WorldWideScience

Sample records for length scales larger

  1. Mesoscopic Length Scale Controls the Rheology of Dense Suspensions

    Science.gov (United States)

    Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric

    2010-09-01

    From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.

  2. Length scale for configurational entropy in microemulsions

    NARCIS (Netherlands)

    Reiss, H.; Kegel, W.K.; Groenewold, J.

    1996-01-01

    In this paper we study the length scale that must be used in evaluating the mixing entropy in a microemulsion. The central idea involves the choice of a length scale in configuration space that is consistent with the physical definition of entropy in phase space. We show that this scale may be

  3. Minimal Length Scale Scenarios for Quantum Gravity.

    Science.gov (United States)

    Hossenfelder, Sabine

    2013-01-01

    We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.

  4. Feasibility analysis of large length-scale thermocapillary flow experiment for the International Space Station

    Science.gov (United States)

    Alberts, Samantha J.

    The investigation of microgravity fluid dynamics emerged out of necessity with the advent of space exploration. In particular, capillary research took a leap forward in the 1960s with regards to liquid settling and interfacial dynamics. Due to inherent temperature variations in large spacecraft liquid systems, such as fuel tanks, forces develop on gas-liquid interfaces which induce thermocapillary flows. To date, thermocapillary flows have been studied in small, idealized research geometries usually under terrestrial conditions. The 1 to 3m lengths in current and future large tanks and hardware are designed based on hardware rather than research, which leaves spaceflight systems designers without the technological tools to effectively create safe and efficient designs. This thesis focused on the design and feasibility of a large length-scale thermocapillary flow experiment, which utilizes temperature variations to drive a flow. The design of a helical channel geometry ranging from 1 to 2.5m in length permits a large length-scale thermocapillary flow experiment to fit in a seemingly small International Space Station (ISS) facility such as the Fluids Integrated Rack (FIR). An initial investigation determined the proposed experiment produced measurable data while adhering to the FIR facility limitations. The computational portion of this thesis focused on the investigation of functional geometries of fuel tanks and depots using Surface Evolver. This work outlines the design of a large length-scale thermocapillary flow experiment for the ISS FIR. The results from this work improve the understanding thermocapillary flows and thus improve technological tools for predicting heat and mass transfer in large length-scale thermocapillary flows. Without the tools to understand the thermocapillary flows in these systems, engineers are forced to design larger, heavier vehicles to assure safety and mission success.

  5. Minimal Length Scale Scenarios for Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Sabine Hossenfelder

    2013-01-01

    Full Text Available We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.

  6. Hydrological Storage Length Scales Represented by Remote Sensing Estimates of Soil Moisture and Precipitation

    Science.gov (United States)

    Akbar, Ruzbeh; Short Gianotti, Daniel; McColl, Kaighin A.; Haghighi, Erfan; Salvucci, Guido D.; Entekhabi, Dara

    2018-03-01

    The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface-only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface-only soil moisture observations. To proceed, first an observation-based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry-downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root-mean-squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation-driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge-corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east-west gradient across the contiguous United States (CONUS), such that large Δz depths (>200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale.

  7. Length scales in glass-forming liquids and related systems: a review

    International Nuclear Information System (INIS)

    Karmakar, Smarajit; Dasgupta, Chandan; Sastry, Srikanth

    2016-01-01

    The central problem in the study of glass-forming liquids and other glassy systems is the understanding of the complex structural relaxation and rapid growth of relaxation times seen on approaching the glass transition. A central conceptual question is whether one can identify one or more growing length scale(s) associated with this behavior. Given the diversity of molecular glass-formers and a vast body of experimental, computational and theoretical work addressing glassy behavior, a number of ideas and observations pertaining to growing length scales have been presented over the past few decades, but there is as yet no consensus view on this question. In this review, we will summarize the salient results and the state of our understanding of length scales associated with dynamical slow down. After a review of slow dynamics and the glass transition, pertinent theories of the glass transition will be summarized and a survey of ideas relating to length scales in glassy systems will be presented. A number of studies have focused on the emergence of preferred packing arrangements and discussed their role in glassy dynamics. More recently, a central object of attention has been the study of spatially correlated, heterogeneous dynamics and the associated length scale, studied in computer simulations and theoretical analysis such as inhomogeneous mode coupling theory. A number of static length scales have been proposed and studied recently, such as the mosaic length scale discussed in the random first-order transition theory and the related point-to-set correlation length. We will discuss these, elaborating on key results, along with a critical appraisal of the state of the art. Finally we will discuss length scales in driven soft matter, granular fluids and amorphous solids, and give a brief description of length scales in aging systems. Possible relations of these length scales with those in glass-forming liquids will be discussed. (review article)

  8. Lead Selenide Nanostructures Self-Assembled across Multiple Length Scales and Dimensions

    Directory of Open Access Journals (Sweden)

    Evan K. Wujcik

    2016-01-01

    Full Text Available A self-assembly approach to lead selenide (PbSe structures that have organized across multiple length scales and multiple dimensions has been achieved. These structures consist of angstrom-scale 0D PbSe crystals, synthesized via a hot solution process, which have stacked into 1D nanorods via aligned dipoles. These 1D nanorods have arranged into nanoscale 2D sheets via directional short-ranged attraction. The nanoscale 2D sheets then further aligned into larger 2D microscale planes. In this study, the authors have characterized the PbSe structures via normal and cryo-TEM and EDX showing that this multiscale multidimensional self-assembled alignment is not due to drying effects. These PbSe structures hold promise for applications in advanced materials—particularly electronic technologies, where alignment can aid in device performance.

  9. Chemical theory and modelling through density across length scales

    International Nuclear Information System (INIS)

    Ghosh, Swapan K.

    2016-01-01

    One of the concepts that has played a major role in the conceptual as well as computational developments covering all the length scales of interest in a number of areas of chemistry, physics, chemical engineering and materials science is the concept of single-particle density. Density functional theory has been a versatile tool for the description of many-particle systems across length scales. Thus, in the microscopic length scale, an electron density based description has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids. Density concept has been used in the form of single particle number density in the intermediate mesoscopic length scale to obtain an appropriate picture of the equilibrium and dynamical processes, dealing with a wide class of problems involving interfacial science and soft condensed matter. In the macroscopic length scale, however, matter is usually treated as a continuous medium and a description using local mass density, energy density and other related property density functions has been found to be quite appropriate. The basic ideas underlying the versatile uses of the concept of density in the theory and modelling of materials and phenomena, as visualized across length scales, along with selected illustrative applications to some recent areas of research on hydrogen energy, soft matter, nucleation phenomena, isotope separation, and separation of mixture in condensed phase, will form the subject matter of the talk. (author)

  10. Image processing for quantifying fracture orientation and length scale transitions during brittle deformation

    Science.gov (United States)

    Rizzo, R. E.; Healy, D.; Farrell, N. J.

    2017-12-01

    We have implemented a novel image processing tool, namely two-dimensional (2D) Morlet wavelet analysis, capable of detecting changes occurring in fracture patterns at different scales of observation, and able of recognising the dominant fracture orientations and the spatial configurations for progressively larger (or smaller) scale of analysis. Because of its inherited anisotropy, the Morlet wavelet is proved to be an excellent choice for detecting directional linear features, i.e. regions where the amplitude of the signal is regular along one direction and has sharp variation along the perpendicular direction. Performances of the Morlet wavelet are tested against the 'classic' Mexican hat wavelet, deploying a complex synthetic fracture network. When applied to a natural fracture network, formed triaxially (σ1>σ2=σ3) deforming a core sample of the Hopeman sandstone, the combination of 2D Morlet wavelet and wavelet coefficient maps allows for the detection of characteristic scale orientation and length transitions, associated with the shifts from distributed damage to the growth of localised macroscopic shear fracture. A complementary outcome arises from the wavelet coefficient maps produced by increasing the wavelet scale parameter. These maps can be used to chart the variations in the spatial distribution of the analysed entities, meaning that it is possible to retrieve information on the density of fracture patterns at specific length scales during deformation.

  11. Hydrodynamics of long-scale-length plasmas. Summary

    International Nuclear Information System (INIS)

    Craxton, R.S.

    1984-01-01

    A summary is given relating to the importance of long-scale-length plasmas to laser fusion. Some experiments are listed in which long-scale-length plasmas have been produced and studied. This talk presents SAGE simulations of most of these experiments with the emphasis being placed on understanding the hydrodynamic conditions rather than the parametric/plasma-physics processes themselves which are not modeled by SAGE. However, interpretation of the experiments can often depend on a good understanding of the hydrodynamics, including optical ray tracing

  12. Length scale of secondary stresses in fracture and fatigue

    International Nuclear Information System (INIS)

    Dong, P.

    2008-01-01

    In an attempt to provide a consistent framework for the analysis and treatment of secondary stresses associated with welding and thermal loading in the context of fracture mechanics, this paper starts with an effective stress characterization procedure by introducing a length-scale concept. With it, a traction-based stress separation procedure is then presented to provide a consistent characterization of stresses from various sources based on their length scale. Their relative contributions to fracture driving force are then quantified in terms of their characteristic length scales. Special attention is given to the implications of the length-scale argument on both analysis and treatment of welding residual stresses in fracture assessment. A series of examples is provided to demonstrate how the present developments can be applied for treating not only secondary stresses but also externally applied stresses, as well as their combined effects on the structural integrity of engineering components

  13. The application of slip length models to larger textures in turbulent flows over superhydrophobic surfaces

    Science.gov (United States)

    Fairhall, Chris; Garcia-Mayoral, Ricardo

    2017-11-01

    We present results from direct numerical simulations of turbulent flows over superhydrophobic surfaces. We assess the validity of simulations where the surface is modelled as homogeneous slip lengths, comparing them to simulations where the surface texture is resolved. Our results show that once the coherent flow induced by the texture is removed from the velocity fields, the remaining flow sees the surface as homogeneous. We then investigate how the overlying turbulence is modified by the presence of surface texture. For small textures, we show that turbulence is shifted closer to the wall due to the presence of slip, but otherwise remains essentially unmodified. For larger textures, the texture interacts with the turbulent lengthscales, thereby modifying the overlying turbulence. We also show that the saturation of the effect of the spanwise slip length (Fukagata et al. 2006, Busse & Sandham 2012, Seo & Mani 2016), which is drag increasing, is caused by the impermeability imposed at the surface. This work was supported by the Engineering and Physical Sciences Research Council.

  14. Progress in Long Scale Length Laser-Plasma Interactions

    International Nuclear Information System (INIS)

    Glenzer, S H; Arnold, P; Bardsley, G; Berger, R L; Bonanno, G; Borger, T; Bower, D E; Bowers, M; Bryant, R; Buckman, S.; Burkhart, S C; Campbell, K; Chrisp, M P; Cohen, B I; Constantin, G; Cooper, F; Cox, J; Dewald, E; Divol, L; Dixit, S; Duncan, J; Eder, D; Edwards, J; Erbert, G; Felker, B; Fornes, J; Frieders, G; Froula, D H; Gardner, S D; Gates, C; Gonzalez, M; Grace, S; Gregori, G; Greenwood, A; Griffith, R; Hall, T; Hammel, B A; Haynam, C; Heestand, G; Henesian, M; Hermes, G; Hinkel, D; Holder, J; Holdner, F; Holtmeier, G; Hsing, W; Huber, S; James, T; Johnson, S; Jones, O S; Kalantar, D; Kamperschroer, J H; Kauffman, R; Kelleher, T; Knight, J; Kirkwood, R K; Kruer, W L; Labiak, W; Landen, O L; Langdon, A B; Langer, S; Latray, D; Lee, A; Lee, F D; Lund, D; MacGowan, B; Marshall, S; McBride, J; McCarville, T; McGrew, L; Mackinnon, A J; Mahavandi, S; Manes, K; Marshall, C; Mertens, E; Meezan, N; Miller, G; Montelongo, S; Moody, J D; Moses, E; Munro, D; Murray, J; Neumann, J; Newton, M; Ng, E; Niemann, C; Nikitin, A; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rekow, V; Rinnert, R; Riordan, B; Rhodes, M.

    2003-01-01

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 mm and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3ω) with a total intensity of 2 x 10 15 W cm -2 . The targets were filled with 1 atm of CO 2 producing of up to 7 mm long homogeneously heated plasmas with densities of n e = 6 x 10 20 cm -3 and temperatures of T e = 2 keV. The high energy in a NIF quad of beams of 16kJ, illuminating the target from one direction, creates unique conditions for the study of laser plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last ∼1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 6% for the smallest length (∼2 mm). increasing to 12% for ∼7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modeling of the laser-plasma interactions at ignition-size scale lengths

  15. Quantifying Contributions to Transport in Ionic Polymers Across Multiple Length Scales

    Science.gov (United States)

    Madsen, Louis

    Self-organized polymer membranes conduct mobile species (ions, water, alcohols, etc.) according to a hierarchy of structural motifs that span sub-nm to >10 μm in length scale. In order to comprehensively understand such materials, our group combines multiple types of NMR dynamics and transport measurements (spectroscopy, diffusometry, relaxometry, imaging) with structural information from scattering and microscopy as well as with theories of porous media,1 electrolytic transport, and oriented matter.2 In this presentation, I will discuss quantitative separation of the phenomena that govern transport in polymer membranes, from intermolecular interactions (<= 2 nm),3 to locally ordered polymer nanochannels (a few to 10s of nm),2 to larger polymer domain structures (10s of nm and larger).1 Using this multi-scale information, we seek to give informed feedback on the design of polymer membranes for use in, e . g . , efficient batteries, fuel cells, and mechanical actuators. References: [1] J. Hou, J. Li, D. Mountz, M. Hull, and L. A. Madsen. Journal of Membrane Science448, 292-298 (2013). [2] J. Li, J. K. Park, R. B. Moore, and L. A. Madsen. Nature Materials 10, 507-511 (2011). [3] M. D. Lingwood, Z. Zhang, B. E. Kidd, K. B. McCreary, J. Hou, and L. A. Madsen. Chemical Communications 49, 4283 - 4285 (2013).

  16. Length and time scales of atmospheric moisture recycling

    Directory of Open Access Journals (Sweden)

    R. J. van der Ent

    2011-03-01

    Full Text Available It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to quantify the spatial and temporal scale of moisture recycling, independent of the size and shape of the region under study. In contrast to previous studies, which essentially used curve fitting, the scaling laws presented by us follow directly from the process equation. thus allowing a fair comparison between regions and seasons. The calculation is based on ERA-Interim reanalysis data for the period 1999 to 2008. It is shown that in the tropics or in mountainous terrain the length scale of recycling can be as low as 500 to 2000 km. In temperate climates the length scale is typically between 3000 to 5000 km whereas it amounts to more than 7000 km in desert areas. The time scale of recycling ranges from 3 to 20 days, with the exception of deserts, where it is much longer. The most distinct seasonal differences can be observed over the Northern Hemisphere: in winter, moisture recycling is insignificant, whereas in summer it plays a major role in the climate. The length and time scales of atmospheric moisture recycling can be useful metrics to quantify local climatic effects of land use change.

  17. Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows

    Science.gov (United States)

    Assouline, S.; Lehmann, P. G.; Or, D.

    2015-12-01

    Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.

  18. Maximum length scale in density based topology optimization

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Wang, Fengwen

    2017-01-01

    The focus of this work is on two new techniques for imposing maximum length scale in topology optimization. Restrictions on the maximum length scale provide designers with full control over the optimized structure and open possibilities to tailor the optimized design for broader range...... of manufacturing processes by fulfilling the associated technological constraints. One of the proposed methods is based on combination of several filters and builds on top of the classical density filtering which can be viewed as a low pass filter applied to the design parametrization. The main idea...

  19. On the calculation of length scales for turbulent heat transfer correlation

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, M.J.; Hollingsworth, D.K.

    1999-07-01

    Turbulence length scale calculation methods were critically reviewed for their usefulness in boundary layer heat transfer correlations. Merits and deficiencies in each calculation method were presented. A rigorous method for calculating an energy-based integral scale was introduced. The method uses the variance of the streamwise velocity and a measured dissipation spectrum to calculate the length scale. Advantages and disadvantages of the new method were discussed. A principal advantage is the capability to decisively calculate length scales in a low-Reynolds-number turbulent boundary layer. The calculation method was tested with data from grid-generated, free-shear-layer, and wall-bounded turbulence. In each case, the method proved successful. The length scale is well behaved in turbulent boundary layers with momentum thickness Reynolds numbers from 400 to 2,100 and in flows with turbulent Reynolds numbers as low as 90.

  20. Gate length scaling trends of drive current enhancement in CMOSFETs with dual stress overlayers and embedded-SiGe

    International Nuclear Information System (INIS)

    Flachowsky, S.; Wei, A.; Herrmann, T.; Illgen, R.; Horstmann, M.; Richter, R.; Salz, H.; Klix, W.; Stenzel, R.

    2008-01-01

    Strain engineering in MOSFETs using tensile nitride overlayer (TOL) films, compressive nitride overlayer (COL) films, and embedded-SiGe (eSiGe) is studied by extensive device experiments and numerical simulations. The scaling behavior was analyzed by gate length reduction down to 40 nm and it was found that drive current strongly depends on the device dimensions. The reduction of drain-current enhancement for short-channel devices can be attributed to two competing factors: shorter gate length devices have increased longitudinal and vertical stress components which should result in improved drain-currents. However, there is a larger degradation from external resistance as the gate length decreases, due to a larger voltage dropped across the external resistance. Adding an eSiGe stressor reduces the external resistance in the p-MOSFET, to the extent that the drive current improvement from COL continues to increase even down the shortest gate length studied. This is due to the reduced resistivity of SiGe itself and the SiGe valence band offset relative to Si, leading to a smaller silicide-active contact resistance. It demonstrates the advantage of combining eSiGe and COL, not only for increased stress, but also for parasitic resistance reduction to enable better COL drive current benefit

  1. CHANG-ES. IX. Radio scale heights and scale lengths of a consistent sample of 13 spiral galaxies seen edge-on and their correlations

    Science.gov (United States)

    Krause, Marita; Irwin, Judith; Wiegert, Theresa; Miskolczi, Arpad; Damas-Segovia, Ancor; Beck, Rainer; Li, Jiang-Tao; Heald, George; Müller, Peter; Stein, Yelena; Rand, Richard J.; Heesen, Volker; Walterbos, Rene A. M.; Dettmar, Ralf-Jürgen; Vargas, Carlos J.; English, Jayanne; Murphy, Eric J.

    2018-03-01

    Aim. The vertical halo scale height is a crucial parameter to understand the transport of cosmic-ray electrons (CRE) and their energy loss mechanisms in spiral galaxies. Until now, the radio scale height could only be determined for a few edge-on galaxies because of missing sensitivity at high resolution. Methods: We developed a sophisticated method for the scale height determination of edge-on galaxies. With this we determined the scale heights and radial scale lengths for a sample of 13 galaxies from the CHANG-ES radio continuum survey in two frequency bands. Results: The sample average values for the radio scale heights of the halo are 1.1 ± 0.3 kpc in C-band and 1.4 ± 0.7 kpc in L-band. From the frequency dependence analysis of the halo scale heights we found that the wind velocities (estimated using the adiabatic loss time) are above the escape velocity. We found that the halo scale heights increase linearly with the radio diameters. In order to exclude the diameter dependence, we defined a normalized scale height h˜ which is quite similar for all sample galaxies at both frequency bands and does not depend on the star formation rate or the magnetic field strength. However, h˜ shows a tight anticorrelation with the mass surface density. Conclusions: The sample galaxies with smaller scale lengths are more spherical in the radio emission, while those with larger scale lengths are flatter. The radio scale height depends mainly on the radio diameter of the galaxy. The sample galaxies are consistent with an escape-dominated radio halo with convective cosmic ray propagation, indicating that galactic winds are a widespread phenomenon in spiral galaxies. While a higher star formation rate or star formation surface density does not lead to a higher wind velocity, we found for the first time observational evidence of a gravitational deceleration of CRE outflow, e.g. a lowering of the wind velocity from the galactic disk.

  2. Length scales for the Navier-Stokes equations on a rotating sphere

    International Nuclear Information System (INIS)

    Kyrychko, Yuliya N.; Bartuccelli, Michele V.

    2004-01-01

    In this Letter we obtain the dissipative length scale for the Navier-Stokes equations on a two-dimensional rotating sphere S 2 . This system is a fundamental model of the large scale atmospheric dynamics. Using the equations of motion in their vorticity form, we construct the ladder inequalities from which a set of time-averaged length scales is obtained

  3. Transition in multiple-scale-lengths turbulence in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, S.-I.; Yagi, M.; Kawasaki, M.; Kitazawa, A. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2002-02-01

    The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Statistical nonlinear interactions between semi-micro and micro modes are first kept in the analysis as the drag, noise and drive. The nonlinear dynamics determines both the fluctuation levels and the cross field turbulent transport for the fixed global parameters. A quenching or suppressing effect is induced by their nonlinear interplay, even if both modes are unstable when analyzed independently. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. The thermal fluctuation of the scale length of {lambda}{sub D} is assumed to be statistically independent. The hierarchical structure is constructed according to the scale lengths. Transitions in turbulence are found and phase diagrams with cusp type catastrophe are obtained. Dynamics is followed. Statistical properties of the subcritical excitation are discussed. The probability density function (PDF) and transition probability are obtained. Power-laws are obtained in the PDF as well as in the transition probability. Generalization for the case where turbulence is composed of three-classes of modes is also developed. A new catastrophe of turbulent sates is obtained. (author)

  4. Transition in multiple-scale-lengths turbulence in plasmas

    International Nuclear Information System (INIS)

    Itoh, S.-I.; Yagi, M.; Kawasaki, M.; Kitazawa, A.

    2002-02-01

    The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Statistical nonlinear interactions between semi-micro and micro modes are first kept in the analysis as the drag, noise and drive. The nonlinear dynamics determines both the fluctuation levels and the cross field turbulent transport for the fixed global parameters. A quenching or suppressing effect is induced by their nonlinear interplay, even if both modes are unstable when analyzed independently. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. The thermal fluctuation of the scale length of λ D is assumed to be statistically independent. The hierarchical structure is constructed according to the scale lengths. Transitions in turbulence are found and phase diagrams with cusp type catastrophe are obtained. Dynamics is followed. Statistical properties of the subcritical excitation are discussed. The probability density function (PDF) and transition probability are obtained. Power-laws are obtained in the PDF as well as in the transition probability. Generalization for the case where turbulence is composed of three-classes of modes is also developed. A new catastrophe of turbulent sates is obtained. (author)

  5. Theoretical explanation of present mirror experiments and linear stability of larger scaled machines

    International Nuclear Information System (INIS)

    Berk, H.L.; Baldwin, D.E.; Cutler, T.A.; Lodestro, L.L.; Maron, N.; Pearlstein, L.D.; Rognlien, T.D.; Stewart, J.J.; Watson, D.C.

    1976-01-01

    A quasilinear model for the evolution of the 2XIIB mirror experiment is presented and shown to reproduce the time evolution of the experiment. From quasilinear theory it follows that the energy lifetime is the Spitzer electron drag time for T/sub e/ approximately less than 0.1T/sub i/. By computing the stability boundary of the DCLC mode, with warm plasma stabilization, the electron temperature is predicted as a function of radial scale length. In addition, the effect of finite length corrections to the Alfven cyclotron mode is assessed

  6. Scale Length of the Galactic Thin Disk

    Indian Academy of Sciences (India)

    tribpo

    thin disk density scale length, hR, is rather short (2.7 ± 0.1 kpc). Key words. ... The 2MASS near infrared data provide, for the first time, deep star counts on a ... peaks allows to adjust the spatial extinction law in the model. ... probability that fi.

  7. Electrodialytic removal of cadmium from biomass combustion fly ash in larger scale

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Simonsen, Peter

    2005-01-01

    Due to a high concentration of the toxic heavy metal cadmium (Cd), biomass combustion fly ash often fails to meet the Danish legislative requirements for recycling on agricultural fields. It has previously been shown that it is possible to reduce the concentration of Cd in different bio ashes...... significantly by using electrodialytic remediation, an electrochemically assisted extraction method. In this work the potential of the method was demonstrated in larger scale. Three different experimental set-ups were used, ranging from bench-scale (25 L ash suspension) to pilot scale (0.3 - 3 m3......). The experimental ash was a straw combustion fly ash suspended in water. Within 4 days of remediation, Cd concentrations below the limiting concentration of 5.0 mg Cd/kg DM for straw ash were reached. On the basis of these results, the energy costs for remediation of ash in industrial scale have been estimated...

  8. Computational domain length and Reynolds number effects on large-scale coherent motions in turbulent pipe flow

    Science.gov (United States)

    Feldmann, Daniel; Bauer, Christian; Wagner, Claus

    2018-03-01

    We present results from direct numerical simulations (DNS) of turbulent pipe flow at shear Reynolds numbers up to Reτ = 1500 using different computational domains with lengths up to ?. The objectives are to analyse the effect of the finite size of the periodic pipe domain on large flow structures in dependency of Reτ and to assess a minimum ? required for relevant turbulent scales to be captured and a minimum Reτ for very large-scale motions (VLSM) to be analysed. Analysing one-point statistics revealed that the mean velocity profile is invariant for ?. The wall-normal location at which deviations occur in shorter domains changes strongly with increasing Reτ from the near-wall region to the outer layer, where VLSM are believed to live. The root mean square velocity profiles exhibit domain length dependencies for pipes shorter than 14R and 7R depending on Reτ. For all Reτ, the higher-order statistical moments show only weak dependencies and only for the shortest domain considered here. However, the analysis of one- and two-dimensional pre-multiplied energy spectra revealed that even for larger ?, not all physically relevant scales are fully captured, even though the aforementioned statistics are in good agreement with the literature. We found ? to be sufficiently large to capture VLSM-relevant turbulent scales in the considered range of Reτ based on our definition of an integral energy threshold of 10%. The requirement to capture at least 1/10 of the global maximum energy level is justified by a 14% increase of the streamwise turbulence intensity in the outer region between Reτ = 720 and 1500, which can be related to VLSM-relevant length scales. Based on this scaling anomaly, we found Reτ⪆1500 to be a necessary minimum requirement to investigate VLSM-related effects in pipe flow, even though the streamwise energy spectra does not yet indicate sufficient scale separation between the most energetic and the very long motions.

  9. Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales.

    Science.gov (United States)

    Ang, Siang Fung; Bortel, Emely L; Swain, Michael V; Klocke, Arndt; Schneider, Gerold A

    2010-03-01

    The microstructure of enamel like most biological tissues has a hierarchical structure which determines their mechanical behavior. However, current studies of the mechanical behavior of enamel lack a systematic investigation of these hierarchical length scales. In this study, we performed macroscopic uni-axial compression tests and the spherical indentation with different indenter radii to probe enamel's elastic/inelastic transition over four hierarchical length scales, namely: 'bulk enamel' (mm), 'multiple-rod' (10's microm), 'intra-rod' (100's nm with multiple crystallites) and finally 'single-crystallite' (10's nm with an area of approximately one hydroxyapatite crystallite). The enamel's elastic/inelastic transitions were observed at 0.4-17 GPa depending on the length scale and were compared with the values of synthetic hydroxyapatite crystallites. The elastic limit of a material is important as it provides insights into the deformability of the material before fracture. At the smallest investigated length scale (contact radius approximately 20 nm), elastic limit is followed by plastic deformation. At the largest investigated length scale (contact size approximately 2 mm), only elastic then micro-crack induced response was observed. A map of elastic/inelastic regions of enamel from millimeter to nanometer length scale is presented. Possible underlying mechanisms are also discussed. (c) 2009 Elsevier Ltd. All rights reserved.

  10. Many-body localization transition: Schmidt gap, entanglement length, and scaling

    Science.gov (United States)

    Gray, Johnnie; Bose, Sougato; Bayat, Abolfazl

    2018-05-01

    Many-body localization has become an important phenomenon for illuminating a potential rift between nonequilibrium quantum systems and statistical mechanics. However, the nature of the transition between ergodic and localized phases in models displaying many-body localization is not yet well understood. Assuming that this is a continuous transition, analytic results show that the length scale should diverge with a critical exponent ν ≥2 in one-dimensional systems. Interestingly, this is in stark contrast with all exact numerical studies which find ν ˜1 . We introduce the Schmidt gap, new in this context, which scales near the transition with an exponent ν >2 compatible with the analytical bound. We attribute this to an insensitivity to certain finite-size fluctuations, which remain significant in other quantities at the sizes accessible to exact numerical methods. Additionally, we find that a physical manifestation of the diverging length scale is apparent in the entanglement length computed using the logarithmic negativity between disjoint blocks.

  11. Empirical scaling of the length of the longest increasing subsequences of random walks

    Science.gov (United States)

    Mendonça, J. Ricardo G.

    2017-02-01

    We provide Monte Carlo estimates of the scaling of the length L n of the longest increasing subsequences of n-step random walks for several different distributions of step lengths, short and heavy-tailed. Our simulations indicate that, barring possible logarithmic corrections, {{L}n}∼ {{n}θ} with the leading scaling exponent 0.60≲ θ ≲ 0.69 for the heavy-tailed distributions of step lengths examined, with values increasing as the distribution becomes more heavy-tailed, and θ ≃ 0.57 for distributions of finite variance, irrespective of the particular distribution. The results are consistent with existing rigorous bounds for θ, although in a somewhat surprising manner. For random walks with step lengths of finite variance, we conjecture that the correct asymptotic behavior of L n is given by \\sqrt{n}\\ln n , and also propose the form for the subleading asymptotics. The distribution of L n was found to follow a simple scaling form with scaling functions that vary with θ. Accordingly, when the step lengths are of finite variance they seem to be universal. The nature of this scaling remains unclear, since we lack a working model, microscopic or hydrodynamic, for the behavior of the length of the longest increasing subsequences of random walks.

  12. Convergence of macroscopic tongue anatomy in ruminants and scaling relationships with body mass or tongue length.

    Science.gov (United States)

    Meier, Andrea R; Schmuck, Ute; Meloro, Carlo; Clauss, Marcus; Hofmann, Reinhold R

    2016-03-01

    Various morphological measures demonstrate convergent evolution in ruminants with their natural diet, in particular with respect to the browser/grazer dichotomy. Here, we report quantitative macroanatomical measures of the tongue (length and width of specific parts) of 65 ruminant species and relate them to either body mass (BM) or total tongue length, and to the percentage of grass in the natural diet (%grass). Models without and with accounting for the phylogenetic structures of the dataset were used, and models were ranked using Akaike's Information Criterion. Scaling relationships followed geometric principles, that is, length measures scaled with BM to the power of 0.33. Models that used tongue length rather than BM as a body size proxy were consistently ranked better, indicating that using size proxies that are less susceptible to a wider variety of factors (such as BM that fluctuates with body condition) should be attempted whenever possible. The proportion of the freely mobile tongue tip of the total tongue (and hence also the corpus length) was negatively correlated to %grass, in accordance with concepts that the feeding mechanism of browsers requires more mobile tongues. It should be noted that some nonbrowsers, such as cattle, use a peculiar mechanism for grazing that also requires long, mobile tongues, but they appear to be exceptions. A larger corpus width with increasing %grass corresponds to differences in snout shape with broader snouts in grazers. The Torus linguae is longer with increasing %grass, a finding that still warrants functional interpretation. This study shows that tongue measures covary with diet in ruminants. In contrast, the shape of the tongue (straight or "hourglass-shaped" as measured by the ratio of the widest and smallest corpus width) is unrelated to diet and is influenced strongly by phylogeny. © 2015 Wiley Periodicals, Inc.

  13. Natural Length Scales of Ecological Systems: Applications at Community and Ecosystem Levels

    Directory of Open Access Journals (Sweden)

    Craig R. Johnson

    2009-06-01

    Full Text Available The characteristic, or natural, length scales of a spatially dynamic ecological landscape are the spatial scales at which the deterministic trends in the dynamic are most sharply in focus. Given recent development of techniques to determine the characteristic length scales (CLSs of real ecological systems, I explore the potential for using CLSs to address three important and vexing issues in applied ecology, viz. (i determining the optimum scales to monitor ecological systems, (ii interpreting change in ecological communities, and (iii ascertaining connectivity between species in complex ecologies. In summarizing the concept of characteristic length scales as system-level scaling thresholds, I emphasize that the primary CLS is, by definition, the optimum scale at which to monitor a system if the objective is to observe its deterministic dynamics at a system level. Using several different spatially explicit individual-based models, I then explore predictions of the underlying theory of CLSs in the context of interpreting change and ascertaining connectivity among species in ecological systems. Analysis of these models support predictions that systems with strongly fluctuating community structure, but an otherwise stable long-term dynamic defined by a stationary attractor, indicate an invariant length scale irrespective of community structure at the time of analysis, and irrespective of the species analyzed. In contrast, if changes in the underlying dynamic are forcibly induced, the shift in dynamics is reflected by a change in the primary length scale. Thus, consideration of the magnitude of the CLS through time enables distinguishing between circumstances where there are temporal changes in community structure but not in the long-term dynamic, from that where changes in community structure reflect some kind of fundamental shift in dynamics. In this context, CLSs emerge as a diagnostic tool to identify phase shifts to alternative stable states

  14. Length-scale effect due to periodic variation of geometrically necessary dislocation densities

    DEFF Research Database (Denmark)

    Oztop, M. S.; Niordson, Christian Frithiof; Kysar, J. W.

    2013-01-01

    Strain gradient plasticity theories have been successful in predicting qualitative aspects of the length scale effect, most notably the increase in yield strength and hardness as the size of the deforming volume decreases. However new experimental methodologies enabled by recent developments...... of high spatial resolution diffraction methods in a scanning electron microscope give a much more quantitative understanding of plastic deformation at small length scales. Specifically, geometrically necessary dislocation densities (GND) can now be measured and provide detailed information about...... the microstructure of deformed metals in addition to the size effect. Recent GND measurements have revealed a distribution of length scales that evolves within a metal undergoing plastic deformation. Furthermore, these experiments have shown an accumulation of GND densities in cell walls as well as a variation...

  15. The length and time scales of water's glass transitions

    Science.gov (United States)

    Limmer, David T.

    2014-06-01

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  16. The length and time scales of water's glass transitions.

    Science.gov (United States)

    Limmer, David T

    2014-06-07

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  17. The length-scale dependence of strain in networks by SANS

    CERN Document Server

    Pyckhout-Hintzen, W; Heinrich, M; Richter, D; Westermann, S; Straube, E

    2002-01-01

    We present a SANS study of the length-scale dependence of chain deformation by means of a suitable labeling in dense, cross-linked elastomers of the HDH-type. This length scale is controlled by the size of the label as well as the cross-link density. The results are compared to long homopolymers. The data are analyzed by means of the tube model of topology in rubber elasticity in combination with the random-phase approximation (RPA) to account for interchain correlations. Chain degradation during cross linking is treated by the standard RPA approach for polydisperse multicomponent systems. A transition from locally freely fluctuating to tube-constrained segmental motion was observed. (orig.)

  18. Effective Debye length in closed nanoscopic systems: a competition between two length scales.

    Science.gov (United States)

    Tessier, Frédéric; Slater, Gary W

    2006-02-01

    The Poisson-Boltzmann equation (PBE) is widely employed in fields where the thermal motion of free ions is relevant, in particular in situations involving electrolytes in the vicinity of charged surfaces. The applications of this non-linear differential equation usually concern open systems (in osmotic equilibrium with an electrolyte reservoir, a semi-grand canonical ensemble), while solutions for closed systems (where the number of ions is fixed, a canonical ensemble) are either not appropriately distinguished from the former or are dismissed as a numerical calculation exercise. We consider herein the PBE for a confined, symmetric, univalent electrolyte and quantify how, in addition to the Debye length, its solution also depends on a second length scale, which embodies the contribution of ions by the surface (which may be significant in high surface-to-volume ratio micro- or nanofluidic capillaries). We thus establish that there are four distinct regimes for such systems, corresponding to the limits of the two parameters. We also show how the PBE in this case can be formulated in a familiar way by simply replacing the traditional Debye length by an effective Debye length, the value of which is obtained numerically from conservation conditions. But we also show that a simple expression for the value of the effective Debye length, obtained within a crude approximation, remains accurate even as the system size is reduced to nanoscopic dimensions, and well beyond the validity range typically associated with the solution of the PBE.

  19. Wind direction variations in the natural wind – A new length scale

    DEFF Research Database (Denmark)

    Johansson, Jens; Christensen, Silas Sverre

    2018-01-01

    During an observation period of e.g. 10min, the wind direction will differ from its mean direction for short periods of time, and a body of air will pass by from that direction before the direction changes once again. The present paper introduces a new length scale which we have labeled the angular...... length scale. This length scale expresses the average size of the body of air passing by from any deviation of wind direction away from the mean direction. Using metrological observations from two different sites under varying conditions we have shown that the size of the body of air relative to the mean...... size decreases linearly with the deviation from the mean wind direction when the deviation is normalized with the standard deviation of the wind direction. It is shown that this linear variation is independent of the standard deviation of the wind direction, and that the two full-scale data sets follow...

  20. Zebrafish brain mapping--standardized spaces, length scales, and the power of N and n.

    Science.gov (United States)

    Hunter, Paul R; Hendry, Aenea C; Lowe, Andrew S

    2015-06-01

    Mapping anatomical and functional parameters of the zebrafish brain is moving apace. Research communities undertaking such studies are becoming ever larger and more diverse. The unique features, tools, and technologies associated with zebrafish are propelling them as the 21st century model organism for brain mapping. Uniquely positioned as a vertebrate model system, the zebrafish enables imaging of anatomy and function at different length scales from intraneuronal compartments to sparsely distributed whole brain patterns. With a variety of diverse and established statistical modeling and analytic methods available from the wider brain mapping communities, the richness of zebrafish neuroimaging data is being realized. The statistical power of population observations (N) within and across many samples (n) projected onto a standardized space will provide vast databases for data-driven biological approaches. This article reviews key brain mapping initiatives at different levels of scale that highlight the potential of zebrafish brain mapping. By way of introduction to the next wave of brain mappers, an accessible introduction to the key concepts and caveats associated with neuroimaging are outlined and discussed. © 2014 Wiley Periodicals, Inc.

  1. Effect of length scale on mechanical properties of Al-Cu eutectic alloy

    Science.gov (United States)

    Tiwary, C. S.; Roy Mahapatra, D.; Chattopadhyay, K.

    2012-10-01

    This paper attempts a quantitative understanding of the effect of length scale on two phase eutectic structure. We first develop a model that considers both the elastic and plastic properties of the interface. Using Al-Al2Cu lamellar eutectic as model system, the parameters of the model were experimentally determined using indentation technique. The model is further validated using the results of bulk compression testing of the eutectics having different length scales.

  2. An experimental verification of the compensation of length change of line scales caused by ambient air pressure

    International Nuclear Information System (INIS)

    Takahashi, Akira; Miwa, Nobuharu

    2010-01-01

    Line scales are used as a working standard of length for the calibration of optical measuring instruments such as profile projectors, measuring microscopes and video measuring systems. The authors have developed a one-dimensional calibration system for line scales to obtain a lower uncertainty of measurement. The scale calibration system, named Standard Scale Calibrator SSC-05, employs a vacuum interferometer system for length measurement, a 633 nm iodine-stabilized He–Ne laser to calibrate the oscillating frequency of the interferometer laser light source and an Abbe's error compensation structure. To reduce the uncertainty of measurement, the uncertainty factors of the line scale and ambient conditions should not be neglected. Using the length calibration system, the expansion and contraction of a line scale due to changes in ambient air pressure were observed and the measured scale length was corrected into the length under standard atmospheric pressure, 1013.25 hPa. Utilizing a natural rapid change in the air pressure caused by a tropical storm (typhoon), we carried out an experiment on the length measurement of a 1000 mm long line scale made of glass ceramic with a low coefficient of thermal expansion. Using a compensation formula for the length change caused by changes in ambient air pressure, the length change of the 1000 mm long line scale was compensated with a standard deviation of less than 1 nm

  3. Self-assembling block copolymer systems involving competing length scales : A route toward responsive materials

    NARCIS (Netherlands)

    Nap, R; Erukhimovich, [No Value; ten Brinke, G; Erukhimovich, Igor

    2004-01-01

    The phase behavior of block copolymers melts involving competing length scales, i.e., able to microphase separate on two different length scales, is theoretically investigated using a self-consistent field approach. The specific block copolymers studied consist of a linear A-block linked to an

  4. Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows

    Science.gov (United States)

    2015-06-01

    sophisticated computational fluid dynamics ( CFD ) methods. Additionally, for 3D interactions, the length scales would require determination in spanwise as well...Manna, M. “Experimental, Analytical, and Computational Methods Applied to Hypersonic Compression Ramp Flows,” AIAA Journal, Vol. 32, No. 2, Feb. 1994

  5. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Javvaji, Brahmanandam [Indian Institute of Science, Department of Aerospace Engineering (India); Raha, S. [Indian Institute of Science, Department of Computational and Data Sciences (India); Mahapatra, D. Roy, E-mail: droymahapatra@aero.iisc.ernet.in [Indian Institute of Science, Department of Aerospace Engineering (India)

    2017-02-15

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  6. Invariant length scale in relativistic kinematics: lessons from Dirichlet branes

    International Nuclear Information System (INIS)

    Schuller, Frederic P.; Pfeiffer, Hendryk

    2004-01-01

    Dirac-Born-Infeld theory is shown to possess a hidden invariance associated with its maximal electric field strength. The local Lorentz symmetry O(1,n) on a Dirichlet-n-brane is thereby enhanced to an O(1,n)xO(1,n) gauge group, encoding both an invariant velocity and acceleration (or length) scale. The presence of this enlarged gauge group predicts consequences for the kinematics of observers on Dirichlet branes, with admissible accelerations being bounded from above. An important lesson is that the introduction of a fundamental length scale into relativistic kinematics does not enforce a deformation of Lorentz boosts, as one might assume naively. The exhibited structures further show that Moffat's non-symmetric gravitational theory qualifies as a candidate for a consistent Born-Infeld type gravity with regulated solutions

  7. Multi length-scale characterisation inorganic materials series

    CERN Document Server

    Bruce, Duncan W; Walton, Richard I

    2013-01-01

    Whereas the first five volumes in the Inorganic Materials Series focused on particular classes of materials (synthesis, structures, chemistry, and properties), it is now very timely to provide complementary volumes that introduce and review state-of-the-art techniques for materials characterization. This is an important way of emphasizing the interplay of chemical synthesis and physical characterization. The methods reviewed include spectroscopic, diffraction, and surface techniques that examine the structure of materials on all length scales, from local atomic structure to long-range crystall

  8. Driving force for hydrophobic interaction at different length scales.

    Science.gov (United States)

    Zangi, Ronen

    2011-03-17

    We study by molecular dynamics simulations the driving force for the hydrophobic interaction between graphene sheets of different sizes down to the atomic scale. Similar to the prediction by Lum, Chandler, and Weeks for hard-sphere solvation [J. Phys. Chem. B 1999, 103, 4570-4577], we find the driving force to be length-scale dependent, despite the fact that our model systems do not exhibit dewetting. For small hydrophobic solutes, the association is purely entropic, while enthalpy favors dissociation. The latter is demonstrated to arise from the enhancement of hydrogen bonding between the water molecules around small hydrophobes. On the other hand, the attraction between large graphene sheets is dominated by enthalpy which mainly originates from direct solute-solute interactions. The crossover length is found to be inside the range of 0.3-1.5 nm(2) of the surface area of the hydrophobe that is eliminated in the association process. In the large-scale regime, different thermodynamic properties are scalable with this change of surface area. In particular, upon dimerization, a total and a water-induced stabilization of approximately 65 and 12 kJ/mol/nm(2) are obtained, respectively, and on average around one hydrogen bond is gained per 1 nm(2) of graphene sheet association. Furthermore, the potential of mean force between the sheets is also scalable except for interplate distances smaller than 0.64 nm which corresponds to the region around the barrier for removing the last layer of water. It turns out that, as the surface area increases, the relative height of the barrier for association decreases and the range of attraction increases. It is also shown that, around small hydrophobic solutes, the lifetime of the hydrogen bonds is longer than in the bulk, while around large hydrophobes it is the same. Nevertheless, the rearrangement of the hydrogen-bond network for both length-scale regimes is slower than in bulk water. © 2011 American Chemical Society

  9. Scattering Length Scaling Laws for Ultracold Three-Body Collisions

    International Nuclear Information System (INIS)

    D'Incao, J.P.; Esry, B.D.

    2005-01-01

    We present a simple and unifying picture that provides the energy and scattering length dependence for all inelastic three-body collision rates in the ultracold regime for three-body systems with short-range two-body interactions. Here, we present the scaling laws for vibrational relaxation, three-body recombination, and collision-induced dissociation for systems that support s-wave two-body collisions. These systems include three identical bosons, two identical bosons, and two identical fermions. Our approach reproduces all previous results, predicts several others, and gives the general form of the scaling laws in all cases

  10. Multi Length Scale Finite Element Design Framework for Advanced Woven Fabrics

    Science.gov (United States)

    Erol, Galip Ozan

    Woven fabrics are integral parts of many engineering applications spanning from personal protective garments to surgical scaffolds. They provide a wide range of opportunities in designing advanced structures because of their high tenacity, flexibility, high strength-to-weight ratios and versatility. These advantages result from their inherent multi scale nature where the filaments are bundled together to create yarns while the yarns are arranged into different weave architectures. Their highly versatile nature opens up potential for a wide range of mechanical properties which can be adjusted based on the application. While woven fabrics are viable options for design of various engineering systems, being able to understand the underlying mechanisms of the deformation and associated highly nonlinear mechanical response is important and necessary. However, the multiscale nature and relationships between these scales make the design process involving woven fabrics a challenging task. The objective of this work is to develop a multiscale numerical design framework using experimentally validated mesoscopic and macroscopic length scale approaches by identifying important deformation mechanisms and recognizing the nonlinear mechanical response of woven fabrics. This framework is exercised by developing mesoscopic length scale constitutive models to investigate plain weave fabric response under a wide range of loading conditions. A hyperelastic transversely isotropic yarn material model with transverse material nonlinearity is developed for woven yarns (commonly used in personal protection garments). The material properties/parameters are determined through an inverse method where unit cell finite element simulations are coupled with experiments. The developed yarn material model is validated by simulating full scale uniaxial tensile, bias extension and indentation experiments, and comparing to experimentally observed mechanical response and deformation mechanisms. Moreover

  11. Inflation of the screening length induced by Bjerrum pairs.

    Science.gov (United States)

    Zwanikken, Jos; van Roij, René

    2009-10-21

    Within a modified Poisson-Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale [Formula: see text] over which electric fields are screened in electrolyte solutions, taking into account a simple association-dissociation equilibrium between free ions and Bjerrum pairs. At low densities of Bjerrum pairs, this length scale is well approximated by the Debye length [Formula: see text], with ρ(s) the free-ion density. At high densities of Bjerrum pairs, however, we find [Formula: see text], which is significantly larger than 1/κ due to the enhanced effective permittivity of the electrolyte, caused by the polarization of Bjerrum pairs. We argue that this mechanism may explain the recently observed anomalously large colloid-free zones between an oil-dispersed colloidal crystal and a colloidal monolayer at the oil-water interface.

  12. Modified forest rotation lengths: Long-term effects on landscape-scale habitat availability for specialized species.

    Science.gov (United States)

    Roberge, Jean-Michel; Öhman, Karin; Lämås, Tomas; Felton, Adam; Ranius, Thomas; Lundmark, Tomas; Nordin, Annika

    2018-03-15

    We evaluated the long-term implications from modifying rotation lengths in production forests for four forest-reliant species with different habitat requirements. By combining simulations of forest development with habitat models, and accounting both for stand and landscape scale influences, we projected habitat availability over 150 years in a large Swedish landscape, using rotation lengths which are longer (+22% and +50%) and shorter (-22%) compared to current practices. In terms of mean habitat availability through time, species requiring older forest were affected positively by extended rotations, and negatively by shortened rotations. For example, the mean habitat area for the treecreeper Certhia familiaris (a bird preferring forest with larger trees) increased by 31% when rotations were increased by 22%, at a 5% cost to net present value (NPV) and a 7% decrease in harvested volume. Extending rotation lengths by 50% provided more habitat for this species compared to a 22% extension, but at a much higher marginal cost. In contrast, the beetle Hadreule elongatula, which is dependent on sun-exposed dead wood, benefited from shortened rather than prolonged rotations. Due to an uneven distribution of stand-ages within the landscape, the relative amounts of habitat provided by different rotation length scenarios for a given species were not always consistent through time during the simulation period. If implemented as a conservation measure, prolonging rotations will require long-term strategic planning to avoid future bottlenecks in habitat availability, and will need to be accompanied by complementary measures accounting for the diversity of habitats necessary for the conservation of forest biodiversity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    Science.gov (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  14. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    Science.gov (United States)

    Tiwary, C. S.; Chakraborty, S.; Mahapatra, D. R.; Chattopadhyay, K.

    2014-05-01

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.

  15. Stability of icosahedral quasicrystals in a simple model with two-length scales

    International Nuclear Information System (INIS)

    Jiang, Kai; Zhang, Pingwen; Shi, An-Chang

    2017-01-01

    The phase behaviour of a free energy functional with two length scales is examined by comparing the free energy of different candidate phases including three-dimensional icosahedral quasicrystals. Accurate free energy of the quasicrystals has been obtained using the recently developed projection method. The results reveal that the icosahedral quasicrystal and body-centred-cubic spherical phase are the stable ordered phases of the model. Furthermore, the difference between the results obtained from the projection method and the one-mode approximation has been analyzed in detail. The present study extends previous results on two-dimensional systems, demonstrating that the interactions between density waves at two length scales can stabilize two- and three-dimensional quasicrystals. (paper)

  16. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.

  17. LPI Thresholds in Longer Scale Length Plasmas Driven by the Nike Laser*

    Science.gov (United States)

    Weaver, J.; Oh, J.; Phillips, L.; Afeyan, B.; Seely, J.; Kehne, D.; Brown, C.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Holland, G.; Lehmberg, R. H.; McLean, E.; Manka, C.

    2010-11-01

    The Krypton-Fluoride (KrF) laser is an attractive driver for inertial confinement fusion due to its short wavelength (248nm), large bandwidth (1-3 THz), and beam smoothing by induced spatial incoherence. Experiments with the Nike KrF laser have demonstrated intensity thresholds for laser plasma instabilities (LPI) higher than reported for other high power lasers operating at longer wavelengths (>=351 nm). The previous Nike experiments used short pulses (350 ps FWHM) and small spots (<260 μm FWHM) that created short density scale length plasmas (Ln˜50-70 μm) from planar CH targets and demonstrated the onset of two-plasmon decay (2φp) at laser intensities ˜2x10^15 W/cm^2. This talk will present an overview of the current campaign that uses longer pulses (0.5-4.0 ns) to achieve greater density scale lengths (Ln˜100-200 μm). X-rays, emission near ^1/2φo and ^3/2φo harmonics, and reflected laser light have been monitored for onset of 2φp. The longer density scale lengths will allow better comparison to results from other laser facilities. *Work supported by DoE/NNSA and ONR.

  18. Characteristics of the Residual Stress tensor when filter width is larger than the Ozmidov scale

    Science.gov (United States)

    de Bragança Alves, Felipe Augusto; de Bruyn Kops, Stephen

    2017-11-01

    In stratified turbulence, the residual stress tensor is statistically anisotropic unless the smallest resolved length scale is smaller than the Ozmidov scale and the buoyancy Reynolds number is sufficiently high for there to exist a range of scales that is statistically isotropic. We present approximations to the residual stress tensor that are derived analytically. These approximations are evaluated by filtering data from direct numerical simulations of homogeneous stratified turbulence, with unity Prandtl number, resolved on up to 8192 × 8192 × 4096 grid points along with an isotropic homogeneous case resolved on 81923 grid points. It is found that the best possible scaling of the strain rate tensor yields a residual stress tensor (RST) that is less well statistically aligned with the exact RST than a randomly generated tensor. It is also found that, while a scaling of the strain rate tensor can dissipate the right amount of energy, it produces incorrect anisotropic dissipation, removing energy from the wrong components of the velocity vector. We find that a combination of the strain rate tensor and a tensor related to energy redistribution caused by a Newtonian fluid viscous stress yields an excellent tensorial basis for modelling the RST.

  19. Numerical scalings of the decay lengths in the scrape-off layer

    DEFF Research Database (Denmark)

    Militello, F.; Naulin, V; Nielsen, Anders Henry

    2013-01-01

    Numerical simulations of L-mode turbulence in the scrape-off layer (SOL) are used to construct power scaling laws for the characteristic decay lengths of the temperature, density and heat flux at the outer mid-plane. Most of the results obtained are in qualitative agreement with the experimental...... observations despite the known limitation of the model. Quantitative agreement is also obtained for some exponents. In particular, an almost linear inverse dependence of the heat flux decay length with the plasma current is recovered. The relative simplicity of the theoretical model used allows one to gain...

  20. Activity-dependent self-regulation of viscous length scales in biological systems

    Science.gov (United States)

    Nandi, Saroj Kumar

    2018-05-01

    The cellular cortex, which is a highly viscous thin cytoplasmic layer just below the cell membrane, controls the cell's mechanical properties, which can be characterized by a hydrodynamic length scale ℓ . Cells actively regulate ℓ via the activity of force-generating molecules, such as myosin II. Here we develop a general theory for such systems through a coarse-grained hydrodynamic approach including activity in the static description of the system providing an experimentally accessible parameter and elucidate the detailed mechanism of how a living system can actively self-regulate its hydrodynamic length scale, controlling the rigidity of the system. Remarkably, we find that ℓ , as a function of activity, behaves universally and roughly inversely proportional to the activity of the system. Our theory rationalizes a number of experimental findings on diverse systems, and comparison of our theory with existing experimental data shows good agreement.

  1. Channel length scaling and the impact of metal gate work function ...

    Indian Academy of Sciences (India)

    As the channel length is reduced from one transistor generation to the next, ... As CMOS technology continues to scale, metal gate electrodes need to be intro .... in the z-direction, q is the electron charge, h is the Planck's constant, Ψ(x, z) is the.

  2. Manufacturing test of large scale hollow capsule and long length cladding in the large scale oxide dispersion strengthened (ODS) martensitic steel

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2004-04-01

    Mass production capability of oxide dispersion strengthened (ODS) martensitic steel cladding (9Cr) has being evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube (raw materials powder production, mechanical alloying (MA) by ball mill, canning, hot extrusion, and machining) is a dominant factor in the total cost for manufacturing ODS ferritic steel cladding. In this study, the large-sale 9Cr-ODS martensitic steel mother tube which is made with a large-scale hollow capsule, and long length claddings were manufactured, and the applicability of these processes was evaluated. Following results were obtained in this study. (1) Manufacturing the large scale mother tube in the dimension of 32 mm OD, 21 mm ID, and 2 m length has been successfully carried out using large scale hollow capsule. This mother tube has a high degree of accuracy in size. (2) The chemical composition and the micro structure of the manufactured mother tube are similar to the existing mother tube manufactured by a small scale can. And the remarkable difference between the bottom and top sides in the manufactured mother tube has not been observed. (3) The long length cladding has been successfully manufactured from the large scale mother tube which was made using a large scale hollow capsule. (4) For reducing the manufacturing cost of the ODS steel claddings, manufacturing process of the mother tubes using a large scale hollow capsules is promising. (author)

  3. Dynamic Arrest in Charged Colloidal Systems Exhibiting Large-Scale Structural Heterogeneities

    International Nuclear Information System (INIS)

    Haro-Perez, C.; Callejas-Fernandez, J.; Hidalgo-Alvarez, R.; Rojas-Ochoa, L. F.; Castaneda-Priego, R.; Quesada-Perez, M.; Trappe, V.

    2009-01-01

    Suspensions of charged liposomes are found to exhibit typical features of strongly repulsive fluid systems at short length scales, while exhibiting structural heterogeneities at larger length scales that are characteristic of attractive systems. We model the static structure factor of these systems using effective pair interaction potentials composed of a long-range attraction and a shorter range repulsion. Our modeling of the static structure yields conditions for dynamically arrested states at larger volume fractions, which we find to agree with the experimentally observed dynamics

  4. Scaling local species-habitat relations to the larger landscape with a hierarchical spatial count model

    Science.gov (United States)

    Thogmartin, W.E.; Knutson, M.G.

    2007-01-01

    Much of what is known about avian species-habitat relations has been derived from studies of birds at local scales. It is entirely unclear whether the relations observed at these scales translate to the larger landscape in a predictable linear fashion. We derived habitat models and mapped predicted abundances for three forest bird species of eastern North America using bird counts, environmental variables, and hierarchical models applied at three spatial scales. Our purpose was to understand habitat associations at multiple spatial scales and create predictive abundance maps for purposes of conservation planning at a landscape scale given the constraint that the variables used in this exercise were derived from local-level studies. Our models indicated a substantial influence of landscape context for all species, many of which were counter to reported associations at finer spatial extents. We found land cover composition provided the greatest contribution to the relative explained variance in counts for all three species; spatial structure was second in importance. No single spatial scale dominated any model, indicating that these species are responding to factors at multiple spatial scales. For purposes of conservation planning, areas of predicted high abundance should be investigated to evaluate the conservation potential of the landscape in their general vicinity. In addition, the models and spatial patterns of abundance among species suggest locations where conservation actions may benefit more than one species. ?? 2006 Springer Science+Business Media B.V.

  5. Scaling of the critical free length for progressive unfolding of self-bonded graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Kenny; Cranford, Steven W., E-mail: s.cranford@neu.edu [Laboratory of Nanotechnology in Civil Engineering (NICE), Department of Civil and Environmental Engineering, Northeastern University, 400 Snell Engineering, 360 Huntington Avenue, Boston, Massachusetts 02115 (United States)

    2014-05-19

    Like filled pasta, rolled or folded graphene can form a large nanocapsule surrounding a hollow interior. Use as a molecular carrier, however, requires understanding of the opening of such vessels. Here, we investigate a monolayer sheet of graphene as a theoretical trial platform for such a nanocapsule. The graphene is bonded to itself via aligned disulfide (S-S) bonds. Through theoretical analysis and atomistic modeling, we probe the critical nonbonded length (free length, L{sub crit}) that induces fracture-like progressive unfolding as a function of folding radius (R{sub i}). We show a clear linear scaling relationship between the length and radius, which can be used to determine the necessary bond density to predict mechanical opening/closing. However, stochastic dissipated energy limits any exact elastic formulation, and the required energy far exceeds the dissociation energy of the S-S bond. We account for the necessary dissipated kinetic energy through a simple scaling factor (Ω), which agrees well with computational results.

  6. Cosmogenesis and the origin of the fundamental length scale

    International Nuclear Information System (INIS)

    Brout, R.; Englert, F.; Frere, J.M.; Gunzig, E.; Nardone, P.; Truffin, C.

    1980-01-01

    The creation of the universe is regarded as a self-consistent process in which matter is engendered by the space-time varying cosmological gravitational field and vice versa. Abundant production can occur only if the mass of the particles so created is of the order of the Planck mass (= ksup(-1/2)). We conjecture that this is the origin of the fundamental length scale in field theory, as it is encountered, for example, in present efforts towards grand unification. The region of particle production is steady state in character. It ceases when the produced particles decay. The geometry of this steady state is characteristic of a de Sitter space. It permits one to estimate the number of ordinary particles presently observed, N. We find log N = O (mtausub(decay)) = O(g -2 ) = O(10 2 ), with the usual estimate of g = O(10 -1 ) at the Planck length scale. This is not inconsistent with the experimental estimate N approx. = O(10 90 ). After production, cosmological history gives way to the more conventional scheme of free expansion. The present paper is a self-contained account of our view of cosmological history and the production of matter in a varying gravitational field. Special care has been taken to describe the vacuum correctly in the present context and to perform the necessary subtractions of zero-point effects. (orig.)

  7. Collective dynamics of glass-forming polymers at intermediate length scales

    International Nuclear Information System (INIS)

    Colmenero, J.; Alvarez, F.; Arbe, A.

    2015-01-01

    Deep understanding of the complex dynamics taking place in glass-forming systems could potentially be gained by exploiting the information provided by the collective response monitored by coherent neutron scattering. We have revisited the question of the characterization of the collective response of polyisobutylene at intermediate length scales observed by neutron spin echo (NSE) experiments. The model, generalized for sub-linear diffusion - as it is the case of glass-forming polymers - has been successfully applied by using the information on the total self-motions available from MD-simulations properly validated by direct comparison with experimental results. From the fits of the coherent NSE data, the collective time at Q → 0 has been extracted that agrees very well with compiled results from different experimental techniques directly accessing such relaxation time. We show that a unique temperature dependence governs both, the Q → 0 and Q → ∞ asymptotic characteristic times. The generalized model also gives account for the modulation of the apparent activation energy of the collective times with the static structure factor. It mainly results from changes of the short-range order at inter-molecular length scales

  8. Measurements of Turbulent Flame Speed and Integral Length Scales in a Lean Stationary Premixed Flame

    OpenAIRE

    Klingmann, Jens; Johansson, Bengt

    1998-01-01

    Turbulent premixed natural gas - air flame velocities have been measured in a stationary axi-symmetric burner using LDA. The flame was stabilized by letting the flow retard toward a stagnation plate downstream of the burner exit. Turbulence was generated by letting the flow pass through a plate with drilled holes. Three different hole diameters were used, 3, 6 and 10 mm, in order to achieve different turbulent length scales. Turbulent integral length scales were measured using two-point LD...

  9. Scale-lengths and instabilities in magnetized classical and relativistic plasma fluid models

    International Nuclear Information System (INIS)

    Diver, D A; Laing, E W

    2015-01-01

    The validity of the traditional plasma continuum is predicated on a hierarchy of scale-lengths, with the Debye length being considered to be effectively unresolvable in the continuum limit. In this article, we revisit the strong magnetic field case in which the Larmor radius is comparable or smaller than the Debye length in the classical plasma, and also for a relativistic plasma. Fresh insight into the validity of the continuum assumption in each case is offered, including a fluid limit on the Alfvén speed that may impose restrictions on the validity of magnetohydrodynamics (MHD) in some solar and fusion contexts. Additional implications concerning the role of the firehose instability are also explored. (paper)

  10. A multiple length scale description of the mechanism of elastomer stretching

    DEFF Research Database (Denmark)

    Neuefeind, J.; Skov, Anne Ladegaard; Daniels, J. E.

    2016-01-01

    Conventionally, the stretching of rubber is modeled exclusively by rotations of segments of the embedded polymer chains; i.e. changes in entropy. However models have not been tested on all relevant length scales due to a lack of appropriate probes. Here we present a universal X-ray based method f...

  11. Differential scaling patterns of vertebrae and the evolution of neck length in mammals.

    Science.gov (United States)

    Arnold, Patrick; Amson, Eli; Fischer, Martin S

    2017-06-01

    Almost all mammals have seven vertebrae in their cervical spines. This consistency represents one of the most prominent examples of morphological stasis in vertebrae evolution. Hence, the requirements associated with evolutionary modifications of neck length have to be met with a fixed number of vertebrae. It has not been clear whether body size influences the overall length of the cervical spine and its inner organization (i.e., if the mammalian neck is subject to allometry). Here, we provide the first large-scale analysis of the scaling patterns of the cervical spine and its constituting cervical vertebrae. Our findings reveal that the opposite allometric scaling of C1 and C2-C7 accommodate the increase of neck bending moment with body size. The internal organization of the neck skeleton exhibits surprisingly uniformity in the vast majority of mammals. Deviations from this general pattern only occur under extreme loading regimes associated with particular functional and allometric demands. Our results indicate that the main source of variation in the mammalian neck stems from the disparity of overall cervical spine length. The mammalian neck reveals how evolutionary disparity manifests itself in a structure that is otherwise highly restricted by meristic constraints. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  12. CEPF Western Ghats Special Series: Length-weight and length-length relationship of three species of snakehead fish, Channa diplogramma, C. marulius and C. striata from the riverine reaches of Lake Vembanad, Kerala, India.

    Directory of Open Access Journals (Sweden)

    A. Ali

    2013-09-01

    Full Text Available The length-weight relationship (LWR and length-length relationships (LLR of three snakehead fishes, Channa diplogramma, C. marulius and C. striata, exploited by small-scale fishers in the riverine reaches of Lake Vembanad, Kerala were studied using the allometric growth equation Y = aXb. Our analysis shows that the LWR of C. diplogramma and C. marulius is nonisometric with exponents much smaller than the cubic value (b = 3, while that of C. striata is isometric. Channa marulius showed a definite change in LWR with size, with smaller fish growing with positive allometric exponents (b greater than 3 and larger individuals having negative allometric relationship (b less than 3, indicating a possible age-related change in growth pattern. In the case of LLR, all three snakehead species showed non-isometric growth patterns. The caudal fin did not grow substantially with increasing fish length.

  13. Hydrodynamic simulations of long-scale-length two-plasmon–decay experiments at the Omega Laser Facility

    International Nuclear Information System (INIS)

    Hu, S. X.; Michel, D. T.; Edgell, D. H.; Froula, D. H.; Follett, R. K.; Goncharov, V. N.; Myatt, J. F.; Skupsky, S.; Yaakobi, B.

    2013-01-01

    Direct-drive–ignition designs with plastic CH ablators create plasmas of long density scale lengths (L n ≥ 500 μm) at the quarter-critical density (N qc ) region of the driving laser. The two-plasmon–decay (TPD) instability can exceed its threshold in such long-scale-length plasmas (LSPs). To investigate the scaling of TPD-induced hot electrons to laser intensity and plasma conditions, a series of planar experiments have been conducted at the Omega Laser Facility with 2-ns square pulses at the maximum laser energies available on OMEGA and OMEGA EP. Radiation–hydrodynamic simulations have been performed for these LSP experiments using the two-dimensional hydrocode draco. The simulated hydrodynamic evolution of such long-scale-length plasmas has been validated with the time-resolved full-aperture backscattering and Thomson-scattering measurements. draco simulations for CH ablator indicate that (1) ignition-relevant long-scale-length plasmas of L n approaching ∼400 μm have been created; (2) the density scale length at N qc scales as L n (μm)≃(R DPP ×I 1/4 /2); and (3) the electron temperature T e at N qc scales as T e (keV)≃0.95×√(I), with the incident intensity (I) measured in 10 14 W/cm 2 for plasmas created on both OMEGA and OMEGA EP configurations with different-sized (R DPP ) distributed phase plates. These intensity scalings are in good agreement with the self-similar model predictions. The measured conversion fraction of laser energy into hot electrons f hot is found to have a similar behavior for both configurations: a rapid growth [f hot ≃f c ×(G c /4) 6 for G c hot ≃f c ×(G c /4) 1.2 for G c ≥ 4, with the common wave gain is defined as G c =3 × 10 −2 ×I qc L n λ 0 /T e , where the laser intensity contributing to common-wave gain I qc , L n , T e at N qc , and the laser wavelength λ 0 are, respectively, measured in [10 14 W/cm 2 ], [μm], [keV], and [μm]. The saturation level f c is observed to be f c ≃ 10 –2 at around

  14. A multi-resolution analysis of lidar-DTMs to identify geomorphic processes from characteristic topographic length scales

    Science.gov (United States)

    Sangireddy, H.; Passalacqua, P.; Stark, C. P.

    2013-12-01

    Characteristic length scales are often present in topography, and they reflect the driving geomorphic processes. The wide availability of high resolution lidar Digital Terrain Models (DTMs) allows us to measure such characteristic scales, but new methods of topographic analysis are needed in order to do so. Here, we explore how transitions in probability distributions (pdfs) of topographic variables such as (log(area/slope)), defined as topoindex by Beven and Kirkby[1979], can be measured by Multi-Resolution Analysis (MRA) of lidar DTMs [Stark and Stark, 2001; Sangireddy et al.,2012] and used to infer dominant geomorphic processes such as non-linear diffusion and critical shear. We show this correlation between dominant geomorphic processes to characteristic length scales by comparing results from a landscape evolution model to natural landscapes. The landscape evolution model MARSSIM Howard[1994] includes components for modeling rock weathering, mass wasting by non-linear creep, detachment-limited channel erosion, and bedload sediment transport. We use MARSSIM to simulate steady state landscapes for a range of hillslope diffusivity and critical shear stresses. Using the MRA approach, we estimate modal values and inter-quartile ranges of slope, curvature, and topoindex as a function of resolution. We also construct pdfs at each resolution and identify and extract characteristic scale breaks. Following the approach of Tucker et al.,[2001], we measure the average length to channel from ridges, within the GeoNet framework developed by Passalacqua et al.,[2010] and compute pdfs for hillslope lengths at each scale defined in the MRA. We compare the hillslope diffusivity used in MARSSIM against inter-quartile ranges of topoindex and hillslope length scales, and observe power law relationships between the compared variables for simulated landscapes at steady state. We plot similar measures for natural landscapes and are able to qualitatively infer the dominant geomorphic

  15. Relations between overturning length scales at the Spanish planetary boundary layer

    Science.gov (United States)

    López, Pilar; Cano, José L.

    2016-04-01

    We analyze the behavior of the maximum Thorpe displacement (dT)max and the Thorpe scale LTat the atmospheric boundary layer (ABL), extending previous research with new data and improving our studies related to the novel use of the Thorpe method applied to ABL. The maximum Thorpe displacements vary between -900 m and 950 m for the different field campaigns. The maximum Thorpe displacement is always greater under convective conditions than under stable ones, independently of its sign. The Thorpe scale LT ranges between 0.2 m and 680 m for the different data sets which cover different stratified mixing conditions (turbulence shear-driven and convective regions). The Thorpe scale does not exceed several tens of meters under stable and neutral stratification conditions related to instantaneous density gradients. In contrast, under convective conditions, Thorpe scales are relatively large, they exceed hundreds of meters which may be related to convective bursts. We analyze the relation between (dT)max and the Thorpe scale LT and we deduce that they verify a power law. We also deduce that there is a difference in exponents of the power laws for convective conditions and shear-driven conditions. These different power laws could identify overturns created under different mechanisms. References Cuxart, J., Yagüe, C., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Fernández, A., Soler, M., Infante, C., Buenestado, P., Espinalt, Joergensen, H., Rees, J., Vilà, J., Redondo, J., Cantalapiedra, I. and Conangla, L.: Stable atmospheric boundary-layer experiment in Spain (Sables 98). A report, Boundary-Layer Meteorology, 96, 337-370, 2000. Dillon, T. M.: Vertical Overturns: A Comparison of Thorpe and Ozmidov Length Scales, J. Geophys. Res., 87(C12), 9601-9613, 1982. Itsweire, E. C.: Measurements of vertical overturns in stably stratified turbulent flow, Phys. Fluids, 27(4), 764-766, 1984. Kitade, Y., Matsuyama, M. and Yoshida, J.: Distribution of overturn induced by internal

  16. Bending of marble with intrinsic length scales: a gradient theory with surface energy and size effects

    International Nuclear Information System (INIS)

    Vardoulakis, I.; Kourkoulis, S.K.; Exadaktylos, G.

    1998-01-01

    A gradient bending theory is developed based on a strain energy function that includes the classical Bernoulli-Euler term, the shape correction term (microstructural length scale) introduced by Timoshenko, and a term associated with surface energy (micromaterial length scale) accounting for the bending moment gradient effect. It is shown that the last term is capable to interpret the size effect in three-point bending (3PB), namely the decrease of the failure load with decreasing beam length for the same aspect ratio. This theory is used to describe the mechanical behaviour of Dionysos-Pentelikon marble in 3PB. Series of tests with prismatic marble beams of the same aperture but with different lengths were conducted and it was concluded that the present theory predicts well the size effect. (orig.)

  17. Instantaneous equations for multiphase flow in porous media without length-scale restrictions using a non-local averaging volume

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto

    2010-01-01

    The aim of this paper is to propose a framework to obtain a new formulation for multiphase flow conservation equations without length-scale restrictions, based on the non-local form of the averaged volume conservation equations. The simplification of the local averaging volume of the conservation equations to obtain practical equations is subject to the following length-scale restrictions: d << l << L, where d is the characteristic length of the dispersed phases, l is the characteristic length of the averaging volume, and L is the characteristic length of the physical system. If the foregoing inequality does not hold, or if the scale of the problem of interest is of the order of l, the averaging technique and therefore, the macroscopic theories of multiphase flow should be modified in order to include appropriate considerations and terms in the corresponding equations. In these cases the local form of the averaged volume conservation equations are not appropriate to describe the multiphase system. As an example of the conservation equations without length-scale restrictions, the natural circulation boiling water reactor was consider to study the non-local effects on the thermal-hydraulic core performance during steady-state and transient behaviors, and the results were compared with the classic local averaging volume conservation equations.

  18. Critical point phenomena: universal physics at large length scales

    International Nuclear Information System (INIS)

    Bruce, A.; Wallace, D.

    1993-01-01

    This article is concerned with the behaviour of a physical system at, or close to, a critical point (ebullition, ferromagnetism..): study of the phenomena displayed in the critical region (Ising model, order parameter, correlation length); description of the configurations (patterns) formed by the microscopic degrees of freedom near a critical point, essential concepts of the renormalization group (coarse-graining, system flow, fixed-point and scale-invariance); how these concepts knit together to form the renormalization group method; and what kind of problems may be resolved by the renormalization group method. 12 figs., 1 ref

  19. Length scale hierarchy and spatiotemporal change of alluvial morphologies over the Selenga River delta, Russia

    Science.gov (United States)

    Dong, T. Y.; Nittrouer, J.; McElroy, B. J.; Ma, H.; Czapiga, M. J.; Il'icheva, E.; Pavlov, M.; Parker, G.

    2017-12-01

    The movement of water and sediment in natural channels creates various types of alluvial morphologies that span length scales from dunes to deltas. The behavior of these morphologies is controlled microscopically by hydrodynamic conditions and bed material size, and macroscopically by hydrologic and geological settings. Alluvial morphologies can be modeled as either diffusive or kinematic waves, in accordance with their respective boundary conditions. Recently, it has been shown that the difference between these two dynamic behaviors of alluvial morphologies can be characterized by the backwater number, which is a dimensionless value normalizing the length scale of a morphological feature to its local hydrodynamic condition. Application of the backwater number has proven useful for evaluating the size of morphologies, including deltas (e.g., by assessing the preferential avulsion location of a lobe), and for comparing bedform types across different fluvial systems. Yet two critical questions emerge when applying the backwater number: First, how do different types of alluvial morphologies compare within a single deltaic system, where there is a hydrodynamic transition from uniform to non-uniform flow? Second, how do different types of morphologies evolve temporally within a system as a function of changing water discharge? This study addresses these questions by compiling and analyzing field data from the Selenga River delta, Russia, which include measurements of flow velocity, channel geometry, bed material grain size, and channel slope, as well as length scales of various morphologies, including dunes, island bars, meanders, bifurcations, and delta lobes. Data analyses reveal that the length scale of morphologies decrease and the backwater number increases as flow transitions from uniform to non-uniform conditions progressing downstream. It is shown that the evaluated length scale hierarchy and planform distribution of different morphologies can be used to

  20. Nature of the spin-glass phase at experimental length scales

    International Nuclear Information System (INIS)

    Alvarez Baños, R; Cruz, A; Fernandez, L A; Gil-Narvion, J M; Gordillo-Guerrero, A; Maiorano, A; Martin-Mayor, V; Monforte-Garcia, J; Perez-Gaviro, S; Ruiz-Lorenzo, J J; Seoane, B; Tarancon, A; Guidetti, M; Mantovani, F; Schifano, S F; Tripiccione, R; Marinari, E; Parisi, G; Muñoz Sudupe, A; Navarro, D

    2010-01-01

    We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L = 32 lattices down to T ≈ 0.64T c . We demonstrate the relevance of equilibrium finite size simulations to understanding experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a timescale of 1 h can be matched with equilibrium results on L ≈ 110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies in ensuring equilibration in parallel tempering simulations

  1. Dependence of exponents on text length versus finite-size scaling for word-frequency distributions

    Science.gov (United States)

    Corral, Álvaro; Font-Clos, Francesc

    2017-08-01

    Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.

  2. Does an inter-flaw length control the accuracy of rupture forecasting in geological materials?

    Science.gov (United States)

    Vasseur, Jérémie; Wadsworth, Fabian B.; Heap, Michael J.; Main, Ian G.; Lavallée, Yan; Dingwell, Donald B.

    2017-10-01

    Multi-scale failure of porous materials is an important phenomenon in nature and in material physics - from controlled laboratory tests to rockbursts, landslides, volcanic eruptions and earthquakes. A key unsolved research question is how to accurately forecast the time of system-sized catastrophic failure, based on observations of precursory events such as acoustic emissions (AE) in laboratory samples, or, on a larger scale, small earthquakes. Until now, the length scale associated with precursory events has not been well quantified, resulting in forecasting tools that are often unreliable. Here we test the hypothesis that the accuracy of the forecast failure time depends on the inter-flaw distance in the starting material. We use new experimental datasets for the deformation of porous materials to infer the critical crack length at failure from a static damage mechanics model. The style of acceleration of AE rate prior to failure, and the accuracy of forecast failure time, both depend on whether the cracks can span the inter-flaw length or not. A smooth inverse power-law acceleration of AE rate to failure, and an accurate forecast, occurs when the cracks are sufficiently long to bridge pore spaces. When this is not the case, the predicted failure time is much less accurate and failure is preceded by an exponential AE rate trend. Finally, we provide a quantitative and pragmatic correction for the systematic error in the forecast failure time, valid for structurally isotropic porous materials, which could be tested against larger-scale natural failure events, with suitable scaling for the relevant inter-flaw distances.

  3. Length expectation values in quantum Regge calculus

    International Nuclear Information System (INIS)

    Khatsymovsky, V.M.

    2004-01-01

    Regge calculus configuration superspace can be embedded into a more general superspace where the length of any edge is defined ambiguously depending on the 4-tetrahedron containing the edge. Moreover, the latter superspace can be extended further so that even edge lengths in each the 4-tetrahedron are not defined, only area tensors of the 2-faces in it are. We make use of our previous result concerning quantization of the area tensor Regge calculus which gives finite expectation values for areas. Also our result is used showing that quantum measure in the Regge calculus can be uniquely fixed once we know quantum measure on (the space of the functionals on) the superspace of the theory with ambiguously defined edge lengths. We find that in this framework quantization of the usual Regge calculus is defined up to a parameter. The theory may possess nonzero (of the order of Planck scale) or zero length expectation values depending on whether this parameter is larger or smaller than a certain value. Vanishing length expectation values means that the theory is becoming continuous, here dynamically in the originally discrete framework

  4. Electropolishing effect on roughness metrics of ground stainless steel: a length scale study

    Science.gov (United States)

    Nakar, Doron; Harel, David; Hirsch, Baruch

    2018-03-01

    Electropolishing is a widely-used electrochemical surface finishing process for metals. The electropolishing of stainless steel has vast commercial application, such as improving corrosion resistance, improving cleanness, and brightening. The surface topography characterization is performed using several techniques with different lateral resolutions and length scales, from atomic force microscopy in the nano-scale (filter are adopted. While the commonly used roughness amplitude parameters (Ra, Rq and Rz) fail to characterize electropolished textures, the root mean square slope (RΔq) is found to better describe the electropolished surfaces and to be insensitive to scale.

  5. Scaling of localization length of a quasi 1D system with longitudinal boundary roughness

    International Nuclear Information System (INIS)

    Abhijit Kar Gupta; Sen, A.K.

    1994-08-01

    We introduce irregularities on one of the longitudinal boundaries of a quasi 1D strip which has no bulk disorder. We calculate the localization length of such a system within the scope of tight-binding formalism and see how it behaves with the roughness introduced on the boundary and with the strip-width. We find that localization length scales with a composite one parameter. (author). 6 refs, 4 figs

  6. Scale and time dependence of serial correlations in word-length time series of written texts

    Science.gov (United States)

    Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.

    2014-11-01

    This work considered the quantitative analysis of large written texts. To this end, the text was converted into a time series by taking the sequence of word lengths. The detrended fluctuation analysis (DFA) was used for characterizing long-range serial correlations of the time series. To this end, the DFA was implemented within a rolling window framework for estimating the variations of correlations, quantified in terms of the scaling exponent, strength along the text. Also, a filtering derivative was used to compute the dependence of the scaling exponent relative to the scale. The analysis was applied to three famous English-written literary narrations; namely, Alice in Wonderland (by Lewis Carrol), Dracula (by Bram Stoker) and Sense and Sensibility (by Jane Austen). The results showed that high correlations appear for scales of about 50-200 words, suggesting that at these scales the text contains the stronger coherence. The scaling exponent was not constant along the text, showing important variations with apparent cyclical behavior. An interesting coincidence between the scaling exponent variations and changes in narrative units (e.g., chapters) was found. This suggests that the scaling exponent obtained from the DFA is able to detect changes in narration structure as expressed by the usage of words of different lengths.

  7. Evaluation of scale effects on hydraulic characteristics of fractured rock using fracture network model

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Uchida, Masahiro; Ishiguro, Katsuhiko; Umeki, Hiroyuki; Sakamoto, Kazuhiko; Ohnishi, Yuzo

    2001-01-01

    It is important to take into account scale effects on fracture geometry if the modeling scale is much larger than the in-situ observation scale. The scale effect on fracture trace length, which is the most scale dependent parameter, is investigated using fracture maps obtained at various scales in tunnel and dam sites. We found that the distribution of fracture trace length follows negative power law distribution in regardless of locations and rock types. The hydraulic characteristics of fractured rock is also investigated by numerical analysis of discrete fracture network (DFN) model where power law distribution of fracture radius is adopted. We found that as the exponent of power law distribution become larger, the hydraulic conductivity of DFN model increases and the travel time in DFN model decreases. (author)

  8. Adaptive local routing strategy on a scale-free network

    International Nuclear Information System (INIS)

    Feng, Liu; Han, Zhao; Ming, Li; Yan-Bo, Zhu; Feng-Yuan, Ren

    2010-01-01

    Due to the heterogeneity of the structure on a scale-free network, making the betweennesses of all nodes become homogeneous by reassigning the weights of nodes or edges is very difficult. In order to take advantage of the important effect of high degree nodes on the shortest path communication and preferentially deliver packets by them to increase the probability to destination, an adaptive local routing strategy on a scale-free network is proposed, in which the node adjusts the forwarding probability with the dynamical traffic load (packet queue length) and the degree distribution of neighbouring nodes. The critical queue length of a node is set to be proportional to its degree, and the node with high degree has a larger critical queue length to store and forward more packets. When the queue length of a high degree node is shorter than its critical queue length, it has a higher probability to forward packets. After higher degree nodes are saturated (whose queue lengths are longer than their critical queue lengths), more packets will be delivered by the lower degree nodes around them. The adaptive local routing strategy increases the probability of a packet finding its destination quickly, and improves the transmission capacity on the scale-free network by reducing routing hops. The simulation results show that the transmission capacity of the adaptive local routing strategy is larger than that of three previous local routing strategies. (general)

  9. Enhanced Strain in Functional Nanoporous Gold with a Dual Microscopic Length Scale Structure

    NARCIS (Netherlands)

    Detsi, Eric; Punzhin, Sergey; Rao, Jiancun; Onck, Patrick R.; De Hosson, Jeff Th. M.

    We have synthesized nanoporous Au with a dual microscopic length scale by exploiting the crystal structure of the alloy precursor. The synthesized mesoscopic material is characterized by stacked Au layers of submicrometer thickness. In addition, each layer displays nanoporosity through the entire

  10. Diagnosis of Weibel instability evolution in the rear surface density scale lengths of laser solid interactions via proton acceleration

    International Nuclear Information System (INIS)

    Scott, G G; Brenner, C M; Clarke, R J; Green, J S; Heathcote, R I; Rusby, D R; McKenna, P; Neely, D; Bagnoud, V; Zielbauer, B; Gonzalez-Izquierdo, B; Powell, H W

    2017-01-01

    It is shown for the first time that the spatial and temporal distribution of laser accelerated protons can be used as a diagnostic of Weibel instability presence and evolution in the rear surface scale lengths of a solid density target. Numerical modelling shows that when a fast electron beam is injected into a decreasing density gradient on the target rear side, a magnetic instability is seeded with an evolution which is strongly dependent on the density scale length. This is manifested in the acceleration of a filamented proton beam, where the degree of filamentation is also found to be dependent on the target rear scale length. Furthermore, the energy dependent spatial distribution of the accelerated proton beam is shown to provide information on the instability evolution on the picosecond timescale over which the protons are accelerated. Experimentally, this is investigated by using a controlled prepulse to introduce a target rear scale length, which is varied by altering the time delay with respect to the main pulse, and similar trends are measured. This work is particularly pertinent to applications using laser pulse durations of tens of picoseconds, or where a micron level density scale length is present on the rear of a solid target, such as proton-driven fast ignition, as the resultant instability may affect the uniformity of fuel energy coupling. (paper)

  11. Temporal and Latitudinal Variations of the Length-Scales and Relative Intensities of the Chromospheric Network

    Science.gov (United States)

    Raju, K. P.

    2018-05-01

    The Calcium K spectroheliograms of the Sun from Kodaikanal have a data span of about 100 years and covers over 9 solar cycles. The Ca line is a strong chromospheric line dominated by chromospheric network and plages which are good indicators of solar activity. Length-scales and relative intensities of the chromospheric network have been obtained in the solar latitudes from 50 degree N to 50 degree S from the spectroheliograms. The length-scale was obtained from the half-width of the two-dimensional autocorrelation of the latitude strip which gives a measure of the width of the network boundary. As reported earlier for the transition region extreme ultraviolet (EUV) network, relative intensity and width of the chromospheric network boundary are found to be dependent on the solar cycle. A varying phase difference has been noticed in the quantities in different solar latitudes. A cross-correlation analysis of the quantities from other latitudes with ±30 degree latitude revealed an interesting phase difference pattern indicating flux transfer. Evidence of equatorward flux transfer has been observed. The average equatorward flux transfer was estimated to be 5.8 ms-1. The possible reasons of the drift could be meridional circulation, torsional oscillations, or the bright point migration. Cross-correlation of intensity and length-scale from the same latitude showed increasing phase difference with increasing latitude. We have also obtained the cross correlation of the quantities across the equator to see the possible phase lags in the two hemispheres. Signatures of lags are seen in the length scales of southern hemisphere near the equatorial latitudes, but no such lags in the intensity are observed. The results have important implications on the flux transfer over the solar surface and hence on the solar activity and dynamo.

  12. A laboratory scale fundamental time?

    International Nuclear Information System (INIS)

    Mendes, R.V.

    2012-01-01

    The existence of a fundamental time (or fundamental length) has been conjectured in many contexts. However, the ''stability of physical theories principle'' seems to be the one that provides, through the tools of algebraic deformation theory, an unambiguous derivation of the stable structures that Nature might have chosen for its algebraic framework. It is well-known that c and ℎ are the deformation parameters that stabilize the Galilean and the Poisson algebra. When the stability principle is applied to the Poincare-Heisenberg algebra, two deformation parameters emerge which define two time (or length) scales. In addition there are, for each of them, a plus or minus sign possibility in the relevant commutators. One of the deformation length scales, related to non-commutativity of momenta, is probably related to the Planck length scale but the other might be much larger and already detectable in laboratory experiments. In this paper, this is used as a working hypothesis to look for physical effects that might settle this question. Phase-space modifications, resonances, interference, electron spin resonance and non-commutative QED are considered. (orig.)

  13. Morphology Characterization of PP/Clay Nanocomposites Across the Length Scales of the Structural Architecture

    NARCIS (Netherlands)

    Szazdi, Laszlo; Abranyi, Agnes; Pukansky Jr, Bela; Vancso, Gyula J.; Pukanszky, B.; Pukanszky, Bela

    2006-01-01

    The structure and rheological properties of a large number of layered silicate poly(propylene) nanocomposites were studied with widely varying compositions. Morphology characterization at different length scales was achieved by SEM, TEM, and XRD. Rheological measurements supplied additional

  14. Hierarchical self-assembly of two-length-scale multiblock copolymers

    International Nuclear Information System (INIS)

    Brinke, Gerrit ten; Loos, Katja; Vukovic, Ivana; Du Sart, Gerrit Gobius

    2011-01-01

    The self-assembly in diblock copolymer-based supramolecules, obtained by hydrogen bonding short side chains to one of the blocks, as well as in two-length-scale linear terpolymers results in hierarchical structure formation. The orientation of the different domains, e.g. layers in the case of a lamellar-in-lamellar structure, is determined by the molecular architecture, graft-like versus linear, and the relative magnitude of the interactions involved. In both cases parallel and perpendicular arrangements have been observed. The comb-shaped supramolecules approach is ideally suited for the preparation of nanoporous structures. A bicontinuous morphology with the supramolecular comb block forming the channels was finally achieved by extending the original approach to suitable triblock copolymer-based supramolecules.

  15. Nanometer scale materials - characterization and fabrication

    International Nuclear Information System (INIS)

    Murday, J.S.; Colton, R.J.; Rath, B.B.

    1993-01-01

    Materials and solid state scientists have made excellent progress in understanding material behavior in length scales from microns to meters. Below a micron, the lack of analytical prowess has been a deterrent. At the atomic scale, chemistry and atomic/molecular physics have also contributed significant understanding of matter. The maturity of these three communities, materials, solid state physics, atomic/molecular physics/chemistry, coupled with the development of analytical capability for nanometer-sized structures, promises to broaden our grasp of materials behavior into the last realm of unexplored size scales-nanometer. The motivation for this effort is driven both by the expectation of novel properties as well as by the potential solution to long standing technological issues. Critical scale lengths for many material properties fall in the nanometer range, examples include superconductor coherence lengths, electron inelastic mean free paths, electron wavelengths in solids, critical lengths for dislocation generation. Structures of nanometer size will undoubtedly show behavior unexpected from experience at the larger and smaller scales. Many technological problems such as adhesion, friction, corrosion, elasticity and fracture are believed to depend critically on nanometer scale phenomena. The millennia-old efforts to improve materials behavior have undoubtedly been slowed by our inability to 'observe' in this size range. (orig.)

  16. Lower Length Scale Model Development for Embrittlement of Reactor Presure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the lower-length-scale effort during FY 2016 in developing mesoscale capabilities for microstructure evolution, plasticity and fracture in reactor pressure vessel steels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation induced defect accumulation and irradiation enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. A crystal plasticity model to capture defect-dislocation interaction and a damage model for cleavage micro-crack propagation is also provided.

  17. Reynolds number scaling of straining motions in turbulence

    Science.gov (United States)

    Elsinga, Gerrit; Ishihara, T.; Goudar, M. V.; da Silva, C. B.; Hunt, J. C. R.

    2017-11-01

    Strain is an important fluid motion in turbulence as it is associated with the kinetic energy dissipation rate, vorticity stretching, and the dispersion of passive scalars. The present study investigates the scaling of the turbulent straining motions by evaluating the flow in the eigenframe of the local strain-rate tensor. The analysis is based on DNS of homogeneous isotropic turbulence covering a Reynolds number range Reλ = 34.6 - 1131. The resulting flow pattern reveals a shear layer containing tube-like vortices and a dissipation sheet, which both scale on the Kolmogorov length scale, η. The vorticity stretching motions scale on the Taylor length scale, while the flow outside the shear layer scales on the integral length scale. These scaling results are consistent with those in wall-bounded flow, which suggests a quantitative universality between the different flows. The overall coherence length of the vorticity is 120 η in all directions, which is considerably larger than the typical size of individual vortices, and reflects the importance of spatial organization at the small scales. Transitions in flow structure are identified at Reλ 45 and 250. Below these respective Reynolds numbers, the small-scale motions and the vorticity stretching motions appear underdeveloped.

  18. Self-organization of Au–CdSe hybrid nanoflowers at different length scales via bi-functional diamine linkers

    Energy Technology Data Exchange (ETDEWEB)

    AbouZeid, Khaled Mohamed [Virginia Commonwealth University, Department of Chemistry (United States); Mohamed, Mona Bakr [Cairo University, National Institute of Laser Enhanced Science (NILES) (Egypt); El-Shall, M. Samy, E-mail: mselshal@vcu.edu [Virginia Commonwealth University, Department of Chemistry (United States)

    2016-01-15

    This work introduces a series of molecular bridging bi-functional linkers to produce laterally self-assembled nanostructures of the Au–CdSe nanoflowers on different length scales ranging from 10 nm to 100 microns. Assembly of Au nanocrystals within amorphous CdSe rods is found in the early stages of the growth of the Au–CdSe nanoflowers. The Au–CdSe nanoflowers are formed through a one-pot low temperature (150 °C) process where CdSe clusters are adsorbed on the surface of the Au cores, and they then start to form multiple arms and branches resulting in flower-shaped hybrid nanostructures. More complex assembly at a micron length scale can be achieved by means of bi-functional capping agents with appropriate alkyl chain lengths, such as 1,12-diaminododecane.

  19. Measuring the topology of large-scale structure in the universe

    Science.gov (United States)

    Gott, J. Richard, III

    1988-11-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data.

  20. Measuring the topology of large-scale structure in the universe

    International Nuclear Information System (INIS)

    Gott, J.R. III

    1988-01-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data. 45 references

  1. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale.

    Science.gov (United States)

    Enright, Ryan; Miljkovic, Nenad; Al-Obeidi, Ahmed; Thompson, Carl V; Wang, Evelyn N

    2012-10-09

    Water condensation on surfaces is a ubiquitous phase-change process that plays a crucial role in nature and across a range of industrial applications, including energy production, desalination, and environmental control. Nanotechnology has created opportunities to manipulate this process through the precise control of surface structure and chemistry, thus enabling the biomimicry of natural surfaces, such as the leaves of certain plant species, to realize superhydrophobic condensation. However, this "bottom-up" wetting process is inadequately described using typical global thermodynamic analyses and remains poorly understood. In this work, we elucidate, through imaging experiments on surfaces with structure length scales ranging from 100 nm to 10 μm and wetting physics, how local energy barriers are essential to understand non-equilibrium condensed droplet morphologies and demonstrate that overcoming these barriers via nucleation-mediated droplet-droplet interactions leads to the emergence of wetting states not predicted by scale-invariant global thermodynamic analysis. This mechanistic understanding offers insight into the role of surface-structure length scale, provides a quantitative basis for designing surfaces optimized for condensation in engineered systems, and promises insight into ice formation on surfaces that initiates with the condensation of subcooled water.

  2. The small length scale effect for a non-local cantilever beam: a paradox solved.

    Science.gov (United States)

    Challamel, N; Wang, C M

    2008-08-27

    Non-local continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with microstructures or nanostructures. This paper presents some simplified non-local elastic beam models, for the bending analyses of small scale rods. Integral-type or gradient non-local models abandon the classical assumption of locality, and admit that stress depends not only on the strain value at that point but also on the strain values of all points on the body. There is a paradox still unresolved at this stage: some bending solutions of integral-based non-local elastic beams have been found to be identical to the classical (local) solution, i.e. the small scale effect is not present at all. One example is the Euler-Bernoulli cantilever nanobeam model with a point load which has application in microelectromechanical systems and nanoelectromechanical systems as an actuator. In this paper, it will be shown that this paradox may be overcome with a gradient elastic model as well as an integral non-local elastic model that is based on combining the local and the non-local curvatures in the constitutive elastic relation. The latter model comprises the classical gradient model and Eringen's integral model, and its application produces small length scale terms in the non-local elastic cantilever beam solution.

  3. A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales

    International Nuclear Information System (INIS)

    Atzberger, Paul J.; Kramer, Peter R.; Peskin, Charles S.

    2007-01-01

    In modeling many biological systems, it is important to take into account flexible structures which interact with a fluid. At the length scale of cells and cell organelles, thermal fluctuations of the aqueous environment become significant. In this work, it is shown how the immersed boundary method of [C.S. Peskin, The immersed boundary method, Acta Num. 11 (2002) 1-39.] for modeling flexible structures immersed in a fluid can be extended to include thermal fluctuations. A stochastic numerical method is proposed which deals with stiffness in the system of equations by handling systematically the statistical contributions of the fastest dynamics of the fluid and immersed structures over long time steps. An important feature of the numerical method is that time steps can be taken in which the degrees of freedom of the fluid are completely underresolved, partially resolved, or fully resolved while retaining a good level of accuracy. Error estimates in each of these regimes are given for the method. A number of theoretical and numerical checks are furthermore performed to assess its physical fidelity. For a conservative force, the method is found to simulate particles with the correct Boltzmann equilibrium statistics. It is shown in three dimensions that the diffusion of immersed particles simulated with the method has the correct scaling in the physical parameters. The method is also shown to reproduce a well-known hydrodynamic effect of a Brownian particle in which the velocity autocorrelation function exhibits an algebraic (τ -3/2 ) decay for long times [B.J. Alder, T.E. Wainwright, Decay of the Velocity Autocorrelation Function, Phys. Rev. A 1(1) (1970) 18-21]. A few preliminary results are presented for more complex systems which demonstrate some potential application areas of the method. Specifically, we present simulations of osmotic effects of molecular dimers, worm-like chain polymer knots, and a basic model of a molecular motor immersed in fluid subject to a

  4. Lecture archiving on a larger scale at the University of Michigan and CERN

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Jeremy; Lougheed, Robert; Neal, Homer A, E-mail: herrj@umich.ed [University of Michigan, 450 Church St., Ann Arbor, MI 48109 (United States)

    2010-04-01

    The ATLAS Collaboratory Project at the University of Michigan has been a leader in the area of collaborative tools since 1999. Its activities include the development of standards, software and hardware tools for lecture archiving, and making recommendations for videoconferencing and remote teaching facilities. Starting in 2006 our group became involved in classroom recordings, and in early 2008 we spawned CARMA, a University-wide recording service. This service uses a new portable recording system that we developed. Capture, archiving and dissemination of rich multimedia content from lectures, tutorials and classes are increasingly widespread activities among universities and research institutes. A growing array of related commercial and open source technologies is becoming available, with several new products introduced in the last couple years. As the result of a new close partnership between U-M and CERN IT, a market survey of these products was conducted and a summary of the results are presented here. It is informing an ambitious effort in 2009 to equip many CERN rooms with automated lecture archiving systems, on a much larger scale than before. This new technology is being integrated with CERN's existing webcast, CDS, and Indico applications.

  5. Lecture archiving on a larger scale at the University of Michigan and CERN

    International Nuclear Information System (INIS)

    Herr, Jeremy; Lougheed, Robert; Neal, Homer A

    2010-01-01

    The ATLAS Collaboratory Project at the University of Michigan has been a leader in the area of collaborative tools since 1999. Its activities include the development of standards, software and hardware tools for lecture archiving, and making recommendations for videoconferencing and remote teaching facilities. Starting in 2006 our group became involved in classroom recordings, and in early 2008 we spawned CARMA, a University-wide recording service. This service uses a new portable recording system that we developed. Capture, archiving and dissemination of rich multimedia content from lectures, tutorials and classes are increasingly widespread activities among universities and research institutes. A growing array of related commercial and open source technologies is becoming available, with several new products introduced in the last couple years. As the result of a new close partnership between U-M and CERN IT, a market survey of these products was conducted and a summary of the results are presented here. It is informing an ambitious effort in 2009 to equip many CERN rooms with automated lecture archiving systems, on a much larger scale than before. This new technology is being integrated with CERN's existing webcast, CDS, and Indico applications.

  6. Characteristic length scale of input data in distributed models: implications for modeling grid size

    Science.gov (United States)

    Artan, G. A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  7. Characteristic length scale of input data in distributed models: implications for modeling grain size

    Science.gov (United States)

    Artan, Guleid A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  8. Molecular Precision at Micrometer Length Scales: Hierarchical Assembly of DNA-Protein Nanostructures.

    Science.gov (United States)

    Schiffels, Daniel; Szalai, Veronika A; Liddle, J Alexander

    2017-07-25

    Robust self-assembly across length scales is a ubiquitous feature of biological systems but remains challenging for synthetic structures. Taking a cue from biology-where disparate molecules work together to produce large, functional assemblies-we demonstrate how to engineer microscale structures with nanoscale features: Our self-assembly approach begins by using DNA polymerase to controllably create double-stranded DNA (dsDNA) sections on a single-stranded template. The single-stranded DNA (ssDNA) sections are then folded into a mechanically flexible skeleton by the origami method. This process simultaneously shapes the structure at the nanoscale and directs the large-scale geometry. The DNA skeleton guides the assembly of RecA protein filaments, which provides rigidity at the micrometer scale. We use our modular design strategy to assemble tetrahedral, rectangular, and linear shapes of defined dimensions. This method enables the robust construction of complex assemblies, greatly extending the range of DNA-based self-assembly methods.

  9. Length-scale dependent ensemble-averaged conductance of a 1D disordered conductor: Conductance minimum

    International Nuclear Information System (INIS)

    Tit, N.; Kumar, N.; Pradhan, P.

    1993-07-01

    Exact numerical calculation of ensemble averaged length-scale dependent conductance for the 1D Anderson model is shown to support an earlier conjecture for a conductance minimum. Numerical results can be understood in terms of the Thouless expression for the conductance and the Wigner level-spacing statistics. (author). 8 refs, 2 figs

  10. Cycles, scaling and crossover phenomenon in length of the day (LOD) time series

    Science.gov (United States)

    Telesca, Luciano

    2007-06-01

    The dynamics of the temporal fluctuations of the length of the day (LOD) time series from January 1, 1962 to November 2, 2006 were investigated. The power spectrum of the whole time series has revealed annual, semi-annual, decadal and daily oscillatory behaviors, correlated with oceanic-atmospheric processes and interactions. The scaling behavior was analyzed by using the detrended fluctuation analysis (DFA), which has revealed two different scaling regimes, separated by a crossover timescale at approximately 23 days. Flicker-noise process can describe the dynamics of the LOD time regime involving intermediate and long timescales, while Brownian dynamics characterizes the LOD time series for small timescales.

  11. Scaling behaviour of the correlation length for the two-point correlation function in the random field Ising chain

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Adrian; Stinchcombe, Robin [Theoretical Physics, University of Oxford, Oxford (United Kingdom)

    1996-07-07

    We study the general behaviour of the correlation length {zeta}(kT:h) for two-point correlation function of the local fields in an Ising chain with binary distributed fields. At zero field it is shown that {zeta} is the same as the zero-field correlation length for the spin-spin correlation function. For the field-dominated behaviour of {zeta} we find an exponent for the power-law divergence which is smaller than the exponent for the spin-spin correlation length. The entire behaviour of the correlation length can be described by a single crossover scaling function involving the new critical exponent. (author)

  12. Efficient coupling of 527 nm laser beam power to a long scale-length plasma

    International Nuclear Information System (INIS)

    Moody, J.D.; Divol, L.; Glenzer, S.H.; MacKinnon, A.J.; Froula, D.H.; Gregori, G.; Kruer, W.L.; Meezan, N.B.; Suter, L.J.; Williams, E.A.; Bahr, R.; Seka, W.

    2006-01-01

    We experimentally demonstrate that application of laser smoothing schemes including smoothing by spectral dispersion (SSD) and polarization smoothing (PS) increases the intensity range for efficient coupling of frequency doubled (527 nm) laser light to a long scale-length plasma with n e /n cr equals 0.14 and T e equals 2 keV. (authors)

  13. Modelling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks

    International Nuclear Information System (INIS)

    Amanifard, N.; Nariman-Zadeh, N.; Farahani, M.H.; Khalkhali, A.

    2008-01-01

    Over the past 15 years there have been several research efforts to capture the stall inception nature in axial flow compressors. However previous analytical models could not explain the formation of short-length-scale stall cells. This paper provides a new model based on evolved GMDH neural network for transient evolution of multiple short-length-scale stall cells in an axial compressor. Genetic Algorithms (GAs) are also employed for optimal design of connectivity configuration of such GMDH-type neural networks. In this way, low-pass filter (LPF) pressure trace near the rotor leading edge is modelled with respect to the variation of pressure coefficient, flow rate coefficient, and number of rotor rotations which are defined as inputs

  14. Spatial-Scale Characteristics of Precipitation Simulated by Regional Climate Models and the Implications for Hydrological Modeling

    DEFF Research Database (Denmark)

    Rasmussen, S.H.; Christensen, J. H.; Drews, Martin

    2012-01-01

    Precipitation simulated by regional climate models (RCMs) is generally biased with respect to observations, especially at the local scale of a few tens of kilometers. This study investigates how well two different RCMs are able to reproduce the spatial correlation patterns of observed summer...... length scales on the order of 130 km are found in both observed data and RCM simulations. When simulations and observations are aggregated to different grid sizes, the pattern correlation significantly decreases when the aggregation length is less than roughly 100 km. Furthermore, the intermodel standard......, reflecting larger predictive certainty of the RCMs at larger scales. The findings on aggregated grid scales are shown to be largely independent of the underlying RCMs grid resolutions but not of the overall size of RCM domain. With regard to hydrological modeling applications, these findings indicate...

  15. Persistent Homology fingerprinting of microstructural controls on larger-scale fluid flow in porous media

    Science.gov (United States)

    Moon, C.; Mitchell, S. A.; Callor, N.; Dewers, T. A.; Heath, J. E.; Yoon, H.; Conner, G. R.

    2017-12-01

    Traditional subsurface continuum multiphysics models include useful yet limiting geometrical assumptions: penny- or disc-shaped cracks, spherical or elliptical pores, bundles of capillary tubes, cubic law fracture permeability, etc. Each physics (flow, transport, mechanics) uses constitutive models with an increasing number of fit parameters that pertain to the microporous structure of the rock, but bear no inter-physics relationships or self-consistency. Recent advances in digital rock physics and pore-scale modeling link complex physics to detailed pore-level geometries, but measures for upscaling are somewhat unsatisfactory and come at a high computational cost. Continuum mechanics rely on a separation between small scale pore fluctuations and larger scale heterogeneity (and perhaps anisotropy), but this can break down (particularly for shales). Algebraic topology offers powerful mathematical tools for describing a local-to-global structure of shapes. Persistent homology, in particular, analyzes the dynamics of topological features and summarizes into numeric values. It offers a roadmap to both "fingerprint" topologies of pore structure and multiscale connectedness as well as links pore structure to physical behavior, thus potentially providing a means to relate the dependence of constitutive behaviors of pore structures in a self-consistent way. We present a persistence homology (PH) analysis framework of 3D image sets including a focused ion beam-scanning electron microscopy data set of the Selma Chalk. We extract structural characteristics of sampling volumes via persistence homology and fit a statistical model using the summarized values to estimate porosity, permeability, and connectivity—Lattice Boltzmann methods for single phase flow modeling are used to obtain the relationships. These PH methods allow for prediction of geophysical properties based on the geometry and connectivity in a computationally efficient way. Sandia National Laboratories is a

  16. Explanation of the values of Hack's drainage basin, river length scaling exponent

    Science.gov (United States)

    Hunt, A. G.

    2015-08-01

    Percolation theory can be used to find water flow paths of least resistance. The application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law allows interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  17. Determining the minimal length scale of the generalized uncertainty principle from the entropy-area relationship

    International Nuclear Information System (INIS)

    Kim, Wontae; Oh, John J.

    2008-01-01

    We derive the formula of the black hole entropy with a minimal length of the Planck size by counting quantum modes of scalar fields in the vicinity of the black hole horizon, taking into account the generalized uncertainty principle (GUP). This formula is applied to some intriguing examples of black holes - the Schwarzschild black hole, the Reissner-Nordstrom black hole, and the magnetically charged dilatonic black hole. As a result, it is shown that the GUP parameter can be determined by imposing the black hole entropy-area relationship, which has a Planck length scale and a universal form within the near-horizon expansion

  18. Pollutant Dispersion in Boundary Layers Exposed to Rural-to-Urban Transitions: Varying the Spanwise Length Scale of the Roughness

    Science.gov (United States)

    Tomas, J. M.; Eisma, H. E.; Pourquie, M. J. B. M.; Elsinga, G. E.; Jonker, H. J. J.; Westerweel, J.

    2017-05-01

    Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic particle image velocimetry and laser-induced fluorescence, have been used to investigate pollutant dispersion mechanisms in regions where the surface changes from rural to urban roughness. The urban roughness was characterized by an array of rectangular obstacles in an in-line arrangement. The streamwise length scale of the roughness was kept constant, while the spanwise length scale was varied by varying the obstacle aspect ratio l / h between 1 and 8, where l is the spanwise dimension of the obstacles and h is the height of the obstacles. Additionally, the case of two-dimensional roughness (riblets) was considered in LES. A smooth-wall turbulent boundary layer of depth 10 h was used as the approaching flow, and a line source of passive tracer was placed 2 h upstream of the urban canopy. The experimental and numerical results show good agreement, while minor discrepancies are readily explained. It is found that for l/h=2 the drag induced by the urban canopy is largest of all considered cases, and is caused by a large-scale secondary flow. In addition, due to the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identified that is responsible for street-canyon ventilation for the sixth street and onwards. Moreover, it is shown that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the canopy, while the streamwise length scale does not show a similar trend.

  19. Characteristic length scale of the magnon accumulation in Fe{sub 3}O{sub 4}/Pt bilayer structures by incoherent thermal excitation

    Energy Technology Data Exchange (ETDEWEB)

    Anadón, A., E-mail: anadonb@unizar.es; Lucas, I.; Morellón, L. [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Ramos, R. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); Algarabel, P. A. [Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009 Zaragoza (Spain); Ibarra, M. R.; Aguirre, M. H. [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Laboratorio de Microscopías avanzadas, Universidad de Zaragoza, 50018 Zaragoza (Spain)

    2016-07-04

    The dependence of Spin Seebeck effect (SSE) with the thickness of the magnetic materials is studied by means of incoherent thermal excitation. The SSE voltage signal in Fe{sub 3}O{sub 4}/Pt bilayer structure increases with the magnetic material thickness up to 100 nm, approximately, showing signs of saturation for larger thickness. This dependence is well described in terms of a spin current pumped in the platinum film by the magnon accumulation in the magnetic material. The spin current is generated by a gradient of temperature in the system and detected by the Pt top contact by means of inverse spin Hall effect. Calculations in the frame of the linear response theory adjust with a high degree of accuracy the experimental data, giving a thermal length scale of the magnon accumulation (Λ) of 17 ± 3 nm at 300 K and Λ = 40 ± 10 nm at 70 K.

  20. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition

    International Nuclear Information System (INIS)

    Jiang, L.; Li, J.K.; Liu, G.; Wang, R.H.; Chen, B.A.; Zhang, J.Y.; Sun, J.; Yang, M.X.; Yang, G.; Yang, J.; Cao, X.Z.

    2015-01-01

    Heat-treatable Al alloys containing Al–2.5 wt% Cu (Al–Cu) and Al–2.5 wt% Cu–0.3 wt% Sc (Al–Cu–Sc) with different grain length scales, i.e., average grain size >10 μm ( defined coarse grained, CG), 1–2 μm (fine grained, FG), and <1 μm (ultrafine grained, UFG), were prepared by equal-channel angular pressing (ECAP). The length scale and Sc microalloying effects and their interplay on the precipitation behavior and mechanical properties of the Al–Cu alloys were systematically investigated. In the Al–Cu alloys, intergranular θ-Al 2 Cu precipitation gradually dominated by sacrificing the intragranular θ′-Al 2 Cu precipitation with reducing the length scale. Especially in the UFG regime, only intergranular θ-Al 2 Cu particles were precipitated and intragranular θ′-Al 2 Cu precipitation was completely disappeared. This led to a remarkable reduction in yield strength and ductility due to insufficient dislocation storage capacity. The minor Sc addition resulted in a microalloying effect in the Al–Cu alloy, which, however, is strongly dependent on the length scale. The smaller is the grain size, the more active is the microalloying effect that promotes the intragranular precipitation while reduces the intergranular precipitation. Correspondingly, compared with their Sc-free counterparts, the yield strength of post-aged CG, FG, and UFG Al–Cu alloys with Sc addition increased by ~36 MPa, ~56 MPa, and ~150 MPa, simultaneously in tensile elongation by ~20%, ~30%, and 280%, respectively. The grain size-induced evolutions in vacancy concentration/distribution and number density of vacancy-solute/solute–solute clusters and their influences on precipitation nucleation and kinetics have been comprehensively considered to rationalize the length scale-dependent Sc microalloying mechanisms using positron annihilation lifetime spectrum and three dimension atom probe. The increase in ductility was analyzed in the light of Sc microalloying effect and the

  1. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L.; Li, J.K. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, G., E-mail: lgsammer@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, R.H. [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Chen, B.A.; Zhang, J.Y. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Sun, J., E-mail: junsun@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Yang, M.X.; Yang, G. [Central Iron and Steel Research Institute, Beijing 100081 (China); Yang, J.; Cao, X.Z. [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-06-18

    Heat-treatable Al alloys containing Al–2.5 wt% Cu (Al–Cu) and Al–2.5 wt% Cu–0.3 wt% Sc (Al–Cu–Sc) with different grain length scales, i.e., average grain size >10 μm ( defined coarse grained, CG), 1–2 μm (fine grained, FG), and <1 μm (ultrafine grained, UFG), were prepared by equal-channel angular pressing (ECAP). The length scale and Sc microalloying effects and their interplay on the precipitation behavior and mechanical properties of the Al–Cu alloys were systematically investigated. In the Al–Cu alloys, intergranular θ-Al{sub 2}Cu precipitation gradually dominated by sacrificing the intragranular θ′-Al{sub 2}Cu precipitation with reducing the length scale. Especially in the UFG regime, only intergranular θ-Al{sub 2}Cu particles were precipitated and intragranular θ′-Al{sub 2}Cu precipitation was completely disappeared. This led to a remarkable reduction in yield strength and ductility due to insufficient dislocation storage capacity. The minor Sc addition resulted in a microalloying effect in the Al–Cu alloy, which, however, is strongly dependent on the length scale. The smaller is the grain size, the more active is the microalloying effect that promotes the intragranular precipitation while reduces the intergranular precipitation. Correspondingly, compared with their Sc-free counterparts, the yield strength of post-aged CG, FG, and UFG Al–Cu alloys with Sc addition increased by ~36 MPa, ~56 MPa, and ~150 MPa, simultaneously in tensile elongation by ~20%, ~30%, and 280%, respectively. The grain size-induced evolutions in vacancy concentration/distribution and number density of vacancy-solute/solute–solute clusters and their influences on precipitation nucleation and kinetics have been comprehensively considered to rationalize the length scale-dependent Sc microalloying mechanisms using positron annihilation lifetime spectrum and three dimension atom probe. The increase in ductility was analyzed in the light of Sc microalloying

  2. Effects of device scaling and geometry on MOS radiation hardness assurance

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Fleetwood, D.M.; Winokur, P.S.; Schwank, J.R.; Meisenheimer, T.L.

    1993-01-01

    In this work the authors investigate the effects of transistor scaling and geometry on radiation hardness. The total dose response is shown to depend strongly on transistor channel length. Specifically, transistors with shorter gate lengths tend to show more negative threshold-voltage shifts during irradiation than transistors with longer gate lengths. Similarly, transistors with longer gate lengths tend to show more positive threshold-voltage shifts during post-irradiation annealing than transistors with shorter gate lengths. These differences in radiation response, caused by differences in transistor size and geometry, will be important to factor into test-structure-to-IC correlations necessary to support cost-effective Qualified Manufacturers List (QML) hardness assurance. Transistors with minimum gate length (more negative ΔV th ) will have a larger effect on standby power supply current for an IC at high dose rates, such as in a weapon environment, where worst-case response is associated with negative threshold-voltage shifts during irradiation. On the other hand, transistors with maximum gate length (more positive ΔV th ) will have a larger effect on the timing parameters of an IC at low dose rates, such as in a space environment, where worst-case response is represented by positive threshold-voltage shifts after postirradiation anneal. The channel size and geometry effects they observe cannot be predicted from simple scaling models, but occur because of real differences in oxide-, interface-, and border-trap charge densities among devices of different sizes

  3. Statistical theory and transition in multiple-scale-lengths turbulence in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-06-01

    The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Nonlinear interactions in the same kind of fluctuations as well as nonlinear interplay between different classes of fluctuations are kept in the analysis. Nonlinear interactions are modelled as turbulent drag, nonlinear noise and nonlinear drive, and a set of Langevin equations is formulated. With the help of an Ansatz of a large number of degrees of freedom with positive Lyapunov number, Langevin equations are solved and the fluctuation dissipation theorem in the presence of strong plasma turbulence has been derived. A case where two driving mechanisms (one for micro mode and the other for semi-micro mode) coexist is investigated. It is found that there are several states of fluctuations: in one state, the micro mode is excited and the semi-micro mode is quenched; in the other state, the semi-micro mode is excited, and the micro mode remains at finite but suppressed level. New type of turbulence transition is obtained, and a cusp type catastrophe is revealed. A phase diagram is drawn for turbulence which is composed of multiple classes of fluctuations. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. Finally, the nonlocal heat transport due to the long-wave-length fluctuations, which are noise-pumped by shorter-wave-length ones, is analyzed and the impact on transient transport problems is discussed. (author)

  4. Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model.

    Science.gov (United States)

    Engel, Benjamin D; Ludington, William B; Marshall, Wallace F

    2009-10-05

    The assembly and maintenance of eukaryotic flagella are regulated by intraflagellar transport (IFT), the bidirectional traffic of IFT particles (recently renamed IFT trains) within the flagellum. We previously proposed the balance-point length control model, which predicted that the frequency of train transport should decrease as a function of flagellar length, thus modulating the length-dependent flagellar assembly rate. However, this model was challenged by the differential interference contrast microscopy observation that IFT frequency is length independent. Using total internal reflection fluorescence microscopy to quantify protein traffic during the regeneration of Chlamydomonas reinhardtii flagella, we determined that anterograde IFT trains in short flagella are composed of more kinesin-associated protein and IFT27 proteins than trains in long flagella. This length-dependent remodeling of train size is consistent with the kinetics of flagellar regeneration and supports a revised balance-point model of flagellar length control in which the size of anterograde IFT trains tunes the rate of flagellar assembly.

  5. Length and time scales of the near-surface axial velocity in a high Reynolds number turbulent boundary layer

    International Nuclear Information System (INIS)

    Metzger, M.

    2006-01-01

    Reynolds number effects on relevant length and time scales in the near-wall region of a canonical turbulent boundary layer are investigated. Well resolved measurements in the atmospheric surface layer are compared with existing laboratory data to give a composite Reynolds number range spanning over three orders of magnitude. In the field experiments, a vertical rake of twenty single element hot-wires was used to measure the axial velocity, u, characteristics in the lower log layer region of the atmospheric surface layer that flows over Utah's western desert. Only data acquired under conditions of near-neutral thermal stability are analyzed. The shape of the power spectra of u as a function of distance from the wall, y, and Reynolds number is investigated, with emphasis on the appropriate scaling parameters valid across different wavenumber, k, bands. In particular, distance from the wall is found to scale the region of the u spectra around ky = 1. The presence of a k -1 slope in the spectra is also found to correlate with the Reynolds number dependence in the peak of the root mean square u profile. In addition, Reynolds number trends in the profiles of the Taylor microscales, which represent intermediate length and time scales in the boundary layer, are shown to deviate from classical scaling

  6. Density Functional Theory and Materials Modeling at Atomistic Length Scales

    Directory of Open Access Journals (Sweden)

    Swapan K. Ghosh

    2002-04-01

    Full Text Available Abstract: We discuss the basic concepts of density functional theory (DFT as applied to materials modeling in the microscopic, mesoscopic and macroscopic length scales. The picture that emerges is that of a single unified framework for the study of both quantum and classical systems. While for quantum DFT, the central equation is a one-particle Schrodinger-like Kohn-Sham equation, the classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential, the exact functional form of which is unknown. One therefore approximates the exchange-correlation potential for quantum systems and the excess free energy density functional or the direct correlation functions for classical systems. Illustrative applications of quantum DFT to microscopic modeling of molecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are highlighted.

  7. Laser scattering in large-scale-length plasmas relevant to National Ignition Facility hohlraums

    International Nuclear Information System (INIS)

    MacGowan, B.J.; Berger, R.L.; Afeyan, B.B.

    1996-10-01

    We have used homogeneous plasmas of high density (up to 1.3 X 10 21 electrons per cm 3 ) and temperature (∼ 3 keV) with large density scale lengths (∼2 mm) to approximate conditions within National Ignition Facility (NIF) hohlraums. Within these plasmas we have studied the dependence of stimulated Raman (SRS) and Brillouin (SBS) scattering on beam smoothing and plasma conditions at the relevant laser intensity (3ω, 2 X 10 15 Wcm 2 ). Both SBS and SRS are reduced by the use of smoothing by spectral dispersion (SSD)

  8. Scale effects between body size and limb design in quadrupedal mammals.

    Science.gov (United States)

    Kilbourne, Brandon M; Hoffman, Louwrens C

    2013-01-01

    Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with increasing body size; however, it is unknown if limb rotational inertia also influences the mass-specific cost of transport. Limb length and inertial properties--limb mass, center of mass (COM) position, moment of inertia, radius of gyration, and natural frequency--were measured in 44 species of terrestrial mammals, spanning eight taxonomic orders. Limb length increases disproportionately with body mass via positive allometry (length ∝ body mass(0.40)); the positive allometry of limb length may help explain the scaling of the metabolic cost of transport. When scaled against body mass, forelimb inertial properties, apart from mass, scale with positive allometry. Fore- and hindlimb mass scale according to geometric similarity (limb mass ∝ body mass(1.0)), as do the remaining hindlimb inertial properties. The positive allometry of limb length is largely the result of absolute differences in limb inertial properties between mammalian subgroups. Though likely detrimental to locomotor costs in large mammals, scale effects in limb inertial properties appear to be concomitant with scale effects in sensorimotor control and locomotor ability in terrestrial mammals. Across mammals, the forelimb's potential for angular acceleration scales according to geometric similarity, whereas the hindlimb's potential for angular acceleration scales with positive allometry.

  9. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    Science.gov (United States)

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-01

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. But how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer ‘how far is far enough,’ we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25-2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high

  10. Electron critical gradient scale length measurements of ICRF heated L-mode plasmas at Alcator C-Mod tokamak

    Science.gov (United States)

    Houshmandyar, S.; Hatch, D. R.; Horton, C. W.; Liao, K. T.; Phillips, P. E.; Rowan, W. L.; Zhao, B.; Cao, N. M.; Ernst, D. R.; Greenwald, M.; Howard, N. T.; Hubbard, A. E.; Hughes, J. W.; Rice, J. E.

    2018-04-01

    A profile for the critical gradient scale length (Lc) has been measured in L-mode discharges at the Alcator C-Mod tokamak, where electrons were heated by an ion cyclotron range of frequency through minority heating with the intention of simultaneously varying the heat flux and changing the local gradient. The electron temperature gradient scale length (LTe-1 = |∇Te|/Te) profile was measured via the BT-jog technique [Houshmandyar et al., Rev. Sci. Instrum. 87, 11E101 (2016)] and it was compared with electron heat flux from power balance (TRANSP) analysis. The Te profiles were found to be very stiff and already above the critical values, however, the stiffness was found to be reduced near the q = 3/2 surface. The measured Lc profile is in agreement with electron temperature gradient (ETG) models which predict the dependence of Lc-1 on local Zeff, Te/Ti, and the ratio of the magnetic shear to the safety factor. The results from linear Gene gyrokinetic simulations suggest ETG to be the dominant mode of turbulence in the electron scale (k⊥ρs > 1), and ion temperature gradient/trapped electron mode modes in the ion scale (k⊥ρs < 1). The measured Lc profile is in agreement with the profile of ETG critical gradients deduced from Gene simulations.

  11. A micromechanical approach of suffusion based on a length scale analysis of the grain detachment and grain transport processes.

    Science.gov (United States)

    Wautier, Antoine; Bonelli, Stéphane; Nicot, François

    2017-06-01

    Suffusion is the selective erosion of the finest particles of a soil subjected to an internal flow. Among the four types of internal erosion and piping identified today, suffusion is the least understood. Indeed, there is a lack of micromechanical approaches for identifying the critical microstructural parameters responsible for this process. Based on a discrete element modeling of non cohesive granular assemblies, specific micromechanical tools are developed in a unified framework to account for the two first steps of suffusion, namely the grain detachment and the grain transport processes. Thanks to the use of an enhanced force chain definition and autocorrelation functions the typical lengths scales associated with grain detachment are characterized. From the definition of transport paths based on a graph description of the pore space the typical lengths scales associated with grain transport are recovered. For a uniform grain size distribution, a separation of scales between these two processes exists for the finest particles of a soil

  12. Zonal Articular Cartilage Possesses Complex Mechanical Behavior Spanning Multiple Length Scales: Dependence on Chemical Heterogeneity, Anisotropy, and Microstructure

    Science.gov (United States)

    Wahlquist, Joseph A.

    This work focused on characterizing the mechanical behavior of biological material in physiologically relevant conditions and at sub millimeter length scales. Elucidating the time, length scale, and directionally dependent mechanical behavior of cartilage and other biological materials is critical to adequately recapitulate native mechanosensory cues for cells, create computational models that mimic native tissue behavior, and assess disease progression. This work focused on three broad aspects of characterizing the mechanical behavior of articular cartilage. First, we sought to reveal the causes of time-dependent deformation and variation of mechanical properties with distance from the articular surface. Second, we investigated size dependence of mechanical properties. Finally, we examined material anisotropy of both the calcified and uncalcified tissues of the osteochondral interface. This research provides insight into how articular cartilage serves to support physiologic loads and simultaneously sustain chondrocyte viability.

  13. Dealing with imperfection: quantifying potential length scale artefacts from nominally spherical indenter probes

    International Nuclear Information System (INIS)

    Constantinides, G; Silva, E C C M; Blackman, G S; Vliet, K J Van

    2007-01-01

    Instrumented nanoindenters are commonly employed to extract elastic, plastic or time-dependent mechanical properties of the indented material surface. In several important cases, accurate determination of the indenter probe radii is essential for the proper analytical interpretation of the experimental response, and it cannot be circumvented by an experimentally determined expression for the contact area as a function of depth. Current approaches quantify the indenter probe radii via inference from a series of indents on a material with known elastic modulus (e.g., fused quartz) or through the fitting of two-dimensional projected images acquired via atomic force microscopy (AFM) or scanning electron microscopy (SEM) images. Here, we propose a more robust methodology, based on concepts of differential geometry, for the accurate determination of three-dimensional indenter probe geometry. The methodology is presented and demonstrated for four conospherical indenters with probe radii of the order of 1-10 μm. The deviation of extracted radii with manufacturer specifications is emphasized and the limits of spherical approximations are presented. All four probes deviate from the assumed spherical geometry, such that the effective radii are not independent of distance from the probe apex. Significant errors in interpretation of material behaviour will result if this deviation is unaccounted for during the analysis of indentation load-depth responses obtained from material surfaces of interest, including observation of an artificial length scale that could be misinterpreted as an effect attributable to material length scales less than tens of nanometres in size or extent

  14. Scaling Behavior of Delayed Demixing, Rheology, and Microstructure of Emulsions Flocculated by Depletion and Bridging

    NARCIS (Netherlands)

    Blijdenstein, T.B.J.; Linden, van der E.; Vliet, van T.; Aken, van G.A.

    2004-01-01

    Abstract: This paper describes an experimental comparison of microstructure, rheology, and demixing of bridging- and depletion-flocculated oil-in-water emulsions. Confocal scanning laser microscopy imaging showed that bridging-flocculated emulsions were heterogeneous over larger length scales than

  15. Signatures of non-universal large scales in conditional structure functions from various turbulent flows

    International Nuclear Information System (INIS)

    Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K

    2011-01-01

    We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)

  16. Correlation of optical emission and turbulent length scale in a coaxial jet diffusion flame

    OpenAIRE

    松山, 新吾; Matsuyama, Shingo

    2014-01-01

    This article investigates the correlation between optical emission and turbulent length scale in a coaxial jet diffusion flame. To simulate the H2O emission from an H2/O2 diffusion flame, radiative transfer is calculated on flame data obtained by numerical simulation. H2O emission characteristics are examined for a one-dimensional opposed-flow diffusion flame. The results indicate that H2O emission intensity is linearly dependent on flame thickness. The simulation of H2O emission is then exte...

  17. Integrating experimental and simulation length and time scales in mechanistic studies of friction

    International Nuclear Information System (INIS)

    Sawyer, W G; Perry, S S; Phillpot, S R; Sinnott, S B

    2008-01-01

    Friction is ubiquitous in all aspects of everyday life and has consequently been under study for centuries. Classical theories of friction have been developed and used to successfully solve numerous tribological problems. However, modern applications that involve advanced materials operating under extreme environments can lead to situations where classical theories of friction are insufficient to describe the physical responses of sliding interfaces. Here, we review integrated experimental and computational studies of atomic-scale friction and wear at solid-solid interfaces across length and time scales. The influence of structural orientation in the case of carbon nanotube bundles, and molecular orientation in the case of polymer films of polytetrafluoroethylene and polyethylene, on friction and wear are discussed. In addition, while friction in solids is generally considered to be athermal, under certain conditions thermally activated friction is observed for polymers, carbon nanotubes and graphite. The conditions under which these transitions occur, and their proposed origins, are discussed. Lastly, a discussion of future directions is presented

  18. Screening length in dusty plasma crystals

    International Nuclear Information System (INIS)

    Nikolaev, V S; Timofeev, A V

    2016-01-01

    Particles interaction and value of the screening length in dusty plasma systems are of great interest in dusty plasma area. Three inter-particle potentials (Debye potential, Gurevich potential and interaction potential in the weakly collisional regime) are used to solve equilibrium equations for two dusty particles suspended in a parabolic trap. The inter-particle distance dependence on screening length, trap parameter and particle charge is obtained. The functional form of inter-particle distance dependence on ion temperature is investigated and compared with experimental data at 200-300 K in order to test used potentials applicability to dusty plasma systems at room temperatures. The preference is given to the Yukawa-type potential including effective values of particle charge and screening length. The estimated effective value of the screening length is 5-15 times larger than the Debye length. (paper)

  19. Are larger and/or more symmetrical Drosophila melanogaster (Diptera, Drosophilidae males more successful in matings in nature?

    Directory of Open Access Journals (Sweden)

    Sofija Pavković-Lučić

    Full Text Available Are larger and/or more symmetrical Drosophila melanogaster (Diptera, Drosophilidae males more successful in matings in nature? Sexual selection in Drosophila melanogaster, related to body size and fluctuating asymmetry in wing length and number of sex comb teeth in males, was tested in natural conditions. Males collected in copula were significantly larger than those collected as a single, while no difference in mean number of sex comb teeth between copulating and single males was observed. On the other hand, single males had greater asymmetry both for wing length and number of sex comb teeth than their mating counterparts. It looks like that symmetry of these bilateral traits also may play a role in sexual selection in this dipteran species in nature.

  20. Morphological quantification of hierarchical geomaterials by X-ray nano-CT bridges the gap from nano to micro length scales

    KAUST Repository

    Brisard, S.; Chae, R. S.; Bihannic, I.; Michot, L.; Guttmann, P.; Thieme, J.; Schneider, G.; Monteiro, P. J. M.; Levitz, P.

    2012-01-01

    Morphological quantification of the complex structure of hierarchical geomaterials is of great relevance for Earth science and environmental engineering, among others. To date, methods that quantify the 3D morphology on length scales ranging from a

  1. Optimization of Kα bursts for photon energies between 1.7 and 7 keV produced by femtosecond-laser-produced plasmas of different scale length

    International Nuclear Information System (INIS)

    Ziener, Ch.; Uschmann, I.; Stobrawa, G.; Reich, Ch.; Gibbon, P.; Feurer, T.; Morak, A.; Duesterer, S.; Schwoerer, H.; Foerster, E.; Sauerbrey, R.

    2002-01-01

    The conversion efficiency of a 90 fs high-power laser pulse focused onto a solid target into x-ray Kα line emission was measured. By using three different elements as target material (Si, Ti, and Co), interesting candidates for fast x-ray diffraction applications were selected. The Kα output was measured with toroidally bent crystal monochromators combined with a GaAsP Schottky diode. Optimization was performed for different laser intensities as well as for different density scale lengths of a preformed plasma. These different scale lengths were realized by prepulses of different intensities and delay times with respect to the main pulse. Whereas the Kα yield varied by a factor of 1.8 for different laser intensities, the variation of the density scale length could provide a gain factor up to 4.6 for the Kα output

  2. Comparison of the Effects of the Different Methods for Computing the Slope Length Factor at a Watershed Scale

    Directory of Open Access Journals (Sweden)

    Fu Suhua

    2013-09-01

    Full Text Available The slope length factor is one of the parameters of the Universal Soil Loss Equation (USLE and the Revised Universal Soil Loss Equation (RUSLE and is sometimes calculated based on a digital elevation model (DEM. The methods for calculating the slope length factor are important because the values obtained may depend on the methods used for calculation. The purpose of this study was to compare the difference in spatial distribution of the slope length factor between the different methods at a watershed scale. One method used the uniform slope length factor equation (USLFE where the effects of slope irregularities (such as slope gradient, etc. on soil erosion by water were not considered. The other method used segmented slope length factor equation(SSLFE which considered the effects of slope irregularities on soil erosion by water. The Arc Macro Language (AML Version 4 program for the revised universal soil loss equation(RUSLE.which uses the USLFE, was chosen to calculate the slope length factor. In a parallel analysis, the AML code of RUSLE Version 4 was modified according to the SSLFE to calculate the slope length factor. Two watersheds with different slope and gully densities were chosen. The results show that the slope length factor and soil loss using the USLFE method were lower than those using the SSLFE method, especially on downslopes watershed with more frequent steep slopes and higher gully densities. In addition, the slope length factor and soil loss calculated by the USLFE showed less spatial variation.

  3. The role of discharge variation in scaling of drainage area and food chain length in rivers

    Science.gov (United States)

    Sabo, John L.; Finlay, Jacques C.; Kennedy, Theodore A.; Post, David M.

    2010-01-01

    Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

  4. Characterization of long-scale-length plasmas produced from plastic foam targets for laser plasma instability (LPI) research

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.

    2017-10-01

    We report on an experimental effort to produce plasmas with long scale lengths for the study of parametric instabilities, such as two plasmon decay (TPD) and stimulated Raman scattering (SRS), under conditions relevant to fusion plasma. In the current experiment, plasmas are formed from low density (10-100 mg/cc) CH foam targets irradiated by Nike krypton fluoride laser pulses (λ = 248 nm, 1 nsec FWHM) with energies up to 1 kJ. This experiment is conducted with two primary diagnostics: the grid image refractometer (Nike-GIR) to measure electron density and temperature profiles of the coronas, and time-resolved spectrometers with absolute intensity calibration to examine scattered light features of TPD or SRS. Nike-GIR was recently upgraded with a 5th harmonic probe laser (λ = 213 nm) to access plasma regions near quarter critical density of 248 nm light (4.5 ×1021 cm-3). The results will be discussed with data obtained from 120 μm scale-length plasmas created on solid CH targets in previous LPI experiments at Nike. Work supported by DoE/NNSA.

  5. Beam displacement as a function of temperature and turbulence length scale at two different laser radiation wavelengths.

    Science.gov (United States)

    Isterling, William M; Dally, Bassam B; Alwahabi, Zeyad T; Dubovinsky, Miro; Wright, Daniel

    2012-01-01

    Narrow laser beams directed from aircraft may at times pass through the exhaust plume of the engines and potentially degrade some of the laser beam characteristics. This paper reports on controlled studies of laser beam deviation arising from propagation through turbulent hot gases, in a well-characterized laboratory burner, with conditions of relevance to aircraft engine exhaust plumes. The impact of the temperature, laser wavelength, and turbulence length scale on the beam deviation has been investigated. It was found that the laser beam displacement increases with the turbulent integral length scale. The effect of temperature on the laser beam angular deviation, σ, using two different laser wavelengths, namely 4.67 μm and 632.8 nm, was recorded. It was found that the beam deviation for both wavelengths may be semiempirically modeled using a single function of the form, σ=a(b+(1/T)(2))(-1), with two parameters only, a and b, where σ is in microradians and T is the temperature in °C. © 2012 Optical Society of America

  6. Physics on smallest scales. An introduction to minimal length phenomenology

    International Nuclear Information System (INIS)

    Sprenger, Martin; Goethe Univ., Frankfurt am Main; Nicolini, Piero; Bleicher, Marcus

    2012-02-01

    Many modern theories which try to unite gravity with the Standard Model of particle physics, as e.g. string theory, propose two key modifications to the commonly known physical theories: - the existence of additional space dimensions - the existence of a minimal length distance or maximal resolution. While extra dimensions have received a wide coverage in publications over the last ten years (especially due to the prediction of micro black hole production at the LHC), the phenomenology of models with a minimal length is still less investigated. In a summer study project for bachelor students in 2010 we have explored some phenomenological implications of the potential existence of a minimal length. In this paper we review the idea and formalism of a quantum gravity induced minimal length in the generalised uncertainty principle framework as well as in the coherent state approach to non- commutative geometry. These approaches are effective models which can make model-independent predictions for experiments and are ideally suited for phenomenological studies. Pedagogical examples are provided to grasp the effects of a quantum gravity induced minimal length. (orig.)

  7. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    Science.gov (United States)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  8. Sensitivity of the two-dimensional shearless mixing layer to the initial turbulent kinetic energy and integral length scale

    Science.gov (United States)

    Fathali, M.; Deshiri, M. Khoshnami

    2016-04-01

    The shearless mixing layer is generated from the interaction of two homogeneous isotropic turbulence (HIT) fields with different integral scales ℓ1 and ℓ2 and different turbulent kinetic energies E1 and E2. In this study, the sensitivity of temporal evolutions of two-dimensional, incompressible shearless mixing layers to the parametric variations of ℓ1/ℓ2 and E1/E2 is investigated. The sensitivity methodology is based on the nonintrusive approach; using direct numerical simulation and generalized polynomial chaos expansion. The analysis is carried out at Reℓ 1=90 for the high-energy HIT region and different integral length scale ratios 1 /4 ≤ℓ1/ℓ2≤4 and turbulent kinetic energy ratios 1 ≤E1/E2≤30 . It is found that the most influential parameter on the variability of the mixing layer evolution is the turbulent kinetic energy while variations of the integral length scale show a negligible influence on the flow field variability. A significant level of anisotropy and intermittency is observed in both large and small scales. In particular, it is found that large scales have higher levels of intermittency and sensitivity to the variations of ℓ1/ℓ2 and E1/E2 compared to the small scales. Reconstructed response surfaces of the flow field intermittency and the turbulent penetration depth show monotonic dependence on ℓ1/ℓ2 and E1/E2 . The mixing layer growth rate and the mixing efficiency both show sensitive dependence on the initial condition parameters. However, the probability density function of these quantities shows relatively small solution variations in response to the variations of the initial condition parameters.

  9. Length of a Hanging Cable

    Directory of Open Access Journals (Sweden)

    Eric Costello

    2011-01-01

    Full Text Available The shape of a cable hanging under its own weight and uniform horizontal tension between two power poles is a catenary. The catenary is a curve which has an equation defined by a hyperbolic cosine function and a scaling factor. The scaling factor for power cables hanging under their own weight is equal to the horizontal tension on the cable divided by the weight of the cable. Both of these values are unknown for this problem. Newton's method was used to approximate the scaling factor and the arc length function to determine the length of the cable. A script was written using the Python programming language in order to quickly perform several iterations of Newton's method to get a good approximation for the scaling factor.

  10. Characteristic Length Scales in Fracture Networks: Hydraulic Connectivity through Periodic Hydraulic Tests

    Science.gov (United States)

    Becker, M.; Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Cole, M. C.; Guiheneuf, N.

    2017-12-01

    Determining hydraulic and transport connectivity in fractured bedrock has long been an important objective in contaminant hydrogeology, petroleum engineering, and geothermal operations. A persistent obstacle to making this determination is that the characteristic length scale is nearly impossible to determine in sparsely fractured networks. Both flow and transport occur through an unknown structure of interconnected fracture and/or fracture zones making the actual length that water or solutes travel undetermined. This poses difficulties for flow and transport models. For, example, hydraulic equations require a separation distance between pumping and observation well to determine hydraulic parameters. When wells pairs are close, the structure of the network can influence the interpretation of well separation and the flow dimension of the tested system. This issue is explored using hydraulic tests conducted in a shallow fractured crystalline rock. Periodic (oscillatory) slug tests were performed at the Ploemeur fractured rock test site located in Brittany, France. Hydraulic connectivity was examined between three zones in one well and four zones in another, located 6 m apart in map view. The wells are sufficiently close, however, that the tangential distance between the tested zones ranges between 6 and 30 m. Using standard periodic formulations of radial flow, estimates of storativity scale inversely with the square of the separation distance and hydraulic diffusivity directly with the square of the separation distance. Uncertainty in the connection paths between the two wells leads to an order of magnitude uncertainty in estimates of storativity and hydraulic diffusivity, although estimates of transmissivity are unaffected. The assumed flow dimension results in alternative estimates of hydraulic parameters. In general, one is faced with the prospect of assuming the hydraulic parameter and inverting the separation distance, or vice versa. Similar uncertainties exist

  11. Classical anomalous absorption in strongly magnetized plasmas and effective shielding length

    International Nuclear Information System (INIS)

    Matsuda, K.

    1981-01-01

    The high-frequency conductivity tensor of a plasma in a magnetic field has been evaluated. An anomalous perpendicular conductivity is obtained for a strongly magnetized plasma. Contrarily to the previous prediction, the effective shielding length is found to be the Debye length even when the Debye length is larger than the electron gyroradius. The effective shielding length is further discussed by presenting the generalized Balescu-Lenard equation

  12. Length-Scale-Dependent Phase Transformation of LiFePO4 : An In situ and Operando Study Using Micro-Raman Spectroscopy and XRD.

    Science.gov (United States)

    Siddique, N A; Salehi, Amir; Wei, Zi; Liu, Dong; Sajjad, Syed D; Liu, Fuqiang

    2015-08-03

    The charge and discharge of lithium ion batteries are often accompanied by electrochemically driven phase-transformation processes. In this work, two in situ and operando methods, that is, micro-Raman spectroscopy and X-ray diffraction (XRD), have been combined to study the phase-transformation process in LiFePO4 at two distinct length scales, namely, particle-level scale (∼1 μm) and macroscopic scale (∼several cm). In situ Raman studies revealed a discrete mode of phase transformation at the particle level. Besides, the preferred electrochemical transport network, particularly the carbon content, was found to govern the sequence of phase transformation among particles. In contrast, at the macroscopic level, studies conducted at four different discharge rates showed a continuous but delayed phase transformation. These findings uncovered the intricate phase transformation in LiFePO4 and potentially offer valuable insights into optimizing the length-scale-dependent properties of battery materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Brief communication: Possible explanation of the values of Hack's drainage basin, river length scaling exponent

    Science.gov (United States)

    Hunt, Allen G.

    2016-04-01

    Percolation theory can be used to find water flow paths of least resistance. Application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law may allow interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  14. Influence of hydration and experimental length scale on themechanical response of human skin in vivo, using optical coherence tomography

    NARCIS (Netherlands)

    Hendriks, F.M.; Brokken, D.; Oomens, C.W.J.; Baaijens, F.P.T.

    2004-01-01

    Human skin is a complex tissue consisting of different layers. To gain better insight into the mechanical behaviour of different skin layers, the mechanical response was studied with experiments of various length scales. Also, the influence of (superficial) hydration on the mechanical response is

  15. Factors affecting economies of scale in combined sewer systems.

    Science.gov (United States)

    Maurer, Max; Wolfram, Martin; Anja, Herlyn

    2010-01-01

    A generic model is introduced that represents the combined sewer infrastructure of a settlement quantitatively. A catchment area module first calculates the length and size distribution of the required sewer pipes on the basis of rain patterns, housing densities and area size. These results are fed into the sewer-cost module in order to estimate the combined sewer costs of the entire catchment area. A detailed analysis of the relevant input parameters for Swiss settlements is used to identify the influence of size on costs. The simulation results confirm that an economy of scale exists for combined sewer systems. This is the result of two main opposing cost factors: (i) increased construction costs for larger sewer systems due to larger pipes and increased rain runoff in larger settlements, and (ii) lower costs due to higher population and building densities in larger towns. In Switzerland, the more or less organically grown settlement structures and limited land availability emphasise the second factor to show an apparent economy of scale. This modelling approach proved to be a powerful tool for understanding the underlying factors affecting the cost structure for water infrastructures.

  16. PIV measurements of the turbulence integral length scale on cold combustion flow field of tangential firing boiler

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wen-fei; Xie, Jing-xing; Gong, Zhi-jun; Li, Bao-wei [Inner Mongolia Univ. of Science and Technology, Baotou (China). Inner Mongolia Key Lab. for Utilization of Bayan Obo Multi-Metallic Resources: Elected State Key Lab.

    2013-07-01

    The process of the pulverized coal combustion in tangential firing boiler has prominent significance on improving boiler operation efficiency and reducing NO{sub X} emission. This paper aims at researching complex turbulent vortex coherent structure formed by the four corners jets in the burner zone, a cold experimental model of tangential firing boiler has been built. And by employing spatial correlation analysis method and PIV (Particle Image Velocimetry) technique, the law of Vortex scale distribution on the three typical horizontal layers of the model based on the turbulent Integral Length Scale (ILS) has been researched. According to the correlation analysis of ILS and the temporal average velocity, it can be seen that the turbulent vortex scale distribution in the burner zone of the model is affected by both jet velocity and the position of wind layers, and is not linear with the variation of jet velocity. The vortex scale distribution of the upper primary air is significantly different from the others. Therefore, studying the ILS of turbulent vortex integral scale is instructive to high efficiency cleaning combustion of pulverized coal in theory.

  17. Non-perturbative gravity at different length scales

    International Nuclear Information System (INIS)

    Folkerts, Sarah

    2013-01-01

    In this thesis, we investigate different aspects of gravity as an effective field theory. Building on the arguments of self-completeness of Einstein gravity, we argue that any sensible theory, which does not propagate negative-norm states and reduces to General Relativity in the low energy limit is self-complete. Due to black hole formation in high energy scattering experiments, distances smaller than the Planck scale are shielded from any accessibility. Degrees of freedom with masses larger than the Planck mass are mapped to large classical black holes which are described by the already existing infrared theory. Since high energy (UV) modifications of gravity which are ghost-free can only produce stronger gravitational interactions than Einstein gravity, the black hole shielding is even more efficient in such theories. In this light, we argue that conventional attempts of a Wilsonian UV completion are severely constrained. Furthermore, we investigate the quantum picture for black holes which emerges in the low energy description put forward by Dvali and Gomez in which black holes are described as Bose-Einstein condensates of many weakly coupled gravitons. Specifically, we investigate a non-relativistic toy model which mimics certain aspects of the graviton condensate picture. This toy model describes the collapse of a condensate of attractive bosons which emits particles due to incoherent scattering. We show that it is possible that the evolution of the condensate follows the critical point which is accompanied by the appearance of a light mode. Another aspect of gravitational interactions concerns the question whether quantum gravity breaks global symmetries. Arguments relying on the no hair theorem and wormhole solutions suggest that global symmetries can be violated. In this thesis, we parametrize such effects in terms of an effective field theory description of three-form fields. We investigate the possible implications for the axion solution of the strong CP

  18. Stability and dewetting of metal nanoparticle filled thin polymer films: control of instability length scale and dynamics.

    Science.gov (United States)

    Mukherjee, Rabibrata; Das, Soma; Das, Anindya; Sharma, Satinder K; Raychaudhuri, Arup K; Sharma, Ashutosh

    2010-07-27

    We investigate the influence of gold nanoparticle addition on the stability, dewetting, and pattern formation in ultrathin polymer-nanoparticle (NP) composite films by examining the length and time scales of instability, morphology, and dynamics of dewetting. For these 10-50 nm thick (h) polystyrene (PS) thin films containing uncapped gold nanoparticles (diameter approximately 3-4 nm), transitions from complete dewetting to arrested dewetting to absolute stability were observed depending on the concentration of the particles. Experiments show the existence of three distinct stability regimes: regime 1, complete dewetting leading to droplet formation for nanoparticle concentration of 2% (w/w) or below; regime 2, partial dewetting leading to formation of arrested holes for NP concentrations in the range of 3-6%; and regime 3, complete inhibition of dewetting for NP concentrations of 7% and above. Major results are (a) length scale of instability, where lambdaH approximately hn remains unchanged with NP concentration in regime 1 (n approximately 2) but increases in regime 2 with a change in the scaling relation (n approximately 3-3.5); (b) dynamics of instability and dewetting becomes progressively sluggish with an increase in the NP concentration; (c) there are distinct regimes of dewetting velocity at low NP concentrations; (d) force modulation AFM, as well as micro-Raman analysis, shows phase separation and aggregation of the gold nanoparticles within each dewetted polymer droplet leading to the formation of a metal core-polymer shell morphology. The polymer shell could be removed by washing in a selective solvent, thus exposing an array of bare gold nanoparticle aggregates.

  19. Zero-point length from string fluctuations

    International Nuclear Information System (INIS)

    Fontanini, Michele; Spallucci, Euro; Padmanabhan, T.

    2006-01-01

    One of the leading candidates for quantum gravity, viz. string theory, has the following features incorporated in it. (i) The full spacetime is higher-dimensional, with (possibly) compact extra-dimensions; (ii) there is a natural minimal length below which the concept of continuum spacetime needs to be modified by some deeper concept. On the other hand, the existence of a minimal length (zero-point length) in four-dimensional spacetime, with obvious implications as UV regulator, has been often conjectured as a natural aftermath of any correct quantum theory of gravity. We show that one can incorporate the apparently unrelated pieces of information-zero-point length, extra-dimensions, string T-duality-in a consistent framework. This is done in terms of a modified Kaluza-Klein theory that interpolates between (high-energy) string theory and (low-energy) quantum field theory. In this model, the zero-point length in four dimensions is a 'virtual memory' of the length scale of compact extra-dimensions. Such a scale turns out to be determined by T-duality inherited from the underlying fundamental string theory. From a low energy perspective short distance infinities are cutoff by a minimal length which is proportional to the square root of the string slope, i.e., α ' . Thus, we bridge the gap between the string theory domain and the low energy arena of point-particle quantum field theory

  20. Development of a scanning tunneling potentiometry system for measurement of electronic transport at short length scales

    Science.gov (United States)

    Rozler, Michael

    It is clear that complete understanding of macroscopic properties of materials is impossible without a thorough knowledge of behavior at the smallest length scales. While the past 25 years have witnessed major advances in a variety of techniques that probe the nanoscale properties of matter, electrical transport measurements -- the heart of condensed matter research -- have lagged behind, never progressing beyond bulk measurements. This thesis describes a scanning tunneling potentiometry (STP) system developed to simultaneously map the transport-related electrochemical potential distribution of a biased sample along with its surface topography, extending electronic transport measurements to the nanoscale. Combining a novel sample biasing technique with a continuous current-nulling feedback scheme pushes the noise performance of the measurement to its fundamental limit - the Johnson noise of the STM tunnel junction. The resulting 130 nV voltage sensitivity allows us to spatially resolve local potentials at scales down to 2 nm, while maintaining atomic scale STM imaging, all at scan sizes of up to 15 microns. A mm-range two-dimensional coarse positioning stage and the ability to operate from liquid helium to room temperature with a fast turn-around time greatly expand the versatility of the instrument. Use of carefully selected model materials, combined with excellent topographic and voltage resolution has allowed us to distinguish measurement artifacts caused by surface roughness from true potentiometric features, a major problem in previous STP measurements. The measurements demonstrate that STP can produce physically meaningful results for homogeneous transport as well as non-uniform conduction dominated by material microstructures. Measurements of several physically interesting materials systems are presented as well, revealing new behaviors at the smallest length sales. The results establish scanning tunneling potentiometry as a useful tool for physics and

  1. Scaling Effects on Materials Tribology: From Macro to Micro Scale.

    Science.gov (United States)

    Stoyanov, Pantcho; Chromik, Richard R

    2017-05-18

    The tribological study of materials inherently involves the interaction of surface asperities at the micro to nanoscopic length scales. This is the case for large scale engineering applications with sliding contacts, where the real area of contact is made up of small contacting asperities that make up only a fraction of the apparent area of contact. This is why researchers have sought to create idealized experiments of single asperity contacts in the field of nanotribology. At the same time, small scale engineering structures known as micro- and nano-electromechanical systems (MEMS and NEMS) have been developed, where the apparent area of contact approaches the length scale of the asperities, meaning the real area of contact for these devices may be only a few asperities. This is essentially the field of microtribology, where the contact size and/or forces involved have pushed the nature of the interaction between two surfaces towards the regime where the scale of the interaction approaches that of the natural length scale of the features on the surface. This paper provides a review of microtribology with the purpose to understand how tribological processes are different at the smaller length scales compared to macrotribology. Studies of the interfacial phenomena at the macroscopic length scales (e.g., using in situ tribometry) will be discussed and correlated with new findings and methodologies at the micro-length scale.

  2. Physics on the smallest scales: an introduction to minimal length phenomenology

    International Nuclear Information System (INIS)

    Sprenger, Martin; Nicolini, Piero; Bleicher, Marcus

    2012-01-01

    Many modern theories which try to unify gravity with the Standard Model of particle physics, such as e.g. string theory, propose two key modifications to the commonly known physical theories: the existence of additional space dimensions; the existence of a minimal length distance or maximal resolution. While extra dimensions have received a wide coverage in publications over the last ten years (especially due to the prediction of micro black hole production at the Large Hadron Collider), the phenomenology of models with a minimal length is still less investigated. In a summer study project for bachelor students in 2010, we have explored some phenomenological implications of the potential existence of a minimal length. In this paper, we review the idea and formalism of a quantum gravity-induced minimal length in the generalized uncertainty principle framework as well as in the coherent state approach to non-commutative geometry. These approaches are effective models which can make model-independent predictions for experiments and are ideally suited for phenomenological studies. Pedagogical examples are provided to grasp the effects of a quantum gravity-induced minimal length. This paper is intended for graduate students and non-specialists interested in quantum gravity. (paper)

  3. Multi-length-scale Material Model for SiC/SiC Ceramic-Matrix Composites (CMCs): Inclusion of In-Service Environmental Effects

    Science.gov (United States)

    Grujicic, M.; Galgalikar, R.; Snipes, J. S.; Ramaswami, S.

    2016-01-01

    In our recent work, a multi-length-scale room-temperature material model for SiC/SiC ceramic-matrix composites (CMCs) was derived and parameterized. The model was subsequently linked with a finite-element solver so that it could be used in a general room-temperature, structural/damage analysis of gas-turbine engine CMC components. Due to its multi-length-scale character, the material model enabled inclusion of the effects of fiber/tow (e.g., the volume fraction, size, and properties of the fibers; fiber-coating material/thickness; decohesion properties of the coating/matrix interfaces; etc.) and ply/lamina (e.g., the 0°/90° cross-ply versus plain-weave architectures, the extent of tow crimping in the case of the plain-weave plies, cohesive properties of the inter-ply boundaries, etc.) length-scale microstructural/architectural parameters on the mechanical response of the CMCs. One of the major limitations of the model is that it applies to the CMCs in their as-fabricated conditions (i.e., the effect of prolonged in-service environmental exposure and the associated material aging-degradation is not accounted for). In the present work, the model is upgraded to include such in-service environmental-exposure effects. To demonstrate the utility of the upgraded material model, it is used within a finite-element structural/failure analysis involving impact of a toboggan-shaped turbine shroud segment by a foreign object. The results obtained clearly revealed the effects that different aspects of the in-service environmental exposure have on the material degradation and the extent of damage suffered by the impacted CMC toboggan-shaped shroud segment.

  4. Turbulent boundary layer over roughness transition with variation in spanwise roughness length scale

    Science.gov (United States)

    Westerweel, Jerry; Tomas, Jasper; Eisma, Jerke; Pourquie, Mathieu; Elsinga, Gerrit; Jonker, Harm

    2016-11-01

    Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic PIV and LIF were done to investigate pollutant dispersion in a region where the surface changes from rural to urban roughness. This consists of rectangular obstacles where we vary the spanwise aspect ratio of the obstacles. A line source of passive tracer was placed upstream of the roughness transition. The objectives of the study are: (i) to determine the influence of the aspect ratio on the roughness-transition flow, and (ii) to determine the dominant mechanisms of pollutant removal from street canyons in the transition region. It is found that for a spanwise aspect ratio of 2 the drag induced by the roughness is largest of all considered cases, which is caused by a large-scale secondary flow. In the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identied that is responsible for exchange of the fluid between the roughness obstacles and the outer part of the boundary layer. Furthermore, it is found that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the roughness region.

  5. Gradient plasticity for thermo-mechanical processes in metals with length and time scales

    Science.gov (United States)

    Voyiadjis, George Z.; Faghihi, Danial

    2013-03-01

    A thermodynamically consistent framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. In this regard, an enhanced gradient plasticity theory is coupled with the application of a micromorphic approach to the temperature variable. A physically based yield function based on the concept of thermal activation energy and the dislocation interaction mechanisms including nonlinear hardening is taken into consideration in the derivation. The effect of the material microstructural interface between two materials is also incorporated in the formulation with both temperature and rate effects. In order to accurately address the strengthening and hardening mechanisms, the theory is developed based on the decomposition of the mechanical state variables into energetic and dissipative counterparts which endowed the constitutive equations to have both energetic and dissipative gradient length scales for the bulk material and the interface. Moreover, the microstructural interaction effect in the fast transient process is addressed by incorporating two time scales into the microscopic heat equation. The numerical example of thin film on elastic substrate or a single phase bicrystal under uniform tension is addressed here. The effects of individual counterparts of the framework on the thermal and mechanical responses are investigated. The model is also compared with experimental results.

  6. Morphological quantification of hierarchical geomaterials by X-ray nano-CT bridges the gap from nano to micro length scales

    KAUST Repository

    Brisard, S.

    2012-01-30

    Morphological quantification of the complex structure of hierarchical geomaterials is of great relevance for Earth science and environmental engineering, among others. To date, methods that quantify the 3D morphology on length scales ranging from a few tens of nanometers to several hun-dred nanometers have had limited success. We demonstrate, for the first time, that it is possible to go beyond visualization and to extract quantitative morphological information from X-ray images in the aforementioned length scales. As examples, two different hierarchical geomaterials exhibiting complex porous structures ranging from nanometer to macroscopic scale are studied: a flocculated clay water suspension and two hydrated cement pastes. We show that from a single projection image it is possible to perform a direct computation of the ultra-small angle-scattering spectra. The predictions matched very well the experimental data obtained by the best ultra-small angle-scattering experimental setups as observed for the cement paste. In this context, we demonstrate that the structure of flocculated clay suspension exhibit two well-distinct regimes of aggregation, a dense mass fractal aggregation at short distance and a more open structure at large distance, which can be generated by a 3D reaction limited cluster-cluster aggregation process. For the first time, a high-resolution 3D image of fibrillar cement paste cluster was obtained from limited angle nanotomography.

  7. New Approaches in the Engineering and Characterization of Macromolecular Interfaces Across the Length Scales: Applications to Hydrophobic and Stimulus Responsive Polymers

    NARCIS (Netherlands)

    Song, Jing

    2007-01-01

    The aim of the present Thesis is to enhance characterization and surface engineering approaches to test and control physico-chemical changes on modified hydrophobic (LDPE and PDMS) and stimulus-responsive (PFS) polymers across different length scales. [Here LDPE denotes low density polyethylene,

  8. Interplay between multiple length and time scales in complex ...

    Indian Academy of Sciences (India)

    Administrator

    Processes in complex chemical systems, such as macromolecules, electrolytes, interfaces, ... by processes operating on a multiplicity of length .... real time. The design and interpretation of femto- second experiments has required considerable ...

  9. Zero-point length, extra-dimensions and string T-duality

    OpenAIRE

    Spallucci, Euro; Fontanini, Michele

    2005-01-01

    In this paper, we are going to put in a single consistent framework apparently unrelated pieces of information, i.e. zero-point length, extra-dimensions, string T-duality. More in details we are going to introduce a modified Kaluza-Klein theory interpolating between (high-energy) string theory and (low-energy) quantum field theory. In our model zero-point length is a four dimensional ``virtual memory'' of compact extra-dimensions length scale. Such a scale turns out to be determined by T-dual...

  10. Field calibration and modification of scs design equation for predicting length of border under local conditions

    International Nuclear Information System (INIS)

    Choudhary, M.R.; Mustafa, U.S.

    2009-01-01

    Field tests were conducted to calibrate the existing SCS design equation in determining field border length using field data of different field lengths during 2nd and 3rd irrigations under local conditions. A single ring infiltrometer was used to estimate the water movement into and through the irrigated soil profile and in estimating the coefficients of Kostiakov infiltration function. Measurements of the unit discharge and time of advance were carried out during different irrigations on wheat irrigated fields having clay loam soil. The collected field data were used to calibrate the existing SCS design equation developed by USDA for testing its validity under local field conditions. SCS equation was modified further to improve its applicability. Results from the study revealed that the Kostiakov model over predicted the coefficients, which in turn overestimated the water advance length for boarder in the selected field using existing SCS design equation. However, the calibrated SCS design equation after parametric modification produced more satisfactory results encouraging the scientists to make its use at larger scale. (author)

  11. Laboratory scale electroplating and processing of long lengths of an in situ Cu-Nb3Sn superconductors

    International Nuclear Information System (INIS)

    LeHuy, H.; Germain, L.; Roberge, R.; Foner, S.; Massachusetts Inst. of Tech., Cambridge

    1984-01-01

    A laboratory scale continuous tin electroplating system is described and used to evaluate the effect of various parameters of the alkaline and acid baths plating process. Tin electroplating is shown to be simple and reliable. With an 8 m immersion length production speeds of the order of 1 m min -1 are possible in an alkaline bath at 80degC. An acid bath gives satisfactory tinning deposits with a production speed of up to 3 m min -1 at room temperature. (author)

  12. The topology of large-scale structure. III. Analysis of observations

    International Nuclear Information System (INIS)

    Gott, J.R. III; Weinberg, D.H.; Miller, J.; Thuan, T.X.; Schneider, S.E.

    1989-01-01

    A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a meatball topology. 66 refs

  13. The topology of large-scale structure. III - Analysis of observations

    Science.gov (United States)

    Gott, J. Richard, III; Miller, John; Thuan, Trinh X.; Schneider, Stephen E.; Weinberg, David H.; Gammie, Charles; Polk, Kevin; Vogeley, Michael; Jeffrey, Scott; Bhavsar, Suketu P.; Melott, Adrian L.; Giovanelli, Riccardo; Hayes, Martha P.; Tully, R. Brent; Hamilton, Andrew J. S.

    1989-05-01

    A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a 'meatball' topology.

  14. Scale effects and morphological diversification in hindlimb segment mass proportions in neognath birds.

    Science.gov (United States)

    Kilbourne, Brandon M

    2014-01-01

    underlie scale effects in stride frequency and length between smaller and larger neognaths. While variation in linear proportions of limbs appear to be governed by developmental mechanisms, variation in mass proportions does not appear to be constrained so.

  15. Nearly constant ratio between the proton inertial scale and the spectrum break length scale in the plasma beta range from 0.2 to 1.4 in the solar wind turbulence

    Science.gov (United States)

    Wang, X.; Tu, C. Y.; He, J.; Wang, L.

    2017-12-01

    The spectrum break at the ion scale of the solar wind magnetic fluctuations are considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable ones are the two mechanisms that related respectively with proton thermal gyro-radius and proton inertial length. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar values in the normal plasma beta range. Here we do a statistical study for the first time to see if the two mechanism predictions have different dependence on the solar wind velocity and on the plasma beta in the normal plasma beta range in the solar wind at 1 AU. From magnetic measurements by Wind, Ulysses and Messenger, we select 60 data sets with duration longer than 8 hours. We found that the ratio between the proton inertial scale and the spectrum break scale do not change considerably with both varying the solar wind speed from 300km/s to 800km/s and varying the plasma beta from 0.2 to 1.4. The average value of the ratio times 2pi is 0.46 ± 0.08. However, the ratio between the proton gyro-radius and the break scale changes clearly. This new result shows that the proton inertial scale could be a single factor that determines the break length scale and hence gives a strong evidence to support the dissipation mechanism related to it in the normal plasma beta range. The value of the constant ratio may relate with the dissipation mechanism, but it needs further theoretical study to give detailed explanation.

  16. Synthesis of Large-Scale Single-Crystalline Monolayer WS2 Using a Semi-Sealed Method

    Directory of Open Access Journals (Sweden)

    Feifei Lan

    2018-02-01

    Full Text Available As a two-dimensional semiconductor, WS2 has attracted great attention due to its rich physical properties and potential applications. However, it is still difficult to synthesize monolayer single-crystalline WS2 at larger scale. Here, we report the growth of large-scale triangular single-crystalline WS2 with a semi-sealed installation by chemical vapor deposition (CVD. Through this method, triangular single-crystalline WS2 with an average length of more than 300 µm was obtained. The largest one was about 405 μm in length. WS2 triangles with different sizes and thicknesses were analyzed by optical microscope and atomic force microscope (AFM. Their optical properties were evaluated by Raman and photoluminescence (PL spectra. This report paves the way to fabricating large-scale single-crystalline monolayer WS2, which is useful for the growth of high-quality WS2 and its potential applications in the future.

  17. Length scale dependence of the dynamic properties of hyaluronic acid solutions in the presence of salt.

    Science.gov (United States)

    Horkay, Ferenc; Falus, Peter; Hecht, Anne-Marie; Geissler, Erik

    2010-12-02

    In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D(NSE) measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D(DLS). This behavior contrasts with neutral polymer solutions. With increasing salt content, D(DLS) approaches D(NSE), which is independent of ionic strength. Contrary to theoretical expectation, the ion-polymer coupling, which dominates the low q dynamics of polyelectrolyte solutions, already breaks down at distance scales greater than the Debye-Hückel length.

  18. Length Scales in Bayesian Automatic Adaptive Quadrature

    Directory of Open Access Journals (Sweden)

    Adam Gh.

    2016-01-01

    Full Text Available Two conceptual developments in the Bayesian automatic adaptive quadrature approach to the numerical solution of one-dimensional Riemann integrals [Gh. Adam, S. Adam, Springer LNCS 7125, 1–16 (2012] are reported. First, it is shown that the numerical quadrature which avoids the overcomputing and minimizes the hidden floating point loss of precision asks for the consideration of three classes of integration domain lengths endowed with specific quadrature sums: microscopic (trapezoidal rule, mesoscopic (Simpson rule, and macroscopic (quadrature sums of high algebraic degrees of precision. Second, sensitive diagnostic tools for the Bayesian inference on macroscopic ranges, coming from the use of Clenshaw-Curtis quadrature, are derived.

  19. Large-scale parent–child comparison confirms a strong paternal influence on telomere length

    OpenAIRE

    Nordfjäll, Katarina; Svenson, Ulrika; Norrback, Karl-Fredrik; Adolfsson, Rolf; Roos, Göran

    2009-01-01

    Telomere length is documented to have a hereditary component, and both paternal and X-linked inheritance have been proposed. We investigated blood cell telomere length in 962 individuals with an age range between 0 and 102 years. Telomere length correlations were analyzed between parent–child pairs in different age groups and between grandparent–grandchild pairs. A highly significant correlation between the father's and the child's telomere length was observed (r=0.454, P

  20. Spatial correlation of atmospheric wind at scales relevant for large scale wind turbines

    Science.gov (United States)

    Bardal, L. M.; Sætran, L. R.

    2016-09-01

    Wind measurements a short distance upstream of a wind turbine can provide input for a feedforward wind turbine controller. Since the turbulent wind field will be different at the point/plane of measurement and the rotor plane the degree of correlation between wind speed at two points in space both in the longitudinal and lateral direction should be evaluated. This study uses a 2D array of mast mounted anemometers to evaluate cross-correlation of longitudinal wind speed. The degree of correlation is found to increase with height and decrease with atmospheric stability. The correlation is furthermore considerably larger for longitudinal separation than for lateral separation. The integral length scale of turbulence is also considered.

  1. Earthquake scaling laws for rupture geometry and slip heterogeneity

    Science.gov (United States)

    Thingbaijam, Kiran K. S.; Mai, P. Martin; Goda, Katsuichiro

    2016-04-01

    We analyze an extensive compilation of finite-fault rupture models to investigate earthquake scaling of source geometry and slip heterogeneity to derive new relationships for seismic and tsunami hazard assessment. Our dataset comprises 158 earthquakes with a total of 316 rupture models selected from the SRCMOD database (http://equake-rc.info/srcmod). We find that fault-length does not saturate with earthquake magnitude, while fault-width reveals inhibited growth due to the finite seismogenic thickness. For strike-slip earthquakes, fault-length grows more rapidly with increasing magnitude compared to events of other faulting types. Interestingly, our derived relationship falls between the L-model and W-model end-members. In contrast, both reverse and normal dip-slip events are more consistent with self-similar scaling of fault-length. However, fault-width scaling relationships for large strike-slip and normal dip-slip events, occurring on steeply dipping faults (δ~90° for strike-slip faults, and δ~60° for normal faults), deviate from self-similarity. Although reverse dip-slip events in general show self-similar scaling, the restricted growth of down-dip fault extent (with upper limit of ~200 km) can be seen for mega-thrust subduction events (M~9.0). Despite this fact, for a given earthquake magnitude, subduction reverse dip-slip events occupy relatively larger rupture area, compared to shallow crustal events. In addition, we characterize slip heterogeneity in terms of its probability distribution and spatial correlation structure to develop a complete stochastic random-field characterization of earthquake slip. We find that truncated exponential law best describes the probability distribution of slip, with observable scale parameters determined by the average and maximum slip. Applying Box-Cox transformation to slip distributions (to create quasi-normal distributed data) supports cube-root transformation, which also implies distinctive non-Gaussian slip

  2. A note on exponential dispersion models which are invariant under length-biased sampling

    NARCIS (Netherlands)

    Bar-Lev, S.K.; van der Duyn Schouten, F.A.

    2003-01-01

    Length-biased sampling situations may occur in clinical trials, reliability, queueing models, survival analysis and population studies where a proper sampling frame is absent.In such situations items are sampled at rate proportional to their length so that larger values of the quantity being

  3. New nonbinary quantum codes with larger distance constructed from BCH codes over 𝔽q2

    Science.gov (United States)

    Xu, Gen; Li, Ruihu; Fu, Qiang; Ma, Yuena; Guo, Luobin

    2017-03-01

    This paper concentrates on construction of new nonbinary quantum error-correcting codes (QECCs) from three classes of narrow-sense imprimitive BCH codes over finite field 𝔽q2 (q ≥ 3 is an odd prime power). By a careful analysis on properties of cyclotomic cosets in defining set T of these BCH codes, the improved maximal designed distance of these narrow-sense imprimitive Hermitian dual-containing BCH codes is determined to be much larger than the result given according to Aly et al. [S. A. Aly, A. Klappenecker and P. K. Sarvepalli, IEEE Trans. Inf. Theory 53, 1183 (2007)] for each different code length. Thus families of new nonbinary QECCs are constructed, and the newly obtained QECCs have larger distance than those in previous literature.

  4. Extending the length and time scales of Gram–Schmidt Lyapunov vector computations

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Anthony B., E-mail: acosta@northwestern.edu [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Green, Jason R., E-mail: jason.green@umb.edu [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125 (United States)

    2013-08-01

    Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram–Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N{sup 2} (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram–Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard–Jones fluids from N=100 to 1300 between Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram–Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra.

  5. Extending the length and time scales of Gram–Schmidt Lyapunov vector computations

    International Nuclear Information System (INIS)

    Costa, Anthony B.; Green, Jason R.

    2013-01-01

    Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram–Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N 2 (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram–Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard–Jones fluids from N=100 to 1300 between Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram–Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra

  6. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering

    Science.gov (United States)

    Kelley, Shana O.; Mirkin, Chad A.; Walt, David R.; Ismagilov, Rustem F.; Toner, Mehmet; Sargent, Edward H.

    2014-12-01

    Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices.

  7. Temperature gradient scale length measurement: A high accuracy application of electron cyclotron emission without calibration

    Energy Technology Data Exchange (ETDEWEB)

    Houshmandyar, S., E-mail: houshmandyar@austin.utexas.edu; Phillips, P. E.; Rowan, W. L. [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States); Yang, Z. J. [Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Hubbard, A. E.; Rice, J. E.; Hughes, J. W.; Wolfe, S. M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02129 (United States)

    2016-11-15

    Calibration is a crucial procedure in electron temperature (T{sub e}) inference from a typical electron cyclotron emission (ECE) diagnostic on tokamaks. Although the calibration provides an important multiplying factor for an individual ECE channel, the parameter ΔT{sub e}/T{sub e} is independent of any calibration. Since an ECE channel measures the cyclotron emission for a particular flux surface, a non-perturbing change in toroidal magnetic field changes the view of that channel. Hence the calibration-free parameter is a measure of T{sub e} gradient. B{sub T}-jog technique is presented here which employs the parameter and the raw ECE signals for direct measurement of electron temperature gradient scale length.

  8. Information, polarization and term length in democracy

    DEFF Research Database (Denmark)

    Schultz, Christian

    2008-01-01

    This paper considers term lengths in a representative democracy where the political issue divides the population on the left-right scale. Parties are ideologically different and better informed about the consequences of policies than voters are. A short term length makes the government more...... accountable, but the re-election incentive leads to policy-distortion as the government seeks to manipulate swing voters' beliefs to make its ideology more popular. This creates a trade-off: A short term length improves accountability but gives distortions. A short term length is best for swing voters when...

  9. Large-scale parent-child comparison confirms a strong paternal influence on telomere length.

    Science.gov (United States)

    Nordfjäll, Katarina; Svenson, Ulrika; Norrback, Karl-Fredrik; Adolfsson, Rolf; Roos, Göran

    2010-03-01

    Telomere length is documented to have a hereditary component, and both paternal and X-linked inheritance have been proposed. We investigated blood cell telomere length in 962 individuals with an age range between 0 and 102 years. Telomere length correlations were analyzed between parent-child pairs in different age groups and between grandparent-grandchild pairs. A highly significant correlation between the father's and the child's telomere length was observed (r=0.454, Pfather-son: r=0.465, Pfather-daughter: r=0.484, Pmothers, the correlations were weaker (mother-child: r=0.148, P=0.098; mother-son: r=0.080, P=0.561; mother-daughter: r=0.297, P=0.013). A positive telomere length correlation was also observed for grandparent-grandchild pairs (r=0.272, P=0.013). Our findings indicate that fathers contribute significantly stronger to the telomere length of the offspring compared with mothers (P=0.012), but we cannot exclude a maternal influence on the daughter's telomeres. Interestingly, the father-child correlations diminished with increasing age (P=0.022), suggesting that nonheritable factors have an impact on telomere length dynamics during life.

  10. Homogeneity of small-scale earthquake faulting, stress, and fault strength

    Science.gov (United States)

    Hardebeck, J.L.

    2006-01-01

    Small-scale faulting at seismogenic depths in the crust appears to be more homogeneous than previously thought. I study three new high-quality focal-mechanism datasets of small (M angular difference between their focal mechanisms. Closely spaced earthquakes (interhypocentral distance length scales, the crustal stress orientation and fault strength (coefficient of friction) are inferred to be homogeneous as well, to produce such similar earthquakes. Over larger length scales (???2-50 km), focal mechanisms become more diverse with increasing interhypocentral distance (differing on average by 40-70??). Mechanism variability on ???2- to 50 km length scales can be explained by ralatively small variations (???30%) in stress or fault strength. It is possible that most of this small apparent heterogeneity in stress of strength comes from measurement error in the focal mechanisms, as negligibble variation in stress or fault strength (<10%) is needed if each earthquake is assigned the optimally oriented focal mechanism within the 1-sigma confidence region. This local homogeneity in stress orientation and fault strength is encouraging, implying it may be possible to measure these parameters with enough precision to be useful in studying and modeling large earthquakes.

  11. Diffusion effects on volume-selective NMR at small length scales

    International Nuclear Information System (INIS)

    Gaedke, Achim

    2009-01-01

    In this thesis, the interplay between diffusion and relaxation effects in spatially selective NMR experiments at short length scales is explored. This is especially relevant in the context of both conventional and mechanically detected MRI at (sub)micron resolution in biological specimens. Recent results on selectively excited very thin slices showed an in-slice-magnetization recovery orders of magnitude faster than the longitudinal relaxation time T1. However, those experiments were run on fully relaxed samples while MRI and especially mechanically detected NMR experiments are typically run in a periodic fashion with repetition times far below T1. The main purpose of this work therefore was to extend the study of the interplay between diffusion and longitudinal relaxation to periodic excitations. In some way, this is inverse phenomenon to the DESIRE (Diffusive Enhancement of SIgnal and REsolution) approach, proposed 1992 by Lauterbur. Experiments on periodically excited thin slices were carried out at a dedicated static field gradient cryomagnet with magnetic field gradients up to 180 T/m. In order to obtain plane slices, an appropriate isosurface of the gradient magnet had to be identified. It was found at a field of 3.8 T with a gradient of 73 T/m. In this field, slices down to a thickness of 3.2 μm could be excited. The detection of the NMR signal was done using FIDs instead of echoes as the excitation bandwidth of those thin slices is sufficiently small to observe FIDs which are usually considered to be elusive to detection in such strong static field gradients. A simulation toolbox based on the full Bloch-Torrey-equation was developed to describe the excitation and the formation of NMR signals under those unusual conditions as well as the interplay of diffusion and magnetization recovery. Both the experiments and the simulations indicate that diffusion effects lead to a strongly enhanced magnetization modulation signal also under periodic excitation

  12. More 'altruistic' punishment in larger societies.

    Science.gov (United States)

    Marlowe, Frank W; Berbesque, J Colette

    2008-03-07

    If individuals will cooperate with cooperators, and punish non-cooperators even at a cost to themselves, then this strong reciprocity could minimize the cheating that undermines cooperation. Based upon numerous economic experiments, some have proposed that human cooperation is explained by strong reciprocity and norm enforcement. Second-party punishment is when you punish someone who defected on you; third-party punishment is when you punish someone who defected on someone else. Third-party punishment is an effective way to enforce the norms of strong reciprocity and promote cooperation. Here we present new results that expand on a previous report from a large cross-cultural project. This project has already shown that there is considerable cross-cultural variation in punishment and cooperation. Here we test the hypothesis that population size (and complexity) predicts the level of third-party punishment. Our results show that people in larger, more complex societies engage in significantly more third-party punishment than people in small-scale societies.

  13. Bifurcation and phase diagram of turbulence constituted from three different scale-length modes

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, S.-I.; Kitazawa, A.; Yagi, M. [Kyushu Univ., Research Inst. for Applied Mechanics, Kasuga, Fukuoka (Japan); Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2002-04-01

    Cases where three kinds of fluctuations having the different typical scale-lengths coexist are analyzed, and the statistical theory of strong turbulence in inhomogeneous plasmas is developed. Statistical nonlinear interactions between fluctuations are kept in the analysis as the renormalized drag, statistical noise and the averaged drive. The nonlinear interplay through them induces a quenching or suppressing effect, even if all the modes are unstable when they are analyzed independently. Variety in mode appearance takes place: one mode quenches the other two modes, or one mode is quenched by the other two modes, etc. The bifurcation of turbulence is analyzed and a phase diagram is drawn. Phase diagrams with cusp type catastrophe and butterfly type catastrophe are obtained. The subcritical bifurcation is possible to occur through the nonlinear interplay, even though each one is supercritical turbulence when analyzed independently. Analysis reveals that the nonlinear stability boundary (marginal point) and the amplitude of each mode may substantially shift from the conventional results of independent analyses. (author)

  14. Scalability of pre-packed preparative chromatography columns with different diameters and lengths taking into account extra column effects.

    Science.gov (United States)

    Schweiger, Susanne; Jungbauer, Alois

    2018-02-16

    Small pre-packed columns are commonly used to estimate the optimum run parameters for pilot and production scale. The question arises if the experiments obtained with these columns are scalable, because there are substantial changes in extra column volume when going from a very small scale to a benchtop column. In this study we demonstrate the scalability of pre-packed disposable and non-disposable columns of volumes in the range of 0.2-20 ml packed with various media using superficial velocities in the range of 30-500 cm/h. We found that the relative contribution of extra column band broadening to total band broadening was not only high for columns with small diameters, but also for columns with a larger volume due to their wider diameter. The extra column band broadening can be more than 50% for columns with volumes larger than 10 ml. An increase in column diameter leads to high additional extra column band broadening in the filter, frits, and adapters of the columns. We found a linear relationship between intra column band broadening and column length, which increased stepwise with increases in column diameter. This effect was also corroborated by CFD simulation. The intra column band broadening was the same for columns packed with different media. An empirical engineering equation and the data gained from the extra column effects allowed us to predict the intra, extra, and total column band broadening just from column length, diameter, and flow rate. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. Global Mechanical Response and Its Relation to Deformation and Failure Modes at Various Length Scales Under Shock Impact in Alumina AD995 Armor Ceramic

    National Research Council Canada - National Science Library

    Dandekar, D. P; McCauley, J. W; Green, W. H; Bourne, N. K; Chen, M. W

    2008-01-01

    ... maps relating the experimentally measured global mechanical response of a material through matured shock wave diagnostics to the nature of concurrent deformation and damage generated at varying length scales under shock wave loading.

  16. The length of the glaciers in the world

    DEFF Research Database (Denmark)

    Machguth, Horst; Huss, M.; Huss, M.

    2014-01-01

    a fully automated method based on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for the same area as well as for Alaska, and eventually applied to all ∼ 200000 glaciers around the globe. The evaluation...... highlights accurately calculated glacier length where DEM quality is good (East 10 Greenland) and limited precision on low quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers...... are longer than 10km with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on model output we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier...

  17. Universal and idiosyncratic characteristic lengths in bacterial genomes

    Science.gov (United States)

    Junier, Ivan; Frémont, Paul; Rivoire, Olivier

    2018-05-01

    In condensed matter physics, simplified descriptions are obtained by coarse-graining the features of a system at a certain characteristic length, defined as the typical length beyond which some properties are no longer correlated. From a physics standpoint, in vitro DNA has thus a characteristic length of 300 base pairs (bp), the Kuhn length of the molecule beyond which correlations in its orientations are typically lost. From a biology standpoint, in vivo DNA has a characteristic length of 1000 bp, the typical length of genes. Since bacteria live in very different physico-chemical conditions and since their genomes lack translational invariance, whether larger, universal characteristic lengths exist is a non-trivial question. Here, we examine this problem by leveraging the large number of fully sequenced genomes available in public databases. By analyzing GC content correlations and the evolutionary conservation of gene contexts (synteny) in hundreds of bacterial chromosomes, we conclude that a fundamental characteristic length around 10–20 kb can be defined. This characteristic length reflects elementary structures involved in the coordination of gene expression, which are present all along the genome of nearly all bacteria. Technically, reaching this conclusion required us to implement methods that are insensitive to the presence of large idiosyncratic genomic features, which may co-exist along these fundamental universal structures.

  18. Unifying Pore Network Modeling, Continuous Time Random Walk (CTRW) Theory and Experiment to Describe Impact of Spatial Heterogeneities on Solute Dispersion at Multiple Length-scales

    Science.gov (United States)

    Bijeljic, B.; Blunt, M. J.; Rhodes, M. E.

    2009-04-01

    This talk will describe and highlight the advantages offered by a novel methodology that unifies pore network modeling, CTRW theory and experiment in description of solute dispersion in porous media. Solute transport in a porous medium is characterized by the interplay of advection and diffusion (described by Peclet number, Pe) that cause dispersion of solute particles. Dispersion is traditionally described by dispersion coefficients, D, that are commonly calculated from the spatial moments of the plume. Using a pore-scale network model based on particle tracking, the rich Peclet-number dependence of dispersion coefficient is predicted from first principles and is shown to compare well with experimental data for restricted diffusion, transition, power-law and mechanical dispersion regimes in the asymptotic limit. In the asymptotic limit D is constant and can be used in an averaged advection-dispersion equation. However, it is highly important to recognize that, until the velocity field is fully sampled, the particle transport is non-Gaussian and D possesses temporal or spatial variation. Furthermore, temporal probability density functions (PDF) of tracer particles are studied in pore networks and an excellent agreement for the spectrum of transition times for particles from pore to pore is obtained between network model results and CTRW theory. Based on the truncated power-law interpretation of PDF-s, the physical origin of the power-law scaling of dispersion coefficient vs. Peclet number has been explained for unconsolidated porous media, sands and a number of sandstones, arriving at the same conclusion from numerical network modelling, analytic CTRW theory and experiment. The length traveled by solute plumes before Gaussian behaviour is reached increases with an increase in heterogeneity and/or Pe. This opens up the question on the nature of dispersion in natural systems where the heterogeneities at the larger scales will significantly increase the range of

  19. Phase Behavior of Blends of Linear and Branched Polyethylenes on Micron-Length Scales via Ultra-Small-Angle Neutron Scattering (USANS)

    International Nuclear Information System (INIS)

    Agamalian, M.M.; Alamo, R.G.; Londono, J.D.; Mandelkern, L.; Wignall, G.D.

    1999-01-01

    SANS experiments on blends of linear, high density (HD) and long chain branched, low density (LD) polyethylenes indicate that these systems form a one-phase mixture in the melt. However, the maximum spatial resolution of pinhole cameras is approximately equal to 10 3 and it has therefore been suggested that data might also be interpreted as arising from a bi-phasic melt with large a particle size ( 1 m), because most of the scattering from the different phases would not be resolved. We have addressed this hypothesis by means of USANS experiments, which confirm that HDPEILDPE blends are homogenous in the melt on length scales up to 20 m. We have also studied blends of HDPE and short-chain branched linear low density polyethylenes (LLDPEs), which phase separate when the branch content is sufficiently high. LLDPEs prepared with Ziegler-Natta catalysts exhibit a wide distribution of compositions, and may therefore be thought of as a blend of different species. When the composition distribution is broad enough, a fraction of highly branched chains may phase separate on m-length scales, and USANS has also been used to quantify this phenomenon

  20. Confinement and the Glass Transition Temperature in Supported Polymer Films: Molecular Weight, Repeat Unit Modification, and Cooperativity Length Scale Investigations

    Science.gov (United States)

    Mundra, Manish K.

    2005-03-01

    It is well known that the glass transition temperatures, Tgs, of supported polystyrene (PS) films decrease dramatically with decreasing film thickness below 60-80 nm. However, a detailed understanding of the cause of this effect is lacking. We have investigated the impact of several parameters, including polymer molecular weight (MW), repeat unit structure, and the length scale of cooperatively rearranging regions in bulk. There is no significant effect of PS MW on the Tg-confinement effect over a range of 5,000 to 3,000,000 g/mol. In contrast, the strength of the Tg reduction and the onset of the confinement effect increase dramatically upon changing the polymer from PS to poly(4-tert-butylstyrene) (PTBS), with PTBS exhibiting a Tg reduction relative to bulk at a thickness of 300-400 nm. PTBS also shows a Tg reduction relative to bulk of 47 K in a 21-nm-thick film, more than twice that observed in a PS film of identical thickness. Characterization of the length scale of cooperatively rearranging regions has been done by differential scanning calorimetry but reveals at best a limited correlation with the confinement effect.

  1. Drug delivery across length scales.

    Science.gov (United States)

    Delcassian, Derfogail; Patel, Asha K; Cortinas, Abel B; Langer, Robert

    2018-02-20

    Over the last century, there has been a dramatic change in the nature of therapeutic, biologically active molecules available to treat disease. Therapies have evolved from extracted natural products towards rationally designed biomolecules, including small molecules, engineered proteins and nucleic acids. The use of potent drugs which target specific organs, cells or biochemical pathways, necessitates new tools which can enable controlled delivery and dosing of these therapeutics to their biological targets. Here, we review the miniaturisation of drug delivery systems from the macro to nano-scale, focussing on controlled dosing and controlled targeting as two key parameters in drug delivery device design. We describe how the miniaturisation of these devices enables the move from repeated, systemic dosing, to on-demand, targeted delivery of therapeutic drugs and highlight areas of focus for the future.

  2. The topology of large-scale structure. III - Analysis of observations. [in universe

    Science.gov (United States)

    Gott, J. Richard, III; Weinberg, David H.; Miller, John; Thuan, Trinh X.; Schneider, Stephen E.

    1989-01-01

    A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a 'meatball' topology.

  3. Magneto-Induced ac Electrical Permittivity of Metal-Dielectric Composites with a Two Characteristic Length Scales Periodic Microstructure

    International Nuclear Information System (INIS)

    Strelniker, Y.M.; Bergman, D.J.

    1998-01-01

    A new effect was recently predicted in conducting composites that have a periodic microstructure: an induced strongly anisotropic dc magneto-resistance. This phenomenon is already verified on high mobility n-GaAs films. Here we discuss the possibility of observing analogous behavior in the ac electric permittivity of a metal-dielectric composite with a periodic microstructure in the presence of a strong magnetic field. We developed new analytical and numerical methods to treat the low-frequency magneto-optical properties in composite media with both disordered and periodic conducting micro-structures. Those methods allow us to study composites with inclusions of arbitrary shape (and arbitrary volume fraction) at arbitrarily strong magnetic field. This is exploited in order to calculate an effective dielectric tensor for this system as a function of applied magnetic field and ac frequency. We show that in a non-dilute metal-dielectric composite medium the magneto-plasma resonance and the cyclotron resonance depend upon both the applied magnetic field as well as on the geometric shape of the inclusion. Near such a resonance, it is possible to achieve large values for the ratio of the off-diagonal-to-diagonal electric permittivity tensor components, ε xy /ε xx , (since ε xx →0, while ε xy ≠0), which is analogous to similar ratio of the resistivity tensor components, ρ xy /ρ xx , in the case of dc magneto-transport problem. Motivated by this observation and by results of previous studies of dc magneto-transport in composite conductors, we then performed a numerical study of the ac magneto-electric properties of a particular metal-dielectric composite film with a periodic columnar microstructure which has a two characteristic length scales. The unit cell of such composite is prepared as follows: We placed the conducting square (in cross section) rods (first characteristic length scale) along the perimeter of the unit cell in order to create a dielectric host

  4. Sizing Up the Milky Way: A Bayesian Mixture Model Meta-analysis of Photometric Scale Length Measurements

    Science.gov (United States)

    Licquia, Timothy C.; Newman, Jeffrey A.

    2016-11-01

    The exponential scale length (L d ) of the Milky Way’s (MW’s) disk is a critical parameter for describing the global physical size of our Galaxy, important both for interpreting other Galactic measurements and helping us to understand how our Galaxy fits into extragalactic contexts. Unfortunately, current estimates span a wide range of values and are often statistically incompatible with one another. Here, we perform a Bayesian meta-analysis to determine an improved, aggregate estimate for L d , utilizing a mixture-model approach to account for the possibility that any one measurement has not properly accounted for all statistical or systematic errors. Within this machinery, we explore a variety of ways of modeling the nature of problematic measurements, and then employ a Bayesian model averaging technique to derive net posterior distributions that incorporate any model-selection uncertainty. Our meta-analysis combines 29 different (15 visible and 14 infrared) photometric measurements of L d available in the literature; these involve a broad assortment of observational data sets, MW models and assumptions, and methodologies, all tabulated herein. Analyzing the visible and infrared measurements separately yields estimates for L d of {2.71}-0.20+0.22 kpc and {2.51}-0.13+0.15 kpc, respectively, whereas considering them all combined yields 2.64 ± 0.13 kpc. The ratio between the visible and infrared scale lengths determined here is very similar to that measured in external spiral galaxies. We use these results to update the model of the Galactic disk from our previous work, constraining its stellar mass to be {4.8}-1.1+1.5× {10}10 M ⊙, and the MW’s total stellar mass to be {5.7}-1.1+1.5× {10}10 M ⊙.

  5. Wafer-Scale Gigahertz Graphene Field Effect Transistors on SiC Substrates

    Institute of Scientific and Technical Information of China (English)

    潘洪亮; 金智; 麻芃; 郭建楠; 刘新宇; 叶甜春; 李佳; 敦少博; 冯志红

    2011-01-01

    Wafer-scale graphene field-effect transistors are fabricated using benzocyclobutene and atomic layer deposition Al2O3 as the top-gate dielectric.The epitaxial-graphene layer is formed by graphitization of a 2-inch-diameter Si-face semi-insulating 6H-SiC substrate.The graphene on the silicon carbide substrate is heavily n-doped and current saturation is not found.For the intrinsic characteristic of this particular channel material,the devices cannot be switched off.The cut-off frequencies of these graphene field-effect transistors,which have a gate length of l μm,are larger than 800 MHz.The largest one can reach 1.24 GHz.There are greater than 95% active devices that can be successfully applied.We thus succeed in fabricating wafer-scale gigahertz graphene field-effect transistors,which paves the way for high-performance graphene devices and circuits.%Wafer-scale graphene Beld-effect transistors are fabricated using benzocyclobutene and atomic layer deposition AI2O3 as the top-gate dielectric. The epitaxial-graphene layer is formed by graphitization of a 2-inch-diameter Si-face semi-insulating 6H-SiC substrate. The graphene on the silicon carbide substrate is heavily n-doped and current saturation is not found. For the intrinsic characteristic of this particular channel material, the devices cannot be switched off. The cut-off frequencies of these graphene field-effect transistors, which have a gate length of l μm, are larger than 800MHz. The largest one can reach 1.24 GHz. There are greater than 95% active devices that can be successfully applied. We thus succeed in fabricating wafer-scale gigahertz graphene Geld-effect transistors, which paves the way for high-performance graphene devices and circuits.

  6. Application of soft x-ray laser interferometry to study large-scale-length, high-density plasmas

    International Nuclear Information System (INIS)

    Wan, A.S.; Barbee, T.W., Jr.; Cauble, R.

    1996-01-01

    We have employed a Mach-Zehnder interferometer, using a Ne-like Y x- ray laser at 155 Angstrom as the probe source, to study large-scale- length, high-density colliding plasmas and exploding foils. The measured density profile of counter-streaming high-density colliding plasmas falls in between the calculated profiles using collisionless and fluid approximations with the radiation hydrodynamic code LASNEX. We have also performed simultaneous measured the local gain and electron density of Y x-ray laser amplifier. Measured gains in the amplifier were found to be between 10 and 20 cm -1 , similar to predictions and indicating that refraction is the major cause of signal loss in long line focus lasers. Images showed that high gain was produced in spots with dimensions of ∼ 10 μm, which we believe is caused by intensity variations in the optical drive laser. Measured density variations were smooth on the 10-μm scale so that temperature variations were likely the cause of the localized gain regions. We are now using the interferometry technique as a mechanism to validate and benchmark our numerical codes used for the design and analysis of high-energy-density physics experiments. 11 refs., 6 figs

  7. Comparison of relativity theories with observer-independent scales of both velocity and length/mass

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Benedetti, Dario; D'Andrea, Francesco; Procaccini, Andrea

    2003-01-01

    We consider the two most studied proposals of relativity theories with observer-independent scales of both velocity and length/mass: the one discussed by Amelino-Camelia as an illustrative example for the original proposal (Preprint gr-qc/0012051) of theories with two relativistic invariants, and an alternative more recently proposed by Magueijo and Smolin (Preprint hep-th/0112090). We show that these two relativistic theories are much more closely connected than it would appear on the basis of a naive analysis of their original formulations. In particular, in spite of adopting a rather different formal description of the deformed boost generators, they end up assigning the same dependence of momentum on rapidity, which can be described as the core feature of these relativistic theories. We show that this observation can be used to clarify the concepts of particle mass, particle velocity and energy-momentum conservation rules in these theories with two relativistic invariants

  8. Engineering polyelectrolyte multilayer structure at the nanometer length scale by tuning polymer solution conformation.

    Science.gov (United States)

    Boddohi, Soheil; Killingsworth, Christopher; Kipper, Matt

    2008-03-01

    Chitosan (a weak polycation) and heparin (a strong polyanion) are used to make polyelectrolyte multilayers (PEM). PEM thickness and composition are determined as a function of solution pH (4.6 to 5.8) and ionic strength (0.1 to 0.5 M). Over this range, increasing pH increases the PEM thickness; however, the sensitivity to changes in pH is a strong function of ionic strength. The PEM thickness data are correlated to the polymer conformation in solution. Polyelectrolyte conformation in solution is characterized by gel permeation chromatography (GPC). The highest sensitivity of PEM structure to pH is obtained at intermediate ionic strength. Different interactions govern the conformation and adsorption phenomena at low and high ionic strength, leading to reduced sensitivity to solution pH at extreme ionic strengths. The correspondence between PEM thickness and polymer solution conformation offers opportunities to tune polymer thin film structure at the nanometer length scale by controlling simple, reproducible processing conditions.

  9. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  10. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  11. More ‘altruistic’ punishment in larger societies

    Science.gov (United States)

    Marlowe, Frank W; Berbesque, J. Colette; Barr, Abigail; Barrett, Clark; Bolyanatz, Alexander; Cardenas, Juan Camilo; Ensminger, Jean; Gurven, Michael; Gwako, Edwins; Henrich, Joseph; Henrich, Natalie; Lesorogol, Carolyn; McElreath, Richard; Tracer, David

    2007-01-01

    If individuals will cooperate with cooperators, and punish non-cooperators even at a cost to themselves, then this strong reciprocity could minimize the cheating that undermines cooperation. Based upon numerous economic experiments, some have proposed that human cooperation is explained by strong reciprocity and norm enforcement. Second-party punishment is when you punish someone who defected on you; third-party punishment is when you punish someone who defected on someone else. Third-party punishment is an effective way to enforce the norms of strong reciprocity and promote cooperation. Here we present new results that expand on a previous report from a large cross-cultural project. This project has already shown that there is considerable cross-cultural variation in punishment and cooperation. Here we test the hypothesis that population size (and complexity) predicts the level of third-party punishment. Our results show that people in larger, more complex societies engage in significantly more third-party punishment than people in small-scale societies. PMID:18089534

  12. Scale dependence of the average potential around the maximum in Φ4 theories

    International Nuclear Information System (INIS)

    Tetradis, N.; Wetterich, C.

    1992-04-01

    The average potential describes the physics at a length scale k - 1 by averaging out the degrees of freedom with characteristic moments larger than k. The dependence on k can be described by differential evolution equations. We solve these equations for the nonconvex part of the potential around the origin in φ 4 theories, in the phase with spontaneous symmetry breaking. The average potential is real and approaches the convex effective potential in the limit k → 0. Our calculation is relevant for processes for which the shape of the potential at a given scale is important, such as tunneling phenomena or inflation. (orig.)

  13. Acculturation Predicts Negative Affect and Shortened Telomere Length.

    Science.gov (United States)

    Ruiz, R Jeanne; Trzeciakowski, Jerome; Moore, Tiffany; Ayers, Kimberly S; Pickler, Rita H

    2016-10-12

    Chronic stress may accelerate cellular aging. Telomeres, protective "caps" at the end of chromosomes, modulate cellular aging and may be good biomarkers for the effects of chronic stress, including that associated with acculturation. The purpose of this analysis was to examine telomere length (TL) in acculturating Hispanic Mexican American women and to determine the associations among TL, acculturation, and psychological factors. As part of a larger cross-sectional study of 516 pregnant Hispanic Mexican American women, we analyzed DNA in blood samples (N = 56) collected at 22-24 weeks gestation for TL as an exploratory measure using monochrome multiplex quantitative telomere polymerase chain reaction (PCR). We measured acculturation with the Acculturation Rating Scale for Mexican Americans, depression with the Beck Depression Inventory, discrimination with the Experiences of Discrimination Scale, and stress with the Perceived Stress Scale. TL was negatively moderately correlated with two variables of acculturation: Anglo orientation and greater acculturation-level scores. We combined these scores for a latent variable, acculturation, and we combined depression, stress, and discrimination scores in another latent variable, "negative affectivity." Acculturation and negative affectivity were bidirectionally correlated. Acculturation significantly negatively predicted TL. Using structural equation modeling, we found the model had an excellent fit with the root mean square error of approximation estimate = .0001, comparative fit index = 1.0, Tucker-Lewis index = 1.0, and standardized root mean square residual = .05. The negative effects of acculturation on the health of Hispanic women have been previously demonstrated. Findings from this analysis suggest a link between acculturation and TL, which may indicate accelerated cellular aging associated with overall poor health outcomes. © The Author(s) 2016.

  14. Nano-regime Length Scales Extracted from the First Sharp Diffraction Peak in Non-crystalline SiO2 and Related Materials: Device Applications

    Directory of Open Access Journals (Sweden)

    Phillips James

    2010-01-01

    Full Text Available Abstract This paper distinguishes between two different scales of medium range order, MRO, in non-crystalline SiO2: (1 the first is ~0.4 to 0.5 nm and is obtained from the position of the first sharp diffraction peak, FSDP, in the X-ray diffraction structure factor, S(Q, and (2 the second is ~1 nm and is calculated from the FSDP full-width-at-half-maximum FWHM. Many-electron calculations yield Si–O third- and O–O fourth-nearest-neighbor bonding distances in the same 0.4–0.5 nm MRO regime. These derive from the availability of empty Si dπ orbitals for back-donation from occupied O pπ orbitals yielding narrow symmetry determined distributions of third neighbor Si–O, and fourth neighbor O–O distances. These are segments of six member rings contributing to connected six-member rings with ~1 nm length scale within the MRO regime. The unique properties of non-crystalline SiO2 are explained by the encapsulation of six-member ring clusters by five- and seven-member rings on average in a compliant hard-soft nano-scaled inhomogeneous network. This network structure minimizes macroscopic strain, reducing intrinsic bonding defects as well as defect precursors. This inhomogeneous CRN is enabling for applications including thermally grown ~1.5 nm SiO2 layers for Si field effect transistor devices to optical components with centimeter dimensions. There are qualitatively similar length scales in nano-crystalline HfO2 and phase separated Hf silicates based on the primitive unit cell, rather than a ring structure. Hf oxide dielectrics have recently been used as replacement dielectrics for a new generation of Si and Si/Ge devices heralding a transition into nano-scale circuits and systems on a Si chip.

  15. Modelling length of hospital stay in motor victims

    Directory of Open Access Journals (Sweden)

    Mercedes Ayuso-Gutiérrez

    2015-03-01

    Full Text Available Objective. To analyze which socio-demographic and other factors related to motor injuries affect the length of hospital recovery stay. Materials and methods. In the study a sample of 17 932 motor accidents was used. All the crashes occurred in Spain between 2000 and 2007. Different regression models were fitted to data to identify and measure the impact of a set of explanatory regressors. Results. Time of hospital stay for men is on average 41% larger than for women. When the victim has a fracture as a consequence of the accident, the mean time of hospital stay is multiplied by five. Injuries located in lower extremities, the head and abdomen are associated with greater hospitalization lengths. Conclusions. Gender, age and type of victim, as well as the location and nature of injuries, are found to be factors that have significant impact on the expected length of hospital stay.

  16. Landslide scaling and magnitude-frequency distribution (Invited)

    Science.gov (United States)

    Stark, C. P.; Guzzetti, F.

    2009-12-01

    Landslide-driven erosion is controlled by the scale and frequency of slope failures and by the consequent fluxes of debris off the hillslopes. Here I focus on the magnitude-frequency part of the process and develop a theory of initial slope failure and debris mobilization that reproduces the heavy-tailed distributions (PDFs) observed for landslide source areas and volumes. Landslide rupture propagation is treated as a quasi-static, non-inertial process of simplified elastoplastic deformation with strain weakening; debris runout is not considered. The model tracks the stochastically evolving imbalance of frictional, cohesive, and body forces across a failing slope, and uses safety-factor concepts to convert the evolving imbalance into a series of incremental rupture growth or arrest probabilities. A single rupture is simulated with a sequence of weighted ``coin tosses'' with weights set by the growth probabilities. Slope failure treated in this stochastic way is a survival process that generates asymptotically power-law-tail PDFs of area and volume for rock and debris slides; predicted scaling exponents are consistent with analyses of landslide inventories. The primary control on the shape of the model PDFs is the relative importance of cohesion over friction in setting slope stability: the scaling of smaller, shallower failures, and the size of the most common landslide volumes, are the result of the low cohesion of soil and regolith, whereas the negative power-law tail scaling for larger failures is tied to the greater cohesion of bedrock. The debris budget may be dominated by small or large landslides depending on the scaling of both the PDF and of the depth-length relation. I will present new model results that confirm the hypothesis that depth-length scaling is linear. Model PDF of landslide volumes.

  17. Length Scales of the Neutral Wind Profile over Homogeneous Terrain

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Mann, Jakob

    2010-01-01

    The wind speed profile for the neutral boundary layer is derived for a number of mixing-length parameterizations, which account for the height of the boundary layer. The wind speed profiles show good agreement with the reanalysis of the Leipzig wind profile (950 m high) and with combined cup–soni...

  18. Newton's constant from a minimal length: additional models

    International Nuclear Information System (INIS)

    Sahlmann, Hanno

    2011-01-01

    We follow arguments of Verlinde (2010 arXiv:1001.0785 [hep-th]) and Klinkhamer (2010 arXiv:1006.2094 [hep-th]), and construct two models of the microscopic theory of a holographic screen that allow for the thermodynamical derivation of Newton's law, with Newton's constant expressed in terms of a minimal length scale l contained in the area spectrum of the microscopic theory. One of the models is loosely related to the quantum structure of surfaces and isolated horizons in loop quantum gravity. Our investigation shows that the conclusions reached by Klinkhamer regarding the new length scale l seem to be generic in all their qualitative aspects.

  19. Relative strength of second harmonic and 3/2 omega emissions from long-scale-length laser produced plasmas

    International Nuclear Information System (INIS)

    Sinha, B.K.; Kumbhare, S.R.

    1988-01-01

    Experiments were conducted on the planar slab targets of carbon, aluminum, and copper, using a 1.0641 μm laser, at laser intensities varying from 2 x 10/sup 12/ to 1 x 10/sup 14/ W/cm/sup 2/. The laser had a fluorescent linewidth of 4.5 A. Spectral profiles of parametrically modulated second harmonic as well as 3/2/ω/sub 0/ emissions have been measured for the long-scale-length plasmas so generated. Relative strengths of three emissions with respect to peak signal intensity and spectral energy content as a function of laser intensity are graphically reported. Results are discussed on the basis of two plasmon and parametric decay instabilities

  20. Magnetic Reconnection May Control the Ion-scale Spectral Break of Solar Wind Turbulence

    Science.gov (United States)

    Vech, Daniel; Mallet, Alfred; Klein, Kristopher G.; Kasper, Justin C.

    2018-03-01

    The power spectral density of magnetic fluctuations in the solar wind exhibits several power-law-like frequency ranges with a well-defined break between approximately 0.1 and 1 Hz in the spacecraft frame. The exact dependence of this break scale on solar wind parameters has been extensively studied but is not yet fully understood. Recent studies have suggested that reconnection may induce a break in the spectrum at a “disruption scale” {λ }{{D}}, which may be larger than the fundamental ion kinetic scales, producing an unusually steep spectrum just below the break. We present a statistical investigation of the dependence of the break scale on the proton gyroradius ρ i , ion inertial length d i , ion sound radius ρ s , proton–cyclotron resonance scale ρ c , and disruption scale {λ }{{D}} as a function of {β }\\perp i. We find that the steepest spectral indices of the dissipation range occur when β e is in the range of 0.1–1 and the break scale is only slightly larger than the ion sound scale (a situation occurring 41% of the time at 1 au), in qualitative agreement with the reconnection model. In this range, the break scale shows a remarkably good correlation with {λ }{{D}}. Our findings suggest that, at least at low β e , reconnection may play an important role in the development of the dissipation range turbulent cascade and cause unusually steep (steeper than ‑3) spectral indices.

  1. Choosing a proper working length can improve the lifespan of locked plates. A biomechanical study.

    Science.gov (United States)

    Hoffmeier, Konrad L; Hofmann, Gunther O; Mückley, Thomas

    2011-05-01

    It is hypothesized that the working length influences the implants fatigue behavior. However, few studies addressing this issue came to contrary results. Therefore, we tested systematically the influence of working length and implant material on the plate's endurance. We used an artificial model providing the substantial angle and length conditions of a human femur. A fracture gap of 10mm was bridged with identical shaped plate implants made of stainless steel and grade-2 titanium. The fatigue strength was tested for a short, medium and long working length. Aiming at an implant failure within 80,000 loading cycles the upper load threshold was set to 265N for the titanium plates and to 420N for the steel plates. The lower load threshold was -20N for both plates. For the steel plates there was no correlation between fatigue strength and working length. The construct stiffness did not differ at short and medium working length and was reduced by 10% (P=0.047) at long working length. For the titanium plates the fatigue strength tends to increase with the working length but this correlation was not significant (τ=0.417, P=0.051). Further there was a negative correlation between working length and construct stiffness (τ=0.552; P=0.01). The working length has no appreciable effect on the endurance of the steel plates. Compared to the grade 2-titanium plates the stainless steel plates sustain a larger amount of cyclic load. However, for the titanium plates a larger working length tends to improve the endurance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Vertically migrating swimmers generate aggregation-scale eddies in a stratified column.

    Science.gov (United States)

    Houghton, Isabel A; Koseff, Jeffrey R; Monismith, Stephen G; Dabiri, John O

    2018-04-01

    Biologically generated turbulence has been proposed as an important contributor to nutrient transport and ocean mixing 1-3 . However, to produce non-negligible transport and mixing, such turbulence must produce eddies at scales comparable to the length scales of stratification in the ocean. It has previously been argued that biologically generated turbulence is limited to the scale of the individual animals involved 4 , which would make turbulence created by highly abundant centimetre-scale zooplankton such as krill irrelevant to ocean mixing. Their small size notwithstanding, zooplankton form dense aggregations tens of metres in vertical extent as they undergo diurnal vertical migration over hundreds of metres 3,5,6 . This behaviour potentially introduces additional length scales-such as the scale of the aggregation-that are of relevance to animal interactions with the surrounding water column. Here we show that the collective vertical migration of centimetre-scale swimmers-as represented by the brine shrimp Artemia salina-generates aggregation-scale eddies that mix a stable density stratification, resulting in an effective turbulent diffusivity up to three orders of magnitude larger than the molecular diffusivity of salt. These observed large-scale mixing eddies are the result of flow in the wakes of the individual organisms coalescing to form a large-scale downward jet during upward swimming, even in the presence of a strong density stratification relative to typical values observed in the ocean. The results illustrate the potential for marine zooplankton to considerably alter the physical and biogeochemical structure of the water column, with potentially widespread effects owing to their high abundance in climatically important regions of the ocean 7 .

  3. Intermediate length scale dynamics of polyisobutylene

    International Nuclear Information System (INIS)

    Farago, B.; Arbe, A.; Colmenero, J.; Faust, R.; Buchenau, U.; Richter, D.

    2002-01-01

    We report on a neutron spin echo investigation of the intermediate scale dynamics of polyisobutylene studying both the self-motion and the collective motion. The momentum transfer (Q) dependences of the self-correlation times are found to follow a Q -2/β law in agreement with the picture of Gaussian dynamics. In the full Q range of observation, their temperature dependence is weaker than the rheological shift factor. The same is true for the stress relaxation time as seen in sound wave absorption. The collective times show both temperature dependences; at the structure factor peak, they follow the temperature dependence of the viscosity, but below the peak, one finds the stress relaxation behavior

  4. The Effective Coherence Length in Anisotropic Superconductors

    International Nuclear Information System (INIS)

    Polturak, E.; Koren, G.; Nesher, O

    1999-01-01

    If electrons are transmitted from a normal conductor(N) into a superconductor(S), common wisdom has it that the electrons are converted into Cooper pairs within a coherence length from the interface. This is true in conventional superconductors with an isotropic order parameter. We have established experimentally that the situation is rather different in high Tc superconductors having an anisotropic order parameter. We used epitaxial thin film S/N bilayers having different interface orientations in order to inject carriers from S into N along different directions. The distance to which these carriers penetrate were determined through their effect on the Tc of the bilayers. We found that the effective coherence length is 20A only along the a or b directions, while in other directions we find a length of 250dr20A out of plane, and an even larger value for in-plane, off high symmetry directions. These observations can be explained using the Blonder-Tinkham-Klapwijk model adapted to anisotropic superconductivity. Several implications of our results on outstanding problems with high Tc junctions will be discussed

  5. Surface-immobilized hydrogel patterns on length scales from micrometer to nanometer

    Science.gov (United States)

    Zeira, Assaf

    The present work concentrates on the study of pattern generation and transfer processes of monolayer covered surfaces, deriving from the basic working concept of Constructive Lithography. As an advancement of constructive lithography, we developed a direct, one-step printing (contact electrochemical printing, CEP) and replication (contact electrochemical replication, CER) of hydrophilic organic monolayer patterns surrounded by a hydrophobic monolayer background. In addition, we present a process of transfer of metal between two contacting solid surfaces to predefined monolayer template pattern sites (contact electrochemical transfer, CET). This thesis shows that CEP, CER, and CET may be implemented under a variety of different experimental conditions, regardless of whether the initial "master" pattern was created by a parallel (fast) or serial (slow) patterning process. CEP and CER also posses the unique attractive property that each replica may equally function as master stamp in the fabrication of additional replicas. Moreover, due to a mechanism of selfcorrection patterned surfaces produced these process are often free of defects that the initial "master" stamp may had. We finally show that the electrochemical patterning of OTS monolayers on silicon can be further extended to flexible polymeric substrate materials as well as to a variety of chemical manipulations, allowing the fabrication of tridimensional (3D) composite structures made on the basis of readily available OTS compound. The results obtained suggest that such contact electrochemical processes could be used to rapidly generate multiple copies of surface patterns spanning variable length scales, this basic approach being applicable to rigid as well as flexible substrate materials.

  6. Comparison of friction and wear of articular cartilage on different length scales.

    Science.gov (United States)

    Kienle, Sandra; Boettcher, Kathrin; Wiegleb, Lorenz; Urban, Joanna; Burgkart, Rainer; Lieleg, Oliver; Hugel, Thorsten

    2015-09-18

    The exceptional tribological properties of articular cartilage are still far from being fully understood. Articular cartilage is able to withstand high loads and provide exceptionally low friction. Although the regeneration abilities of the tissue are very limited, it can last for many decades. These biomechanical properties are realized by an interplay of different lubrication and wear protection mechanisms. The deterioration of cartilage due to aging or injury leads to the development of osteoarthritis. A current treatment strategy focuses on supplementing the intra-articular fluid with a saline solution containing hyaluronic acid. In the work presented here, we investigated how changing the lubricating fluid affects friction and wear of articular cartilage, focusing on the boundary and mixed lubrication as well as interstitial fluid pressurization mechanisms. Different length and time scales were probed by atomic force microscopy, tribology and profilometry. We compared aqueous solutions with different NaCl concentrations to a viscosupplement containing hyaluronic acid (HA). In particular, we found that the presence of ions changes the frictional behavior and the wear resistance. In contrast, hyaluronic acid showed no significant impact on the friction coefficient, but considerably reduced wear. This study confirms the previous notion that friction and wear are not necessarily correlated in articular cartilage tribology and that the main role of HA might be to provide wear protection for the articular surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Low frequency energy scavenging using sub-wave length scale acousto-elastic metamaterial

    Directory of Open Access Journals (Sweden)

    Riaz U. Ahmed

    2014-11-01

    Full Text Available This letter presents the possibility of energy scavenging (ES utilizing the physics of acousto-elastic metamaterial (AEMM at low frequencies (<∼3KHz. It is proposed to use the AEMM in a dual mode (Acoustic Filter and Energy Harvester, simultaneously. AEMM’s are typically reported for filtering acoustic waves by trapping or guiding the acoustic energy, whereas this letter shows that the dynamic energy trapped inside the soft constituent (matrix of metamaterials can be significantly harvested by strategically embedding piezoelectric wafers in the matrix. With unit cell AEMM model, we experimentally asserted that at lower acoustic frequencies (< ∼3 KHz, maximum power in the micro Watts (∼35µW range can be generated, whereas, recently reported phononic crystal based metamaterials harvested only nano Watt (∼30nW power against 10KΩ resistive load. Efficient energy scavengers at low acoustic frequencies are almost absent due to large required size relevant to the acoustic wavelength. Here we report sub wave length scale energy scavengers utilizing the coupled physics of local, structural and matrix resonances. Upon validation of the argument through analytical, numerical and experimental studies, a multi-frequency energy scavenger (ES with multi-cell model is designed with varying geometrical properties capable of scavenging energy (power output from ∼10µW – ∼90µW between 0.2 KHz and 1.5 KHz acoustic frequencies.

  8. A multi scale model for small scale plasticity

    International Nuclear Information System (INIS)

    Zbib, Hussein M.

    2002-01-01

    Full text.A framework for investigating size-dependent small-scale plasticity phenomena and related material instabilities at various length scales ranging from the nano-microscale to the mesoscale is presented. The model is based on fundamental physical laws that govern dislocation motion and their interaction with various defects and interfaces. Particularly, a multi-scale model is developed merging two scales, the nano-microscale where plasticity is determined by explicit three-dimensional dislocation dynamics analysis providing the material length-scale, and the continuum scale where energy transport is based on basic continuum mechanics laws. The result is a hybrid simulation model coupling discrete dislocation dynamics with finite element analyses. With this hybrid approach, one can address complex size-dependent problems, including dislocation boundaries, dislocations in heterogeneous structures, dislocation interaction with interfaces and associated shape changes and lattice rotations, as well as deformation in nano-structured materials, localized deformation and shear band

  9. Parameterization of cirrus microphysical and radiative properties in larger-scale models

    International Nuclear Information System (INIS)

    Heymsfield, A.J.; Coen, J.L.

    1994-01-01

    This study exploits measurements in clouds sampled during several field programs to develop and validate parameterizations that represent the physical and radiative properties of convectively generated cirrus clouds in intermediate and large-scale models. The focus is on cirrus anvils because they occur frequently, cover large areas, and play a large role in the radiation budget. Preliminary work focuses on understanding the microphysical, radiative, and dynamical processes that occur in these clouds. A detailed microphysical package has been constructed that considers the growth of the following hydrometer types: water drops, needles, plates, dendrites, columns, bullet rosettes, aggregates, graupel, and hail. Particle growth processes include diffusional and accretional growth, aggregation, sedimentation, and melting. This package is being implemented in a simple dynamical model that tracks the evolution and dispersion of hydrometers in a stratiform anvil cloud. Given the momentum, vapor, and ice fluxes into the stratiform region and the temperature and humidity structure in the anvil's environment, this model will suggest anvil properties and structure

  10. Health inequalities in Ethiopia: modeling inequalities in length of life within and between population groups.

    Science.gov (United States)

    Tranvåg, Eirik Joakim; Ali, Merima; Norheim, Ole Frithjof

    2013-07-11

    Most studies on health inequalities use average measures, but describing the distribution of health can also provide valuable knowledge. In this paper, we estimate and compare within-group and between-group inequalities in length of life for population groups in Ethiopia in 2000 and 2011. We used data from the 2011 and 2000 Ethiopia Demographic and Health Survey and the Global Burden of Disease study 2010, and the MODMATCH modified logit life table system developed by the World Health Organization to model mortality rates, life expectancy, and length of life for Ethiopian population groups stratified by wealth quintiles, gender and residence. We then estimated and compared within-group and between-group inequality in length of life using the Gini index and absolute length of life inequality. Length of life inequality has decreased and life expectancy has increased for all population groups between 2000 and 2011. Length of life inequality within wealth quintiles is about three times larger than the between-group inequality of 9 years. Total length of life inequality in Ethiopia was 27.6 years in 2011. Longevity has increased and the distribution of health in Ethiopia is more equal in 2011 than 2000, with length of life inequality reduced for all population groups. Still there is considerable potential for further improvement. In the Ethiopian context with a poor and highly rural population, inequality in length of life within wealth quintiles is considerably larger than between them. This suggests that other factors than wealth substantially contribute to total health inequality in Ethiopia and that identification and quantification of these factors will be important for identifying proper measures to further reduce length of life inequality.

  11. Investigation of Larger Poly(α-Methylstyrene) Mandrels for High Gain Designs Using Microencapsulation

    International Nuclear Information System (INIS)

    Takagi, Masaru; Cook, Robert; McQuillan, Barry; Gibson, Jane; Paguio, Sally

    2004-01-01

    In recent years we have demonstrated that 2-mm-diameter poly(α-methylstyrene) mandrels meeting indirect drive NIF surface symmetry specifications can be produced using microencapsulation methods. Recently higher gain target designs have been introduced that rely on frequency doubled (green) laser energy and require capsules up to 4 mm in diameter, nominally meeting the same surface finish and symmetry requirements as the existing 2-mm-diameter capsule designs. Direct drive on the NIF also requires larger capsules. In order to evaluate whether the current microencapsulation-based mandrel fabrication techniques will adequately scale to these larger capsules, we have explored extending the techniques to 4-mm-diameter capsules. We find that microencapsulated shells meeting NIF symmetry specifications can be produced, the processing changes necessary to accomplish this are presented here

  12. Chromosome length scaling in haploid, asexual reproduction

    International Nuclear Information System (INIS)

    Oliveira, P M C de

    2007-01-01

    We study the genetic behaviour of a population formed by haploid individuals which reproduce asexually. The genetic information for each individual is stored along a bit-string (or chromosome) with L bits, where 0-bits represent the wild allele and 1-bits correspond to harmful mutations. Each newborn inherits this chromosome from its parent with a few random mutations: on average a fixed number m of bits are flipped. Selection is implemented according to the number N of 1-bits counted along the individual's chromosome: the smaller N the higher the probability an individual has to survive a new time step. Such a population evolves, with births and deaths, and its genetic distribution becomes stabilized after sufficiently many generations have passed. The question we pose concerns the procedure of increasing L. The aim is to get the same distribution of genetic loads N/L among the equilibrated population, in spite of a larger L. Should we keep the same mutation rate m/L for different values of L? The answer is yes, which intuitively seems to be plausible. However, this conclusion is not trivial, according to our simulation results: the question also involves the population size

  13. Pore-scale studies of multiphase flow and reaction involving CO2 sequestration in geologic formations

    Science.gov (United States)

    Kang, Q.; Wang, M.; Lichtner, P. C.

    2008-12-01

    In geologic CO2 sequestration, pore-scale interfacial phenomena ultimately govern the key processes of fluid mobility, chemical transport, adsorption, and reaction. However, spatial heterogeneity at the pore scale cannot be resolved at the continuum scale, where averaging occurs over length scales much larger than typical pore sizes. Natural porous media, such as sedimentary rocks and other geological media encountered in subsurface formations, are inherently heterogeneous. This pore-scale heterogeneity can produce variabilities in flow, transport, and reaction processes that take place within a porous medium, and can result in spatial variations in fluid velocity, aqueous concentrations, and reaction rates. Consequently, the unresolved spatial heterogeneity at the pore scale may be important for reactive transport modeling at the larger scale. In addition, current continuum models of surface complexation reactions ignore a fundamental property of physical systems, namely conservation of charge. Therefore, to better understand multiphase flow and reaction involving CO2 sequestration in geologic formations, it is necessary to quantitatively investigate the influence of the pore-scale heterogeneity on the emergent behavior at the field scale. We have applied the lattice Boltzmann method to simulating the injection of CO2 saturated brine or supercritical CO2 into geological formations at the pore scale. Multiple pore-scale processes, including advection, diffusion, homogeneous reactions among multiple aqueous species, heterogeneous reactions between the aqueous solution and minerals, ion exchange and surface complexation, as well as changes in solid and pore geometry are all taken into account. The rich pore scale information will provide a basis for upscaling to the continuum scale.

  14. Quantum-critical scaling of fidelity in 2D pairing models

    Energy Technology Data Exchange (ETDEWEB)

    Adamski, Mariusz, E-mail: mariusz.adamski@ift.uni.wroc.pl [Institute of Theoretical Physics, University of Wrocław, pl. Maksa Borna 9, 50–204, Wrocław (Poland); Jȩdrzejewski, Janusz [Institute of Theoretical Physics, University of Wrocław, pl. Maksa Borna 9, 50–204, Wrocław (Poland); Krokhmalskii, Taras [Institute for Condensed Matter Physics, 1 Svientsitski Street, 79011, Lviv (Ukraine)

    2017-01-15

    The laws of quantum-critical scaling theory of quantum fidelity, dependent on the underlying system dimensionality D, have so far been verified in exactly solvable 1D models, belonging to or equivalent to interacting, quadratic (quasifree), spinless or spinfull, lattice-fermion models. The obtained results are so appealing that in quest for correlation lengths and associated universal critical indices ν, which characterize the divergence of correlation lengths on approaching critical points, one might be inclined to substitute the hard task of determining an asymptotic behavior at large distances of a two-point correlation function by an easier one, of determining the quantum-critical scaling of the quantum fidelity. However, the role of system's dimensionality has been left as an open problem. Our aim in this paper is to fill up this gap, at least partially, by verifying the laws of quantum-critical scaling theory of quantum fidelity in a 2D case. To this end, we study correlation functions and quantum fidelity of 2D exactly solvable models, which are interacting, quasifree, spinfull, lattice-fermion models. The considered 2D models exhibit new, as compared with 1D ones, features: at a given quantum-critical point there exists a multitude of correlation lengths and multiple universal critical indices ν, since these quantities depend on spatial directions, moreover, the indices ν may assume larger values. These facts follow from the obtained by us analytical asymptotic formulae for two-point correlation functions. In such new circumstances we discuss the behavior of quantum fidelity from the perspective of quantum-critical scaling theory. In particular, we are interested in finding out to what extent the quantum fidelity approach may be an alternative to the correlation-function approach in studies of quantum-critical points beyond 1D.

  15. Length-scales of Slab-induced Asthenospheric Deformation from Geodynamic Modeling, Mantle Deformation Fabric, and Synthetic Shear Wave Splitting

    Science.gov (United States)

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2017-12-01

    The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear

  16. Modelling of rate effects at multiple scales

    DEFF Research Database (Denmark)

    Pedersen, R.R.; Simone, A.; Sluys, L. J.

    2008-01-01

    , the length scale in the meso-model and the macro-model can be coupled. In this fashion, a bridging of length scales can be established. A computational analysis of  a Split Hopkinson bar test at medium and high impact load is carried out at macro-scale and meso-scale including information from  the micro-scale.......At the macro- and meso-scales a rate dependent constitutive model is used in which visco-elasticity is coupled to visco-plasticity and damage. A viscous length scale effect is introduced to control the size of the fracture process zone. By comparison of the widths of the fracture process zone...

  17. SQUID magnetometry from nanometer to centimeter length scales

    International Nuclear Information System (INIS)

    Hatridge, Michael J.

    2010-01-01

    The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.

  18. SQUID magnetometry from nanometer to centimeter length scales

    Energy Technology Data Exchange (ETDEWEB)

    Hatridge, Michael J. [Univ. of California, Berkeley, CA (United States)

    2010-06-01

    The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.

  19. Scale-relativistic cosmology

    International Nuclear Information System (INIS)

    Nottale, Laurent

    2003-01-01

    The principle of relativity, when it is applied to scale transformations, leads to the suggestion of a generalization of fundamental dilations laws. These new special scale-relativistic resolution transformations involve log-Lorentz factors and lead to the occurrence of a minimal and of a maximal length-scale in nature, which are invariant under dilations. The minimal length-scale, that replaces the zero from the viewpoint of its physical properties, is identified with the Planck length l P , and the maximal scale, that replaces infinity, is identified with the cosmic scale L=Λ -1/2 , where Λ is the cosmological constant.The new interpretation of the Planck scale has several implications for the structure and history of the early Universe: we consider the questions of the origin, of the status of physical laws at very early times, of the horizon/causality problem and of fluctuations at recombination epoch.The new interpretation of the cosmic scale has consequences for our knowledge of the present universe, concerning in particular Mach's principle, the large number coincidence, the problem of the vacuum energy density, the nature and the value of the cosmological constant. The value (theoretically predicted ten years ago) of the scaled cosmological constant Ω Λ =0.75+/-0.15 is now supported by several different experiments (Hubble diagram of Supernovae, Boomerang measurements, gravitational lensing by clusters of galaxies).The scale-relativity framework also allows one to suggest a solution to the missing mass problem, and to make theoretical predictions of fundamental energy scales, thanks to the interpretation of new structures in scale space: fractal/classical transitions as Compton lengths, mass-coupling relations and critical value 4π 2 of inverse couplings. Among them, we find a structure at 3.27+/-0.26x10 20 eV, which agrees closely with the observed highest energy cosmic rays at 3.2+/-0.9x10 20 eV, and another at 5.3x10 -3 eV, which corresponds to the

  20. Is the permeability of naturally fractured rocks scale dependent?

    Science.gov (United States)

    Azizmohammadi, Siroos; Matthäi, Stephan K.

    2017-09-01

    The equivalent permeability, keq of stratified fractured porous rocks and its anisotropy is important for hydrocarbon reservoir engineering, groundwater hydrology, and subsurface contaminant transport. However, it is difficult to constrain this tensor property as it is strongly influenced by infrequent large fractures. Boreholes miss them and their directional sampling bias affects the collected geostatistical data. Samples taken at any scale smaller than that of interest truncate distributions and this bias leads to an incorrect characterization and property upscaling. To better understand this sampling problem, we have investigated a collection of outcrop-data-based Discrete Fracture and Matrix (DFM) models with mechanically constrained fracture aperture distributions, trying to establish a useful Representative Elementary Volume (REV). Finite-element analysis and flow-based upscaling have been used to determine keq eigenvalues and anisotropy. While our results indicate a convergence toward a scale-invariant keq REV with increasing sample size, keq magnitude can have multi-modal distributions. REV size relates to the length of dilated fracture segments as opposed to overall fracture length. Tensor orientation and degree of anisotropy also converge with sample size. However, the REV for keq anisotropy is larger than that for keq magnitude. Across scales, tensor orientation varies spatially, reflecting inhomogeneity of the fracture patterns. Inhomogeneity is particularly pronounced where the ambient stress selectively activates late- as opposed to early (through-going) fractures. While we cannot detect any increase of keq with sample size as postulated in some earlier studies, our results highlight a strong keq anisotropy that influences scale dependence.

  1. Dependence of the L-Mode scrape-off layer power fall-off length on the upper triangularity in TCV

    Science.gov (United States)

    Faitsch, M.; Maurizio, R.; Gallo, A.; Coda, S.; Eich, T.; Labit, B.; Merle, A.; Reimerdes, H.; Sieglin, B.; Theiler, C.; the Eurofusion MST1 Team; the TCV Team

    2018-04-01

    This paper reports on experimental observations on TCV with a scan in upper triangularity {δ }up}, including negative triangularity, focusing on the power fall-off length {λ }{{q}} in L-Mode. The upper triangularity is scanned from -0.28 to 0.47. Smaller {λ }{{q}}out} is measured at the outer divertor target for decreasing {δ }up} together with higher edge temperature {T}{{e},{edge}} leading to increased confinement. This effect is observed for both magnetic drift directions for discharges in deuterium and helium. In helium larger {λ }{{q}} values are observed compared to deuterium. The power fall-off length at the inner divertor target {λ }{{q}}in} has a non-monotonic behaviour with changing triangularity. The largest values are around {δ }up}=0. The ratio {λ }{{q}}in}/{λ }{{q}}out} increases for decreasing {δ }up} for positive triangularity and is approximately constant for negative triangularity. {λ }{{q}}out} is compared to available scaling laws. Partial agreement is only observed for a scaling law containing a proxy for {T}{{e},{edge}} at ASDEX Upgrade (Sieglin 2016 Plasma Phys. Control. Fusion 58 055015). Extending this scaling to TCV and using {T}{{e},{edge}} at {ρ }pol}=0.95 suggests that {λ }{{q}}out} is independent of machine size {λ }{{q}}{{L} - {Mode}} ({mm}) = 165\\cdot {B}pol}{({{T}})}-0.66\\cdot A{({{u}})}-0.15\\cdot {T}{{e},{edge}}{({eV})}-0.93\\cdot R{({{m}})}-0.03. Possible explanations for smaller {λ }{{q}}out} for decreasing {δ }up} is a reduction in turbulence or a direct effect of increasing {T}{{e},{edge}}.

  2. Predicting permeability of regular tissue engineering scaffolds: scaling analysis of pore architecture, scaffold length, and fluid flow rate effects.

    Science.gov (United States)

    Rahbari, A; Montazerian, H; Davoodi, E; Homayoonfar, S

    2017-02-01

    The main aim of this research is to numerically obtain the permeability coefficient in the cylindrical scaffolds. For this purpose, a mathematical analysis was performed to derive an equation for desired porosity in terms of morphological parameters. Then, the considered cylindrical geometries were modeled and the permeability coefficient was calculated according to the velocity and pressure drop values based on the Darcy's law. In order to validate the accuracy of the present numerical solution, the obtained permeability coefficient was compared with the published experimental data. It was observed that this model can predict permeability with the utmost accuracy. Then, the effect of geometrical parameters including porosity, scaffold pore structure, unit cell size, and length of the scaffolds as well as entrance mass flow rate on the permeability of porous structures was studied. Furthermore, a parametric study with scaling laws analysis of sample length and mass flow rate effects on the permeability showed good fit to the obtained data. It can be concluded that the sensitivity of permeability is more noticeable at higher porosities. The present approach can be used to characterize and optimize the scaffold microstructure due to the necessity of cell growth and transferring considerations.

  3. Length and time scales of atmospheric moisture recycling

    NARCIS (Netherlands)

    Van der Ent, R.J.; Savenije, H.H.G.

    2011-01-01

    It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling) due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to

  4. Contrasting Strategies of Alfalfa Stem Elongation in Response to Fall Dormancy in Early Growth Stage: The Tradeoff between Internode Length and Internode Number

    Science.gov (United States)

    Wang, Zongli; Sun, Qizhong

    2015-01-01

    cultivars have a larger number of internodes. There were tradeoffs between internode length and internode number in response to FD in alfalfa, which reflected certain scale-dependence. PMID:26281014

  5. Quantifying Interfacial pH Variation at Molecular Length Scales Using a Concurrent Non-Faradaic Reaction.

    Science.gov (United States)

    Ryu, Jaeyune; Wuttig, Anna; Surendranath, Yogesh

    2018-05-15

    We quantify changes in the interfacial pH local to the electrochemical double layer during electrocatalysis, using a concurrent non-faradaic probe reaction. In the absence of electrocatalysis, nanostructured Pt/C surfaces mediate the reaction of H2 with cis-2-butene-1,4-diol to form a mixture of 1,4-butanediol and n-butanol with a selectivity that is linearly dependent on the bulk solution pH. We show that kinetic branching occurs from a common surface-bound intermediate, ensuring that this probe reaction is uniquely sensitive to the interfacial pH within molecular length scales of the surface. We use the pH-dependent selectivity of this reaction to track changes in interfacial pH during concurrent hydrogen oxidation electrocatalysis and find that the local pH can vary dramatically, > 3 units, relative to the bulk value even at modest current densities in well-buffered electrolytes. This work highlights the key role that interfacial pH variation plays in modulating inner-sphere electrocatalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A superlinear iteration method for calculation of finite length journal bearing's static equilibrium position

    Science.gov (United States)

    Zhou, Wenjie; Wei, Xuesong; Wang, Leqin; Wu, Guangkuan

    2017-05-01

    Solving the static equilibrium position is one of the most important parts of dynamic coefficients calculation and further coupled calculation of rotor system. The main contribution of this study is testing the superlinear iteration convergence method-twofold secant method, for the determination of the static equilibrium position of journal bearing with finite length. Essentially, the Reynolds equation for stable motion is solved by the finite difference method and the inner pressure is obtained by the successive over-relaxation iterative method reinforced by the compound Simpson quadrature formula. The accuracy and efficiency of the twofold secant method are higher in comparison with the secant method and dichotomy. The total number of iterative steps required for the twofold secant method are about one-third of the secant method and less than one-eighth of dichotomy for the same equilibrium position. The calculations for equilibrium position and pressure distribution for different bearing length, clearance and rotating speed were done. In the results, the eccentricity presents linear inverse proportional relationship to the attitude angle. The influence of the bearing length, clearance and bearing radius on the load-carrying capacity was also investigated. The results illustrate that larger bearing length, larger radius and smaller clearance are good for the load-carrying capacity of journal bearing. The application of the twofold secant method can greatly reduce the computational time for calculation of the dynamic coefficients and dynamic characteristics of rotor-bearing system with a journal bearing of finite length.

  7. Characterizing the multi–scale spatial structure of remotely sensed evapotranspiration with information theory

    Directory of Open Access Journals (Sweden)

    N. A. Brunsell

    2011-08-01

    Full Text Available A more thorough understanding of the multi-scale spatial structure of land surface heterogeneity will enhance understanding of the relationships and feedbacks between land surface conditions, mass and energy exchanges between the surface and the atmosphere, and regional meteorological and climatological conditions. The objectives of this study were to (1 quantify which spatial scales are dominant in determining the evapotranspiration flux between the surface and the atmosphere and (2 to quantify how different spatial scales of atmospheric and surface processes interact for different stages of the phenological cycle. We used the ALEXI/DisALEXI model for three days (DOY 181, 229 and 245 in 2002 over the Ft. Peck Ameriflux site to estimate the latent heat flux from Landsat, MODIS and GOES satellites. We then applied a multiresolution information theory methodology to quantify these interactions across different spatial scales and compared the dynamics across the different sensors and different periods. We note several important results: (1 spatial scaling characteristics vary with day, but are usually consistent for a given sensor, but (2 different sensors give different scalings, and (3 the different sensors exhibit different scaling relationships with driving variables such as fractional vegetation and near surface soil moisture. In addition, we note that while the dominant length scale of the vegetation index remains relatively constant across the dates, the contribution of the vegetation index to the derived latent heat flux varies with time. We also note that length scales determined from MODIS are consistently larger than those determined from Landsat, even at scales that should be detectable by MODIS. This may imply an inability of the MODIS sensor to accurately determine the fine scale spatial structure of the land surface. These results aid in identifying the dominant cross-scale nature of local to regional biosphere

  8. Variations of the petrophysical properties of rocks with increasing hydrocarbons content and their implications at larger scale: insights from the Majella reservoir (Italy)

    Science.gov (United States)

    Trippetta, Fabio; Ruggieri, Roberta; Lipparini, Lorenzo

    2016-04-01

    porosity. Preliminary data also suggest a different behaviour at increasing confining pressure for clean and-oil bearing samples: almost perfectly elastic behaviour for oil-bearing samples and more inelastic behaviours for cleaner samples. Thus HC presence appears to contrast the increase of confining pressure acting as semi-fluids, reducing the rock inelastic compaction and enhancing its elastic behaviour. Trying to upscale our rock-physics results, we started from wells and laboratory data on stratigraphy, porosity and Vp in order to simulate the effect of the HC presence at larger scale, using Petrel® software. The developed synthetic model highlights that Vp, which is primarily controlled by porosity, changes significantly within oil-bearing portions, with a notable impact on the velocity model that should be adopted. Moreover we are currently performing laboratory tests in order to evaluate the changes in the elastic parameters with the aim of modelling the effects of the HC on the mechanical behaviour of the involved rocks at larger scale.

  9. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. For the purposes of this Guide, large-scale Federal renewable energy projects are defined as renewable energy facilities larger than 10 megawatts (MW) that are sited on Federal property and lands and typically financed and owned by third parties.1 The U.S. Department of Energy’s Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This Guide is intended to provide a general resource that will begin to develop the Federal employee’s awareness and understanding of the project developer’s operating environment and the private sector’s awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this Guide has been organized to match Federal processes with typical phases of commercial project development. FEMP collaborated with the National Renewable Energy Laboratory (NREL) and professional project developers on this Guide to ensure that Federal projects have key elements recognizable to private sector developers and investors. The main purpose of this Guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project. This framework begins the translation between the Federal and private sector operating environments. When viewing the overall

  10. Larger aftershocks happen farther away: nonseparability of magnitude and spatial distributions of aftershocks

    Science.gov (United States)

    Van Der Elst, Nicholas; Shaw, Bruce E.

    2015-01-01

    Aftershocks may be driven by stress concentrations left by the main shock rupture or by elastic stress transfer to adjacent fault sections or strands. Aftershocks that occur within the initial rupture may be limited in size, because the scale of the stress concentrations should be smaller than the primary rupture itself. On the other hand, aftershocks that occur on adjacent fault segments outside the primary rupture may have no such size limitation. Here we use high-precision double-difference relocated earthquake catalogs to demonstrate that larger aftershocks occur farther away than smaller aftershocks, when measured from the centroid of early aftershock activity—a proxy for the initial rupture. Aftershocks as large as or larger than the initiating event nucleate almost exclusively in the outer regions of the aftershock zone. This observation is interpreted as a signature of elastic rebound in the earthquake catalog and can be used to improve forecasting of large aftershocks.

  11. Protecting the larger fish: an ecological, economical and evolutionary analysis using a demographic model

    DEFF Research Database (Denmark)

    Verdiell, Nuria Calduch

    . Recently, there is increasing evidence that this size-selective fishing reduces the chances of maintaining populations at levels sufficient to produce maximum sustainable yields, the chances of recovery/rebuilding populations that have been depleted/collapsed and may causes rapid evolutionary changes...... and the consequent changes in yield. We attempt to evaluate the capability of the larger fish to mitigate the evolutionary change on life-history traits caused by fishing, while also maintaining a sustainable annual yield. This is achieved by calculating the expected selection response on three life-history traits......Many marine fish stocks are reported as overfished on a global scale. This overfishing not only removes fish biomass, but also causes dramatic changes in the age and size structure of fish stocks. In particular, targeting of the larger individuals truncates the age and size structure of stocks...

  12. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  13. Optimal Focusing and Scaling Law for Uniform Photo-Polymerization in a Thick Medium Using a Focused UV Laser

    Directory of Open Access Journals (Sweden)

    Jui-Teng Lin

    2014-02-01

    Full Text Available We present a modeling study of photoinitiated polymerization in a thick polymer-absorbing medium using a focused UV laser. Transient profiles of the initiator concentration at various focusing conditions are analyzed to define the polymerization boundary. Furthermore, we demonstrate the optimal focusing conditions that yield more uniform polymerization over a larger volume than the collimated or non-optimal cases. Too much focusing with the focal length f < f* (an optimal focal length yields a fast process; however, it provides a smaller polymerization volume at a given time than in the optimal focusing case. Finally, a scaling law is derived and shows that f* is inverse proportional to the product of the extinction coefficient and the initiator initial concentration. The scaling law provides useful guidance for the prediction of optimal conditions for photoinitiated polymerization under a focused UV laser irradiation. The focusing technique also provides a novel and unique means for obtaining uniform photo-polymerization within a limited irradiation time.

  14. The role of reactant unmixedness, strain rate, and length scale on premixed combustor performance

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsen, S.; LaRue, J.; Vilayanur, S. [Univ. of California, Irvine, CA (United States)] [and others

    1995-10-01

    Lean premixed combustion provides a means to reduce pollutant formation and increase combustion efficiency. However, fuel-air mixing is rarely uniform in space and time. This nonuniformity in concentration will lead to relative increases in pollutant formation and decreases in combustion efficiency. The nonuniformity of the concentration at the exit of the premixer has been defined by Lyons (1981) as the {open_quotes}unmixedness.{close_quotes} Although turbulence properties such as length scales and strain rate are known to effect unmixedness, the exact relationship is unknown. Evaluating this relationship and the effect of unmixedness in premixed combustion on pollutant formation and combustion efficiency are an important part of the overall goal of US Department of Energy`s Advanced Turbine Systems (ATS) program and are among the goals of the program described herein. The information obtained from ATS is intended to help to develop and commercialize gas turbines which have (1) a wide range of operation/stability, (2) a minimal amount of pollutant formation, and (3) high combustion efficiency. Specifically, with regard to pollutants, the goals are to reduce the NO{sub x} emissions by at least 10%, obtain less than 20 PPM of both CO and UHC, and increase the combustion efficiency by 5%.

  15. Biophysics of filament length regulation by molecular motors

    International Nuclear Information System (INIS)

    Kuan, Hui-Shun; Betterton, M D

    2013-01-01

    Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells. (paper)

  16. The Effect of Map Scale on the Determination of the Coastline Length and the Area of Islands in the Adriatic Sea - the Example of the Island of Rab

    Directory of Open Access Journals (Sweden)

    Nada Vučetić

    2006-12-01

    Full Text Available The procedure to determine the coastline length and the area of the island of Rab from the maps at the scales 1:25 000, 1:50 000, 1:100 000, 1:200 000, 1:300 000, 1:500 000, 1:1 000 000 and 1:2 000 000 is described. The map sheets at the scales 1:25 000, 1:100 000 and 1:200 000 were obtained already in a georeferenced raster format, and the others were scanned and georeferenced. This was followed by a manual vectorization of the coastline and a transformation of all coordinates into the 5th zone of the Gauss-Krüger projection. The length of the coastline and the area of the island were calculated in the Gauss-Krüger projection taking into account the deformations of the projection. The results are given in tables and represented graphically.

  17. Predictors of length of stay in a ward for demented elderly: gender differences.

    Science.gov (United States)

    Ono, Toshiyuki; Tamai, Akira; Takeuchi, Daisuke; Tamai, Yuzuru; Iseki, Hidenori; Fukushima, Hiromi; Kasahara, Sumie

    2010-09-01

    In our previous studies, we found both gender differences among care recipients and predictors that influenced outcomes after discharge from a ward for demented elderly. Here, we investigate predictors that influence the length of stay for each sex. We studied the data of 390 patients with dementia who were hospitalized in a ward for demented elderly between 1 April 2000 and 31 March 2008, and treated until 31 March 2009. The patients were divided into groups classified by gender. We analyzed the gender differences of characteristics and evaluated the predictors that influenced the length of stay in the ward for demented elderly using Cox's proportional hazards model. A model using the initial scores of the Revised Hasegawa Dementia Scale (HDS-R), Assessment Scale for Symptoms of Dementia (ASSD) and Nishimura's activity of daily living scale (N-ADL), which were examined on admission, was named Model 1. In Model 1, we checked the effect of each patient's characteristics, except for complications and destinations, on their length of stay. Model 2 used the final scores of HDS-R, ASSD and N-ADL including complications and destinations. There was a clear gender difference in the length of stay. The length of stay of women was longer than that of men. It was difficult to predict the length of stay in Model 1. Age was the only predictor in women and no predictor was identified in men. In Model 2, complications and the final HDS-R and N-ADL scores were predictors of the length of stay in men. Age, complications and destinations were predictors of the length of stay in women. It was observed that there were gender differences among predictors of the length of stay. However, it was difficult to predict the length of stay on admission. Retrospectively, the length of stay was determined by physical and psychological conditions, not by the social variables in men. In women, it was supposed that the caregiver's wish to give care at home reduced the length of stay. Besides

  18. Ion-collecting sphere in a stationary, weakly magnetized plasma with finite shielding length

    International Nuclear Information System (INIS)

    Patacchini, Leonardo; Hutchinson, Ian H

    2007-01-01

    Collisionless ion collection by a negatively biased stationary spherical probe in a finite shielding length plasma is investigated using the Particle in Cell code SCEPTIC, in the presence of a weak magnetic field B. The overall effect of the magnetic field is to reduce the ion current, linearly in |B| for weak enough fields, with a slope steepness increasing with the electron Debye length. The angular current distribution and space-charge buildup strongly depend on the focusing properties of the probe, hence on its potential and the plasma shielding length. In particular, it is found that the concavity of the ion collection flux distribution can reverse sign when the electron Debye length is comparable to or larger than the probe radius (λ De ∼> r p ), provided the ion temperature is much lower than the probe bias (T i p )

  19. Measurement of Telomere Length in Colorectal Cancers for Improved Molecular Diagnosis

    Directory of Open Access Journals (Sweden)

    Eric Le Balc’h

    2017-08-01

    Full Text Available All tumors have in common to reactivate a telomere maintenance mechanism to allow for unlimited proliferation. On the other hand, genetic instability found in some tumors can result from the loss of telomeres. Here, we measured telomere length in colorectal cancers (CRCs using TRF (Telomere Restriction Fragment analysis. Telomeric DNA content was also quantified as the ratio of total telomeric (TTAGGG sequences over that of the invariable Alu sequences. In most of the 125 CRCs analyzed, there was a significant diminution in telomere length compared with that in control healthy tissue. Only 34 tumors exhibited no telomere erosion and, in some cases, a slight telomere lengthening. Telomere length did not correlate with age, gender, tumor stage, tumor localization or stage of tumor differentiation. In addition, while telomere length did not correlate with the presence of a mutation in BRAF (V-raf murine sarcoma viral oncogene homolog B, PIK3CA (phosphatidylinositol 3-kinase catalytic subunit, or MSI status, it was significantly associated with the occurrence of a mutation in KRAS. Interestingly, we found that the shorter the telomeres in healthy tissue of a patient, the larger an increase in telomere length in the tumor. Our study points to the existence of two types of CRCs based on telomere length and reveals that telomere length in healthy tissue might influence telomere maintenance mechanisms in the tumor.

  20. Intensity limits for propagation of 0.527 μm laser beams through large-scale-length plasmas for inertial confinement fusion

    International Nuclear Information System (INIS)

    Niemann, C.; Divol, L.; Froula, D.H.; Gregori, G.; Jones, O.; Kirkwood, R.K.; MacKinnon, A.J.; Meezan, N.B.; Moody, J.D.; Sorce, C.; Suter, L.J.; Glenzer, S.H.; Bahr, R.; Seka, W.

    2005-01-01

    We have established the intensity limits for propagation of a frequency-doubled (2ω, 527 nm) high intensity interaction beam through an underdense large-scale-length plasma. We observe good beam transmission at laser intensities at or below 2x10 14 W/cm 2 and a strong reduction at intensities up to 10 15 W/cm 2 due to the onset of parametric scattering instabilities. We show that temporal beam smoothing by spectral dispersion allows a factor of 2 higher intensities while keeping the beam spray constant, which establishes frequency-doubled light as an option for ignition and burn in inertial confinement fusion experiments

  1. Allometry of sexual size dimorphism in turtles: a comparison of mass and length data.

    Science.gov (United States)

    Regis, Koy W; Meik, Jesse M

    2017-01-01

    The macroevolutionary pattern of Rensch's Rule (positive allometry of sexual size dimorphism) has had mixed support in turtles. Using the largest carapace length dataset and only large-scale body mass dataset assembled for this group, we determine (a) whether turtles conform to Rensch's Rule at the order, suborder, and family levels, and (b) whether inferences regarding allometry of sexual size dimorphism differ based on choice of body size metric used for analyses. We compiled databases of mean body mass and carapace length for males and females for as many populations and species of turtles as possible. We then determined scaling relationships between males and females for average body mass and straight carapace length using traditional and phylogenetic comparative methods. We also used regression analyses to evalutate sex-specific differences in the variance explained by carapace length on body mass. Using traditional (non-phylogenetic) analyses, body mass supports Rensch's Rule, whereas straight carapace length supports isometry. Using phylogenetic independent contrasts, both body mass and straight carapace length support Rensch's Rule with strong congruence between metrics. At the family level, support for Rensch's Rule is more frequent when mass is used and in phylogenetic comparative analyses. Turtles do not differ in slopes of sex-specific mass-to-length regressions and more variance in body size within each sex is explained by mass than by carapace length. Turtles display Rensch's Rule overall and within families of Cryptodires, but not within Pleurodire families. Mass and length are strongly congruent with respect to Rensch's Rule across turtles, and discrepancies are observed mostly at the family level (the level where Rensch's Rule is most often evaluated). At macroevolutionary scales, the purported advantages of length measurements over weight are not supported in turtles.

  2. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.C.; Mani, V.; Mohanty, K.K. [Univ. of Houston, TX (United States)

    1997-08-01

    Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

  3. Larger foraminifera of the Devil's Den and Blue Hole sinkholes, Florida

    Science.gov (United States)

    Cotton, Laura J.; Eder, Wolfgang; Floyd, James

    2018-03-01

    Shallow-water carbonate deposits are well-known from the Eocene of the US Gulf Coast and Caribbean. These deposits frequently contain abundant larger benthic foraminifera (LBF). However, whilst integrated stratigraphic studies have helped to refine the timing of LBF overturning events within the Tethys and Indo-Pacific regions with respect to global bio- and chemo-stratigraphic records, little recent work has been carried out in the Americas. The American LBF assemblages are distinctly different from those of Europe and the Indo-Pacific. It is therefore essential that the American bio-province is included in studies of LBF evolution, biodiversity and climate events to understand these processes on a global scale.Here we present the LBF ranges from two previously unpublished sections spanning 35 and 29 m of the upper Eocene Ocala limestone, as the early stages of a larger project addressing the taxonomy and biostratigraphy of the LBF of Florida. The study indicates that the lower member of the Ocala limestone may be Bartonian rather than Priabonian in age, with implications for the biostratigraphy of the region. In addition, the study highlights the need for multiple sites to assess the LBF assemblages and fully constrain ranges across Florida and the US Gulf and suggests potential LBF events for future integrated stratigraphic study.

  4. The Scales of Time, Length, Mass, Energy, and Other Fundamental Physical Quantities in the Atomic World and the Use of Atomic Units in Quantum Mechanical Calculations

    Science.gov (United States)

    Teo, Boon K.; Li, Wai-Kee

    2011-01-01

    This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…

  5. Length-weight relationship of northern pike, Esox lucius, from East Harbor, Ohio

    Science.gov (United States)

    Brown, Edward H.; Clark, Clarence F.

    1965-01-01

    The northern pike is one of Ohio's largest game fish but is well known to comparatively few anglers. Large numbers of the big fish spawn in the Ohio marshes adjacent to Lake Erie. Movements related to spawning reach a peak in late March or early April. Later the spawning population disperses and is seldom represented in catches by experimental gear or by anglers. The short period of availability was used to obtain life history information in March of 1951 through 1953. No comprehensive length-weight data for this species have previously been published from this area. East Harbor is a sandspit pond separated from Lake Erie by a large sand bar. Waters and fish populations of the harbor and lake can mix freely through a permanent connecting channel. The larger part of the 850 surface acres of the harbor is normally less than 8 feet deep. The male northern pike averaged 20.5 inches in length and ranged from 13.5 to 28.5 inches. The conspicuously larger females averaged 26.0 inches and ranged from 15.5 to 37.5 inches.

  6. Overview of lower length scale model development for accident tolerant fuels regarding U3Si2 fuel and FeCrAl cladding

    International Nuclear Information System (INIS)

    Zhang, Yongfeng

    2016-01-01

    U3Si2 and FeCrAl have been proposed as fuel and cladding concepts, respectively, for accident tolerance fuels with higher tolerance to accident scenarios compared to UO2. However, a lot of key physics and material properties regarding their in-pile performance are yet to be explored. To accelerate the understanding and reduce the cost of experimental studies, multiscale modeling and simulation are used to develop physics-based materials models to assist engineering scale fuel performance modeling. In this report, the lower-length-scale efforts in method and material model development supported by the Accident Tolerance Fuel (ATF) high-impact-problem (HIP) under the NEAMS program are summarized. Significant progresses have been made regarding interatomic potential, phase field models for phase decomposition and gas bubble formation, and thermal conductivity for U3Si2 fuel, and precipitation in FeCrAl cladding. The accomplishments are very useful by providing atomistic and mesoscale tools, improving the current understanding, and delivering engineering scale models for these two ATF concepts.

  7. Overview of lower length scale model development for accident tolerant fuels regarding U3Si2 fuel and FeCrAl cladding

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Laboratory

    2016-09-01

    U3Si2 and FeCrAl have been proposed as fuel and cladding concepts, respectively, for accident tolerance fuels with higher tolerance to accident scenarios compared to UO2. However, a lot of key physics and material properties regarding their in-pile performance are yet to be explored. To accelerate the understanding and reduce the cost of experimental studies, multiscale modeling and simulation are used to develop physics-based materials models to assist engineering scale fuel performance modeling. In this report, the lower-length-scale efforts in method and material model development supported by the Accident Tolerance Fuel (ATF) high-impact-problem (HIP) under the NEAMS program are summarized. Significant progresses have been made regarding interatomic potential, phase field models for phase decomposition and gas bubble formation, and thermal conductivity for U3Si2 fuel, and precipitation in FeCrAl cladding. The accomplishments are very useful by providing atomistic and mesoscale tools, improving the current understanding, and delivering engineering scale models for these two ATF concepts.

  8. Phenotypic plasticity in sperm traits in scorpionflies (Mecoptera : Panorpidae): Consequences of larval history and seasonality on sperm length and sperm transfer

    NARCIS (Netherlands)

    Vermeulen, Andreas; Engels, Sierk; Engqvist, Leif; Sauer, Klaus Peter

    2009-01-01

    We examined effects of seasonality, larval food availability and larval rearing density on sperm length, sperm transfer rates and body size in the bivoltine scorpionfly Panorpa vulgaris. Males of the first annual generation were larger and had larger sperm. Comparing individuals of two summer

  9. Radial bunch compression : path-length compensation in an rf photoinjector with a curved cathode

    NARCIS (Netherlands)

    Loos, de M.J.; Geer, van der S.B.; Saveliev, Y.M.; Pavlov, V.M.; Reitsma, A.J.W.; Wiggins, S.M.; Rodier, J.; Garvey, T.; Jaroszynski, D.A.

    2006-01-01

    Electron bunch lengthening due to space-charge forces in state-of-the-art rf photoinjectors limits the minimum bunch length attainable to several hundreds of femtoseconds. Although this can be alleviated by increasing the transverse dimension of the electron bunch, a larger initial radius causes

  10. New Empirical Earthquake Source‐Scaling Laws

    KAUST Repository

    Thingbaijam, Kiran Kumar S.

    2017-12-13

    We develop new empirical scaling laws for rupture width W, rupture length L, rupture area A, and average slip D, based on a large database of rupture models. The database incorporates recent earthquake source models in a wide magnitude range (M 5.4–9.2) and events of various faulting styles. We apply general orthogonal regression, instead of ordinary least-squares regression, to account for measurement errors of all variables and to obtain mutually self-consistent relationships. We observe that L grows more rapidly with M compared to W. The fault-aspect ratio (L/W) tends to increase with fault dip, which generally increases from reverse-faulting, to normal-faulting, to strike-slip events. At the same time, subduction-inter-face earthquakes have significantly higher W (hence a larger rupture area A) compared to other faulting regimes. For strike-slip events, the growth of W with M is strongly inhibited, whereas the scaling of L agrees with the L-model behavior (D correlated with L). However, at a regional scale for which seismogenic depth is essentially fixed, the scaling behavior corresponds to the W model (D not correlated with L). Self-similar scaling behavior with M − log A is observed to be consistent for all the cases, except for normal-faulting events. Interestingly, the ratio D/W (a proxy for average stress drop) tends to increase with M, except for shallow crustal reverse-faulting events, suggesting the possibility of scale-dependent stress drop. The observed variations in source-scaling properties for different faulting regimes can be interpreted in terms of geological and seismological factors. We find substantial differences between our new scaling relationships and those of previous studies. Therefore, our study provides critical updates on source-scaling relations needed in seismic–tsunami-hazard analysis and engineering applications.

  11. [Renal length measured by ultrasound in adult mexican population].

    Science.gov (United States)

    Oyuela-Carrasco, J; Rodríguez-Castellanos, F; Kimura, E; Delgado-Hernández, R; Herrera-Félix, J P

    2009-01-01

    Renal length estimation by ultrasound is an important parameter in clinical evaluation of kidney disease and healthy donors. Changes in renal volume may be a sign of kidney disease. Correct interpretation of renal length requires the knowledge of normal limits, these have not been described for Latin American population. To describe normal renal length (RL) by ultrasonography in a group of Mexican adults. Ultrasound measure of RL in 153 healthy Mexican adults stratified by age. Describe the association of RL to several anthropometric variables. A total of 77 males and 76 females were scanner. The average age for the group was 44.12 +/- 15.44 years. The mean weight, body mass index (BMI) and height were 68.87 +/- 11.69 Kg, 26.77 +/- 3.82 kg/m2 and 160 +/- 8.62 cm respectively. Dividing the population by gender, showed a height of 166 +/- 6.15 cm for males and 154.7 +/- 5.97 cm for females (p =0.000). Left renal length (LRL) in the whole group was 105.8 +/- 7.56 mm and right renal length (RRL) was 104.3 +/- 6.45 mm (p = 0.000.) The LRL for males was 107.16 +/- 6.97 mm and for females was 104.6 +/- 7.96 mm. The average RRL for males was 105.74 +/- 5.74 mm and for females 102.99 +/- 6.85 mm (p = 0.008.) We noted that RL decreased with age and the rate of decline accelerates alter 60 years of age. Both lengths correlated significantly and positively with weight, BMI and height. The RL was significantly larger in males than in females in both kidneys (p = 0.036) in this Mexican population. Renal length declines after 60 years of age and specially after 70 years.

  12. Evolution of scaling behaviors embedded in sentence series from A Story of the Stone.

    Directory of Open Access Journals (Sweden)

    Yue Yang

    Full Text Available The novel entitled A Story of the Stone provides us precise details of life and social structure of the 18th century China. Its writing lasted a long duration of about 10 years, in which the author's habit may change significantly. It had been published anonymously up to the beginning of the 20th century, which left a mystery of the author's attribution. In the present work we focus our attention on scaling behavior embedded in the sentence series from this novel, hope to find how the ideas are organized from single sentences to the whole text. Especially we are interested in the evolution of scale invariance to monitor the changes of the author's language habit and to find some clues on the author's attribution. The sentence series are separated into a total of 69 non-overlapping segments with a length of 500 sentences each. The correlation dependent balanced estimation of diffusion entropy (cBEDE is employed to evaluate the scaling behaviors embedded in the short segments. It is found that the total, the part attributed currently to Xueqin Cao (X-part, and the other part attributed to E Gao (E-part, display scale invariance in a large scale up to 103 sentences, while their scaling exponents are almost identical. All the segments behave scale invariant in considerable wide scales, most of which reach one third of the length. In the curve of scaling exponent versus segment number, the X-part has rich patterns with averagely larger values, while the E-part has a U-shape with a significant low bottom. This finding is a new clue to support the attribution of the E-part to E Gao.

  13. Coarsening of stripe patterns: variations with quench depth and scaling.

    Science.gov (United States)

    Tripathi, Ashwani K; Kumar, Deepak

    2015-02-01

    The coarsening of stripe patterns when the system is evolved from random initial states is studied by varying the quench depth ε, which is a measure of distance from the transition point of the stripe phase. The dynamics of the growth of stripe order, which is characterized by two length scales, depends on the quench depth. The growth exponents of the two length scales vary continuously with ε. The decay exponents for free energy, stripe curvature, and densities of defects like grain boundaries and dislocations also show similar variation. This implies a breakdown of the standard picture of nonequilibrium dynamical scaling. In order to understand the variations with ε we propose an additional scaling with a length scale dependent on ε. The main contribution to this length scale comes from the "pinning potential," which is unique to systems where the order parameter is spatially periodic. The periodic order parameter gives rise to an ε-dependent potential, which can pin defects like grain boundaries, dislocations, etc. This additional scaling provides a compact description of variations of growth exponents with quench depth in terms of just one exponent for each of the length scales. The relaxation of free energy, stripe curvature, and the defect densities have also been related to these length scales. The study is done at zero temperature using Swift-Hohenberg equation in two dimensions.

  14. Gate length scaling effect on high-electron mobility transistors devices using AlGaN/GaN and AlInN/AlN/GaN heterostructures.

    Science.gov (United States)

    Liao, S Y; Lu, C C; Chang, T; Huang, C F; Cheng, C H; Chang, L B

    2014-08-01

    Compared to AlGaN/GaN HEMT with 0.15 μm T-gate length, the AlInN/AlN/GaN one exhibits much higher current density and transconductance of 1558 mA/mm at Vd = 2 V and 330 mS/mm, respectively. The high extrinsic ft and fmax of 82 GHz and 70 GHz are extracted from AlInN/AlN/GaN HEMT. Besides, we find that the transconductance roll-off is significant in AlGaN/GaN, but largely improved in AlInN/AlN/GaN HEMT, suggesting that the high carrier density and lattice-matched epitaxial heterostructure is important to reach both large RF output power and high operation frequency, especially for an aggressively gate length scaling.

  15. Speciation of Bactrocera dorsalis complex based on aedeagus length

    International Nuclear Information System (INIS)

    Osamu Iwahashi

    2000-01-01

    A species complex of Bactrocera dorsalis (Hendel) in Southeast Asia is composed of 52 species (Drew and Hancock, 1994) and while some of these species are economically very important, distinguishing them based on morphological characters has been difficult (White and Elson-Harris 1992). Specifically, there is considerable difficulty in differentiating between males of two pairs of sympatric species, B. philippinensis Drew and Hancock/B. occipitalis (Bezzi) in the Philippines and B. carambolae Drew and Hancock/B. papayae Drew and Hancock in Indonesia. This may be, in part, because the evolutionary processes within this species complex are still very dynamic, and that natural hybridisation between sympatric species pairs might be occurring on a regular basis (He and Haymer 1997). Iwaizumi et al. (1997) developed a simple method to differentiate the two sets of sympatric species based on aedeagus lengths. However, these flies had been reared artificially under laboratory conditions and only a small number of specimens (n=5) was used. Consequently, they were not able to obtain a frequency distribution of the aedeagus length for each species. Iwahashi (1998) measured a larger number of wild flies collected on Guimaras Is, Philippines, and found that flies with the aedeagus length of 2.89 mm are B. philippinensis. Iwahashi (1999) also showed that the measurement of the aedeagal length of fruit flies is a reliable characteristic for distinguishing between the 2 sympatric species pairs in the B. dorsalis complex. This being so, it may also be interesting to interpret phylogenetic relationships among B. dorsalis complex species based on the aedeagus length. Thus, aedeagus lengths of different populations of five B. dorsalis complex species are measured and their relationships discussed

  16. Flux scaling: Ultimate regime

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Flux scaling: Ultimate regime. With the Nusselt number and the mixing length scales, we get the Nusselt number and Reynolds number (w'd/ν) scalings: and or. and. scaling expected to occur at extremely high Ra Rayleigh-Benard convection. Get the ultimate regime ...

  17. Modified Bose-Einstein and Fermi-Dirac statistics if excitations are localized on an intermediate length scale: applications to non-Debye specific heat.

    Science.gov (United States)

    Chamberlin, Ralph V; Davis, Bryce F

    2013-10-01

    Disordered systems show deviations from the standard Debye theory of specific heat at low temperatures. These deviations are often attributed to two-level systems of uncertain origin. We find that a source of excess specific heat comes from correlations between quanta of energy if excitations are localized on an intermediate length scale. We use simulations of a simplified Creutz model for a system of Ising-like spins coupled to a thermal bath of Einstein-like oscillators. One feature of this model is that energy is quantized in both the system and its bath, ensuring conservation of energy at every step. Another feature is that the exact entropies of both the system and its bath are known at every step, so that their temperatures can be determined independently. We find that there is a mismatch in canonical temperature between the system and its bath. In addition to the usual finite-size effects in the Bose-Einstein and Fermi-Dirac distributions, if excitations in the heat bath are localized on an intermediate length scale, this mismatch is independent of system size up to at least 10(6) particles. We use a model for correlations between quanta of energy to adjust the statistical distributions and yield a thermodynamically consistent temperature. The model includes a chemical potential for units of energy, as is often used for other types of particles that are quantized and conserved. Experimental evidence for this model comes from its ability to characterize the excess specific heat of imperfect crystals at low temperatures.

  18. Performance and emission characteristics of LPG powered four stroke SI engine under variable stroke length and compression ratio

    International Nuclear Information System (INIS)

    Ozcan, Hakan; Yamin, Jehad A.A.

    2008-01-01

    A computer simulation of a variable stroke length, LPG fuelled, four stroke, single cylinder, water cooled spark ignition engine was done. The engine capacity was varied by varying the stroke length of the engine, which also changed its compression ratio. The simulation model developed was verified with experimental results from the literature for both constant and variable stroke engines. The performance of the engine was simulated at each stroke length/compression ratio combination. The simulation results clearly indicate the advantages and utility of variable stroke engines in fuel economy and power issues. Using the variable stroke technique has significantly improved the engine's performance and emission characteristics within the range studied. The brake torque and power have registered an increase of about 7-54% at low speed and 7-57% at high speed relative to the original engine design and for all stroke lengths and engine speeds studied. The brake specific fuel consumption has registered variations from a reduction of about 6% to an increase of about 3% at low speed and from a reduction of about 6% to an increase of about 8% at high speed relative to the original engine design and for all stroke lengths and engine speeds studied. On the other hand, an increase of pollutants of about 0.65-2% occurred at low speed. Larger stroke lengths resulted in a reduction of the pollutants level of about 1.5% at higher speeds. At lower stroke lengths, on the other hand, an increase of about 2% occurred. Larger stroke lengths resulted in increased exhaust temperature and, hence, make the exhaust valve work under high temperature

  19. An Assessment of the Length and Variability of Mercury's Magnetotail

    Science.gov (United States)

    Milan, S. E.; Slavin, J. A.

    2011-01-01

    We employ Mariner 10 measurements of the interplanetary magnetic field in the vicinity of Mercury to estimate the rate of magnetic reconnection between the interplanetary magnetic field and the Hermean magnetosphere. We derive a time-series of the open magnetic flux in Mercury's magnetosphere. from which we can deduce the length of the magnetotail The length of the magnetotail is shown to be highly variable. with open field lines stretching between 15R(sub H) and 8S0R(sub H) downstream of the planet (median 150R(sub H)). Scaling laws allow the tail length at perihelion to be deduced from the aphelion Mariner 10 observations.

  20. Centimetre-scale electron diffusion in photoactive organic heterostructures

    Science.gov (United States)

    Burlingame, Quinn; Coburn, Caleb; Che, Xiaozhou; Panda, Anurag; Qu, Yue; Forrest, Stephen R.

    2018-02-01

    The unique properties of organic semiconductors, such as flexibility and lightness, are increasingly important for information displays, lighting and energy generation. But organics suffer from both static and dynamic disorder, and this can lead to variable-range carrier hopping, which results in notoriously poor electrical properties, with low electron and hole mobilities and correspondingly short charge-diffusion lengths of less than a micrometre. Here we demonstrate a photoactive (light-responsive) organic heterostructure comprising a thin fullerene channel sandwiched between an electron-blocking layer and a blended donor:C70 fullerene heterojunction that generates charges by dissociating excitons. Centimetre-scale diffusion of electrons is observed in the fullerene channel, and this can be fitted with a simple electron diffusion model. Our experiments enable the direct measurement of charge diffusivity in organic semiconductors, which is as high as 0.83 ± 0.07 square centimetres per second in a C60 channel at room temperature. The high diffusivity of the fullerene combined with the extraordinarily long charge-recombination time yields diffusion lengths of more than 3.5 centimetres, orders of magnitude larger than expected for an organic system.

  1. Anomalous length of electron bunches as an instability threshold

    International Nuclear Information System (INIS)

    Messerschmid, E.; Month, M.

    1976-01-01

    A mechanism for the anomalous length of electron bunches, based on the existence of a ''fast'' longitudinal instability, is proposed. The equilibrium length is obtained by requiring that the growth rate be sufficiently larger than the rate of synchrotron oscillations. The theory is used to describe the bunch length data for SPEAR at 1.5 GeV. The low voltage and/or high current regime is dominated by a set of ''low'' frequency, low Q resonators [e.g., f = 320 MHz, Δf(fwhm) = 130 MHz]. To fit the observations in the high voltage and/or low current regime, a high frequency, low Q impedance is required (e.g., f = 3.8 GHz, Δf = 1.0 GHz). The mechanism is mediated by the resistive component of the impedance. Thus, there is qualitative agreement with the observed distortion of the bunch tail. This is in contrast to the predictions of the potential well models based on a reactive impedance source. These latter theories yield large distortions of the head of the bunch. The calculated power dissipated in the assumed sources by the given electron bunch is not inconsistent with estimates made for SPEAR

  2. Problems with Excessive Residual Lower Leg Length in Pediatric Amputees

    Science.gov (United States)

    Osebold, William R; Lester, Edward L; Christenson, Donald M

    2001-01-01

    We studied six pediatric amputees with long below-knee residual limbs, in order to delineate their functional and prosthetic situations, specifically in relation to problems with fitting for dynamic-response prosthetic feet. Three patients had congenital pseudoarthrosis of the tibia secondary to neurofibromatosis, one had fibular hemimelia, one had a traumatic amputation, and one had amputation secondary to burns. Five patients had Syme's amputations, one had a Boyd amputation. Ages at amputation ranged from nine months to five years (average age 3 years 1 month). After amputation, the long residual below-knee limbs allowed fitting with only the lowest-profile prostheses, such as deflection plates. In three patients, the femoral dome to tibial plafond length was greater on the amputated side than on the normal side. To allow room for more dynamic-response (and larger) foot prostheses, two patients have undergone proximal and distal tibial-fibular epiphyseodeses (one at age 5 years 10 months, the other at 3 years 7 months) and one had a proximal tibial-fibular epiphyseodesis at age 7 years 10 months. (All three patients are still skeletally immature.) The families of two other patients are considering epiphyseodeses, and one patient is not a candidate (skeletally mature). Scanogram data indicate that at skeletal maturity the epiphyseodesed patients will have adequate length distal to their residual limbs to fit larger and more dynamic-response prosthetic feet. PMID:11813953

  3. Computer game as a tool for training the identification of phonemic length.

    Science.gov (United States)

    Pennala, Riitta; Richardson, Ulla; Ylinen, Sari; Lyytinen, Heikki; Martin, Maisa

    2014-12-01

    Computer-assisted training of Finnish phonemic length was conducted with 7-year-old Russian-speaking second-language learners of Finnish. Phonemic length plays a different role in these two languages. The training included game activities with two- and three-syllable word and pseudo-word minimal pairs with prototypical vowel durations. The lowest accuracy scores were recorded for two-syllable words. Accuracy scores were higher for the minimal pairs with larger rather than smaller differences in duration. Accuracy scores were lower for long duration than for short duration. The ability to identify quantity degree was generalized to stimuli used in the identification test in two of the children. Ideas for improving the game are introduced.

  4. A scale invariance criterion for LES parametrizations

    Directory of Open Access Journals (Sweden)

    Urs Schaefer-Rolffs

    2015-01-01

    Full Text Available Turbulent kinetic energy cascades in fluid dynamical systems are usually characterized by scale invariance. However, representations of subgrid scales in large eddy simulations do not necessarily fulfill this constraint. So far, scale invariance has been considered in the context of isotropic, incompressible, and three-dimensional turbulence. In the present paper, the theory is extended to compressible flows that obey the hydrostatic approximation, as well as to corresponding subgrid-scale parametrizations. A criterion is presented to check if the symmetries of the governing equations are correctly translated into the equations used in numerical models. By applying scaling transformations to the model equations, relations between the scaling factors are obtained by demanding that the mathematical structure of the equations does not change.The criterion is validated by recovering the breakdown of scale invariance in the classical Smagorinsky model and confirming scale invariance for the Dynamic Smagorinsky Model. The criterion also shows that the compressible continuity equation is intrinsically scale-invariant. The criterion also proves that a scale-invariant turbulent kinetic energy equation or a scale-invariant equation of motion for a passive tracer is obtained only with a dynamic mixing length. For large-scale atmospheric flows governed by the hydrostatic balance the energy cascade is due to horizontal advection and the vertical length scale exhibits a scaling behaviour that is different from that derived for horizontal length scales.

  5. Childhood adversity, social support, and telomere length among perinatal women.

    Science.gov (United States)

    Mitchell, Amanda M; Kowalsky, Jennifer M; Epel, Elissa S; Lin, Jue; Christian, Lisa M

    2018-01-01

    Adverse perinatal health outcomes are heightened among women with psychosocial risk factors, including childhood adversity and a lack of social support. Biological aging could be one pathway by which such outcomes occur. However, data examining links between psychosocial factors and indicators of biological aging among perinatal women are limited. The current study examined the associations of childhood socioeconomic status (SES), childhood trauma, and current social support with telomere length in peripheral blood mononuclear cells (PBMCs) in a sample of 81 women assessed in early, mid, and late pregnancy as well as 7-11 weeks postpartum. Childhood SES was defined as perceived childhood social class and parental educational attainment. Measures included the Childhood Trauma Questionnaire, Center for Epidemiologic Studies-Depression Scale, Multidimensional Scale of Perceived Social Support, and average telomere length in PBMCs. Per a linear mixed model, telomere length did not change across pregnancy and postpartum visits; thus, subsequent analyses defined telomere length as the average across all available timepoints. ANCOVAs showed group differences by perceived childhood social class, maternal and paternal educational attainment, and current family social support, with lower values corresponding with shorter telomeres, after adjustment for possible confounds. No effects of childhood trauma or social support from significant others or friends on telomere length were observed. Findings demonstrate that while current SES was not related to telomeres, low childhood SES, independent of current SES, and low family social support were distinct risk factors for cellular aging in women. These data have relevance for understanding potential mechanisms by which early life deprivation of socioeconomic and relationship resources affect maternal health. In turn, this has potential significance for intergenerational transmission of telomere length. The predictive value of

  6. Finite length thermal equilibria of a pure electron plasma column

    International Nuclear Information System (INIS)

    Prasad, S.A.; O'Neil, T.M.

    1979-01-01

    The electrons of a pure electron plasma may be in thermal equilibrium with each other and still be confined by static magnetic and electric fields. Since the electrons make a significant contribution to the electric field, only certain density profiles are consistent with Poisson's equation. The class of such distributions for a finite length cylindrical column is investigated. In the limit where the Debye length is small compared with the dimensions of the column, the density is essentially constant out to some surface of revolution and then falls off abruptly. The falloff in density is a universal function when measured along the local normal to the surface of revolution and scaled in terms of the Debye length. The solution for the shape of the surface of revolution is simplified by passage to the limit of zero Debye length

  7. Dynamic critical behaviour and scaling

    International Nuclear Information System (INIS)

    Oezoguz, B.E.

    2001-01-01

    Traditionally the scaling is the property of dynamical systems at thermal equilibrium. In second order phase transitions scaling behaviour is due to the infinite correlation length around the critical point. In first order phase transitions however, the correlation length remains finite and a different type of scaling can be observed. For first order phase transitions all singularities are governed by the volume of the system. Recently, a different type of scaling, namely dynamic scaling has attracted attention in second order phase transitions. In dynamic scaling, when a system prepared at high temperature is quenched to the critical temperature, it exhibits scaling behaviour. Dynamic scaling has been applied to various spin systems and the validity of the arguments are shown. Firstly, in this thesis project the dynamic scaling is applied to 4-dimensional using spin system which exhibits second order phase transition with mean-field critical indices. Secondly, it is shown that although the dynamic is quite different, first order phase transitions also has a different type of dynamic scaling

  8. Quantum scattering in one-dimensional systems satisfying the minimal length uncertainty relation

    Energy Technology Data Exchange (ETDEWEB)

    Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph

    2016-12-15

    In quantum gravity theories, when the scattering energy is comparable to the Planck energy the Heisenberg uncertainty principle breaks down and is replaced by the minimal length uncertainty relation. In this paper, the consequences of the minimal length uncertainty relation on one-dimensional quantum scattering are studied using an approach involving a recently proposed second-order differential equation. An exact analytical expression for the tunneling probability through a locally-periodic rectangular potential barrier system is obtained. Results show that the existence of a non-zero minimal length uncertainty tends to shift the resonant tunneling energies to the positive direction. Scattering through a locally-periodic potential composed of double-rectangular potential barriers shows that the first band of resonant tunneling energies widens for minimal length cases when the double-rectangular potential barrier is symmetric but narrows down when the double-rectangular potential barrier is asymmetric. A numerical solution which exploits the use of Wronskians is used to calculate the transmission probabilities through the Pöschl–Teller well, Gaussian barrier, and double-Gaussian barrier. Results show that the probability of passage through the Pöschl–Teller well and Gaussian barrier is smaller in the minimal length cases compared to the non-minimal length case. For the double-Gaussian barrier, the probability of passage for energies that are more positive than the resonant tunneling energy is larger in the minimal length cases compared to the non-minimal length case. The approach is exact and applicable to many types of scattering potential.

  9. Preferential flow from pore to landscape scales

    Science.gov (United States)

    Koestel, J. K.; Jarvis, N.; Larsbo, M.

    2017-12-01

    In this presentation, we give a brief personal overview of some recent progress in quantifying preferential flow in the vadose zone, based on our own work and those of other researchers. One key challenge is to bridge the gap between the scales at which preferential flow occurs (i.e. pore to Darcy scales) and the scales of interest for management (i.e. fields, catchments, regions). We present results of recent studies that exemplify the potential of 3-D non-invasive imaging techniques to visualize and quantify flow processes at the pore scale. These studies should lead to a better understanding of how the topology of macropore networks control key state variables like matric potential and thus the strength of preferential flow under variable initial and boundary conditions. Extrapolation of this process knowledge to larger scales will remain difficult, since measurement technologies to quantify macropore networks at these larger scales are lacking. Recent work suggests that the application of key concepts from percolation theory could be useful in this context. Investigation of the larger Darcy-scale heterogeneities that generate preferential flow patterns at the soil profile, hillslope and field scales has been facilitated by hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help to parameterize models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).

  10. Multi-scale ordering of self-assembled InAs/GaAs(001 quantum dots

    Directory of Open Access Journals (Sweden)

    Kiravittaya S

    2006-01-01

    Full Text Available AbstractOrdering phenomena related to the self-assembly of InAs quantum dots (QD grown on GaAs(001 substrates are experimentally investigated on different length scales. On the shortest length-scale studied here, we examine the QD morphology and observe two types of QD shapes, i.e., pyramids and domes. Pyramids are elongated along the 12345678910 directions and are bounded by {137} facets, while domes have a multi-facetted shape. By changing the growth rates, we are able to control the size and size homogeneity of freestanding QDs. QDs grown by using low growth rate are characterized by larger sizes and a narrower size distribution. The homogeneity of buried QDs is measured by photoluminescence spectroscopy and can be improved by low temperature overgrowth. The overgrowth induces the formation of nanostructures on the surface. The fabrication of self-assembled nanoholes, which are used as a template to induce short-range positioning of QDs, is also investigated. The growth of closely spaced QDs (QD molecules containing 2–6 QDs per QD molecule is discussed. Finally, the long-range positioning of self-assembled QDs, which can be achieved by the growth on patterned substrates, is demonstrated. Lateral QD replication observed during growth of three-dimensional QD crystals is reported.

  11. Word-Length Correlations and Memory in Large Texts: A Visibility Network Analysis

    Directory of Open Access Journals (Sweden)

    Lev Guzmán-Vargas

    2015-11-01

    Full Text Available We study the correlation properties of word lengths in large texts from 30 ebooks in the English language from the Gutenberg Project (www.gutenberg.org using the natural visibility graph method (NVG. NVG converts a time series into a graph and then analyzes its graph properties. First, the original sequence of words is transformed into a sequence of values containing the length of each word, and then, it is integrated. Next, we apply the NVG to the integrated word-length series and construct the network. We show that the degree distribution of that network follows a power law, P ( k ∼ k - γ , with two regimes, which are characterized by the exponents γ s ≈ 1 . 7 (at short degree scales and γ l ≈ 1 . 3 (at large degree scales. This suggests that word lengths are much more strongly correlated at large distances between words than at short distances between words. That finding is also supported by the detrended fluctuation analysis (DFA and recurrence time distribution. These results provide new information about the universal characteristics of the structure of written texts beyond that given by word frequencies.

  12. Inflation of the screening length induced by Bjerrum pairs

    NARCIS (Netherlands)

    Zwanikken, J.W.; van Roij, R.H.H.G.

    2009-01-01

    Within a modified Poisson–Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale 1/¯κ over which electric fields are screened in electrolyte solutions, taking into account a simple association–dissociation equilibrium between free ions and Bjerrum pairs. At low densities

  13. Upscaling of U(VI) Desorption and Transport Using Decimeter-Scale Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Derrick [Colorado School of Mines, Golden, CO (United States)

    2014-12-22

    Two decimeter-scale 2D experiments were conducted in the proposed research. To the extent possible, the first experiment (2.44 m x 0.61 m x 10 cm) was be packed to reproduce the observed distributions of sediment size fractions in the subsurface at the tracer test site. Four size fractions of sediment (<125m, 125-250m, 250m to 2 mm, >2mm) were packed in the tank and the size fractions were placed in a sediment structure imitating pattern rather than the block pattern used in the previous experiments conducted with Naturita sediment. The second tank used the same total amount of sediment and proportions of the three size fractions used in the first experiment but was packed at larger geostatistical correlation lengths to evaluate how the scale of heterogeneity affects the upscaling results. This experiment was conducted with the goal of trying to determine how the upscaling would be affected by the diffusion path length associated with low permeability zones. The initial conditions in the tanks were based on observed field conditions. The influent was a synthetic groundwater that mimicked uncontaminated groundwater observed at the Naturita site. Samples were collected from side and end ports of the tank and were analyzed for U(VI), alkalinity, pH and major ions as was done in previous experiments. Each decimeter scale experiment was run for approximately 6 months and the experiments were run in parallel. Extensive premodeling occurred for both tanks and lasted the first year of the project.

  14. A new subgrid characteristic length for turbulence simulations on anisotropic grids

    Science.gov (United States)

    Trias, F. X.; Gorobets, A.; Silvis, M. H.; Verstappen, R. W. C. P.; Oliva, A.

    2017-11-01

    Direct numerical simulations of the incompressible Navier-Stokes equations are not feasible yet for most practical turbulent flows. Therefore, dynamically less complex mathematical formulations are necessary for coarse-grained simulations. In this regard, eddy-viscosity models for Large-Eddy Simulation (LES) are probably the most popular example thereof. This type of models requires the calculation of a subgrid characteristic length which is usually associated with the local grid size. For isotropic grids, this is equal to the mesh step. However, for anisotropic or unstructured grids, such as the pancake-like meshes that are often used to resolve near-wall turbulence or shear layers, a consensus on defining the subgrid characteristic length has not been reached yet despite the fact that it can strongly affect the performance of LES models. In this context, a new definition of the subgrid characteristic length is presented in this work. This flow-dependent length scale is based on the turbulent, or subgrid stress, tensor and its representations on different grids. The simplicity and mathematical properties suggest that it can be a robust definition that minimizes the effects of mesh anisotropies on simulation results. The performance of the proposed subgrid characteristic length is successfully tested for decaying isotropic turbulence and a turbulent channel flow using artificially refined grids. Finally, a simple extension of the method for unstructured meshes is proposed and tested for a turbulent flow around a square cylinder. Comparisons with existing subgrid characteristic length scales show that the proposed definition is much more robust with respect to mesh anisotropies and has a great potential to be used in complex geometries where highly skewed (unstructured) meshes are present.

  15. Editorial Commentary: The Larger Holes or Larger Number of Holes We Drill in the Coracoid, the Weaker the Coracoid Becomes.

    Science.gov (United States)

    Brady, Paul

    2016-06-01

    The larger holes or larger number of holes we drill in the coracoid, the weaker the coracoid becomes. Thus, minimizing bone holes (both size and number) is required to lower risk of coracoid process fracture, in patients in whom transosseous shoulder acromioclavicular joint reconstruction is indicated. A single 2.4-mm-diameter tunnel drilled through both the clavicle and the coracoid lowers the risk of fracture, but the risk cannot be entirely eliminated. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  16. Lienard--Wiechert's potentials and the relativistic length conception

    Energy Technology Data Exchange (ETDEWEB)

    Strel' tsov, V N

    1974-12-31

    ABS>The concept of the distance (used in electrodynamics, based on the Lignard--Wiechert's potentials) which gives evidence for the conception of the relativistic length (as a space part of half difference of two 4-vectors describing the light signal distribution along some scale in the forward and backward direction) different from the conventional conception is outlined. (auth)

  17. Scale covariant physics: a 'quantum deformation' of classical electrodynamics

    International Nuclear Information System (INIS)

    Knoll, Yehonatan; Yavneh, Irad

    2010-01-01

    We present a deformation of classical electrodynamics, continuously depending on a 'quantum parameter', featuring manifest gauge, Poincare and scale covariance. The theory, dubbed extended charge dynamics (ECD), associates a certain length scale with each charge which, due to scale covariance, is an attribute of a solution, not a parameter of the theory. When the EM field experienced by an ECD charge is slowly varying over that length scale, the dynamics of the charge reduces to classical dynamics, its emitted radiation reduces to the familiar Lienard-Wiechert potential and the above length scale is identified as the charge's Compton length. It is conjectured that quantum mechanics describes statistical aspects of ensembles of ECD solutions, much like classical thermodynamics describes statistical aspects of ensembles of classical solutions. A unique 'remote sensing' feature of ECD, supporting that conjecture, is presented, along with an explanation for the illusion of a photon within a classical treatment of the EM field. Finally, a novel conservation law associated with the scale covariance of ECD is derived, indicating that the scale of a solution may 'drift' with time at a constant rate, much like translation covariance implies a uniform drift of the (average) position.

  18. Stimulus-dependent modulation of spike burst length in cat striate cortical cells.

    Science.gov (United States)

    DeBusk, B C; DeBruyn, E J; Snider, R K; Kabara, J F; Bonds, A B

    1997-07-01

    Burst activity, defined by groups of two or more spikes with intervals of cats. Bursting varied broadly across a population of 507 simple and complex cells. Half of this population had > or = 42% of their spikes contained in bursts. The fraction of spikes in bursts did not vary as a function of average firing rate and was stationary over time. Peaks in the interspike interval histograms were found at both 3-5 ms and 10-30 ms. In many cells the locations of these peaks were independent of firing rate, indicating a quantized control of firing behavior at two different time scales. The activity at the shorter time scale most likely results from intrinsic properties of the cell membrane, and that at the longer scale from recurrent network excitation. Burst frequency (bursts per s) and burst length (spikes per burst) both depended on firing rate. Burst frequency was essentially linear with firing rate, whereas burst length was a nonlinear function of firing rate and was also governed by stimulus orientation. At a given firing rate, burst length was greater for optimal orientations than for nonoptimal orientations. No organized orientation dependence was seen in bursts from lateral geniculate nucleus cells. Activation of cortical contrast gain control at low response amplitudes resulted in no burst length modulation, but burst shortening at optimal orientations was found in responses characterized by supersaturation. At a given firing rate, cortical burst length was shortened by microinjection of gamma-aminobutyric acid (GABA), and bursts became longer in the presence of N-methyl-bicuculline, a GABA(A) receptor blocker. These results are consistent with a model in which responses are reduced at nonoptimal orientations, at least in part, by burst shortening that is mediated by GABA. A similar mechanism contributes to response supersaturation at high contrasts via recruitment of inhibitory responses that are tuned to adjacent orientations. Burst length modulation can serve

  19. Global warming may disproportionately affect larger adults in a predatory coral reef fish

    KAUST Repository

    Messmer, Vanessa

    2016-11-03

    Global warming is expected to reduce body sizes of ectothermic animals. Although the underlying mechanisms of size reductions remain poorly understood, effects appear stronger at latitudinal extremes (poles and tropics) and in aquatic rather than terrestrial systems. To shed light on this phenomenon, we examined the size dependence of critical thermal maxima (CTmax) and aerobic metabolism in a commercially important tropical reef fish, the leopard coral grouper (Plectropomus leopardus) following acclimation to current-day (28.5 °C) vs. projected end-of-century (33 °C) summer temperatures for the northern Great Barrier Reef (GBR). CTmax declined from 38.3 to 37.5 °C with increasing body mass in adult fish (0.45-2.82 kg), indicating that larger individuals are more thermally sensitive than smaller conspecifics. This may be explained by a restricted capacity for large fish to increase mass-specific maximum metabolic rate (MMR) at 33 °C compared with 28.5 °C. Indeed, temperature influenced the relationship between metabolism and body mass (0.02-2.38 kg), whereby the scaling exponent for MMR increased from 0.74 ± 0.02 at 28.5 °C to 0.79 ± 0.01 at 33 °C, and the corresponding exponents for standard metabolic rate (SMR) were 0.75 ± 0.04 and 0.80 ± 0.03. The increase in metabolic scaling exponents at higher temperatures suggests that energy budgets may be disproportionately impacted in larger fish and contribute to reduced maximum adult size. Such climate-induced reductions in body size would have important ramifications for fisheries productivity, but are also likely to have knock-on effects for trophodynamics and functioning of ecosystems.

  20. Global warming may disproportionately affect larger adults in a predatory coral reef fish

    KAUST Repository

    Messmer, Vanessa; Pratchett, Morgan S.; Hoey, Andrew S.; Tobin, Andrew J.; Coker, Darren James; Cooke, Steven J.; Clark, Timothy D.

    2016-01-01

    Global warming is expected to reduce body sizes of ectothermic animals. Although the underlying mechanisms of size reductions remain poorly understood, effects appear stronger at latitudinal extremes (poles and tropics) and in aquatic rather than terrestrial systems. To shed light on this phenomenon, we examined the size dependence of critical thermal maxima (CTmax) and aerobic metabolism in a commercially important tropical reef fish, the leopard coral grouper (Plectropomus leopardus) following acclimation to current-day (28.5 °C) vs. projected end-of-century (33 °C) summer temperatures for the northern Great Barrier Reef (GBR). CTmax declined from 38.3 to 37.5 °C with increasing body mass in adult fish (0.45-2.82 kg), indicating that larger individuals are more thermally sensitive than smaller conspecifics. This may be explained by a restricted capacity for large fish to increase mass-specific maximum metabolic rate (MMR) at 33 °C compared with 28.5 °C. Indeed, temperature influenced the relationship between metabolism and body mass (0.02-2.38 kg), whereby the scaling exponent for MMR increased from 0.74 ± 0.02 at 28.5 °C to 0.79 ± 0.01 at 33 °C, and the corresponding exponents for standard metabolic rate (SMR) were 0.75 ± 0.04 and 0.80 ± 0.03. The increase in metabolic scaling exponents at higher temperatures suggests that energy budgets may be disproportionately impacted in larger fish and contribute to reduced maximum adult size. Such climate-induced reductions in body size would have important ramifications for fisheries productivity, but are also likely to have knock-on effects for trophodynamics and functioning of ecosystems.

  1. Global warming may disproportionately affect larger adults in a predatory coral reef fish.

    Science.gov (United States)

    Messmer, Vanessa; Pratchett, Morgan S; Hoey, Andrew S; Tobin, Andrew J; Coker, Darren J; Cooke, Steven J; Clark, Timothy D

    2017-06-01

    Global warming is expected to reduce body sizes of ectothermic animals. Although the underlying mechanisms of size reductions remain poorly understood, effects appear stronger at latitudinal extremes (poles and tropics) and in aquatic rather than terrestrial systems. To shed light on this phenomenon, we examined the size dependence of critical thermal maxima (CTmax) and aerobic metabolism in a commercially important tropical reef fish, the leopard coral grouper (Plectropomus leopardus) following acclimation to current-day (28.5 °C) vs. projected end-of-century (33 °C) summer temperatures for the northern Great Barrier Reef (GBR). CTmax declined from 38.3 to 37.5 °C with increasing body mass in adult fish (0.45-2.82 kg), indicating that larger individuals are more thermally sensitive than smaller conspecifics. This may be explained by a restricted capacity for large fish to increase mass-specific maximum metabolic rate (MMR) at 33 °C compared with 28.5 °C. Indeed, temperature influenced the relationship between metabolism and body mass (0.02-2.38 kg), whereby the scaling exponent for MMR increased from 0.74 ± 0.02 at 28.5 °C to 0.79 ± 0.01 at 33 °C, and the corresponding exponents for standard metabolic rate (SMR) were 0.75 ± 0.04 and 0.80 ± 0.03. The increase in metabolic scaling exponents at higher temperatures suggests that energy budgets may be disproportionately impacted in larger fish and contribute to reduced maximum adult size. Such climate-induced reductions in body size would have important ramifications for fisheries productivity, but are also likely to have knock-on effects for trophodynamics and functioning of ecosystems. © 2016 John Wiley & Sons Ltd.

  2. The topology of large-scale structure. V - Two-dimensional topology of sky maps

    Science.gov (United States)

    Gott, J. R., III; Mao, Shude; Park, Changbom; Lahav, Ofer

    1992-01-01

    A 2D algorithm is applied to observed sky maps and numerical simulations. It is found that when topology is studied on smoothing scales larger than the correlation length, the topology is approximately in agreement with the random phase formula for the 2D genus-threshold density relation, G2(nu) varies as nu(e) exp-nu-squared/2. Some samples show small 'meatball shifts' similar to those seen in corresponding 3D observational samples and similar to those produced by biasing in cold dark matter simulations. The observational results are thus consistent with the standard model in which the structure in the universe today has grown from small fluctuations caused by random quantum noise in the early universe.

  3. Multi-scale modeling of dispersed gas-liquid two-phase flow

    NARCIS (Netherlands)

    Deen, N.G.; Sint Annaland, van M.; Kuipers, J.A.M.

    2004-01-01

    In this work the concept of multi-scale modeling is demonstrated. The idea of this approach is to use different levels of modeling, each developed to study phenomena at a certain length scale. Information obtained at the level of small length scales can be used to provide closure information at the

  4. Why the Length of a Quantum String Cannot Be Lorentz Contracted

    Directory of Open Access Journals (Sweden)

    Antonio Aurilia

    2013-01-01

    Full Text Available We propose a quantum gravity-extended form of the classical length contraction law obtained in special relativity. More specifically, the framework of our discussion is the UV self-complete theory of quantum gravity. We show how our results are consistent with (i the generalized form of the uncertainty principle (GUP, (ii the so-called hoop-conjecture, and (iii the intriguing notion of “classicalization” of trans-Planckian physics. We argue that there is a physical limit to the Lorentz contraction rule in the form of some minimal universal length determined by quantum gravity, say the Planck Length, or any of its current embodiments such as the string length, or the TeV quantum gravity length scale. In the latter case, we determine the critical boost that separates the ordinary “particle phase,” characterized by the Compton wavelength, from the “black hole phase,” characterized by the effective Schwarzschild radius of the colliding system.

  5. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales.

    Science.gov (United States)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A L David; Belcher, Warwick J; Dastoor, Paul C

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  6. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Science.gov (United States)

    Burke, Kerry B.; Stapleton, Andrew J.; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A. L. David; Belcher, Warwick J.; Dastoor, Paul C.

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  7. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    International Nuclear Information System (INIS)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C; Kilcoyne, A L David

    2011-01-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N ' -(4-butylphenyl)-bis-N, N ' -phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  8. Micro- and meso-scale effects of forested terrain

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Sogachev, Andrey

    2011-01-01

    scales are the height of the planetary boundary layer and the Monin-Obukhov length, which both are related to the energy balance of the surface. Examples of important micro- and meso-scale effects of forested terrain are shown using data and model results from recent and ongoing experiments. For micro......The height and rotor diameter of modern wind turbines are so extensive, that the wind conditions they encounter often are well above the surface layer, where traditionally it is assumed that wind direction and turbulent fluxes are constant with respect to height, if the surface is homogenous....... Deviations from the requirement of homogeneity are often the focus of micro-scale studies in forested areas. Yet, to explain the wind climate in the relevant height range for turbines, it is necessary to also account for the length scales that are important parameters for the meso-scale flow. These length...

  9. Uniform Distance Scaling Behavior of Planet-Satellite Nanostructures Made by Star Polymers.

    Science.gov (United States)

    Rossner, Christian; Tang, Qiyun; Glatter, Otto; Müller, Marcus; Vana, Philipp

    2017-02-28

    Planet-satellite nanostructures from RAFT star polymers and larger (planet) as well as smaller (satellite) gold nanoparticles are analyzed in experiments and computer simulations regarding the influence of arm number of star polymers. A uniform scaling behavior of planet-satellite distances as a function of arm length was found both in the dried state (via transmission electron microscopy) after casting the nanostructures on surfaces and in the colloidally dispersed state (via simulations and small-angle X-ray scattering) when 2-, 3-, and 6-arm star polymers were employed. This indicates that the planet-satellite distances are mainly determined by the arm length of star polymers. The observed discrepancy between TEM and simulated distances can be attributed to the difference of polymer configurations in dried and dispersed state. Our results also show that these distances are controlled by the density of star polymers end groups, and the number of grabbed satellite particles is determined by the magnitude of the corresponding density. These findings demonstrate the feasibility to precisely control the planet-satellite structures at the nanoscale.

  10. Taylor-plasticity-based analysis of length scale effects in void growth

    KAUST Repository

    Liu, Junxian

    2014-09-25

    We have studied the void growth problem by employing the Taylor-based strain gradient plasticity theories, from which we have chosen the following three, namely, the mechanism-based strain gradient (MSG) plasticity (Gao et al 1999 J. Mech. Phys. Solids 47 1239, Huang et al 2000 J. Mech. Phys. Solids 48 99-128), the Taylor-based nonlocal theory (TNT; 2001 Gao and Huang 2001 Int. J. Solids Struct. 38 2615) and the conventional theory of MSG (CMSG; Huang et al 2004 Int. J. Plast. 20 753). We have addressed the following three issues which occur when plastic deformation at the void surface is unconstrained. (1) Effects of elastic deformation. Elasticity is essential for cavitation instability. It is therefore important to guarantee that the gradient term entering the Taylor model is the effective plastic strain gradient instead of the total strain gradient. We propose a simple elastic-plastic decomposition method. When the void size approaches the minimum allowable initial void size related to the maximum allowable geometrically necessary dislocation density, overestimation of the flow stress due to the negligence of the elastic strain gradient is on the order of lεY/R0 near the void surface, where l, εY and R0 are, respectively, the intrinsic material length scale, the yield strain and the initial void radius. (2) MSG intrinsic inconsistency, which was initially mentioned in Gao et al (1999 J. Mech. Phys. Solids 47 1239) but has not been the topic of follow-up studies. We realize that MSG higher-order stress arises due to the linear-strain-field approximation within the mesoscale cell with a nonzero size, lε. Simple analysis shows that within an MSG mesoscale cell near the void surface, the difference between microscale and mesoscale strains is on the order of (lε/R0)2, indicating that when lε/R0 ∼ 1.0, the higher-order stress effect can make the MSG result considerably different from the TNT or CMSG results. (3) Critical condition for cavitation instability

  11. Results of Large-Scale Spacecraft Flammability Tests

    Science.gov (United States)

    Ferkul, Paul; Olson, Sandra; Urban, David L.; Ruff, Gary A.; Easton, John; T'ien, James S.; Liao, Ta-Ting T.; Fernandez-Pello, A. Carlos; Torero, Jose L.; Eigenbrand, Christian; hide

    2017-01-01

    For the first time, a large-scale fire was intentionally set inside a spacecraft while in orbit. Testing in low gravity aboard spacecraft had been limited to samples of modest size: for thin fuels the longest samples burned were around 15 cm in length and thick fuel samples have been even smaller. This is despite the fact that fire is a catastrophic hazard for spaceflight and the spread and growth of a fire, combined with its interactions with the vehicle cannot be expected to scale linearly. While every type of occupied structure on earth has been the subject of full scale fire testing, this had never been attempted in space owing to the complexity, cost, risk and absence of a safe location. Thus, there is a gap in knowledge of fire behavior in spacecraft. The recent utilization of large, unmanned, resupply craft has provided the needed capability: a habitable but unoccupied spacecraft in low earth orbit. One such vehicle was used to study the flame spread over a 94 x 40.6 cm thin charring solid (fiberglasscotton fabric). The sample was an order of magnitude larger than anything studied to date in microgravity and was of sufficient scale that it consumed 1.5 of the available oxygen. The experiment which is called Saffire consisted of two tests, forward or concurrent flame spread (with the direction of flow) and opposed flame spread (against the direction of flow). The average forced air speed was 20 cms. For the concurrent flame spread test, the flame size remained constrained after the ignition transient, which is not the case in 1-g. These results were qualitatively different from those on earth where an upward-spreading flame on a sample of this size accelerates and grows. In addition, a curious effect of the chamber size is noted. Compared to previous microgravity work in smaller tunnels, the flame in the larger tunnel spread more slowly, even for a wider sample. This is attributed to the effect of flow acceleration in the smaller tunnels as a result of hot

  12. Turbulence closure for mixing length theories

    Science.gov (United States)

    Jermyn, Adam S.; Lesaffre, Pierre; Tout, Christopher A.; Chitre, Shashikumar M.

    2018-05-01

    We present an approach to turbulence closure based on mixing length theory with three-dimensional fluctuations against a two-dimensional background. This model is intended to be rapidly computable for implementation in stellar evolution software and to capture a wide range of relevant phenomena with just a single free parameter, namely the mixing length. We incorporate magnetic, rotational, baroclinic, and buoyancy effects exactly within the formalism of linear growth theories with non-linear decay. We treat differential rotation effects perturbatively in the corotating frame using a novel controlled approximation, which matches the time evolution of the reference frame to arbitrary order. We then implement this model in an efficient open source code and discuss the resulting turbulent stresses and transport coefficients. We demonstrate that this model exhibits convective, baroclinic, and shear instabilities as well as the magnetorotational instability. It also exhibits non-linear saturation behaviour, and we use this to extract the asymptotic scaling of various transport coefficients in physically interesting limits.

  13. Why have microsaccades become larger?

    DEFF Research Database (Denmark)

    Hansen, Dan Witzner; Nyström, Marcus; Andersson, Richard

    2014-01-01

    -trackers compared to the systems used in the classical studies, in combination with the lack of a systematic algorithmic treatment of the overshoot. We hope that awareness of these discrepancies in microsaccade dynamics across eye structures will lead to more generally accepted definitions of microsaccades....... experts. The main reason was that the overshoots were not systematically detected by the algorithm and therefore not accurately accounted for. We conclude that one reason to why the reported size of microsaccades has increased is due to the larger overshoots produced by the modern pupil-based eye...

  14. Scaling behavior of knotted random polygons and self-avoiding polygons: Topological swelling with enhanced exponent.

    Science.gov (United States)

    Uehara, Erica; Deguchi, Tetsuo

    2017-12-07

    We show that the average size of self-avoiding polygons (SAPs) with a fixed knot is much larger than that of no topological constraint if the excluded volume is small and the number of segments is large. We call it topological swelling. We argue an "enhancement" of the scaling exponent for random polygons with a fixed knot. We study them systematically through SAP consisting of hard cylindrical segments with various different values of the radius of segments. Here we mean by the average size the mean-square radius of gyration. Furthermore, we show numerically that the topological balance length of a composite knot is given by the sum of those of all constituent prime knots. Here we define the topological balance length of a knot by such a number of segments that topological entropic repulsions are balanced with the knot complexity in the average size. The additivity suggests the local knot picture.

  15. Minimal length uncertainty relation and ultraviolet regularization

    Science.gov (United States)

    Kempf, Achim; Mangano, Gianpiero

    1997-06-01

    Studies in string theory and quantum gravity suggest the existence of a finite lower limit Δx0 to the possible resolution of distances, at the latest on the scale of the Planck length of 10-35 m. Within the framework of the Euclidean path integral we explicitly show ultraviolet regularization in field theory through this short distance structure. Both rotation and translation invariance can be preserved. An example is studied in detail.

  16. Healthy lifestyle and leukocyte telomere length in U.S. women.

    Directory of Open Access Journals (Sweden)

    Qi Sun

    Full Text Available Whether a healthy lifestyle may be associated with longer telomere length is largely unknown.To examine healthy lifestyle practices, which are primary prevention measures against major age-related chronic diseases, in relation to leukocyte telomere length.Cross-sectional analysis in the Nurses' Health Study (NHS.The population consisted of 5,862 women who participated in multiple prospective case-control studies within the NHS cohort. Z scores of leukocyte telomere length were derived within each case-control study. Based on prior work, we defined low-risk or healthy categories for five major modifiable factors assessed in 1988 or 1990: non-current smoking, maintaining a healthy body weight (body mass index in 18.5-24.9 kg/m(2, engaging in regular moderate or vigorous physical activities (≥150 minutes/week, drinking alcohol in moderation (1 drink/week to <2 drinks/day, and eating a healthy diet (Alternate Healthy Eating Index score in top 50%. We calculated difference (% of the z scores contrasting low-risk groups with reference groups to evaluate the association of interest.Although none of the individual low-risk factors was significantly associated with larger leukocyte telomere length z scores, we observed a significant, positive relationship between the number of low-risk factors and the z scores. In comparison with women who had zero low-risk factors (1.9% of the total population and were, therefore, considered the least healthy group, the leukocyte telomere length z scores were 16.4%, 22.1%, 28.7%, 22.6%, and 31.2% (P for trend = 0.015 higher for women who had 1 to 5 low-risk factors, respectively.Adherence to a healthy lifestyle, defined by major modifiable risk factors, was associated with longer telomere length in leukocytes.

  17. Detection of different-time-scale signals in the length of day variation based on EEMD analysis technique

    Directory of Open Access Journals (Sweden)

    Wenbin Shen

    2016-05-01

    Full Text Available Scientists pay great attention to different-time-scale signals in the length of day (LOD variations ΔLOD, which provide signatures of the Earth's interior structure, couplings among different layers, and potential excitations of ocean and atmosphere. In this study, based on the ensemble empirical mode decomposition (EEMD, we analyzed the latest time series of ΔLOD data spanning from January 1962 to March 2015. We observed the signals with periods and amplitudes of about 0.5 month and 0.19 ms, 1.0 month and 0.19 ms, 0.5 yr and 0.22 ms, 1.0 yr and 0.18 ms, 2.28 yr and 0.03 ms, 5.48 yr and 0.05 ms, respectively, in coincidence with the results of predecessors. In addition, some signals that were previously not definitely observed by predecessors were detected in this study, with periods and amplitudes of 9.13 d and 0.12 ms, 13.69 yr and 0.10 ms, respectively. The mechanisms of the LOD fluctuations of these two signals are still open.

  18. The length-weight and length-length relationships of bluefish, Pomatomus saltatrix (Linnaeus, 1766 from Samsun, middle Black Sea region

    Directory of Open Access Journals (Sweden)

    Melek Özpiçak

    2017-10-01

    Full Text Available In this study, length-weight relationship (LWR and length-length relationship (LLR of bluefish, Pomatomus saltatrix were determined. A total of 125 specimens were sampled from Samsun, the middle Black Sea in 2014 fishing season. Bluefish specimens were monthly collected from commercial fishing boats from October to December 2014. All captured individuals (N=125 were measured to the nearest 0.1 cm for total, fork and standard lengths. The weight of each fish (W was recorded to the nearest 0.01 g. According to results of analyses, there were no statistically significant differences between sexes in term of length and weight (P˃0.05. The minimum and maximum total, fork and standard lengths of bluefish ranged between 13.5-23.6 cm, 12.50-21.80 cm and 10.60-20.10 cm, respectively. The equation of length-weight relationship were calculated as W=0.008TL3.12 (r2>0.962. Positive allometric growth was observed for bluefish (b>3. Length-length relationship was also highly significant (P<0.001 with coefficient of determination (r2 ranging from 0.916 to 0.988.

  19. WDM networking on a European Scale

    DEFF Research Database (Denmark)

    Parnis, Noel; Limal, Emmanuel; Hjelme, Dag R.

    1998-01-01

    Four different topological approaches to designing a pan-European optical network are discussed. For such an ultra-high capacity large-scale network, it is necessary to overcome physical path length limitations and to limit Optical Cross-Connect (OXC) complexity.......Four different topological approaches to designing a pan-European optical network are discussed. For such an ultra-high capacity large-scale network, it is necessary to overcome physical path length limitations and to limit Optical Cross-Connect (OXC) complexity....

  20. Accurate switching intensities and length scales in quasi-phase-matched materials

    DEFF Research Database (Denmark)

    Bang, Ole; Graversen, Torben Winther; Corney, Joel Frederick

    2001-01-01

    We consider unseeded typeI second-harmonic generation in quasi-phase-matched quadratic nonlinear materials and derive an accurate analytical expression for the evolution of the average intensity. The intensity- dependent nonlinear phase mismatch that is due to the cubic nonlinearity induced...... by quasi phase matching is found. The equivalent formula for the intensity of maximum conversion, the crossing of which changes the one-period nonlinear phase shift of the fundamental abruptly by p , corrects earlier estimates [Opt.Lett. 23, 506 (1998)] by a factor of 5.3. We find the crystal lengths...... that are necessary to obtain an optimal flat phase versus intensity response on either side of this separatrix intensity....

  1. Displacement-length scaling of brittle faults in ductile shear.

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  2. Displacement–length scaling of brittle faults in ductile shear

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  3. Scaling of graphene integrated circuits.

    Science.gov (United States)

    Bianchi, Massimiliano; Guerriero, Erica; Fiocco, Marco; Alberti, Ruggero; Polloni, Laura; Behnam, Ashkan; Carrion, Enrique A; Pop, Eric; Sordan, Roman

    2015-05-07

    The influence of transistor size reduction (scaling) on the speed of realistic multi-stage integrated circuits (ICs) represents the main performance metric of a given transistor technology. Despite extensive interest in graphene electronics, scaling efforts have so far focused on individual transistors rather than multi-stage ICs. Here we study the scaling of graphene ICs based on transistors from 3.3 to 0.5 μm gate lengths and with different channel widths, access lengths, and lead thicknesses. The shortest gate delay of 31 ps per stage was obtained in sub-micron graphene ROs oscillating at 4.3 GHz, which is the highest oscillation frequency obtained in any strictly low-dimensional material to date. We also derived the fundamental Johnson limit, showing that scaled graphene ICs could be used at high frequencies in applications with small voltage swing.

  4. Predicted bond length variation in wurtzite and zinc-blende InGaN and AlGaN alloys

    International Nuclear Information System (INIS)

    Mattila, T.; Zunger, A.

    1999-01-01

    Valence force field simulations utilizing large supercells are used to investigate the bond lengths in wurtzite and zinc-blende In x Ga 1-x N and Al x Ga 1-x N random alloys. We find that (i) while the first-neighbor cation endash anion shell is split into two distinct values in both wurtzite and zinc-blende alloys (R Ga-N 1 ≠R In-N 1 ), the second-neighbor cation endash anion bonds are equal (R Ga-N 2 =R In-N 2 ). (ii) The second-neighbor cation endash anion bonds exhibit a crucial difference between wurtzite and zinc-blende binary structures: in wurtzite we find two bond distances which differ in length by 13% while in the zinc-blende structure there is only one bond length. This splitting is preserved in the alloy, and acts as a fingerprint, distinguishing the wurtzite from the zinc-blende structure. (iii) The small splitting of the first-neighbor cation endash anion bonds in the wurtzite structure due to nonideal c/a ratio is preserved in the alloy, but is obscured by the bond length broadening. (iv) The cation endash cation bond lengths exhibit three distinct values in the alloy (Ga endash Ga, Ga endash In, and In endash In), while the anion endash anion bonds are split into two values corresponding to N endash Ga endash N and N endash In endash N. (v) The cation endash related splitting of the bonds and alloy broadening are considerably larger in InGaN alloy than in AlGaN alloy due to larger mismatch between the binary compounds. (vi) The calculated first-neighbor cation endash anion and cation endash cation bond lengths in In x Ga 1-x N alloy are in good agreement with the available experimental data. The remaining bond lengths are provided as predictions. In particular, the predicted splitting for the second-neighbor cation endash anion bonds in the wurtzite structure awaits experimental testing. copyright 1999 American Institute of Physics

  5. Matrix continued-fraction calculation of localization length in disordered systems

    International Nuclear Information System (INIS)

    Pastawski, H.M.; Weisz, J.F.

    1983-01-01

    A Matrix Continued-Fraction method is used to study the localization length of the states at the band center of a two dimensional crystals with disorder given by the Anderson model. It is found that exponentially localized states which scale according to the work of Mac Kinnon and Kramer, becomes weakly localized as the disorder becomes weaker, and there is some critical disorder for which the localization length does not saturate with the width of the strips, this confirms the resuts found by Pichard and Sarma. Weakly localized states are also found in one dimension for w/v [pt

  6. Matrix continued-fraction calculation of localization length in disordered systems

    International Nuclear Information System (INIS)

    Pastawski, H.M.; Weisz, J.F.

    1983-01-01

    A Matrix Continued-Fraction method is used to study the localization length of the states at the band center of a two dimensional crystal with disorder given by the Anderson model. It is found that exponentially localized states, which scale according to the work of Mac Kinnon and Kramer, becomes weakly localized as the disorder becomes weaker, and there is some critical disorder for which the localization length does not saturate with the width of the strips, this confirms the results found by Pichard and Sarma. Weakly localized states are also found in one dimension for w/v [pt

  7. Detection beyond Debye's length with an electrolyte-gated organic field-effect transistor.

    Science.gov (United States)

    Palazzo, Gerardo; De Tullio, Donato; Magliulo, Maria; Mallardi, Antonia; Intranuovo, Francesca; Mulla, Mohammad Yusuf; Favia, Pietro; Vikholm-Lundin, Inger; Torsi, Luisa

    2015-02-04

    Electrolyte-gated organic field-effect transistors are successfully used as biosensors to detect binding events occurring at distances from the transistor electronic channel that are much larger than the Debye length in highly concentrated solutions. The sensing mechanism is mainly capacitive and is due to the formation of Donnan's equilibria within the protein layer, leading to an extra capacitance (CDON) in series to the gating system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mechanical properties of fiber reinforced restorative composite with two distinguished fiber length distribution.

    Science.gov (United States)

    Lassila, Lippo; Garoushi, Sufyan; Vallittu, Pekka K; Säilynoja, Eija

    2016-07-01

    The purpose of this study was to investigate the reinforcing effect of discontinuous glass fiber fillers with different length scales on fracture toughness and flexural properties of dental composite. Experimental fiber reinforced composite (Exp-FRC) was prepared by mixing 27wt% of discontinuous E-glass fibers having two different length scales (micrometer and millimeter) with various weight ratios (1:1, 2:1, 1:0 respectively) to the 23wt% of dimethacrylate based resin matrix and then 50wt% of silane treated silica filler were added gradually using high speed mixing machine. As control, commercial FRC and conventional posterior composites were used (everX Posterior, Alert, and Filtek Superme). Fracture toughness, work of fracture, flexural strength, and flexural modulus were determined for each composite material following ISO standards. The specimens (n=6) were dry stored (37°C for 2 days) before they were tested. Scanning electron microscopy was used to evaluate the microstructure of the experimental FRC composites. The results were statistically analyzed using ANOVA followed by post-hoc Tukey׳s test. Level of significance was set at 0.05. ANOVA revealed that experimental composites reinforced with different fiber length scales (hybrid Exp-FRC) had statistically significantly higher mechanical performance of fracture toughness (4.7MPam(1/2)) and flexural strength (155MPa) (plength scales of discontinues fiber fillers (hybrid) with polymer matrix yielded improved mechanical performance compared to commercial FRC and conventional posterior composites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter

    International Nuclear Information System (INIS)

    Sorel, Sophie; Lyons, Philip E; De, Sukanta; Coleman, Jonathan N; Dickerson, Janet C

    2012-01-01

    We have characterized the optoelectrical properties of networks of silver nanowires as a function of nanowire dimension by measuring transmittance (T) and sheet resistance (R s ) for a large number of networks of different thicknesses fabricated from wires of different diameters (D) and lengths (L). We have analysed these data using both bulk-like and percolative models. We find the network DC conductivity to scale linearly with wire length while the optical conductivity is approximately invariant with nanowire length. The ratio of DC to optical conductivity, often taken as a figure of merit for transparent conductors, scales approximately as L/D. Interestingly, the percolative exponent, n, scales empirically as D 2 , while the percolative figure of merit, Π, displays large values at low D. As high T and low R s are associated with low n and high Π, these data are consistent with improved optoelectrical performance for networks of low-D wires. We predict that networks of wires with D = 25 nm could give sheet resistance as low as 25 Ω/□ for T = 90%. (paper)

  10. The prospects of transition metal dichalcogenides for ultimately scaled CMOS

    Science.gov (United States)

    Thiele, S.; Kinberger, W.; Granzner, R.; Fiori, G.; Schwierz, F.

    2018-05-01

    MOSFET gate length scaling has been a main source of progress in digital electronics for decades. Today, researchers still spend considerable efforts on reducing the gate length and on developing ultimately scaled MOSFETs, thereby exploring both new device architectures and alternative channel materials beyond Silicon such as two-dimensional TMDs (transition metal dichalcogenide). On the other hand, the envisaged scaling scenario for the next 15 years has undergone a significant change recently. While the 2013 ITRS edition required a continuation of aggressive gate length scaling for at least another 15 years, the 2015 edition of the ITRS suggests a deceleration and eventually a levelling off of gate length scaling and puts more emphasis on alternative options such as pitch scaling to keep Moore's Law alive. In the present paper, future CMOS scaling is discussed in the light of emerging two-dimensional MOSFET channel, in particular two-dimensional TMDs. To this end, the scaling scenarios of the 2013 and 2015 ITRS editions are considered and the scaling potential of TMD MOSFETs is investigated by means of quantum-mechanical device simulations. It is shown that for ultimately scaled MOSFETs as required in the 2013 ITRS, the heavy carrier effective masses of the Mo- and W-based TMDs are beneficial for the suppression of direct source-drain tunneling, while to meet the significantly relaxed scaling targets of the 2016 ITRS heavy-effective-mass channels are not needed.

  11. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales

    Science.gov (United States)

    Freeman, Mary C.; Pringle, C.M.; Jackson, C.R.

    2007-01-01

    Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water-mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two-thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large-scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free-flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large-scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream-system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and

  12. When larger brains do not have more neurons: Increased numbers of cells are compensated by decreased average cell size across mouse individuals

    Directory of Open Access Journals (Sweden)

    Suzana eHerculano-Houzel

    2015-06-01

    Full Text Available There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a population? That is, do individuals with larger brains also have more, and larger, neurons than individuals with smaller brains, such that allometric relationships across species are simply an extension of intraspecific scaling? Here we show that this is not the case across adult male mice of a similar age. Rather, increased numbers of neurons across individuals are accompanied by increased numbers of other cells and smaller average cell size of both types, in a trade-off that explains how increased brain mass does not necessarily ensue. Fundamental regulatory mechanisms thus must exist that tie numbers of neurons to numbers of other cells and to average cell size within individual brains. Finally, our results indicate that changes in brain size in evolution are not an extension of individual variation in numbers of neurons, but rather occur through step changes that must simultaneously increase numbers of neurons and cause cell size to increase, rather than decrease.

  13. Dorsal Phalloplasty to Preserve Penis Length after Penile Prosthesis Implantation

    Directory of Open Access Journals (Sweden)

    Osama Shaeer

    2017-03-01

    Full Text Available Objectives: Following penile prosthesis implantation (PPI, patients may complain of a decrease in visible penis length. A dorsal phalloplasty defines the penopubic junction by tacking pubic skin to the pubis, revealing the base of the penis. This study aimed to evaluate the efficacy of a dorsal phalloplasty in increasing the visible penis length following PPI. Methods: An inflatable penile prosthesis was implanted in 13 patients with severe erectile dysfunction (ED at the Kamal Shaeer Hospital, Cairo, Egypt, from January 2013 to May 2014. During the surgery, nonabsorbable tacking sutures were used to pin the pubic skin to the pubis through the same penoscrotal incision. Intraoperative penis length was measured before and after the dorsal phalloplasty. Overall patient satisfaction was measured on a 5-point rating scale and patients were requested to subjectively compare their postoperative penis length with memories of their penis length before the onset of ED. Results: Intraoperatively, the dorsal phalloplasty increased the visible length of the erect penis by an average of 25.6%. The average length before and after tacking was 10.2 ± 2.9 cm and 13.7 ± 2.8 cm, respectively (P <0.002. Postoperatively, seven patients (53.8% reported a longer penis, five patients (38.5% reported no change in length and one patient (7.7% reported a slightly shorter penis. The mean overall patient satisfaction score was 4.9 ± 0.3. None of the patients developed postoperative complications. Conclusion: A dorsal phalloplasty during PPI is an effective method of increasing visible penis length, therefore minimising the impression of a shorter penis after implantation.

  14. Vortex matter beyond SANS. Neutron studies of vortex structures covering a length scale of 0.01 ti 10 μm

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Tommy

    2017-01-09

    This thesis is concerned with different generic types of vortex matter arising in the intermediate state of the type-I superconductor lead, the intermediate mixed state of the type-II superconductor niobium, and the helimagnetic phase of the compound manganese silicide. It is demonstrated and explained how a combination of i) the radiographic techniques neutron grating interferometry and neutron diffractive imaging with ii) scattering methods such as small-angle-neutron scattering and ultra-small-angle neutron scattering can provide novel insight into the bulk behavior of these vortex systems. By means of the used scattering methods, detailed information on the morphology of the vortex phases covering a length scale of 0.01 to 10 μm are obtained, while the radiographic approaches additionally map the spatial distribution of vortices within the sample. In particular, this thesis focuses on the strong influences of demagnetization, geometric barriers and pinning on the vortex configuration.

  15. Vortex matter beyond SANS. Neutron studies of vortex structures covering a length scale of 0.01 ti 10 μm

    International Nuclear Information System (INIS)

    Reimann, Tommy

    2017-01-01

    This thesis is concerned with different generic types of vortex matter arising in the intermediate state of the type-I superconductor lead, the intermediate mixed state of the type-II superconductor niobium, and the helimagnetic phase of the compound manganese silicide. It is demonstrated and explained how a combination of i) the radiographic techniques neutron grating interferometry and neutron diffractive imaging with ii) scattering methods such as small-angle-neutron scattering and ultra-small-angle neutron scattering can provide novel insight into the bulk behavior of these vortex systems. By means of the used scattering methods, detailed information on the morphology of the vortex phases covering a length scale of 0.01 to 10 μm are obtained, while the radiographic approaches additionally map the spatial distribution of vortices within the sample. In particular, this thesis focuses on the strong influences of demagnetization, geometric barriers and pinning on the vortex configuration.

  16. Multi-scale evaluations of submarine groundwater discharge

    Directory of Open Access Journals (Sweden)

    M. Taniguchi

    2015-03-01

    Full Text Available Multi-scale evaluations of submarine groundwater discharge (SGD have been made in Saijo, Ehime Prefecture, Shikoku Island, Japan, by using seepage meters for point scale, 222Rn tracer for point and coastal scales, and a numerical groundwater model (SEAWAT for coastal and basin scales. Daily basis temporal changes in SGD are evaluated by continuous seepage meter and 222Rn mooring measurements, and depend on sea level changes. Spatial evaluations of SGD were also made by 222Rn along the coast in July 2010 and November 2011. The area with larger 222Rn concentration during both seasons agreed well with the area with larger SGD calculated by 3D groundwater numerical simulations.

  17. Scaling laws of design parameters for plasma wakefield accelerators

    International Nuclear Information System (INIS)

    Uhm, Han S.; Nam, In H.; Suk, Hyyong

    2012-01-01

    Simple scaling laws for the design parameters of plasma wakefield accelerators were obtained using a theoretical model, which were confirmed via particle simulation studies. It was found that the acceleration length was given by Δx=0.804λ p /(1−β g ), where λ p is the plasma wavelength and β g c the propagation velocity of the ion cavity. The acceleration energy can also be given by ΔE=(γ m −1)mc 2 =2.645mc 2 /(1−β g ), where m is the electron rest mass. As expected, the acceleration length and energy increase drastically as β g approached unity. These simple scaling laws can be very instrumental in the design of better-performing plasma wakefield accelerators. -- Highlights: ► Simple scaling laws for the design parameters of laser wakefield accelerators were obtained using a theoretical model. ► The scaling laws for acceleration length and acceleration energy were compared with particle-in-cell simulation results. ► The acceleration length and the energy increase drastically as β g approaches unity. ► These simple scaling laws can be very instrumental in the design of laser wakefield accelerators.

  18. A numerical investigation of the interplay between fireline length, geometry, and rate of spread

    Science.gov (United States)

    J. M. Canfield; R. R. Linn; J. A. Sauer; M. Finney; J. Forthofer

    2014-01-01

    The current study focuses on coupled dynamics and resultant geometry of fireline segments of various ignition lengths. As an example, for ignition lines of length scales typical for field experiments, fireline curvature is the result of a competition between the head fire and the flanks of the fire. A number of physical features (i.e. buoyancy and wind field divergence...

  19. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia); Kilcoyne, A L David, E-mail: Paul.Dastoor@newcastle.edu.au [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N{sup '}-(4-butylphenyl)-bis-N, N{sup '}-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  20. Ontogenetic scaling of locomotor kinetics and kinematics of the ostrich (Struthio camelus).

    Science.gov (United States)

    Smith, Nicola C; Jespers, Karin J; Wilson, Alan M

    2010-04-01

    Kinematic and kinetic parameters of running gait were investigated through growth in the ostrich, from two weeks up to 10 months of age, in order to investigate the effects of increasing body size. Ontogenetic scaling relationships were compared with published scaling relationships found to exist with increasing body size between species to determine whether dynamic similarity is maintained during growth. During the study, ostrich mass (M(b)) ranged from 0.7 kg to 108.8 kg. Morphological measurements showed that lengths scaled with positive allometry during growth (hip height proportional to M(b)(0.40); foot segment length proportional to M(b)(0.40); tarsometatarsus length proportional to M(b)(0.41); tibiotarsus length proportional to M(b)(0.38); femur length proportional to M(b)(0.37)), significantly exceeding the close to geometric scaling observed between mammalian and avian species of increasing body size. Scaling of kinematic variables largely agreed with predicted scaling for increasing size and demonstrated relationships close to dynamic similarity and, as such, ontogenetic scaling of locomotor parameters was similar to that observed with increasing body mass between species. However, the ways in which these scaling trends were achieved were very different, with ontogenetic scaling of locomotor mechanics largely resulting from simple scaling of the limb segments rather than postural changes, likely to be due to developmental constraints. Small deviations from dynamic similarity of kinematic parameters and a reduction in the predicted scaling of limb stiffness (proportional to M(b)(0.59)) were found to be accounted for by the positive allometric scaling of the limb during growth.

  1. In vitro cytotoxicity of Manville Code 100 glass fibers: Effect of fiber length on human alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Jones William

    2006-03-01

    Full Text Available Abstract Background Synthetic vitreous fibers (SVFs are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes. SVFs conventionally include three major categories: fibrous glass, rock/slag/stone (mineral wool, and ceramic fibers. Previous in vitro studies from our laboratory demonstrated length-dependent cytotoxic effects of glass fibers on rat alveolar macrophages which were possibly associated with incomplete phagocytosis of fibers ≥ 17 μm in length. The purpose of this study was to examine the influence of fiber length on primary human alveolar macrophages, which are larger in diameter than rat macrophages, using length-classified Manville Code 100 glass fibers (8, 10, 16, and 20 μm. It was hypothesized that complete engulfment of fibers by human alveolar macrophages could decrease fiber cytotoxicity; i.e. shorter fibers that can be completely engulfed might not be as cytotoxic as longer fibers. Human alveolar macrophages, obtained by segmental bronchoalveolar lavage of healthy, non-smoking volunteers, were treated with three different concentrations (determined by fiber number of the sized fibers in vitro. Cytotoxicity was assessed by monitoring cytosolic lactate dehydrogenase release and loss of function as indicated by a decrease in zymosan-stimulated chemiluminescence. Results Microscopic analysis indicated that human alveolar macrophages completely engulfed glass fibers of the 20 μm length. All fiber length fractions tested exhibited equal cytotoxicity on a per fiber basis, i.e. increasing lactate dehydrogenase and decreasing chemiluminescence in the same concentration-dependent fashion. Conclusion The data suggest that due to the larger diameter of human alveolar macrophages, compared to rat alveolar macrophages, complete phagocytosis of longer fibers can occur with the human cells. Neither incomplete phagocytosis nor length-dependent toxicity was

  2. Mechanical Properties and Acoustic Emission Properties of Rocks with Different Transverse Scales

    Directory of Open Access Journals (Sweden)

    Xi Yan

    2017-01-01

    Full Text Available Since the stability of engineering rock masses has important practical significance to projects like mining, tunneling, and petroleum engineering, it is necessary to study mechanical properties and stability prediction methods for rocks, cementing materials that are composed of minerals in all shapes and sizes. Rocks will generate acoustic emission during damage failure processes, which is deemed as an effective means of monitoring the stability of coal rocks. In the meantime, actual mining and roadway surrounding rocks tend to have transverse effects; namely, the transverse scale is larger than the length scale. Therefore, it is important to explore mechanical properties and acoustic emission properties of rocks under transverse size effects. Considering the transverse scale effects of rocks, this paper employs the microparticle flow software PFC2D to explore the influence of different aspect ratios on damage mechanics and acoustic emission properties of rocks. The results show that (1 the transverse scale affects uniaxial compression strength of rocks. As the aspect ratio increases, uniaxial compression strength of rocks decreases initially and later increases, showing a V-shape structure and (2 although it affects the maximum hit rate and the strain range of acoustic emission, it has little influence on the period of occurrence. As the transverse scale increases, both damage degree and damage rate of rocks decrease initially and later increase.

  3. Factors affecting length of stay in forensic hospital setting: need for therapeutic security and course of admission.

    LENUS (Irish Health Repository)

    Davoren, Mary

    2015-01-01

    Patients admitted to a secure forensic hospital are at risk of a long hospital stay. Forensic hospital beds are a scarce and expensive resource and ability to identify the factors predicting length of stay at time of admission would be beneficial. The DUNDRUM-1 triage security scale and DUNDRUM-2 triage urgency scale are designed to assess need for therapeutic security and urgency of that need while the HCR-20 predicts risk of violence. We hypothesized that items on the DUNDRUM-1 and DUNDRUM-2 scales, rated at the time of pre-admission assessment, would predict length of stay in a medium secure forensic hospital setting.

  4. Selectivity of commercial, larger mesh and square mesh trawl codends for deep water rose shrimp Parapenaeus longirostris (Lucas, 1846 in the Aegean Sea

    Directory of Open Access Journals (Sweden)

    Hakan Kaykaç

    2009-09-01

    Full Text Available We investigated the differences between size selectivity of a commercial codend (40 mm diamond mesh – 40D, a larger mesh codend (48 mm diamond mesh – 48D, and a square mesh codend (40 mm square mesh – 40S for Parapenaeus longirostris in international waters of the Aegean Sea. Selectivity data were collected by using a covered codend method and analysed taking between-haul variation into account. The results indicate significant increases in L50 values in relation to an increase in mesh size and when the square mesh is used in the commercial trawl codend. The results demonstrate that the commercially used codend (40D is not selective enough for P. longirostris in terms of length at first maturity. Changing from a 40D to a 48D codend significantly improves selection, with an increase of about 15% in the L50 values (carapace length 14.5 mm for 40D and 16.6 mm for 48D. Similarly, 40 mm square mesh, which has recently been legislated for EU Mediterranean waters, showed a 12.4% higher mean L50 value (16.3 mm than 40 mm diamond mesh for this species. However, despite these improvements, the 48D and 40S codends still need further improvements to obtain higher selectivity closer to the length at first maturity (20 mm carapace length.

  5. Determination of Longitudinal Electron Bunch Lengths on Picosecond Time Scales

    CERN Document Server

    Martínez, C; Calviño, F

    1999-01-01

    At CERN (European Laboratory for Particle Physics) the CLIC (Compact Linear Collider) study is pursuing the design of an electron-positron high-energy linear collider using an innovative concept for the RF (Radio Frequency) power production, the socalled two-beam acceleration scheme. In order to keep the length of the collider in a reasonable range while being able of accelerating electrons and positrons up to 5 TeV, the normal-conducting accelerating structures should operate at very high frequency (in this case 30 GHz). The RF power necessary to feed the accelerating cavities is provided by a second electron beam, the drive beam, running parallel to the main beam. The CLIC Test Facility (CTF) was build with the main aim of studying and demonstrating the feasibility of the two beam acceleration scheme and technology. It is composed of two beams, the drive beam that will generate the 30 GHz RF power and the main beam which will be accelerated by this power. In order to have a good efficiency for the power gen...

  6. Thermodynamic scaling of dynamics in polymer melts: predictions from the generalized entropy theory.

    Science.gov (United States)

    Xu, Wen-Sheng; Freed, Karl F

    2013-06-21

    Many glass-forming fluids exhibit a remarkable thermodynamic scaling in which dynamic properties, such as the viscosity, the relaxation time, and the diffusion constant, can be described under different thermodynamic conditions in terms of a unique scaling function of the ratio ρ(γ)∕T, where ρ is the density, T is the temperature, and γ is a material dependent constant. Interest in the scaling is also heightened because the exponent γ enters prominently into considerations of the relative contributions to the dynamics from pressure effects (e.g., activation barriers) vs. volume effects (e.g., free volume). Although this scaling is clearly of great practical use, a molecular understanding of the scaling remains elusive. Providing this molecular understanding would greatly enhance the utility of the empirically observed scaling in assisting the rational design of materials by describing how controllable molecular factors, such as monomer structures, interactions, flexibility, etc., influence the scaling exponent γ and, hence, the dynamics. Given the successes of the generalized entropy theory in elucidating the influence of molecular details on the universal properties of glass-forming polymers, this theory is extended here to investigate the thermodynamic scaling in polymer melts. The predictions of theory are in accord with the appearance of thermodynamic scaling for pressures not in excess of ~50 MPa. (The failure at higher pressures arises due to inherent limitations of a lattice model.) In line with arguments relating the magnitude of γ to the steepness of the repulsive part of the intermolecular potential, the abrupt, square-well nature of the lattice model interactions lead, as expected, to much larger values of the scaling exponent. Nevertheless, the theory is employed to study how individual molecular parameters affect the scaling exponent in order to extract a molecular understanding of the information content contained in the exponent. The chain

  7. Larger fig wasps are more careful about which figs to enter--with good reason.

    Science.gov (United States)

    Liu, Cong; Yang, Da-Rong; Compton, Stephen G; Peng, Yan-Qiong

    2013-01-01

    Floral longevity reflects a balance between gains in pollinator visitation and the costs of flower maintenance. Because rewards to pollinators change over time, older flowers may be less attractive, reducing the value of extended longevity. Un-pollinated figs, the inflorescences of Ficus species, can remain receptive for long periods, but figs that are older when entered by their host-specific fig wasp pollinators produce fewer seeds and fig wasp offspring. Our field experiments with Ficushispida, a dioecious fig tree, examined how the length of time that receptive figs have remained un-pollinated influences the behaviour and reproductive success of its short-lived fig wasp pollinator, Ceratosolensolmsi marchali. The results were consistent in three different seasons, and on male and female trees, although receptivity was greatly extended during colder months. Pollinators took longer to find the ostioles of older figs, and longer to penetrate them. They also became increasingly unwilling to enter figs as they aged, and increasing numbers of the wasps became trapped in the ostiolar bracts. Larger individuals were particularly unwilling to enter older figs, resulting in older figs being pollinated by smaller wasps. On female trees, where figs produce only seeds, seed production declined rapidly with fig age. On male trees, the numbers and size of fig wasp offspring declined, and a higher proportion were male. Older male figs are harder to enter, especially for larger individuals, and offer poorer quality oviposition opportunities. This study opens an interesting new perspective on the coevolution of figs and their pollinators, especially factors influencing pollinator body size and emphasises the subtleties of interactions between mutualists.

  8. Length-Weight Realtionship and Seasonal Distrubition of Magalaspis cordyla (Linnaeus 1758 fish Size frequency Variation from Karachi Coast

    Directory of Open Access Journals (Sweden)

    Quratulan AHMED

    2013-09-01

    Full Text Available The study of seasonal variation in distribution of 167 fishes of magalaspis cordyla from the Karachi fish harbour collected seasonally (pre-monsoon, mon-soon, post-monsoon between September 2011-August 2012. The highest catch of fish (68 was recorded in pre-monsoon season and the lowest catch of fish (47 was recorded in monsoon season. The highest mean length (38.6+ 0.746 and weight (288+ 21.90 was measured during pre-monsoon season and lowest mean length (22.5+ 0.671 and weight (120.5+ 2.73 was measured during mon-soon season. The highest mean condition factor (1.192+ 0.817 and minimum (0.500+ 0.038 was recorded in pre-monsoon season. Fish estimated negative and positive allometric growth because b values larger and less then 3 in pre-monsoon and monsoon season but post-monsoon season showed positive allometric growth because b value larger then 3 in all size classes

  9. The length-weight and length-length relationships of bluefish, Pomatomus saltatrix (Linnaeus, 1766) from Samsun, middle Black Sea region

    OpenAIRE

    Özpiçak, Melek; Saygın, Semra; Polat, Nazmi

    2017-01-01

    In this study, length-weight relationship (LWR) and length-length relationship (LLR) of bluefish,Pomatomus saltatrix were determined. A total of 125 specimens were sampled from Samsun, themiddle Black Sea in 2014 fishing season. Bluefish specimens were monthly collected fromcommercial fishing boats from October to December 2014. All captured individuals (N=125) weremeasured to the nearest 0.1 cm for total, fork and standard lengths. The weight of each fish (W)was recorded to the nearest 0.01 ...

  10. Quantitative atom probe analysis of nanostructure containing clusters and precipitates with multiple length scales

    International Nuclear Information System (INIS)

    Marceau, R.K.W.; Stephenson, L.T.; Hutchinson, C.R.; Ringer, S.P.

    2011-01-01

    A model Al-3Cu-(0.05 Sn) (wt%) alloy containing a bimodal distribution of relatively shear-resistant θ' precipitates and shearable GP zones is considered in this study. It has recently been shown that the addition of the GP zones to such microstructures can lead to significant increases in strength without a decrease in the uniform elongation. In this study, atom probe tomography (APT) has been used to quantitatively characterise the evolution of the GP zones and the solute distribution in the bimodal microstructure as a function of applied plastic strain. Recent nuclear magnetic resonance (NMR) analysis has clearly shown strain-induced dissolution of the GP zones, which is supported by the current APT data with additional spatial information. There is significant repartitioning of Cu from the GP zones into the solid solution during deformation. A new approach for cluster finding in APT data has been used to quantitatively characterise the evolution of the sizes and shapes of the Cu containing features in the solid solution solute as a function of applied strain. -- Research highlights: → A new approach for cluster finding in atom probe tomography (APT) data has been used to quantitatively characterise the evolution of the sizes and shapes of the Cu containing features with multiple length scales. → In this study, a model Al-3Cu-(0.05 Sn) (wt%) alloy containing a bimodal distribution of relatively shear-resistant θ' precipitates and shearable GP zones is considered. → APT has been used to quantitatively characterise the evolution of the GP zones and the solute distribution in the bimodal microstructure as a function of applied plastic strain. → It is clearly shown that there is strain-induced dissolution of the GP zones with significant repartitioning of Cu from the GP zones into the solid solution during deformation.

  11. Geomagnetic field and length-of-day fluctuations at decadal and subdecadal time scales. A plea for looking beyond the atmosphere for partners in Earth's rotation

    Science.gov (United States)

    Demetrescu, C.; Dobrica, V.; Stefan, C.

    2017-12-01

    A rich scientific literature is linking length-of-day (LOD) fluctuations to geomagnetic field and flow oscillations in the fluid outer core. We demostrate that the temporal evolution of the geomagnetic field shows the existence of several oscillations at decadal, inter-decadal, and sub-centennial time scales that superimpose on a so-called inter-centennial constituent. We show that while the subcentennial oscillations of the geomagnetic field, produced by torsional oscillations in the core, could be linked to oscillations of LOD at a similar time scale, the oscillations at decadal and sub-decadal time scales, of external origin, can be found in LOD too. We discuss these issues from the perspective of long time-span main field models (gufm1 - Jackson et al., 2000; COV-OBS - Gillet et al., 2013) that are used to retrieve time series of geomagnetic elements in a 2.5x2.5° network. The decadal and sub-decadal constituents of the time series of annual values in LOD and geomagnetic field were separated in the cyclic component of a Hodrick-Prescott filtering applied to data, and shown to highly correlate to variations of external sources such as the magnetospheric ring current.

  12. Demonstrating the value of larger ensembles in forecasting physical systems

    Directory of Open Access Journals (Sweden)

    Reason L. Machete

    2016-12-01

    its relative information content (in bits using a proper skill score. Doubling the ensemble size is demonstrated to yield a non-trivial increase in the information content (forecast skill for an ensemble with well over 16 members; this result stands in forecasting a mathematical system and a physical system. Indeed, even at the largest ensemble sizes considered (128 and 256, there are lead times where the forecast information is still increasing with ensemble size. Ultimately, model error will limit the value of ever larger ensembles. No support is found, however, for limiting design studies to the sizes commonly found in seasonal and climate studies. It is suggested that ensemble size be considered more explicitly in future design studies of forecast systems on all time scales.

  13. A study of the coherence length of ULF waves in the earth's foreshock

    Science.gov (United States)

    Le, G.; Russell, C. T.

    1990-01-01

    High-time-resolution magnetic-field data for different separations of ISEE 1 and 2 in the earth's ion foreshock region are examined to study the coherence length of upstream ULF waves. Examining the correlation coefficients of the low-frequency waves as a function of separation distance shows that the correlation coefficient depends mainly on the separation distance of ISEE 1 and 2 transverse to the solar-wind flow. It drops to about 0.5 when the transverse separation is about 1 earth radius, a distance much larger than the proton thermal gyroradius in the solar wind. Thus the coherence length of the low-frequency waves is about one earth radius, which is of the order of the wavelength, and is consistent with that estimated from the bandwidth of the waves.

  14. REIONIZATION ON LARGE SCALES. I. A PARAMETRIC MODEL CONSTRUCTED FROM RADIATION-HYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    Battaglia, N.; Trac, H.; Cen, R.; Loeb, A.

    2013-01-01

    We present a new method for modeling inhomogeneous cosmic reionization on large scales. Utilizing high-resolution radiation-hydrodynamic simulations with 2048 3 dark matter particles, 2048 3 gas cells, and 17 billion adaptive rays in a L = 100 Mpc h –1 box, we show that the density and reionization redshift fields are highly correlated on large scales (∼> 1 Mpc h –1 ). This correlation can be statistically represented by a scale-dependent linear bias. We construct a parametric function for the bias, which is then used to filter any large-scale density field to derive the corresponding spatially varying reionization redshift field. The parametric model has three free parameters that can be reduced to one free parameter when we fit the two bias parameters to simulation results. We can differentiate degenerate combinations of the bias parameters by combining results for the global ionization histories and correlation length between ionized regions. Unlike previous semi-analytic models, the evolution of the reionization redshift field in our model is directly compared cell by cell against simulations and performs well in all tests. Our model maps the high-resolution, intermediate-volume radiation-hydrodynamic simulations onto lower-resolution, larger-volume N-body simulations (∼> 2 Gpc h –1 ) in order to make mock observations and theoretical predictions

  15. Telomere length analysis.

    Science.gov (United States)

    Canela, Andrés; Klatt, Peter; Blasco, María A

    2007-01-01

    Most somatic cells of long-lived species undergo telomere shortening throughout life. Critically short telomeres trigger loss of cell viability in tissues, which has been related to alteration of tissue function and loss of regenerative capabilities in aging and aging-related diseases. Hence, telomere length is an important biomarker for aging and can be used in the prognosis of aging diseases. These facts highlight the importance of developing methods for telomere length determination that can be employed to evaluate telomere length during the human aging process. Telomere length quantification methods have improved greatly in accuracy and sensitivity since the development of the conventional telomeric Southern blot. Here, we describe the different methodologies recently developed for telomere length quantification, as well as their potential applications for human aging studies.

  16. Radial bunch compression: Path-length compensation in an rf photoinjector with a curved cathode

    Directory of Open Access Journals (Sweden)

    M. J. de Loos

    2006-08-01

    Full Text Available Electron bunch lengthening due to space-charge forces in state-of-the-art rf photoinjectors limits the minimum bunch length attainable to several hundreds of femtoseconds. Although this can be alleviated by increasing the transverse dimension of the electron bunch, a larger initial radius causes path-length differences in both the rf cavity and in downstream focusing elements. In this paper we show that a curved cathode virtually eliminates these undesired effects. Detailed numerical simulations confirm that significantly shorter bunches are produced by an rf photogun with a curved cathode compared to a flat cathode device. The proposed novel method will be used to provide 100 fs duration electron bunches for injection into a laser-driven plasma wakefield accelerator.

  17. Effects of Surface Dipole Lengths on Evaporation of Tiny Water Aggregation

    International Nuclear Information System (INIS)

    Wang Shen; Wan Rongzheng; Fang Haiping; Tu Yusong

    2013-01-01

    Using molecular dynamics simulation, we compared evaporation behavior of a tiny amount of water molecules adsorbed on solid surfaces with different dipole lengths, including surface dipole lengths of 1 fold, 2 folds, 4 folds, 6 folds and 8 folds of 0.14 nm and different charges from 0.1e to 0.9e. Surfaces with short dipole lengths (1-fold system) can always maintain hydrophobic character and the evaporation speeds are not influenced, whether the surface charges are enhanced or weakened; but when surface dipole lengths get to 8 folds, surfaces become more hydrophilic as the surface charge increases, and the evaporation speeds increase gradually and monotonically. By tuning dipole lengths from 1-fold to 8-fold systems, we confirmed non-monotonic variation of the evaporation flux (first increases, then decreases) in 4 fold system with charges (0.1e–0.7e), reported in our previous paper [S. Wang, et al., J. Phys. Chem. B 116 (2012) 13863], and also show the process from the enhancement of this unexpected non-monotonic variation to its vanishment with surface dipole lengths increasing. Herein, we demonstrated two key factors to influence the evaporation flux of a tiny amount of water molecules adsorbed on solid surfaces: the exposed surficial area of water aggregation from where the water molecules can evaporate directly and the attraction potential from the substrate hindering the evaporation. In addition, more interestingly, we showed extra steric effect of surface dipoles on further increase of evaporation flux for 2-folds, 4-folds, 6-folds and 8-folds systems with charges around larger than 0.7e. (The steric effect is first reported by parts of our authors [C. Wang, et al., Sci. Rep. 2 (2012) 358]). This study presents a complete physical picture of the influence of surface dipole lengths on the evaporation behavior of the adsorbed tiny amount of water. (condensed matter: structural, mechanical, and thermal properties)

  18. The impact of channel path length on PEMFC flow-field design

    Energy Technology Data Exchange (ETDEWEB)

    Shimpalee, S.; Greenway, S.; Van Zee, J.W. [Chemical Engineering Department, University of South Carolina, Columbia, SC 29208 (United States)

    2006-09-29

    Distributions in reactant species concentration in a PEMFC due to local consumption of fuel and local transport of water through the membrane cause distributions in current density, temperature, and water concentration in three dimensions in a PEMFC. These distributions can lead to flooding or drying of the membrane that may shorten the life of an MEA. Changing the cell's flow-field pattern to distribute the gas more evenly is one method of minimizing these stresses. This paper investigates how 200cm{sup 2} serpentine flow-fields with different number of gas paths, and thus different gas path lengths, affect performance and species distribution. The results show how the local temperature, water content, and current density distributions become more uniform for serpentine flow-field designs with shorter path lengths or larger number of channels. These results may be used to develop universal heuristics and dimensionless number correlations in the design of flow-fields and stacks. (author)

  19. Ultrashort Channel Length Black Phosphorus Field-Effect Transistors.

    Science.gov (United States)

    Miao, Jinshui; Zhang, Suoming; Cai, Le; Scherr, Martin; Wang, Chuan

    2015-09-22

    This paper reports high-performance top-gated black phosphorus (BP) field-effect transistors with channel lengths down to 20 nm fabricated using a facile angle evaporation process. By controlling the evaporation angle, the channel length of the transistors can be reproducibly controlled to be anywhere between 20 and 70 nm. The as-fabricated 20 nm top-gated BP transistors exhibit respectable on-state current (174 μA/μm) and transconductance (70 μS/μm) at a VDS of 0.1 V. Due to the use of two-dimensional BP as the channel material, the transistors exhibit relatively small short channel effects, preserving a decent on-off current ratio of 10(2) even at an extremely small channel length of 20 nm. Additionally, unlike the unencapsulated BP devices, which are known to be chemically unstable in ambient conditions, the top-gated BP transistors passivated by the Al2O3 gate dielectric layer remain stable without noticeable degradation in device performance after being stored in ambient conditions for more than 1 week. This work demonstrates the great promise of atomically thin BP for applications in ultimately scaled transistors.

  20. Association of Donor and Recipient Telomere Length with Clinical Outcomes following Lung Transplantation.

    Science.gov (United States)

    Courtwright, Andrew M; Fried, Sabrina; Villalba, Julian A; Moniodis, Anna; Guleria, Indira; Wood, Isabelle; Milford, Edgar; Mallidi, Hari H; Hunninghake, Gary M; Raby, Benjamin A; Agarwal, Suneet; Camp, Philip C; Rosas, Ivan O; Goldberg, Hilary J; El-Chemaly, Souheil

    2016-01-01

    Patients with short telomere syndromes and pulmonary fibrosis have increased complications after lung transplant. However, the more general impact of donor and recipient telomere length in lung transplant has not been well characterized. This was an observational cohort study of patients who received lung transplant at a single center between January 1st 2012 and January 31st 2015. Relative donor lymphocyte telomere length was measured and classified into long (third tertile) and short (other tertiles). Relative recipient lung telomere length was measured and classified into short (first tertile) and long (other tertiles). Outcome data included survival, need for modification of immunosuppression, liver or kidney injury, cytomegalovirus reactivation, and acute rejection. Recipient lung tissue telomere lengths were measured for 54 of the 79 patients (68.3%) who underwent transplant during the study period. Donor lymphocyte telomeres were measured for 45 (83.3%) of these recipients. Neither long donor telomere length (hazard ratio [HR] = 0.58, 95% confidence interval [CI], 0.12-2.85, p = 0.50) nor short recipient telomere length (HR = 1.01, 95% CI = 0.50-2.05, p = 0.96) were associated with adjusted survival following lung transplant. Recipients with short telomeres were less likely to have acute cellular rejection (23.5% vs. 58.8%, p = 0.02) but were not more likely to have other organ dysfunction. In this small cohort, neither long donor lymphocyte telomeres nor short recipient lung tissue telomeres were associated with adjusted survival after lung transplantation. Larger studies are needed to confirm these findings.

  1. Middle finger length-based tracheal intubation depth improves the rate of appropriate tube placement in children.

    Science.gov (United States)

    Zhou, Qing-he; Xiao, Wang-pin; Zhou, Hong-mei

    2015-11-01

    It is challenging for anesthetists to determine the optimal tracheal intubation depth in children. We hypothesize that a measure three times the length of the middle finger can be used for predicting tracheal tube depth in children. Eighty-six children (4-14 years of age) were included in this study. After the children were anesthetized, a fiberoptic bronchoscope (FOB) was inserted into the trachea, the lengths from the upper incisor teeth to carina and vocal cords were measured, and a suitably sized cuffed tracheal tube was inserted into the trachea. Age-based and middle finger length-based formulas were used to determine the tracheal intubation depth. All 86 children enrolled were included in this study. Compared with the age-based intubation, the rate of appropriate tube placement was higher for middle finger length-based intubation (88.37% vs 66.28%, P = 0.001). The proximal intubation rate was lower in middle finger length-based intubation (4.65% vs 32.56%, P tube depth was larger than that between age and optimal tracheal tube depth (0.883 vs 0.845). Our data indicate that the appropriate tube placement rate can be improved by using three times the middle finger length as the tracheal intubation depth in children. © 2015 John Wiley & Sons Ltd.

  2. Scale dependence of acoustic velocities. An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Gotusso, Angelamaria Pillitteri

    2001-06-01

    Reservoir and overburden data (e.g. seismic, sonic log and core data) are collected at different stages of field development, at different scales, and under different measurement conditions. A more precise reservoir characterization could be obtained by combining all the collected data. Reliable data may also be obtained from drill cuttings. This methodology can give data in quasi-real time, it is easily applicable, and cheap. It is then important, to understand the relationship between results obtained from measurements at different scales. In this Thesis acoustic velocities measured at several different laboratory scales are presented. This experimental study was made in order to give the base for the development of a model aiming to use/combine appropriately the data collected at different scales. The two main aspects analyzed are the experimental limitations due to the decrease in sample size and the significance of measurements in relation to material heterogeneities. Plexiglas, an isotropic, non-dispersive artificial material, with no expected scale effect, was used to evaluate the robustness of the measurement techniques. The results emphasize the importance of the wavelength used with respect to the sample length. If the sample length (L) is at least 5 time bigger than wavelength used ({lambda}), then the measured velocities do not depend on sample size. Leca stone, an artificial isotropic material containing spherical grains was used to evaluate the combined effects of technique, heterogeneities and sample length. The ratio between the scale of the heterogeneities and the sample length has to be taken in to account. In this case velocities increase with decreasing sample length when the ratio L/{lambda} is smaller than 10-15 and at the same time the ratio between sample length and grain size is greater than 10. Measurements on natural rocks demonstrate additional influence of grain mineralogy, shape and orientation. Firenzuola sandstone shows scale and

  3. Is Parental Involvement Lower at Larger Schools?

    Science.gov (United States)

    Walsh, Patrick

    2010-01-01

    Parents who volunteer, or who lobby for improvements in school quality, are generally seen as providing a school-wide public good. If so, straightforward public-good theory predicts that free-riding will reduce average involvement at larger schools. This study uses longitudinal data to follow families over time, as their children move from middle…

  4. PET-CT offers accurate assessment of tumour length in oesophageal malignancy

    International Nuclear Information System (INIS)

    Rollins, K.E.; Lucas, E.; Tewari, N.; James, E.; Hughes, S.; Catton, J.A.

    2015-01-01

    Highlights: • We examine the accuracy of staging modalities in estimating tumour length of oesophageal malignancy. • PET CT correlates most strongly with histopathological length of resected specimen. • Better measure than EUS with OGD correlating poorly. • Potential impact in radiotherapy and surgical resection planning. - Abstract: Introduction: Radiotherapy is increasingly used for both curative and palliative treatment of oesophageal malignancy. Accurate treatment depends on determining tumour location and length. This study assessed the value of PET-CT versus other staging modalities in determining tumour length. Materials and methods: Oesophageal cancer patients who underwent staging with PET/CT and endoscopic ultrasound (EUS) in addition to their diagnostic upper GI endoscopy and subsequent surgical resection were assessed. PET/CT length was obtained retrospectively by using Hermes Hybrid Viewer™ with a 1–5 Standardised Uptake Value grey scale. An SUV of 5 was used as the cut off for determining length. Direct measurement by EUS and OGD were determined. Results: 53 patients underwent PET-CT, EUS, OGD and surgical resection for oesophageal cancer. Overall the correlation between PET-CT and histopathological length was strongest (Pearson r = 0.5977, 95% CI 0.390–0.747) versus EUS (Pearson R = 0.5365, 95% CI 0.311–0.705) and OGD (Pearson r = 0.1574, 95% CI −0.118 to 0.410). After excluding tumours with a significant chemotherapy response, PET-CT length correlated significantly with histopathological length (R = 0.5651, p = 0.0005). In comparison, the correlation between histological length and EUS (R = 0.4637, p = 0.0057) measurement was less significant and this did not correlate with OGD (R = −0.1084, p = 0.5417). Conclusion: Tumour length estimated by PET-CT correlated most strongly with histopathological length of oesophageal malignancy and is the most accurate determinant of tumour length of all the staging modalities. This suggests a

  5. PET-CT offers accurate assessment of tumour length in oesophageal malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Rollins, K.E., E-mail: james.catton@nuh.nhs.uk [Department of Oesophago-Gastric Surgery, Nottingham University Hospitals, Hucknall Road, Nottingham (United Kingdom); Lucas, E. [University of Nottingham, Derby Road, Nottingham (United Kingdom); Tewari, N. [Department of Oesophago-Gastric Surgery, Nottingham University Hospitals, Hucknall Road, Nottingham (United Kingdom); James, E. [Department of Oncology, Nottingham University Hospitals, Hucknall Road, Nottingham (United Kingdom); Hughes, S. [Department of Radiology, Nottingham University Hospitals, Hucknall Road, Nottingham (United Kingdom); Catton, J.A. [Department of Oesophago-Gastric Surgery, Nottingham University Hospitals, Hucknall Road, Nottingham (United Kingdom)

    2015-02-15

    Highlights: • We examine the accuracy of staging modalities in estimating tumour length of oesophageal malignancy. • PET CT correlates most strongly with histopathological length of resected specimen. • Better measure than EUS with OGD correlating poorly. • Potential impact in radiotherapy and surgical resection planning. - Abstract: Introduction: Radiotherapy is increasingly used for both curative and palliative treatment of oesophageal malignancy. Accurate treatment depends on determining tumour location and length. This study assessed the value of PET-CT versus other staging modalities in determining tumour length. Materials and methods: Oesophageal cancer patients who underwent staging with PET/CT and endoscopic ultrasound (EUS) in addition to their diagnostic upper GI endoscopy and subsequent surgical resection were assessed. PET/CT length was obtained retrospectively by using Hermes Hybrid Viewer™ with a 1–5 Standardised Uptake Value grey scale. An SUV of 5 was used as the cut off for determining length. Direct measurement by EUS and OGD were determined. Results: 53 patients underwent PET-CT, EUS, OGD and surgical resection for oesophageal cancer. Overall the correlation between PET-CT and histopathological length was strongest (Pearson r = 0.5977, 95% CI 0.390–0.747) versus EUS (Pearson R = 0.5365, 95% CI 0.311–0.705) and OGD (Pearson r = 0.1574, 95% CI −0.118 to 0.410). After excluding tumours with a significant chemotherapy response, PET-CT length correlated significantly with histopathological length (R = 0.5651, p = 0.0005). In comparison, the correlation between histological length and EUS (R = 0.4637, p = 0.0057) measurement was less significant and this did not correlate with OGD (R = −0.1084, p = 0.5417). Conclusion: Tumour length estimated by PET-CT correlated most strongly with histopathological length of oesophageal malignancy and is the most accurate determinant of tumour length of all the staging modalities. This suggests a

  6. Direct observation of nanometer-scale amorphous layers and oxide crystallites at grain boundaries in polycrystalline Sr1−xKxFe2As2 superconductors

    KAUST Repository

    Wang, Lei

    2011-06-01

    We report here an atomic resolution study of the structure and composition of the grain boundaries in polycrystallineSr0.6K0.4Fe2As2superconductor. A large fraction of grain boundaries contain amorphous layers larger than the coherence length, while some others contain nanometer-scale crystallites sandwiched in between amorphous layers. We also find that there is significant oxygen enrichment at the grain boundaries. Such results explain the relatively low transport critical current density (Jc) of polycrystalline samples with respect to that of bicrystal films.

  7. Boundary asymptotics for a non-neutral electrochemistry model with small Debye length

    Science.gov (United States)

    Lee, Chiun-Chang; Ryham, Rolf J.

    2018-04-01

    This article addresses the boundary asymptotics of the electrostatic potential in non-neutral electrochemistry models with small Debye length in bounded domains. Under standard physical assumptions motivated by non-electroneutral phenomena in oxidation-reduction reactions, we show that the electrostatic potential asymptotically blows up at boundary points with respect to the bulk reference potential as the scaled Debye length tends to zero. The analysis gives a lower bound for the blow-up rate with respect to the model parameters. Moreover, the maximum potential difference over any compact subset of the physical domain vanishes exponentially in the zero-Debye-length limit. The results mathematically confirm the physical description that electrolyte solutions are electrically neutral in the bulk and are strongly electrically non-neutral near charged surfaces.

  8. What is at stake in multi-scale approaches

    International Nuclear Information System (INIS)

    Jamet, Didier

    2008-01-01

    Full text of publication follows: Multi-scale approaches amount to analyzing physical phenomena at small space and time scales in order to model their effects at larger scales. This approach is very general in physics and engineering; one of the best examples of success of this approach is certainly statistical physics that allows to recover classical thermodynamics and to determine the limits of application of classical thermodynamics. Getting access to small scale information aims at reducing the models' uncertainty but it has a cost: fine scale models may be more complex than larger scale models and their resolution may require the development of specific and possibly expensive methods, numerical simulation techniques and experiments. For instance, in applications related to nuclear engineering, the application of computational fluid dynamics instead of cruder models is a formidable engineering challenge because it requires resorting to high performance computing. Likewise, in two-phase flow modeling, the techniques of direct numerical simulation, where all the interfaces are tracked individually and where all turbulence scales are captured, are getting mature enough to be considered for averaged modeling purposes. However, resolving small scale problems is a necessary step but it is not sufficient in a multi-scale approach. An important modeling challenge is to determine how to treat small scale data in order to get relevant information for larger scale models. For some applications, such as single-phase turbulence or transfers in porous media, this up-scaling approach is known and is now used rather routinely. However, in two-phase flow modeling, the up-scaling approach is not as mature and specific issues must be addressed that raise fundamental questions. This will be discussed and illustrated. (author)

  9. Deformation Partitioning: The Missing Link Between Outcrop-Scale Observations And Orogen-Scale Processes

    Science.gov (United States)

    Attia, S.; Paterson, S. R.; Jiang, D.; Miller, R. B.

    2017-12-01

    Structural studies of orogenic deformation fields are mostly based on small-scale structures ubiquitous in field exposures, hand samples, and under microscopes. Relating deformation histories derived from such structures to changing lithospheric-scale deformation and boundary conditions is not trivial due to vast scale separation (10-6 107 m) between characteristic lengths of small-scale structures and lithospheric plates. Rheological heterogeneity over the range of orogenic scales will lead to deformation partitioning throughout intervening scales of structural development. Spectacular examples of structures documenting deformation partitioning are widespread within hot (i.e., magma-rich) orogens such as the well-studied central Sierra Nevada and Cascades core of western North America: (1) deformation partitioned into localized, narrow, triclinic shear zones separated by broad domains of distributed pure shear at micro- to 10 km scales; (2) deformation partitioned between plutons and surrounding metamorphic host rocks as shown by pluton-wide magmatic fabrics consistently oriented differently than coeval host rock fabrics; (3) partitioning recorded by different fabric intensities, styles, and orientations established from meter-scale grid mapping to 100 km scale domainal analyses; and (4) variations in the causes of strain and kinematics within fold-dominated domains. These complex, partitioned histories require synthesized mapping, geochronology, and structural data at all scales to evaluate partitioning and in the absence of correct scaling can lead to incorrect interpretations of histories. Forward modeling capable of addressing deformation partitioning in materials containing multiple scales of rheologically heterogeneous elements of varying characteristic lengths provides the ability to upscale the large synthesized datasets described above to plate-scale tectonic processes and boundary conditions. By comparing modeling predictions from the recently developed

  10. Changes in hip joint muscle-tendon lengths with mode of locomotion.

    Science.gov (United States)

    Riley, Patrick O; Franz, Jason; Dicharry, Jay; Kerrigan, D Casey

    2010-02-01

    We have reported that peak hip extension is nearly identical in walking and running, suggesting that anatomical constraints, such as flexor muscle tightness may limit the range of hip extension. To obtain a more mechanistic insight into mobility at the hip and pelvis we examined the lengths of the muscle-tendons units crossing the hip joint. Data defining the three-dimensional kinematics of 26 healthy runners at self-selected walking and running speeds were obtained. These data were used to scale and drive musculoskeletal models using OpenSIM. Muscle-tendon unit (MTU) lengths were calculated for the trailing limb illiacus, rectus femoris, gluteus maximus, and biceps femoris long head and the advancing limb biceps femoris and gluteus maximus. The magnitude and timing of MTU length peaks were each compared between walking and running. The peak length of the right (trailing limb) illiacus MTU, a pure hip flexor, was nearly identical between walking and running, while the maximum length of the rectus femoris MTU, a hip flexor and knee extensor, increased during running. The maximum length of the left (leading limb) biceps femoris was also unchanged between walking and running. Further, the timing of peak illiacus MTU length and peak contralateral biceps femoris MTU length occurred essentially simultaneously during running, at a time during gait when the hamstrings are most vulnerable to stretch injury. This latter finding suggests exploring the role for hip flexor stretching in combination with hamstring stretching to treat and/or prevent running related hamstring injury. Copyright 2009 Elsevier B.V. All rights reserved.

  11. The Allometry of Bee Proboscis Length and Its Uses in Ecology.

    Directory of Open Access Journals (Sweden)

    Daniel P Cariveau

    Full Text Available Allometric relationships among morphological traits underlie important patterns in ecology. These relationships are often phylogenetically shared; thus quantifying allometric relationships may allow for estimating difficult-to-measure traits across species. One such trait, proboscis length in bees, is assumed to be important in structuring bee communities and plant-pollinator networks. However, it is difficult to measure and thus rarely included in ecological analyses. We measured intertegular distance (as a measure of body size and proboscis length (glossa and prementum, both individually and combined of 786 individual bees of 100 species across 5 of the 7 extant bee families (Hymenoptera: Apoidea: Anthophila. Using linear models and model selection, we determined which parameters provided the best estimate of proboscis length. We then used coefficients to estimate the relationship between intertegular distance and proboscis length, while also considering family. Using allometric equations with an estimation for a scaling coefficient between intertegular distance and proboscis length and coefficients for each family, we explain 91% of the variance in species-level means for bee proboscis length among bee species. However, within species, individual-level intertegular distance was a poor predictor of individual proboscis length. To make our findings easy to use, we created an R package that allows estimation of proboscis length for individual bee species by inputting only family and intertegular distance. The R package also calculates foraging distance and body mass based on previously published equations. Thus by considering both taxonomy and intertegular distance we enable accurate estimation of an ecologically and evolutionarily important trait.

  12. SME routes for innovation collaboration with larger enterprises

    DEFF Research Database (Denmark)

    Brink, Tove

    2017-01-01

    The research in this paper reveals how Small and Medium-sized Enterprises (SMEs) can contribute to industry competiveness through collaboration with larger enterprises. The research is based on a longitudinal qualitative case study starting in 2011 with 10 SME offshore wind farm suppliers...... and follow-up interviews in 2013. The research continued with a second approach in 2014 within operation and maintenance (O&M) through focus group interviews and subsequent individual interviews with 20 enterprises and a seminar in May 2015. The findings reveal opportunities and challenges for SMEs according...... to three different routes for cooperation and collaboration with larger enterprises: demand-driven cooperation, supplier-driven cooperation and partnerdriven collaboration. The SME contribution to innovation and competiveness is different within the three routes and ranges from providing specific knowledge...

  13. EDITORIAL: Proceedings of the IUTAM Symposium on Plasticity at the Micron Scale, Technical University of Denmark, 21 25 Mark 2006

    Science.gov (United States)

    Tvergaard, Viggo

    2007-01-01

    This special issue constitutes the Proceedings of the IUTAM Symposium on Plasticity at the Micron Scale, held at the Technical University of Denmark, 21-25 May 2006. The purpose of this symposium was to gather a group of leading scientists working in areas of importance to length scale dependent plasticity. This includes work on phenomenological strain gradient plasticity models, studies making use of discrete dislocation models, and even atomic level models. Experimental investigations are central to all this, as all the models focus on developing an improved understanding of real observed phenomena. The opening lecture by Professor N A Fleck, Cambridge University, discussed experimental as well as theoretical approaches. Also, recent results for the surface roughness at grain boundaries were presented based on experiments and crystal plasticity modelling. A number of presentations focused on experiments for metals at a small length scale, e.g. using indenters or a small single crystal compression test. It was found that there are causes of the size effects other than the geometrically necessary dislocations related to strain gradients. Several lectures on scale dependent phenomenological plasticity theories discussed different methods of incorporating the characteristic material length. This included lower order plasticity theories as well as higher order theories, within standard plasticity models or crystal plasticity. Differences in the ways of incorporating higher order boundary conditions were the subject of much discussion. Various methods for discrete dislocation modelling of plastic deformation were used in some of the presentations to obtain a more detailed understanding of length scale effects in metals. This included large scale computations for dislocation dynamics as well as new statistical mechanics approaches to averaging of dislocation plasticity. Furthermore, at a somewhat larger length scale, applications of scale dependent plasticity to

  14. Charge Separation in Intermixed Polymer:PC70BM Photovoltaic Blends: Correlating Structural and Photophysical Length Scales as a Function of Blend Composition

    KAUST Repository

    Utzat, Hendrik

    2017-04-24

    A key challenge in achieving control over photocurrent generation by bulk-heterojunction organic solar cells is understanding how the morphology of the active layer impacts charge separation and in particular the separation dynamics within molecularly intermixed donor-acceptor domains versus the dynamics between phase-segregated domains. This paper addresses this issue by studying blends and devices of the amorphous silicon-indacenodithiophene polymer SiIDT-DTBT and the acceptor PCBM. By changing the blend composition, we modulate the size and density of the pure and intermixed domains on the nanometer length scale. Laser spectroscopic studies show that these changes in morphology correlate quantitatively with the changes in charge separation dynamics on the nanosecond time scale and with device photocurrent densities. At low fullerene compositions, where only a single, molecularly intermixed polymer-fullerene phase is observed, photoexcitation results in a ∼ 30% charge loss from geminate polaron pair recombination, which is further studied via light intensity experiments showing that the radius of the polaron pairs in the intermixed phase is 3-5 nm. At high fullerene compositions (≥67%), where the intermixed domains are 1-3 nm and the pure fullerene phases reach ∼4 nm, the geminate recombination is suppressed by the reduction of the intermixed phase, making the fullerene domains accessible for electron escape.

  15. Length Scales and Types of Heterogeneities Along the Deep Subduction Interface: Insights From an Exhumed Subduction Complex on Syros Island, Greece

    Science.gov (United States)

    Kotowski, A. J.; Behr, W. M.; Tong, X.; Lavier, L.

    2017-12-01

    The rheology of the deep subduction interface strongly influences the occurrence, recurrence, and migration of episodic tremor and slow slip (ETS) events. To better understand the environment of deep ETS, we characterize the length scales and types of rheological heterogeneities that decorate the deep interface using an exhumed subduction complex. The Cycladic Blueschist Unit on Syros, Greece, records Eocene subduction to 60 km, partial exhumation along the top of the slab, and final exhumation along Miocene detachment faults. The CBU reached 450-580˚C and 14-16 kbar, PT conditions similar to where ETS occurs in several modern subduction zones. Rheological heterogeneity is preserved in a range of rock types on Syros, with the most prominent type being brittle pods embedded within a viscous matrix. Prograde, blueschist-facies metabasalts show strong deformation fabrics characteristic of viscous flow; cm- to m-scale eclogitic lenses are embedded within them as massive, veined pods, foliated pods rotated with respect to the blueschist fabric, and attenuated, foliation-parallel lenses. Similar relationships are observed in blueschist-facies metasediments interpreted to have deformed during early exhumation. In these rocks, metabasalts form lenses ranging in size from m- to 10s of m and are distributed at the m-scale throughout the metasedimentary matrix. Several of the metamafic lenses, and the matrix rocks immediately adjacent to them, preserve multiple generations of dilational veins and shear fractures filled with quartz and high pressure minerals. These observations suggest that coupled brittle-viscous deformation under high fluid pressures may characterize the subduction interface in the deep tremor source region. To test this further, we modeled the behavior of an elasto-plastic pod in a viscous shear zone under high fluid pressures. Our models show that local stress concentrations around the pod are large enough to generate transient dilational shear at seismic

  16. Excess entropy scaling for the segmental and global dynamics of polyethylene melts.

    Science.gov (United States)

    Voyiatzis, Evangelos; Müller-Plathe, Florian; Böhm, Michael C

    2014-11-28

    The range of validity of the Rosenfeld and Dzugutov excess entropy scaling laws is analyzed for unentangled linear polyethylene chains. We consider two segmental dynamical quantities, i.e. the bond and the torsional relaxation times, and two global ones, i.e. the chain diffusion coefficient and the viscosity. The excess entropy is approximated by either a series expansion of the entropy in terms of the pair correlation function or by an equation of state for polymers developed in the context of the self associating fluid theory. For the whole range of temperatures and chain lengths considered, the two estimates of the excess entropy are linearly correlated. The scaled bond and torsional relaxation times fall into a master curve irrespective of the chain length and the employed scaling scheme. Both quantities depend non-linearly on the excess entropy. For a fixed chain length, the reduced diffusion coefficient and viscosity scale linearly with the excess entropy. An empirical reduction to a chain length-independent master curve is accessible for both dynamic quantities. The Dzugutov scheme predicts an increased value of the scaled diffusion coefficient with increasing chain length which contrasts physical expectations. The origin of this trend can be traced back to the density dependence of the scaling factors. This finding has not been observed previously for Lennard-Jones chain systems (Macromolecules, 2013, 46, 8710-8723). Thus, it limits the applicability of the Dzugutov approach to polymers. In connection with diffusion coefficients and viscosities, the Rosenfeld scaling law appears to be of higher quality than the Dzugutov approach. An empirical excess entropy scaling is also proposed which leads to a chain length-independent correlation. It is expected to be valid for polymers in the Rouse regime.

  17. Characterizing the reinforcement mechanisms in multiwall nanotube/polycarbonate composites across different length and time scales

    Science.gov (United States)

    Duncan, Renee Kelly

    The enthusiasm and interest in the potential properties of nanotube (NT)/polymer composites are based on several factors, including the potential for unsurpassed enhancements in mechanical properties together with electrical, thermal and optical properties. Using multiwall nanotubes (MWNTs) grown to a long aspect ratio, the study found that fragmentation tests can be completed in a similar manner to traditional fiber composites. It was found that the fragmentation length does not depend on the angle of the nanotube to the loading direction hence the ISS does not change with the orientation angle of the nanotube in the composite. A critical aspect ratio of 100 and 300 for untreated nanotubes (ARNT) and treated nanotubes (EPNT), respectively was also measured. For nanotubes that are well dispersed in the polycarbonate, it was observed at a critical angle of 60° that there was a change in failure mechanism from pullout to fracture of the nanotubes due to bending shear. Because the tensile strength of a MWNT is unknown a cumulative distribution was used to characterize the relative interfacial shear strength as a function of nanotube chemical modification. The second goal of this thesis is to use Dynamic Mechanical Thermal Analysis (DMTA) with controlled aspect ratios of multiwall nanotubes (MWNT) to isolate and quantify the effects of the interfacial region on modulus enhancements in nanotube-reinforced composites. One major finding of this study was that the shortest aspect ratio showed a significantly broadened relaxation spectrum than the longer aspect ratio nanotubes, despite the longer aspect ratio nanotubes being more percolated at the given weight percent. There is also a direct correlation between the free space parameter of the short aspect ratio nantoubes network and broadening of the relaxation spectrum, concluded to be a result of increased interaction of the interfacial polymer. The study found agreement with the premise that at a constant filler weight

  18. A STUDY OF CORRELATION OF FOOT LENGTH AND GESTATIONAL MATURITY IN NEONATES

    Directory of Open Access Journals (Sweden)

    M. Bhuvaneswari

    2018-03-01

    Full Text Available BACKGROUND Gestational age estimation at birth can be done by clinical estimation through careful history of LMP, ultrasonic estimation of gestational age, date of first recorded foetal activity “quickening” first felt at approximately 16-18 weeks, Date of first recorded foetal heart sounds. MATERIALS AND METHODS A study sample of 800 live newborns were selected by simple random sampling technique born at GVR hospital and Government General Hospital, Kurnool from April 2015 to May 2016. Data was collected using standard proforma meeting the objectives of the study. a Gestational age assessment was done using modified Bellard’s score and b Foot length was measured using sliding calipers which is having an accuracy of a millimeter. Following instruments are used: 1 Sliding calipers for measuring foot length, 2 Flexible, non-stretchable measuring tape for head circumference, 3 Infantometer for measuring crown heel length, 4 Electronic weighing scale for measuring weight. RESULTS The foot length of preterm neonates ranged from 4.5-7.8 cm with the mean foot length of 6.1571 cm and 6.6964 cm for preterm SGA and AGA, respectively. The foot length of term neonates ranged from 5.4-8.7 cm with a mean foot length of 7.0471 cm, 7.5703 cm, 8.0391 cm for term SGA, AGA, LGA respectively. The foot length for post term neonates ranged from 6.7-8.8 cm, with a mean foot length of 7.5688 cm, 8.0170 cm and 8.2667 cm for post term SGA, AGA and LGA, respectively. This shows that foot length increases as the gestational age increases. CONCLUSION Foot length can be correlated significantly with the gestational age, birth weight, head circumference and crown heel length.

  19. Chiral battery, scaling laws and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Sampurn; Bhatt, Jitesh R.; Pandey, Arun Kumar, E-mail: sampurn@prl.res.in, E-mail: jeet@prl.res.in, E-mail: arunp@prl.res.in [Physical Research Laboratory, Ahmedabad, 380009 (India)

    2017-07-01

    We study the generation and evolution of magnetic field in the presence of chiral imbalance and gravitational anomaly which gives an additional contribution to the vortical current. The contribution due to gravitational anomaly is proportional to T {sup 2} which can generate seed magnetic field irrespective of plasma being chirally charged or neutral. We estimate the order of magnitude of the magnetic field to be 10{sup 30} G at T ∼ 10{sup 9} GeV, with a typical length scale of the order of 10{sup −18} cm, which is much smaller than the Hubble radius at that temperature (10{sup −8} cm). Moreover, such a system possess scaling symmetry. We show that the T {sup 2} term in the vorticity current along with scaling symmetry leads to more power transfer from lower to higher length scale as compared to only chiral anomaly without scaling symmetry.

  20. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    Science.gov (United States)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  1. Length-weight and length-length relationships of common carp (Cyprinus carpio L.) in the middle and southern Iraq provinces

    Science.gov (United States)

    Al-jebory, Taymaa A.; Das, Simon K.; Usup, Gires; Bakar, Y.; Al-saadi, Ali H.

    2018-04-01

    In this study, length-weight and length-length relationships of common carp (Cyprinus carpio L.) in the middle and southern Iraq provinces were determined. Fish specimens were procured from seven provinces from July to December, 2015. A negative and positive allometric growth pattern was obtained, where the total length (TL) ranged from 25.60 cm to 33.53 cm, and body weight (BW) ranged from 700 g to 1423 g. Meanwhile, the lowest of 1.03 and highest of 3.54 in "b" value was recorded in group F and group C, respectively. Therefore, Fulton condition factor (K) range from 2.57 to 4.94. While, relative condition factor (Kn) was in the ranged of 0.95 to 1.01. A linear relationship between total length (TL) and standard length (SL) among the provinces for fish groups was obtained. The variances in "b" value ranged from 0.10 to 0.93 with correlation coefficient (r2) of 0.02 to 0.97. This research could be used as a guide to study the ecology and biology of common Carp (Cyprinus carpio L.) in the middle and southern Iraq provinces.

  2. Appearance of a Minimal Length in $e^+ e^-$ Annihilation

    CERN Document Server

    Dymnikova, Irina; Ulbricht, Jürgen

    2014-01-01

    Experimental data reveal with a 5$\\sigma$ significance the existence of a characteristic minimal length $l_e$= 1.57 × 10$^{−17}$ cm at the scale E = 1.253 TeV in the annihilation reaction $e^+e^- \\to \\gamma\\gamma(\\gamma)$ . Nonlinear electrodynamics coupled to gravity and satisfying the weak energy condition predicts, for an arbitrary gauge invariant Lagrangian, the existence of spinning charged electromagnetic soliton asymptotically Kerr-Newman for a distant observer with the gyromagnetic ratio g=2 . Its internal structure includes a rotating equatorial disk of de Sitter vacuum which has properties of a perfect conductor and ideal diamagnetic, displays superconducting behavior, supplies a particle with the finite positive electromagnetic mass related to breaking of space-time symmetry, and gives some idea about the physical origin of a minimal length in annihilation.

  3. Scaling high-order harmonic generation from laser-solid interactions to ultrahigh intensity.

    Science.gov (United States)

    Dollar, F; Cummings, P; Chvykov, V; Willingale, L; Vargas, M; Yanovsky, V; Zulick, C; Maksimchuk, A; Thomas, A G R; Krushelnick, K

    2013-04-26

    Coherent x-ray beams with a subfemtosecond (scale length, which can strongly influence the harmonic generation mechanism. It is shown that for intensities in excess of 10(21)  W cm(-2) an optimum density ramp scale length exists that balances an increase in efficiency with a growth of parametric plasma wave instabilities. We show that for these higher intensities the optimal scale length is c/ω0, for which a variety of HOHG properties are optimized, including total conversion efficiency, HOHG divergence, and their power law scaling. Particle-in-cell simulations show striking evidence of the HOHG loss mechanism through parametric instabilities and relativistic self-phase modulation, which affect the produced spectra and conversion efficiency.

  4. Umbilical cord length in singleton gestations: a Finnish population-based retrospective register study.

    Science.gov (United States)

    Georgiadis, L; Keski-Nisula, L; Harju, M; Räisänen, S; Georgiadis, S; Hannila, M-L; Heinonen, S

    2014-04-01

    Many complications of pregnancy and delivery are associated with umbilical cord length. It is important to examine the variation in length, in order to identify normal and abnormal conditions. Moreover, the factors influencing cord growth and development are not precisely known. The main objectives were to provide updated reference charts for umbilical cord length in singleton pregnancies and to evaluate potential factors affecting cord length. Birth register data of 47,284 singleton pregnant women delivering in Kuopio University Hospital, Finland was collected prospectively. Gender-specific centile charts for cord length from 22 to 44 gestational weeks were obtained using generalized additive models for location, scale, and shape (GAMLSS). Gestational, fetal, and maternal factors were studied for their potential influence on cord length with single variable analysis and stepwise multiple linear regression analysis. Cord length increased according to gestational age, while the growth decelerated post-term. Birth weight, placental weight, pregravid maternal body mass index, parity, and maternal age correlated to cord length. Gestational diabetes and previous miscarriages were associated with longer cords, while female gender and placental abruption were associated with shorter cords. Girls had shorter cords throughout gestation although there was substantial variation in length in both genders. Cord length associated significantly with birth weight, placental weight, and gestational age. Significantly shorter cords were found in women with placental abruption. This important finding requires further investigation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. New Finnish growth references for children and adolescents aged 0 to 20 years: Length/height-for-age, weight-for-length/height, and body mass index-for-age.

    Science.gov (United States)

    Saari, Antti; Sankilampi, Ulla; Hannila, Marja-Leena; Kiviniemi, Vesa; Kesseli, Kari; Dunkel, Leo

    2011-05-01

    Growth curves require regular updates due to secular trends in linear growth. We constructed contemporary growth curves, assessed secular trends in height, and defined body mass index (BMI) cut-off points for thinness, overweight, and obesity in Finnish children. Mixed cross-sectional/longitudinal data of 73,659 healthy subjects aged 0-20 years (born 1983-2008) were collected from providers in the primary health care setting. Growth references for length/height-for-age, weight-for-length/height, and BMI-for-age were fitted using generalized additive models for location, scale, and shape (GAMLSS). BMI percentile curves passing through BMIs 30, 25, 18.5, 17, and 16 kg/m(2) at the age of 18 years were calculated to define limits for obesity, overweight, and various grades of thinness. Increased length/height-for-age was seen in virtually all age-groups when compared to previous Finnish growth data from 1959 to 1971. Adult height was increased by 1.9 cm in girls and 1.8 cm in boys. The largest increases were seen during the peripubertal years: up to 2.8 cm in girls and 5.6 cm in boys. Median weight-for-length/height had not increased. New Finnish references for length/height-for-age, weight-for-length/height, and BMI-for-age were constructed and should be implemented to monitor growth of children in Finland.

  6. Scaling of the burning efficiency for multicomponent fuel pool fires

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Farahani, Hamed Farmahini; Rangwala, Ali S.

    In order to improve the validity of small scale crude oil burning experiments, which seem to underestimate the burning efficiency obtained in larger scales, the gasification mechanism of crude oil was studied. Gasification models obtained from literature were used to make a set of predictions for...... an external heat source to simulate the larger fire size are currently in process....

  7. Early life adversity and telomere length: a meta-analysis.

    Science.gov (United States)

    Ridout, K K; Levandowski, M; Ridout, S J; Gantz, L; Goonan, K; Palermo, D; Price, L H; Tyrka, A R

    2018-04-01

    Early adversity, in the form of abuse, neglect, socioeconomic status and other adverse experiences, is associated with poor physical and mental health outcomes. To understand the biologic mechanisms underlying these associations, studies have evaluated the relationship between early adversity and telomere length, a marker of cellular senescence. Such results have varied in regard to the size and significance of this relationship. Using meta-analytic techniques, we aimed to clarify the relationship between early adversity and telomere length while exploring factors affecting the association, including adversity type, timing and study design. A comprehensive search in July 2016 of PubMed/MEDLINE, PsycINFO and Web of Science identified 2462 studies. Multiple reviewers appraised studies for inclusion or exclusion using a priori criteria; 3.9% met inclusion criteria. Data were extracted into a structured form; the Newcastle-Ottawa Scale assessed study quality, validity and bias. Forty-one studies (N=30 773) met inclusion criteria. Early adversity and telomere length were significantly associated (Cohen's d effect size=-0.35; 95% CI, -0.46 to -0.24; P<0.0001). Sensitivity analyses revealed no outlier effects. Adversity type and timing significantly impacted the association with telomere length (P<0.0001 and P=0.0025, respectively). Subgroup and meta-regression analyses revealed that medication use, medical or psychiatric conditions, case-control vs longitudinal study design, methodological factors, age and smoking significantly affected the relationship. Comprehensive evaluations of adversity demonstrated more extensive telomere length changes. These results suggest that early adversity may have long-lasting physiological consequences contributing to disease risk and biological aging.

  8. Emerging and Submerging Shorelines: Impacts of Physical Change on Bioband Length

    Science.gov (United States)

    Kruger, L. E.; Johnson, A. C.; Gregovich, D.; Buma, B.; Noel, J.

    2017-12-01

    We approximated shifts in coastal benthic species for shoreline length units undergoing both sea level rise and relative sea level lowering (often post-glacial, termed isostatic rebound) where subsistence-based, southeast Alaska Natives reside. From six community centers, we examined 30 km radii shoreline reaches by merging relevant portions of the NOAA ShoreZone database with near shore bathymetry and measures of mean global sea level rise with local global positioning system information (GIS) of tectonic shift and isostatic rebound. For our analysis, we estimated change for 9,868 assessed shoreline length units having uniform substrate and biologic type over a 100-yr time span (2008-2108) using geometric analysis of shoreline attributes. For each shoreline length unit we assessed relationships among substrate, slope, exposure, and presence of five benthic species including eel grass (Zostera marina), blue mussel (Mytilus edulis), butter clams (Saxidomus gigantean), bull kelp (Nereocytis leutkeana), and foliose red algae including ribbon kelp (Palmaria sp.). Our research indicates that both emergence, up to 1.8 m, and submergence, up 0.2 m, of the land will result in disportionately larger shoreline length segment alterations for habitats in protected low-slope gradient bays and estuaries (dominated by eelgrass and butter clam habitats) with less change for rocky steep-gradient exposed penninsulas (red algae and canopy kelp). This trend, holding true regardless of isostatic rebound, tectonic shift or sea level rise rate, highlights the importance of initial geomorphology-based assessments serving to improve bio-physical, chemical, and socially-related coastal research. Where shorelines are emerging 30% decreases in estuary lengths are predicted, but where shorelines are submerging up to 3% increases in estuaries are expected. Our research results are consistent with anthropology studies assessing past coastal change. Coastal change, influencing subsistance foods

  9. Logarithmic superposition of force response with rapid length changes in relaxed porcine airway smooth muscle.

    Science.gov (United States)

    Ijpma, G; Al-Jumaily, A M; Cairns, S P; Sieck, G C

    2010-12-01

    We present a systematic quantitative analysis of power-law force relaxation and investigate logarithmic superposition of force response in relaxed porcine airway smooth muscle (ASM) strips in vitro. The term logarithmic superposition describes linear superposition on a logarithmic scale, which is equivalent to multiplication on a linear scale. Additionally, we examine whether the dynamic response of contracted and relaxed muscles is dominated by cross-bridge cycling or passive dynamics. The study shows the following main findings. For relaxed ASM, the force response to length steps of varying amplitude (0.25-4% of reference length, both lengthening and shortening) are well-fitted with power-law functions over several decades of time (10⁻² to 10³ s), and the force response after consecutive length changes is more accurately fitted assuming logarithmic superposition rather than linear superposition. Furthermore, for sinusoidal length oscillations in contracted and relaxed muscles, increasing the oscillation amplitude induces greater hysteresivity and asymmetry of force-length relationships, whereas increasing the frequency dampens hysteresivity but increases asymmetry. We conclude that logarithmic superposition is an important feature of relaxed ASM, which may facilitate a more accurate prediction of force responses in the continuous dynamic environment of the respiratory system. In addition, the single power-function response to length changes shows that the dynamics of cross-bridge cycling can be ignored in relaxed muscle. The similarity in response between relaxed and contracted states implies that the investigated passive dynamics play an important role in both states and should be taken into account.

  10. Inviscid criterion for decomposing scales

    Science.gov (United States)

    Zhao, Dongxiao; Aluie, Hussein

    2018-05-01

    The proper scale decomposition in flows with significant density variations is not as straightforward as in incompressible flows, with many possible ways to define a "length scale." A choice can be made according to the so-called inviscid criterion [Aluie, Physica D 24, 54 (2013), 10.1016/j.physd.2012.12.009]. It is a kinematic requirement that a scale decomposition yield negligible viscous effects at large enough length scales. It has been proved [Aluie, Physica D 24, 54 (2013), 10.1016/j.physd.2012.12.009] recently that a Favre decomposition satisfies the inviscid criterion, which is necessary to unravel inertial-range dynamics and the cascade. Here we present numerical demonstrations of those results. We also show that two other commonly used decompositions can violate the inviscid criterion and, therefore, are not suitable to study inertial-range dynamics in variable-density and compressible turbulence. Our results have practical modeling implication in showing that viscous terms in Large Eddy Simulations do not need to be modeled and can be neglected.

  11. The Extended Relativity Theory in Born-Clifford Phase Spaces with a Lower and Upper Length Scales and Clifford Group Geometric Unification

    CERN Document Server

    Castro, C

    2004-01-01

    We construct the Extended Relativity Theory in Born-Clifford-Phase spaces with an upper and lower length scales (infrared/ultraviolet cutoff). The invariance symmetry leads naturally to the real Clifford algebra Cl (2, 6, R ) and complexified Clifford Cl_C ( 4 ) algebra related to Twistors. We proceed with an extensive review of Smith's 8D model based on the Clifford algebra Cl ( 1 ,7) that reproduces at low energies the physics of the Standard Model and Gravity; including the derivation of all the coupling constants, particle masses, mixing angles, ....with high precision. Further results by Smith are discussed pertaining the interplay among Clifford, Jordan, Division and Exceptional Lie algebras within the hierarchy of dimensions D = 26, 27, 28 related to bosonic string, M, F theory. Two Geometric actions are presented like the Clifford-Space extension of Maxwell's Electrodynamics, Brandt's action related the 8D spacetime tangent-bundle involving coordinates and velocities (Finsler geometries) followed by a...

  12. An Asymptotic Derivation of Weakly Nonlinear Ray Theory

    Indian Academy of Sciences (India)

    The transport equation for the amplitude has been deduced with an error (2) where is the small parameter appearing in the high frequency approximation. On a length scale over which Choquet–Bruhat's theory is valid, this theory reduces to the former. The theory is valid on a much larger length scale and the leading ...

  13. Small-scale microwave background anisotropies implied by large-scale data

    Science.gov (United States)

    Kashlinsky, A.

    1993-01-01

    In the absence of reheating microwave background radiation (MBR) anisotropies on arcminute scales depend uniquely on the amplitude and the coherence length of the primordial density fluctuations (PDFs). These can be determined from the recent data on galaxy correlations, xi(r), on linear scales (APM survey). We develop here expressions for the MBR angular correlation function, C(theta), on arcminute scales in terms of the power spectrum of PDFs and demonstrate their accuracy by comparing with detailed calculations of MBR anisotropies. We then show how to evaluate C(theta) directly in terms of the observed xi(r) and show that the APM data give information on the amplitude, C(O), and the coherence angle of MBR anisotropies on small scales.

  14. Decoupling processes and scales of shoreline morphodynamics

    Science.gov (United States)

    Hapke, Cheryl J.; Plant, Nathaniel G.; Henderson, Rachel E.; Schwab, William C.; Nelson, Timothy R.

    2016-01-01

    Behavior of coastal systems on time scales ranging from single storm events to years and decades is controlled by both small-scale sediment transport processes and large-scale geologic, oceanographic, and morphologic processes. Improved understanding of coastal behavior at multiple time scales is required for refining models that predict potential erosion hazards and for coastal management planning and decision-making. Here we investigate the primary controls on shoreline response along a geologically-variable barrier island on time scales resolving extreme storms and decadal variations over a period of nearly one century. An empirical orthogonal function analysis is applied to a time series of shoreline positions at Fire Island, NY to identify patterns of shoreline variance along the length of the island. We establish that there are separable patterns of shoreline behavior that represent response to oceanographic forcing as well as patterns that are not explained by this forcing. The dominant shoreline behavior occurs over large length scales in the form of alternating episodes of shoreline retreat and advance, presumably in response to storms cycles. Two secondary responses include long-term response that is correlated to known geologic variations of the island and the other reflects geomorphic patterns with medium length scale. Our study also includes the response to Hurricane Sandy and a period of post-storm recovery. It was expected that the impacts from Hurricane Sandy would disrupt long-term trends and spatial patterns. We found that the response to Sandy at Fire Island is not notable or distinguishable from several other large storms of the prior decade.

  15. Multi-scale modeling of ductile failure in metallic alloys

    International Nuclear Information System (INIS)

    Pardoen, Th.; Scheyvaerts, F.; Simar, A.; Tekoglu, C.; Onck, P.R.

    2010-01-01

    Micro-mechanical models for ductile failure have been developed in the seventies and eighties essentially to address cracking in structural applications and complement the fracture mechanics approach. Later, this approach has become attractive for physical metallurgists interested by the prediction of failure during forming operations and as a guide for the design of more ductile and/or high-toughness microstructures. Nowadays, a realistic treatment of damage evolution in complex metallic microstructures is becoming feasible when sufficiently sophisticated constitutive laws are used within the context of a multilevel modelling strategy. The current understanding and the state of the art models for the nucleation, growth and coalescence of voids are reviewed with a focus on the underlying physics. Considerations are made about the introduction of the different length scales associated with the microstructure and damage process. Two applications of the methodology are then described to illustrate the potential of the current models. The first application concerns the competition between intergranular and transgranular ductile fracture in aluminum alloys involving soft precipitate free zones along the grain boundaries. The second application concerns the modeling of ductile failure in friction stir welded joints, a problem which also involves soft and hard zones, albeit at a larger scale. (authors)

  16. Canopy BRF simulation of forest with different crown shape and height in larger scale based on Radiosity method

    Science.gov (United States)

    Song, Jinling; Qu, Yonghua; Wang, Jindi; Wan, Huawei; Liu, Xiaoqing

    2007-06-01

    Radiosity method is based on the computer simulation of 3D real structures of vegetations, such as leaves, branches and stems, which are composed by many facets. Using this method we can simulate the canopy reflectance and its bidirectional distribution of the vegetation canopy in visible and NIR regions. But with vegetations are more complex, more facets to compose them, so large memory and lots of time to calculate view factors are required, which are the choke points of using Radiosity method to calculate canopy BRF of lager scale vegetation scenes. We derived a new method to solve the problem, and the main idea is to abstract vegetation crown shapes and to simplify their structures, which can lessen the number of facets. The facets are given optical properties according to the reflectance, transmission and absorption of the real structure canopy. Based on the above work, we can simulate the canopy BRF of the mix scenes with different species vegetation in the large scale. In this study, taking broadleaf trees as an example, based on their structure characteristics, we abstracted their crowns as ellipsoid shells, and simulated the canopy BRF in visible and NIR regions of the large scale scene with different crown shape and different height ellipsoids. Form this study, we can conclude: LAI, LAD the probability gap, the sunlit and shaded surfaces are more important parameter to simulate the simplified vegetation canopy BRF. And the Radiosity method can apply us canopy BRF data in any conditions for our research.

  17. Visual target distance, but not visual cursor path length produces shifts in motor behavior

    Directory of Open Access Journals (Sweden)

    Nike eWendker

    2014-03-01

    Full Text Available When using tools effects in body space and distant space often do not correspond. Findings so far demonstrated that in this case visual feedback has more impact on action control than proprioceptive feedback. The present study varies the dimensional overlap between visual and proprioceptive action effects and investigates its impact on aftereffects in motor responses. In two experiments participants perform linear hand movements on a covered digitizer tablet to produce ∩-shaped cursor trajectories on the display. The shape of hand motion and cursor motion (linear vs. curved is dissimilar and therefore does not overlap. In one condition the length of hand amplitude and visual target distance is similar and constant while the length of the cursor path is dissimilar and varies. In another condition the length of the hand amplitude varies while the lengths of visual target distance (similar or dissimilar and cursor path (dissimilar are constant. First, we found that aftereffects depended on the relation between hand path length and visual target distance, and not on the relation between hand and cursor path length. Second, increasing contextual interference did not reveal larger aftereffects. Finally, data exploration demonstrated a considerable benefit from gain repetitions across trials when compared to gain switches. In conclusion, dimensional overlap between visual and proprioceptive action effects modulates human information processing in visually controlled actions. However, adjustment of the internal model seems to occur very fast for this kind of simple linear transformation, so that the impact of prior visual feedback is fleeting.

  18. Zen meditation, Length of Telomeres, and the Role of Experiential Avoidance and Compassion.

    Science.gov (United States)

    Alda, Marta; Puebla-Guedea, Marta; Rodero, Baltasar; Demarzo, Marcelo; Montero-Marin, Jesus; Roca, Miquel; Garcia-Campayo, Javier

    Mindfulness refers to an awareness that emerges by intentionally focusing on the present experience in a nonjudgmental or evaluative manner. Evidence regarding its efficacy has been increasing exponentially, and recent research suggests that the practice of meditation is associated with longer leukocyte telomere length. However, the psychological mechanisms underlying this potential relationship are unknown. We examined the telomere lengths of a group of 20 Zen meditation experts and another 20 healthy matched comparison participants who had not previously meditated. We also measured multiple psychological variables related to meditation practice. Genomic DNA was extracted for telomere measurement using a Life Length proprietary program. High-throughput quantitative fluorescence in situ hybridization (HT-Q-FISH) was used to measure the telomere length distribution and the median telomere length (MTL). The meditators group had a longer MTL ( p  = 0.005) and a lower percentage of short telomeres in individual cells ( p  = 0.007) than those in the comparison group. To determine which of the psychological variables contributed more to telomere maintenance, two regression analyses were conducted. In the first model, which applied to the MTL, the following three factors were significant: age, absence of experiential avoidance, and Common Humanity subscale of the Self Compassion Scale. Similarly, in the model that examined the percentage of short telomeres, the same factors were significant: age, absence of experiential avoidance, and Common Humanity subscale of the Self Compassion Scale. Although limited by a small sample size, these results suggest that the absence of experiential avoidance of negative emotions and thoughts is integral to the connection between meditation and telomeres.

  19. Sexual Dimorphism and Estimation of Height from Body Length Anthropometric Parameters among the Hausa Ethnic Group of Nigeria

    Directory of Open Access Journals (Sweden)

    Jaafar Aliyu

    2018-01-01

    Full Text Available The study was carried out to investigate the sexual dimorphism in length and other anthropometric parameters. To also generate formulae for height estimation using anthropometric measurements of some length parameters among Hausa ethnic group of Kaduna State, Nigeria. A cross sectional study was conducted and a total of 500 subjects participated in this study which was mainly secondary school students between the age ranges of 16-27 years, anthropometric measurements were obtained using standard protocols. It was observed that there was significant sexual dimorphism in all the parameters except for body mass index. In all the parameters males tend to have significantly (P < 0.05 higher mean values except biaxillary distances. Height showed positive and strongest correlations with demispan length, followed by knee height, thigh length, sitting height, hand length, foot length, humeral length, forearm length and weight respectively. There were weak and positive correlations between height and neck length as well as biaxillary length. The demi span length showed the strongest correlation coefficient and low standard error of estimate indicating the strong estimation ability than other parameters. The combination of two parameters tends to give better estimations and low standard error of estimates, so also combining the three parameters gives better estimations with a lower standard error of estimates. The better correlation coefficient was also observed with the double and triple parameters respectively. Male Hausa tend to have larger body proportion compared to female. Height showed positive and strongest correlations with demispan length. Body length anthropometric proved to be useful in estimation of stature among Hausa ethnic group of Kaduna state Nigeria.

  20. The scaling structure of the global road network.

    Science.gov (United States)

    Strano, Emanuele; Giometto, Andrea; Shai, Saray; Bertuzzo, Enrico; Mucha, Peter J; Rinaldo, Andrea

    2017-10-01

    Because of increasing global urbanization and its immediate consequences, including changes in patterns of food demand, circulation and land use, the next century will witness a major increase in the extent of paved roads built worldwide. To model the effects of this increase, it is crucial to understand whether possible self-organized patterns are inherent in the global road network structure. Here, we use the largest updated database comprising all major roads on the Earth, together with global urban and cropland inventories, to suggest that road length distributions within croplands are indistinguishable from urban ones, once rescaled to account for the difference in mean road length. Such similarity extends to road length distributions within urban or agricultural domains of a given area. We find two distinct regimes for the scaling of the mean road length with the associated area, holding in general at small and at large values of the latter. In suitably large urban and cropland domains, we find that mean and total road lengths increase linearly with their domain area, differently from earlier suggestions. Scaling regimes suggest that simple and universal mechanisms regulate urban and cropland road expansion at the global scale. As such, our findings bear implications for global road infrastructure growth based on land-use change and for planning policies sustaining urban expansions.

  1. Telomere Length and Mortality

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P

    2008-01-01

    Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...

  2. Smoking and perceived stress in relation to short salivary telomere length among caregivers of children with disabilities.

    Science.gov (United States)

    Chen, Xiaoli; Velez, Juan Carlos; Barbosa, Clarita; Pepper, Micah; Andrade, Asterio; Stoner, Lee; De Vivo, Immaculata; Gelaye, Bizu; Williams, Michelle A

    2015-01-01

    Telomere length (TL), the length of repeated DNA sequence that forms protective caps at the end of chromosomes, has emerged as a novel biomarker of cell aging and oxidative stress. There is increasing research exploring the associations of smoking and perceived stress with TL, and the results are inconsistent. This study aimed to examine whether smoking and perceived stress were associated with shortened salivary TL among primary caregivers of children with disabilities. Using a quantitative polymerase chain reaction method, salivary TL was assessed among 89 caregivers aged 19-69 years (87% were women) who took care of disabled children in the Patagonia Region, Chile. Interviewer-administered questionnaires were used to collect information on sociodemographic and lifestyle factors. The 14-item Perceived Stress Scale was used to assess perceived stress. Mean relative TL was 0.92 (standard error = 0.03). Smokers had age-adjusted mean TL that was 0.07 units lower (β = -0.07, standard error = 0.03; p = 0.012) than non-smokers. Smokers were 2.17 times more likely to have shorter TL ( stress. Caregivers with higher perceived stress were 2.13 times more likely to have shorter TL (odds ratio = 3.13; 95% confidence interval = 1.03-9.55) than caregivers with lower perceived stress after adjustment for age and smoking. This study provides the first evidence of strong associations between smoking and perceived stress and shortened salivary TL among caregivers of children with disabilities. Larger studies with detailed information on smoking status are warranted to confirm our findings.

  3. Aerodynamic Characteristics of a Flying-Boat Hull Having a Length-Beam Ratio of 15, TED No. NACA 2206

    Science.gov (United States)

    Riebe, John M.; Naeseth, Rodger L.

    1951-01-01

    An investigation was made in the Langley 300 MPH 7- by 10-foot tunnel to determine the aerodynamic characteristics of a flying-boat hull of a length-beam ratio of 15 in the presence of a wing. The investigation was an extension of previous tests made on hulls of length-beam ratios of 6, 9, and 12; these hulls were designed to have approximately the same hydrodynamic performance with respect to spray and resistance characteristics. Comparison with the previous investigation at lower length-beam ratios indicated a reduction in minimum drag coefficients of 0.0006 (10 peroent)with fixed transition when the length-beam ratio was extended from 12 to 15. As with the hulls of lower length-beam ratio, the drag reduction with a length-beam ratio of 15 occurred throughout the range of angle of attack tested and the angle of attack for minimum drag was in the range from 2deg to 3deg. Increasing the length-beam ratio from 12 to 15 reduced the hull longitudinal instability by an mount corresponding to an aerodynamic-center shift of about 1/2 percent of the mean aerodynamic chord of the hypothetical flying boat. At an angle of attack of 2deg, the value of the variation of yawing-moment coefficient with angle of yaw for a length-beam ratio of 15 was 0.00144, which was 0.00007 larger than the value for a length-beam ratio of 12.

  4. Stuttering Frequency in Relation to Lexical Diversity, Syntactic Complexity, and Utterance Length

    Science.gov (United States)

    Wagovich, Stacy A.; Hall, Nancy E.

    2018-01-01

    Children's frequency of stuttering can be affected by utterance length, syntactic complexity, and lexical content of language. Using a unique small-scale within-subjects design, this study explored whether language samples that contain more stuttering have (a) longer, (b) syntactically more complex, and (c) lexically more diverse utterances than…

  5. Do Performance-Safety Tradeoffs Cause Hypometric Metabolic Scaling in Animals?

    Science.gov (United States)

    Harrison, Jon F

    2017-09-01

    Hypometric scaling of aerobic metabolism in animals has been widely attributed to constraints on oxygen (O 2 ) supply in larger animals, but recent findings demonstrate that O 2 supply balances with need regardless of size. Larger animals also do not exhibit evidence of compensation for O 2 supply limitation. Because declining metabolic rates (MRs) are tightly linked to fitness, this provides significant evidence against the hypothesis that constraints on supply drive hypometric scaling. As an alternative, ATP demand might decline in larger animals because of performance-safety tradeoffs. Larger animals, which typically reproduce later, exhibit risk-reducing strategies that lower MR. Conversely, smaller animals are more strongly selected for growth and costly neurolocomotory performance, elevating metabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effeciency of extracorporeal shock wave therapy in patients with plantar fasciitis and the relationship with subcalcaneal spur length

    Directory of Open Access Journals (Sweden)

    Serpil Tuna

    2014-06-01

    Full Text Available Objective: ESWT is widely used in the treatment of plantar fascitis. In this study, we aimed to investigate the effect of ESWT on heel pain and symptoms in the short and medium term. We also compared the subcalcaneal spur length and the heel pain severity and examined the effect of the subcalcaneal spur length on the efficiency of ESWT therapy. Methods: The efficiency of ESWT applied to 59 heel of 48 patients compared retrospectively . We used Visual Analog Scale (VAS and Wolgin scale to evaluate the treatment outcomes. We measure the subcalcaneal spurs length of the patients with foot x-ray . Correlation between the VAS scores and the length of subcalcaneal spur were also evaluated. Results: Improvement in VAS in the first week and 3 months after ESWT treatment was statistically significant. There was no correlation between subcalcaneal spur length and the severity of pain. The number of patients in the'' medium, bad'' group decreased while the number of patients in the '' good'' group incresed according to WDS after ESWT treatment. Conclusion: As a result of this study we concluded that ESWT is effective in the treatment of plantar fasciitis in the short and medium term.

  7. Role of medium heterogeneity and viscosity contrast in miscible flow regimes and mixing zone growth: A computational pore-scale approach

    Science.gov (United States)

    Afshari, Saied; Hejazi, S. Hossein; Kantzas, Apostolos

    2018-05-01

    Miscible displacement of fluids in porous media is often characterized by the scaling of the mixing zone length with displacement time. Depending on the viscosity contrast of fluids, the scaling law varies between the square root relationship, a sign for dispersive transport regime during stable displacement, and the linear relationship, which represents the viscous fingering regime during an unstable displacement. The presence of heterogeneities in a porous medium significantly affects the scaling behavior of the mixing length as it interacts with the viscosity contrast to control the mixing of fluids in the pore space. In this study, the dynamics of the flow and transport during both unit and adverse viscosity ratio miscible displacements are investigated in heterogeneous packings of circular grains using pore-scale numerical simulations. The pore-scale heterogeneity level is characterized by the variations of the grain diameter and velocity field. The growth of mixing length is employed to identify the nature of the miscible transport regime at different viscosity ratios and heterogeneity levels. It is shown that as the viscosity ratio increases to higher adverse values, the scaling law of mixing length gradually shifts from dispersive to fingering nature up to a certain viscosity ratio and remains almost the same afterwards. In heterogeneous media, the mixing length scaling law is observed to be generally governed by the variations of the velocity field rather than the grain size. Furthermore, the normalization of mixing length temporal plots with respect to the governing parameters of viscosity ratio, heterogeneity, medium length, and medium aspect ratio is performed. The results indicate that mixing length scales exponentially with log-viscosity ratio and grain size standard deviation while the impact of aspect ratio is insignificant. For stable flows, mixing length scales with the square root of medium length, whereas it changes linearly with length during

  8. Gravo-Aeroelastic Scaling for Extreme-Scale Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fingersh, Lee J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Loth, Eric [University of Virginia; Kaminski, Meghan [University of Virginia; Qin, Chao [University of Virginia; Griffith, D. Todd [Sandia National Laboratories

    2017-06-09

    A scaling methodology is described in the present paper for extreme-scale wind turbines (rated at 10 MW or more) that allow their sub-scale turbines to capture their key blade dynamics and aeroelastic deflections. For extreme-scale turbines, such deflections and dynamics can be substantial and are primarily driven by centrifugal, thrust and gravity forces as well as the net torque. Each of these are in turn a function of various wind conditions, including turbulence levels that cause shear, veer, and gust loads. The 13.2 MW rated SNL100-03 rotor design, having a blade length of 100-meters, is herein scaled to the CART3 wind turbine at NREL using 25% geometric scaling and blade mass and wind speed scaled by gravo-aeroelastic constraints. In order to mimic the ultralight structure on the advanced concept extreme-scale design the scaling results indicate that the gravo-aeroelastically scaled blades for the CART3 are be three times lighter and 25% longer than the current CART3 blades. A benefit of this scaling approach is that the scaled wind speeds needed for testing are reduced (in this case by a factor of two), allowing testing under extreme gust conditions to be much more easily achieved. Most importantly, this scaling approach can investigate extreme-scale concepts including dynamic behaviors and aeroelastic deflections (including flutter) at an extremely small fraction of the full-scale cost.

  9. Collective motion in prolate γ-rigid nuclei within minimal length concept via a quantum perturbation method

    Science.gov (United States)

    Chabab, M.; El Batoul, A.; Lahbas, A.; Oulne, M.

    2018-05-01

    Based on the minimal length concept, inspired by Heisenberg algebra, a closed analytical formula is derived for the energy spectrum of the prolate γ-rigid Bohr-Mottelson Hamiltonian of nuclei, within a quantum perturbation method (QPM), by considering a scaled Davidson potential in β shape variable. In the resulting solution, called X(3)-D-ML, the ground state and the first β-band are all studied as a function of the free parameters. The fact of introducing the minimal length concept with a QPM makes the model very flexible and a powerful approach to describe nuclear collective excitations of a variety of vibrational-like nuclei. The introduction of scaling parameters in the Davidson potential enables us to get a physical minimum of this latter in comparison with previous works. The analysis of the corrected wave function, as well as the probability density distribution, shows that the minimal length parameter has a physical upper bound limit.

  10. The correlation function for density perturbations in an expanding universe. I - Linear theory

    Science.gov (United States)

    Mcclelland, J.; Silk, J.

    1977-01-01

    The evolution of the two-point correlation function for adiabatic density perturbations in the early universe is studied. Analytical solutions are obtained for the evolution of linearized spherically symmetric adiabatic density perturbations and the two-point correlation function for these perturbations in the radiation-dominated portion of the early universe. The results are then extended to the regime after decoupling. It is found that: (1) adiabatic spherically symmetric perturbations comparable in scale with the maximum Jeans length would survive the radiation-dominated regime; (2) irregular fluctuations are smoothed out up to the scale of the maximum Jeans length in the radiation era, but regular fluctuations might survive on smaller scales; (3) in general, the only surviving structures for irregularly shaped adiabatic density perturbations of arbitrary but finite scale in the radiation regime are the size of or larger than the maximum Jeans length in that regime; (4) infinite plane waves with a wavelength smaller than the maximum Jeans length but larger than the critical dissipative damping scale could survive the radiation regime; and (5) black holes would also survive the radiation regime and might accrete sufficient mass after decoupling to nucleate the formation of galaxies.

  11. Intraspecific scaling of arterial blood pressure in the Burmese python.

    Science.gov (United States)

    Enok, Sanne; Slay, Christopher; Abe, Augusto S; Hicks, James W; Wang, Tobias

    2014-07-01

    Interspecific allometric analyses indicate that mean arterial blood pressure (MAP) increases with body mass of snakes and mammals. In snakes, MAP increases in proportion to the increased distance between the heart and the head, when the heart-head vertical distance is expressed as ρgh (where ρ is the density of blood, G: is acceleration due to gravity and h is the vertical distance above the heart), and the rise in MAP is associated with a larger heart to normalize wall stress in the ventricular wall. Based on measurements of MAP in Burmese pythons ranging from 0.9 to 3.7 m in length (0.20-27 kg), we demonstrate that although MAP increases with body mass, the rise in MAP is merely half of that predicted by heart-head distance. Scaling relationships within individual species, therefore, may not be accurately predicted by existing interspecific analyses. © 2014. Published by The Company of Biologists Ltd.

  12. A study of small-scale foliation in lengths of core enclosing fault zones in borehole WD-3, Permit Area D, Lac du Bonnet Batholith

    Energy Technology Data Exchange (ETDEWEB)

    Ejeckam, R. B.

    1992-12-01

    Small-scale foliation measurements in lengths of core from borehole WD-3 of Permit Area D of the Lac du Bonnet Batholith have defined five major mean orientation sets. They strike NW, N and NE. The orientations (strike to the left of the dip direction/dip) of these sets are as follows: Set I - 028/74 deg; II - 001/66 deg; III - 100/58 deg; IV - 076/83 deg; and V - 210/40 deg. The small-scale foliations were defined by different mineral types such as biotite crystals, plagioclase, mineral banding and quartz lenses. Well-developed biotite foliation is commonly present whenever well-developed plagioclase foliation exists, but as the strength of development weakens, the preferred orientations of plagioclase foliation do not correspond to those of biotite. It is also noted that the foliations appear to strike in directions orthogonal to the fractures in the fracture zones in the same depth interval. No significant change in foliation orientation was observed in Zones I to IV. Set V, however, whose mean orientation is 210/40 deg, is absent from the Zone IV interval, ranging from 872 to 905 m. (auth)

  13. Diffusion effects on volume-selective NMR at small length scales; Diffusionseffekte in volumenselektiver NMR auf kleinen Laengenskalen

    Energy Technology Data Exchange (ETDEWEB)

    Gaedke, Achim

    2009-01-21

    In this thesis, the interplay between diffusion and relaxation effects in spatially selective NMR experiments at short length scales is explored. This is especially relevant in the context of both conventional and mechanically detected MRI at (sub)micron resolution in biological specimens. Recent results on selectively excited very thin slices showed an in-slice-magnetization recovery orders of magnitude faster than the longitudinal relaxation time T1. However, those experiments were run on fully relaxed samples while MRI and especially mechanically detected NMR experiments are typically run in a periodic fashion with repetition times far below T1. The main purpose of this work therefore was to extend the study of the interplay between diffusion and longitudinal relaxation to periodic excitations. In some way, this is inverse phenomenon to the DESIRE (Diffusive Enhancement of SIgnal and REsolution) approach, proposed 1992 by Lauterbur. Experiments on periodically excited thin slices were carried out at a dedicated static field gradient cryomagnet with magnetic field gradients up to 180 T/m. In order to obtain plane slices, an appropriate isosurface of the gradient magnet had to be identified. It was found at a field of 3.8 T with a gradient of 73 T/m. In this field, slices down to a thickness of 3.2 {mu}m could be excited. The detection of the NMR signal was done using FIDs instead of echoes as the excitation bandwidth of those thin slices is sufficiently small to observe FIDs which are usually considered to be elusive to detection in such strong static field gradients. A simulation toolbox based on the full Bloch-Torrey-equation was developed to describe the excitation and the formation of NMR signals under those unusual conditions as well as the interplay of diffusion and magnetization recovery. Both the experiments and the simulations indicate that diffusion effects lead to a strongly enhanced magnetization modulation signal also under periodic excitation

  14. Effect of interference of capillary length on evaporation at meniscus

    Science.gov (United States)

    Soma, Shu; Kunugi, Tomoaki; Yokomine, Takehiko; Kawara, Zensaku

    2017-11-01

    In this study, the experimental results on the evaporation characteristics of meniscus in various geometrical configurations which enable to vary a perimeter of liquid-vapor interface and a meniscus curvature were obtained, and the main factor in evaporation process was clarified. As the experimental conditions, the perimeter was adjusted from 1mm to 100mm order, and the curvature from the inverse of capillary length, κ( 0.4mm-1) , to about 10mm-1 . Measuring devices for evaporation rate, which consisted of a test section on an electric balance, was set to a reduced pressure environment for making the purified water in the test section evaporate. There is no heater in the test section and system was set to be isolated from outside environment. It was found that the evaporation rate and flux could be organized by the perimeter if the curvature is constant at κ. On the other hand, when the curvature is larger than κ, it was found that the curvature is the dominant factor in the evaporation process. It can be considered that an interference of capillary length is a key to understand these results.

  15. Beyond Mixing-length Theory: A Step Toward 321D

    Science.gov (United States)

    Arnett, W. David; Meakin, Casey; Viallet, Maxime; Campbell, Simon W.; Lattanzio, John C.; Mocák, Miroslav

    2015-08-01

    We examine the physical basis for algorithms to replace mixing-length theory (MLT) in stellar evolutionary computations. Our 321D procedure is based on numerical solutions of the Navier-Stokes equations. These implicit large eddy simulations (ILES) are three-dimensional (3D), time-dependent, and turbulent, including the Kolmogorov cascade. We use the Reynolds-averaged Navier-Stokes (RANS) formulation to make concise the 3D simulation data, and use the 3D simulations to give closure for the RANS equations. We further analyze this data set with a simple analytical model, which is non-local and time-dependent, and which contains both MLT and the Lorenz convective roll as particular subsets of solutions. A characteristic length (the damping length) again emerges in the simulations; it is determined by an observed balance between (1) the large-scale driving, and (2) small-scale damping. The nature of mixing and convective boundaries is analyzed, including dynamic, thermal and compositional effects, and compared to a simple model. We find that (1) braking regions (boundary layers in which mixing occurs) automatically appear beyond the edges of convection as defined by the Schwarzschild criterion, (2) dynamic (non-local) terms imply a non-zero turbulent kinetic energy flux (unlike MLT), (3) the effects of composition gradients on flow can be comparable to thermal effects, and (4) convective boundaries in neutrino-cooled stages differ in nature from those in photon-cooled stages (different Péclet numbers). The algorithms are based upon ILES solutions to the Navier-Stokes equations, so that, unlike MLT, they do not require any calibration to astronomical systems in order to predict stellar properties. Implications for solar abundances, helioseismology, asteroseismology, nucleosynthesis yields, supernova progenitors and core collapse are indicated.

  16. BEYOND MIXING-LENGTH THEORY: A STEP TOWARD 321D

    International Nuclear Information System (INIS)

    Arnett, W. David; Meakin, Casey; Viallet, Maxime; Campbell, Simon W.; Lattanzio, John C.; Mocák, Miroslav

    2015-01-01

    We examine the physical basis for algorithms to replace mixing-length theory (MLT) in stellar evolutionary computations. Our 321D procedure is based on numerical solutions of the Navier–Stokes equations. These implicit large eddy simulations (ILES) are three-dimensional (3D), time-dependent, and turbulent, including the Kolmogorov cascade. We use the Reynolds-averaged Navier–Stokes (RANS) formulation to make concise the 3D simulation data, and use the 3D simulations to give closure for the RANS equations. We further analyze this data set with a simple analytical model, which is non-local and time-dependent, and which contains both MLT and the Lorenz convective roll as particular subsets of solutions. A characteristic length (the damping length) again emerges in the simulations; it is determined by an observed balance between (1) the large-scale driving, and (2) small-scale damping. The nature of mixing and convective boundaries is analyzed, including dynamic, thermal and compositional effects, and compared to a simple model. We find that (1) braking regions (boundary layers in which mixing occurs) automatically appear beyond the edges of convection as defined by the Schwarzschild criterion, (2) dynamic (non-local) terms imply a non-zero turbulent kinetic energy flux (unlike MLT), (3) the effects of composition gradients on flow can be comparable to thermal effects, and (4) convective boundaries in neutrino-cooled stages differ in nature from those in photon-cooled stages (different Péclet numbers). The algorithms are based upon ILES solutions to the Navier–Stokes equations, so that, unlike MLT, they do not require any calibration to astronomical systems in order to predict stellar properties. Implications for solar abundances, helioseismology, asteroseismology, nucleosynthesis yields, supernova progenitors and core collapse are indicated

  17. Increasing average period lengths by switching of robust chaos maps in finite precision

    Science.gov (United States)

    Nagaraj, N.; Shastry, M. C.; Vaidya, P. G.

    2008-12-01

    Grebogi, Ott and Yorke (Phys. Rev. A 38, 1988) have investigated the effect of finite precision on average period length of chaotic maps. They showed that the average length of periodic orbits (T) of a dynamical system scales as a function of computer precision (ɛ) and the correlation dimension (d) of the chaotic attractor: T ˜ɛ-d/2. In this work, we are concerned with increasing the average period length which is desirable for chaotic cryptography applications. Our experiments reveal that random and chaotic switching of deterministic chaotic dynamical systems yield higher average length of periodic orbits as compared to simple sequential switching or absence of switching. To illustrate the application of switching, a novel generalization of the Logistic map that exhibits Robust Chaos (absence of attracting periodic orbits) is first introduced. We then propose a pseudo-random number generator based on chaotic switching between Robust Chaos maps which is found to successfully pass stringent statistical tests of randomness.

  18. Non-London electrodynamics in a multiband London model: Anisotropy-induced nonlocalities and multiple magnetic field penetration lengths

    Science.gov (United States)

    Silaev, Mihail; Winyard, Thomas; Babaev, Egor

    2018-05-01

    The London model describes strongly type-2 superconductors as massive vector field theories, where the magnetic field decays exponentially at the length scale of the London penetration length. This also holds for isotropic multiband extensions, where the presence of multiple bands merely renormalizes the London penetration length. We show that, by contrast, the magnetic properties of anisotropic multiband London models are not this simple, and the anisotropy leads to the interband phase differences becoming coupled to the magnetic field. This results in the magnetic field in such systems having N +1 penetration lengths, where N is the number of field components or bands. That is, in a given direction, the magnetic field decay is described by N +1 modes with different amplitudes and different decay length scales. For certain anisotropies we obtain magnetic modes with complex masses. That means that magnetic field decay is not described by a monotonic exponential increment set by a real penetration length but instead is oscillating. Some of the penetration lengths are shown to diverge away from the superconducting phase transition when the mass of the phase-difference mode vanishes. Finally the anisotropy-driven hybridization of the London mode with the Leggett modes can provide an effectively nonlocal magnetic response in the nominally local London model. Focusing on the two-component model, we discuss the magnetic field inversion that results from the effective nonlocality, both near the surface of the superconductor and around vortices. In the regime where the magnetic field decay becomes nonmonotonic, the multiband London superconductor is shown to form weakly-bound states of vortices.

  19. Inhomogeneous thermal expansion of metallic glasses in atomic-scale studied by in-situ synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Taghvaei, Amir Hossein, E-mail: amirtaghvaei@gmail.com [Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Shakur Shahabi, Hamed [IFW Dresden, Institute for Complex Materials, Helmholtzstr. 20, 01069 Dresden (Germany); Bednarčik, Jozef [Photon Science DESY, Notkestraße 85, 22603 Hamburg (Germany); Eckert, Jürgen [IFW Dresden, Institute for Complex Materials, Helmholtzstr. 20, 01069 Dresden (Germany); TU Dresden, Institute of Materials Science, 01062 Dresden (Germany)

    2015-01-28

    Numerous investigations have demonstrated that the elastic strain in metallic glasses subjected to mechanical loading could be inhomogeneous in the atomic-scale and it increases with distance from an average atom and eventually reaches the macroscopic strain at larger inter-atomic distances. We have observed a similar behavior for the thermal strain imposed by heating of Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} glassy particles below the glass transition temperature by analysis of the scattering data obtained by in-situ high-energy synchrotron X-ray diffraction (XRD). The results imply that the volumetric thermal strains calculated from the shift in position of the principal diffraction maximum and reduced pair correlation function (PDF) peaks are in good agreement for the length scales beyond 0.6 nm, corresponding to the atoms located over the third near-neighbor shell. However, smaller and even negative volumetric thermal strains have been calculated based on the shifts in the positions of the second and first PDF peaks, respectively. The structural changes of Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} glassy particles are accompanied by decreasing the average coordination number of the first near-neighbor shell, which manifests the occurrence of local changes in the short-range order upon heating. It is believed that the detected length-scale dependence of the volumetric thermal strain is correlated with the local atomic rearrangements taking place in the topologically unstable regions of the glass governed by variations in the atomic-level stresses.

  20. Does length or neighborhood size cause the word length effect?

    Science.gov (United States)

    Jalbert, Annie; Neath, Ian; Surprenant, Aimée M

    2011-10-01

    Jalbert, Neath, Bireta, and Surprenant (2011) suggested that past demonstrations of the word length effect, the finding that words with fewer syllables are recalled better than words with more syllables, included a confound: The short words had more orthographic neighbors than the long words. The experiments reported here test two predictions that would follow if neighborhood size is a more important factor than word length. In Experiment 1, we found that concurrent articulation removed the effect of neighborhood size, just as it removes the effect of word length. Experiment 2 demonstrated that this pattern is also found with nonwords. For Experiment 3, we factorially manipulated length and neighborhood size, and found only effects of the latter. These results are problematic for any theory of memory that includes decay offset by rehearsal, but they are consistent with accounts that include a redintegrative stage that is susceptible to disruption by noise. The results also confirm the importance of lexical and linguistic factors on memory tasks thought to tap short-term memory.

  1. Correlated evolution of sternal keel length and ilium length in birds

    Directory of Open Access Journals (Sweden)

    Tao Zhao

    2017-07-01

    Full Text Available The interplay between the pectoral module (the pectoral girdle and limbs and the pelvic module (the pelvic girdle and limbs plays a key role in shaping avian evolution, but prior empirical studies on trait covariation between the two modules are limited. Here we empirically test whether (size-corrected sternal keel length and ilium length are correlated during avian evolution using phylogenetic comparative methods. Our analyses on extant birds and Mesozoic birds both recover a significantly positive correlation. The results provide new evidence regarding the integration between the pelvic and pectoral modules. The correlated evolution of sternal keel length and ilium length may serve as a mechanism to cope with the effect on performance caused by a tradeoff in muscle mass between the pectoral and pelvic modules, via changing moment arms of muscles that function in flight and in terrestrial locomotion.

  2. Length correction for early-juvenile Brazilian herring Sardinella janeiro (Eigenmann, 1894 after preservation in formalin, ethanol and freezing

    Directory of Open Access Journals (Sweden)

    Joaquim N. S. Santos

    Full Text Available This work aims to quantify the variation in total length and body mass for the early-juvenile Brazilian herring Sardinella janeiro and to determine total length and body mass correction equation to allow fresh measures to be calculated from preserved ones. Fishes were randomly assigned to one of five preservation methods (freezing at - 20º C, 2.5% and 5% formalin, 70% and 95% ethanol, and measured for total length (TL and body mass (W before preservation, and on days 5, 15, 30, and 60 after storage. Significant reductions in total length and body mass occurred during the first 5 days after preservation and continued to contract significantly at a lesser rate through 30 days in most methods. Exceptions were shown for body mass in freezing and 5% formalin, where the greatest losses occurred after 30 days of preservation. The degree of shrinkage for total length and body mass was very much dependent on fish size, with smaller specimens shrinking more than larger ones. The fresh total length and body mass can be back-calculated using equations that describe the relationship between fresh and preserved individuals after 60 days storage for all methods except for body mass in freezing.

  3. Fundamental length

    International Nuclear Information System (INIS)

    Pradhan, T.

    1975-01-01

    The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)

  4. Correlation Lengths for Estimating the Large-Scale Carbon and Heat Content of the Southern Ocean

    Science.gov (United States)

    Mazloff, M. R.; Cornuelle, B. D.; Gille, S. T.; Verdy, A.

    2018-02-01

    The spatial correlation scales of oceanic dissolved inorganic carbon, heat content, and carbon and heat exchanges with the atmosphere are estimated from a realistic numerical simulation of the Southern Ocean. Biases in the model are assessed by comparing the simulated sea surface height and temperature scales to those derived from optimally interpolated satellite measurements. While these products do not resolve all ocean scales, they are representative of the climate scale variability we aim to estimate. Results show that constraining the carbon and heat inventory between 35°S and 70°S on time-scales longer than 90 days requires approximately 100 optimally spaced measurement platforms: approximately one platform every 20° longitude by 6° latitude. Carbon flux has slightly longer zonal scales, and requires a coverage of approximately 30° by 6°. Heat flux has much longer scales, and thus a platform distribution of approximately 90° by 10° would be sufficient. Fluxes, however, have significant subseasonal variability. For all fields, and especially fluxes, sustained measurements in time are required to prevent aliasing of the eddy signals into the longer climate scale signals. Our results imply a minimum of 100 biogeochemical-Argo floats are required to monitor the Southern Ocean carbon and heat content and air-sea exchanges on time-scales longer than 90 days. However, an estimate of formal mapping error using the current Argo array implies that in practice even an array of 600 floats (a nominal float density of about 1 every 7° longitude by 3° latitude) will result in nonnegligible uncertainty in estimating climate signals.

  5. Varying rotation lengths in northern production forests: Implications for habitats provided by retention and production trees.

    Science.gov (United States)

    Felton, Adam; Sonesson, Johan; Nilsson, Urban; Lämås, Tomas; Lundmark, Tomas; Nordin, Annika; Ranius, Thomas; Roberge, Jean-Michel

    2017-04-01

    Because of the limited spatial extent and comprehensiveness of protected areas, an increasing emphasis is being placed on conserving habitats which promote biodiversity within production forest. For this reason, alternative silvicultural programs need to be evaluated with respect to their implications for forest biodiversity, especially if these programs are likely to be adopted. Here we simulated the effect of varied rotation length and associated thinning regimes on habitat availability in Scots pine and Norway spruce production forests, with high and low productivity. Shorter rotation lengths reduced the contribution made by production trees (trees grown for industrial use) to the availability of key habitat features, while concurrently increasing the contribution from retention trees. The contribution of production trees to habitat features was larger for high productivity sites, than for low productivity sites. We conclude that shortened rotation lengths result in losses of the availability of habitat features that are key for biodiversity conservation and that increased retention practices may only partially compensate for this. Ensuring that conservation efforts better reflect the inherent variation in stand rotation lengths would help improve the maintenance of key forest habitats in production forests.

  6. Engineering behavior of small-scale foundation piers constructed from alternative materials

    Science.gov (United States)

    Prokudin, Maxim Mikhaylovich

    Testing small-scale prototype pier foundations to evaluate engineering behavior is an alternative to full-scale testing that facilitates testing of several piers and pier groups at relatively low cost. In this study, various pier systems and pier groups at one tenth scale were subjected to static vertical loading under controlled conditions to evaluate stiffness, bearing capacity, and group efficiency. Pier length, material properties and methods of installation were evaluated. Pier length to diameter ratios varied between four and eight. A unique soil pit with dimensions of 2.1 m in width, 1.5 m in length and 2.0 m in depth was designed to carry out this research. The test pit was filled with moisture conditioned and compacted Western Iowa loess. A special load test frame was designed and fabricated to provide up to 25,000 kg vertical reaction force for load testing. A load cell and displacement instrumentation was setup to capture the load test data. Alternative materials to conventional cement concrete were studied. The pier materials evaluated in this study included compacted aggregate, cement stabilized silt, cementitious grouts, and fiber reinforced silt. Key findings from this study demonstrated that (1) the construction method influences the behavior of aggregate piers, (2) the composition of the pier has a significant impact on the stiffness, (3) group efficiencies were found to be a function of pier length and pier material, (4) in comparison to full-scale testing the scaled piers were found to produce a stiffer response with load-settlement and bearing capacities to be similar. Further, although full-scale test results were not available for all pier materials, the small-scale testing provided a means for comparing results between pier systems. Finally, duplicate pier tests for a given length and material were found to be repeatable.

  7. AMPLIFIED FRAGMENT LENGTH POLYMORPHISM ANALYSIS OF MYCOBACTERIUM AVIUM COMPLEX ISOLATES RECOVERED FROM SOUTHERN CALIFORNIA

    Science.gov (United States)

    Fine-scale genotyping methods are necessary in order to identify possible sources of human exposure to opportunistic pathogens belonging to the Mycobacterium avium complex (MAC). In this study, amplified fragment length polymorphism (AFLP) analysis was evaluated for fingerprintin...

  8. Physics in space-time with scale-dependent metrics

    Science.gov (United States)

    Balankin, Alexander S.

    2013-10-01

    We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.

  9. Turbulence, dynamic similarity and scale effects in high-velocity free-surface flows above a stepped chute

    Science.gov (United States)

    Felder, Stefan; Chanson, Hubert

    2009-07-01

    In high-velocity free-surface flows, air entrainment is common through the interface, and intense interactions take place between turbulent structures and entrained bubbles. Two-phase flow properties were measured herein in high-velocity open channel flows above a stepped chute. Detailed turbulence measurements were conducted in a large-size facility, and a comparative analysis was applied to test the validity of the Froude and Reynolds similarities. The results showed consistently that the Froude similitude was not satisfied using a 2:1 geometric scaling ratio. Lesser number of entrained bubbles and comparatively greater bubble sizes were observed at the smaller Reynolds numbers, as well as lower turbulence levels and larger turbulent length and time scales. The results implied that small-size models did underestimate the rate of energy dissipation and the aeration efficiency of prototype stepped spillways for similar flow conditions. Similarly a Reynolds similitude was tested. The results showed also some significant scale effects. However a number of self-similar relationships remained invariant under changes of scale and confirmed the analysis of Chanson and Carosi (Exp Fluids 42:385-401, 2007). The finding is significant because self-similarity may provide a picture general enough to be used to characterise the air-water flow field in large prototype channels.

  10. Fractal properties and small-scale structure of cosmic string networks

    International Nuclear Information System (INIS)

    Martins, C.J.A.P.; Shellard, E.P.S.

    2006-01-01

    We present results from a detailed numerical study of the small-scale and loop production properties of cosmic string networks, based on the largest and highest resolution string simulations to date. We investigate the nontrivial fractal properties of cosmic strings, in particular, the fractal dimension and renormalized string mass per unit length, and we also study velocity correlations. We demonstrate important differences between string networks in flat (Minkowski) spacetime and the two very similar expanding cases. For high resolution matter era network simulations, we provide strong evidence that small-scale structure has converged to 'scaling' on all dynamical length scales, without the need for other radiative damping mechanisms. We also discuss preliminary evidence that the dominant loop production size is also approaching scaling

  11. Scaling and percolation in the small-world network model

    Energy Technology Data Exchange (ETDEWEB)

    Newman, M. E. J. [Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 (United States); Watts, D. J. [Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 (United States)

    1999-12-01

    In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Pade approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model. (c) 1999 The American Physical Society.

  12. Scaling and percolation in the small-world network model

    International Nuclear Information System (INIS)

    Newman, M. E. J.; Watts, D. J.

    1999-01-01

    In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Pade approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model. (c) 1999 The American Physical Society

  13. MULTI-WAVELENGTH OBSERVATIONS OF THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES WITH AIA/SDO. I. UNIVERSAL SCALING LAWS OF SPACE AND TIME PARAMETERS

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.; Zhang, Jie; Liu, Kai

    2013-01-01

    We extend a previous statistical solar flare study of 155 GOES M- and X-class flares observed with AIA/SDO to all seven coronal wavelengths (94, 131, 171, 193, 211, 304, and 335 Å) to test the wavelength dependence of scaling laws and statistical distributions. Except for the 171 and 193 Å wavelengths, which are affected by EUV dimming caused by coronal mass ejections (CMEs), we find near-identical size distributions of geometric (lengths L, flare areas A, volumes V, and fractal dimension D 2 ), temporal (flare durations T), and spatio-temporal parameters (diffusion coefficient κ, spreading exponent β, and maximum expansion velocities v max ) in different wavelengths, which are consistent with the universal predictions of the fractal-diffusive avalanche model of a slowly driven, self-organized criticality (FD-SOC) system, i.e., N(L)∝L –3 , N(A)∝A –2 , N(V)∝V –5/3 , N(T)∝T –2 , and D 2 = 3/2, for a Euclidean dimension d = 3. Empirically, we find also a new strong correlation κ∝L 0.94±0.01 and the three-parameter scaling law L∝κ T 0.1 , which is more consistent with the logistic-growth model than with classical diffusion. The findings suggest long-range correlation lengths in the FD-SOC system that operate in the vicinity of a critical state, which could be used for predictions of individual extreme events. We find also that eruptive flares (with accompanying CMEs) have larger volumes V, longer flare durations T, higher EUV and soft X-ray fluxes, and somewhat larger diffusion coefficients κ than confined flares (without CMEs)

  14. Contact damage and fracture micromechanisms of multilayered TiN/CrN coatings at micro- and nano-length scales

    International Nuclear Information System (INIS)

    Roa, J.J.; Jiménez-Piqué, E.; Martínez, R.; Ramírez, G.; Tarragó, J.M.

    2014-01-01

    In this study, systematic nanomechanical and micromechanical studies have been conducted in three multilayer TiN/CrN systems with different bilayer periods (8, 19 and 25 nm). Additionally, experimental work has been performed on corresponding TiN and CrN single layers, for comparison purposes. The investigation includes the use of different indenter tip geometries as well as contact loading conditions (i.e. indentation/scratch) such to induce different stress field and damage scenarios within the films. The surface and subsurface damage under the different indentation imprints and scratch tracks have been observed by atomic force microscopy, field emission scanning electron microscopy and focused ion beam. Multilayer TiN/CrN coated systems are found to exhibit higher adhesion strength (under sliding contact load) and cracking resistance (under spherical indentation) than those coated with reference TiN and CrN monolayers. The main reason behind these findings is the effective development of microstructurally-driven deformation and cracking resistant micromechanisms: rotation of columnar grains (and associated distortion of bilayer period) and crack deflection of interlayer thickness length scale, respectively. - Highlights: • Nanomechanical and micromechanical study in TiN/CrN systems • TiN/CrN coated systems exhibit higher adhesion strength and cracking resistance. • Main deformation and cracking micromechanisms: columnar grain rotation and crack deflection

  15. Contact damage and fracture micromechanisms of multilayered TiN/CrN coatings at micro- and nano-length scales

    Energy Technology Data Exchange (ETDEWEB)

    Roa, J.J., E-mail: joan.josep.roa@upc.edu [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Universitat Politècnica de Catalunya, C. Pasqual i Vila 15, 08028 Barcelona (Spain); Jiménez-Piqué, E. [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Universitat Politècnica de Catalunya, C. Pasqual i Vila 15, 08028 Barcelona (Spain); Martínez, R. [Centro de Ingeniería Avanzada de Superfícies, Asociación de la Industria Navarra — AIN, Crta. Pamplona, 1, Edificio AIN, 31191 Cordovilla (Spain); Ramírez, G. [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnològic, Avda. Bases de Manresa 1, 08243 Manresa (Spain); Tarragó, J.M. [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Universitat Politècnica de Catalunya, C. Pasqual i Vila 15, 08028 Barcelona (Spain); and others

    2014-11-28

    In this study, systematic nanomechanical and micromechanical studies have been conducted in three multilayer TiN/CrN systems with different bilayer periods (8, 19 and 25 nm). Additionally, experimental work has been performed on corresponding TiN and CrN single layers, for comparison purposes. The investigation includes the use of different indenter tip geometries as well as contact loading conditions (i.e. indentation/scratch) such to induce different stress field and damage scenarios within the films. The surface and subsurface damage under the different indentation imprints and scratch tracks have been observed by atomic force microscopy, field emission scanning electron microscopy and focused ion beam. Multilayer TiN/CrN coated systems are found to exhibit higher adhesion strength (under sliding contact load) and cracking resistance (under spherical indentation) than those coated with reference TiN and CrN monolayers. The main reason behind these findings is the effective development of microstructurally-driven deformation and cracking resistant micromechanisms: rotation of columnar grains (and associated distortion of bilayer period) and crack deflection of interlayer thickness length scale, respectively. - Highlights: • Nanomechanical and micromechanical study in TiN/CrN systems • TiN/CrN coated systems exhibit higher adhesion strength and cracking resistance. • Main deformation and cracking micromechanisms: columnar grain rotation and crack deflection.

  16. Morphological observation and length-weight relationship of critically endangered riverine catfish Rita rita (Hamilton).

    Science.gov (United States)

    Amin, M R; Mollah, M F A; Taslima, K; Muhammadullah

    2014-01-15

    The experiment was conducted to investigate the morphological status of the critically endangered riverine catfish Rita rita using morphometric and meristic traits. About 158 species of Rita were collected from the old Brahmaputra river in Mymensingh district and were studied in the laboratory of the Fisheries Biology and Genetics Department, Bangladesh Agricultural University. Measurement of length and weight of Rita were recorded by using measuring scale and electric balance respectively. Significant curvilinear relationship existed between total length and other morphometric characters and between head length and other characters of the head. Relationships between total length and various body measurements of the fish were highly significant (p < 0.01) except the relationship between total length and pelvic fin length of male fish (p < 0.05). In case of meristic characters-dorsal fin rays, pelvic fin rays, pectoral fin rays, anal fin rays, caudal fin rays, number of vertebrae and branchiostegal rays were found to be more or less similar except slight differences. The values of condition factors (k) in the total length body-weight relationships for female and male were found to be 0.41 and 0.38, respectively. The mean values of relative condition factors (kn) were 1.0 and 1.005 for female and male, respectively.

  17. Born-Infeld magnetars: larger than classical toroidal magnetic fields and implications for gravitational-wave astronomy

    Science.gov (United States)

    Pereira, Jonas P.; Coelho, Jaziel G.; de Lima, Rafael C. R.

    2018-05-01

    Magnetars are neutron stars presenting bursts and outbursts of X- and soft-gamma rays that can be understood with the presence of very large magnetic fields. In this setting, nonlinear electrodynamics should be taken into account for a more accurate description of such compact systems. We study that in the context of ideal magnetohydrodynamics and make a realization of our analysis to the case of the well known Born-Infeld (BI) electromagnetism in order to come up with some of its astrophysical consequences. We focus here on toroidal magnetic fields as motivated by already known magnetars with low dipolar magnetic fields and their expected relevance in highly magnetized stars. We show that BI electrodynamics leads to larger toroidal magnetic fields when compared to Maxwell's electrodynamics. Hence, one should expect higher production of gravitational waves (GWs) and even more energetic giant flares from nonlinear stars. Given current constraints on BI's scale field, giant flare energetics and magnetic fields in magnetars, we also find that the maximum magnitude of magnetar ellipticities should be 10^{-6}-10^{-5}. Besides, BI electrodynamics may lead to a maximum increase of order 10-20% of the GW energy radiated from a magnetar when compared to Maxwell's, while much larger percentages may arise for other physically motivated scenarios. Thus, nonlinear theories of the electromagnetism might also be probed in the near future with the improvement of GW detectors.

  18. When the proton becomes larger

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The TOTEM experiment at the LHC has just confirmed that, at high energy, protons behave as if they were becoming larger. In more technical terms, their total cross-section – a parameter linked to the proton-proton interaction probability – increases with energy. This phenomenon, expected from previous measurements performed at much lower energy, has now been confirmed for the first time at the LHC’s unprecedented energy.   One arm of a TOTEM T2 detector during its installation at interaction point 5. A composite particle like the proton is a complex system that in no way resembles a static Lego construction: sub-components move inside and interactions keep the whole thing together, but in a very dynamic way. This partly explains why even the very common proton can still be hiding secrets about its nature, decades after its discovery. One way of studying the inner properties of protons is to observe how they interact with each other, which, in technical terms, i...

  19. Large scale filaments associated with Milky Way spiral arms

    Science.gov (United States)

    Wang, Ke; Testi, Leonardo; Ginsburg, Adam; Walmsley, Malcolm; Molinari, Sergio; Schisano, Eugenio

    2015-08-01

    The ubiquity of filamentary structure at various scales through out the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e., as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL data complemented by spectral line cubes. We present a sample of the 9 most prominent Herschel filaments from a pilot search field. These filaments measure 37-99 pc long and 0.6-3.0 pc wide with masses (0.5-8.3)×104 Msun, and beam-averaged (28", or 0.4-0.7 pc) peak H2 column densities of (1.7-9.3)x1022 cm-2. The bulk of the filaments are relatively cold (17-21 K), while some local clumps have a dust temperature up to 25-47 K due to local star formation activities. All the filaments are located within spiral arm model incorporating the latest parallax measurements, we find that 7/9 of them reside within arms, but most are close to arm edges. These filaments are comparable in length to the Galactic scale height and therefore are not simply part of a grander turbulent cascade. These giant filaments, which often contain regularly spaced pc-scale clumps, are much larger than the filaments found in the Herschel Gould's Belt Survey, and they form the upper ends in the filamentary hierarchy. Full operational ALMA and NOEMA will be able to resolve and characterize similar filaments in nearby spiral galaxies, allowing us to compare the star formation in a uniform context of spiral arms.

  20. No Evidence for Pre-Copulatory Sexual Selection on Sperm Length in a Passerine Bird

    Science.gov (United States)

    Lifjeld, Jan T.; Laskemoen, Terje; Kleven, Oddmund; Pedersen, A. Tiril M.; Lampe, Helene M.; Rudolfsen, Geir; Schmoll, Tim; Slagsvold, Tore

    2012-01-01

    There is growing evidence that post-copulatory sexual selection, mediated by sperm competition, influences the evolution of sperm phenotypes. Evidence for pre-copulatory sexual selection effects on sperm traits, on the other hand, is rather scarce. A recent paper on the pied flycatcher, Ficedula hypoleuca, reported phenotypic associations between sperm length and two sexually selected male traits, i.e. plumage colour and arrival date, thus invoking pre-copulatory sexual selection for longer sperm. We were unable to replicate these associations with a larger data set from the same and two additional study populations; sperm length was not significantly related to either male plumage colour or arrival date. Furthermore, there was no significant difference in sperm length between populations despite marked differences in male plumage colour. We also found some evidence against the previously held assumption of longer sperm being qualitatively superior; longer sperm swam at the same speed as shorter sperm, but were less able to maintain speed over time. We argue that both empirical evidence and theoretical considerations suggest that the evolution of sperm morphology is not primarily associated with pre-copulatory sexual selection on male secondary sexual traits in this or other passerine bird species. The relatively large between-male variation in sperm length in this species is probably due to relaxed post-copulatory sexual selection. PMID:22384277

  1. No evidence for pre-copulatory sexual selection on sperm length in a passerine bird.

    Directory of Open Access Journals (Sweden)

    Jan T Lifjeld

    Full Text Available There is growing evidence that post-copulatory sexual selection, mediated by sperm competition, influences the evolution of sperm phenotypes. Evidence for pre-copulatory sexual selection effects on sperm traits, on the other hand, is rather scarce. A recent paper on the pied flycatcher, Ficedula hypoleuca, reported phenotypic associations between sperm length and two sexually selected male traits, i.e. plumage colour and arrival date, thus invoking pre-copulatory sexual selection for longer sperm. We were unable to replicate these associations with a larger data set from the same and two additional study populations; sperm length was not significantly related to either male plumage colour or arrival date. Furthermore, there was no significant difference in sperm length between populations despite marked differences in male plumage colour. We also found some evidence against the previously held assumption of longer sperm being qualitatively superior; longer sperm swam at the same speed as shorter sperm, but were less able to maintain speed over time. We argue that both empirical evidence and theoretical considerations suggest that the evolution of sperm morphology is not primarily associated with pre-copulatory sexual selection on male secondary sexual traits in this or other passerine bird species. The relatively large between-male variation in sperm length in this species is probably due to relaxed post-copulatory sexual selection.

  2. Larger men have larger prostates: Detection bias in epidemiologic studies of obesity and prostate cancer risk.

    Science.gov (United States)

    Rundle, Andrew; Wang, Yun; Sadasivan, Sudha; Chitale, Dhananjay A; Gupta, Nilesh S; Tang, Deliang; Rybicki, Benjamin A

    2017-06-01

    Obesity is associated with risk of aggressive prostate cancer (PCa), but not with over-all PCa risk. However, obese men have larger prostates which may lower biopsy accuracy and cause a systematic bias toward the null in epidemiologic studies of over-all risk. Within a cohort of 6692 men followed-up after a biopsy or transurethral resection of the prostate (TURP) with benign findings, a nested case-control study was conducted of 495 prostate cancer cases and controls matched on age, race, follow-up duration, biopsy versus TURP, and procedure date. Data on body mass index and prostate volume at the time of the initial procedure were abstracted from medical records. Prior to consideration of differences in prostate volume, overweight (OR = 1.41; 95%CI 1.01, 1.97), and obese status (OR = 1.59; 95%CI 1.09, 2.33) at the time of the original benign biopsy or TURP were associated with PCa incidence during follow-up. Prostate volume did not significantly moderate the association between body-size and PCa, however it did act as an inverse confounder; adjustment for prostate volume increased the effect size for overweight by 22% (adjusted OR = 1.52; 95%CI 1.08, 2.14) and for obese status by 23% (adjusted OR = 1.77; 95%CI 1.20, 2.62). Larger prostate volume at the time of the original benign biopsy or TURP was inversely associated with PCa incidence during follow-up (OR = 0.92 per 10 cc difference in volume; 95%CI 0.88, 0.97). In analyses that stratified case-control pairs by tumor aggressiveness of the case, prostate volume acted as an inverse confounder in analyses of non-aggressive PCa but not in analyses of aggressive PCa. In studies of obesity and PCa, differences in prostate volume cause a bias toward the null, particularly in analyses of non-aggressive PCa. A pervasive underestimation of the association between obesity and overall PCa risk may exist in the literature. © 2017 Wiley Periodicals, Inc.

  3. Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    K. G. McNaughton

    2007-06-01

    Full Text Available We report velocity and temperature spectra measured at nine levels from 1.42 meters up to 25.7 m over a smooth playa in Western Utah. Data are from highly convective conditions when the magnitude of the Obukhov length (our proxy for the depth of the surface friction layer was less than 2 m. Our results are somewhat similar to the results reported from the Minnesota experiment of Kaimal et al. (1976, but show significant differences in detail. Our velocity spectra show no evidence of buoyant production of kinetic energy at at the scale of the thermal structures. We interpret our velocity spectra to be the result of outer eddies interacting with the ground, not "local free convection".

    We observe that velocity spectra represent the spectral distribution of the kinetic energy of the turbulence, so we use energy scales based on total turbulence energy in the convective boundary layer (CBL to collapse our spectra. For the horizontal velocity spectra this scale is (zi εo2/3, where zi is inversion height and εo is the dissipation rate in the bulk CBL. This scale functionally replaces the Deardorff convective velocity scale. Vertical motions are blocked by the ground, so the outer eddies most effective in creating vertical motions come from the inertial subrange of the outer turbulence. We deduce that the appropriate scale for the peak region of the vertical velocity spectra is (z εo2/3 where z is height above ground. Deviations from perfect spectral collapse under these scalings at large and small wavenumbers are explained in terms of the energy transport and the eddy structures of the flow.

    We find that the peaks of the temperature spectra collapse when wavenumbers are scaled using (z1/2 zi1/2. That is, the lengths of the thermal structures depend on both the lengths of the

  4. Determination of the coherence length in high-mobility semiconductor-coupled Josephson weak links

    International Nuclear Information System (INIS)

    Kleinsasser, A.W.

    1991-01-01

    A Nb-InAs-Nb superconductor-semiconductor-superconductor weak link based on a high-mobility homoepitaxial n-InAs film was reported recently [Akazaki, Kawakami, and Nittu J. Appl. Phys. 66, 6121 (1989)]. Measurements of the electron concentration, effective mass, and mobility allowed the coherence length in the normal link to be calculated. The mobility was high enough that the dirty limit was not applicable in the temperature range (∼2--7 K) over which the device critical current was measured. The temperature dependence of the critical current could not be fit by the usual theoretical form, even though an expression for the coherence length was used that should be applicable in both the clean and dirty limits. In this paper is demonstrated an excellent fit to the data, obtained by using the magnitude of the coherence length as a fitting parameter and assuming the dirty limit temperature dependence. This implies a coherence length proportional to T -1/2 but far shorter than that calculated from the known material parameters. It is suggested that a different scaling length may apply in high-mobility devices

  5. Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild

    Science.gov (United States)

    Broell, Franziska; Taggart, Christopher T.

    2015-01-01

    This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming ‘efficiently’, is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF) and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40), and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time) in the wild. PMID:26673777

  6. Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild.

    Directory of Open Access Journals (Sweden)

    Franziska Broell

    Full Text Available This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming 'efficiently', is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40, and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time in the wild.

  7. Genetic parameters for different growth scales in GIFT strain of Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    He, J; Gao, H; Xu, P; Yang, R

    2015-12-01

    Body weight, length, width and depth at two growth stages were observed for a total of 5015 individuals of GIFT strain, along with a pedigree including 5588 individuals from 104 sires and 162 dams was collected. Multivariate animal models and a random regression model were used to genetically analyse absolute and relative growth scales of these growth traits. In absolute growth scale, the observed growth traits had moderate heritabilities ranging from 0.321 to 0.576, while pairwise ratios between body length, width and depth were lowly inherited and maximum heritability was only 0.146 for length/depth. All genetic correlations were above 0.5 between pairwise growth traits and genetic correlation between length/width and length/depth varied between both growth stages. Based on those estimates, selection index of multiple traits of interest can be formulated in future breeding program to improve genetically body weight and morphology of the GIFT strain. In relative growth scale, heritabilities in relative growths of body length, width and depth to body weight were 0.257, 0.412 and 0.066, respectively, while genetic correlations among these allometry scalings were above 0.8. Genetic analysis for joint allometries of body weight to body length, width and depth will contribute to genetically regulate the growth rate between body shape and body weight. © 2015 Blackwell Verlag GmbH.

  8. Measuring the attenuation length of water in the CHIPS-M water Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Amat, F.; Bizouard, P. [Aix Marseille University Saint-Jerome, 13013 Marseille (France); Bryant, J. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Carroll, T.J.; Rijck, S. De [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Germani, S. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Joyce, T. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Kriesten, B. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Marshak, M.; Meier, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Nelson, J.K. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Perch, A.J.; Pfützner, M.M. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Salazar, R. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Thomas, J., E-mail: jennifer.thomas@ucl.ac.uk [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Trokan-Tenorio, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Vahle, P. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Wade, R. [Avenir Consulting, Abingdon, Oxfordshire (United Kingdom); Wendt, C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Whitehead, L.H. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); and others

    2017-02-01

    The water at the proposed site of the CHIPS water Cherenkov detector has been studied to measure its attenuation length for Cherenkov light as a function of filtering time. A scaled model of the CHIPS detector filled with water from the Wentworth 2W pit, proposed site of the CHIPS deployment, in conjunction with a 3.2 m vertical column filled with this water, was used to study the transmission of 405 nm laser light. Results consistent with attenuation lengths of up to 100 m were observed for this wavelength with filtration and UV sterilization alone.

  9. Continuum and crystal strain gradient plasticity with energetic and dissipative length scales

    Science.gov (United States)

    Faghihi, Danial

    This work, standing as an attempt to understand and mathematically model the small scale materials thermal and mechanical responses by the aid of Materials Science fundamentals, Continuum Solid Mechanics, Misro-scale experimental observations, and Numerical methods. Since conventional continuum plasticity and heat transfer theories, based on the local thermodynamic equilibrium, do not account for the microstructural characteristics of materials, they cannot be used to adequately address the observed mechanical and thermal response of the micro-scale metallic structures. Some of these cases, which are considered in this dissertation, include the dependency of thin films strength on the width of the sample and diffusive-ballistic response of temperature in the course of heat transfer. A thermodynamic-based higher order gradient framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. The concept of the thermal activation energy, the dislocations interaction mechanisms, nonlocal energy exchange between energy carriers and phonon-electrons interactions are taken into consideration in proposing the thermodynamic potentials such as Helmholtz free energy and rate of dissipation. The same approach is also adopted to incorporate the effect of the material microstructural interface between two materials (e.g. grain boundary in crystals) into the formulation. The developed grain boundary flow rule accounts for the energy storage at the grain boundary due to the dislocation pile up as well as energy dissipation caused by the dislocation transfer through the grain boundary. Some of the abovementioned responses of small scale metallic compounds are addressed by means of the numerical implementation of the developed framework within the finite element context. In this regard, both displacement and plastic strain fields are independently discretized and the numerical implementation is performed in

  10. Variability and trends in dry day frequency and dry event length in the southwestern United States

    Science.gov (United States)

    McCabe, Gregory J.; Legates, David R.; Lins, Harry F.

    2010-01-01

    Daily precipitation from 22 National Weather Service first-order weather stations in the southwestern United States for water years 1951 through 2006 are used to examine variability and trends in the frequency of dry days and dry event length. Dry events with minimum thresholds of 10 and 20 consecutive days of precipitation with less than 2.54 mm are analyzed. For water years and cool seasons (October through March), most sites indicate negative trends in dry event length (i.e., dry event durations are becoming shorter). For the warm season (April through September), most sites also indicate negative trends; however, more sites indicate positive trends in dry event length for the warm season than for water years or cool seasons. The larger number of sites indicating positive trends in dry event length during the warm season is due to a series of dry warm seasons near the end of the 20th century and the beginning of the 21st century. Overall, a large portion of the variability in dry event length is attributable to variability of the El Niño–Southern Oscillation, especially for water years and cool seasons. Our results are consistent with analyses of trends in discharge for sites in the southwestern United States, an increased frequency in El Niño events, and positive trends in precipitation in the southwestern United States.

  11. Scaling Techniques for Massive Scale-Free Graphs in Distributed (External) Memory

    KAUST Repository

    Pearce, Roger

    2013-05-01

    We present techniques to process large scale-free graphs in distributed memory. Our aim is to scale to trillions of edges, and our research is targeted at leadership class supercomputers and clusters with local non-volatile memory, e.g., NAND Flash. We apply an edge list partitioning technique, designed to accommodate high-degree vertices (hubs) that create scaling challenges when processing scale-free graphs. In addition to partitioning hubs, we use ghost vertices to represent the hubs to reduce communication hotspots. We present a scaling study with three important graph algorithms: Breadth-First Search (BFS), K-Core decomposition, and Triangle Counting. We also demonstrate scalability on BG/P Intrepid by comparing to best known Graph500 results. We show results on two clusters with local NVRAM storage that are capable of traversing trillion-edge scale-free graphs. By leveraging node-local NAND Flash, our approach can process thirty-two times larger datasets with only a 39% performance degradation in Traversed Edges Per Second (TEPS). © 2013 IEEE.

  12. Evaluation of scaling invariance embedded in short time series.

    Directory of Open Access Journals (Sweden)

    Xue Pan

    Full Text Available Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2. Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03 and sharp confidential interval (standard deviation ≤0.05. Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  13. Evaluation of scaling invariance embedded in short time series.

    Science.gov (United States)

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  14. Dynamical scaling laws – A few unanswered questions

    Indian Academy of Sciences (India)

    a highly nonlinear process far from equilibrium. The second phase grows with ... The scaling hypothesis assumes the existence of a single characteristic length scale L(t) such that the domain sizes and ... the mean density of the medium varies as a function of distance from a given point, should exhibit the scaling form with ...

  15. Impact of Generator Stroke Length on Energy Production for a Direct Drive Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Yue Hong

    2016-09-01

    Full Text Available The Lysekil wave energy converter (WEC, developed by the wave energy research group of Uppsala University, has evolved through a variety of mechanical designs since the first prototype was installed in 2006. The hundreds of engineering decisions made throughout the design processes have been based on a combination of theory, know-how from previous experiments, and educated guesses. One key parameter in the design of the WECs linear generator is the stroke length. A long stroke requires a taller WEC with associated economical and mechanical challenges, but a short stroke limits the power production. The 2-m stroke of the current WECs has been an educated guess for the Swedish wave climate, though the consequences of this choice on energy absorption have not been studied. When the WEC technology is considered for international waters, with larger waves and challenges of energy absorption and survivability, the subject of stroke length becomes even more relevant. This paper studies the impact of generator stroke length on energy absorption for three sites off the coasts of Sweden, Chile and Scotland. 2-m, 4-m, and unlimited stroke are considered. Power matrices for the studied WEC prototype are presented for each of the studied stroke lengths. Presented results quantify the losses incurred by a limited stroke. The results indicate that a 2-m stroke length is likely to be a good choice for Sweden, but 4-m is likely to be necessary in more energetic international waters.

  16. Scales of Marine Turbulence in Cook Strait (New Zealand) in the Context of Tidal Energy Turbines

    Science.gov (United States)

    Stevens, Craig

    2017-04-01

    Cook Strait, the channel separating New Zealand's North and South Islands, is at it's narrowest around 22 km across with flows driven by a semidiurnal tide, wind and a baroclinic pressure gradient. Water depths are around 250-300 m in the main part of the channel, with shoals to the south and the submerged Fishermans Rock (aka pinnacle) in the centre northwest of the Strait. The substantial tidal flow speed is due to the tide being nearly out of phase comparing the ends of the strait and further enhanced by a narrowing of the strait. It has significant potential for a tidal energy resource suitable for extraction due to both its significant energy levels but also its proximity to electricity infrastructure and nationally high uptake of renewable energy in general. Here we describe recent flow and turbulence data and contextualise them in terms of scales relevant to marine energy extraction. With flow speeds reaching 3 m s-1 in a water column of > 200 m depth the setting is heuristically known to be highly turbulent. Turbulent energy dissipation rates are modest but high for oceans, around 5x10-5 W kg-1. Thorpe scales, the observed quantity representing the energy-bearing scale, are often as much as one quarter of the water depth. This means eddy sizes can potentially be larger than blade length. A boundary-layer structure was apparent but highly variable. This has implications for both operation of tidal turbines, as well as modulating their effect on the environment. Fishermans Rock itself is interesting as if can be considered a proxy for a larger array of turbines.

  17. Multiple scaling power in liquid gallium under pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Renfeng; Wang, Luhong; Li, Liangliang; Yu, Tony; Zhao, Haiyan; Chapman, Karena W.; Rivers, Mark L.; Chupas, Peter J.; Mao, Ho-kwang; Liu, Haozhe

    2017-06-01

    Generally, a single scaling exponent, Df, can characterize the fractal structures of metallic glasses according to the scaling power law. However, when the scaling power law is applied to liquid gallium upon compression, the results show multiple scaling exponents and the values are beyond 3 within the first four coordination spheres in real space, indicating that the power law fails to describe the fractal feature in liquid gallium. The increase in the first coordination number with pressure leads to the fact that first coordination spheres at different pressures are not similar to each other in a geometrical sense. This multiple scaling power behavior is confined within a correlation length of ξ ≈ 14–15 Å at applied pressure according to decay of G(r) in liquid gallium. Beyond this length the liquid gallium system could roughly be viewed as homogeneous, as indicated by the scaling exponent, Ds, which is close to 3 beyond the first four coordination spheres.

  18. Urban Aerodynamic Roughness Length Mapping Using Multitemporal SAR Data

    Directory of Open Access Journals (Sweden)

    Fengli Zhang

    2017-01-01

    Full Text Available Aerodynamic roughness is very important to urban meteorological and climate studies. Radar remote sensing is considered to be an effective means for aerodynamic roughness retrieval because radar backscattering is sensitive to the surface roughness and geometric structure of a given target. In this paper, a methodology for aerodynamic roughness length estimation using SAR data in urban areas is introduced. The scale and orientation characteristics of backscattering of various targets in urban areas were firstly extracted and analyzed, which showed great potential of SAR data for urban roughness elements characterization. Then the ground truth aerodynamic roughness was calculated from wind gradient data acquired by the meteorological tower using fitting and iterative method. And then the optimal dimension of the upwind sector for the aerodynamic roughness calculation was determined through a correlation analysis between backscattering extracted from SAR data at various upwind sector areas and the aerodynamic roughness calculated from the meteorological tower data. Finally a quantitative relationship was set up to retrieve the aerodynamic roughness length from SAR data. Experiments based on ALOS PALSAR and COSMO-SkyMed data from 2006 to 2011 prove that the proposed methodology can provide accurate roughness length estimations for the spatial and temporal analysis of urban surface.

  19. Telomere Length, Proviral Load and Neurologic Impairment in HTLV-1 and HTLV-2-Infected Subjects

    Directory of Open Access Journals (Sweden)

    Benjamin Usadi

    2016-08-01

    Full Text Available Short or damaged telomeres have been implicated in degenerative conditions. We hypothesized that analysis of telomere length (TL in human T-cell lymphotropic virus (HTLV infection and HTLV-associated neuropathy might provide clues to the etiology of HTLV-associated disease and viral dynamics. A subset of 45 human T-cell lymphotropic virus type 1 (HTLV-1, 45 human T-cell lymphotropic virus type 2 (HTLV-2, and 45 seronegative subjects was selected from the larger HTLV Outcomes Study (HOST cohort, matched on age, sex and race/ethnicity. Telomere-to-single-copy gene (T/S ratio (a measure of TL and HTLV-1 and HTLV-2 proviral loads were measured in peripheral blood mononuclear cells (PBMCs using quantitative PCR (qPCR. Vibration sensation measured by tuning fork during neurologic examinations performed as part of the HOST study allowed for an assessment of peripheral neuropathy. TL was compared between groups using t-tests, linear and logistic regression. Mean T/S ratio was 1.02 ± 0.16 in HTLV-1, 1.03 ± 0.17 in HTLV-2 and 0.99 ± 0.18 in HTLV seronegative subjects (p = 0.322. TL was not associated with HTLV-1 or -2 proviral load. Shorter TL was significantly associated with impaired vibration sense in the HTLV-2 positive group only. Overall, we found no evidence that telomere length was affected by chronic HTLV-1 and HTLV-2 infection. That TL was only associated with peripheral neuropathy in the HTLV-2-positive group is intriguing, but should be interpreted cautiously. Studies with larger sample size and telomere length measurement in lymphocyte subsets may clarify the relationship between TL and HTLV-infection.

  20. A scaling law derived from a broadband impedance applications to SPEAR

    International Nuclear Information System (INIS)

    Vos, L.

    1990-01-01

    The bunch length in high-brightness synchrotron radiation sources is an important performance parameter. It is critically dependent on the μ-wave instability. Usually the SPEAR scaling law is used to compute the expected bunch length. In this paper we show that the SPEAR scaling law is compatible with a broadband impedance. This makes it possible to calculate the appropriate scaling law for a machine like the one proposed in Berkeley assuming that the impedance is known from measurements and/or calculations. (author) 4 refs., 5 figs., 1 tab

  1. Listing of nuclear power plant larger than 100 MWe

    International Nuclear Information System (INIS)

    McHugh, B.

    1976-03-01

    This report contains a list of all nuclear power plants larger than 100 MWe, printed out from the Argus Data Bank at Chalmers University of Technology in Sweden. The plants are listed by NSSS supply. (M.S.)

  2. Multiple scales and phases in discrete chains with application to folded proteins

    Science.gov (United States)

    Sinelnikova, A.; Niemi, A. J.; Nilsson, Johan; Ulybyshev, M.

    2018-05-01

    Chiral heteropolymers such as large globular proteins can simultaneously support multiple length scales. The interplay between the different scales brings about conformational diversity, determines the phase properties of the polymer chain, and governs the structure of the energy landscape. Most importantly, multiple scales produce complex dynamics that enable proteins to sustain live matter. However, at the moment there is incomplete understanding of how to identify and distinguish the various scales that determine the structure and dynamics of a complex protein. Here we address this impending problem. We develop a methodology with the potential to systematically identify different length scales, in the general case of a linear polymer chain. For this we introduce and analyze the properties of an order parameter that can both reveal the presence of different length scales and can also probe the phase structure. We first develop our concepts in the case of chiral homopolymers. We introduce a variant of Kadanoff's block-spin transformation to coarse grain piecewise linear chains, such as the C α backbone of a protein. We derive analytically, and then verify numerically, a number of properties that the order parameter can display, in the case of a chiral polymer chain. In particular, we propose that in the case of a chiral heteropolymer the order parameter can reveal traits of several different phases, contingent on the length scale at which it is scrutinized. We confirm that this is the case with crystallographic protein structures in the Protein Data Bank. Thus our results suggest relations between the scales, the phases, and the complexity of folding pathways.

  3. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mehralian, Fahimeh [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Tadi Beni, Yaghoub, E-mail: tadi@eng.sku.ac.ir [Faculty of Engineering, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Karimi Zeverdejani, Mehran [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of)

    2017-06-01

    Featured by two small length scale parameters, nonlocal strain gradient theory is utilized to investigate the free vibration of nanotubes. A new size-dependent shell model formulation is developed by using the first order shear deformation theory. The governing equations and boundary conditions are obtained using Hamilton's principle and solved for simply supported boundary condition. As main purpose of this study, since the values of two small length scale parameters are still unknown, they are calibrated by the means of molecular dynamics simulations (MDs). Then, the influences of different parameters such as nonlocal parameter, scale factor, length and thickness on vibration characteristics of nanotubes are studied. It is also shown that increase in thickness and decrease in length parameters intensify the effect of nonlocal parameter and scale factor.

  4. Ionic Size Effects: Generalized Boltzmann Distributions, Counterion Stratification, and Modified Debye Length.

    Science.gov (United States)

    Liu, Bo; Liu, Pei; Xu, Zhenli; Zhou, Shenggao

    2013-10-01

    Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes.

  5. Multitude scaling laws in axisymmetric turbulent wake

    Science.gov (United States)

    Layek, G. C.; Sunita

    2018-03-01

    We establish theoretically multitude scaling laws of a self-similar (statistical) axisymmetric turbulent wake. At infinite Reynolds number limit, the flow evolves as general power law and a new exponential law of streamwise distance, consistent with the criterion of equilibrium similarity hypothesis. We found power law scalings for components of the homogeneous dissipation rate (ɛ) obeying the non-Richardson-Kolmogorov cascade as ɛu˜ku3 /2/(l R elm ) , ɛv˜kv3 /2/l , kv˜ku/R el2 m, 0 stress, l is the local length scale, and Rel is the Reynolds number. The Richardson-Kolmogorov cascade corresponds to m = 0. For m ≈ 1, the power law agrees with non-equilibrium scaling laws observed in recent experiments of the axisymmetric wake. On the contrary, the exponential scaling law follows the above dissipation law with different regions of existence for power index m = 3. At finite Reynolds number with kinematic viscosity ν, scalings obey the dissipation laws ɛu ˜ νku/l2 and ɛv ˜ νkv/l2 with kv˜ku/R eln. The value of n is preferably 0 and 2. Different possibilities of scaling laws and symmetry breaking process are discussed at length.

  6. Association between maternal symptoms of sleep disordered breathing and fetal telomere length.

    Science.gov (United States)

    Salihu, Hamisu M; King, Lindsey; Patel, Priyanshi; Paothong, Arnut; Pradhan, Anupam; Louis, Judette; Naik, Eknath; Marty, Phillip J; Whiteman, Valerie

    2015-04-01

    Our investigation aims to assess the impact of symptoms of maternal sleep-disordered breathing, specifically sleep apnea risk and daytime sleepiness, on fetal leukocyte telomere length. Pregnant women were recruited upon hospital delivery admission. Sleep exposure outcomes were measured using the Berlin Questionnaire to quantify sleep apnea and the Epworth Sleepiness Scale to measure daytime sleepiness. Participants were classified as "High Risk" or "Low Risk" for sleep apnea based on responses to the Berlin, while "Normal" or "Abnormal" daytime sleepiness was determined based on responses to the Epworth. Neonatal umbilical cord blood samples (N = 67) were collected and genomic DNA was isolated from cord blood leukocytes using Quantitative PCR. A ratio of relative telomere length was derived by telomere repeat copy number and single copy gene copy number (T/S ratio) and used to compare telomere lengths. Bootstrap and ANOVA statistical procedures were employed. On the Berlin, 68.7% of participants were classified as Low Risk while 31.3% were classified as High Risk for sleep apnea. According to the Epworth scale, 80.6% were determined to have Normal daytime sleepiness, and 19.4% were found to have Abnormal daytime sleepiness. The T/S ratio among pregnant women at High Risk for sleep apnea was significantly shorter than for those at Low Risk (P value sleep disordered breathing during pregnancy, and suggest sleep disordered breathing as a possible mechanism of accelerated chromosomal aging. © 2015 Associated Professional Sleep Societies, LLC.

  7. Electron heating caused by the ion-acoustic decay instability in a finite-length system

    International Nuclear Information System (INIS)

    Rambo, P.W.; Woo, W.; DeGroot, J.S.; Mizuno, K.

    1984-01-01

    The ion-acoustic decay instability is investigated for a finite-length plasma with density somewhat below the cutoff density of the electromagnetic driver (napprox.0.7n/sub c/). For this regime, the heating in a very long system can overpopulate the electron tail and cause linear saturation of the low phase velocity electron plasma waves. For a short system, the instability is nonlinearly saturated at larger amplitude by ion trapping. Absorption can be significantly increased by the large-amplitude ion waves. These results compare favorably with microwave experiments

  8. Pulse length of ultracold electron bunches extracted from a laser cooled gas

    Directory of Open Access Journals (Sweden)

    J. G. H. Franssen

    2017-07-01

    Full Text Available We present measurements of the pulse length of ultracold electron bunches generated by near-threshold two-photon photoionization of a laser-cooled gas. The pulse length has been measured using a resonant 3 GHz deflecting cavity in TM110 mode. We have measured the pulse length in three ionization regimes. The first is direct two-photon photoionization using only a 480 nm femtosecond laser pulse, which results in short (∼15 ps but hot (∼104 K electron bunches. The second regime is just-above-threshold femtosecond photoionization employing the combination of a continuous-wave 780 nm excitation laser and a tunable 480 nm femtosecond ionization laser which results in both ultracold (∼10 K and ultrafast (∼25 ps electron bunches. These pulses typically contain ∼103 electrons and have a root-mean-square normalized transverse beam emittance of 1.5 ± 0.1 nm rad. The measured pulse lengths are limited by the energy spread associated with the longitudinal size of the ionization volume, as expected. The third regime is just-below-threshold ionization which produces Rydberg states which slowly ionize on microsecond time scales.

  9. Examination of flame length for burning pulverized coal in laminar flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Dong; Kim, Gyu Bo; Chang, Young June; Song, Ju Hun; Jeon, Chung Hwan [Pusan National University, Busan (Korea, Republic of)

    2010-12-15

    Because there has been a recent increase in the use of low calorific coal compared to standard coal, it is crucial to control the char flame length governing the burning life-time of coal in a coal-fired utility boiler. The main objective of this study is to develop a simplified model that can theoretically predict the flame length for burning coal in a laboratory-scale entrained laminar flow reactor (LFR) system. The char burning behavior was experimentally observed when sub-bituminous pulverized coal was fed into the LFR under burning conditions similar to those in a real boiler: a heating rate of 1000 K/s, an oxygen molar fraction of 7.7 %, and reacting flue gas temperatures ranging from 1500 to 2000 K. By using the theoretical model developed in this study, the effect of particle size on the coal flame length was exclusively addressed. In this model, the effect of particle mass was eliminated to compare with the experimental result performed under a constant mass feeding of coal. Overall, the computed results for the coal flame length were in good agreement with the experimental data, particularly when the external oxygen diffusion effect was considered in the model

  10. Examination of flame length for burning pulverized coal in laminar flow reactor

    International Nuclear Information System (INIS)

    Kim, Jae Dong; Kim, Gyu Bo; Chang, Young June; Song, Ju Hun; Jeon, Chung Hwan

    2010-01-01

    Because there has been a recent increase in the use of low calorific coal compared to standard coal, it is crucial to control the char flame length governing the burning life-time of coal in a coal-fired utility boiler. The main objective of this study is to develop a simplified model that can theoretically predict the flame length for burning coal in a laboratory-scale entrained laminar flow reactor (LFR) system. The char burning behavior was experimentally observed when sub-bituminous pulverized coal was fed into the LFR under burning conditions similar to those in a real boiler: a heating rate of 1000 K/s, an oxygen molar fraction of 7.7 %, and reacting flue gas temperatures ranging from 1500 to 2000 K. By using the theoretical model developed in this study, the effect of particle size on the coal flame length was exclusively addressed. In this model, the effect of particle mass was eliminated to compare with the experimental result performed under a constant mass feeding of coal. Overall, the computed results for the coal flame length were in good agreement with the experimental data, particularly when the external oxygen diffusion effect was considered in the model

  11. Why borrowers pay premiums to larger lenders: Empirical evidence from sovereign syndicated loans

    OpenAIRE

    Hallak, Issam

    2002-01-01

    All other terms being equal (e.g. seniority), syndicated loan contracts provide larger lending compensations (in percentage points) to institutions funding larger amounts. This paper explores empirically the motivation for such a price design on a sample of sovereign syndicated loans in the period 1990-1997. I find strong evidence that a larger premium is associated with higher renegotiation probability and information asymmetries. It hardly has any impact on the number of lenders though. Thi...

  12. Length of stay of general psychiatric inpatients in the United States: systematic review.

    LENUS (Irish Health Repository)

    Tulloch, Alex D

    2011-05-01

    Psychiatric length of stay (LOS) has reduced but is still longer than for physical disorders. Inpatient costs are 16% of total mental health spending. Regression analyses of the determinants of LOS for US adult psychiatric inpatients were systematically reviewed. Most studies predated recent LOS reductions. Psychosis, female gender and larger hospital size were associated with longer LOS, while discharge against medical advice, prospective payment, being married, being detained and either younger or middle age were associated with shorter LOS. Associations appeared consistent, especially where sample size was above 3,000. Updated studies should be adequately powered and include the variables above.

  13. Annual spatiotemporal migration schedules in three larger insectivorous birds

    DEFF Research Database (Denmark)

    Jacobsen, Lars Bo; Jensen, Niels Odder; Willemoes, Mikkel

    2017-01-01

    Background: Knowledge of spatiotemporal migration patterns is important for our understanding of migration ecology and ultimately conservation of migratory species. We studied the annual migration schedules of European nightjar, a large nocturnal insectivore and compared it with two other larger ...

  14. Generation of Length Distribution, Length Diagram, Fibrogram, and Statistical Characteristics by Weight of Cotton Blends

    Directory of Open Access Journals (Sweden)

    B. Azzouz

    2007-01-01

    Full Text Available The textile fibre mixture as a multicomponent blend of variable fibres imposes regarding the proper method to predict the characteristics of the final blend. The length diagram and the fibrogram of cotton are generated. Then the length distribution, the length diagram, and the fibrogram of a blend of different categories of cotton are determined. The length distributions by weight of five different categories of cotton (Egyptian, USA (Pima, Brazilian, USA (Upland, and Uzbekistani are measured by AFIS. From these distributions, the length distribution, the length diagram, and the fibrogram by weight of four binary blends are expressed. The length parameters of these cotton blends are calculated and their variations are plotted against the mass fraction x of one component in the blend .These calculated parameters are compared to those of real blends. Finally, the selection of the optimal blends using the linear programming method, based on the hypothesis that the cotton blend parameters vary linearly in function of the components rations, is proved insufficient.

  15. The cause of larger local magnitude (Mj) in western Japan

    Science.gov (United States)

    Kawamoto, H.; Furumura, T.

    2017-12-01

    The local magnitude of the Japan Meteorological Agency (JMA) scale (Mj) in Japan sometimes show a significant discrepancy between Mw. The Mj is calculated using the amplitude of the horizontal component of ground displacement recorded by seismometers with the natural period of T0=5 s using Katsumata et al. (2004). A typical example of such a discrepancy in estimating Mj was an overestimation of the 2000 Western Tottori earthquake (Mj=7.3, Mw=6.7; hereafter referred to as event T). In this study, we examined the discrepancy between Mj and Mw for recent large earthquakes occurring in Japan.We found that the most earthquakes with larger Mj (>Mw) occur in western Japan while the earthquakes in northern Japan show reasonable Mj (=Mw). To understand the cause of such larger Mj for western Japan earthquakes we examined the strong motion record from the K-NET and KiK-net network for the event T and other earthquakes for reference. The observed ground displacement record from the event T shows a distinctive Love wave packet in tangential motion with a dominant period of about T=5 s which propagates long distances without showing strong dispersions. On the other hand, the ground motions from the earthquakes in northeastern Japan do not have such surface wave packet, and attenuation of ground motion is significant. Therefore, the overestimation of the Mj for earthquakes in western Japan may be attributed to efficient generation and propagation properties of Love wave probably relating to the crustal structure of western Japan. To explain this, we then conducted a numerical simulation of seismic wave propagation using 3D sedimentary layer model (JIVSM; Koketsu et al., 2012) and the source model of the event T. The result demonstrated the efficient generation of Love wave from the shallow strike-slip source which propagates long distances in western Japan without significant dispersions. On the other hand, the generation of surface wave was not so efficient when using a

  16. Scales and scaling in turbulent ocean sciences; physics-biology coupling

    Science.gov (United States)

    Schmitt, Francois

    2015-04-01

    Geophysical fields possess huge fluctuations over many spatial and temporal scales. In the ocean, such property at smaller scales is closely linked to marine turbulence. The velocity field is varying from large scales to the Kolmogorov scale (mm) and scalar fields from large scales to the Batchelor scale, which is often much smaller. As a consequence, it is not always simple to determine at which scale a process should be considered. The scale question is hence fundamental in marine sciences, especially when dealing with physics-biology coupling. For example, marine dynamical models have typically a grid size of hundred meters or more, which is more than 105 times larger than the smallest turbulence scales (Kolmogorov scale). Such scale is fine for the dynamics of a whale (around 100 m) but for a fish larvae (1 cm) or a copepod (1 mm) a description at smaller scales is needed, due to the nonlinear nature of turbulence. The same is verified also for biogeochemical fields such as passive and actives tracers (oxygen, fluorescence, nutrients, pH, turbidity, temperature, salinity...) In this framework, we will discuss the scale problem in turbulence modeling in the ocean, and the relation of Kolmogorov's and Batchelor's scales of turbulence in the ocean, with the size of marine animals. We will also consider scaling laws for organism-particle Reynolds numbers (from whales to bacteria), and possible scaling laws for organism's accelerations.

  17. Word length, set size, and lexical factors: Re-examining what causes the word length effect.

    Science.gov (United States)

    Guitard, Dominic; Gabel, Andrew J; Saint-Aubin, Jean; Surprenant, Aimée M; Neath, Ian

    2018-04-19

    The word length effect, better recall of lists of short (fewer syllables) than long (more syllables) words has been termed a benchmark effect of working memory. Despite this, experiments on the word length effect can yield quite different results depending on set size and stimulus properties. Seven experiments are reported that address these 2 issues. Experiment 1 replicated the finding of a preserved word length effect under concurrent articulation for large stimulus sets, which contrasts with the abolition of the word length effect by concurrent articulation for small stimulus sets. Experiment 2, however, demonstrated that when the short and long words are equated on more dimensions, concurrent articulation abolishes the word length effect for large stimulus sets. Experiment 3 shows a standard word length effect when output time is equated, but Experiments 4-6 show no word length effect when short and long words are equated on increasingly more dimensions that previous demonstrations have overlooked. Finally, Experiment 7 compared recall of a small and large neighborhood words that were equated on all the dimensions used in Experiment 6 (except for those directly related to neighborhood size) and a neighborhood size effect was still observed. We conclude that lexical factors, rather than word length per se, are better predictors of when the word length effect will occur. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Effects of the Length of Jet Grouted Columns and Soil Profile on the Settlement of Shallow Foundations

    Directory of Open Access Journals (Sweden)

    Zaheer Ahmed Almani

    2012-07-01

    Full Text Available In this paper, the effect of length of jet grouted columns and varying soil profile under shallow foundations of buildings constructed on the liquefiable ground was studied. The isolated shallow footing pad which supports a typical simple frame structure was constructed on the liquefiable ground. This ground was reinforced with jet grouted column rows under the shallow foundations of structure. The system was modeled as plane-strain using the FLAC 2D (Fast Lagrangian Analysis of Continua dynamic modelling and analysis code. This case focuses on the length of jet grouted columns in a soil profile and the effect of soil profiles of varying thickness on the settlements of building structure when the soil is liquefied during an earthquake. The results show that liquefaction-induced large settlements of shallow foundation of building decrease to tolerable limits with the increase in the length of columns. For soil profiles, with a relatively thinner liquefiable layer, a certain minimum length of columns (extended in base non liquefiable layer is required to meet the settlement tolerable limits. For soil profiles, with a relatively thicker liquefiable layer, this length should be equal to the thickness of the liquefiable layer from the footing base plus some extension in the base non liquefiable dense layer. In the soil profile with the base liquefiable layer underlying the non liquefiable layer, settlements could not be reduced to the tolerable limits even with columns of relatively larger length which may be critical.

  19. Scaling: From quanta to nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, Novak, E-mail: rohatgi@bnl.go [703 New Mark Esplanade, Rockville, MD 20850 (United States)

    2010-08-15

    This paper has three objectives. The first objective is to show how the Einstein-de Broglie equation (EdB) can be extended to model and scale, via fractional scaling, both conservative and dissipative processes ranging in scale from quanta to nuclear reactors. The paper also discusses how and why a single equation and associated fractional scaling method generate for each process of change the corresponding scaling criterion. The versatility and capability of fractional scaling are demonstrated by applying it to: (a) particle dynamics, (b) conservative (Bernoulli) and dissipative (hydraulic jump) flows, (c) viscous and turbulent flows through rough and smooth pipes, and (d) momentum diffusion in a semi-infinite medium. The capability of fractional scaling to scale a process over a vast range of temporal and spatial scales is demonstrated by applying it to fluctuating processes. The application shows that the modeling of fluctuations in fluid mechanics is analogous to that in relativistic quantum field theory. Thus, Kolmogorov dissipation frequency and length are the analogs of the characteristic time and length of quantum fluctuations. The paper briefly discusses the applicability of the fractional scaling approach (FSA) to nanotechnology and biology. It also notes the analogy between FSA and the approach used to scale polymers. These applications demonstrate the power of scaling as well as the validity of Pierre-Gilles de Gennes' ideas concerning scaling, analogies and simplicity. They also demonstrate the usefulness and efficiency of his approach to solving scientific problems. The second objective is to note and discuss the benefits of applying FSA to NPP technology. The third objective is to present a state of the art assessment of thermal-hydraulics (T/H) capabilities and needs relevant to NPP.

  20. Scaling: From quanta to nuclear reactors

    International Nuclear Information System (INIS)

    Zuber, Novak

    2010-01-01

    This paper has three objectives. The first objective is to show how the Einstein-de Broglie equation (EdB) can be extended to model and scale, via fractional scaling, both conservative and dissipative processes ranging in scale from quanta to nuclear reactors. The paper also discusses how and why a single equation and associated fractional scaling method generate for each process of change the corresponding scaling criterion. The versatility and capability of fractional scaling are demonstrated by applying it to: (a) particle dynamics, (b) conservative (Bernoulli) and dissipative (hydraulic jump) flows, (c) viscous and turbulent flows through rough and smooth pipes, and (d) momentum diffusion in a semi-infinite medium. The capability of fractional scaling to scale a process over a vast range of temporal and spatial scales is demonstrated by applying it to fluctuating processes. The application shows that the modeling of fluctuations in fluid mechanics is analogous to that in relativistic quantum field theory. Thus, Kolmogorov dissipation frequency and length are the analogs of the characteristic time and length of quantum fluctuations. The paper briefly discusses the applicability of the fractional scaling approach (FSA) to nanotechnology and biology. It also notes the analogy between FSA and the approach used to scale polymers. These applications demonstrate the power of scaling as well as the validity of Pierre-Gilles de Gennes' ideas concerning scaling, analogies and simplicity. They also demonstrate the usefulness and efficiency of his approach to solving scientific problems. The second objective is to note and discuss the benefits of applying FSA to NPP technology. The third objective is to present a state of the art assessment of thermal-hydraulics (T/H) capabilities and needs relevant to NPP.

  1. Modeling insertional mutagenesis using gene length and expression in murine embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Alex S Nord

    2007-07-01

    Full Text Available High-throughput mutagenesis of the mammalian genome is a powerful means to facilitate analysis of gene function. Gene trapping in embryonic stem cells (ESCs is the most widely used form of insertional mutagenesis in mammals. However, the rules governing its efficiency are not fully understood, and the effects of vector design on the likelihood of gene-trapping events have not been tested on a genome-wide scale.In this study, we used public gene-trap data to model gene-trap likelihood. Using the association of gene length and gene expression with gene-trap likelihood, we constructed spline-based regression models that characterize which genes are susceptible and which genes are resistant to gene-trapping techniques. We report results for three classes of gene-trap vectors, showing that both length and expression are significant determinants of trap likelihood for all vectors. Using our models, we also quantitatively identified hotspots of gene-trap activity, which represent loci where the high likelihood of vector insertion is controlled by factors other than length and expression. These formalized statistical models describe a high proportion of the variance in the likelihood of a gene being trapped by expression-dependent vectors and a lower, but still significant, proportion of the variance for vectors that are predicted to be independent of endogenous gene expression.The findings of significant expression and length effects reported here further the understanding of the determinants of vector insertion. Results from this analysis can be applied to help identify other important determinants of this important biological phenomenon and could assist planning of large-scale mutagenesis efforts.

  2. Gap length distributions by PEPR

    International Nuclear Information System (INIS)

    Warszawer, T.N.

    1980-01-01

    Conditions guaranteeing exponential gap length distributions are formulated and discussed. Exponential gap length distributions of bubble chamber tracks first obtained on a CRT device are presented. Distributions of resulting average gap lengths and their velocity dependence are discussed. (orig.)

  3. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    International Nuclear Information System (INIS)

    Marshall, Douglas W.

    2014-01-01

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic (TRISO) coatings on fuel kernels are influenced by the equipment scale and processing parameters. The standard deviations of some TRISO layer characteristics were diminished while others have become more significant in the larger processing equipment. The impact on statistical variability of the processes and the products, as equipment was scaled, are discussed. The prototypic production-scale processes produce test fuels meeting all fuel quality specifications. (author)

  4. The scaling of tongue projection in the veiled chameleon, Chamaeleo calyptratus.

    Science.gov (United States)

    Herrel, Anthony; Redding, Chrystal L; Meyers, J Jay; Nishikawa, Kiisa C

    2014-08-01

    Within a year of hatching, chameleons can grow by up to two orders of magnitude in body mass. Rapid growth of the feeding mechanism means that bones, muscles, and movements change as chameleons grow while needing to maintain function. A previous morphological study showed that the musculoskeletal components of the feeding apparatus grow with negative allometry relative to snout-vent length (SVL) in chameleons. Here, we investigate the scaling of prey capture kinematics and muscle physiological cross-sectional area in the veiled chameleon, Chamaeleo calyptratus. The chameleons used in this study varied in size from approximately 3 to 18 cm SVL (1-200 g). Feeding sequences of 12 chameleons of different sizes were filmed and the timing of movements and the displacements and velocities of the jaws, tongue, and the hyolingual apparatus were quantified. Our results show that most muscle cross-sectional areas as well as tongue and hyoid mass scaled with isometry relative to mandible length, yet with negative allometry relative to SVL. Durations of movement also scaled with negative allometry relative to SVL and mandible length. Distances and angles generally scaled as predicted under geometric similarity (slopes of 1 and 0, respectively), while velocities generally scaled with slopes greater than 0 relative to SVL and mandible length. These data indicate that the velocity of jaw and tongue movements is generally greater in adults compared to juveniles. The discrepancy between the scaling of cross-sectional areas versus movements suggests changes in the energy storage and release mechanisms implicated in tongue projection. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Estimation of the flow resistances exerted in coronary arteries using a vessel length-based method.

    Science.gov (United States)

    Lee, Kyung Eun; Kwon, Soon-Sung; Ji, Yoon Cheol; Shin, Eun-Seok; Choi, Jin-Ho; Kim, Sung Joon; Shim, Eun Bo

    2016-08-01

    Flow resistances exerted in the coronary arteries are the key parameters for the image-based computer simulation of coronary hemodynamics. The resistances depend on the anatomical characteristics of the coronary system. A simple and reliable estimation of the resistances is a compulsory procedure to compute the fractional flow reserve (FFR) of stenosed coronary arteries, an important clinical index of coronary artery disease. The cardiac muscle volume reconstructed from computed tomography (CT) images has been used to assess the resistance of the feeding coronary artery (muscle volume-based method). In this study, we estimate the flow resistances exerted in coronary arteries by using a novel method. Based on a physiological observation that longer coronary arteries have more daughter branches feeding a larger mass of cardiac muscle, the method measures the vessel lengths from coronary angiogram or CT images (vessel length-based method) and predicts the coronary flow resistances. The underlying equations are derived from the physiological relation among flow rate, resistance, and vessel length. To validate the present estimation method, we calculate the coronary flow division over coronary major arteries for 50 patients using the vessel length-based method as well as the muscle volume-based one. These results are compared with the direct measurements in a clinical study. Further proving the usefulness of the present method, we compute the coronary FFR from the images of optical coherence tomography.

  6. The Larger Linear N-Heteroacenes

    KAUST Repository

    Bunz, Uwe H. F.

    2015-01-01

    © 2015 American Chemical Society. ConspectusThe close structural and chemical relationship of N-heteroacenes to pentacene suggests their broad applicability in organic electronic devices, such as thin-film transistors. The superb materials science properties of azaacenes result from their improved resistance toward oxidation and their potential for electron transport, both of which have been demonstrated recently. The introduction of nitrogen atoms into the aromatic perimeter of acenes stabilizes their frontier molecular orbitals and increases their electron affinity. The HOMO-LUMO gaps in azaacenes in which the nitrogen atoms are symmetrically placed are similar to those of the acenes. The judiciously placed nitrogen atoms induce an "umpolung" of the electronic behavior of these pentacene-like molecules, i.e., instead of hole mobility in thin-film transistors, azaacenes are electron-transporting materials. The fundamental synthetic approaches toward larger azaacenes are described and discussed. Several synthetic methodologies have been exploited, and some have been newly developed to assemble substituted azaacenes. The oldest methods are condensation-based. Aromatic o-diamines are coupled with o-dihydroxyarenes in the melt without solvent. This method works well for unsubstituted azaacenes only. The attachment of substituents to the starting materials renders these "fire and sword" methods less useful. The starting materials decompose under these conditions. The direct condensation of substituted o-diamines with o-quinones proceeds well in some cases. Fluorinated benzene rings next to a pyrazine unit are introduced by nucleophilic aromatic substitution employing hexafluorobenzene. However, with these well-established synthetic methodologies, a number of azaacene topologies cannot be synthesized. The Pd-catalyzed coupling of aromatic halides and aromatic diamines has therefore emerged as versatile tool for azaacene synthesis. Now substituted diaza- and

  7. The Larger Linear N-Heteroacenes

    KAUST Repository

    Bunz, Uwe H. F.

    2015-06-16

    © 2015 American Chemical Society. ConspectusThe close structural and chemical relationship of N-heteroacenes to pentacene suggests their broad applicability in organic electronic devices, such as thin-film transistors. The superb materials science properties of azaacenes result from their improved resistance toward oxidation and their potential for electron transport, both of which have been demonstrated recently. The introduction of nitrogen atoms into the aromatic perimeter of acenes stabilizes their frontier molecular orbitals and increases their electron affinity. The HOMO-LUMO gaps in azaacenes in which the nitrogen atoms are symmetrically placed are similar to those of the acenes. The judiciously placed nitrogen atoms induce an "umpolung" of the electronic behavior of these pentacene-like molecules, i.e., instead of hole mobility in thin-film transistors, azaacenes are electron-transporting materials. The fundamental synthetic approaches toward larger azaacenes are described and discussed. Several synthetic methodologies have been exploited, and some have been newly developed to assemble substituted azaacenes. The oldest methods are condensation-based. Aromatic o-diamines are coupled with o-dihydroxyarenes in the melt without solvent. This method works well for unsubstituted azaacenes only. The attachment of substituents to the starting materials renders these "fire and sword" methods less useful. The starting materials decompose under these conditions. The direct condensation of substituted o-diamines with o-quinones proceeds well in some cases. Fluorinated benzene rings next to a pyrazine unit are introduced by nucleophilic aromatic substitution employing hexafluorobenzene. However, with these well-established synthetic methodologies, a number of azaacene topologies cannot be synthesized. The Pd-catalyzed coupling of aromatic halides and aromatic diamines has therefore emerged as versatile tool for azaacene synthesis. Now substituted diaza- and

  8. A methodology for direct quantification of over-ranging length in helical computed tomography with real-time dosimetry.

    Science.gov (United States)

    Tien, Christopher J; Winslow, James F; Hintenlang, David E

    2011-01-31

    In helical computed tomography (CT), reconstruction information from volumes adjacent to the clinical volume of interest (VOI) is required for proper reconstruction. Previous studies have relied upon either operator console readings or indirect extrapolation of measurements in order to determine the over-ranging length of a scan. This paper presents a methodology for the direct quantification of over-ranging dose contributions using real-time dosimetry. A Siemens SOMATOM Sensation 16 multislice helical CT scanner is used with a novel real-time "point" fiber-optic dosimeter system with 10 ms temporal resolution to measure over-ranging length, which is also expressed in dose-length-product (DLP). Film was used to benchmark the exact length of over-ranging. Over-ranging length varied from 4.38 cm at pitch of 0.5 to 6.72 cm at a pitch of 1.5, which corresponds to DLP of 131 to 202 mGy-cm. The dose-extrapolation method of Van der Molen et al. yielded results within 3%, while the console reading method of Tzedakis et al. yielded consistently larger over-ranging lengths. From film measurements, it was determined that Tzedakis et al. overestimated over-ranging lengths by one-half of beam collimation width. Over-ranging length measured as a function of reconstruction slice thicknesses produced two linear regions similar to previous publications. Over-ranging is quantified with both absolute length and DLP, which contributes about 60 mGy-cm or about 10% of DLP for a routine abdominal scan. This paper presents a direct physical measurement of over-ranging length within 10% of previous methodologies. Current uncertainties are less than 1%, in comparison with 5% in other methodologies. Clinical implantation can be increased by using only one dosimeter if codependence with console readings is acceptable, with an uncertainty of 1.1% This methodology will be applied to different vendors, models, and postprocessing methods--which have been shown to produce over-ranging lengths

  9. Spatial patterns of correlated scale size and scale color in relation to color pattern elements in butterfly wings.

    Science.gov (United States)

    Iwata, Masaki; Otaki, Joji M

    2016-02-01

    Complex butterfly wing color patterns are coordinated throughout a wing by unknown mechanisms that provide undifferentiated immature scale cells with positional information for scale color. Because there is a reasonable level of correspondence between the color pattern element and scale size at least in Junonia orithya and Junonia oenone, a single morphogenic signal may contain positional information for both color and size. However, this color-size relationship has not been demonstrated in other species of the family Nymphalidae. Here, we investigated the distribution patterns of scale size in relation to color pattern elements on the hindwings of the peacock pansy butterfly Junonia almana, together with other nymphalid butterflies, Vanessa indica and Danaus chrysippus. In these species, we observed a general decrease in scale size from the basal to the distal areas, although the size gradient was small in D. chrysippus. Scales of dark color in color pattern elements, including eyespot black rings, parafocal elements, and submarginal bands, were larger than those of their surroundings. Within an eyespot, the largest scales were found at the focal white area, although there were exceptional cases. Similarly, ectopic eyespots that were induced by physical damage on the J. almana background area had larger scales than in the surrounding area. These results are consistent with the previous finding that scale color and size coordinate to form color pattern elements. We propose a ploidy hypothesis to explain the color-size relationship in which the putative morphogenic signal induces the polyploidization (genome amplification) of immature scale cells and that the degrees of ploidy (gene dosage) determine scale color and scale size simultaneously in butterfly wings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Dynamically Scaled Model Experiment of a Mooring Cable

    Directory of Open Access Journals (Sweden)

    Lars Bergdahl

    2016-01-01

    Full Text Available The dynamic response of mooring cables for marine structures is scale-dependent, and perfect dynamic similitude between full-scale prototypes and small-scale physical model tests is difficult to achieve. The best possible scaling is here sought by means of a specific set of dimensionless parameters, and the model accuracy is also evaluated by two alternative sets of dimensionless parameters. A special feature of the presented experiment is that a chain was scaled to have correct propagation celerity for longitudinal elastic waves, thus providing perfect geometrical and dynamic scaling in vacuum, which is unique. The scaling error due to incorrect Reynolds number seemed to be of minor importance. The 33 m experimental chain could then be considered a scaled 76 mm stud chain with the length 1240 m, i.e., at the length scale of 1:37.6. Due to the correct elastic scale, the physical model was able to reproduce the effect of snatch loads giving rise to tensional shock waves propagating along the cable. The results from the experiment were used to validate the newly developed cable-dynamics code, MooDy, which utilises a discontinuous Galerkin FEM formulation. The validation of MooDy proved to be successful for the presented experiments. The experimental data is made available here for validation of other numerical codes by publishing digitised time series of two of the experiments.

  11. Cutting Whole Length or Partial Length of Internal Anal Sphincter in Managementof Fissure in Ano

    Directory of Open Access Journals (Sweden)

    Furat Shani Aoda

    2017-12-01

    Full Text Available A chronic anal fissure is a common painful perianal condition.The main operative procedure to treat this painful condition is a lateral internal sphincteretomy (LIS.The aim of study is to compare the outcome and complications of closed LIS up to the dentate line (whole length of internal sphincter or up to the fissure apex (partial length of internal sphincter in the treatment of anal fissure.It is a prospective comparativestudy including 100 patients with chronic fissure in ano. All patients assigned to undergo closed LIS. Those patients were randomly divided into two groups: 50 patients underwent LIS to the level of dentate line (whole length and other 50 patients underwent LIS to the level of fissure apex (partial length. Patients were followed up weekly in the 1st month, twice monthly in the second month then monthly   for next 2 months and finally after 1 year. There was satisfactory relief of pain in all patients in both groups & complete healing of the fissure occurred. Regarding post operative incontinence no major degree of incontinence occur in both group but minor degree of incontinence persists In 7 patients after whole length LIS after one year. In conclusion, both whole length & partial length LIS associated with improvement of pain, good chance of healing but whole length LIS associated with more chance of long term  flatus incontinence. Hence,we recommend partial length LIS as treatment forchronic anal fissure.

  12. Uncertainties in modelling and scaling of critical flows and pump model in TRAC-PF1/MOD1

    International Nuclear Information System (INIS)

    Rohatgi, U.S.; Yu, Wen-Shi.

    1987-01-01

    The USNRC has established a Code Scalability, Applicability and Uncertainty (CSAU) evaluation methodology to quantify the uncertainty in the prediction of safety parameters by the best estimate codes. These codes can then be applied to evaluate the Emergency Core Cooling System (ECCS). The TRAC-PF1/MOD1 version was selected as the first code to undergo the CSAU analysis for LBLOCA applications. It was established through this methodology that break flow and pump models are among the top ranked models in the code affecting the peak clad temperature (PCT) prediction for LBLOCA. The break flow model bias or discrepancy and the uncertainty were determined by modelling the test section near the break for 12 Marviken tests. It was observed that the TRAC-PF1/MOD1 code consistently underpredicts the break flow rate and that the prediction improved with increasing pipe length (larger L/D). This is true for both subcooled and two-phase critical flows. A pump model was developed from Westinghouse (1/3 scale) data. The data represent the largest available test pump relevant to Westinghouse PWRs. It was then shown through the analysis of CE and CREARE pump data that larger pumps degrade less and also that pumps degrade less at higher pressures. Since the model developed here is based on the 1/3 scale pump and on low pressure data, it is conservative and will overpredict the degradation when applied to PWRs

  13. Measurement of the mass of the top quark using the transverse decay length and lepton transverse momentum techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Christian

    2014-05-02

    A measurement of the mass of the top quark using the transverse momentum of the lepton and decay length of the B-Hadron has been presented. The result is m{sub Top}=(170.4±1.1{sub stat.}±2.3{sub syst.}) GeV. This is compatible with previous measurements of the mass of the top quark, done by either the ATLAS collaboration or other experiments. The total uncertainty on the result of this analysis, Δ{sup total}m{sub Top}=2.6 GeV is larger than results by other measurements. However, with an jet energy scale uncertainty of only Δ{sup Jes}m{sub Top}=0.3 GeV it has one of the smallest uncertainties caused by this source. In a combination of results this will help reducing the total uncertainty on the mass of the top quark. The value of 0.42 on the strength on final state radiation indicates that the simulation underestimates the strength of final state radiation. There is currently work ongoing aiming to publish the results found in this thesis in the context of an official ATLAS publication. Additionally the uncertainties can be compared with those one would obtain by using only one of the two variables. If one considers only the transverse decay length, a statistical error of Δm{sub Top}{sup stat.}=1.7 GeV and a systematic uncertainty of Δm{sub Top}{sup stat.}=7.8 GeV is obtained, dominated by the uncertainty on initial and final state radiation. The statistical uncertainty obtained by using the transverse momentum of the lepton is with Δm{sub Top}{sup stat.}=1.4 GeV a bit lower than the one obtained by the transverse decay length alone but still larger than the one of the presented measurement. The systematic uncertainty obtained is Δm{sub Top}{sup stat.}=2.7 GeV. Combining the two variables is therefore worthwhile compared with using only the transverse momentum of the lepton alone. The dominant uncertainties on the measurement are caused by imperfect knowledge of the simulation parameters, especially the choice of Monte-Carlo generator. Other large

  14. Telomere length and depression

    DEFF Research Database (Denmark)

    Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Rode, Line

    2017-01-01

    BACKGROUND: Depression has been cross-sectionally associated with short telomeres as a measure of biological age. However, the direction and nature of the association is currently unclear. AIMS: We examined whether short telomere length is associated with depression cross-sectionally as well...... as prospectively and genetically. METHOD: Telomere length and three polymorphisms, TERT, TERC and OBFC1, were measured in 67 306 individuals aged 20-100 years from the Danish general population and associated with register-based attendance at hospital for depression and purchase of antidepressant medication....... RESULTS: Attendance at hospital for depression was associated with short telomere length cross-sectionally, but not prospectively. Further, purchase of antidepressant medication was not associated with short telomere length cross-sectionally or prospectively. Mean follow-up was 7.6 years (range 0...

  15. Capillary Versus Aspiration Biopsy: Effect of Needle Size and Length on the Cytopathological Specimen Quality

    International Nuclear Information System (INIS)

    Hopper, Kenneth D.; Grenko, Ronald T.; Fisher, Alicia I.; TenHave, Thomas R.

    1996-01-01

    Purpose: To test the value of the nonaspiration, or capillary, biopsy technique by experimental comparison with the conventional fine-needle aspiration technique using various needle gauges and lengths. Methods: On fresh hepatic and renal tissue from five autopsies, multiple biopsy specimens were taken with 20, 22, and 23-gauge Chiba needles of 5, 10, 15, and 20-cm length, using the aspiration technique and the capillary technique. The resultant specimens were graded on the basis of a grading scheme by a cytopathologist who was blinded to the biopsy technique. Results: The capillary technique obtained less background blood or clot which could obscure diagnostic tissue, although not significantly different from the aspiration technique (p= 0.2). However, for the amount of cellular material obtained, retention of appropriate architecture, and mean score, the capillary technique performed statistically worse than aspiration biopsy (p < 0.01). In addition, with decreasing needle caliber (increasing needle gauge) and increasing length, the capillary biopsy was inferior to the aspiration biopsy. Conclusion: The capillary biopsy technique is inferior to the aspiration technique according to our study. When the capillary technique is to be applied, preference should be given to larger caliber, shorter needles

  16. Sensitivity of surface roughness parameters to changes in the density of scanning points in multi-scale AFM studies. Application to a biomaterial surface

    International Nuclear Information System (INIS)

    Mendez-Vilas, A.; Bruque, J.M.; Gonzalez-Martin, M.L.

    2007-01-01

    In the field of biomaterials surfaces, the ability of the atomic force microscope (AFM) to access the surface structure at unprecedented spatial (vertical and lateral) resolution, is helping in a better understanding on how topography affects the overall interaction of biological cells with the material surface. Since cells in a wide range of sizes are in contact with the biomaterial surface, a quantification of the surface structure in such a wide range of dimensional scales is needed. With the advent of the AFM, this can be routinely done in the lab. In this work, we show that even when it is clear that such a scale-dependent study is needed, AFM maps of the biomaterial surface taken at different scanning lengths are not completely consistent when they are taken at the same scanning resolution, as it is usually done: AFM images of different scanning areas have different point-to-point physical distances. We show that this effect influences the quantification of the average (R a ) and rms (R q ) roughness parameters determined at different length scales. This is the first time this inconsistency is reported and should be taken into account when roughness is measured in this way. Since differences will be in general in the range of nanometres, this is especially interesting for those processes involving the interaction of the biomaterial surface with small biocolloids as bacteria, while this effect should not represent any problems for larger animal cells

  17. Two independent measurements of Debye lengths in doped nonpolar liquids.

    Science.gov (United States)

    Prieve, D C; Hoggard, J D; Fu, R; Sides, P J; Bethea, R

    2008-02-19

    Electric current measurements were performed between 2.5 cm x 7.5 cm parallel-plate electrodes separated by 1.2 mm of heptane doped with 0-15% w/w poly(isobutylene succinimide) (PIBS) having a molecular weight of about 1700. The rapid (microsecond) initial charging of the capacitor can be used to infer the dielectric constant of the solution. The much slower decay of current arising from the polarization of electrodes depends on the differential capacitance of the diffuse clouds of charge carriers accumulating next to each electrode and on the ohmic resistance of the fluid. Using the Gouy-Chapman model for the differential capacitance, Debye lengths of 80-600 nm were deduced that decrease with increasing concentration of PIBS. Values of the Debye lengths were confirmed by performing independent measurements of double-layer repulsion between a 6 microm polystyrene (PS) latex sphere and a PS-coated glass plate using total internal reflection microscopy in the same solutions. The charge carriers appear to be inverted PIBS micelles having apparent Stokes diameters of 20-40 nm. Dynamic light scattering reveals a broad distribution of sizes having an intensity-averaged diameter of 15 nm. This smaller size might arise (1) from overestimating the electrophoretic mobility of micelles by treating them as point charges or (2) because charged micelles are larger on average than uncharged micelles. When Faradaic reactions and zeta potentials on the electrodes can be neglected, such current versus time experiments yield values for the Debye length and ionic strength with less effort than force measurements. To obtain the concentration of charge carriers from measurements of conductivity, the mobility of the charge carriers must be known.

  18. Reliability of length measurements collected by community nurses and health volunteers in rural growth monitoring and promotion services.

    Science.gov (United States)

    Laar, Matilda E; Marquis, Grace S; Lartey, Anna; Gray-Donald, Katherine

    2018-02-17

    Length measurements are important in growth, monitoring and promotion (GMP) for the surveillance of a child's weight-for-length and length-for-age. These two indices provide an indication of a child's risk of becoming wasted or stunted, and are more informative about a child's growth than the widely used weight-for-age index (underweight). Although the introduction of length measurements in GMP is recommended by the World Health Organization, concerns about the reliability of length measurements collected in rural outreach settings have been expressed by stakeholders. Our aim was to describe the reliability and challenges associated with community health personnel measuring length for rural outreach GMP activities. Two reliability studies (A and B), using 10 children less than 24 months each, were conducted in the GMP services of a rural district in Ghana. Fifteen nurses and 15 health volunteers (HV) with no prior experience in length measurements were trained. Intra- and inter-observer technical error of measurement (TEM), average bias from expert anthropometrist, and coefficient of reliability (R) of length measurements were assessed and compared across sessions. Observations and interviews were used to understand the ability and experiences of health personnel with measuring length at outreach GMP. Inter-observer TEM was larger than intra-observer TEM for both nurses and HV at both sessions and was unacceptably (compared to error standards) high in both groups at both time points. Average biases from expert's measurements were within acceptable limits, however, both groups tended to underestimate length measurements. The R for lengths collected by nurses (92.3%) was higher at session B compared to that of HV (87.5%). Length measurements taken by nurses and HV, and those taken by an experienced anthropometrist at GMP sessions were of moderate agreement (kappa = 0.53, p reliability of length measurements improved after two refresher trainings for nurses but

  19. Seeing with the nano-eye: accessing structure, function, and dynamics of matter on its natural length and time scales

    Science.gov (United States)

    Raschke, Markus

    2015-03-01

    To understand and ultimately control the properties of most functional materials, from molecular soft-matter to quantum materials, requires access to the structure, coupling, and dynamics on the elementary time and length scales that define the microscopic interactions in these materials. To gain the desired nanometer spatial resolution with simultaneous spectroscopic specificity we combine scanning probe microscopy with different optical, including coherent, nonlinear, and ultrafast spectroscopies. The underlying near-field interaction mediated by the atomic-force or scanning tunneling microscope tip provides the desired deep-sub wavelength nano-focusing enabling few-nm spatial resolution. I will introduce our generalization of the approach in terms of the near-field impedance matching to a quantum system based on special optical antenna-tip designs. The resulting enhanced and qualitatively new forms of light-matter interaction enable measurements of quantum dynamics in an interacting environment or to image the electromagnetic local density of states of thermal radiation. Other applications include the inter-molecular coupling and dynamics in soft-matter hetero-structures, surface plasmon interferometry as a probe of electronic structure and dynamics in graphene, and quantum phase transitions in correlated electron materials. These examples highlight the general applicability of the new near-field microscopy approach, complementing emergent X-ray and electron imaging tools, aiming towards the ultimate goal of probing matter on its most elementary spatio-temporal level.

  20. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development.

    Science.gov (United States)

    Lorite, Gabriela S; Janissen, Richard; Clerici, João H; Rodrigues, Carolina M; Tomaz, Juarez P; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A; Cotta, Mônica A

    2013-01-01

    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.