown that an even more realistic velocity field can be induced by a 2-D elliptical Gaussian lift-force kernel. Some results are also provided regarding drag force representation.

  20. Scaling up close-range surveys, a challenge for the generalization of as-built data in industrial applications

    Directory of Open Access Journals (Sweden)

    J.-F. Hullo

    2014-06-01

    Full Text Available As-built CAD data reconstructed from Terrestrial Laser Scanner (TLS data are used for more than two decades by Electricité de France (EDF to prepare maintenance operations in its facilities. But today, the big picture is renewed: "as-built virtual reality" must address a huge scale-up to provide data to an increasing number of applications. In this paper, we first present a wide multi-sensor multi-purpose scanning campaign performed in a 10 floor building of a power plant in 2013: 1083 TLS stations (about 40.109 3D points referenced under a 2 cm tolerance and 1025 RGB panoramic images (340.106 pixels per point of view. As expected, this very large survey of high precision measurements in a complex environment stressed sensors and tools that were developed for more favourable conditions and smaller data sets. The whole survey process (tools and methods used from acquisition and processing to CAD reconstruction underwent a detailed follow-up in order to state on the locks to a possible generalization to other buildings. Based on these recent feedbacks, we have highlighted some of these current bottlenecks in this paper: sensors denoising, automation in processes, data validation tools improvements, standardization of formats and (meta- data structures.

  1. Pion nucleus scattering lengths

    International Nuclear Information System (INIS)

    Huang, W.T.; Levinson, C.A.; Banerjee, M.K.

    1971-09-01

    Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs

  2. Comparison of the radiation temperature scales of the PTB and the NPL in the temperature range from −57 °C to 50 °C

    International Nuclear Information System (INIS)

    Gutschwager, B; Monte, C; Adibekyan, A; Reiniger, M; Hollandt, J; Theocharous, E; Fox, N P

    2013-01-01

    Blackbody sources at near-ambient temperature are routinely used to calibrate infrared instruments used in remote sensing and thermal imaging applications to measure radiance and radiation temperature. The measured temperature of the blackbody and its calculated effective emissivity determine its radiance and radiation temperature according to Planck's law. The temperature measurement is generally accomplished with a contact thermometer which is calibrated against the International Temperature Scale (ITS-90). The ammonia heat-pipe blackbody of the Physikalisch-Technische Bundesanstalt (PTB) in Germany is a primary source standard working over a wide spectral range with low uncertainties, i.e. less than 33 mK at 10 µm in the temperature range from –60 °C to 50 °C. A more direct method of absolute radiance measurement is to use an absolutely calibrated radiometer, calibrated against a primary detector standard, the cryogenic radiometer. AMBER (Absolute Measurements of Blackbody Emitted Radiance) is an absolutely calibrated radiometer of the Optical Measurement Group of the National Physical Laboratory (NPL) in the UK which was specially designed to determine the radiance and hence the radiation temperature of near-ambient-temperature blackbodies. When AMBER is operated at short wavelengths, where photodetectors offering good long-term stability exist, it derives its traceability through the cryogenic radiometer. However, available photodetectors operating in the 8 µm to 12 µm wavelength range offer poor long-term stability so when AMBER is used in this wavelength range, the NPL radiance temperature scale is based on a gallium fixed-point blackbody operating at 29.7646 °C (ITS-90). At other radiance temperatures, the NPL scale also relies on the gallium fixed-point blackbody but requires the calibration of the relative spectral irradiance responsivity of the AMBER radiometer (done against NPL spectral responsivity standards), measurement of the radiometric

  3. Residual stress determination in oxide layers at different length scales combining Raman spectroscopy and X-ray diffraction: Application to chromia-forming metallic alloys

    Science.gov (United States)

    Guerain, Mathieu; Grosseau-Poussard, Jean-Luc; Geandier, Guillaume; Panicaud, Benoit; Tamura, Nobumichi; Kunz, Martin; Dejoie, Catherine; Micha, Jean-Sebastien; Thiaudière, Dominique; Goudeau, Philippe

    2017-11-01

    In oxidizing environments, the protection of metals and alloys against further oxidation at high temperature is provided by the oxide film itself. This protection is efficient only if the formed film adheres well to the metal (substrate), i.e., without microcracks and spalls induced by thermomechanical stresses. In this study, the residual stresses at both macroscopic and microscopic scales in the oxide film adhering to the substrate and over the damaged areas have been rigorously determined on the same samples for both techniques. Ni-30Cr and Fe-47Cr alloys have been oxidized together at 900 and 1000 °C, respectively, to create films with a thickness of a few microns. A multi-scale approach was adopted: macroscopic stress was determined by conventional X-ray diffraction and Raman spectroscopy, while microscopic residual stress mappings were performed over different types of bucklings using Raman micro-spectroscopy and synchrotron micro-diffraction. A very good agreement is found at macro- and microscales between the residual stress values obtained with both techniques, giving confidence on the reliability of the measurements. In addition, relevant structural information at the interface between the metallic substrate and the oxide layer was collected by micro-diffraction, a non-destructive technique that allows mapping through the oxide layer, and both the grain size and the crystallographic orientation of the supporting polycrystalline metal located either under a buckling or not were measured.

  4. No Habitat Selection during Spring Migration at a Meso-Scale Range across Mosaic Landscapes: A Case Study with the Woodcock (Scolopax rusticola.

    Directory of Open Access Journals (Sweden)

    Ariñe Crespo

    Full Text Available Success of migration in birds in part depends on habitat selection. Overall, it is still poorly known whether there is habitat selection amongst landbird migrants moving across landscapes. Europe is chiefly covered by agro-forestry mosaic landscapes, so migratory species associated to either agricultural landscapes or woodland habitats should theoretically find suitable stopover sites along migration. During migration from wintering to breeding quarters, woodcocks (Scolopax rusticola tagged with PTT satellite-tracking transmitters were used to test for the hypothesis that migrants associated to agro-forest habitats have no habitat selection during migration, at a meso-scale level. Using a GIS platform we extracted at a meso-scale range habitat cover at stopover localities. Results obtained from comparisons of soil covers between points randomly selected and true stopover localities sites revealed, as expected, the species may not select for particular habitats at a meso-scale range, because the habitat (or habitats required by the species can be found virtually everywhere on their migration route. However, those birds stopping over in places richer in cropland or mosaic habitats including both cropland and forest and with proportionally less closed forest stayed for longer than in areas with lower surfaces of cropland and mosaic and more closed forest. This suggests that areas rich in cropland or mosaic habitat were optimal.

  5. Multi-Scale Long-Range Magnitude and Sign Correlations in Vertical Upward Oil-Gas-Water Three-Phase Flow

    Science.gov (United States)

    Zhao, An; Jin, Ning-de; Ren, Ying-yu; Zhu, Lei; Yang, Xia

    2016-01-01

    In this article we apply an approach to identify the oil-gas-water three-phase flow patterns in vertical upwards 20 mm inner-diameter pipe based on the conductance fluctuating signals. We use the approach to analyse the signals with long-range correlations by decomposing the signal increment series into magnitude and sign series and extracting their scaling properties. We find that the magnitude series relates to nonlinear properties of the original time series, whereas the sign series relates to the linear properties. The research shows that the oil-gas-water three-phase flows (slug flow, churn flow, bubble flow) can be classified by a combination of scaling exponents of magnitude and sign series. This study provides a new way of characterising linear and nonlinear properties embedded in oil-gas-water three-phase flows.

  6. Evolution of extreme proboscis lengths in Neotropical Hesperiidae (Lepidoptera)

    Science.gov (United States)

    Bauder, J. A.-S.; Warren, A. D.; Krenn, H. W.

    2015-01-01

    Exaggerated morphologies have evolved in insects as adaptations to nectar feeding by natural selection. For example, the suctorial mouthparts of butterflies enable these insects to gain access to floral nectar concealed inside deep floral tubes. Proboscis length in Lepidoptera is known to scale with body size, but whether extreme absolute proboscis lengths of nectar feeding butterflies result from a proportional or disproportional increase with body size that differs between phylogenetic lineages remains unknown. We surveyed the range of variation that occurs in scaling relationships between proboscis length and body size against a phylogenetic background among Costa Rican Hesperiidae. We obtained a new record holder for the longest proboscis in butterflies and showed that extremely long proboscides evolved at least three times independently within Neotropical Hesperiidae. We conclude that the evolution of extremely long proboscides results from allometric scaling with body size, as demonstrated in hawk moths. We hypothesize that constraints on the evolution of increasingly long butterfly proboscides may come from (1) the underlying scaling relationships, i.e., relative proboscis length, combined with the butterfly’s flight style and flower-visiting behaviour and/or (2) developmental constraints during the pupal phase. Lastly, we discuss why butterflies did not evolve similar scaling relationships as hawk moths. PMID:25937673

  7. Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4+ concentrations in hydroponic conditions

    Science.gov (United States)

    Tamura, Wataru; Ebitani, Takeshi; Yano, Masahiro; Sato, Tadashi; Yamaya, Tomoyuki

    2010-01-01

    Root system development is an important target for improving yield in cereal crops. Active root systems that can take up nutrients more efficiently are essential for enhancing grain yield. In this study, we attempted to identify quantitative trait loci (QTL) involved in root system development by measuring root length of rice seedlings grown in hydroponic culture. Reliable growth conditions for estimating the root length were first established to renew nutrient solutions daily and supply NH4+ as a single nitrogen source. Thirty-eight chromosome segment substitution lines derived from a cross between ‘Koshihikari’, a japonica variety, and ‘Kasalath’, an indica variety, were used to detect QTL for seminal root length of seedlings grown in 5 or 500 μM NH4+. Eight chromosomal regions were found to be involved in root elongation. Among them, the most effective QTL was detected on a ‘Kasalath’ segment of SL-218, which was localized to the long-arm of chromosome 6. The ‘Kasalath’ allele at this QTL, qRL6.1, greatly promoted root elongation under all NH4+ concentrations tested. The genetic effect of this QTL was confirmed by analysis of the near-isogenic line (NIL) qRL6.1. The seminal root length of the NIL was 13.5–21.1% longer than that of ‘Koshihikari’ under different NH4+ concentrations. Toward our goal of applying qRL6.1 in a molecular breeding program to enhance rice yield, a candidate genomic region of qRL6.1 was delimited within a 337 kb region in the ‘Nipponbare’ genome by means of progeny testing of F2 plants/F3 lines derived from a cross between SL-218 and ‘Koshihikari’. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1328-3) contains supplementary material, which is available to authorized users. PMID:20390245

  8. Length of a Hanging Cable

    Directory of Open Access Journals (Sweden)

    Eric Costello

    2011-01-01

    Full Text Available The shape of a cable hanging under its own weight and uniform horizontal tension between two power poles is a catenary. The catenary is a curve which has an equation defined by a hyperbolic cosine function and a scaling factor. The scaling factor for power cables hanging under their own weight is equal to the horizontal tension on the cable divided by the weight of the cable. Both of these values are unknown for this problem. Newton's method was used to approximate the scaling factor and the arc length function to determine the length of the cable. A script was written using the Python programming language in order to quickly perform several iterations of Newton's method to get a good approximation for the scaling factor.

  9. Critical scaling analysis of the long-range magnetic interactions and renormalization of magnetic entropy change in Gd12Co7 compound

    Science.gov (United States)

    Chen, Xiang; Zhuang, Yinghong

    2017-07-01

    The scaling critical behaviors of Gd12Co7 compound around TC were investigated based on the M-H curves in a magnetic field change of 0-2 T. The critical exponents β and γ determined by modified Arrott plot (MAP) and Kouvel-Fisher (KF) methods are [β=0.479(5) and γ=1.004(2)] and [β=0.473(2) and γ=0.983(3)], respectively. The exponents δ derived from Widom scaling relation (M T =TC = 163 K = DH 1/δ) and universal relation of the relative cooling power (RCP ∝H 1 +1/δ) are δ=3.032(8) and δ=2.903(1). The average values of critical exponent (β=0.476(3), γ=0.993(7), and δ=2.967(9)) are very close to mean-field model (β=0.5, γ=1, and δ=3), which indicates that the magnetic interactions in Gd12Co7 compound are long-range interactions. The average value of critical exponent n for MAP (0.649(1)), KF (0.638(3)), and | ΔSM | ∝Hn(0.714(8)) at TC is 0.667(4) and well in agreement with mean field long-range interaction model (n = 2 / 3). The plot M 1/βvs.(H / M) 1/γ constructed by above critical exponents fall into two distinct branches above and below TC and completely complies with the scaling hypothesis. At the same time, the normalized curve of magnetic entropy change shows that renormalized magnetic entropy change Δ S ‧ of Gd12Co7 is mainly determined by a=1.548(1) and b=1.549(3) in Lorentz function.

  10. Rain gauge - radar rainfall reanalysis of operational and research data in the Cévennes-Vivarais region, France, estimation error analysis over a wide range of scales.

    Science.gov (United States)

    Wijbrans, Annette; Delrieu, Guy; Nord, Guillaume; Boudevillain, Brice; Berne, Alexis; Grazioli, Jacopo; Confoland, Audrey

    2014-05-01

    In the Cévennes -Vivarais region in France, flash-flood events can occur due to high intensity precipitation events. These events are described in a detailed quantitative precipitation estimates, to be able to better characterize the hydrological response to these rain events in a number of small-scale nested watersheds (window, as well as a research network, in the same region on a window of 15x30 km. The radar and rain gauge data of the operational network are collected from three organisms (Météo-France, Service de Prévision des Crues du Grand Delta and EdF/DTG). The research network contains high resolution data are from research rainfall observation systems deployed within the Enhanced Observation Period (autumn 2012-2015) of the HyMeX project (www.hymex.org). This project aims at studying the hydrological cycle in the Mediterranean with emphases on the hydro-meteorological extremes and their evolution in the coming decades. Rain gauge radar merging is performed using a kriging with external drift (KED) technique, and compared to the ordinary kriging (OK) of the rain gauges and the radar products on the same time scale using a cross-validation technique. Also a method is applied to quantify kriging estimation variances for both kriging techniques at the two spatial scales, in order to analyse the error characteristics of the interpolation methods at a scale range of 0.1 - 100 km² and 0.2 - 12 h. The combined information of the reanalysis of the data of the operational network and the research network gives a view on the error structure of rainfall estimations over several orders of magnitudes in spatial scale. This allows understanding of the error structure of these rain events, their relation to availability of data, and gives insight in the added value of detailed rainfall data on the understanding of the rainfall structure on very small, 'missing', scales (smaller than 1km2 and 1 hour time steps).

  11. String matching with variable length gaps

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Vildhøj, Hjalte Wedel

    2012-01-01

    We consider string matching with variable length gaps. Given a string T and a pattern P consisting of strings separated by variable length gaps (arbitrary strings of length in a specified range), the problem is to find all ending positions of substrings in T that match P. This problem is a basic...

  12. Chromosome length scaling in haploid, asexual reproduction

    International Nuclear Information System (INIS)

    Oliveira, P M C de

    2007-01-01

    We study the genetic behaviour of a population formed by haploid individuals which reproduce asexually. The genetic information for each individual is stored along a bit-string (or chromosome) with L bits, where 0-bits represent the wild allele and 1-bits correspond to harmful mutations. Each newborn inherits this chromosome from its parent with a few random mutations: on average a fixed number m of bits are flipped. Selection is implemented according to the number N of 1-bits counted along the individual's chromosome: the smaller N the higher the probability an individual has to survive a new time step. Such a population evolves, with births and deaths, and its genetic distribution becomes stabilized after sufficiently many generations have passed. The question we pose concerns the procedure of increasing L. The aim is to get the same distribution of genetic loads N/L among the equilibrated population, in spite of a larger L. Should we keep the same mutation rate m/L for different values of L? The answer is yes, which intuitively seems to be plausible. However, this conclusion is not trivial, according to our simulation results: the question also involves the population size

  13. Scale Length of the Galactic Thin Disk

    Indian Academy of Sciences (India)

    Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately.

  14. Chromosome length scaling in haploid, asexual reproduction

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, P M C de [Instituto de Fisica, Universidade Federal Fluminense, avenida Litoranea s/n, Boa Viagem, Niteroi 24210-340 (Brazil)

    2007-02-14

    We study the genetic behaviour of a population formed by haploid individuals which reproduce asexually. The genetic information for each individual is stored along a bit-string (or chromosome) with L bits, where 0-bits represent the wild allele and 1-bits correspond to harmful mutations. Each newborn inherits this chromosome from its parent with a few random mutations: on average a fixed number m of bits are flipped. Selection is implemented according to the number N of 1-bits counted along the individual's chromosome: the smaller N the higher the probability an individual has to survive a new time step. Such a population evolves, with births and deaths, and its genetic distribution becomes stabilized after sufficiently many generations have passed. The question we pose concerns the procedure of increasing L. The aim is to get the same distribution of genetic loads N/L among the equilibrated population, in spite of a larger L. Should we keep the same mutation rate m/L for different values of L? The answer is yes, which intuitively seems to be plausible. However, this conclusion is not trivial, according to our simulation results: the question also involves the population size.

  15. Scale Length of the Galactic Thin Disk

    Indian Academy of Sciences (India)

    tribpo

    We have used the first 2MASS sampler data, public release of point source catalogue, in J (1.25 µm), Η (1.65 µm) and KS band (2.17 ... information for 227,197 objects. We have used one of the 2MASS fields at .... This research has made use of the DEC ALPHA system of the Optical CCD astronomy programme of. TIFR.

  16. Scale Length of the Galactic Thin Disk

    Indian Academy of Sciences (India)

    tribpo

    the new value of hR. The model fit with data is not, however, completely satisfactory in J-KS, which might be improved by a slight change of SFR history in the model. One expects that the Galactic evolution parameters will be better known after the analysis of the Hipparcos and Tycho catalogues. The Besancon model is in a.

  17. Genetic diversity and ecological niche modelling of wild barley: refugia, large-scale post-LGM range expansion and limited mid-future climate threats?

    Science.gov (United States)

    Russell, Joanne; van Zonneveld, Maarten; Dawson, Ian K; Booth, Allan; Waugh, Robbie; Steffenson, Brian

    2014-01-01

    Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future (anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security.

  18. Genetic diversity and ecological niche modelling of wild barley: refugia, large-scale post-LGM range expansion and limited mid-future climate threats?

    Directory of Open Access Journals (Sweden)

    Joanne Russell

    Full Text Available Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare. Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR and chloroplast-derived (5 cpSSR markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM and mid-term future (anthropogenic scenario A2, the 2080s climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security.

  19. High-grade iron ore deposits of the Mesabi Range, Minnesota-product of a continental-scale proterozoic ground-water flow system

    Science.gov (United States)

    Morey, G.B.

    1999-01-01

    The Mesabi Range along the north edge of the Paleoproterozoic Penokean orogen in northern Minnesota has produced 3.6 billion metric tons of ore since its discovery in 1890. Of that amount, 2.3 billion metric tons were extracted from hematite- or geothite-rich deposits generally referred to as 'high-grade' ores. The high-grade ores formed as the Biwabik Iron-Formation was oxidized, hydrated, and leached by solutions flowing along open faults and fractures. The source of the ore-forming solutions has been debated since it was first proposed that the ores were weathering products formed by descending meteoritic ground-water flowing in late Mesozoic time. Subsequently others believed that the ores were better explained by ascending solutions, possbily hydrothermal solutions of pre-Phanerzoic age. Neither Wolff nor Gruner could reconcile their observations with a reasonable source for the solutions. In this paper, I build on modern mapping of the Mesabi Range and mine-specific geologic observations summarized in the literature to propose a conceptual model in which the high-grade ores formed from ascending solutions that were part of continent-scale topographic or gravity-driven ground-water system. I propose that the ground-water system was active during the later stages of the development of a coupled fold and thrust belt and foreland basin that formed during the Penokean orogen.

  20. Fractional baud-length coding

    Directory of Open Access Journals (Sweden)

    J. Vierinen

    2011-06-01

    Full Text Available We present a novel approach for modulating radar transmissions in order to improve target range and Doppler estimation accuracy. This is achieved by using non-uniform baud lengths. With this method it is possible to increase sub-baud range-resolution of phase coded radar measurements while maintaining a narrow transmission bandwidth. We first derive target backscatter amplitude estimation error covariance matrix for arbitrary targets when estimating backscatter in amplitude domain. We define target optimality and discuss different search strategies that can be used to find well performing transmission envelopes. We give several simulated examples of the method showing that fractional baud-length coding results in smaller estimation errors than conventional uniform baud length transmission codes when estimating the target backscatter amplitude at sub-baud range resolution. We also demonstrate the method in practice by analyzing the range resolved power of a low-altitude meteor trail echo that was measured using a fractional baud-length experiment with the EISCAT UHF system.

  1. The influence of coarse-scale environmental features on current and predicted future distributions of narrow-range endemic crayfish populations

    Science.gov (United States)

    Dyer, Joseph J.; Brewer, Shannon K.; Worthington, Thomas A.; Bergey, Elizabeth A.

    2013-01-01

    , whereas two of four species would be severely restricted in range under moderatehigh emissions. Discrepancies in the two emission scenarios probably relate to the exclusion of behavioural adaptations from species-distribution models. 6.These model predictions illustrate possible impacts of climate change on narrow-range endemic crayfish populations. The predictions do not account for biotic interactions, migration, local habitat conditions or species adaptation. However, we identified the constraining landscape features acting on these populations that provide a framework for addressing habitat needs at a fine scale and developing targeted and systematic monitoring programmes.

  2. A simple method for estimating basin-scale groundwater discharge by vegetation in the basin and range province of Arizona using remote sensing information and geographic information systems

    Science.gov (United States)

    Tillman, F.D.; Callegary, J.B.; Nagler, P.L.; Glenn, E.P.

    2012-01-01

    Groundwater is a vital water resource in the arid to semi-arid southwestern United States. Accurate accounting of inflows to and outflows from the groundwater system is necessary to effectively manage this shared resource, including the important outflow component of groundwater discharge by vegetation. A simple method for estimating basin-scale groundwater discharge by vegetation is presented that uses remote sensing data from satellites, geographic information systems (GIS) land cover and stream location information, and a regression equation developed within the Southern Arizona study area relating the Enhanced Vegetation Index from the MODIS sensors on the Terra satellite to measured evapotranspiration. Results computed for 16-day composited satellite passes over the study area during the 2000 through 2007 time period demonstrate a sinusoidal pattern of annual groundwater discharge by vegetation with median values ranging from around 0.3 mm per day in the cooler winter months to around 1.5 mm per day during summer. Maximum estimated annual volume of groundwater discharge by vegetation was between 1.4 and 1.9 billion m3 per year with an annual average of 1.6 billion m3. A simplified accounting of the contribution of precipitation to vegetation greenness was developed whereby monthly precipitation data were subtracted from computed vegetation discharge values, resulting in estimates of minimum groundwater discharge by vegetation. Basin-scale estimates of minimum and maximum groundwater discharge by vegetation produced by this simple method are useful bounding values for groundwater budgets and groundwater flow models, and the method may be applicable to other areas with similar vegetation types.

  3. Linear scaling explicitly correlated MP2-F12 and ONIOM methods for the long-range interactions of the nanoscale clusters in methanol aqueous solutions

    Science.gov (United States)

    Li, Wei

    2013-01-01

    A linear scaling quantum chemistry method, generalized energy-based fragmentation (GEBF) approach has been extended to the explicitly correlated second-order Møller-Plesset perturbation theory F12 (MP2-F12) method and own N-layer integrated molecular orbital molecular mechanics (ONIOM) method, in which GEBF-MP2-F12, GEBF-MP2, and conventional density functional tight-binding methods could be used for different layers. Then the long-range interactions in dilute methanol aqueous solutions are studied by computing the binding energies between methanol molecule and water molecules in gas-phase and condensed phase methanol-water clusters with various sizes, which were taken from classic molecular dynamics (MD) snapshots. By comparing with the results of force field methods, including SPC, TIP3P, PCFF, and AMOEBA09, the GEBF-MP2-F12 and GEBF-ONIOM methods are shown to be powerful and efficient for studying the long-range interactions at a high level. With the GEBF-ONIOM(MP2-F12:MP2) and GEBF-ONIOM(MP2-F12:MP2:cDFTB) methods, the diameters of the largest nanoscale clusters under studies are about 2.4 nm (747 atoms and 10 209 basis functions with aug-cc-pVDZ basis set) and 4 nm (3351 atoms), respectively, which are almost impossible to be treated by conventional MP2 or MP2-F12 method. Thus, the GEBF-F12 and GEBF-ONIOM methods are expected to be a practical tool for studying the nanoscale clusters in condensed phase, providing an alternative benchmark for ab initio and density functional theory studies, and developing new force fields by combining with classic MD simulations.

  4. Differential procoagulant effects of saw-scaled viper (Serpentes: Viperidae: Echis) snake venoms on human plasma and the narrow taxonomic ranges of antivenom efficacies.

    Science.gov (United States)

    Rogalski, Aymeric; Soerensen, Christoffer; Op den Brouw, Bianca; Lister, Callum; Dashevsky, Daniel; Arbuckle, Kevin; Gloria, Alexandra; Zdenek, Christina N; Casewell, Nicholas R; Gutiérrez, José María; Wüster, Wolfgang; Ali, Syed A; Masci, Paul; Rowley, Paul; Frank, Nathaniel; Fry, Bryan G

    2017-10-05

    Saw-scaled vipers (genus Echis) are one of the leading causes of snakebite morbidity and mortality in parts of Sub-Saharan Africa, the Middle East, and vast regions of Asia, constituting a public health burden exceeding that of almost any other snake genus globally. Venom-induced consumption coagulopathy, owing to the action of potent procoagulant toxins, is one of the most relevant clinical manifestations of envenomings by Echis spp. Clinical experience and prior studies examining a limited range of venoms and restricted antivenoms have demonstrated for some antivenoms an extreme lack of antivenom cross-reactivity between different species of this genus, sometimes resulting in catastrophic treatment failure. This study undertook the most comprehensive testing of Echis venom effects upon the coagulation of human plasma, and also the broadest examination of antivenom potency and cross-reactivity, to-date. 10 Echis species/populations and four antivenoms (two African, two Asian) were studied. The results indicate that the venoms are, in general, potently procoagulant but that the relative dependence on calcium or phospholipid cofactors is highly variable. Additionally, three out of the four antivenoms tested demonstrated only a very narrow taxonomic range of effectiveness in preventing coagulopathy, with only the SAIMR antivenom displaying significant levels of cross-reactivity. These results were in conflict with previous studies using prolonged preincubation of antivenom with venom to suggest effective cross-reactivity levels for the ICP Echi-Tab antivenom. These findings both inform upon potential clinical effects of envenomation in humans and highlight the extreme limitations of available treatment. It is hoped that this will spur efforts into the development of antivenoms with more comprehensive coverage for bites not only from wild snakes but also from specimens widely kept in zoological collections. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Implementation of the infinite-range exterior complex scaling to the time-dependent complete-active-space self-consistent-field method

    Science.gov (United States)

    Orimo, Yuki; Sato, Takeshi; Scrinzi, Armin; Ishikawa, Kenichi L.

    2018-02-01

    We present a numerical implementation of the infinite-range exterior complex scaling [Scrinzi, Phys. Rev. A 81, 053845 (2010), 10.1103/PhysRevA.81.053845] as an efficient absorbing boundary to the time-dependent complete-active-space self-consistent field method [Sato, Ishikawa, Březinová, Lackner, Nagele, and Burgdörfer, Phys. Rev. A 94, 023405 (2016), 10.1103/PhysRevA.94.023405] for multielectron atoms subject to an intense laser pulse. We introduce Gauss-Laguerre-Radau quadrature points to construct discrete variable representation basis functions in the last radial finite element extending to infinity. This implementation is applied to strong-field ionization and high-harmonic generation in He, Be, and Ne atoms. It efficiently prevents unphysical reflection of photoelectron wave packets at the simulation boundary, enabling accurate simulations with substantially reduced computational cost, even under significant (≈50 % ) double ionization. For the case of a simulation of high-harmonic generation from Ne, for example, 80% cost reduction is achieved, compared to a mask-function absorption boundary.

  6. Correlations among visual analogue scale, neck disability index, shoulder joint range of motion, and muscle strength in young women with forward head posture.

    Science.gov (United States)

    Shin, Young Jun; Kim, Won Hyo; Kim, Seong Gil

    2017-08-01

    This study investigated the correlation between the neck disability index (NDI) and visual analogue scale (VAS), which are indicators of neck pain, shoulder joint range of motion (ROM), and muscle strength in women with a slight forward head posture. This study was carried out on 42 female college students attending Uiduk University in Gyeongju, Korea. The neck pain and disability index for each subject was measured using VAS and NDI, respectively. Two physiotherapists measured the shoulder joint ROM and muscle strengths of the subjects using a goniometer and a dynamometer, respectively. External rotation, internal rotation, and abduction of the shoulder joint were measured for each subject. A significant negative correlation between neck pain and shoulder joint ROM in external rotation and the muscle strength of the shoulder joint in abduction was found in the subjects. In addition, a significant positive correlation was observed between ROM in external rotation and muscle strength in abduction. This study showed a significant negative correlation between neck pain and ROM in external rotation as well as between neck pain and the muscle strength in abduction.

  7. Local gauge invariant QED with fundamental length

    International Nuclear Information System (INIS)

    Kadyshevsky, V.G.; Mateev, M.D.

    1981-01-01

    A local gauge theory of electromagnetic interactions with the fundamental length l as a new universal scale is worked out. The Lagrangian contains new extra terms in which the coupling constant is proportional to the fundamental length. The theory has an elegant geometrical basis: in momentum representation one faces de Sitter momentum space with curvature radius 1/l [ru

  8. Random fractal characters and length uncertainty of the continental ...

    Indian Academy of Sciences (India)

    A coastline is a random fractal object in a geographical system whose length is uncertain. To determine the coastline length of a country or a region, the scaling region and fractal dimension of the coastline is first calculated, and then, the length of the coastline is measured using the scale at the lower limit or near the limit of ...

  9. Keeping disease at arm's length

    DEFF Research Database (Denmark)

    Lassen, Aske Juul

    2015-01-01

    and physical activities at the activity centre. In this way, keeping disease at arm’s length is analysed as an ambiguous health strategy. The article shows the importance of looking into how active ageing is practised, as active ageing seems to work well in the everyday life of the older people by not giving......Many older people live with a range of chronic diseases. However, these diseases do not necessarily impede an active lifestyle. In this article the author analyses the relation between the active ageing discourse and the way older people at two Danish activity centres handle disease. How does...... active ageing change everyday life with chronic disease, and how do older people combine an active life with a range of chronic diseases? The participants in the study use activities to keep their diseases at arm’s length, and this distancing of disease at the same time enables them to engage in social...

  10. Information, polarization and term length in democracy

    DEFF Research Database (Denmark)

    Schultz, Christian

    2008-01-01

    accountable, but the re-election incentive leads to policy-distortion as the government seeks to manipulate swing voters' beliefs to make its ideology more popular. This creates a trade-off: A short term length improves accountability but gives distortions. A short term length is best for swing voters when......This paper considers term lengths in a representative democracy where the political issue divides the population on the left-right scale. Parties are ideologically different and better informed about the consequences of policies than voters are. A short term length makes the government more...

  11. Telomere length analysis.

    Science.gov (United States)

    Canela, Andrés; Klatt, Peter; Blasco, María A

    2007-01-01

    Most somatic cells of long-lived species undergo telomere shortening throughout life. Critically short telomeres trigger loss of cell viability in tissues, which has been related to alteration of tissue function and loss of regenerative capabilities in aging and aging-related diseases. Hence, telomere length is an important biomarker for aging and can be used in the prognosis of aging diseases. These facts highlight the importance of developing methods for telomere length determination that can be employed to evaluate telomere length during the human aging process. Telomere length quantification methods have improved greatly in accuracy and sensitivity since the development of the conventional telomeric Southern blot. Here, we describe the different methodologies recently developed for telomere length quantification, as well as their potential applications for human aging studies.

  12. Self-adapted sliding scale spectroscopy ADC

    International Nuclear Information System (INIS)

    Xu Qichun; Wang Jingjin

    1992-01-01

    The traditional sliding scale technique causes a disabled range that is equal to the sliding length, thus reduces the analysis range of a MCA. A method for reduce ADC's DNL, which is called self-adapted sliding scale method, has been designed and tested. With this method, the disabled range caused by a traditional sliding scale method can be eliminated by a random trial scale and there is no need of an additional amplitude discriminator with swing threshold. A special trial-and-correct logic is presented. The tested DNL of the spectroscopy ADC described here is less than 0.5%

  13. Expectations on Hierarchical Scales of Discourse: Multifractality Predicts Both Short- and Long-Range Effects of Violating Gender Expectations in Text Reading

    Science.gov (United States)

    Booth, Chase R.; Brown, Hannah L.; Eason, Elizabeth G.; Wallot, Sebastian; Kelty-Stephen, Damian G.

    2018-01-01

    Reader expectations form across hierarchical scales of discourse (e.g., from coarse to fine: genre, narrative, syntax). Cross-scale interactivity produces word reading times (RTs) with multifractal structure. After introducing multifractals, we test two hypotheses regarding their relevance to reader expectations: (1) multifractal evidence of…

  14. Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large-scale satellite telemetry

    Science.gov (United States)

    Gaidet, Nicolas; Cappelle, Julien; Takekawa, John Y.; Prosser, Diann J.; Iverson, Samuel A.; Douglas, David C.; Perry, William M.; Mundkur, Taej; Newman, Scott H.

    2010-01-01

    1. Migratory birds are major candidates for long-distance dispersal of zoonotic pathogens. In recent years, wildfowl have been suspected of contributing to the rapid geographic spread of the highly pathogenic avian influenza (HPAI) H5N1 virus. Experimental infection studies reveal that some wild ducks, geese and swans shed this virus asymptomatically and hence have the potential to spread it as they move. 2. We evaluate the dispersive potential of HPAI H5N1 viruses by wildfowl through an analysis of the movement range and movement rate of birds monitored by satellite telemetry in relation to the apparent asymptomatic infection duration (AID) measured in experimental studies. We analysed the first large-scale data set of wildfowl movements, including 228 birds from 19 species monitored by satellite telemetry in 2006–2009, over HPAI H5N1 affected regions of Asia, Europe and Africa. 3. Our results indicate that individual migratory wildfowl have the potential to disperse HPAI H5N1 over extensive distances, being able to perform movements of up to 2900 km within timeframes compatible with the duration of asymptomatic infection. 4. However, the likelihood of such virus dispersal over long distances by individual wildfowl is low: we estimate that for an individual migratory bird there are, on average, only 5–15 days per year when infection could result in the dispersal of HPAI H5N1 virus over 500 km. 5. Staging at stopover sites during migration is typically longer than the period of infection and viral shedding, preventing birds from dispersing a virus over several consecutive but interrupted long-distance movements. Intercontinental virus dispersion would therefore probably require relay transmission between a series of successively infected migratory birds. 6. Synthesis and applications. Our results provide a detailed quantitative assessment of the dispersive potential of HPAI H5N1 virus by selected migratory birds. Such dispersive potential rests on the

  15. Myofilament length dependent activation

    Energy Technology Data Exchange (ETDEWEB)

    de Tombe, Pieter P.; Mateja, Ryan D.; Tachampa, Kittipong; Mou, Younss Ait; Farman, Gerrie P.; Irving, Thomas C. (IIT); (Loyola)

    2010-05-25

    The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca{sup 2+} ions at a longer sarcomere length, commonly referred to as myofilament length-dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the 'Frank-Starling law of the heart' constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development.

  16. Martian Length of Day Measurements from Rovers

    Science.gov (United States)

    Eubanks, T. M.; Bills, B.

    2012-06-01

    Changes in the Martian Length of Day (LOD) can be determined at a scientifically use level by a combination of regular (but not necessarily frequent) range and Doppler measurements from Earth and dead reckoning in a Kalman filter.

  17. Upper Extremity Length Equalization

    OpenAIRE

    DeCoster, Thomas A.; Ritterbusch, John; Crawford, Mark

    1992-01-01

    Significant upper extremity length inequality is uncommon but can cause major functional problems. The ability to position and use the hand may be impaired by shortness of any of the long bones of the upper extremity. In many respects upper and lower extremity length problems are similar. They most commonly occur after injury to a growing bone and the treatment modalities utilized in the lower extremity may be applied to the upper extremity. These treatment options include epiphysiodesis, sho...

  18. Scaled photographs of surf over the full range of breaker sizes on the north shore of Oahu and Jaws, Maui, Hawaiian Islands (NODC Accession 0001753)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digital surf photographs were scaled using surfers as height benchmarks to estimate the size of the breakers. Historical databases for surf height in Hawaii are...

  19. Relativistic Length Agony Continued

    Science.gov (United States)

    Redzic, D. V.

    2014-06-01

    We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.

  20. Telomere Length and Mortality

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P

    2008-01-01

    Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...... telomeres predicted the death of the first co-twin better than the mTRFL did (mTRFL: 0.56, 95% confidence interval (CI): 0.49, 0.63; mTRFL(50): 0.59, 95% CI: 0.52, 0.66; mTRFL(25): 0.59, 95% CI: 0.52, 0.66; MTRFL: 0.60, 95% CI: 0.53, 0.67). The telomere-mortality association was stronger in years 3-4 than...

  1. Predicting length of stay in specialist neurological rehabilitation.

    Science.gov (United States)

    Taiwo, Whitney; Wressle, Alexandra; Bradley, Lloyd

    2018-03-01

    A retrospective case series was performed to determine which measures of complexity, dependency and function most accurately predict inpatient neurorehabilitation length of stay for individuals with post-acute neurological disorders. Sociodemographic, medical and functional variables were extracted from data submitted to the UK Rehabilitation Outcomes Collaborative. Length of stay was calculated as the total number of inpatient days, functional status was measured using Barthel Index, rehabilitation complexity was measured using Extended Rehabilitation Complexity Scale, and nursing dependency was measured using the Northwick Park Dependency Scale. The mean rehabilitation length of stay was 70.9 days, with length of stay being 35.1 days higher in inpatients with acquired brain injury than inpatients with spinal cord injury. Diagnostic category, Barthel Index scores, Extended Rehabilitation Complexity Scale scores and Northwick Park Dependency Scale scores at admission independently predicted length of stay. Multiple regressions including diagnostic group, Barthel Index, Extended Rehabilitation Complexity Scale and Northwick Park Dependency Scale statistically significantly predicted 37.9% of the variability in length of stay (p Scale on admission was most closely correlated with inpatient length of stay. In conclusion, inpatient length of stay is predicted by diagnostic category, Extended Rehabilitation Complexity Scale, Northwick Park Dependency Scale and Barthel Index. The most influential predictor of rehabilitation length of stay was Northwick Park Dependency Scale score at admission. These results may help facilitate rehabilitation resource planning and implementation of effective commissioning plans. Implications for Rehabilitation The most accurate predicting variable for length of stay in inpatient neurological rehabilitation was nursing need as measured by the Northwick Park Dependency Scale score on admission. Service users and commissioners can be

  2. Controlling the optical path length in turbid media using differential path-length spectroscopy: fiber diameter dependence

    NARCIS (Netherlands)

    Kaspers, O. P.; Sterenborg, H. J. C. M.; Amelink, A.

    2008-01-01

    We have characterized the path length for the differential path-length spectroscopy (DPS) fiber optic geometry for a wide range of optical properties and for fiber diameters ranging from 200 mu m to 1000 mu m. Phantom measurements show that the path length is nearly constant for scattering

  3. Large-Scale Range Collapse of Hawaiian Forest Birds under Climate Change and the Need for 21st Century Conservation Options [corrected].

    Directory of Open Access Journals (Sweden)

    Lucas B Fortini

    Full Text Available Hawaiian forest birds serve as an ideal group to explore the extent of climate change impacts on at-risk species. Avian malaria constrains many remaining Hawaiian forest bird species to high elevations where temperatures are too cool for malaria's life cycle and its principal mosquito vector. The impact of climate change on Hawaiian forest birds has been a recent focus of Hawaiian conservation biology, and has centered on the links between climate and avian malaria. To elucidate the differential impacts of projected climate shifts on species with known varying niches, disease resistance and tolerance, we use a comprehensive database of species sightings, regional climate projections and ensemble distribution models to project distribution shifts for all Hawaiian forest bird species. We illustrate that, under a likely scenario of continued disease-driven distribution limitation, all 10 species with highly reliable models (mostly narrow-ranged, single-island endemics are expected to lose >50% of their range by 2100. Of those, three are expected to lose all range and three others are expected to lose >90% of their range. Projected range loss was smaller for several of the more widespread species; however improved data and models are necessary to refine future projections. Like other at-risk species, Hawaiian forest birds have specific habitat requirements that limit the possibility of range expansion for most species, as projected expansion is frequently in areas where forest habitat is presently not available (such as recent lava flows. Given the large projected range losses for all species, protecting high elevation forest alone is not an adequate long-term strategy for many species under climate change. We describe the types of additional conservation actions practitioners will likely need to consider, while providing results to help with such considerations.

  4. Full Length Research Article

    African Journals Online (AJOL)

    Administrator

    Out of the 320 male sheep examined, 87(27.2%) were infected, while 9(19.1%) of the 47 females examined were infected (Table 2). Infection varied from one abattoir to another. Age related distribution of P. cervi is shown in Table 3. Out of 356 adult sheep (>2yrs) examined, 35. Full Length Research Article. 12 ...

  5. Zero-point length from string fluctuations

    International Nuclear Information System (INIS)

    Fontanini, Michele; Spallucci, Euro; Padmanabhan, T.

    2006-01-01

    One of the leading candidates for quantum gravity, viz. string theory, has the following features incorporated in it. (i) The full spacetime is higher-dimensional, with (possibly) compact extra-dimensions; (ii) there is a natural minimal length below which the concept of continuum spacetime needs to be modified by some deeper concept. On the other hand, the existence of a minimal length (zero-point length) in four-dimensional spacetime, with obvious implications as UV regulator, has been often conjectured as a natural aftermath of any correct quantum theory of gravity. We show that one can incorporate the apparently unrelated pieces of information-zero-point length, extra-dimensions, string T-duality-in a consistent framework. This is done in terms of a modified Kaluza-Klein theory that interpolates between (high-energy) string theory and (low-energy) quantum field theory. In this model, the zero-point length in four dimensions is a 'virtual memory' of the length scale of compact extra-dimensions. Such a scale turns out to be determined by T-duality inherited from the underlying fundamental string theory. From a low energy perspective short distance infinities are cutoff by a minimal length which is proportional to the square root of the string slope, i.e., α ' . Thus, we bridge the gap between the string theory domain and the low energy arena of point-particle quantum field theory

  6. Using the satellite-derived normalized difference vegetation index (NDVI) to explain ranging patterns in a lek-breeding antelope: the importance of scale.

    Science.gov (United States)

    Bro-Jørgensen, Jakob; Brown, Molly E; Pettorelli, Nathalie

    2008-11-01

    Lek-breeding species are characterized by a negative association between territorial resource availability and male mating success; however, the impact of resources on the overall distribution patterns of the two sexes in lek systems is not clear. The normalized difference vegetation index (NDVI) has recently emerged as a powerful proxy measure for primary productivity, allowing the links between the distributions of animals and resources to be explored. Using NDVI at four spatial resolutions, we here investigate how the distribution of the two sexes in a lek-breeding population of topi antelopes relates to resource abundance before and during the rut. We found that in the dry season preceding the rut, topi density correlated positively with NDVI at the large, but not the fine, scale. This suggests that before the rut, when resources were relatively scant, topi preferred pastures where green grass was widely abundant. The pattern was less pronounced in males, suggesting that the need for territorial attendance prevents males from tracking resources as freely as females do. During the rut, which occurs in the wet season, both male and female densities correlated negatively with NDVI at the fine scale. At this time, resources were generally plentiful and the results suggest that, rather than by resource maximization, distribution during the rut was determined by benefits of aggregating on relatively resource-poor leks for mating, and possibly antipredator, purposes. At the large scale, no correlation between density and NDVI was found during the rut in either sex, which can be explained by leks covering areas too small to be reflected at this resolution. The study illustrates that when investigating spatial organization, it is important: (1) to choose the appropriate analytic scale, and (2) to consider behavioural as well as strictly ecological factors.

  7. The Predictability of Large-Scale, Short-Period Variability in the Philippine Sea and the Influence of Such Variability on Long-Range acoustic Propagation

    Science.gov (United States)

    2015-03-31

    variability of the ocean at the largest scales (Dushaw et al. 2010). The strengths of the acoustic measurement are its inherent averaging properties which no...areas of ocean study. One might envision a new observation technique of internal tide tomography. NASA’s Surface Water and Ocean Topography ( SWOT ...noise”. Thus, reliable global predictions for the surface signature of internal tides may be invaluable to the SWOT program. RELATED PROJECTS

  8. Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale

    Science.gov (United States)

    William S. Currie; Mark E. Harmon; Ingrid C. Burke; Stephen C. Hart; William J. Parton; Whendee L. Silver

    2009-01-01

    We analyzed results from 10-year long field incubations of foliar and fine root litter from the Long-term lntersite Decomposition Experiment Team (LIDET) study. We tested whether a variety of climate and litter quality variables could be used to develop regression models of decomposition parameters across wide ranges in litter quality and climate and whether these...

  9. Is dark matter with long-range interactions a solution to all small-scale problems of Λ cold dark matter cosmology?

    Science.gov (United States)

    van den Aarssen, Laura G; Bringmann, Torsten; Pfrommer, Christoph

    2012-12-07

    The cold dark matter paradigm describes the large-scale structure of the Universe remarkably well. However, there exists some tension with the observed abundances and internal density structures of both field dwarf galaxies and galactic satellites. Here, we demonstrate that a simple class of dark matter models may offer a viable solution to all of these problems simultaneously. Their key phenomenological properties are velocity-dependent self-interactions mediated by a light vector messenger and thermal production with much later kinetic decoupling than in the standard case.

  10. Calibrating ADL-IADL scales to improve measurement accuracy and to extend the disability construct into the preclinical range: a systematic review

    Directory of Open Access Journals (Sweden)

    Starr John M

    2011-08-01

    Full Text Available Abstract Background Interest in measuring functional status among nondisabled older adults has increased in recent years. This is, in part, due to the notion that adults identified as 'high risk' for functional decline portray a state that is potentially easier to reverse than overt disability. Assessing relatively healthy older adults with traditional self-report measures (activities of daily living has proven difficult because these instruments were initially developed for institutionalised older adults. Perhaps less evident, are problems associated with change scores and the potential for 'construct under-representation', which reflects the exclusion of important features of the construct (e.g., disability. Furthermore, establishing a formal hierarchy of functional status tells more than the typical simple summation of functional loss, and may have predictive value to the clinician monitoring older adults: if the sequence task difficulty is accelerated or out of order it may indicate the need for interventions. Methods This review identified studies that employed item response theory (IRT to examine or revise functional status scales. IRT can be used to transform the ordinal nature of functional status scales to interval level data, which serves to increase diagnostic precision and sensitivity to clinical change. Furthermore, IRT can be used to rank items unequivocally along a hierarchy based on difficulty. It should be noted that this review is not concerned with contrasting IRT with more traditional classical test theory methodology. Results A systematic search of four databases (PubMed, Embase, CINAHL, and PsychInfo resulted in the review of 2,192 manuscripts. Of these manuscripts, twelve met our inclusion/exclusion requirements and thus were targeted for further inspection. Conclusions Manuscripts presented in this review appear to summarise gerontology's best efforts to improve construct validity and content validity (i.e., ceiling

  11. Gap length distributions by PEPR

    International Nuclear Information System (INIS)

    Warszawer, T.N.

    1980-01-01

    Conditions guaranteeing exponential gap length distributions are formulated and discussed. Exponential gap length distributions of bubble chamber tracks first obtained on a CRT device are presented. Distributions of resulting average gap lengths and their velocity dependence are discussed. (orig.)

  12. Length of excitable knots

    Science.gov (United States)

    Maucher, Fabian; Sutcliffe, Paul

    2017-07-01

    In this paper, we present extensive numerical simulations of an excitable medium to study the long-term dynamics of knotted vortex strings for all torus knots up to crossing number 11. We demonstrate that FitzHugh-Nagumo evolution preserves the knot topology for all the examples presented, thereby providing a field theory approach to the study of knots. Furthermore, the evolution yields a well-defined minimal length for each knot that is comparable to the ropelength of ideal knots. We highlight the role of the medium boundary in stabilizing the length of the knot and discuss the implications beyond torus knots. We also show that there is not a unique attractor within a given knot topology.

  13. Habitat, world geographic range, and embryonic development of hosts explain the prevalence of avian hematozoa at small spatial and phylogenetic scales.

    Science.gov (United States)

    Tella, J L; Blanco, G; Forero, M G; Gajón, A; Donázar, J A; Hiraldo, F

    1999-02-16

    The factors explaining interspecific differences in prevalences of blood parasites in birds are poorly known. We simultaneously assessed 20 social, ecological, life history, and sampling-related variables that could influence hemoparasite prevalences among diurnal birds of prey in Spain. Our results show that multiple factors are responsible for the studied host-parasite association. We confirmed for the first time that prevalence is inversely correlated to the embryonic development period, and thus probably to immune performance, even among closely related birds. Macrohabitat features related to vector availability are also important, prevalences being higher in species breeding in forested habitats. Finally, prevalence is positively correlated with the host's world geographic range. We hypothesize that larger geographic ranges offered more opportunities for host-vector-hemoparasite associations to become established. The results from our multivariate analyses differ from those obtained through univariate ones, showing that all potential factors should be assessed jointly when testing any ecological or evolutionary hypothesis dealing with parasites.

  14. Length-weight and length-length relationships of freshwater wild ...

    African Journals Online (AJOL)

    Length-weight and length-length relationships of freshwater wild catfish Mystus bleekeri from Nala Daik, Sialkot, Pakistan. ... Linear regression analysis was used, first to compute the degree of relationship between length and weight and then among total (TL), standard (SL) and fork lengths (FL). LWR exhibited a highly ...

  15. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  16. Measuring feeding traits of a range of litter-consuming terrestrial snails: leaf litter consumption, faeces production and scaling with body size.

    Science.gov (United States)

    Astor, Tina; Lenoir, Lisette; Berg, Matty P

    2015-07-01

    Plant litter decomposition is an essential ecosystem function that contributes to energy and nutrient cycling above- and belowground. Terrestrial gastropods can affect this process in various ways: they consume and fragment leaf litter and create suitable habitats for microorganisms through the production of faeces and mucus. We assessed the contributions of ten litter-feeding terrestrial snail species to leaf litter mass loss and checked whether consumption rate and faeces production scale with body size (i.e. shell size and shape), which may indicate that morphological traits can serve as proxies for consumption rate. Additionally, we compared the consumption rates of a subset of these species among litter types of two plant species which differ in resource quality (Fraxinus excelsior and Betula pendula). These snail species differed in their litter consumption rates. Consumption rates differed between the two litter types, whereas the rank order of litter consumption by the different species was independent of litter quality. Consumption rate and faeces production were positively related to shell size, whereas relative consumption rate and faeces production were related to shell shape, with more elongated snail species having lower relative consumption rates and faeces production rates. Our results show that easily measurable morphological traits scale with the feeding traits of snails, and represent useful proxies for consumption rate and faeces production, which are laborious to measure. Thus, estimated potential total consumption rates of snail communities along environmental gradients may be inferred from shell-size distributions. Our study contributes to a systematic trait-based evaluation of the importance of gastropods to litter decomposition.

  17. Millennial-scale isotope records from a wide-ranging predator show evidence of recent human impact to oceanic food webs.

    Science.gov (United States)

    Wiley, Anne E; Ostrom, Peggy H; Welch, Andreanna J; Fleischer, Robert C; Gandhi, Hasand; Southon, John R; Stafford, Thomas W; Penniman, Jay F; Hu, Darcy; Duvall, Fern P; James, Helen F

    2013-05-28

    Human exploitation of marine ecosystems is more recent in oceanic than near shore regions, yet our understanding of human impacts on oceanic food webs is comparatively poor. Few records of species that live beyond the continental shelves date back more than 60 y, and the sheer size of oceanic regions makes their food webs difficult to study, even in modern times. Here, we use stable carbon and nitrogen isotopes to study the foraging history of a generalist, oceanic predator, the Hawaiian petrel (Pterodroma sandwichensis), which ranges broadly in the Pacific from the equator to near the Aleutian Islands. Our isotope records from modern and ancient, radiocarbon-dated bones provide evidence of over 3,000 y of dietary stasis followed by a decline of ca. 1.8‰ in δ(15)N over the past 100 y. Fishery-induced trophic decline is the most likely explanation for this sudden shift, which occurs in genetically distinct populations with disparate foraging locations. Our isotope records also show that coincident with the apparent decline in trophic level, foraging segregation among petrel populations decreased markedly. Because variation in the diet of generalist predators can reflect changing availability of their prey, a foraging shift in wide-ranging Hawaiian petrel populations suggests a relatively rapid change in the composition of oceanic food webs in the Northeast Pacific. Understanding and mitigating widespread shifts in prey availability may be a critical step in the conservation of endangered marine predators such as the Hawaiian petrel.

  18. Short cervical length dilemma.

    Science.gov (United States)

    Suhag, Anju; Berghella, Vincenzo

    2015-06-01

    Preterm birth (PTB) is a leading cause of neonatal morbidity and mortality. With research efforts, the rate of PTB decreased to 11.4% in 2013. Transvaginal ultrasound (TVU) cervical length (CL) screening predicts PTB. In asymptomatic singletons without prior spontaneous PTB (sPTB), TVU CL screening should be done. If the cervix is 20 mm or less, vaginal progesterone is indicated. In asymptomatic singletons with prior sPTB, serial CL screening is indicated. In multiple gestations, routine cervical screening is not indicated. In symptomatic women with preterm labor, TVU CL screening and fetal fibronectin testing is recommended. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. discouraged by queue length

    Directory of Open Access Journals (Sweden)

    P. R. Parthasarathy

    2001-01-01

    Full Text Available The transient solution is obtained analytically using continued fractions for a state-dependent birth-death queue in which potential customers are discouraged by the queue length. This queueing system is then compared with the well-known infinite server queueing system which has the same steady state solution as the model under consideration, whereas their transient solutions are different. A natural measure of speed of convergence of the mean number in the system to its stationarity is also computed.

  20. Primary length standard adjustment

    Science.gov (United States)

    Ševčík, Robert; Guttenová, Jana

    2007-04-01

    This paper deals with problems and techniques connected with primary length standard adjusting, which includes disassembling of the device and by use of the secondary laser with collimated beam and diffraction laws successively reassembling of the laser. In the reassembling process the device was enhanced with substituting the thermal grease cooling of cold finger by copper socket cooler. This improved external cooling system enables more effective cooling of molecular iodine in the cell, which allows better pressure stability of iodine vapor and easier readjustment of the system.

  1. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs

    Energy Technology Data Exchange (ETDEWEB)

    Tamborini, D., E-mail: davide.tamborini@polimi.it; Portaluppi, D.; Villa, F.; Tosi, A. [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Tisa, S. [Micro Photon Devices, via Stradivari 4, 39100 Bolzano (Italy)

    2014-11-15

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.

  2. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs

    International Nuclear Information System (INIS)

    Tamborini, D.; Portaluppi, D.; Villa, F.; Tosi, A.; Tisa, S.

    2014-01-01

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link

  3. Fine-scale genetic breaks driven by historical range dynamics and ongoing density-barrier effects in the estuarine seaweed Fucus ceranoides L.

    Directory of Open Access Journals (Sweden)

    Neiva João

    2012-06-01

    Full Text Available Abstract Background Factors promoting the emergence of sharp phylogeographic breaks include restricted dispersal, habitat discontinuity, physical barriers, disruptive selection, mating incompatibility, genetic surfing and secondary contact. Disentangling the role of each in any particular system can be difficult, especially when species are evenly distributed across transition zones and dispersal barriers are not evident. The estuarine seaweed Fucus ceranoides provides a good example of highly differentiated populations along its most persistent distributional range at the present rear edge of the species distribution, in NW Iberia. Intrinsic dispersal restrictions are obvious in this species, but have not prevented F. ceranoides from vastly expanding its range northwards following the last glaciation, implying that additional factors are responsible for the lack of connectivity between neighbouring southern populations. In this study we analyze 22 consecutive populations of F. ceranoides along NW Iberia to investigate the processes generating and maintaining the observed high levels of regional genetic divergence. Results Variation at seven microsatellite loci and at mtDNA spacer sequences was concordant in revealing that Iberian F. ceranoides is composed of three divergent genetic clusters displaying nearly disjunct geographical distributions. Structure and AFC analyses detected two populations with an admixed nuclear background. Haplotypic diversity was high in the W sector and very low in the N sector. Within each genetic cluster, population structure was also pervasive, although shallower. Conclusions The deep divergence between sectors coupled with the lack of support for a role of oceanographic barriers in defining the location of breaks suggested 1 that the parapatric genetic sectors result from the regional reassembly of formerly vicariant sub-populations, and 2 that the genetic discontinuities at secondary contact zones (and elsewhere

  4. Large-scale generic test stand for testing of multiple configurations of air filters utilizing a range of particle size distributions

    Science.gov (United States)

    Giffin, Paxton K.; Parsons, Michael S.; Unz, Ronald J.; Waggoner, Charles A.

    2012-05-01

    The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m3/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome.

  5. A force measurement system based on an electrostatic sensing and actuating technique for calibrating force in a micronewton range with a resolution of nanonewton scale

    International Nuclear Information System (INIS)

    Chen, Sheng-Jui; Pan, Sheau-Shi

    2011-01-01

    This paper introduces a force measurement system recently established at the Center for Measurement Standards, Industrial Technology Research Institute for calibrating forces in a micronewton range with a resolution of a few nanonewtons. The force balance consists of a monolithic flexure stage and a specially made capacitor for electrostatic sensing and actuating. The capacitor is formed by three electrodes which can be utilized as a capacitive position sensor and an electrostatic force actuator at the same time. Force balance control is implemented with a digital controller by which the signal of the stage deflection is acquired, filtered and fed back to the electrostatic force driver to bring the flexure stage to the null position. The detailed description of the apparatus including the design of a monolithic flexure stage, principle of capacitive position sensing/electrostatic actuation and the force balance control is given in the paper. Finally, we present the results of electrostatic force calibration and the weighing of a 1 mg wire weight

  6. Length weight relationship, food and feeding habits and condition ...

    African Journals Online (AJOL)

    Length weight relationship, food and feeding habit and condition factor of Synodontis melanoptera and Synodontis courtetti from Lower River were investigated. The results show that total length, weight and condition factor of S. melanoptera male ranged from 25.50-47.00cm, 100.00-955.00g and 0.39-1.82. Total length ...

  7. Integrating Interdisciplinary Studies Across a Range of Spatiotemporal Scales for the Design of Effective Flood Mitigation and Habitat Restoration Strategies, Green Valley Creek, California

    Science.gov (United States)

    Kobor, J. S.; O'Connor, M. D.; Sherwood, M. N.

    2014-12-01

    Green Valley Creek provides some of the most critical habitat for endangered coho salmon in the Russian River Watershed. Extensive changes in land-use over the past century have resulted in a dynamic system characterized by ongoing incision in the upper watershed and deposition and increased flood risk in the lower watershed. Effective management requires a watershed-scale understanding of the underlying controls on sediment erosion and transport as well as site-specific studies to understand local habitat conditions and flood dynamics. Here we combine an evaluation of historical changes in watershed conditions with a regional sediment source assessment and detailed numerical hydraulic and sediment transport models to find a sustainable solution to a chronic flooding problem at the Green Valley Road bridge crossing. Ongoing bank erosion in the upper watershed has been identified as the primary source of coarse sediment being deposited in the rapidly aggrading flood-prone reach upstream of the bridge. Efforts at bank stabilization are part of the overall strategy, however elevated sediment loads can be expected to continue in the near-term. The cessation of historical vegetation removal and maintenance dredging has resulted in a substantial increase in channel roughness as riparian cover has expanded. A positive feedback loop has been developed whereby increased vegetation roughness reduces sediment transport capacity, inducing additional deposition, and providing fresh sediment for continued vegetation recruitment. Our analysis revealed that traditional engineering approaches are ineffective. Dredging is not viable owning to the habitat impacts and short timeframes over which the dredged channel would be maintained. Roadway elevation results in a strong backwater effect increasing flood risk upstream. Initial efforts at designing a bypass channel also proved ineffective due to backwater effects below the bridge. The only viable solution involved reducing the

  8. Spectral Unmixing of Forest Crown Components at Close Range, Airborne and Simulated Sentinel-2 and EnMAP Spectral Imaging Scale

    Directory of Open Access Journals (Sweden)

    Anne Clasen

    2015-11-01

    Full Text Available Forest biochemical and biophysical variables and their spatial and temporal distribution are essential inputs to process-orientated ecosystem models. To provide this information, imaging spectroscopy appears to be a promising tool. In this context, the present study investigates the potential of spectral unmixing to derive sub-pixel crown component fractions in a temperate deciduous forest ecosystem. However, the high proportion of foliage in this complex vegetation structure leads to the problem of saturation effects, when applying broadband vegetation indices. This study illustrates that multiple endmember spectral mixture analysis (MESMA can contribute to overcoming this challenge. Reference fractional abundances, as well as spectral measurements of the canopy components, could be precisely determined from a crane measurement platform situated in a deciduous forest in North-East Germany. In contrast to most other studies, which only use leaf and soil endmembers, this experimental setup allowed for the inclusion of a bark endmember for the unmixing of components within the canopy. This study demonstrates that the inclusion of additional endmembers markedly improves the accuracy. A mean absolute error of 7.9% could be achieved for the fractional occurrence of the leaf endmember and 5.9% for the bark endmember. In order to evaluate the results of this field-based study for airborne and satellite-based remote sensing applications, a transfer to Airborne Imaging Spectrometer for Applications (AISA and simulated Environmental Mapping and Analysis Program (EnMAP and Sentinel-2 imagery was carried out. All sensors were capable of unmixing crown components with a mean absolute error ranging between 3% and 21%.

  9. Pinus albicaulis Engelm. (Whitebark Pine in Mixed-Species Stands throughout Its US Range: Broad-Scale Indicators of Extent and Recent Decline

    Directory of Open Access Journals (Sweden)

    Sara A. Goeking

    2018-03-01

    Full Text Available We used data collected from >1400 plots by a national forest inventory to quantify population-level indicators for a tree species of concern. Whitebark pine (Pinus albicaulis has recently experienced high mortality throughout its US range, where we assessed the area of land with whitebark pine present, size-class distribution of individual whitebark pine, growth rates, and mortality rates, all with respect to dominant forest type. As of 2016, 51% of all standing whitebark pine trees in the US were dead. Dead whitebark pines outnumbered live ones—and whitebark pine mortality outpaced growth—in all size classes ≥22.8 cm diameter at breast height (DBH, across all forest types. Although whitebark pine occurred across 4.1 million ha in the US, the vast majority of this area (85% and of the total number of whitebark pine seedlings (72% fell within forest types other than the whitebark pine type. Standardized growth of whitebark pines was most strongly correlated with the relative basal area of whitebark pine trees (rho = 0.67; p < 0.01, while both standardized growth and mortality were moderately correlated with relative whitebark pine stem density (rho = 0.39 and 0.40; p = 0.031 and p < 0.01, respectively. Neither growth nor mortality were well correlated with total stand basal area, total stem density, or stand mean diameter. The abundance, extent, and relative growth vs. mortality rates of whitebark pine in multiple forest types presents opportunities for management to encourage whitebark pine recruitment in mixed-species stands. The lodgepole pine forest type contained more whitebark pine seedlings (35% than any other forest type, suggesting that this forest type represents a potential management target for silvicultural treatments that seek to facilitate the recruitment of whitebark pine seedlings into larger size classes. National forest inventories in other countries may use a similar approach to assess species of concern.

  10. Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents.

    Science.gov (United States)

    Mailler, R; Gasperi, J; Coquet, Y; Deshayes, S; Zedek, S; Cren-Olivé, C; Cartiser, N; Eudes, V; Bressy, A; Caupos, E; Moilleron, R; Chebbo, G; Rocher, V

    2015-04-01

    The efficacy of a fluidized powdered activated carbon (PAC) pilot (CarboPlus(®)) was studied in both nominal (total nitrification + post denitrification) and degraded (partial nitrification + no denitrification) configuration of the Seine Centre WWTP (Colombes, France). In addition to conventional wastewater parameters 54 pharmaceuticals and hormones (PhPHs) and 59 other emerging pollutants were monitored in influents and effluents of the pilot. Thus, the impacts of the WWTP configuration, the process operation and the physico-chemical properties of the studied compounds were assessed in this article. Among the 26 PhPHs quantified in nominal WWTP configuration influents, 8 have high dissolved concentrations (>100 ng/L), 11 have an intermediary concentration (10-100 ng/L) and 7 are quantified below 10 ng/L. Sulfamethoxazole is predominant (about 30% of the sum of the PhPHs). Overall, 6 PhPHs are poorly to moderately removed (80%), i.e. beta blockers, carbamazepine or trimethoprim, and 11 are well eliminated (60-80%), i.e. diclofenac, naproxen or sulfamethoxazole. In degraded WWTP configuration, higher levels of organic matter and higher concentrations of most pollutants are observed. Consequently, most PhPHs are substantially less removed in percentages but the removed flux is higher. Thus, the PAC dose required to achieve a given removal percentage is higher in degraded WWTP configuration. For the other micropollutants (34 quantified), artificial sweeteners and phthalates are found at particularly high concentrations in degraded WWTP configuration influents, up to μg/L range. Only pesticides, bisphenol A and parabens are largely eliminated (50-95%), while perfluorinated acids, PAHs, triclosan and sweeteners are not or weakly removed (<50%). The remaining compounds exhibit a very variable fate from campaign to campaign. The fresh PAC dose was identified as the most influencing operation parameter and is strongly correlated to performances. Charge and

  11. Impedance of finite length resistive cylinder

    Directory of Open Access Journals (Sweden)

    S. Krinsky

    2004-11-01

    Full Text Available We determine the impedance of a cylindrical metal tube (resistor of radius a, length g, and conductivity σ attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency (k≫1/a. In the equilibrium regime, ka^{2}≪g, the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity σ. In the transient regime, ka^{2}≫g, where the contribution of transition radiation arising from the discontinuity in conductivity is important, we derive an analytic expression for the impedance and compute the short-range wakefield. The analytic results are shown to agree with numerical evaluation of the impedance.

  12. Measurement of Thermal Conductivity of Porcine Liver in the Temperature Range of Cryotherapy and Hyperthermia (250~315k) by A Thermal Sensor Made of A Micron-Scale Enameled Copper Wire.

    Science.gov (United States)

    Jiang, Z D; Zhao, G; Lu, G R

      BACKGROUND: Cryotherapy and hyperthermia are effective treatments for several diseases, especially for liver cancers. Thermal conductivity is a significant thermal property for the prediction and guidance of surgical procedure. However, the thermal conductivities of organs and tissues, especially over the temperature range of both cryotherapy and hyperthermia are scarce. To provide comprehensive thermal conductivity of liver for both cryotherapy and hyperthermia. A hot probe made of stain steel needle and micron-sized copper wire is used for measurement. To verify data processing, both the least square method and the Monte Carlo inversion method are used to determine the hot probe constants, respectively, with reference materials of water and 29.9 % Ca 2 Cl aqueous solution. Then the thermal conductivities of Hanks solution and pork liver bathed in Hanks solution are measured. The effective length for two methods is nearly the same, but the heat capacity of probe calibrated by the Monte Carlo inversion is temperature dependent. Fairly comprehensive thermal conductivity of porcine liver measured with these two methods in the target temperature range is verified to be similar. We provide an integrated thermal conductivity of liver for cryotherapy and hyperthermia in two methods, and make more accurate predictions possible for surgery. The least square method and the Monte Carlo inversion method have their advantages and disadvantages. The least square method is available for measurement of liquids that not prone to convection or solids in a wide temperature range, while the Monte Carlo inversion method is available for accurate and rapid measurement.

  13. Correlation lengths of electrostatic turbulence

    International Nuclear Information System (INIS)

    Guiziou, L.; Garbet, X.

    1995-01-01

    This document deals with correlation length of electrostatic turbulence. First, the model of drift waves turbulence is presented. Then, the radial correlation length is determined analytically with toroidal coupling and non linear coupling. (TEC). 5 refs

  14. Length Frequency Distribution And Sex Ratio Of Macrobrachium ...

    African Journals Online (AJOL)

    Length frequency distribution and sex ratio of Macrobrachium macrobrachion sampled by cane traps in the Lagos –Lekki lagoon system were estimated from May 2002 to April 2004. The total number of size classes for the first and second year for both male and female ranged from 10 – 12. The length range was 3 to 14cm ...

  15. Generation and analysis of a large-scale expressed sequence Tag database from a full-length enriched cDNA library of developing leaves of Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Min Lin

    Full Text Available BACKGROUND: Cotton (Gossypium hirsutum L. is one of the world's most economically-important crops. However, its entire genome has not been sequenced, and limited resources are available in GenBank for understanding the molecular mechanisms underlying leaf development and senescence. METHODOLOGY/PRINCIPAL FINDINGS: In this study, 9,874 high-quality ESTs were generated from a normalized, full-length cDNA library derived from pooled RNA isolated from throughout leaf development during the plant blooming stage. After clustering and assembly of these ESTs, 5,191 unique sequences, representative 1,652 contigs and 3,539 singletons, were obtained. The average unique sequence length was 682 bp. Annotation of these unique sequences revealed that 84.4% showed significant homology to sequences in the NCBI non-redundant protein database, and 57.3% had significant hits to known proteins in the Swiss-Prot database. Comparative analysis indicated that our library added 2,400 ESTs and 991 unique sequences to those known for cotton. The unigenes were functionally characterized by gene ontology annotation. We identified 1,339 and 200 unigenes as potential leaf senescence-related genes and transcription factors, respectively. Moreover, nine genes related to leaf senescence and eleven MYB transcription factors were randomly selected for quantitative real-time PCR (qRT-PCR, which revealed that these genes were regulated differentially during senescence. The qRT-PCR for three GhYLSs revealed that these genes express express preferentially in senescent leaves. CONCLUSIONS/SIGNIFICANCE: These EST resources will provide valuable sequence information for gene expression profiling analyses and functional genomics studies to elucidate their roles, as well as for studying the mechanisms of leaf development and senescence in cotton and discovering candidate genes related to important agronomic traits of cotton. These data will also facilitate future whole-genome sequence

  16. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li

    2011-01-01

    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. – We give efficient reductions for each of the above problems...... to a new problem, which we call substring range reporting. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of the above problems individually. – We show how to solve substring range reporting with optimal query time and little...... space. Combined with our reductions this leads to significantly improved time-space trade-offs for the above problems. In particular, for each problem we obtain the first solutions with optimal time query and O(n logO(1) n) space, where n is the length of the indexed string. Our bounds for substring...

  17. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li

    2014-01-01

    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. We give efficient reductions for each of the above problems...... to a new problem, which we call substring range reporting. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of the above problems individually. We show how to solve substring range reporting with optimal query time and little...... space. Combined with our reductions this leads to significantly improved time-space trade-offs for the above problems. In particular, for each problem we obtain the first solutions with optimal time query and O(nlog O(1) n) space, where n is the length of the indexed string. We show that our techniques...

  18. Electron Profile Stiffness and Critical Gradient Length Studies in the Alcator C-Mod Tokamak

    Science.gov (United States)

    Houshmandyar, Saeid; Hatch, David R.; Liao, Kenneth T.; Zhao, Bingzhe; Phillips, Perry E.; Rowan, William L.; Cao, Norman; Ernst, Darin R.; Rice, John E.

    2017-10-01

    Electron temperature profile stiffness was investigated at Alcator C-Mod L-mode discharges. Electrons were heated by ion cyclotron range of frequencies (ICRF) through minority heating. The intent of the heating mechanism was to vary the heat flux and simultaneously, gradually change the local gradient. The electron temperature gradient scale length (LTe- 1 = | ∇Te |/Te) was accurately measured through a novel technique, using the high-resolution radiometer ECE diagnostic. The TRANSP power balance analysis (Q/QGB) and the measured scale length (a/LTe) result in critical scale length measurements at all major radius locations. These measurements suggest that the profiles are already at the critical values. Furthermore, the dependence of the stiffness on plasma rotation and magnetic shear will be discussed. In order to understand the underlying mechanism of turbulence for these discharges, simulations using the gyrokinetic code, GENE, were carried out. For linear runs at electron scales, it was found that the largest growth rates are very sensitive to a/LTe variation, which suggests the presence of ETG modes, while the sensitivity studies in the ion scales indicate ITG/TEM modes. Supported by USDoE awards DE-FG03-96ER54373 and DE-FC02-99ER54512.

  19. Random fractal characters and length uncertainty of the continental ...

    Indian Academy of Sciences (India)

    For this study, the scaling region of the continental coastline of China is determined. The box-counting dimension was calculated with ArcGIS software using 33 scales and a map scale of 1:500,000, and the divider dimension calculated by a C language program. Moreover, the reliability of the Chinese coastline length value ...

  20. Rheological behavior of the crust and mantle in subduction zones in the time-scale range from earthquake (minute) to mln years inferred from thermomechanical model and geodetic observations

    Science.gov (United States)

    Sobolev, Stephan; Muldashev, Iskander

    2016-04-01

    The key achievement of the geodynamic modelling community greatly contributed by the work of Evgenii Burov and his students is application of "realistic" mineral-physics based non-linear rheological models to simulate deformation processes in crust and mantle. Subduction being a type example of such process is an essentially multi-scale phenomenon with the time-scales spanning from geological to earthquake scale with the seismic cycle in-between. In this study we test the possibility to simulate the entire subduction process from rupture (1 min) to geological time (Mln yr) with the single cross-scale thermomechanical model that employs elasticity, mineral-physics constrained non-linear transient viscous rheology and rate-and-state friction plasticity. First we generate a thermo-mechanical model of subduction zone at geological time-scale including a narrow subduction channel with "wet-quartz" visco-elasto-plastic rheology and low static friction. We next introduce in the same model classic rate-and state friction law in subduction channel, leading to stick-slip instability. This model generates spontaneous earthquake sequence. In order to follow in details deformation process during the entire seismic cycle and multiple seismic cycles we use adaptive time-step algorithm changing step from 40 sec during the earthquake to minute-5 year during postseismic and interseismic processes. We observe many interesting deformation patterns and demonstrate that contrary to the conventional ideas, this model predicts that postseismic deformation is controlled by visco-elastic relaxation in the mantle wedge already since hour to day after the great (M>9) earthquakes. We demonstrate that our results are consistent with the postseismic surface displacement after the Great Tohoku Earthquake for the day-to-4year time range.

  1. Length expectation values in quantum Regge calculus

    International Nuclear Information System (INIS)

    Khatsymovsky, V.M.

    2004-01-01

    Regge calculus configuration superspace can be embedded into a more general superspace where the length of any edge is defined ambiguously depending on the 4-tetrahedron containing the edge. Moreover, the latter superspace can be extended further so that even edge lengths in each the 4-tetrahedron are not defined, only area tensors of the 2-faces in it are. We make use of our previous result concerning quantization of the area tensor Regge calculus which gives finite expectation values for areas. Also our result is used showing that quantum measure in the Regge calculus can be uniquely fixed once we know quantum measure on (the space of the functionals on) the superspace of the theory with ambiguously defined edge lengths. We find that in this framework quantization of the usual Regge calculus is defined up to a parameter. The theory may possess nonzero (of the order of Planck scale) or zero length expectation values depending on whether this parameter is larger or smaller than a certain value. Vanishing length expectation values means that the theory is becoming continuous, here dynamically in the originally discrete framework

  2. Flux scaling: Ultimate regime

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Flux scaling: Ultimate regime. With the Nusselt number and the mixing length scales, we get the Nusselt number and Reynolds number (w'd/ν) scalings: and or. and. scaling expected to occur at extremely high Ra Rayleigh-Benard convection. Get the ultimate regime ...

  3. Perspectives on Ocean Ridge Basalts from the Segment to the Global Scale

    OpenAIRE

    Gale, Allison

    2012-01-01

    This study addresses the influences on ridge basalt chemistry, through analysis of their major and trace element and isotopic composition at scales ranging from individual ridge segments to the entire length of the ridge system. Local-scale studies of basalts along the Mid-Atlantic Ridge shed light on crustal accretion at slow-spreading ridges, and on the nature of plume-ridge interaction in this region. We show that segments must have multiple supplies of magma delivered along their length, ...

  4. Collisional scattering for binary Coulomb interactions that are cut off at a distance different than the Debye length

    International Nuclear Information System (INIS)

    Correa, J.R.; Chang Yongbin; Ordonez, C.A.

    2005-01-01

    Collisional scattering is considered within a system of charged particles experiencing binary Coulomb interactions when the scale length for the range of each interaction is not isotropic and is not necessarily equal to the Debye length. For example, one or more dimensions of the system could be smaller than the Debye length. The effect is assessed by evaluating integrals over the impact cross section. Cutoffs on both the impact parameter and the Coulomb interaction potential are employed, and no assumption is made regarding the value of the Coulomb logarithm. Two expressions are found that have a dependence on the cutoff lengths, with one of the expressions being associated with the Coulomb logarithm. Collisional scattering within an electrostatic ion trap is considered by way of example

  5. 7 Length-weight relationship

    African Journals Online (AJOL)

    Administrator

    Length-weight measurements were taken from well-preserved fish specimens from which stomachs were extracted for the analysis of the food contents, using frequency of occurrence, numerical and gravimetric methods, as well as index of relative importance. The length-frequency analysis showed a size distribution with a ...

  6. Comparison of fiber length analyzers

    Science.gov (United States)

    Don Guay; Nancy Ross Sutherland; Walter Rantanen; Nicole Malandri; Aimee Stephens; Kathleen Mattingly; Matt Schneider

    2005-01-01

    In recent years, several fiber new fiber length analyzers have been developed and brought to market. The new instruments provide faster measurements and the capability of both laboratory and on-line analysis. Do the various fiber analyzers provide the same length, coarseness, width, and fines measurements for a given fiber sample? This paper provides a comparison of...

  7. Changes in hip joint muscle-tendon lengths with mode of locomotion.

    Science.gov (United States)

    Riley, Patrick O; Franz, Jason; Dicharry, Jay; Kerrigan, D Casey

    2010-02-01

    We have reported that peak hip extension is nearly identical in walking and running, suggesting that anatomical constraints, such as flexor muscle tightness may limit the range of hip extension. To obtain a more mechanistic insight into mobility at the hip and pelvis we examined the lengths of the muscle-tendons units crossing the hip joint. Data defining the three-dimensional kinematics of 26 healthy runners at self-selected walking and running speeds were obtained. These data were used to scale and drive musculoskeletal models using OpenSIM. Muscle-tendon unit (MTU) lengths were calculated for the trailing limb illiacus, rectus femoris, gluteus maximus, and biceps femoris long head and the advancing limb biceps femoris and gluteus maximus. The magnitude and timing of MTU length peaks were each compared between walking and running. The peak length of the right (trailing limb) illiacus MTU, a pure hip flexor, was nearly identical between walking and running, while the maximum length of the rectus femoris MTU, a hip flexor and knee extensor, increased during running. The maximum length of the left (leading limb) biceps femoris was also unchanged between walking and running. Further, the timing of peak illiacus MTU length and peak contralateral biceps femoris MTU length occurred essentially simultaneously during running, at a time during gait when the hamstrings are most vulnerable to stretch injury. This latter finding suggests exploring the role for hip flexor stretching in combination with hamstring stretching to treat and/or prevent running related hamstring injury. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Incorporating maps of leaf chlorophyll in a thermal-based two-source energy balance scheme for mapping coupled fluxes of carbon and water exchange at a range of scales

    Science.gov (United States)

    Houborg, R.; Anderson, M. C.; Kustas, W. P.

    2008-12-01

    A light-use efficiency (LUE) based model of canopy resistance was recently implemented within a thermal- based Two-Source Energy Balance (TSEB) scheme facilitating coupled simulations of land-surface fluxes of water, energy and CO2 exchange from field to regional scales (Anderson et al., 2008). The LUE model component computes canopy-scale carbon assimilation and transpiration fluxes and incorporates LUE modifications from biome specific nominal values (Bn) in response to variations in humidity, CO2 concentration, temperature (soil and air), wind speed, and direct beam vs. diffuse light composition. Here we incorporate leaf chlorophyll content (Cab) as a determinant of spatial and temporal variations in Bn as Cab is related to key LUE modulating factors such as crop phenology, vegetation stress and photosynthetic capacity. A linear relationship between Bn and Cab, established from stand-level measurement of LUE for unstressed environmental conditions and a representative set of Cab values for a range of agricultural and natural vegetation groups, is used to distribute Bn over the modeling domain. The technique is tested for an agricultural area near Bushland, Texas by fusing reflective and thermal based remote sensing inputs from SPOT, Landsat, ASTER and aircraft sensor systems. Maps of LAI and Cab are generated by using at-sensor radiances in green, red and near-infrared wavelengths as input to a REGularized canopy reFLECtance (REGFLEC) modeling tool that couples leaf optics (PROSPECT), canopy reflectance (ACRM), and atmospheric radiative transfer (6SV1) model components. Modeled carbon and water fluxes are compared with eddy covariance measurements made in stands of cotton and with fluxes measured by an aircraft flying transects over irrigated and non-irrigated agricultural land and natural vegetation. The technique is flexible and scalable and is portable to continental scales using GOES and MODIS data products. The results demonstrate utility in combining

  9. Length- weight relationships, condition factor (K) and relative ...

    African Journals Online (AJOL)

    Length-weight relationship and condition factors were estimated for Dentex congoensis and Dentex angolensis of the family sparidae trawled from Nigeria Coastal water in 2009. A total number of 534 specimens ranging from 7.2 – 3.0 cm in total length and 5.4 – 489.8 g in weight were analyzed. The lengthweight ...

  10. Length-Weight Relationship And Condition Factor Of The Elephant ...

    African Journals Online (AJOL)

    A total of 791 elephant fish, Mormyrus rume specimens of various sizes were sampled from River Ose, southwestern Ngera. Length-weight relationship and condition factor of the M rume specimens were studied. Their standard lengths ranged from 15.0 to 45.0 cm. Mean standard lengthfor males, females and combined sex ...

  11. Cultural differences in ant-dipping tool length between neighbouring chimpanzee communities at Kalinzu, Uganda.

    Science.gov (United States)

    Koops, Kathelijne; Schöning, Caspar; Isaji, Mina; Hashimoto, Chie

    2015-07-22

    Cultural variation has been identified in a growing number of animal species ranging from primates to cetaceans. The principal method used to establish the presence of culture in wild populations is the method of exclusion. This method is problematic, since it cannot rule out the influence of genetics and ecology in geographically distant populations. A new approach to the study of culture compares neighbouring groups belonging to the same population. We applied this new approach by comparing ant-dipping tool length between two neighbouring communities of chimpanzees (Pan troglodytes schweinfurthii) in the Kalinzu Forest, Uganda. Ant-dipping tool length varies across chimpanzee study sites in relation to army ant species (Dorylus spp.) and dipping location (nest vs. trail). We compared the availability of army ant species and dipping tool length between the two communities. M-group tools were significantly longer than S-group tools, despite identical army ant target species availabilities. Moreover, tool length in S-group was shorter than at all other sites where chimpanzees prey on epigaeic ants at nests. Considering the lack of ecological differences between the two communities, the tool length difference appears to be cultural. Our findings highlight how cultural knowledge can generate small-scale cultural diversification in neighbouring chimpanzee communities.

  12. Latest developments on fibered MOPA in mJ range with hollow-core fiber beam delivery and fiber beam shaping used as seeder for large scale laser facilities (Conference Presentation)

    Science.gov (United States)

    Gleyze, Jean-François; Scol, Florent; Perrin, Arnaud; Gouriou, Pierre; Valentin, Constance; Bouwmans, Géraud; Hugonnot, Emmanuel

    2017-05-01

    The Laser Megajoule (LMJ) is a French large scale laser facility dedicated to inertial fusion and plasma physics research. LMJ front-ends are based on fiber laser technology at nanojoule range [1]. Scaling the energy of those fiber seeders to the millijoule range is a way to upgrade LMJ's front ends architecture and could also be used as seeder for lasers for ELI project for example. However, required performances are so restrictive (optical-signal-to-noise ratio higher than 50 dB, temporally-shaped nanosecond pulses and spatial single-mode top-hat beam output) that such fiber systems are very tricky to build. High-energy fiber amplifiers In 2015, we have demonstrated, an all-fiber MOPA prototype able to produce a millijoule seeder, but unfortunately not 100% conform for all LMJ's performances. A major difficulty was to manage the frequency modulation used to avoid stimulated Brillouin scattering, to amplitude modulation (FM-AM) conversion, this limits the energy at 170µJ. For upgrading the energy to the millijoule range, it's necessary to use an amplifier with a larger core fiber. However, this fiber must still be flexible; polarization maintaining and exhibit a strictly single-mode behaviour. We are thus developing a new amplifier architecture based on an Yb-doped tapered fiber: its core diameter is from a narrow input to a wide output (MFD 8 to 26 µm). A S² measurement on a 2,5m long tapered fiber rolled-up on 22 cm diameter confirmed that this original geometry allows obtaining strictly single-mode behaviour. In a 1 kHz repetition rate regime, we already obtain 750 µJ pulses, and we are on the way to mJ, respecting LMJ performances. Beam delivery In LMJ architecture the distance between the nanojoule fiber seeder and the amplifier stages is about 16 m. Beam delivery is achieved with a standard PM fiber, such a solution is no longer achievable with hundreds of kilowatt peak powers. An efficient way to minimize nonlinear effects is to use hollow-core (HC

  13. Empirical model description of photon path length for differential path length spectroscopy: combined effect of scattering and absorption

    NARCIS (Netherlands)

    Kanick, Stephen C.; Sterenborg, Henricus J. C. M.; Amelink, Arjen

    2008-01-01

    Differential path length spectroscopy (DPS) is a method of reflectance spectroscopy that utilizes a specialized fiber geometry to make the photon path length (tau) insensitive to variations in tissue optical properties over a wide range of absorption (mu(a)) and total scattering (mu(s))

  14. Two-scale analysis of intermittency in fully developed turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Badii, R.; Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    A self-affinity test for turbulent time series is applied to experimental data for the estimation of intermittency exponents. The method employs exact relations satisfied by joint expectations of observables computed across two different length scales. One of these constitutes a verification tool for the existence and the extent of the inertial range. (author) 2 figs., 13 refs.

  15. Modelling of rate effects at multiple scales

    DEFF Research Database (Denmark)

    Pedersen, R.R.; Simone, A.; Sluys, L. J.

    2008-01-01

    , the length scale in the meso-model and the macro-model can be coupled. In this fashion, a bridging of length scales can be established. A computational analysis of  a Split Hopkinson bar test at medium and high impact load is carried out at macro-scale and meso-scale including information from  the micro-scale....

  16. Relative gut lengths of coral reef butterflyfishes (Pisces: Chaetodontidae)

    KAUST Repository

    Berumen, Michael L.

    2011-06-17

    Variation in gut length of closely related animals is known to generally be a good predictor of dietary habits. We examined gut length in 28 species of butterflyfishes (Chaetodontidae), which encompass a wide range of dietary types (planktivores, omnivores, and corallivores). We found general dietary patterns to be a good predictor of relative gut length, although we found high variation among groups and covariance with body size. The longest gut lengths are found in species that exclusively feed on the living tissue of corals, while the shortest gut length is found in a planktivorous species. Although we tried to control for phylogeny, corallivory has arisen multiple times in this family, confounding our analyses. The butterflyfishes, a speciose family with a wide range of dietary habits, may nonetheless provide an ideal system for future work studying gut physiology associated with specialization and foraging behaviors. © 2011 Springer-Verlag.

  17. Distance and Cable Length Measurement System

    Science.gov (United States)

    Hernández, Sergio Elias; Acosta, Leopoldo; Toledo, Jonay

    2009-01-01

    A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement. PMID:22303169

  18. Fibre operating lengths of human lower limb muscles during walking.

    Science.gov (United States)

    Arnold, Edith M; Delp, Scott L

    2011-05-27

    Muscles actuate movement by generating forces. The forces generated by muscles are highly dependent on their fibre lengths, yet it is difficult to measure the lengths over which muscle fibres operate during movement. We combined experimental measurements of joint angles and muscle activation patterns during walking with a musculoskeletal model that captures the relationships between muscle fibre lengths, joint angles and muscle activations for muscles of the lower limb. We used this musculoskeletal model to produce a simulation of muscle-tendon dynamics during walking and calculated fibre operating lengths (i.e. the length of muscle fibres relative to their optimal fibre length) for 17 lower limb muscles. Our results indicate that when musculotendon compliance is low, the muscle fibre operating length is determined predominantly by the joint angles and muscle moment arms. If musculotendon compliance is high, muscle fibre operating length is more dependent on activation level and force-length-velocity effects. We found that muscles operate on multiple limbs of the force-length curve (i.e. ascending, plateau and descending limbs) during the gait cycle, but are active within a smaller portion of their total operating range.

  19. Femtosecond structural dynamics on the atomic length scale

    International Nuclear Information System (INIS)

    Zhang, Dongfang

    2014-03-01

    This thesis reports on the development and application of two different but complementary ultrafast electron diffraction setups built at the Max Planck Research Department for Structural Dynamics. One is an ultra-compact femtosecond electron diffraction (FED) setup (Egun300), which is currently operational (with a maximum electron energy of 150 keV) and provides ultrashort (∝300 fs) and bright (∝10 e/μm 2 ) electron bunches. The other one, named as Relativistic Electron Gun for Atomic Exploration (REGAE) is a radio frequency driven 2 to 5 MeV FED setup built in collaboration with different groups from DESY. REGAE was developed as a facility that will provide high quality diffraction with sufficient coherence to even address structural protein dynamics and with electron pulses as short as 20 fs (FWHM). As one of the first students in Prof. R.J. Dwayne Miller's group, I led the femtosecond (fs) laser sub-group at REGAE being responsible for the construction of different key optical elements required to drive both of aforementioned FED systems. A third harmonic generation (THG) and a nonlinear optical parametric amplifier (NOPA) have been used for the photo-generation of ultrashort electron bursts as well as sample laser excitation. Different diagnostic tools have been constructed to monitor the performance of the fs optical system. A fast autocorrelator was developed to provide on the fly pulse duration correction. A transient-grating frequency-resolved optical gating (TG-FROG) was built to obtain detail information about the characteristics of fs optical pulse, i.e. phase and amplitude of its spectral components. In addition to these optical setups, I developed a fs optical pump-probe system, which supports broadband probe pulses. This setup was successfully applied to investigate the semiconductor-to-metal photoinduced phase transition in VO 2 and the ultrafast photo-reduction mechanism of graphene oxide. In regard to FED setups, I have been deeply involved in their development. I performed the first study in our compact FED system. I studied the optical and structural response of alkali halides to intense UV excitation conditions, i.e. above the damage threshold of the samples which required the application of a single-shot scheme. In order to gain a better understanding of the ablation process that follows fs optical excitation in alkali halides, I applied a variety of different techniques. Optical reflectivity, femtosecond electron diffraction, ion detection and crater measurements revealed the existence of a cold ablation process that occurs well below the threshold for plasma formation and even that for the melting point of the salts. This atypical cold explosion owes to the presence of highly localized excitonic states and reflects the repulsive nature of initial electronic correlations at play. In the case of REGAE, we performed the first time-resolved experiment following the fs laser heating dynamics and partial melting of polycrystalline gold films. This experiment was crucial to test the overall synchronization of our REGAE machine. We were able to observe a clear dynamics under single-shot photo-excitation conditions and found time zero within 1 picosecond. Further electron pulse characterization will involve the implementation of ponderomotive scattering. I have already constructed the required modular setup and performed all preliminary ASTRA N-body simulations.

  20. Dynamic Leidenfrost Effect: Relevant Time and Length Scales

    NARCIS (Netherlands)

    Shirota, Minori; van Limbeek, Michiel Antonius Jacobus; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2016-01-01

    When a liquid droplet impacts a hot solid surface, enough vapor may be generated under it to prevent its contact with the solid. The minimum solid temperature for this so-called Leidenfrost effect to occur is termed the Leidenfrost temperature, or the dynamic Leidenfrost temperature when the droplet

  1. Femtosecond structural dynamics on the atomic length scale

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongfang

    2014-03-15

    This thesis reports on the development and application of two different but complementary ultrafast electron diffraction setups built at the Max Planck Research Department for Structural Dynamics. One is an ultra-compact femtosecond electron diffraction (FED) setup (Egun300), which is currently operational (with a maximum electron energy of 150 keV) and provides ultrashort (∝300 fs) and bright (∝10 e/μm{sup 2}) electron bunches. The other one, named as Relativistic Electron Gun for Atomic Exploration (REGAE) is a radio frequency driven 2 to 5 MeV FED setup built in collaboration with different groups from DESY. REGAE was developed as a facility that will provide high quality diffraction with sufficient coherence to even address structural protein dynamics and with electron pulses as short as 20 fs (FWHM). As one of the first students in Prof. R.J. Dwayne Miller's group, I led the femtosecond (fs) laser sub-group at REGAE being responsible for the construction of different key optical elements required to drive both of aforementioned FED systems. A third harmonic generation (THG) and a nonlinear optical parametric amplifier (NOPA) have been used for the photo-generation of ultrashort electron bursts as well as sample laser excitation. Different diagnostic tools have been constructed to monitor the performance of the fs optical system. A fast autocorrelator was developed to provide on the fly pulse duration correction. A transient-grating frequency-resolved optical gating (TG-FROG) was built to obtain detail information about the characteristics of fs optical pulse, i.e. phase and amplitude of its spectral components. In addition to these optical setups, I developed a fs optical pump-probe system, which supports broadband probe pulses. This setup was successfully applied to investigate the semiconductor-to-metal photoinduced phase transition in VO{sub 2} and the ultrafast photo-reduction mechanism of graphene oxide. In regard to FED setups, I have been deeply involved in their development. I performed the first study in our compact FED system. I studied the optical and structural response of alkali halides to intense UV excitation conditions, i.e. above the damage threshold of the samples which required the application of a single-shot scheme. In order to gain a better understanding of the ablation process that follows fs optical excitation in alkali halides, I applied a variety of different techniques. Optical reflectivity, femtosecond electron diffraction, ion detection and crater measurements revealed the existence of a cold ablation process that occurs well below the threshold for plasma formation and even that for the melting point of the salts. This atypical cold explosion owes to the presence of highly localized excitonic states and reflects the repulsive nature of initial electronic correlations at play. In the case of REGAE, we performed the first time-resolved experiment following the fs laser heating dynamics and partial melting of polycrystalline gold films. This experiment was crucial to test the overall synchronization of our REGAE machine. We were able to observe a clear dynamics under single-shot photo-excitation conditions and found time zero within 1 picosecond. Further electron pulse characterization will involve the implementation of ponderomotive scattering. I have already constructed the required modular setup and performed all preliminary ASTRA N-body simulations.

  2. Coherent spectroscopies on ultrashort time and length scales

    Directory of Open Access Journals (Sweden)

    Schneider C.

    2013-03-01

    Full Text Available Three spectroscopic techniques are presented that provide simultaneous spatial and temporal resolution: modified confocal microscopy with heterodyne detection, space-time-resolved spectroscopy using coherent control concepts, and coherent two-dimensional nano-spectroscopy. Latest experimental results are discussed.

  3. Interplay between multiple length and time scales in complex ...

    Indian Academy of Sciences (India)

    can accomodate multiple pathways and transition state ensembles. When entropic and enthalpic con- tributions to the free energy compensate, there may be no significant barriers to folding, leading to very fast, 'downhill' folding. The existence of complex protein folding path- ways implies that in the cellular enviroment, the.

  4. CEBAF Upgrade Bunch Length Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mahmoud [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    Many accelerators use short electron bunches and measuring the bunch length is important for efficient operations. CEBAF needs a suitable bunch length because bunches that are too long will result in beam interruption to the halls due to excessive energy spread and beam loss. In this work, bunch length is measured by invasive and non-invasive techniques at different beam energies. Two new measurement techniques have been commissioned; a harmonic cavity showed good results compared to expectations from simulation, and a real time interferometer is commissioned and first checkouts were performed. Three other techniques were used for measurements and comparison purposes without modifying the old procedures. Two of them can be used when the beam is not compressed longitudinally while the other one, the synchrotron light monitor, can be used with compressed or uncompressed beam.

  5. Continuously variable focal length lens

    Science.gov (United States)

    Adams, Bernhard W; Chollet, Matthieu C

    2013-12-17

    A material preferably in crystal form having a low atomic number such as beryllium (Z=4) provides for the focusing of x-rays in a continuously variable manner. The material is provided with plural spaced curvilinear, optically matched slots and/or recesses through which an x-ray beam is directed. The focal length of the material may be decreased or increased by increasing or decreasing, respectively, the number of slots (or recesses) through which the x-ray beam is directed, while fine tuning of the focal length is accomplished by rotation of the material so as to change the path length of the x-ray beam through the aligned cylindrical slows. X-ray analysis of a fixed point in a solid material may be performed by scanning the energy of the x-ray beam while rotating the material to maintain the beam's focal point at a fixed point in the specimen undergoing analysis.

  6. Role of local to regional-scale collisions in the closure history of the Southern Neotethys, exemplified by tectonic development of the Kyrenia Range active margin/collisional lineament, N Cyprus

    Science.gov (United States)

    Robertson, Alastair; Kinnaird, Tim; McCay, Gillian; Palamakumbura, Romesh; Chen, Guohui

    2016-04-01

    . Further S-directed compression took place during Late Miocene-earliest Pliocene (stage 3) in an oblique left-lateral stress regime, probably influenced by the collision of the Tauride and Arabian continents to the east. Strong uplift of the active margin lineament then took place during the Pleistocene, related to incipient continental collision (stage 4). The uplift is documented by a downward-younging flight of marine and continental terrace deposits on both flanks of the Kyrenia Range. The geological record of the S Neotethyan active continental margin, based on regional to global plate kinematic reconstructions, appears to have been dominated by on-going convergence (with possible temporal changes), punctuated by the effects of relatively local to regional-scale collisional events. Similar processes are likely to have affected other S Neotethyan segments and other convergent margins.

  7. Overview of bunch length measurements

    International Nuclear Information System (INIS)

    Lumpkin, A. H.

    1999-01-01

    An overview of particle and photon beam bunch length measurements is presented in the context of free-electron laser (FEL) challenges. Particle-beam peak current is a critical factor in obtaining adequate FEL gain for both oscillators and self-amplified spontaneous emission (SASE) devices. Since measurement of charge is a standard measurement, the bunch length becomes the key issue for ultrashort bunches. Both time-domain and frequency-domain techniques are presented in the context of using electromagnetic radiation over eight orders of magnitude in wavelength. In addition, the measurement of microbunching in a micropulse is addressed

  8. Kondo length in bosonic lattices

    Science.gov (United States)

    Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea

    2017-09-01

    Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.

  9. Cervical length assessment in women with idiopathic polyhydramnios.

    Science.gov (United States)

    Hershkovitz, R; Sheiner, E; Maymon, E; Erez, O; Mazor, M

    2006-11-01

    The aims of the study were to determine cervical length among patients with polyhydramnios and to assess the relationship between the severity of polyhydramnios, cervical length and gestational age at delivery. A prospective study was designed including 92 consecutive singleton pregnancies with polyhydramnios between 24 and 40 weeks' gestation. Cervical length was measured using transvaginal sonography. Polyhydramnios was defined when amniotic fluid index (AFI) was equal to or greater than 20 cm. A single sonologist performed all the examinations of the cervical length and the AFI. The median cervical length and AFI were 37.5 (range, 7-52) mm and 28.8 (range, 20-43) cm, respectively. A significant gradual shortening of the cervical length was observed with advancing gestational age (P=0.027). No significant association was found between AFI and cervical length (P=0.24). A cut-off of 15 mm (n=5) was associated with a significantly lower gestational age at delivery (30+/-2.6 weeks vs. 37.2+/-4.2 weeks, respectively, Ppolyhydramnios have a gradual shortening of cervical length with advancing gestational age. However, this finding is not related to the severity of polyhydramnios. Copyright (c) 2006 ISUOG.

  10. An Assessment of the Length and Variability of Mercury's Magnetotail

    Science.gov (United States)

    Milan, S. E.; Slavin, J. A.

    2011-01-01

    We employ Mariner 10 measurements of the interplanetary magnetic field in the vicinity of Mercury to estimate the rate of magnetic reconnection between the interplanetary magnetic field and the Hermean magnetosphere. We derive a time-series of the open magnetic flux in Mercury's magnetosphere. from which we can deduce the length of the magnetotail The length of the magnetotail is shown to be highly variable. with open field lines stretching between 15R(sub H) and 8S0R(sub H) downstream of the planet (median 150R(sub H)). Scaling laws allow the tail length at perihelion to be deduced from the aphelion Mariner 10 observations.

  11. Leukocyte telomere length variation due to DNA extraction method.

    Science.gov (United States)

    Denham, Joshua; Marques, Francine Z; Charchar, Fadi J

    2014-12-04

    Telomere length is indicative of biological age. Shorter telomeres have been associated with several disease and health states. There are inconsistencies throughout the literature amongst relative telomere length measured by quantitative PCR (qPCR) and different extraction methods or kits used. We quantified whole-blood leukocyte telomere length using the telomere to single copy gene (T/S) ratio by qPCR in 20 young (18-25 yrs) men after extracting DNA using three common extraction methods: Lahiri and Nurnberger (high salt) method, PureLink Genomic DNA Mini kit (Life Technologies) and QiaAmp DNA Mini kit (Qiagen). Telomere length differences of DNA extracted from the three extraction methods was assessed by one-way analysis of variance (ANOVA). DNA purity differed between extraction methods used (P=0.01). Telomere length was impacted by the DNA extraction method used (P=0.01). Telomeres extracted using the Lahiri and Nurnberger method (mean T/S ratio: 2.43, range: 1.57-3.02) and PureLink Genomic DNA Mini Kit (mean T/S ratio: 2.57, range: 2.24-2.80) did not differ (P=0.13). Likewise, QiaAmp and Purelink-extracted telomeres were not statistically different (P=0.14). The Lahiri-extracted telomeres, however, were significantly shorter than those extracted using the QiaAmp DNA Mini Kit (mean T/S ratio: 2.71, range: 2.32-3.02; P=0.003). DNA purity was associated with telomere length. There are discrepancies between the length of leukocyte telomeres extracted from the same individuals according to the DNA extraction method used. DNA purity could be responsible for the discrepancy in telomere length but this will require validation studies. We recommend using the same DNA extraction kit when quantifying leukocyte telomere length by qPCR or when comparing different cohorts to avoid erroneous associations between telomere length and traits of interest.

  12. Cyclic codes of length 2

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    [X]/〈X2m. − 1〉 are given. Cyclic codes of length 2m over the finite field Fq, of odd characteristic, are defined in terms of their generator polynomials. The exact minimum distance and the dimension of the codes are obtained. Keywords.

  13. Diet, nutrition and telomere length.

    Science.gov (United States)

    Paul, Ligi

    2011-10-01

    The ends of human chromosomes are protected by DNA-protein complexes termed telomeres, which prevent the chromosomes from fusing with each other and from being recognized as a double-strand break by DNA repair proteins. Due to the incomplete replication of linear chromosomes by DNA polymerase, telomeric DNA shortens with repeated cell divisions until the telomeres reach a critical length, at which point the cells enter senescence. Telomere length is an indicator of biological aging, and dysfunction of telomeres is linked to age-related pathologies like cardiovascular disease, Parkinson disease, Alzheimer disease and cancer. Telomere length has been shown to be positively associated with nutritional status in human and animal studies. Various nutrients influence telomere length potentially through mechanisms that reflect their role in cellular functions including inflammation, oxidative stress, DNA integrity, DNA methylation and activity of telomerase, the enzyme that adds the telomeric repeats to the ends of the newly synthesized DNA. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Femur length and biparietal diameter

    African Journals Online (AJOL)

    2014-12-02

    Dec 2, 2014 ... Shipp TD, Bromley B, Mascola M, Benacerraf B. Variation in fetal femur length with respect to maternal race. J Ultrasound Med 2001;20:141‑4. 25. Deter RL, Harrist RB, Birnholz JC, Hadlock FP. Quantitative Obstetrical. Ultrasonography. New York: Wiley; 1986. 26. Yeh MN, Bracero L, Reilly KB, Murtha L, ...

  15. The influence of humidity on accuracy length measurement on polymer parts

    DEFF Research Database (Denmark)

    Madruga, Daniel González; Alexiou, A.; Dalla Costa, Giuseppe

    2016-01-01

    The work deals with an experimental study of the influence of humidity on accurate length measurements on ABS parts. Polymer parts absorb water from the ambient until they reach hygroscopic equilibrium. Water content causes an expansion of the polymer part. The relationship between the water...... content and this expansion has been barely studied, especially from a metrology point of view including its contribution to the measurement uncertainty. The experimental set-up includes a humidity chamber, an invar fixture with 8 inductive probes and a scale. The humidity chamber was used to create...... parts were measured at 5 levels of relative humidity from 50 %RH to 90 %RH, and constant temperature, 20 ±0.2˚C. Water content equilibrium with the ambient was achieved at each level by acclimatization of the parts for 24 hours. An average length variation over the humidity range of 15 μm was found...

  16. Buckling of an elastic fiber with finite length in a soft matrix.

    Science.gov (United States)

    Zhao, Yan; Li, Jing; Cao, Yan Ping; Feng, Xi-Qiao

    2016-02-21

    Elastic fibers embedded in a soft matrix are frequently encountered in nature and engineering across different length scales, ranging from microtubules in cytosol and filament networks to dissociative slender fish bones in muscles and fiber-reinforced soft composites. Fibers may buckle when the composite is subjected to compression; this study investigates this issue through a combination of experiments, finite-element simulations and theoretical analysis. Analysis reveals the important role of the interfacial shear forces and leads to an explicit solution to predict the occurrence of buckling for a slender fiber with finite length. The results reported in this paper will help understand the formation of shapes in some natural systems and provide guidelines for the design of soft biocomposites.

  17. Large-Scale Physical Separation of Depleted Uranium from Soil

    Science.gov (United States)

    2012-09-01

    unweathered depleted uranium rods illustrating the formation of uranyl oxides and salts . Unfired penetrator rods can range from 10 to 50 cm in length...specific area ratio (as thin sections, fine particles, or molten states). Uranium in finely divided form is prone to ignition. Uranium also has an...ER D C/ EL T R -1 2 -2 5 Army Range Technology Program Large-Scale Physical Separation of Depleted Uranium from Soil E nv ir on m en ta l

  18. Structure, stability, and formation pathways of colloidal gels in systems with short-range attraction and long-range repulsion.

    Science.gov (United States)

    van Schooneveld, Matti M; de Villeneuve, Volkert W A; Dullens, Roel P A; Aarts, Dirk G A L; Leunissen, Mirjam E; Kegel, Willem K

    2009-04-09

    We study colloidal gels formed upon centrifugation of dilute suspensions of spherical colloids (radius 446 nm) that interact through a long-range electrostatic repulsion (Debye length approximately 850 nm) and a short-range depletion attraction (approximately 12.5 nm), by means of confocal scanning laser microscopy (CSLM). In these systems, at low colloid densities, colloidal clusters are stable. Upon increasing the density by centrifugation, at different stages of cluster formation, we show that colloidal gels are formed that significantly differ in structure. While significant single-particle displacements do not occur on the hour time scale, the different gels slowly evolve within several weeks to a similar structure that is at least stable for over a year. Furthermore, while reference systems without long-range repulsion collapse into dense glassy states, the repulsive colloidal gels are able to support external stress in the form of a centrifugal field of at least 9g.

  19. The significance of stricture length and prior treatments

    African Journals Online (AJOL)

    Results: The median age was 49.5 years (range 21–90), median stricture length was 4 cm (range 1–18 cm) and the overall recurrence rate was 27.8%. Postinfectious strictures, pan urethral strictures or multiple strictures involving the penile and bulbar urethra were more common. Most patients had penile circular ...

  20. Deformation Partitioning: The Missing Link Between Outcrop-Scale Observations And Orogen-Scale Processes

    Science.gov (United States)

    Attia, S.; Paterson, S. R.; Jiang, D.; Miller, R. B.

    2017-12-01

    Structural studies of orogenic deformation fields are mostly based on small-scale structures ubiquitous in field exposures, hand samples, and under microscopes. Relating deformation histories derived from such structures to changing lithospheric-scale deformation and boundary conditions is not trivial due to vast scale separation (10-6 107 m) between characteristic lengths of small-scale structures and lithospheric plates. Rheological heterogeneity over the range of orogenic scales will lead to deformation partitioning throughout intervening scales of structural development. Spectacular examples of structures documenting deformation partitioning are widespread within hot (i.e., magma-rich) orogens such as the well-studied central Sierra Nevada and Cascades core of western North America: (1) deformation partitioned into localized, narrow, triclinic shear zones separated by broad domains of distributed pure shear at micro- to 10 km scales; (2) deformation partitioned between plutons and surrounding metamorphic host rocks as shown by pluton-wide magmatic fabrics consistently oriented differently than coeval host rock fabrics; (3) partitioning recorded by different fabric intensities, styles, and orientations established from meter-scale grid mapping to 100 km scale domainal analyses; and (4) variations in the causes of strain and kinematics within fold-dominated domains. These complex, partitioned histories require synthesized mapping, geochronology, and structural data at all scales to evaluate partitioning and in the absence of correct scaling can lead to incorrect interpretations of histories. Forward modeling capable of addressing deformation partitioning in materials containing multiple scales of rheologically heterogeneous elements of varying characteristic lengths provides the ability to upscale the large synthesized datasets described above to plate-scale tectonic processes and boundary conditions. By comparing modeling predictions from the recently developed

  1. The probabilistic distribution of metal whisker lengths

    Energy Technology Data Exchange (ETDEWEB)

    Niraula, D., E-mail: Dipesh.Niraula@rockets.utoledo.edu; Karpov, V. G., E-mail: victor.karpov@utoledo.edu [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States)

    2015-11-28

    Significant reliability concerns in multiple industries are related to metal whiskers, which are random high aspect ratio filaments growing on metal surfaces and causing shorts in electronic packages. We derive a closed form expression for the probabilistic distribution of metal whisker lengths. Our consideration is based on the electrostatic theory of metal whiskers, according to which whisker growth is interrupted when its tip enters a random local “dead region” of a weak electric field. Here, we use the approximation neglecting the possibility of thermally activated escapes from the “dead regions,” which is later justified. We predict a one-parameter distribution with a peak at a length that depends on the metal surface charge density and surface tension. In the intermediate range, it fits well the log-normal distribution used in the experimental studies, although it decays more rapidly in the range of very long whiskers. In addition, our theory quantitatively explains how the typical whisker concentration is much lower than that of surface grains. Finally, it predicts the stop-and-go phenomenon for some of the whiskers growth.

  2. Synthesis of aerogel tiles with high light scattering length

    CERN Document Server

    Danilyuk, A F; Okunev, A G; Onuchin, A P; Shaurman, S A

    1999-01-01

    The possibility of aerogel tiles production for RICH detectors is described. Monolithic blocks of silica aerogel were synthesized by two-step sol-gel processing of tetraethoxysilane Si(OEt) sub 4 followed by high temperature supercritical drying with organic solvent. The important characteristic of aerogel is the light scattering length. In the wide range of refraction indexes the light scattering length exceeds 4 cm at 400 nm.

  3. Exploiting Universality in Atoms with Large Scattering Lengths

    International Nuclear Information System (INIS)

    Braaten, Eric

    2012-01-01

    The focus of this research project was atoms with scattering lengths that are large compared to the range of their interactions and which therefore exhibit universal behavior at sufficiently low energies. Recent dramatic advances in cooling atoms and in manipulating their scattering lengths have made this phenomenon of practical importance for controlling ultracold atoms and molecules. This research project was aimed at developing a systematically improvable method for calculating few-body observables for atoms with large scattering lengths starting from the universal results as a first approximation. Significant progress towards this goal was made during the five years of the project.

  4. Fluctuation microscopy: a probe of medium range order

    International Nuclear Information System (INIS)

    Treacy, M M J; Gibson, J M; Fan, L; Paterson, D J; McNulty, I

    2005-01-01

    Fluctuation microscopy is a hybrid diffraction-imaging technique that detects medium range order in amorphous materials by examining spatial fluctuations in coherent scattering. These fluctuations appear as speckle in images and diffraction patterns. The volume of material contributing to the speckle is determined by the point-spread function (the resolution) of the imaging optics and the sample thickness. The spatial periodicities being probed are related to the diffraction vector. Statistical analysis of the speckle allows the random and non-random (ordered) contributions to be discriminated. The image resolution that gives the maximum speckle contrast, as determined by the normalized variance of the image intensity, is determined by the characteristic length scale of the ordering. Because medium range ordering length scales can extend out to about the tenth coordination shell, fluctuation microscopy tends to be a low image resolution technique. This review presents the kinematical scattering theory underpinning fluctuation microscopy and a description of fluctuation electron microscopy as it has been employed in the transmission electron microscope for studying amorphous materials. Recent results using soft x-rays for studying nanoscale materials are also presented. We summarize outstanding issues and point to possible future directions for fluctuation microscopy as a technique

  5. Axial Lengths in Children with Recessive Cornea Plana.

    Science.gov (United States)

    Al Hazimi, Amro; Khan, Arif O

    2015-06-01

    While flat keratometry contributes to the hyperopia and associated refractive accommodative esotropia that is part of recessive cornea plana, whether or not axial lengths are abnormally short in the disease is unclear. In this study we assess this possibility. Prospective (2010-2012) axial length measurement (IOLmaster; Carl Zeiss, Oberkochen, Germany) of affected right eyes and comparison to right eyes with refractive accommodative esotropia only. Keratometry and refraction were also performed. For eight affected right eyes (age 10-12 years; seven families) axial length ranged from 21.46-24.80 mm (mean 23.34). Best corrected visual acuity ranged from 20/25 to 20/50, keratometry from 25.33-39.80 diopters (D) [mean 31.80], and refraction from +2.00 to +14.00 D (mean +7.22). For 50 control right eyes (age 4-12 years), axial length ranged from 19.87-23.66 mm (mean 21.6). Best-corrected visual acuity was 20/25 or better, keratometry ranged from 39.81-46.25 D (mean 42.42), and refraction from +2.25 to +8.00 D (mean 4.71). Axial lengths were longer in the affected group (2-tailed unpaired t-test p value 0.000005) despite greater hyperopia (2-tailed unpaired t-test p value 0.001). Despite greater hyperopia, axial lengths were longer in eyes with recessive cornea plana, evidence that axial lengths are not shortened by the disease. Keratometry in children with cornea plana was below the range of controls and was the major factor underlying the phenotype's hyperopia.

  6. Quantum discord length is enhanced while entanglement length is not by introducing disorder in a spin chain.

    Science.gov (United States)

    Sadhukhan, Debasis; Roy, Sudipto Singha; Rakshit, Debraj; Prabhu, R; Sen De, Aditi; Sen, Ujjwal

    2016-01-01

    Classical correlation functions of ground states typically decay exponentially and polynomially, respectively, for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length while quantum discord length increases significantly with the introduction of the quenched disorder.

  7. Finite length thermal equilibria of a pure electron plasma column

    International Nuclear Information System (INIS)

    Prasad, S.A.; O'Neil, T.M.

    1979-01-01

    The electrons of a pure electron plasma may be in thermal equilibrium with each other and still be confined by static magnetic and electric fields. Since the electrons make a significant contribution to the electric field, only certain density profiles are consistent with Poisson's equation. The class of such distributions for a finite length cylindrical column is investigated. In the limit where the Debye length is small compared with the dimensions of the column, the density is essentially constant out to some surface of revolution and then falls off abruptly. The falloff in density is a universal function when measured along the local normal to the surface of revolution and scaled in terms of the Debye length. The solution for the shape of the surface of revolution is simplified by passage to the limit of zero Debye length

  8. Assessing impact of climate change on season length in Karnataka ...

    Indian Academy of Sciences (India)

    management and mitigation of natural disasters, and for sustainable ... to study the changes in season length of a region by the various .... Table 1. Details of meteorological data used in the study. Data type. Source of data. Period. Details. Time scale. CGCM3 T/47 data on atmospheric variables http://www.cccma.

  9. Linking scales in sea ice mechanics

    Science.gov (United States)

    Weiss, Jérôme; Dansereau, Véronique

    2017-02-01

    Mechanics plays a key role in the evolution of the sea ice cover through its control on drift, on momentum and thermal energy exchanges between the polar oceans and the atmosphere along cracks and faults, and on ice thickness distribution through opening and ridging processes. At the local scale, a significant variability of the mechanical strength is associated with the microstructural heterogeneity of saline ice, however characterized by a small correlation length, below the ice thickness scale. Conversely, the sea ice mechanical fields (velocity, strain and stress) are characterized by long-ranged (more than 1000 km) and long-lasting (approx. few months) correlations. The associated space and time scaling laws are the signature of the brittle character of sea ice mechanics, with deformation resulting from a multi-scale accumulation of episodic fracturing and faulting events. To translate the short-range-correlated disorder on strength into long-range-correlated mechanical fields, several key ingredients are identified: long-ranged elastic interactions, slow driving conditions, a slow viscous-like relaxation of elastic stresses and a restoring/healing mechanism. These ingredients constrained the development of a new continuum mechanics modelling framework for the sea ice cover, called Maxwell-elasto-brittle. Idealized simulations without advection demonstrate that this rheological framework reproduces the main characteristics of sea ice mechanics, including anisotropy, spatial localization and intermittency, as well as the associated scaling laws. This article is part of the themed issue 'Microdynamics of ice'.

  10. Scaling of fracture systems in geological media

    Science.gov (United States)

    Bonnet, E.; Bour, O.; Odling, N. E.; Davy, P.; Main, I.; Cowie, P.; Berkowitz, B.

    2001-08-01

    Scaling in fracture systems has become an active field of research in the last 25 years motivated by practical applications in hazardous waste disposal, hydrocarbon reservoir management, and earthquake hazard assessment. Relevant publications are therefore spread widely through the literature. Although it is recognized that some fracture systems are best described by scale-limited laws (lognormal, exponential), it is now recognized that power laws and fractal geometry provide widely applicable descriptive tools for fracture system characterization. A key argument for power law and fractal scaling is the absence of characteristic length scales in the fracture growth process. All power law and fractal characteristics in nature must have upper and lower bounds. This topic has been largely neglected, but recent studies emphasize the importance of layering on all scales in limiting the scaling characteristics of natural fracture systems. The determination of power law exponents and fractal dimensions from observations, although outwardly simple, is problematic, and uncritical use of analysis techniques has resulted in inaccurate and even meaningless exponents. We review these techniques and suggest guidelines for the accurate and objective estimation of exponents and fractal dimensions. Syntheses of length, displacement, aperture power law exponents, and fractal dimensions are found, after critical appraisal of published studies, to show a wide variation, frequently spanning the theoretically possible range. Extrapolations from one dimension to two and from two dimensions to three are found to be nontrivial, and simple laws must be used with caution. Directions for future research include improved techniques for gathering data sets over great scale ranges and more rigorous application of existing analysis methods. More data are needed on joints and veins to illuminate the differences between different fracture modes. The physical causes of power law scaling and

  11. Molecular dynamic study of Shock wave response of bulk amorphous polyvinyl chloride: effect of chain length and force field

    Science.gov (United States)

    Neogi, Anupam; Mitra, Nilanjan

    2015-06-01

    Atomistic molecular dynamics in conjunction with multi-scale shock technique is utilized to investigate shock wave response of bulk amorphous polyvinyl chloride. Dependence of chain length on physical and mechanical behaviour of polymeric material at ambient condition of temperature and pressure are well known but unknown for extreme conditions. Non-reactive force fields PCFF, COMPASS and PCFF+ were used to determine applicability of the force field for the study of the material subjected to shock loads. Several samples of PVC with various chain lengths were subjected to a range of shock compression from 1.5-10.0 km/s. Even though dependence of chain length was observed for lower shock strengths but was not for intense shock loads. The principle Hugoniot points, calculated by applying hydrostatic Rankine-Hugoniot equations and as well as multi-scale shock technique, were compared against LASL experimental shock data, demonstrating superior performance of PCFF+ force-field over PCFF and COMPASS. Shock induced melting characteristic and vibrational spectroscopic study were conducted and compared with experimental data to observe differences in response with relation to different force fields, chain length of the material for different shock intensities.

  12. Length of urethra in the Indian adult male population

    Directory of Open Access Journals (Sweden)

    Venkatesh Krishnamoorthy

    2012-01-01

    Full Text Available Objective: The urethral length has not been measured in the Indian population. Even the international literature in this arena is very sparse. This paper is an attempt to develop a simple anatomical database for urethral length. Materials and Methods: Between January 2010 and April 2011, the urethral lengths of 422 adult male patients who required catheterization as part of regular treatment at our hospital, were recorded after obtaining consent from the patients and from the scientific and ethics review boards of the institution. Patients with history of prostatic or urethral abnormalities were excluded. The balloon of a sterile Foley′s catheter was inflated using 10 cc of saline. The length from the junction of the balloon to the ′Y′ junction of the Foley was measured. The catheter was then passed into the bladder and re-inflated to same volume. The penis was gently straightened and the length of the catheter outside the penis was measured till the premarked point at the ′Y′ junction. Subtracting this from the original length gave the length of the urethra. Results: The mean length of the urethra was 17.55 + 1.42 cm with a range between 14 and 22.5 cm. Conclusions: Literature in which the length of the normal adult male urethra is recorded for a significant sample size is very scarce. Our data adds to basic anatomic information of the male urethra specific to the Indian population. Statistical Methods: Descriptive statistical analysis was performed. The non-linear regression analysis was employed to find the normative values of urethral length according to age class.

  13. Scaling and noise in slow combustion of paper

    Science.gov (United States)

    Myllys; Maunuksela; Alava; Ala-Nissila; Timonen

    2000-02-28

    We present results of high resolution experiments on kinetic roughening of slow combustion fronts in paper, focusing on short length and time scales. Using three different grades of paper, we find that the combustion fronts show apparent spatial and temporal multiscaling at short scales. The scaling exponents decrease as a function of the order of the corresponding correlation functions. The noise affecting the fronts reveals short range temporal and spatial correlations, and non-Gaussian noise amplitudes. Our results imply that the overall behavior of slow combustion fronts cannot be explained by standard theories of kinetic roughening.

  14. Decoupling processes and scales of shoreline morphodynamics

    Science.gov (United States)

    Hapke, Cheryl J.; Plant, Nathaniel G.; Henderson, Rachel E.; Schwab, William C.; Nelson, Timothy R.

    2016-01-01

    Behavior of coastal systems on time scales ranging from single storm events to years and decades is controlled by both small-scale sediment transport processes and large-scale geologic, oceanographic, and morphologic processes. Improved understanding of coastal behavior at multiple time scales is required for refining models that predict potential erosion hazards and for coastal management planning and decision-making. Here we investigate the primary controls on shoreline response along a geologically-variable barrier island on time scales resolving extreme storms and decadal variations over a period of nearly one century. An empirical orthogonal function analysis is applied to a time series of shoreline positions at Fire Island, NY to identify patterns of shoreline variance along the length of the island. We establish that there are separable patterns of shoreline behavior that represent response to oceanographic forcing as well as patterns that are not explained by this forcing. The dominant shoreline behavior occurs over large length scales in the form of alternating episodes of shoreline retreat and advance, presumably in response to storms cycles. Two secondary responses include long-term response that is correlated to known geologic variations of the island and the other reflects geomorphic patterns with medium length scale. Our study also includes the response to Hurricane Sandy and a period of post-storm recovery. It was expected that the impacts from Hurricane Sandy would disrupt long-term trends and spatial patterns. We found that the response to Sandy at Fire Island is not notable or distinguishable from several other large storms of the prior decade.

  15. Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot

    Science.gov (United States)

    Wells, Ray; Bukry, David; Friedman, Richard; Pyle, Douglas; Duncan, Robert; Haeussler, Peter; Wooden, Joe

    2014-01-01

    Siletzia is a basaltic Paleocene and Eocene large igneous province in coastal Oregon, Washington, and southern Vancouver Island that was accreted to North America in the early Eocene. New U-Pb magmatic, detrital zircon, and 40Ar/39Ar ages constrained by detailed field mapping, global nannoplankton zones, and magnetic polarities allow correlation of the volcanics with the 2012 geologic time scale. The data show that Siletzia was rapidly erupted 56–49 Ma, during the Chron 25–22 plate reorganization in the northeast Pacific basin. Accretion was completed between 51 and 49 Ma in Oregon, based on CP11 (CP—Coccolith Paleogene zone) coccoliths in strata overlying onlapping continental sediments. Magmatism continued in the northern Oregon Coast Range until ca. 46 Ma with the emplacement of a regional sill complex during or shortly after accretion. Isotopic signatures similar to early Columbia River basalts, the great crustal thickness of Siletzia in Oregon, rapid eruption, and timing of accretion are consistent with offshore formation as an oceanic plateau. Approximately 8 m.y. after accretion, margin parallel extension of the forearc, emplacement of regional dike swarms, and renewed magmatism of the Tillamook episode peaked at 41.6 Ma (CP zone 14a; Chron 19r). We examine the origin of Siletzia and consider the possible role of a long-lived Yellowstone hotspot using the reconstruction in GPlates, an open source plate model. In most hotspot reference frames, the Yellowstone hotspot (YHS) is on or near an inferred northeast-striking Kula-Farallon and/or Resurrection-Farallon ridge between 60 and 50 Ma. In this configuration, the YHS could have provided a 56–49 Ma source on the Farallon plate for Siletzia, which accreted to North America by 50 Ma. A sister plateau, the Eocene basalt basement of the Yakutat terrane, now in Alaska, formed contemporaneously on the adjacent Kula (or Resurrection) plate and accreted to coastal British Columbia at about the same time

  16. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale

    Energy Technology Data Exchange (ETDEWEB)

    Mailler, R., E-mail: romain.mailler@siaap.fr [LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex (France); Gasperi, J., E-mail: gasperi@u-pec.fr [LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex (France); Coquet, Y. [SAUR, Direction de la Recherche et du Développement, 1 rue Antoine Lavoisier, 78064 Guyancourt (France); Buleté, A.; Vulliet, E. [Université de Lyon, Institut des Sciences Analytiques, UMR5280 CNRS, Université Lyon 1, ENS-Lyon, 5 rue de la Doua, 69100 Villeurbanne (France); Deshayes, S. [LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex (France); LCPP (Laboratoire Central de la Préfecture de Police), 39 bis rue de Dantzig, 75015 Paris (France); Zedek, S. [LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex (France); and others

    2016-01-15

    Among the solutions to reduce micropollutant discharges into the aquatic environment, activated carbon adsorption is a promising technique and a large scale pilot has been tested at the Seine Centre (240,000 m{sup 3}/d — Paris, France) wastewater treatment plant (WWTP). While most of available works studied fixed bed or contact reactors with a separated separation step, this study assesses a new type of tertiary treatment based on a fluidized bed containing a high mass of activated carbon, continuously renewed. For the first time in the literature, micro-grain activated carbon (μGAC) was studied. The aims were (1) to determine the performances of fluidized bed operating with μCAG on both emerging micropollutants and conventional wastewater quality parameters, and (2) to compare its efficiency and applicability to wastewater to former results obtained with PAC. Thus, conventional wastewater quality parameters (n = 11), pharmaceuticals and hormones (PPHs; n = 62) and other emerging pollutants (n = 57) have been monitored in μGAC configuration during 13 campaigns. A significant correlation has been established between dissolved organic carbon (DOC), PPHs and UV absorbance at 254 nm (UV-254) removals. This confirms that UV-254 could be used as a tertiary treatment performance indicator to monitor the process. This parameter allowed identifying that the removals of UV-254 and DOC reach a plateau from a μGAC retention time (SRT) of 90–100 days. The μGAC configuration substantially improves the overall quality of the WWTP discharges by reducing biological (38–45%) and chemical oxygen demands (21–48%), DOC (13–44%) and UV-254 (22–48%). In addition, total suspended solids (TSS) are retained by the μGAC bed and a biological activity (nitratation) leads to a total elimination of NO{sub 2}{sup −}. For micropollutants, PPHs have a good affinity for μGAC and high (> 60%) or very high (> 80%) removals are observed for most of the quantified compounds (n = 22

  17. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale

    International Nuclear Information System (INIS)

    Mailler, R.; Gasperi, J.; Coquet, Y.; Buleté, A.; Vulliet, E.; Deshayes, S.; Zedek, S.

    2016-01-01

    Among the solutions to reduce micropollutant discharges into the aquatic environment, activated carbon adsorption is a promising technique and a large scale pilot has been tested at the Seine Centre (240,000 m 3 /d — Paris, France) wastewater treatment plant (WWTP). While most of available works studied fixed bed or contact reactors with a separated separation step, this study assesses a new type of tertiary treatment based on a fluidized bed containing a high mass of activated carbon, continuously renewed. For the first time in the literature, micro-grain activated carbon (μGAC) was studied. The aims were (1) to determine the performances of fluidized bed operating with μCAG on both emerging micropollutants and conventional wastewater quality parameters, and (2) to compare its efficiency and applicability to wastewater to former results obtained with PAC. Thus, conventional wastewater quality parameters (n = 11), pharmaceuticals and hormones (PPHs; n = 62) and other emerging pollutants (n = 57) have been monitored in μGAC configuration during 13 campaigns. A significant correlation has been established between dissolved organic carbon (DOC), PPHs and UV absorbance at 254 nm (UV-254) removals. This confirms that UV-254 could be used as a tertiary treatment performance indicator to monitor the process. This parameter allowed identifying that the removals of UV-254 and DOC reach a plateau from a μGAC retention time (SRT) of 90–100 days. The μGAC configuration substantially improves the overall quality of the WWTP discharges by reducing biological (38–45%) and chemical oxygen demands (21–48%), DOC (13–44%) and UV-254 (22–48%). In addition, total suspended solids (TSS) are retained by the μGAC bed and a biological activity (nitratation) leads to a total elimination of NO 2 − . For micropollutants, PPHs have a good affinity for μGAC and high (> 60%) or very high (> 80%) removals are observed for most of the quantified compounds (n = 22/32), i

  18. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale.

    Science.gov (United States)

    Mailler, R; Gasperi, J; Coquet, Y; Buleté, A; Vulliet, E; Deshayes, S; Zedek, S; Mirande-Bret, C; Eudes, V; Bressy, A; Caupos, E; Moilleron, R; Chebbo, G; Rocher, V

    2016-01-15

    Among the solutions to reduce micropollutant discharges into the aquatic environment, activated carbon adsorption is a promising technique and a large scale pilot has been tested at the Seine Centre (240,000 m(3)/d - Paris, France) wastewater treatment plant (WWTP). While most of available works studied fixed bed or contact reactors with a separated separation step, this study assesses a new type of tertiary treatment based on a fluidized bed containing a high mass of activated carbon, continuously renewed. For the first time in the literature, micro-grain activated carbon (μGAC) was studied. The aims were (1) to determine the performances of fluidized bed operating with μCAG on both emerging micropollutants and conventional wastewater quality parameters, and (2) to compare its efficiency and applicability to wastewater to former results obtained with PAC. Thus, conventional wastewater quality parameters (n=11), pharmaceuticals and hormones (PPHs; n=62) and other emerging pollutants (n=57) have been monitored in μGAC configuration during 13 campaigns. A significant correlation has been established between dissolved organic carbon (DOC), PPHs and UV absorbance at 254 nm (UV-254) removals. This confirms that UV-254 could be used as a tertiary treatment performance indicator to monitor the process. This parameter allowed identifying that the removals of UV-254 and DOC reach a plateau from a μGAC retention time (SRT) of 90-100 days. The μGAC configuration substantially improves the overall quality of the WWTP discharges by reducing biological (38-45%) and chemical oxygen demands (21-48%), DOC (13-44%) and UV-254 (22-48%). In addition, total suspended solids (TSS) are retained by the μGAC bed and a biological activity (nitratation) leads to a total elimination of NO2(-). For micropollutants, PPHs have a good affinity for μGAC and high (>60%) or very high (>80%) removals are observed for most of the quantified compounds (n=22/32), i.e. atenolol (92

  19. Scaling Effects on Materials Tribology: From Macro to Micro Scale.

    Science.gov (United States)

    Stoyanov, Pantcho; Chromik, Richard R

    2017-05-18

    The tribological study of materials inherently involves the interaction of surface asperities at the micro to nanoscopic length scales. This is the case for large scale engineering applications with sliding contacts, where the real area of contact is made up of small contacting asperities that make up only a fraction of the apparent area of contact. This is why researchers have sought to create idealized experiments of single asperity contacts in the field of nanotribology. At the same time, small scale engineering structures known as micro- and nano-electromechanical systems (MEMS and NEMS) have been developed, where the apparent area of contact approaches the length scale of the asperities, meaning the real area of contact for these devices may be only a few asperities. This is essentially the field of microtribology, where the contact size and/or forces involved have pushed the nature of the interaction between two surfaces towards the regime where the scale of the interaction approaches that of the natural length scale of the features on the surface. This paper provides a review of microtribology with the purpose to understand how tribological processes are different at the smaller length scales compared to macrotribology. Studies of the interfacial phenomena at the macroscopic length scales (e.g., using in situ tribometry) will be discussed and correlated with new findings and methodologies at the micro-length scale.

  20. The Ranging and Nanosatellite Guidance Experiment (RANGE)

    OpenAIRE

    Gunter, Brian C.; Davis, Byron; Lightsey, Glenn; Braun, Robert D.

    2016-01-01

    The Ranging And Nanosatellite Guidance Experiment (RANGE) cubesat mission was recently selected for a flight opportunity as part of the Skybox University Cubesat Partnership, with a tentative launch date scheduled for 2016. The RANGE mission involves two 1.5U cubesats flying in a leader-follower formation with the goal of improving the relative and absolute positioning capabilities of nanosatellites. The satellites' absolute positions will be tracked using GPS receivers synchronized with mini...

  1. Motion of Molecular Probes and Viscosity Scaling in Polyelectrolyte Solutions at Physiological Ionic Strength

    Science.gov (United States)

    Sozanski, Krzysztof; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Sznajder, Anna; Holyst, Robert

    2016-01-01

    We investigate transport properties of model polyelectrolyte systems at physiological ionic strength (0.154 M). Covering a broad range of flow length scales—from diffusion of molecular probes to macroscopic viscous flow—we establish a single, continuous function describing the scale dependent viscosity of high-salt polyelectrolyte solutions. The data are consistent with the model developed previously for electrically neutral polymers in a good solvent. The presented approach merges the power-law scaling concepts of de Gennes with the idea of exponential length scale dependence of effective viscosity in complex liquids. The result is a simple and applicable description of transport properties of high-salt polyelectrolyte solutions at all length scales, valid for motion of single molecules as well as macroscopic flow of the complex liquid. PMID:27536866

  2. Dorsal Phalloplasty to Preserve Penis Length after Penile Prosthesis Implantation

    Directory of Open Access Journals (Sweden)

    Osama Shaeer

    2017-03-01

    Full Text Available Objectives: Following penile prosthesis implantation (PPI, patients may complain of a decrease in visible penis length. A dorsal phalloplasty defines the penopubic junction by tacking pubic skin to the pubis, revealing the base of the penis. This study aimed to evaluate the efficacy of a dorsal phalloplasty in increasing the visible penis length following PPI. Methods: An inflatable penile prosthesis was implanted in 13 patients with severe erectile dysfunction (ED at the Kamal Shaeer Hospital, Cairo, Egypt, from January 2013 to May 2014. During the surgery, nonabsorbable tacking sutures were used to pin the pubic skin to the pubis through the same penoscrotal incision. Intraoperative penis length was measured before and after the dorsal phalloplasty. Overall patient satisfaction was measured on a 5-point rating scale and patients were requested to subjectively compare their postoperative penis length with memories of their penis length before the onset of ED. Results: Intraoperatively, the dorsal phalloplasty increased the visible length of the erect penis by an average of 25.6%. The average length before and after tacking was 10.2 ± 2.9 cm and 13.7 ± 2.8 cm, respectively (P <0.002. Postoperatively, seven patients (53.8% reported a longer penis, five patients (38.5% reported no change in length and one patient (7.7% reported a slightly shorter penis. The mean overall patient satisfaction score was 4.9 ± 0.3. None of the patients developed postoperative complications. Conclusion: A dorsal phalloplasty during PPI is an effective method of increasing visible penis length, therefore minimising the impression of a shorter penis after implantation.

  3. The association of calcaneal spur length and clinical and functional parameters in plantar fasciitis.

    Science.gov (United States)

    Kuyucu, Ersin; Koçyiğit, Figen; Erdil, Mehmet

    2015-09-01

    Plantar fasciitis (PF)is the most common cause of plantar heel pain. Despite many treatment alternatives for heel spur, the association of calcaneal spur size with clinical and functional parameters is inconclusive. The objective of this study to investigate the correlation of calcaneal spur length with clinical findings and functional status documented with Foot Function Index in patients with plantar fasciitis. We performed power analysis for the sample size estimation. 87 patients with PF were scrutinized to reach the estimated patient number 75. Computer-aided linear measurements were done for spur length from tip to base in milimeters. Perceived pain intensity was evaluated by visual analog scale (VAS). Patients were asked to rate the pain experienced on a 10-cm VAS. Foot function index was applied to the patients to evaluate pain, disability and activity limitation of the patients. Of the 75 participants, 24 were males (32%) and 51 were females (68%). The mean age was 47 ± 10 years (range 30-65 years). The mean calcaneal spur length was 3.86 ± 3.36 mm (range between 0 and 12.2). Calcaneal spur length was significantly correlated with age (p = 0.003), BMI (p = 0.029), symptom duration, (p = 0.001) VAS (p = 0.003), and FFI total score (p calcaneal spur is significantly correlated with age, BMI, symptom duration, perceived pain, FFI pain and disability subscores, and FFI total scores. The size of the calcaneal spur is an important parameter correlated with pain and functional scores in PF. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  4. Multi-scale Modeling of Chromosomal DNA in Living Cells

    Science.gov (United States)

    Spakowitz, Andrew

    The organization and dynamics of chromosomal DNA play a pivotal role in a range of biological processes, including gene regulation, homologous recombination, replication, and segregation. Establishing a quantitative theoretical model of DNA organization and dynamics would be valuable in bridging the gap between the molecular-level packaging of DNA and genome-scale chromosomal processes. Our research group utilizes analytical theory and computational modeling to establish a predictive theoretical model of chromosomal organization and dynamics. In this talk, I will discuss our efforts to develop multi-scale polymer models of chromosomal DNA that are both sufficiently detailed to address specific protein-DNA interactions while capturing experimentally relevant time and length scales. I will demonstrate how these modeling efforts are capable of quantitatively capturing aspects of behavior of chromosomal DNA in both prokaryotic and eukaryotic cells. This talk will illustrate that capturing dynamical behavior of chromosomal DNA at various length scales necessitates a range of theoretical treatments that accommodate the critical physical contributions that are relevant to in vivo behavior at these disparate length and time scales. National Science Foundation, Physics of Living Systems Program (PHY-1305516).

  5. Length-force characteristics of the aponeurosis in the passive and active muscle condition and in the isolated condition

    NARCIS (Netherlands)

    Zuurbier, C. J.; Everard, A. J.; van der Wees, P.; Huijing, P. A.

    1994-01-01

    Length behaviour of the entire and designated parts of the proximal aponeurosis of the unipennate gastrocnemius medialis (GM) muscle of the rat was examined at muscle lengths ranging form muscle slack length to 4 mm above muscle optimum length in the passive and active (isometric contractions)

  6. Ontogenetic scaling of locomotor kinetics and kinematics of the ostrich (Struthio camelus).

    Science.gov (United States)

    Smith, Nicola C; Jespers, Karin J; Wilson, Alan M

    2010-04-01

    Kinematic and kinetic parameters of running gait were investigated through growth in the ostrich, from two weeks up to 10 months of age, in order to investigate the effects of increasing body size. Ontogenetic scaling relationships were compared with published scaling relationships found to exist with increasing body size between species to determine whether dynamic similarity is maintained during growth. During the study, ostrich mass (M(b)) ranged from 0.7 kg to 108.8 kg. Morphological measurements showed that lengths scaled with positive allometry during growth (hip height proportional to M(b)(0.40); foot segment length proportional to M(b)(0.40); tarsometatarsus length proportional to M(b)(0.41); tibiotarsus length proportional to M(b)(0.38); femur length proportional to M(b)(0.37)), significantly exceeding the close to geometric scaling observed between mammalian and avian species of increasing body size. Scaling of kinematic variables largely agreed with predicted scaling for increasing size and demonstrated relationships close to dynamic similarity and, as such, ontogenetic scaling of locomotor parameters was similar to that observed with increasing body mass between species. However, the ways in which these scaling trends were achieved were very different, with ontogenetic scaling of locomotor mechanics largely resulting from simple scaling of the limb segments rather than postural changes, likely to be due to developmental constraints. Small deviations from dynamic similarity of kinematic parameters and a reduction in the predicted scaling of limb stiffness (proportional to M(b)(0.59)) were found to be accounted for by the positive allometric scaling of the limb during growth.

  7. Wavepacket dynamics in one-dimensional system with long-range correlated disorder

    Science.gov (United States)

    Yamada, Hiroaki S.

    2018-03-01

    We numerically investigate dynamical property in the one-dimensional tight-binding model with long-range correlated disorder having power spectrum 1 /fα (α: spectrum exponent) generated by Fourier filtering method. For relatively small α MSD) of the initially localized wavepacket shows ballistic spread and localizes as time elapses. It is shown that α-dependence of the dynamical localization length determined by the MSD exhibits a simple scaling law in the localization regime for the relatively weak disorder strength W. Furthermore, scaled MSD by the dynamical localization length almost obeys an universal function from the ballistic to the localization regime in the various combinations of the parameters α and W.

  8. Short Rayleigh Length Free Electron Laser Simulations in Expanding Coordinates

    CERN Document Server

    Armstead, Robert L; Colson, William B

    2004-01-01

    For compact short-Rayleigh length FELs, the area of the optical beam can be thousands of times greater at the mirrors than at the beam waist. A fixed numerical grid of sufficient resolution to represent the narrow mode at the waist and the broad mode at the mirrors would be prohibitively large. To accommodate this extreme change of scale with no loss of information, we employ a coordinate system that expands with the diffracting optical mode. The simulation using the new expanding coordinates has been validated by comparison to analytical cold-cavity theory, and is now used to simulate short-Rayleigh length FELs.

  9. Burnout among physiotherapists and length of service

    Directory of Open Access Journals (Sweden)

    Zbigniew Śliwiński

    2014-04-01

    Full Text Available Objectives: The aim of this study was to identify factors that contribute to the development of burnout among physiotherapists with different length of service in physiotherapy. Material and Methods: The following research tools were used to study burnout: the Life Satisfaction Questionnaire (LSQ, based on FLZ (Fragebogen zur Lebenszufriedenheit by Frahrenberg, Myrtek, Schumacher, and Brähler; the Burnout Scale Inventory (BSI by Steuden and Okła; and an ad hoc questionnaire to collect socio-demographic data. The survey was anonymous and voluntary and involved a group of 200 active physiotherapists working in Poland. Results: A statistical analysis revealed significant differences in overall life satisfaction between length-of-service groups (p = 0.03. Physiotherapists with more than 15 years of service reported greater satisfaction than those with less than 5 years and between 5 and 15 years of service. The results suggest that burnout in those with 5-15 years of service is higher in physiotherapists working in health care centers and increases with age and greater financial satisfaction, while it decreases with greater satisfaction with friend and family relations and greater satisfaction with one's work and profession. In those with more than 15 years of service, burnout increases in the case of working in a setting other than a health care or educational center and decreases with greater satisfaction with one's work and profession. Conclusions: Job satisfaction and a satisfying family life prevent burnout among physiotherapists with 5-15 years of service in the profession. Financial satisfaction, age and being employed in health care may cause burnout among physiotherapists with 5-15 years of service. Physiotherapists with more than 15 years of service experience more burnout if they work in a setting other than a health care or educational center and less burnout if they are satisfied with their profession.

  10. Nano-scale structure in membranes in relation to enzyme action - computer simulation vs. experiment

    DEFF Research Database (Denmark)

    Høyrup, P.; Jørgensen, Kent; Mouritsen, O.G.

    2002-01-01

    lengths are in the nano-meter range. The nano-scale structure is believed to be important for controlling the activity of enzymes, specifically phospholipases, which act at bilayer membranes. We propose here a lattice-gas statistical mechanical model with appropriate dynamics to account for the non...

  11. Multi-scale characterization and modelling of damage evolution in nuclear Gilsocarbon graphite

    NARCIS (Netherlands)

    Liu, D.; Heard, P.; Savija, B.; Smith, G.; Schlangen, E.; Flewitt, P.

    2015-01-01

    In the present work, the microstructure and mechanical properties of Gilsocarbon graphite have been characterized over a range of length-scales. Optical imaging, combined with 3D X-ray computed tomography and 3D high-resolution tomography based on focus ion beam milling has been adopted for

  12. Scaling and parameterization of clear-sky solar radiation over complex topography

    Science.gov (United States)

    Solar radiation at the land surface is influenced by slope, aspect, shadows, and obstruction of the sky, all of which vary over a wide range of length scales in regions of complex topography, with important consequences for the surface energy balance. Atmospheric models, however, generally assume t...

  13. Segregation for seed weight, pod length and days to flowering ...

    African Journals Online (AJOL)

    Field studies were conducted to evaluate the segregation of the F3 (early generation) and F6 (late generation) families for seed weight, pod length and days to flowering among cowpea inter-sub-specific crosses. A wide range of segregants were provided in this cross and families were highly significantly different in the ...

  14. Length-weight relationship, breeding season, sex ratio, maturity and ...

    African Journals Online (AJOL)

    Length-weight relationship, breeding season, sex ratio, maturity and fecundity of the Nile catfish Synodontis schall (Bloch and Schneider, 1801) (Pisces: Mochokidae) in Lake Chamo, Ethiopia. ... The average number of eggs g-1 of ovary (preserved wet weight) ranged from 983 to 3,797 with a mean of 1,847 eggs g-1.

  15. Length-weight relationship and condition factor of Tilapia guineensis ...

    African Journals Online (AJOL)

    Also, T. guineensis exhibited sexual dimorphism with sex ratio of 1.2:1.0 which was significantly biased in favour of the females. The length-weight relationship showed negative allometric growth, with b= 2.01. Moreover, T. guineensis had a very high condition factor which ranged between 2.03-2.32 in both male and female ...

  16. Length of Coronary Sinus in a Black Kenyan Population: Correlation ...

    African Journals Online (AJOL)

    The aim of the current study was to determine the length of coronary sinus among black Kenyans. Coronary sinuses of seventy-four hearts (43 males and 31 females) of adult age range (20-70years) black Kenyans obtained during autopsy were studied at the Department of Human Anatomy, University of Nairobi, Kenya.

  17. Calculation of the Crack Length for a Pipe Specimen using the Modified Load Ratio Method

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Hun; Koo, Jae Mean; Seok, Chang Sung [Sungkyunkwan University, Suwon (Korea, Republic of); Huh, Yong; Park, Jae Sil [Samsung Electronics Co., Suwon (Korea, Republic of)

    2009-12-15

    The objective of this paper is to apply the load ratio method to the measurement of the crack length of the real scale pipe specimen. The load ratio method was modified and finite element analyses were performed to derive the relationship between the normalized compliance and the normalized crack length for the pipe specimen. In order to measure the crack length, the direct current potential drop method and the modified load ratio method were applied to the pipe test. The applicability of the modified load ratio method was confirmed by comparing the calculated crack length with the measured crack length from the pipe experiment.

  18. Calculation of the Crack Length for a Pipe Specimen using the Modified Load Ratio Method

    International Nuclear Information System (INIS)

    Choi, Jung Hun; Koo, Jae Mean; Seok, Chang Sung; Huh, Yong; Park, Jae Sil

    2009-01-01

    The objective of this paper is to apply the load ratio method to the measurement of the crack length of the real scale pipe specimen. The load ratio method was modified and finite element analyses were performed to derive the relationship between the normalized compliance and the normalized crack length for the pipe specimen. In order to measure the crack length, the direct current potential drop method and the modified load ratio method were applied to the pipe test. The applicability of the modified load ratio method was confirmed by comparing the calculated crack length with the measured crack length from the pipe experiment

  19. Scaling and asymptotic scaling in two-dimensional CPN-1 models

    International Nuclear Information System (INIS)

    Campostrini, M.; Rossi, P.; Vicari, E.

    1993-01-01

    Two-dimensional CP N-1 models are investigated by Monte Carlo methods on the lattice, for values of N ranging from 2 to 21. Scaling and rotation invariance are studied by comparing different definitions of correlation length ξ. Several lattice formulations are compared and shown to enjoy scaling for ξ as small as 2.5. Asymptotic scaling is investigated using as bare coupling constant both the usual β and β E (related to the internal energy); the latter is shown to improve asymptotic scaling properties. Studies of finite size effects show their N-dependence to be highly non-trivial, due to the increasing radius of the anti zz bound states at large N. (orig.)

  20. Multiscaling behavior of atomic-scale friction.

    Science.gov (United States)

    Jannesar, M; Jamali, T; Sadeghi, A; Movahed, S M S; Fesler, G; Meyer, E; Khoshnevisan, B; Jafari, G R

    2017-06-01

    The scaling behavior of friction between rough surfaces is a well-known phenomenon. It might be asked whether such a scaling feature also exists for friction at an atomic scale despite the absence of roughness on atomically flat surfaces. Indeed, other types of fluctuations, e.g., thermal and instrumental fluctuations, become appreciable at this length scale and can lead to scaling behavior of the measured atomic-scale friction. We investigate this using the lateral force exerted on the tip of an atomic force microscope (AFM) when the tip is dragged over the clean NaCl (001) surface in ultra-high vacuum at room temperature. Here the focus is on the fluctuations of the lateral force profile rather than its saw-tooth trend; we first eliminate the trend using the singular value decomposition technique and then explore the scaling behavior of the detrended data, which contains only fluctuations, using the multifractal detrended fluctuation analysis. The results demonstrate a scaling behavior for the friction data ranging from 0.2 to 2 nm with the Hurst exponent H=0.61±0.02 at a 1σ confidence interval. Moreover, the dependence of the generalized Hurst exponent, h(q), on the index variable q confirms the multifractal or multiscaling behavior of the nanofriction data. These results prove that fluctuation of nanofriction empirical data has a multifractal behavior which deviates from white noise.

  1. Nuclear scales

    International Nuclear Information System (INIS)

    Friar, J.L.

    1998-01-01

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the π-γ force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted

  2. Nuclear scales

    Energy Technology Data Exchange (ETDEWEB)

    Friar, J.L.

    1998-12-01

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.

  3. Snowmelt timing, phenology, and growing season length in conifer forests of Crater Lake National Park, USA

    Science.gov (United States)

    O'Leary, Donal S.; Kellermann, Jherime L.; Wayne, Chris

    2018-02-01

    Anthropogenic climate change is having significant impacts on montane and high-elevation areas globally. Warmer winter temperatures are driving reduced snowpack in the western USA with broad potential impacts on ecosystem dynamics of particular concern for protected areas. Vegetation phenology is a sensitive indicator of ecological response to climate change and is associated with snowmelt timing. Human monitoring of climate impacts can be resource prohibitive for land management agencies, whereas remotely sensed phenology observations are freely available at a range of spatiotemporal scales. Little work has been done in regions dominated by evergreen conifer cover, which represents many mountain regions at temperate latitudes. We used moderate resolution imaging spectroradiometer (MODIS) data to assess the influence of snowmelt timing and elevation on five phenology metrics (green up, maximum greenness, senescence, dormancy, and growing season length) within Crater Lake National Park, Oregon, USA from 2001 to 2012. Earlier annual mean snowmelt timing was significantly correlated with earlier onset of green up at the landscape scale. Snowmelt timing and elevation have significant explanatory power for phenology, though with high variability. Elevation has a moderate control on early season indicators such as snowmelt timing and green up and less on late-season variables such as senescence and growing season length. PCA results show that early season indicators and late season indicators vary independently. These results have important implications for ecosystem dynamics, management, and conservation, particularly of species such as whitebark pine ( Pinus albicaulis) in alpine and subalpine areas.

  4. Snowmelt timing, phenology, and growing season length in conifer forests of Crater Lake National Park, USA.

    Science.gov (United States)

    O'Leary, Donal S; Kellermann, Jherime L; Wayne, Chris

    2018-02-01

    Anthropogenic climate change is having significant impacts on montane and high-elevation areas globally. Warmer winter temperatures are driving reduced snowpack in the western USA with broad potential impacts on ecosystem dynamics of particular concern for protected areas. Vegetation phenology is a sensitive indicator of ecological response to climate change and is associated with snowmelt timing. Human monitoring of climate impacts can be resource prohibitive for land management agencies, whereas remotely sensed phenology observations are freely available at a range of spatiotemporal scales. Little work has been done in regions dominated by evergreen conifer cover, which represents many mountain regions at temperate latitudes. We used moderate resolution imaging spectroradiometer (MODIS) data to assess the influence of snowmelt timing and elevation on five phenology metrics (green up, maximum greenness, senescence, dormancy, and growing season length) within Crater Lake National Park, Oregon, USA from 2001 to 2012. Earlier annual mean snowmelt timing was significantly correlated with earlier onset of green up at the landscape scale. Snowmelt timing and elevation have significant explanatory power for phenology, though with high variability. Elevation has a moderate control on early season indicators such as snowmelt timing and green up and less on late-season variables such as senescence and growing season length. PCA results show that early season indicators and late season indicators vary independently. These results have important implications for ecosystem dynamics, management, and conservation, particularly of species such as whitebark pine (Pinus albicaulis) in alpine and subalpine areas.

  5. Day length constrains the time budget of aphid predators.

    Science.gov (United States)

    Joschinski, Jens; Kiess, Tim; Krauss, Jochen

    2017-07-20

    Phenology shifts and range expansions cause organisms to experience novel day length - temperature correlations. Depending on the temporal niche, organisms may benefit or suffer from changes in day length, thus potentially affecting phenological adaptation. We assessed the impact of day length changes on larvae of Chrysoperla carnea (Stephens) and Episyrphus balteatus (De Geer), both of which prey on aphids. Larvae of E. balteatus are night-active, whereas those of C. carnea appear to be crepuscular. We subjected both species in climate chambers to day lengths of 16 : 8 L : D and, to circumvent diapause responses, 20 : 4 L : D. We recorded development times and predation rates of both species. E. balteatus grew 13% faster in the 16 : 8 L : D treatment and preyed on significantly more aphids. In contrast, C. carnea grew 13% faster in the 20 : 4 L : D treatment and higher predation rates in 20 : 4 L : D were marginally significant. Our results show that day length affects development and predation, but that the direction depends on species. Such differences in the use of day length may alter the efficiency of biocontrol agents in a changing climate. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  6. Lengths and Positions of the Vermiform Appendix among Sudanese Cadavers

    Directory of Open Access Journals (Sweden)

    Ehab I. El-Amin

    2015-08-01

    Full Text Available Background/objective: The anatomy of vermiform appendix displays great variations in length and position between different populations. The reports relating these variations to a specific etiological factor are few. This study aims to describe the positions and lengths of vermiform appendix among Sudanese cadavers. Methods: This descriptive study was carried out in Omdurman Teaching Hospital Morgue and Omdurman Islamic University-Sudan. Sixty Sudanese cadavers (30 male and 30 female, were dissected in the period from June 2013 to June 2014. The positions and the lengths of vermiform appendix were measured in millimeters. The data was analyzed by SPSS version 20. Results: The cadavers’ age ranged between 20 to 80 years according to their medico-legal reports. Retrocaecal position was mainly observed in 60%, pelvic in 35%, post-ileal in 3.3%, and pre-ileal in 1.7%. The lengths of the appendix was found < 69 mm in 23.3%, 70-110 mm in 60%, and > 110 mm in 16.7%, also the study showed insignificant difference between the lengths and ages (p < 0.08, and between males and females (p = 0.23. Age was the influencing factor for the positions of vermiform appendixes (p = 0.04. Conclusion: The study showed that the commonest lengths of the appendix were 70-110 mm while the common position was retrocaecal regardless to age or gender. This data should be considered in surgical removal of the inflamed appendix.

  7. A novel thermodynamic framework for multi-scale data assimilation: First applications from micro CT-scans to meso-scale microstructure (Invited)

    Science.gov (United States)

    Regenauer-Lieb, K.; Karrech, A.; Schrank, C.; Fusseis, F.; Rosenbaum, G.; Weinberg, R. F.

    2009-12-01

    Predicting the way the Earth works at multiple spatial and temporal scales is a current challenge in computational physics. So far there has been no development of a clear roadmap for the practical implementation of a framework linking the range of scales in the Earth. We propose a thermodynamic approach that allows us to come up with a multi-scale prediction of basic (thermodynamic) length and time scales for dissipative processes. In this presentation we focus on the practical aspects and not the theory. We show how the approach may be coupled to data assimilation at multiple scales. The theoretical approach builds on an application of limit theorems in continuum mechanics to finite-time thermodynamics. Finite-time thermodynamics formalizes the concept of finite time availability for a particular resource (e.g. temperature, chemical species). This leads to concepts such as thermodynamic length (e.g. thermal, chemical diffusion length) for dissipative processes. Using this metric we can classify and nest processes on vastly different time scales. We do this by solving at a given time scale upper and lower bounds of entropy production. These two bounds give thermodynamic equilibrium properties (e.g. elastic properties), or upper bounds for dissipative properties (e.g. viscosity), respectively. These properties are benchmarked through assimilation of observational data and used to inform the large-scale explicit far-from-equilibrium calculations. We constrain the large scale Earth model through assimilation of data at smaller scales. We present significant progress in supplying tensor-valued transport properties from X-Ray synchrotron analyses. Using these observations we propose a way forward that allows a basic assessment of meso-scale modes of micro-structural deformation on the explicit formulation of the entropy production of the grain-scale microstructure. A first draft basic workflow from the grain-scale to the geodynamic scale will be presented. This

  8. Childhood adversity, social support, and telomere length among perinatal women.

    Science.gov (United States)

    Mitchell, Amanda M; Kowalsky, Jennifer M; Epel, Elissa S; Lin, Jue; Christian, Lisa M

    2018-01-01

    Adverse perinatal health outcomes are heightened among women with psychosocial risk factors, including childhood adversity and a lack of social support. Biological aging could be one pathway by which such outcomes occur. However, data examining links between psychosocial factors and indicators of biological aging among perinatal women are limited. The current study examined the associations of childhood socioeconomic status (SES), childhood trauma, and current social support with telomere length in peripheral blood mononuclear cells (PBMCs) in a sample of 81 women assessed in early, mid, and late pregnancy as well as 7-11 weeks postpartum. Childhood SES was defined as perceived childhood social class and parental educational attainment. Measures included the Childhood Trauma Questionnaire, Center for Epidemiologic Studies-Depression Scale, Multidimensional Scale of Perceived Social Support, and average telomere length in PBMCs. Per a linear mixed model, telomere length did not change across pregnancy and postpartum visits; thus, subsequent analyses defined telomere length as the average across all available timepoints. ANCOVAs showed group differences by perceived childhood social class, maternal and paternal educational attainment, and current family social support, with lower values corresponding with shorter telomeres, after adjustment for possible confounds. No effects of childhood trauma or social support from significant others or friends on telomere length were observed. Findings demonstrate that while current SES was not related to telomeres, low childhood SES, independent of current SES, and low family social support were distinct risk factors for cellular aging in women. These data have relevance for understanding potential mechanisms by which early life deprivation of socioeconomic and relationship resources affect maternal health. In turn, this has potential significance for intergenerational transmission of telomere length. The predictive value of

  9. Patient length of stay and mortality prediction: A survey.

    Science.gov (United States)

    Awad, Aya; Bader-El-Den, Mohamed; McNicholas, James

    2017-05-01

    Over the past few years, there has been increased interest in data mining and machine learning methods to improve hospital performance, in particular hospitals want to improve their intensive care unit statistics by reducing the number of patients dying inside the intensive care unit. Research has focused on prediction of measurable outcomes, including risk of complications, mortality and length of hospital stay. The length of stay is an important metric both for healthcare providers and patients, influenced by numerous factors. In particular, the length of stay in critical care is of great significance, both to patient experience and the cost of care, and is influenced by factors specific to the highly complex environment of the intensive care unit. The length of stay is often used as a surrogate for other outcomes, where those outcomes cannot be measured; for example as a surrogate for hospital or intensive care unit mortality. The length of stay is also a parameter, which has been used to identify the severity of illnesses and healthcare resource utilisation. This paper examines a range of length of stay and mortality prediction applications in acute medicine and the critical care unit. It also focuses on the methods of analysing length of stay and mortality prediction. Moreover, the paper provides a classification and evaluation for the analytical methods of the length of stay and mortality prediction associated with a grouping of relevant research papers published in the years 1984 to 2016 related to the domain of survival analysis. In addition, the paper highlights some of the gaps and challenges of the domain.

  10. Characterization of the Turbulent Magnetic Integral Length in the Solar Wind: From 0.3 to 5 Astronomical Units

    Science.gov (United States)

    Ruiz, M. E.; Dasso, S.; Matthaeus, W. H.; Weygand, J. M.

    2014-10-01

    The solar wind is a structured and complex system, in which the fields vary strongly over a wide range of spatial and temporal scales. As an example, the turbulent activity in the wind affects the evolution in the heliosphere of the integral turbulent scale or correlation length [ λ], usually associated with the breakpoint in the turbulent-energy spectrum that separates the inertial range from the injection range. This large variability of the fields demands a statistical description of the solar wind. We study the probability distribution function (PDF) of the magnetic-autocorrelation lengths observed in the solar wind at different distances from the Sun. We used observations from the Helios, ACE, and Ulysses spacecraft. We distinguished between the usual solar wind and one of its transient components (interplanetary coronal mass ejections, ICMEs), and also studied solar-wind samples with low and high proton beta [βp]. We find that in the last three regimes the PDF of λ is a log-normal function, consistent with the multiplicative and nonlinear processes that take place in the solar wind, the initial λ (before the Alfvénic point) being larger in ICMEs.

  11. Leukocyte Telomere Length in Postmenopausal Women.

    Science.gov (United States)

    Jones, Holly J; Janson, Susan L; Lee, Kathryn A

    To compare leukocyte telomere length (LTL) by race and describe demographic, health, and psychosocial factors associated with LTL in postmenopausal women. Descriptive study with comparative analyses and correlations. Data were collected at the University of California-San Francisco, San Francisco Clinical and Translational Science Institute. Thirty-nine African American and White postmenopausal women between 58 and 65 years of age (mean age = 61.3 ± 1.83 years). Measures included demographics, blood pressure, anthropometrics, scores on the Perceived Stress Scale and the Center for Epidemiologic Studies-Depression, and blood samples for LTL. African American women (n = 14) had greater PSS-10 and CES-D scores, greater blood pressure, and greater body mass index than White women (n = 25; p stress (p = .036) were related to shorter LTL. Findings from this small sample support the association between age and LTL. The association between perceived stress, number of children, and shorter LTL in postmenopausal women requires further research and replication of findings in a larger, more diverse sample. Copyright © 2017 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.

  12. A phenomenological π-p scattering length from pionic hydrogen

    International Nuclear Information System (INIS)

    Ericson, T.E.O.; Loiseau, B.; Wycech, S.

    2004-01-01

    We derive a closed, model independent, expression for the electromagnetic correction factor to a phenomenological hadronic scattering length a h extracted from a hydrogenic atom. It is obtained in a non-relativistic approach and in the limit of a short ranged hadronic interaction to terms of order α 2 logα using an extended charge distribution. A hadronic πN scattering length a h π - p =0.0870(5)m π -1 is deduced leading to a πNN coupling constant from the GMO relation g c 2 /(4π)=14.04(17)

  13. A phenomenological $\\pi^{-}p$ scattering length from pionic hydrogen

    CERN Document Server

    Ericson, Torleif Eric Oskar; Wycech, S

    2004-01-01

    We derive a closed, model independent, expression for the electromagnetic correction factor to a phenomenological hadronic scattering length a/sup h/ extracted from a hydrogenic atom. It is obtained in a non-relativistic approach and in the limit of a short ranged hadronic interaction to terms of order alpha /sup 2/ log alpha using an extended charge distribution. A hadronic pi N scattering length a/sub pi -p//sup h/ = 0.0870(5)m/sub pi //sup -1/ is deduced leading to a pi NN coupling constant from the GMO relation g/sub c //sup 2//(4 pi ) = 14.04(17). (28 refs).

  14. Consistent implementation of non-zero-range terms into hydrodynamics

    Science.gov (United States)

    Pratt, Scott

    2017-10-01

    Non-zero-range interactions are often incorporated into mean field theories through gradient terms. Here, a formalism is developed to incorporate such terms into hydrodynamics. These terms alter expressions for the entropy, chemical potential, temperature, and the stress-energy tensor. The formalism respects local conservation of energy, charge, and entropy. The formalism leads to static solutions where the temperature, chemical potential, and hydrodynamic acceleration all vanish, even when the density profile might be nonuniform. Profiles for a phase boundary and for correlation functions are calculated to illustrate the gradient modifications for various thermodynamic quantities. Also, for hydrodynamic calculations that add thermal noise to generate density-density correlations of the desired strength, an additional noise term is derived so that, at equilibrium, correlations are generated with both the correct size and length scale.

  15. 10 ps resolution, 160 ns full scale range and less than 1.5% differential non-linearity time-to-digital converter module for high performance timing measurements

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, B.; Tamborini, D.; Villa, F.; Tisa, S.; Tosi, A.; Zappa, F. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2012-07-15

    We present a compact high performance time-to-digital converter (TDC) module that provides 10 ps timing resolution, 160 ns dynamic range and a differential non-linearity better than 1.5% LSB{sub rms}. The TDC can be operated either as a general-purpose time-interval measurement device, when receiving external START and STOP pulses, or in photon-timing mode, when employing the on-chip SPAD (single photon avalanche diode) detector for detecting photons and time-tagging them. The instrument precision is 15 ps{sub rms} (i.e., 36 ps{sub FWHM}) and in photon timing mode it is still better than 70 ps{sub FWHM}. The USB link to the remote PC allows the easy setting of measurement parameters, the fast download of acquired data, and their visualization and storing via an user-friendly software interface. The module proves to be the best candidate for a wide variety of applications such as: fluorescence lifetime imaging, time-of-flight ranging measurements, time-resolved positron emission tomography, single-molecule spectroscopy, fluorescence correlation spectroscopy, diffuse optical tomography, optical time-domain reflectometry, quantum optics, etc.

  16. A numerical investigation of the interplay between fireline length, geometry, and rate of spread

    Science.gov (United States)

    J. M. Canfield; R. R. Linn; J. A. Sauer; M. Finney; J. Forthofer

    2014-01-01

    The current study focuses on coupled dynamics and resultant geometry of fireline segments of various ignition lengths. As an example, for ignition lines of length scales typical for field experiments, fireline curvature is the result of a competition between the head fire and the flanks of the fire. A number of physical features (i.e. buoyancy and wind field divergence...

  17. Telomere length of anterior crucial ligament after rupture

    DEFF Research Database (Denmark)

    Ponsot, Elodie; Langberg, Henning; Krogsgaard, Michael R

    2011-01-01

    The regeneration of ligaments following injury is a slow process compared to the healing of many other tissues and the underlying mechanisms remain unknown. The purpose of the study was to evaluate the proliferative potential of ligaments by assessing telomere length within three distinct parts...... of human anterior cruciate ligament (ACL) obtained during ACL reconstruction: the macroscopically injured proximal part and macroscopically noninjured mid- and distal portions in eight subjects (age 28 ± 8 years). The mean telomere length in ACL was within normal range of values usually reported for other...... tissues indicating that the endogenous machinery responsible for the proliferative potential of ligament is not implicated in its poor healing capacity. The three ACL parts showed similar mean TRF lengths (distal part: 11.5 ± 0.8 kbp, mid-portion: 11.8 ± 1.2 kbp, proximal part: 11.9 ± 1.6 kbp...

  18. Short Rayleigh Length Free Electron Lasers

    CERN Document Server

    Crooker, P P; Armstead, R L; Blau, J

    2004-01-01

    Conventional free electron laser (FEL) oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. A new FEL interaction is described and analyzed with a Rayleigh length that is only one tenth the undulator length, or less. The effect of mirror vibration and positioning are more critical in the short Rayleigh length design, but we find that they are still within normal design tolerances.

  19. Correlation length of magnetosheath fluctuations: Cluster statistics

    Directory of Open Access Journals (Sweden)

    O. Gutynska

    2008-09-01

    Full Text Available Magnetosheath parameters are usually described by gasdynamic or magnetohydrodynamic (MHD models but these models cannot account for one of the most important sources of magnetosheath fluctuations – the foreshock. Earlier statistical processing of a large amount of magnetosheath observations has shown that the magnetosheath magnetic field and plasma flow fluctuations downstream of the quasiparallel shock are much larger than those at the opposite flank. These studies were based on the observations of a single spacecraft and thus they could not provide full information on propagation of the fluctuations through the magnetosheath. We present the results of a statistical survey of the magnetosheath magnetic field fluctuations using two years of Cluster observations. We discuss the dependence of the cross-correlation coefficients between different spacecraft pairs on the orientation of the separation vector with respect to the average magnetic field and plasma flow vectors and other parameters. We have found that the correlation length does not exceed ~1 RE in the analyzed frequency range (0.001–0.125 Hz and does not depend significantly on the magnetic field or plasma flow direction. A close connection of cross-correlation coefficients computed in the magnetosheath with the cross-correlation coefficients between a solar wind monitor and a magnetosheath spacecraft suggests that solar wind structures persist on the background of magnetosheath fluctuations.

  20. Using resilience and resistance concepts to manage threats to sagebrush ecosystems, Gunnison sage-grouse, and Greater sage-grouse in their eastern range: A strategic multi-scale approach

    Science.gov (United States)

    Chambers, Jeanne C.; Beck, Jeffrey L.; Campbell, Steve; Carlson, John; Christiansen, Thomas J.; Clause, Karen J.; Dinkins, Jonathan B.; Doherty, Kevin E.; Griffin, Kathleen A.; Havlina, Douglas W.; Mayer, Kenneth F.; Hennig, Jacob D.; Kurth, Laurie L.; Maestas, Jeremy D.; Manning, Mary E.; Mealor, Brian A.; McCarthy, Clinton; Perea, Marco A.; Pyke, David A.

    2016-01-01

    This report provides a strategic approach developed by a Western Association of Fish and Wildlife Agencies interagency working group for conservation of sagebrush ecosystems, Greater sage-grouse, and Gunnison sage-grouse. It uses information on (1) factors that influence sagebrush ecosystem resilience to disturbance and resistance to nonnative invasive annual grasses and (2) distribution and relative abundance of sage-grouse populations to address persistent ecosystem threats, such as invasive annual grasses and wildfire, and land use and development threats, such as oil and gas development and cropland conversion, to develop effective management strategies. A sage-grouse habitat matrix links relative resilience and resistance of sagebrush ecosystems with modeled sage-grouse breeding habitat probabilities to help decisionmakers assess risks and determine appropriate management strategies at both landscape and site scales. Areas for targeted management are assessed by overlaying matrix components with Greater sage-grouse Priority Areas for Conservation and Gunnison sage-grouse critical habitat and linkages, breeding bird concentration areas, and specific habitat threats. Decision tools are discussed for determining the suitability of target areas for management and the most appropriate management actions. A similar approach was developed for the Great Basin that was incorporated into the Federal land use plan amendments and served as the basis of a Bureau of Land Management Fire and Invasives Assessment Tool, which was used to prioritize sage-grouse habitat for targeted management activities.