WorldWideScience

Sample records for length scales electronic

  1. Determination of Longitudinal Electron Bunch Lengths on Picosecond Time Scales

    CERN Document Server

    Martínez, C; Calviño, F

    1999-01-01

    At CERN (European Laboratory for Particle Physics) the CLIC (Compact Linear Collider) study is pursuing the design of an electron-positron high-energy linear collider using an innovative concept for the RF (Radio Frequency) power production, the socalled two-beam acceleration scheme. In order to keep the length of the collider in a reasonable range while being able of accelerating electrons and positrons up to 5 TeV, the normal-conducting accelerating structures should operate at very high frequency (in this case 30 GHz). The RF power necessary to feed the accelerating cavities is provided by a second electron beam, the drive beam, running parallel to the main beam. The CLIC Test Facility (CTF) was build with the main aim of studying and demonstrating the feasibility of the two beam acceleration scheme and technology. It is composed of two beams, the drive beam that will generate the 30 GHz RF power and the main beam which will be accelerated by this power. In order to have a good efficiency for the power gen...

  2. Length-scale dependent phonon interactions

    CERN Document Server

    Srivastava, Gyaneshwar

    2014-01-01

    This book presents  a comprehensive description of phonons and their interactions in systems with different dimensions and length scales. Internationally-recognized leaders describe theories and measurements of phonon interactions  in relation to the design of materials with exotic properties such as metamaterials, nano-mechanical systems, next-generation electronic, photonic, and acoustic devices, energy harvesting, optical information storage, and applications of phonon lasers in a variety of fields. The emergence of techniques for control of semiconductor properties and geometry has enabled engineers to design structures in which functionality is derived from controlling electron behavior. As manufacturing techniques have greatly expanded the list of available materials and the range of attainable length scales, similar opportunities now exist for designing devices whose functionality is derived from controlling phonon behavior. However, progress in this area is hampered by gaps in our knowledge of phono...

  3. Short Rayleigh Length Free Electron Lasers

    CERN Document Server

    Crooker, P P; Armstead, R L; Blau, J

    2004-01-01

    Conventional free electron laser (FEL) oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. A new FEL interaction is described and analyzed with a Rayleigh length that is only one tenth the undulator length, or less. The effect of mirror vibration and positioning are more critical in the short Rayleigh length design, but we find that they are still within normal design tolerances.

  4. Mixing lengths scaling in a gravity flow

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory; Rivera, Micheal [Los Alamos National Laboratory; Chen, Jun [Los Alamos National Laboratory; Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    We present an experimental study of the mixing processes in a gravity current. The turbulent transport of momentum and buoyancy can be described in a very direct and compact form by a Prandtl mixing length model [1]: the turbulent vertical fluxes of momentum and buoyancy are found to scale quadraticatly with the vertical mean gradients of velocity and density. The scaling coefficient is the square of the mixing length, approximately constant over the mixing zone of the stratified shear layer. We show in this paper how, in different flow configurations, this length can be related to the shear length of the flow {radical}({var_epsilon}/{partial_derivative}{sub z}u{sup 3}).

  5. Minimal Length Scale Scenarios for Quantum Gravity.

    Science.gov (United States)

    Hossenfelder, Sabine

    2013-01-01

    We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.

  6. Minimal Length Scale Scenarios for Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Sabine Hossenfelder

    2013-01-01

    Full Text Available We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.

  7. Topographical length scales of hierarchical superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dhillon, P.K. [Department of Physics, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001 (India); Brown, P.S.; Bain, C.D.; Badyal, J.P.S. [Department of Chemistry, Science Laboratories, Durham University, Durham DH1 3LE, England (United Kingdom); Sarkar, S., E-mail: sarkar@iitrpr.ac.in [Department of Physics, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001 (India)

    2014-10-30

    Highlights: • Hydrophobic CF{sub 4} plasma fluorinated polybutadiene surfaces has been characterised using AFM. • Micro, Nano, and Micro + Nano topographies generated by altering plasma power and duration. • Dynamic scaling theory and FFT analysis used to characterize these surfaces quantitatively. • Roughnesses are different for different length scales of the surfaces considered. • Highest local roughness obtained from scaling analysis for shorter length scales of about 500 nm explains the superhydrophobicity for the Micro + Nano surface. - Abstract: The morphology of hydrophobic CF{sub 4} plasma fluorinated polybutadiene surfaces has been characterised using atomic force microscopy (AFM). Judicious choice of the plasma power and exposure duration leads to formation of three different surface morphologies (Micro, Nano, and Micro + Nano). Scaling theory analysis shows that for all three surface topographies, there is an initial increase in roughness with length scale followed by a levelling-off to a saturation level. At length scales around 500 nm, it is found that the roughness is very similar for all three types of surfaces, and the saturation roughness value for the Micro + Nano morphology is found to be intermediate between those for the Micro and Nano surfaces. Fast Fourier Transform (FFT) analysis has shown that the Micro + Nano topography comprises a hierarchical superposition of Micro and Nano morphologies. Furthermore, the Micro + Nano surfaces display the highest local roughness (roughness exponent α = 0.42 for length scales shorter than ∼500 nm), which helps to explain their superhydrophobic behaviour (large water contact angle (>170°) and low hysteresis (<1°))

  8. Finite length thermal equilibria of a pure electron plasma column

    International Nuclear Information System (INIS)

    Prasad, S.A.; O'Neil, T.M.

    1979-01-01

    The electrons of a pure electron plasma may be in thermal equilibrium with each other and still be confined by static magnetic and electric fields. Since the electrons make a significant contribution to the electric field, only certain density profiles are consistent with Poisson's equation. The class of such distributions for a finite length cylindrical column is investigated. In the limit where the Debye length is small compared with the dimensions of the column, the density is essentially constant out to some surface of revolution and then falls off abruptly. The falloff in density is a universal function when measured along the local normal to the surface of revolution and scaled in terms of the Debye length. The solution for the shape of the surface of revolution is simplified by passage to the limit of zero Debye length

  9. Chemical theory and modelling through density across length scales

    International Nuclear Information System (INIS)

    Ghosh, Swapan K.

    2016-01-01

    One of the concepts that has played a major role in the conceptual as well as computational developments covering all the length scales of interest in a number of areas of chemistry, physics, chemical engineering and materials science is the concept of single-particle density. Density functional theory has been a versatile tool for the description of many-particle systems across length scales. Thus, in the microscopic length scale, an electron density based description has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids. Density concept has been used in the form of single particle number density in the intermediate mesoscopic length scale to obtain an appropriate picture of the equilibrium and dynamical processes, dealing with a wide class of problems involving interfacial science and soft condensed matter. In the macroscopic length scale, however, matter is usually treated as a continuous medium and a description using local mass density, energy density and other related property density functions has been found to be quite appropriate. The basic ideas underlying the versatile uses of the concept of density in the theory and modelling of materials and phenomena, as visualized across length scales, along with selected illustrative applications to some recent areas of research on hydrogen energy, soft matter, nucleation phenomena, isotope separation, and separation of mixture in condensed phase, will form the subject matter of the talk. (author)

  10. Extending electronic length frequency analysis in R

    DEFF Research Database (Denmark)

    Taylor, M. H.; Mildenberger, Tobias K.

    2017-01-01

    of the asymptotic length parameter (L-infinity) are found to have significant effects on parameter estimation error. An outlook provides context as to the significance of the R-based implementation for further testing and development, as well as the general relevance of the method for data-limited stock assessment.......Electronic length frequency analysis (ELEFAN) is a system of stock assessment methods using length-frequency (LFQ) data. One step is the estimation of growth from the progression of LFQ modes through time using the von Bertalanffy growth function (VBGF). The option to fit a seasonally oscillating...... with known values, the accuracy of the soVBGF parameter estimation was evaluated. The results indicate that both optimisation approaches are capable of finding high scoring solutions, yet settings regarding the initial restructuring process for LFQ bin scoring (i.e. "moving average,") and the fixing...

  11. Short Rayleigh length free electron lasers

    Directory of Open Access Journals (Sweden)

    W. B. Colson

    2006-03-01

    Full Text Available Conventional free electron laser (FEL oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third to one half of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. We model this interaction using a coordinate system that expands with the rapidly diffracting optical mode from the ends of the undulator to the mirrors. Simulations show that the interaction of the strongly focused optical mode with a narrow electron beam inside the undulator distorts the optical wave front so it is no longer in the fundamental Gaussian mode. The simulations are used to study how mode distortion affects the single-pass gain in weak fields, and the steady-state extraction in strong fields.

  12. Determining multiple length scales in rocks

    Science.gov (United States)

    Song, Yi-Qiao; Ryu, Seungoh; Sen, Pabitra N.

    2000-07-01

    Carbonate reservoirs in the Middle East are believed to contain about half of the world's oil. The processes of sedimentation and diagenesis produce in carbonate rocks microporous grains and a wide range of pore sizes, resulting in a complex spatial distribution of pores and pore connectivity. This heterogeneity makes it difficult to determine by conventional techniques the characteristic pore-length scales, which control fluid transport properties. Here we present a bulk-measurement technique that is non-destructive and capable of extracting multiple length scales from carbonate rocks. The technique uses nuclear magnetic resonance to exploit the spatially varying magnetic field inside the pore space itself-a `fingerprint' of the pore structure. We found three primary length scales (1-100µm) in the Middle-East carbonate rocks and determined that the pores are well connected and spatially mixed. Such information is critical for reliably estimating the amount of capillary-bound water in the rock, which is important for efficient oil production. This method might also be used to complement other techniques for the study of shaly sand reservoirs and compartmentalization in cells and tissues.

  13. Electron plasma oscillations at arbitrary Debye lengths

    International Nuclear Information System (INIS)

    Lehnert, B.

    1990-12-01

    A solution is presented for electron plasma oscillation in a thermalized homogeneous plasma, at arbitrary ratios between the Debye length λ D and the perturbation wave length λ. The limit λ D D >> λ corresponds to the free-streaming limit of strong kinetic phase-mixing due to large particle excursions. A strong large Debye distance (LDD) effect already appears when λ D > approx λ. The initial amplitude of the fluid-like contribution to the macroscopic density perturbation then becomes small as compared to the contribution from the free-streaming part. As a consequence, only a small fraction of the density perturbation remains after a limited number of kinetic damping times of the free-streaming part. The analysis further shows that a representation in terms of normal model of the form exp(-iωt) leads to amplitude factors of these modes which are related to each other and which depend on the combined free-streaming and fluid behaviour of the plasma. Consequently, these modes are coupled and cannot be treated as being independent of each other. (au)

  14. Interplay between multiple length and time scales in complex ...

    Indian Academy of Sciences (India)

    Administrator

    micelles and enzymes, can span several orders of magnitude in length and time scales. The length and time scales of ... length and time scales is required in order to understand and predict structure and dynamics in such com- plex systems. This review .... The late 1980s saw the birth of femtochemistry with Ahmed Zewail ...

  15. Radiographic versus electronic root canal working length determination

    Directory of Open Access Journals (Sweden)

    Lumnije Kqiku

    2011-01-01

    Conclusions: The present ex vivo study showed that electronic root canal working length determination is not superior to radiographic methods. Both methods provided a good performance in determining the root canal working length.

  16. Real-time single-shot electron bunch length measurements

    CERN Document Server

    Wilke, I; Gillespie, W A; Berden, G; Knippels, G M H; Meer, A F G

    2002-01-01

    Linear accelerators employed as drivers for X-ray free electron lasers (FELs) require relativistic electron bunch with sub-picosecond bunch length. Precise bunch length measurements are important for the tuning and operation of the FELs. Previously, we have demonstrated that electro-optic detection is a powerful technique for sub-picosecond electron bunch length measurements. In those experiments, the measured bunch length was the average of all electron bunches within a macropulse. Here, for the first time, we present the measurement of the length of individual electron bunches using a development of our previous technique. In this experiment, the longitudinal electron bunch shape is encoded electro-optically on to the frequency spectrum of a chirped laser pulse. Subsequently, the laser pulse is dispersed by a grating and the spectrum is imaged with a CCD camera. Single bunch measurements are achieved by using a nanosecond gated camera, and synchronizing the gate with both the electron bunch and the laser pu...

  17. Electron attenuation lengths in fullerene and fullerides

    International Nuclear Information System (INIS)

    Li Hongnian; Wang Xiaoxiong; Ding Wangfeng

    2006-01-01

    Using X-ray photoemission measurements, we have determined the attenuation length of C 1s photoelectrons in C 60 film to be 21.5 A with the incident photon energy of Mg Kα radiation. The inelastic mean free path calculated with the TPP-2M algorithm coincides fairly well with the experimentally determined attenuation length, indicating the validity of the algorithm to fullerene and fullerides. The inelastic mean free paths for some fullerides, i.e. K 3 C 60 , K 6 C 60 , Ba 4 C 60 , Sm 2.75 C 60 and Sm 6 C 60 are calculated to help the quantitative analyses of the photoemission spectra for these compounds

  18. Electron bunch length measurement with a wakefield radiation decelerator

    Directory of Open Access Journals (Sweden)

    Weiwei Li

    2014-03-01

    Full Text Available In this paper, we propose a novel method to measure the electron bunch length with a dielectric wakefield radiation (DWR decelerator which is composed of two dielectric-lined waveguides (DLWs and an electron spectrometer. When an electron beam passes through a DLW, the DWR is excited which leads to an energy loss of the electron beam. The energy loss is found to be largely dependent on the electron bunch length and can be easily measured by an electron spectrometer which is essential for a normal accelerator facility. Our study shows that this method has a high resolution and a great simplicity.

  19. Electron Bunch Length Diagnostic With Coherent Smith-Purcell Radiation

    International Nuclear Information System (INIS)

    Nguyen, D.C.

    1997-01-01

    The authors have designed a new technique for measuring subpicosecond electron bunch lengths using coherent Smith-Purcell radiation. This new diagnostic technique involves passing the electron beam in close proximity of a grating with a period comparable to the electron bunch length. The emitted Smith-Purcell radiation will have a coherent component whose angular position and distribution are directly related to the electron bunch length and longitudinal profile, respectively. This new diagnostic technique is inherently simple, inexpensive and non-intercepting. The authors show that the new technique is also scaleable to femtosecond regime

  20. Length Scales in Bayesian Automatic Adaptive Quadrature

    Directory of Open Access Journals (Sweden)

    Adam Gh.

    2016-01-01

    Full Text Available Two conceptual developments in the Bayesian automatic adaptive quadrature approach to the numerical solution of one-dimensional Riemann integrals [Gh. Adam, S. Adam, Springer LNCS 7125, 1–16 (2012] are reported. First, it is shown that the numerical quadrature which avoids the overcomputing and minimizes the hidden floating point loss of precision asks for the consideration of three classes of integration domain lengths endowed with specific quadrature sums: microscopic (trapezoidal rule, mesoscopic (Simpson rule, and macroscopic (quadrature sums of high algebraic degrees of precision. Second, sensitive diagnostic tools for the Bayesian inference on macroscopic ranges, coming from the use of Clenshaw-Curtis quadrature, are derived.

  1. Length Scales in Bayesian Automatic Adaptive Quadrature

    Science.gov (United States)

    Adam, Gh.; Adam, S.

    2016-02-01

    Two conceptual developments in the Bayesian automatic adaptive quadrature approach to the numerical solution of one-dimensional Riemann integrals [Gh. Adam, S. Adam, Springer LNCS 7125, 1-16 (2012)] are reported. First, it is shown that the numerical quadrature which avoids the overcomputing and minimizes the hidden floating point loss of precision asks for the consideration of three classes of integration domain lengths endowed with specific quadrature sums: microscopic (trapezoidal rule), mesoscopic (Simpson rule), and macroscopic (quadrature sums of high algebraic degrees of precision). Second, sensitive diagnostic tools for the Bayesian inference on macroscopic ranges, coming from the use of Clenshaw-Curtis quadrature, are derived.

  2. Microstructural characterization of transformable Fe-Mn alloys at different length scales

    International Nuclear Information System (INIS)

    Liang, X.; Wang, X.; Zurob, H.S.

    2009-01-01

    The as-annealed and deformed Microstructure of transformable Fe-Mn alloys were, comprehensively, characterized over a wide range of length scales. Differential interference contrast optical metallography, combined with a tinting etching method, was employed to examine the grain morphology. A new specimen preparation method, involving electro-polishing and electro-etching, was developed for scanning electron microscopy and electron back-scattered diffraction analysis. This method leads to a very good imaging contrast and thus bridges the length scale gap between optical metallography and transmission electron microscopy. Moreover, it enables simultaneous scanning electron microscopy and electron backscatter diffraction analysis which allows correlations among morphology, crystal orientation and phase analysis in the length scale of microns. Transmission electron microscopy investigations were also made to evaluate the thermal and mechanical transformation products as well as defect structures.

  3. Measurement of electron beam bunch phase length by rectangular cavities

    International Nuclear Information System (INIS)

    Afanas'ev, V.D.; Rudychev, V.G.; Ushakov, V.I.

    1976-01-01

    An analysis of a phase length of electron bunches with the help of crossed rectangular resonators with the Hsub(102) oscillation type has been made. It has been shown that the electron coordinates after the duplex resonator are described by an ellipse equation for a non-modulated beam. An influence of the initial energy spread upon the electron motion has been studied. It has been ascertained that energy modulation of the electron beam results in displacement of each electron with respect to the ellipse which is proportional to modulation energy, i.e. an error in determination of the phase length of an electron bunch is proportional to the beam energy spread. Relations have been obtained which enable to find genuine values of phases of the analyzed electrons with an accuracy up to linear multipliers

  4. Do cell phones affect establishing electronic working length?

    Science.gov (United States)

    Hurstel, Justine; Guivarc'h, Maud; Pommel, Ludovic; Camps, Jean; Tassery, Hervé; Cohen, Stephen; Bukiet, Frédéric

    2015-06-01

    Patients often keep their cell phones on and nearby during root canal therapy. Cell phones release electromagnetic interference, which might disturb electronic working length measurements. The purpose of this ex vivo study was to determine the effect of a cell phone (Apple iPhone 5 [Apple, Cupertino, CA] or KP100 [LG, Seoul, Korea]) placed into direct contact with an electronic apex locator (EAL) (Dentaport Root ZX module [J Morita Corp, Tokyo, Japan] or Propex II [Dentsply Maillefer, Ballaigues, Switzerland]) on working length determination. Twenty-six human premolars without fractures or carious lesions were used; previously cleaned; and observed under magnification (×15) in order to check for the presence of only 1 apical foramen, the absence of apical resorption, an "open" apex, and accessory canals. The working length measurement was performed with a #15 K-file in the presence of 2.6% sodium hypochlorite under 4 conditions: (1) visually, under the microscope until the file tip reached the canal terminus; (2) electronically, without the cell phone in proximity; (3) electronically, with the cell phone in standby mode placed in physical contact with the EAL; and (4) electronically, with the cell phone activated by a call in the same position. The experimental model for electronic working length determination was a screw top plastic container filled with a saline solution. The measurements were repeated 3 times per canal under each condition. Scores of 1 to 3 categorized the stability of the readings as follows: (1) good stability; (2) unstable reading with minor difficulties determining the working length; and (3) major difficulties or impossible to determine the working length. A 2-way repeated measures analysis of variance (way 1: cell phone type and way 2: EAL model) was performed, and a second repeated measures analysis of variance was performed to seek a difference among the 4 working length determination conditions. Neither the cell phone type nor the EAL

  5. Short Rayleigh length free electron laser: Experiments and simulations

    Directory of Open Access Journals (Sweden)

    P. P. Crooker

    2008-09-01

    Full Text Available We report experiments at Jefferson National Accelerator Facility (Jlab and computer simulations performed at the Naval Postgraduate School (NPS designed to probe the small Rayleigh length regime. We compare the gain, power, and sensitivity to mirror and electron beam misalignments as a function of decreasing Rayleigh length. The agreement is quite good, with experiments and simulations showing comparable trends as the Rayleigh length is decreased. In particular, we find that the gain and power do not decrease substantially at short Rayleigh length, contrary to a common Gaussian-mode filling factor argument. Within currently achievable alignment tolerances, the gain and power are still acceptable for FEL operation.

  6. On transition in plasma turbulence with multiple scale lengths

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K.; Spineanu, F.; Vlad, M.O. [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, S.-I.; Kawasaki, M. [Kyushu Univ., Research Institute for Applied Mechanics, Kasuga, Fukuoka (Japan)

    2003-05-01

    A statistical theory of plasma turbulence which is composed of multiple-scale fluctuations is examined. Influences of statistical noise and variance of rapidly-changing variable in an adiabatic approximation are investigated. It is confirmed that the contributions of noise and variance remain higher order corrections. Transition rate of the turbulence with multiple scale lengths is obtained under the refined adiabatic approximation. (author)

  7. Critical length scales for flow phenomena in liquid metal batteries

    Science.gov (United States)

    Kelley, Douglas; Weier, Tom

    2017-11-01

    Liquid metal batteries, a new technology for grid-scale energy storage, are composed of three liquid layers and therefore subject to a wide variety of fluid dynamical phenomena, both beneficial and detrimental. Some, like thermal convection and electrovortex flow, drive finite flow regardless of the size, current density, and temperature of the battery. Others, like the Tayler instability and the metal pad instability, occur only in certain parameter regimes - almost always dependent on length scale. I will discuss critical length scales, considering implications for battery design in light of fundamental fluid dynamics. This work was supported by the National Science Foundation under Award Number CBET-1552182.

  8. A New Universal Gas Breakdown Theory for Classical Length Scales

    Science.gov (United States)

    Loveless, Amanda Mae

    While Paschen's law is commonly used to predict breakdown voltage, it fails at microscale gaps when field emission becomes important. Accurate breakdown voltage predictions at microscale are even more important as electronic device dimensions decrease. Developing analytic models to accurately predict breakdown at microscale is vital for understanding the underlying physics occurring within the system and to either prevent or produce a discharge, depending on the application. We first take a pre-existing breakdown model coupling field emission and Townsend breakdown and perform a matched asymptotic analysis to obtain analytic equations for breakdown voltage in argon at atmospheric pressure. Next, we extend this model to generalize for gas and further explore the independent contributions of field emission and Townsend discharge. Finally, we present analytic expressions for breakdown voltage valid for any gas at any pressure, and discuss the modified Paschen minimum at microscale. The presented models agree well with numerical simulations and experimental data when using the field enhancement factor as a fitting parameter. The work presented in this thesis is a first step in unifying gas breakdown across length scales and breakdown mechanisms. Future work will aim to incorporate other breakdown mechanisms, such as quantum effects and space charge, to provide a more complete unified model for gas breakdown.

  9. Maximum length scale in density based topology optimization

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Wang, Fengwen

    2017-01-01

    The focus of this work is on two new techniques for imposing maximum length scale in topology optimization. Restrictions on the maximum length scale provide designers with full control over the optimized structure and open possibilities to tailor the optimized design for broader range...... of manufacturing processes by fulfilling the associated technological constraints. One of the proposed methods is based on combination of several filters and builds on top of the classical density filtering which can be viewed as a low pass filter applied to the design parametrization. The main idea...

  10. Analysis Models for Polymer Composites Across Different Length Scales

    Science.gov (United States)

    Camanho, Pedro P.; Arteiro, Albertino

    This chapter presents the analysis models, developed at different length scales, for the prediction of inelastic deformation and fracture of polymer composite materials reinforced by unidirectional fibers. Three different length scales are covered. Micro-mechanical models are used to understand in detail the effects of the constituents on the response of the composite material, and to support the development of analysis models based on homogenized representations of composite materials. Meso-mechanical models are used to predict the strength of composite structural components under general loading conditions. Finally, macro-mechanical models based on Finite Fracture Mechanics, which enable fast strength predictions of simple structural details, are discussed.

  11. Length and time scales of atmospheric moisture recycling

    Directory of Open Access Journals (Sweden)

    R. J. van der Ent

    2011-03-01

    Full Text Available It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to quantify the spatial and temporal scale of moisture recycling, independent of the size and shape of the region under study. In contrast to previous studies, which essentially used curve fitting, the scaling laws presented by us follow directly from the process equation. thus allowing a fair comparison between regions and seasons. The calculation is based on ERA-Interim reanalysis data for the period 1999 to 2008. It is shown that in the tropics or in mountainous terrain the length scale of recycling can be as low as 500 to 2000 km. In temperate climates the length scale is typically between 3000 to 5000 km whereas it amounts to more than 7000 km in desert areas. The time scale of recycling ranges from 3 to 20 days, with the exception of deserts, where it is much longer. The most distinct seasonal differences can be observed over the Northern Hemisphere: in winter, moisture recycling is insignificant, whereas in summer it plays a major role in the climate. The length and time scales of atmospheric moisture recycling can be useful metrics to quantify local climatic effects of land use change.

  12. Bunch length diagnostics with coherent relativistic electron radiation

    CERN Document Server

    Ayzatsky, M I; Kushnir, V A; Mitrochenko, V V

    2001-01-01

    One of the most important problems when designing resonance electron linacs with a high beam brightness is creation of an equipment for electron bunch length diagnostics. One of ways to solve this problem is based on analysis of radiation from relativistic electrons (transition,synchrotron etc.). The paper presents results of calculations and experiments on studying the millimeter-band radiation that is a beam exited on the surface of the grating periodic structure and in a linac beam pipe. Experiments were carried out on the linac LIC with 13 MeV particle energy and 0.8 A pulse beam current. The possibility of observed radiation application for estimation of the bunch length value, monitoring its variation and for optimization of the accelerator operating mode was shown experimentally.

  13. Length scales and selforganization in dense suspension flows

    NARCIS (Netherlands)

    Düring, G.; Lerner, E.; Wyart, M.

    2014-01-01

    Dense non-Brownian suspension flows of hard particles display mystifying properties: As the jamming threshold is approached, the viscosity diverges, as well as a length scale that can be identified from velocity correlations. To unravel the microscopic mechanism governing dissipation and its

  14. Short Rayleigh Length Free Electron Laser Simulations in Expanding Coordinates

    CERN Document Server

    Armstead, Robert L; Colson, William B

    2004-01-01

    For compact short-Rayleigh length FELs, the area of the optical beam can be thousands of times greater at the mirrors than at the beam waist. A fixed numerical grid of sufficient resolution to represent the narrow mode at the waist and the broad mode at the mirrors would be prohibitively large. To accommodate this extreme change of scale with no loss of information, we employ a coordinate system that expands with the diffracting optical mode. The simulation using the new expanding coordinates has been validated by comparison to analytical cold-cavity theory, and is now used to simulate short-Rayleigh length FELs.

  15. Electron Bunch Length Measurement for LCLS at SLAC

    International Nuclear Information System (INIS)

    Zelazny, M.; Allison, S.; Chevtsov, Sergei; Emma, P.; Kotturi, K.d.; Loos, H.; Peng, S.; Rogind, D.; Straumann, T.

    2007-01-01

    At Stanford Linear Accelerator Center (SLAC) a Bunch Length Measurement system has been developed to measure the length of the electron bunch for its new Linac Coherent Light Source (LCLS). This destructive measurement uses a transverse-mounted RF deflector (TCAV) to vertically streak the electron beam and an image taken with an insertable screen and a camera. The device control software was implemented with the Experimental Physics and Industrial Control System (EPICS) toolkit. The analysis software was implemented in Matlab(trademark) using the EPICS/Channel Access Interface for Scilab(trademark) and Matlab(trademark) (labCA). This architecture allowed engineers and physicists to develop and integrate their control and analysis without duplication of effort

  16. Electron Bunch Length Measurement for LCLS at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Zelazny, M.; Allison, S.; Chevtsov, Sergei; Emma, P.; Kotturi, K.d.; Loos, H.; Peng, S.; Rogind, D.; Straumann, T.; /SLAC

    2007-10-04

    At Stanford Linear Accelerator Center (SLAC) a Bunch Length Measurement system has been developed to measure the length of the electron bunch for its new Linac Coherent Light Source (LCLS). This destructive measurement uses a transverse-mounted RF deflector (TCAV) to vertically streak the electron beam and an image taken with an insertable screen and a camera. The device control software was implemented with the Experimental Physics and Industrial Control System (EPICS) toolkit. The analysis software was implemented in Matlab{trademark} using the EPICS/Channel Access Interface for Scilab{trademark} and Matlab{trademark} (labCA). This architecture allowed engineers and physicists to develop and integrate their control and analysis without duplication of effort.

  17. Progress in Long Scale Length Laser-Plasma Interactions

    International Nuclear Information System (INIS)

    Glenzer, S H; Arnold, P; Bardsley, G; Berger, R L; Bonanno, G; Borger, T; Bower, D E; Bowers, M; Bryant, R; Buckman, S.; Burkhart, S C; Campbell, K; Chrisp, M P; Cohen, B I; Constantin, G; Cooper, F; Cox, J; Dewald, E; Divol, L; Dixit, S; Duncan, J; Eder, D; Edwards, J; Erbert, G; Felker, B; Fornes, J; Frieders, G; Froula, D H; Gardner, S D; Gates, C; Gonzalez, M; Grace, S; Gregori, G; Greenwood, A; Griffith, R; Hall, T; Hammel, B A; Haynam, C; Heestand, G; Henesian, M; Hermes, G; Hinkel, D; Holder, J; Holdner, F; Holtmeier, G; Hsing, W; Huber, S; James, T; Johnson, S; Jones, O S; Kalantar, D; Kamperschroer, J H; Kauffman, R; Kelleher, T; Knight, J; Kirkwood, R K; Kruer, W L; Labiak, W; Landen, O L; Langdon, A B; Langer, S; Latray, D; Lee, A; Lee, F D; Lund, D; MacGowan, B; Marshall, S; McBride, J; McCarville, T; McGrew, L; Mackinnon, A J; Mahavandi, S; Manes, K; Marshall, C; Mertens, E; Meezan, N; Miller, G; Montelongo, S; Moody, J D; Moses, E; Munro, D; Murray, J; Neumann, J; Newton, M; Ng, E; Niemann, C; Nikitin, A; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rekow, V; Rinnert, R; Riordan, B; Rhodes, M.

    2003-01-01

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 mm and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3ω) with a total intensity of 2 x 10 15 W cm -2 . The targets were filled with 1 atm of CO 2 producing of up to 7 mm long homogeneously heated plasmas with densities of n e = 6 x 10 20 cm -3 and temperatures of T e = 2 keV. The high energy in a NIF quad of beams of 16kJ, illuminating the target from one direction, creates unique conditions for the study of laser plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last ∼1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 6% for the smallest length (∼2 mm). increasing to 12% for ∼7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modeling of the laser-plasma interactions at ignition-size scale lengths

  18. Progress in long scale length laser plasma interactions

    Science.gov (United States)

    Glenzer, S. H.; Arnold, P.; Bardsley, G.; Berger, R. L.; Bonanno, G.; Borger, T.; Bower, D. E.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S. C.; Campbell, K.; Chrisp, M. P.; Cohen, B. I.; Constantin, C.; Cooper, F.; Cox, J.; Dewald, E.; Divol, L.; Dixit, S.; Duncan, J.; Eder, D.; Edwards, J.; Erbert, G.; Felker, B.; Fornes, J.; Frieders, G.; Froula, D. H.; Gardner, S. D.; Gates, C.; Gonzalez, M.; Grace, S.; Gregori, G.; Greenwood, A.; Griffith, R.; Hall, T.; Hammel, B. A.; Haynam, C.; Heestand, G.; Henesian, M.; Hermes, G.; Hinkel, D.; Holder, J.; Holdner, F.; Holtmeier, G.; Hsing, W.; Huber, S.; James, T.; Johnson, S.; Jones, O. S.; Kalantar, D.; Kamperschroer, J. H.; Kauffman, R.; Kelleher, T.; Knight, J.; Kirkwood, R. K.; Kruer, W. L.; Labiak, W.; Landen, O. L.; Langdon, A. B.; Langer, S.; Latray, D.; Lee, A.; Lee, F. D.; Lund, D.; MacGowan, B.; Marshall, S.; McBride, J.; McCarville, T.; McGrew, L.; Mackinnon, A. J.; Mahavandi, S.; Manes, K.; Marshall, C.; Menapace, J.; Mertens, E.; Meezan, N.; Miller, G.; Montelongo, S.; Moody, J. D.; Moses, E.; Munro, D.; Murray, J.; Neumann, J.; Newton, M.; Ng, E.; Niemann, C.; Nikitin, A.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rekow, V.; Rinnert, R.; Riordan, B.; Rhodes, M.; Roberts, V.; Robey, H.; Ross, G.; Sailors, S.; Saunders, R.; Schmitt, M.; Schneider, M. B.; Shiromizu, S.; Spaeth, M.; Stephens, A.; Still, B.; Suter, L. J.; Tietbohl, G.; Tobin, M.; Tuck, J.; Van Wonterghem, B. M.; Vidal, R.; Voloshin, D.; Wallace, R.; Wegner, P.; Whitman, P.; Williams, E. A.; Williams, K.; Winward, K.; Work, K.; Young, B.; Young, P. E.; Zapata, P.; Bahr, R. E.; Seka, W.; Fernandez, J.; Montgomery, D.; Rose, H.

    2004-12-01

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3ω) with a total intensity of 2 × 1015 W cm-2. The targets were filled with 1 atm of CO2 producing up to 7 mm long homogeneously heated plasmas with densities of ne = 6 × 1020 cm-3 and temperatures of Te = 2 keV. The high energy in an NIF quad of beams of 16 kJ, illuminating the target from one direction, creates unique conditions for the study of laser-plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x-rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last ~1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 3% for the smallest length (~2 mm), increasing to 10-12% for ~7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modelling of the laser-plasma interactions at ignition-size scale lengths.

  19. Electron bunch length measurement at the Vanderbilt FEL

    Energy Technology Data Exchange (ETDEWEB)

    Amirmadhi, F.; Brau, C.A.; Mendenhall, M. [Vanderbilt Free-Electron-Laser Center, Nashville, TN (United States)] [and others

    1995-12-31

    During the past few years, a number of experiments have been performed to demonstrate the possibility to extract the longitudinal charge distribution from spectroscopic measurements of the coherent far-infrared radiation emitted as transition radiation or synchrotron radiation. Coherent emission occurs in a spectral region where the wavelength is comparable to or longer than the bunch length, leading to an enhancement of the radiation intensity that is on the order of the number of particles per bunch, as compared to incoherent radiation. This technique is particularly useful in the region of mm and sub-mm bunch lengths, a range where streak-cameras cannot be used for beam diagnostics due to their limited time resolution. Here we report on experiments that go beyond the proof of principle of this technique by applying it to the study and optimization of FEL performance. We investigated the longitudinal bunch length of the Vanderbilt FEL by analyzing the spectrum of coherent transition radiation emitted by the electron bunches. By monitoring the bunch length while applying a bunch-compression technique, the amount of the compression could be easily observed. This enabled us to perform a systematic study of the FEL performance, especially gain and optical pulse width, as a function of the longitudinal electron distribution in the bunch. The results of this study will be presented and discussed.

  20. Electron Profile Stiffness and Critical Gradient Length Studies in the Alcator C-Mod Tokamak

    Science.gov (United States)

    Houshmandyar, Saeid; Hatch, David R.; Liao, Kenneth T.; Zhao, Bingzhe; Phillips, Perry E.; Rowan, William L.; Cao, Norman; Ernst, Darin R.; Rice, John E.

    2017-10-01

    Electron temperature profile stiffness was investigated at Alcator C-Mod L-mode discharges. Electrons were heated by ion cyclotron range of frequencies (ICRF) through minority heating. The intent of the heating mechanism was to vary the heat flux and simultaneously, gradually change the local gradient. The electron temperature gradient scale length (LTe- 1 = | ∇Te |/Te) was accurately measured through a novel technique, using the high-resolution radiometer ECE diagnostic. The TRANSP power balance analysis (Q/QGB) and the measured scale length (a/LTe) result in critical scale length measurements at all major radius locations. These measurements suggest that the profiles are already at the critical values. Furthermore, the dependence of the stiffness on plasma rotation and magnetic shear will be discussed. In order to understand the underlying mechanism of turbulence for these discharges, simulations using the gyrokinetic code, GENE, were carried out. For linear runs at electron scales, it was found that the largest growth rates are very sensitive to a/LTe variation, which suggests the presence of ETG modes, while the sensitivity studies in the ion scales indicate ITG/TEM modes. Supported by USDoE awards DE-FG03-96ER54373 and DE-FC02-99ER54512.

  1. Scattering Length Scaling Laws for Ultracold Three-Body Collisions

    International Nuclear Information System (INIS)

    D'Incao, J.P.; Esry, B.D.

    2005-01-01

    We present a simple and unifying picture that provides the energy and scattering length dependence for all inelastic three-body collision rates in the ultracold regime for three-body systems with short-range two-body interactions. Here, we present the scaling laws for vibrational relaxation, three-body recombination, and collision-induced dissociation for systems that support s-wave two-body collisions. These systems include three identical bosons, two identical bosons, and two identical fermions. Our approach reproduces all previous results, predicts several others, and gives the general form of the scaling laws in all cases

  2. Transition in multiple-scale-lengths turbulence in plasmas

    International Nuclear Information System (INIS)

    Itoh, S.-I.; Yagi, M.; Kawasaki, M.; Kitazawa, A.

    2002-02-01

    The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Statistical nonlinear interactions between semi-micro and micro modes are first kept in the analysis as the drag, noise and drive. The nonlinear dynamics determines both the fluctuation levels and the cross field turbulent transport for the fixed global parameters. A quenching or suppressing effect is induced by their nonlinear interplay, even if both modes are unstable when analyzed independently. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. The thermal fluctuation of the scale length of λ D is assumed to be statistically independent. The hierarchical structure is constructed according to the scale lengths. Transitions in turbulence are found and phase diagrams with cusp type catastrophe are obtained. Dynamics is followed. Statistical properties of the subcritical excitation are discussed. The probability density function (PDF) and transition probability are obtained. Power-laws are obtained in the PDF as well as in the transition probability. Generalization for the case where turbulence is composed of three-classes of modes is also developed. A new catastrophe of turbulent sates is obtained. (author)

  3. Length scale and manufacturability in density-based topology optimization

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Wang, Fengwen; Sigmund, Ole

    2016-01-01

    Since its original introduction in structural design, density-based topology optimization has been applied to a number of other fields such as microelectromechanical systems, photonics, acoustics and fluid mechanics. The methodology has been well accepted in industrial design processes where it can...... performance and in many cases can completely destroy the optimality of the solution. Therefore, the goal of this paper is to review recent advancements in obtaining manufacturable topology-optimized designs. The focus is on methods for imposing minimum and maximum length scales, and ensuring manufacturable...

  4. Multi length-scale characterisation inorganic materials series

    CERN Document Server

    Bruce, Duncan W; Walton, Richard I

    2013-01-01

    Whereas the first five volumes in the Inorganic Materials Series focused on particular classes of materials (synthesis, structures, chemistry, and properties), it is now very timely to provide complementary volumes that introduce and review state-of-the-art techniques for materials characterization. This is an important way of emphasizing the interplay of chemical synthesis and physical characterization. The methods reviewed include spectroscopic, diffraction, and surface techniques that examine the structure of materials on all length scales, from local atomic structure to long-range crystall

  5. Interaction of turbulent length scales with wind turbine blades

    Science.gov (United States)

    Torres-Nieves, Sheilla N.

    Understanding the effects of free-stream turbulence (FST) and surface roughness on the flow around wind turbine blades is imperative in the quest for higher wind turbine efficiency, specially under stall conditions. While many investigations have focused on the aerodynamic loads on wind turbine airfoils, there are no studies that examine the effects of free-stream turbulence and surface roughness on the velocity field around a wind turbine airfoil. Hence, the aim of this investigation is to study the influence of high levels of FST on the flow around smooth and rough surfaces with pressure gradients. Moreover, of great importance in this study is the examination of how the length scales of turbulence and surface roughness interact in the flow over wind turbine airfoils to affect flow separation. Particle Image Velocimetry measurements were performed to analyze the overall flow around a S809 wind turbine blade. Results indicate that when the flow is fully attached, free-stream turbulence significantly decreases aerodynamic efficiency by 82%, yielding to higher loads and fatigue on the blades. On the contrary, when the flow is separated, the effect is reversed and aerodynamic performance is slightly improved (i.e., by 5%) by the presence of the free-stream turbulence. Analysis of the mean flow over the suction surface shows that, under stall conditions, free-stream turbulence delays separation, and surface roughness advances separation. Interestingly, the highly non-linear interaction between free-stream turbulence and surface roughness results in the further advancement of separation. Of particular interest is the study of the region closer to the wall (i.e., the boundary layer), where the flow interacts with both the surface of the blade and the free-stream. Turbulent boundary layer experiments subject to an external favorable pressure gradient (FPG) were performed to study the influence of FST, surface roughness and external pressure gradient (present around the

  6. Cosmogenesis and the origin of the fundamental length scale

    CERN Document Server

    Brout, R; Frère, J M; Gunzig, E; Nardone, P; Truffin, C; Spindel, P

    1980-01-01

    The creation of the universe is regarded as a self-consistent process in which matter is engendered by the space-time varying cosmological gravitational field and vice versa. Abundant production can occur only if the mass of the particles so created is of the order of the Planck mass $(=K^{-1/2})$. We conjecture that this is the origin of the fundamental length scale in field theory, as it is encountered, for example, in present efforts towards grandunification. The region of particle production is steady state in character. It ceases when the produced particles decay. The geometry of this steady state is characteristic of a de Sitter space. It permits one to estimate the number of ordinary particles presently observed, N. We find log N = O (mτ$_{decay}$) = O(g$^{−2}$) = O(10$^2$), with the usual estimate of g = O(10$^{−1}$) at the Planck length scale. This is not inconsistent with the experimental estimate $N \\approx O(10^{90})$. After production, cosmological history gives way to the more conventional ...

  7. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    Science.gov (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  8. Short Rayleigh length free electron laser simulations in expanding coordinates / Proceedings of the 2004 FEL Conference

    OpenAIRE

    Armstead, R.L.; Colson, W.B.; Blau, J.

    2004-01-01

    For compact short-Rayleigh length free electron lasers (FELs), the area of the optical beam can be thousands of times greater at the mirrors than at the beam waist. A fixed numerical grid of sufficient resolution to represent the narrow mode at the waist and the broad mode at the mirrors would be prohibitively large. To accommodate this extreme change of scale with no loss of information, we employ a coordinate system that expands with the diffracting optical mode. The...

  9. Fundamental length, bubble electrons and non-local quantum electrodynamics

    International Nuclear Information System (INIS)

    Hsu, J.P.; Mac, E.

    1977-06-01

    Based on the concept of a bubble electron and the approach of Pais and Uhlenbeck, one constructs a finite quantum electrodynamics which is relativistically invariant, macro-causal and unitary. In this model, fields and their interaction are local, but the action function of free fields is nonlocal. The propagators are modified so that a fundamental length L is naturally introduced to physics. The modified static potential is given by V(r) = e/r for r greater than L and V(r) = 0 for r less than L, which is produced by the bubble source r -1 ddelta(r-L)/dr rather than a point source. It is found that L less than 4 x 10 -15 cm. Experimental consequences and modifications of strict causality at short distances, vertical bars 2 vertical bar approximately L 2 , are discussed

  10. Dynamic Leidenfrost Effect: Relevant Time and Length Scales

    Science.gov (United States)

    Shirota, Minori; van Limbeek, Michiel A. J.; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2016-02-01

    When a liquid droplet impacts a hot solid surface, enough vapor may be generated under it to prevent its contact with the solid. The minimum solid temperature for this so-called Leidenfrost effect to occur is termed the Leidenfrost temperature, or the dynamic Leidenfrost temperature when the droplet velocity is non-negligible. We observe the wetting or drying and the levitation dynamics of the droplet impacting on an (isothermal) smooth sapphire surface using high-speed total internal reflection imaging, which enables us to observe the droplet base up to about 100 nm above the substrate surface. By this method we are able to reveal the processes responsible for the transitional regime between the fully wetting and the fully levitated droplet as the solid temperature increases, thus shedding light on the characteristic time and length scales setting the dynamic Leidenfrost temperature for droplet impact on an isothermal substrate.

  11. Density Functional Theory and Materials Modeling at Atomistic Length Scales

    Directory of Open Access Journals (Sweden)

    Swapan K. Ghosh

    2002-04-01

    Full Text Available Abstract: We discuss the basic concepts of density functional theory (DFT as applied to materials modeling in the microscopic, mesoscopic and macroscopic length scales. The picture that emerges is that of a single unified framework for the study of both quantum and classical systems. While for quantum DFT, the central equation is a one-particle Schrodinger-like Kohn-Sham equation, the classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential, the exact functional form of which is unknown. One therefore approximates the exchange-correlation potential for quantum systems and the excess free energy density functional or the direct correlation functions for classical systems. Illustrative applications of quantum DFT to microscopic modeling of molecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are highlighted.

  12. Length Scale of Leidenfrost Ratchet Switches Droplet Directionality

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, Rebecca L [ORNL; Boreyko, Jonathan B [ORNL; Briggs, Dayrl P [ORNL; Srijanto, Bernadeta R [ORNL; Retterer, Scott T [ORNL; Collier, Pat [ORNL; Lavrik, Nickolay V [ORNL

    2014-01-01

    Arrays of tilted pillars with characteristic heights spanning from hundreds of nanometers to tens of micrometers were created using wafer level processing and used as Leidenfrost ratchets to control droplet directionality. Dynamic Leidenfrost droplets on the ratchets with nanoscale features were found to move in the direction of the pillar tilt while the opposite directionality was observed on the microscale ratchets. This remarkable switch in the droplet directionality can be explained by varying contributions from the two distinct mechanisms controlling droplet motion on Leidenfrost ratchets with nanoscale and microscale features. In particular, asymmetric wettability of dynamic Leidenfrost droplets upon initial impact appears to be the dominant mechanism determining their directionality on tilted nanoscale pillar arrays. By contrast, asymmetric wetting does not provide a strong enough driving force compared to the forces induced by asymmetric vapour flow on arrays of much taller tilted microscale pillars. Furthermore, asymmetric wetting plays a role only in the dynamic Leidenfrost regime, for instance when droplets repeatedly jump after their initial impact. The point of crossover between the two mechanisms coincides with the pillar heights comparable to the values of the thinnest vapor layers still capable of cushioning Leidenfrost droplets upon their initial impact. The proposed model of the length scale dependent interplay between the two mechanisms points to the previously unexplored ability to bias movement of dynamic Leidenfrost droplets and even switch their directionality.

  13. Length scale of Leidenfrost ratchet switches droplet directionality.

    Science.gov (United States)

    Agapov, Rebecca L; Boreyko, Jonathan B; Briggs, Dayrl P; Srijanto, Bernadeta R; Retterer, Scott T; Collier, C Patrick; Lavrik, Nickolay V

    2014-08-07

    Arrays of tilted pillars with characteristic heights spanning from hundreds of nanometers to tens of micrometers were created using wafer level processing and used as Leidenfrost ratchets to control droplet directionality. Dynamic Leidenfrost droplets on the ratchets with nanoscale features were found to move in the direction of the pillar tilt while the opposite directionality was observed on the microscale ratchets. This remarkable switch in the droplet directionality can be explained by varying contributions from the two distinct mechanisms controlling droplet motion on Leidenfrost ratchets with nanoscale and microscale features. In particular, asymmetric wettability of dynamic Leidenfrost droplets upon initial impact appears to be the dominant mechanism determining their directionality on tilted nanoscale pillar arrays. By contrast, asymmetric wetting does not provide a strong enough driving force compared to the forces induced by asymmetric vapour flow on arrays of much taller tilted microscale pillars. Furthermore, asymmetric wetting plays a role only in the dynamic Leidenfrost regime, for instance when droplets repeatedly jump after their initial impact. The point of crossover between the two mechanisms coincides with the pillar heights comparable to the values of the thinnest vapor layers still capable of cushioning Leidenfrost droplets upon their initial impact. The proposed model of the length scale dependent interplay between the two mechanisms points to the previously unexplored ability to bias movement of dynamic Leidenfrost droplets and even switch their directionality.

  14. Characterizing the Surface Roughness Length Scales of Lactose Carrier Particles in Dry Powder Inhalers.

    Science.gov (United States)

    Tan, Bernice Mei Jin; Chan, Lai Wah; Heng, Paul Wan Sia

    2018-03-06

    Surface roughness is well recognized as a critical physical property of particulate systems, particularly in relation to adhesion, friction, and flow. An example is the surface property of carrier particles in carrier-based dry powder inhaler (DPI) formulations. The numerical characterization of roughness remains rather unsatisfactory due to the lack of spatial (or length scale) information about surface features when a common amplitude parameter such as average roughness ( R a ) is used. An analysis of the roughness of lactose carrier particles at three different length scales, designed for specificity to the study of interactive mixtures in DPI, was explored in this study. Three R a parameters were used to represent the microscale, intermediate scale, and macroscale roughness of six types of surface-modified carriers. Coating of micronized lactose fines on coarse carrier particles increased their microroughness from 389 to 639 nm while the macroroughness was not affected. Roller compaction at higher roll forces led to very effective surface roughening, particularly at longer length scales. Changes in R a parameters corroborated the visual observations of particles under the scanning electron microscope. Roughness at the intermediate scale showed the best correlation with the fine particle fraction (FPF) of DPI formulations. From the range of 250 to 650 nm, every 100 nm increase in the intermediate roughness led to ∼8% increase in the FPF. However, the effect of surface roughness was greatly diminished when fine lactose (median size, 9 μm) of comparable amounts to the micronized drug were added to the formulation. The combination of roughness parameters at various length scales provided much discriminatory surface information, which then revealed the "quality" of roughness necessary for improving DPI performance.

  15. Coherent Smith-Purcell radiation as a diagnostic for sub-picosecond electron bunch length

    International Nuclear Information System (INIS)

    Nguyen, D.C.

    1996-01-01

    We suggest a novel technique of measuring sub-picosecond electron bunch length base on coherent Smith-Purcell radiation (SPR) emitted when electrons pass close to the surface of a metal grating. With electron bunch lengths comparable to the grating period, we predict that coherent SPR will be emitted at large angles with respect to direction of beam propagation. As the bunch length shortens, the coherent SPR will be enhanced over the incoherent component that is normally observed at small angles. Furthermore, the angular distribution of the coherent SPR will be shifted toward smaller angles as the bunch length becomes much smaller than the grating period. By measuring the angular distribution of the coherent SPR, one can determine the bunch length of sub-picosecond electron pulses. This new technique is easy to implement and appears capable of measuring femtosecond electron bunch lengths

  16. Length scales for the Navier-Stokes equations on a rotating sphere

    International Nuclear Information System (INIS)

    Kyrychko, Yuliya N.; Bartuccelli, Michele V.

    2004-01-01

    In this Letter we obtain the dissipative length scale for the Navier-Stokes equations on a two-dimensional rotating sphere S 2 . This system is a fundamental model of the large scale atmospheric dynamics. Using the equations of motion in their vorticity form, we construct the ladder inequalities from which a set of time-averaged length scales is obtained

  17. Determination of length scale effects in nonlocal media

    NARCIS (Netherlands)

    Simone, A; Iacono, C; Sluys, LJ; Yao, ZH; Yuan, MW; Zhong, WX

    2004-01-01

    A combined continuous-discontinuous framework for failure is presented. Continuous failure is described with a gradient enhanced damage model and discontinuous failure is introduced by adding discontinuities to finite elements through a node-based enhancement. The continuous model contains a length

  18. On the length-scale of the wind profile

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Mann, Jakob

    2010-01-01

    We present the results of an analysis of simultaneous sonic anemometer observations of wind speed and velocity spectra over flat and homogeneous terrain from 10 up to 160 m height performed at the National Test Station for Wind Turbines at Høvsøre, Denmark. The mixing length, l, derived from the ...

  19. Lead Selenide Nanostructures Self-Assembled across Multiple Length Scales and Dimensions

    Directory of Open Access Journals (Sweden)

    Evan K. Wujcik

    2016-01-01

    Full Text Available A self-assembly approach to lead selenide (PbSe structures that have organized across multiple length scales and multiple dimensions has been achieved. These structures consist of angstrom-scale 0D PbSe crystals, synthesized via a hot solution process, which have stacked into 1D nanorods via aligned dipoles. These 1D nanorods have arranged into nanoscale 2D sheets via directional short-ranged attraction. The nanoscale 2D sheets then further aligned into larger 2D microscale planes. In this study, the authors have characterized the PbSe structures via normal and cryo-TEM and EDX showing that this multiscale multidimensional self-assembled alignment is not due to drying effects. These PbSe structures hold promise for applications in advanced materials—particularly electronic technologies, where alignment can aid in device performance.

  20. Internal Length Gradient (ILG) Material Mechanics Across Scales & Disciplines

    OpenAIRE

    Aifantis, Elias C.

    2016-01-01

    A combined theoretical/numerical/experimental program is outlined for extending the ILG approach to consider time lags, stochasticity and multiphysics couplings. Through this extension it is possible to discuss the interplay between deformation internal lengths (ILs) and ILs induced by thermal, diffusion or electric field gradients. Size-dependent multiphysics stability diagrams are obtained, and size-dependent serrated stress-strain curves are interpreted through combined gradient-stochastic...

  1. Femtosecond structural dynamics on the atomic length scale

    International Nuclear Information System (INIS)

    Zhang, Dongfang

    2014-03-01

    This thesis reports on the development and application of two different but complementary ultrafast electron diffraction setups built at the Max Planck Research Department for Structural Dynamics. One is an ultra-compact femtosecond electron diffraction (FED) setup (Egun300), which is currently operational (with a maximum electron energy of 150 keV) and provides ultrashort (∝300 fs) and bright (∝10 e/μm 2 ) electron bunches. The other one, named as Relativistic Electron Gun for Atomic Exploration (REGAE) is a radio frequency driven 2 to 5 MeV FED setup built in collaboration with different groups from DESY. REGAE was developed as a facility that will provide high quality diffraction with sufficient coherence to even address structural protein dynamics and with electron pulses as short as 20 fs (FWHM). As one of the first students in Prof. R.J. Dwayne Miller's group, I led the femtosecond (fs) laser sub-group at REGAE being responsible for the construction of different key optical elements required to drive both of aforementioned FED systems. A third harmonic generation (THG) and a nonlinear optical parametric amplifier (NOPA) have been used for the photo-generation of ultrashort electron bursts as well as sample laser excitation. Different diagnostic tools have been constructed to monitor the performance of the fs optical system. A fast autocorrelator was developed to provide on the fly pulse duration correction. A transient-grating frequency-resolved optical gating (TG-FROG) was built to obtain detail information about the characteristics of fs optical pulse, i.e. phase and amplitude of its spectral components. In addition to these optical setups, I developed a fs optical pump-probe system, which supports broadband probe pulses. This setup was successfully applied to investigate the semiconductor-to-metal photoinduced phase transition in VO 2 and the ultrafast photo-reduction mechanism of graphene oxide. In regard to FED setups, I have been deeply involved in

  2. Femtosecond structural dynamics on the atomic length scale

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongfang

    2014-03-15

    This thesis reports on the development and application of two different but complementary ultrafast electron diffraction setups built at the Max Planck Research Department for Structural Dynamics. One is an ultra-compact femtosecond electron diffraction (FED) setup (Egun300), which is currently operational (with a maximum electron energy of 150 keV) and provides ultrashort (∝300 fs) and bright (∝10 e/μm{sup 2}) electron bunches. The other one, named as Relativistic Electron Gun for Atomic Exploration (REGAE) is a radio frequency driven 2 to 5 MeV FED setup built in collaboration with different groups from DESY. REGAE was developed as a facility that will provide high quality diffraction with sufficient coherence to even address structural protein dynamics and with electron pulses as short as 20 fs (FWHM). As one of the first students in Prof. R.J. Dwayne Miller's group, I led the femtosecond (fs) laser sub-group at REGAE being responsible for the construction of different key optical elements required to drive both of aforementioned FED systems. A third harmonic generation (THG) and a nonlinear optical parametric amplifier (NOPA) have been used for the photo-generation of ultrashort electron bursts as well as sample laser excitation. Different diagnostic tools have been constructed to monitor the performance of the fs optical system. A fast autocorrelator was developed to provide on the fly pulse duration correction. A transient-grating frequency-resolved optical gating (TG-FROG) was built to obtain detail information about the characteristics of fs optical pulse, i.e. phase and amplitude of its spectral components. In addition to these optical setups, I developed a fs optical pump-probe system, which supports broadband probe pulses. This setup was successfully applied to investigate the semiconductor-to-metal photoinduced phase transition in VO{sub 2} and the ultrafast photo-reduction mechanism of graphene oxide. In regard to FED setups, I have been

  3. SQUID magnetometry from nanometer to centimeter length scales

    International Nuclear Information System (INIS)

    Hatridge, Michael J.

    2010-01-01

    The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.

  4. SQUID magnetometry from nanometer to centimeter length scales

    Energy Technology Data Exchange (ETDEWEB)

    Hatridge, Michael J. [Univ. of California, Berkeley, CA (United States)

    2010-06-01

    The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.

  5. Length and time scales of atmospheric moisture recycling

    NARCIS (Netherlands)

    Van der Ent, R.J.; Savenije, H.H.G.

    2011-01-01

    It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling) due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to

  6. Displacement-length scaling of brittle faults in ductile shear.

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  7. Displacement–length scaling of brittle faults in ductile shear

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  8. SENSITIVITY EVALUATION OF THE ELECTRONIC CAR SCALE

    Directory of Open Access Journals (Sweden)

    Tomasz KĄDZIOŁKA

    2014-06-01

    Full Text Available During every day activities related with performed work or homework duties we meet a lot of equipment and we don't realize about their complex construction. This can be different type of equipment making every day work easier, such as food processors, dishwashers, ecologic furnaces, gas stoves or mechanisms, which are intended for protection against rain, which are personal umbrellas or devices ensuring higher safety such as ABS in a car or equipment used for measuring different values such as thermometers, barometers and finally scales. Scales due to performed tasks should be rated to measuring equipment which in metrology for example are used to specify linear and angular dimensions or deviations from nominal dimensions. In this article we present results of electronic scales sensitivity tests. For comparison of test results two electronic scales with different measuring range were analyzed

  9. Fabrication of Cu-induced networks of linear nanostructures on different length scales

    International Nuclear Information System (INIS)

    Adelung, R.; Hartung, W.; Ernst, F.

    2002-01-01

    Scanning electron microscopy and atomic force microscopy revealed that the deposition Cu onto VSe 2 substrates in ultra-high vacuum leads to the self-organized formation of linear nanostructures, nanowires and nanotunnels, on the substrate surface. The nanowires and nanotunnels are approximately equi-axed and form networks with a mesh width much larger than their diameter. Surprisingly, systematic increase of the Cu coverage studied here does not simply increase the thickness of the nanowires and nanotunnels, but induces the formation of further, distinct networks with increased feature size and increased mesh width. At very high Cu coverages, eventually, we obtained a hierarchy of apparently independent nanowire and nanotunnel networks on different length scales. A model is presented for the micromechanism that leads to this complex arrangement of nanostructures

  10. Multi-length scale porous polymer films from hypercrosslinked breath figure arrays.

    Science.gov (United States)

    Ding, Lei; Zhang, Aijuan; Li, Wenqing; Bai, Hua; Li, Lei

    2016-01-01

    Multi-length scale porous polymer (MLSPP) films were fabricated using commercially available polystyrene (PS) via static breath figure (BF) process and sequent hypercrosslinking reaction. One level of ordered pores in microscale were introduced using static BF process, and the other level in nanoscale were produced by the sequent Friedel-Crafts hypercrosslinking reaction. The chemical structure of the PS MLSPP film was investigated by Fourier transformation infrared spectrometry and solid state nuclear magnetic resonance, and the morphology of the film was observed with electron microscopes. The MLSPP films showed large specific surface areas and excellent chemical and thermal stabilities, owing to the micropores and the crosslinked chemical structure produced by the Friedel-Crafts reaction. The methodology reported in this paper is a template-free, low cost and general strategy for the preparation of MLSPP films, which has potential applications in the areas of environment and energy. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Stellarator turbulence at electron gyroradius scales

    Science.gov (United States)

    Jenko, F.; Kendl, A.

    2002-06-01

    Electromagnetic gyrokinetic simulations of electron-temperature-gradient-driven modes on electron gyroradius scales are performed in the geometry of an advanced stellarator fusion experiment, Wendelstein 7-AS. Based on linear simulations, a critical electron-temperature-gradient formula is established which happens to agree quite well with a previously derived formula for tokamaks in the appropriate limit. Nonlinear simulations are used to study the turbulence and transport characteristics which are dominated by the presence of high-amplitude radially elongated vortices or `streamers'. The role of Debye shielding effects is also examined.

  12. Non-perturbative gravity at different length scales

    International Nuclear Information System (INIS)

    Folkerts, Sarah

    2013-01-01

    In this thesis, we investigate different aspects of gravity as an effective field theory. Building on the arguments of self-completeness of Einstein gravity, we argue that any sensible theory, which does not propagate negative-norm states and reduces to General Relativity in the low energy limit is self-complete. Due to black hole formation in high energy scattering experiments, distances smaller than the Planck scale are shielded from any accessibility. Degrees of freedom with masses larger than the Planck mass are mapped to large classical black holes which are described by the already existing infrared theory. Since high energy (UV) modifications of gravity which are ghost-free can only produce stronger gravitational interactions than Einstein gravity, the black hole shielding is even more efficient in such theories. In this light, we argue that conventional attempts of a Wilsonian UV completion are severely constrained. Furthermore, we investigate the quantum picture for black holes which emerges in the low energy description put forward by Dvali and Gomez in which black holes are described as Bose-Einstein condensates of many weakly coupled gravitons. Specifically, we investigate a non-relativistic toy model which mimics certain aspects of the graviton condensate picture. This toy model describes the collapse of a condensate of attractive bosons which emits particles due to incoherent scattering. We show that it is possible that the evolution of the condensate follows the critical point which is accompanied by the appearance of a light mode. Another aspect of gravitational interactions concerns the question whether quantum gravity breaks global symmetries. Arguments relying on the no hair theorem and wormhole solutions suggest that global symmetries can be violated. In this thesis, we parametrize such effects in terms of an effective field theory description of three-form fields. We investigate the possible implications for the axion solution of the strong CP

  13. Non-perturbative gravity at different length scales

    Energy Technology Data Exchange (ETDEWEB)

    Folkerts, Sarah

    2013-12-18

    In this thesis, we investigate different aspects of gravity as an effective field theory. Building on the arguments of self-completeness of Einstein gravity, we argue that any sensible theory, which does not propagate negative-norm states and reduces to General Relativity in the low energy limit is self-complete. Due to black hole formation in high energy scattering experiments, distances smaller than the Planck scale are shielded from any accessibility. Degrees of freedom with masses larger than the Planck mass are mapped to large classical black holes which are described by the already existing infrared theory. Since high energy (UV) modifications of gravity which are ghost-free can only produce stronger gravitational interactions than Einstein gravity, the black hole shielding is even more efficient in such theories. In this light, we argue that conventional attempts of a Wilsonian UV completion are severely constrained. Furthermore, we investigate the quantum picture for black holes which emerges in the low energy description put forward by Dvali and Gomez in which black holes are described as Bose-Einstein condensates of many weakly coupled gravitons. Specifically, we investigate a non-relativistic toy model which mimics certain aspects of the graviton condensate picture. This toy model describes the collapse of a condensate of attractive bosons which emits particles due to incoherent scattering. We show that it is possible that the evolution of the condensate follows the critical point which is accompanied by the appearance of a light mode. Another aspect of gravitational interactions concerns the question whether quantum gravity breaks global symmetries. Arguments relying on the no hair theorem and wormhole solutions suggest that global symmetries can be violated. In this thesis, we parametrize such effects in terms of an effective field theory description of three-form fields. We investigate the possible implications for the axion solution of the strong CP

  14. Kelvin Absolute Temperature Scale Identified as Length Scale and Related to de Broglie Thermal Wavelength

    Science.gov (United States)

    Sohrab, Siavash

    Thermodynamic equilibrium between matter and radiation leads to de Broglie wavelength λdβ = h /mβvrβ and frequency νdβ = k /mβvrβ of matter waves and stochastic definitions of Planck h =hk =mk c and Boltzmann k =kk =mk c constants, λrkνrk = c , that respectively relate to spatial (λ) and temporal (ν) aspects of vacuum fluctuations. Photon massmk =√{ hk /c3 } , amu =√{ hkc } = 1 /No , and universal gas constant Ro =No k =√{ k / hc } result in internal Uk = Nhνrk = Nmkc2 = 3 Nmkvmpk2 = 3 NkT and potential pV = uN\\vcirc / 3 = N\\ucirc / 3 = NkT energy of photon gas in Casimir vacuum such that H = TS = 4 NkT . Therefore, Kelvin absolute thermodynamic temperature scale [degree K] is identified as length scale [meter] and related to most probable wavelength and de Broglie thermal wavelength as Tβ =λmpβ =λdβ / 3 . Parallel to Wien displacement law obtained from Planck distribution, the displacement law λwS T =c2 /√{ 3} is obtained from Maxwell -Boltzmann distribution of speed of ``photon clusters''. The propagation speeds of sound waves in ideal gas versus light waves in photon gas are described in terms of vrβ in harmony with perceptions of Huygens. Newton formula for speed of long waves in canals √{ p / ρ } is modified to √{ gh } =√{ γp / ρ } in accordance with adiabatic theory of Laplace.

  15. Morphology Characterization of PP/Clay Nanocomposites Across the Length Scales of the Structural Architecture

    NARCIS (Netherlands)

    Szazdi, Laszlo; Abranyi, Agnes; Pukansky Jr, Bela; Vancso, Gyula J.; Pukanszky, B.; Pukanszky, Bela

    2006-01-01

    The structure and rheological properties of a large number of layered silicate poly(propylene) nanocomposites were studied with widely varying compositions. Morphology characterization at different length scales was achieved by SEM, TEM, and XRD. Rheological measurements supplied additional

  16. Centimetre-scale electron diffusion in photoactive organic heterostructures

    Science.gov (United States)

    Burlingame, Quinn; Coburn, Caleb; Che, Xiaozhou; Panda, Anurag; Qu, Yue; Forrest, Stephen R.

    2018-02-01

    The unique properties of organic semiconductors, such as flexibility and lightness, are increasingly important for information displays, lighting and energy generation. But organics suffer from both static and dynamic disorder, and this can lead to variable-range carrier hopping, which results in notoriously poor electrical properties, with low electron and hole mobilities and correspondingly short charge-diffusion lengths of less than a micrometre. Here we demonstrate a photoactive (light-responsive) organic heterostructure comprising a thin fullerene channel sandwiched between an electron-blocking layer and a blended donor:C70 fullerene heterojunction that generates charges by dissociating excitons. Centimetre-scale diffusion of electrons is observed in the fullerene channel, and this can be fitted with a simple electron diffusion model. Our experiments enable the direct measurement of charge diffusivity in organic semiconductors, which is as high as 0.83 ± 0.07 square centimetres per second in a C60 channel at room temperature. The high diffusivity of the fullerene combined with the extraordinarily long charge-recombination time yields diffusion lengths of more than 3.5 centimetres, orders of magnitude larger than expected for an organic system.

  17. Ion-beam induced transformations in nanoscale multilayers: Evolution of clusters with preferred length scales

    Science.gov (United States)

    Bera, S.; Satpati, B.; Goswami, D. K.; Bhattacharjee, K.; Satyam, P. V.; Dev, B. N.

    2006-04-01

    Ion-irradiation-induced modifications of a periodic Pt/C multilayer system containing a small amount of Fe have been analyzed by transmission electron microscopy and grazing incidence x-ray diffraction (GIXRD) studies. The multilayer stack with 16 Pt/C layer pairs (period of 4.23 nm) was fabricated on a glass substrate. A 2 MeV Au2+ ion beam was rastered on the sample to obtain uniformly irradiated strips with fluences from 1×1014 to 1×1015 ions/cm2. Ion irradiation has been found to cause preferential migration of Fe towards Pt layers [Bera et al., Nucl. Instrum. Methods Phys. Res. B 212, 530 (2003)]. Cross-sectional transmission electron microscopy (XTEM) shows considerable atomic redistribution for irradiation at the highest ion fluence (1×1015 ions/cm2). This structure is composed of small clusters. Phase separation and cluster formation processes are discussed. Periodic multilayers have periodicity only in the direction normal to the multilayer surface. However, Fourier transform (FT) of the XTEM images of the sample irradiated at the highest fluence shows extra off-normal Fourier components of superlattice periodicities arising due to ion irradiation. These extra spots in the FT are due to preferential length scales in intercluster separation in three dimensions. With a proper understanding of this phenomenon it may be possible to fabricate useful three-dimensional self-assembled structures of nanoclusters. Our high resolution transmission electron microscopy and GIXRD results reveal the formation of an FePt alloy. As FePt is a magnetic alloy, our observation raises the possibility of fabrication of ion-beam induced magnetic nanocluster lattices.

  18. Ion-beam induced transformations in nanoscale multilayers: Evolution of clusters with preferred length scales

    International Nuclear Information System (INIS)

    Bera, S.; Satpati, B.; Goswami, D. K.; Bhattacharjee, K.; Satyam, P. V.; Dev, B. N.

    2006-01-01

    Ion-irradiation-induced modifications of a periodic Pt/C multilayer system containing a small amount of Fe have been analyzed by transmission electron microscopy and grazing incidence x-ray diffraction (GIXRD) studies. The multilayer stack with 16 Pt/C layer pairs (period of 4.23 nm) was fabricated on a glass substrate. A 2 MeV Au 2+ ion beam was rastered on the sample to obtain uniformly irradiated strips with fluences from 1x10 14 to 1x10 15 ions/cm 2 . Ion irradiation has been found to cause preferential migration of Fe towards Pt layers [Bera et al., Nucl. Instrum. Methods Phys. Res. B 212, 530 (2003)]. Cross-sectional transmission electron microscopy (XTEM) shows considerable atomic redistribution for irradiation at the highest ion fluence (1x10 15 ions/cm 2 ). This structure is composed of small clusters. Phase separation and cluster formation processes are discussed. Periodic multilayers have periodicity only in the direction normal to the multilayer surface. However, Fourier transform (FT) of the XTEM images of the sample irradiated at the highest fluence shows extra off-normal Fourier components of superlattice periodicities arising due to ion irradiation. These extra spots in the FT are due to preferential length scales in intercluster separation in three dimensions. With a proper understanding of this phenomenon it may be possible to fabricate useful three-dimensional self-assembled structures of nanoclusters. Our high resolution transmission electron microscopy and GIXRD results reveal the formation of an FePt alloy. As FePt is a magnetic alloy, our observation raises the possibility of fabrication of ion-beam induced magnetic nanocluster lattices

  19. Flame Treatment of Low-Density Polyethylene: Surface Chemistry Across the Length Scale

    NARCIS (Netherlands)

    Song, Jing; Gunst, Ullrich; Arlinghaus, Heinrich F.; Vancso, Gyula J.

    2007-01-01

    The relationship between surface chemistry and morphology of flame treated low-density polyethylene (LDPE) was studied by various characterization techniques across different length scales. The chemical composition of the surface was determined on the micrometer scale by X-ray photoelectron

  20. The PVC technique a method to estimate the dissipation length scale in turbulent flows

    Science.gov (United States)

    Ho, Chih-Ming; Zohar, Yitshak

    1997-12-01

    A time-averaged length scale can be defined by a pair of successive turbulent-velocity derivatives, i.e. [dnu(x)/ dxn][prime prime or minute]/ [dn+1u(x)/ dxn+1][prime prime or minute]. The length scale associated with the zeroth- and the first-order derivatives, u[prime prime or minute]/u[prime prime or minute]x, is the Taylor microscale. In isotropic turbulence, this scale is the average length between zero crossings of the velocity signal. The average length between zero crossings of the first velocity derivative, i.e. u[prime prime or minute]x/u[prime prime or minute]xx, can be reliably obtained by using the peak-valley-counting (PVC) technique. We have found that the most probable scale, rather than the average, equals the wavelength at the peak of the dissipation spectrum in a plane mixing layer (Zohar & Ho 1996). In this study, we experimentally investigate the generality of applying the PVC technique to estimate the dissipation scale in three basic turbulent shear flows: a flat-plate boundary layer, a wake behind a two-dimensional cylinder and a plane mixing layer. We also analytically explore the quantitative relationships among this length scale and the Kolmogorov and Taylor microscales.

  1. Effect of working length measurement by electronic apex locator or digital radiography on postoperative pain: a randomized clinical trial.

    Science.gov (United States)

    Kara Tuncer, Aysun; Gerek, Müzeyyen

    2014-01-01

    The aim of this study was to evaluate the effect of working length determination methods, electronic apex locator and digital radiography, on postoperative pain. Two hundred twenty patients with asymptomatic single-rooted vital teeth were randomly assigned to 2 groups according to the method used for working length determination, the radiographic group and the electronic apex locator group. After working length determination, chemomechanical preparation was performed in a crown-down technique with ProTaper instruments. A master cone radiograph was taken. Canals were obturated with gutta-percha and sealer by using a lateral compaction technique. Postoperative pain was assessed after 4, 6, 12, 24, and 48 hours by using a 4-point pain intensity scale. In addition, patients were asked to record the number of days necessary to achieve complete pain resolution. Postoperative pain during the 4-hour to 48-hour interval studied was not significantly different (P > .05) between groups. The mean times for pain dissipation in the radiographic and electronic apex locator groups were 3.37 ± 2.79 and 3.88 ± 3.34 days, respectively. The difference between groups was not statistically significant (P > .05). There is no difference in postoperative pain between working length measurement methods by using an electronic apex locator or digital radiography. The reduced exposure to radiation by using apex locator may be a factor that influences a dentist's decision to choose the electronic apex locator over radiography. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Scaling of localization length of a quasi 1D system with longitudinal boundary roughness

    International Nuclear Information System (INIS)

    Abhijit Kar Gupta; Sen, A.K.

    1994-08-01

    We introduce irregularities on one of the longitudinal boundaries of a quasi 1D strip which has no bulk disorder. We calculate the localization length of such a system within the scope of tight-binding formalism and see how it behaves with the roughness introduced on the boundary and with the strip-width. We find that localization length scales with a composite one parameter. (author). 6 refs, 4 figs

  3. Noncomparative scaling of aromaticity through electron itinerancy

    International Nuclear Information System (INIS)

    Paul, Satadal; Goswami, Tamal; Misra, Anirban

    2015-01-01

    Aromaticity is a multidimensional concept and not a directly observable. These facts have always stood in the way of developing an appropriate theoretical framework for scaling of aromaticity. In the present work, a quantitative account of aromaticity is developed on the basis of cyclic delocalization of π-electrons, which is the phenomenon leading to unique features of aromatic molecules. The stabilization in molecular energy, caused by delocalization of π-electrons is obtained as a second order perturbation energy for archetypal aromatic systems. The final expression parameterizes the aromatic stabilization energy in terms of atom to atom charge transfer integral, onsite repulsion energy and the population of spin orbitals at each site in the delocalized π-electrons. An appropriate computational platform is framed to compute each and individual parameter in the derived equation. The numerical values of aromatic stabilization energies obtained for various aromatic molecules are found to be in close agreement with available theoretical and experimental reports. Thus the reliable estimate of aromaticity through the proposed formalism renders it as a useful tool for the direct assessment of aromaticity, which has been a long standing problem in chemistry

  4. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    Science.gov (United States)

    Javvaji, Brahmanandam; Raha, S.; Mahapatra, D. Roy

    2017-02-01

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  5. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Javvaji, Brahmanandam [Indian Institute of Science, Department of Aerospace Engineering (India); Raha, S. [Indian Institute of Science, Department of Computational and Data Sciences (India); Mahapatra, D. Roy, E-mail: droymahapatra@aero.iisc.ernet.in [Indian Institute of Science, Department of Aerospace Engineering (India)

    2017-02-15

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  6. Analytic determination of dynamical and mosaic length scales in a Kac glass model

    Energy Technology Data Exchange (ETDEWEB)

    Franz, S [Abdus Salam ICTP, Strada Costiera 11, PO Box 586, I-34100 Trieste (Italy); Montanari, A [Isaac Newton Institute for Mathematical Sciences 20 Clarkson Road, Cambridge, CB3 0EH (United Kingdom)

    2007-03-16

    We consider a disordered spin model with multi-spin interactions undergoing a glass transition. We introduce dynamic and static length scales and compute them in the Kac limit (long-but-finite range interactions). They diverge at the dynamic and static phase transition with exponents -1/4 and -1 (respectively). The two length scales are approximately equal well above the mode coupling transition. Their discrepancy increases rapidly as this transition is approached. We argue that this signals a crossover from mode coupling to activated dynamics. (fast track communication)

  7. Natural Length Scales of Ecological Systems: Applications at Community and Ecosystem Levels

    Directory of Open Access Journals (Sweden)

    Craig R. Johnson

    2009-06-01

    Full Text Available The characteristic, or natural, length scales of a spatially dynamic ecological landscape are the spatial scales at which the deterministic trends in the dynamic are most sharply in focus. Given recent development of techniques to determine the characteristic length scales (CLSs of real ecological systems, I explore the potential for using CLSs to address three important and vexing issues in applied ecology, viz. (i determining the optimum scales to monitor ecological systems, (ii interpreting change in ecological communities, and (iii ascertaining connectivity between species in complex ecologies. In summarizing the concept of characteristic length scales as system-level scaling thresholds, I emphasize that the primary CLS is, by definition, the optimum scale at which to monitor a system if the objective is to observe its deterministic dynamics at a system level. Using several different spatially explicit individual-based models, I then explore predictions of the underlying theory of CLSs in the context of interpreting change and ascertaining connectivity among species in ecological systems. Analysis of these models support predictions that systems with strongly fluctuating community structure, but an otherwise stable long-term dynamic defined by a stationary attractor, indicate an invariant length scale irrespective of community structure at the time of analysis, and irrespective of the species analyzed. In contrast, if changes in the underlying dynamic are forcibly induced, the shift in dynamics is reflected by a change in the primary length scale. Thus, consideration of the magnitude of the CLS through time enables distinguishing between circumstances where there are temporal changes in community structure but not in the long-term dynamic, from that where changes in community structure reflect some kind of fundamental shift in dynamics. In this context, CLSs emerge as a diagnostic tool to identify phase shifts to alternative stable states

  8. Effect of increasing length on the electronic transport of an armchair graphene nano-ribbons

    Directory of Open Access Journals (Sweden)

    Sh Aghamiri Esfahani

    2015-12-01

    Full Text Available In this research, we have investigated the effect of increasing length on the electronic transport of an armchair graphene nano-ribbons with nitrogen atom impurity and without impurity. The semi-infinite, one-dimensional molecular systems are connected to two electrodes and the electron-electron interaction is ignored. The system is described by a simple tight binding model. All calculations are based on the Green's function and Landauer–Buttiker approach, and the electrodes are described in a wide band approximation.

  9. Gain length fitting formula for free-electron lasers with strong space-charge effects

    Directory of Open Access Journals (Sweden)

    G. Marcus

    2011-08-01

    Full Text Available We present a power-fit formula, obtained from a variational analysis using three-dimensional free-electron laser theory, for the gain length of a high-gain free-electron laser’s fundamental mode in the presence of diffraction, uncorrelated energy spread, and longitudinal space-charge effects. The approach is inspired by the work of Xie [Nucl. Instrum. Methods Phys. Res., Sect. A 445, 59 (2000NIMAER0168-900210.1016/S0168-9002(0000114-5], and provides a useful shortcut for calculating the gain length of the fundamental Gaussian mode of a free-electron laser having strong space-charge effects in the 3D regime. The results derived from analytic theory are in good agreement with detailed numerical particle simulations that also include higher-order space-charge effects, supporting the assumptions made in the theoretical treatment and the variational solutions obtained in the single-mode limit.

  10. Electropolishing effect on roughness metrics of ground stainless steel: a length scale study

    Science.gov (United States)

    Nakar, Doron; Harel, David; Hirsch, Baruch

    2018-03-01

    Electropolishing is a widely-used electrochemical surface finishing process for metals. The electropolishing of stainless steel has vast commercial application, such as improving corrosion resistance, improving cleanness, and brightening. The surface topography characterization is performed using several techniques with different lateral resolutions and length scales, from atomic force microscopy in the nano-scale (process in the micro and meso lateral scales. Both stylus and optical profilometers are used, and multiple cut-off lengths of the standard Gaussian filter are adopted. While the commonly used roughness amplitude parameters (Ra, Rq and Rz) fail to characterize electropolished textures, the root mean square slope (RΔq) is found to better describe the electropolished surfaces and to be insensitive to scale.

  11. Evolution of deformation heterogeneity at multiple length scales in a strongly textured zinc layer on galvanized steel

    International Nuclear Information System (INIS)

    Ghosh, A; Gurao, N P

    2015-01-01

    The evolution of heterogeneity of plastic deformation in a zinc layer has been probed at multiple length scales using a battery of characterization tools like X-ray diffraction, electron back scatter diffraction (EBSD) and digital image correlation. The experimental results indicate that plastic deformation is heterogeneous at different length scales and the value of micro, meso and macro strain by different characterization techniques shows a different value. The value of strain determined at the meso and micro length scale from EBSD and X-ray diffraction was negligible, however, the macro-strain as determined from X-ray peak shift was significant. EBSD results showed evidence of profuse {101-bar2} <101-bar1> contraction twinning in the zinc layer with higher intragranular misorientation in the twin compared to the matrix. It is therefore, inferred that the evolution of higher intergranular (between matrix and twin) strain due to prolific contraction twinning contributes to the failure of zinc layer on galvanized steel. (paper)

  12. Length-scale dependent ensemble-averaged conductance of a 1D disordered conductor: Conductance minimum

    International Nuclear Information System (INIS)

    Tit, N.; Kumar, N.; Pradhan, P.

    1993-07-01

    Exact numerical calculation of ensemble averaged length-scale dependent conductance for the 1D Anderson model is shown to support an earlier conjecture for a conductance minimum. Numerical results can be understood in terms of the Thouless expression for the conductance and the Wigner level-spacing statistics. (author). 8 refs, 2 figs

  13. Wind direction variations in the natural wind – A new length scale

    DEFF Research Database (Denmark)

    Johansson, Jens; Christensen, Silas Sverre

    2018-01-01

    During an observation period of e.g. 10min, the wind direction will differ from its mean direction for short periods of time, and a body of air will pass by from that direction before the direction changes once again. The present paper introduces a new length scale which we have labeled the angul...

  14. Channel length scaling and the impact of metal gate work function ...

    Indian Academy of Sciences (India)

    Channel length decreases and becomes crucial in deep-submicrometre technologies. In this work, we study the effect of short channel and the influences of quantum mechanical on nanoscale DG-MOSFETs. As CMOS technology continues to scale, metal gate electrodes need to be intro- duced to overcome the deleterious ...

  15. Efficient coupling of 527 nm laser beam power to a long scale-length plasma

    International Nuclear Information System (INIS)

    Moody, J.D.; Divol, L.; Glenzer, S.H.; MacKinnon, A.J.; Froula, D.H.; Gregori, G.; Kruer, W.L.; Meezan, N.B.; Suter, L.J.; Williams, E.A.; Bahr, R.; Seka, W.

    2006-01-01

    We experimentally demonstrate that application of laser smoothing schemes including smoothing by spectral dispersion (SSD) and polarization smoothing (PS) increases the intensity range for efficient coupling of frequency doubled (527 nm) laser light to a long scale-length plasma with n e /n cr equals 0.14 and T e equals 2 keV. (authors)

  16. Numerical scalings of the decay lengths in the scrape-off layer

    DEFF Research Database (Denmark)

    Militello, F.; Naulin, V; Nielsen, Anders Henry

    2013-01-01

    Numerical simulations of L-mode turbulence in the scrape-off layer (SOL) are used to construct power scaling laws for the characteristic decay lengths of the temperature, density and heat flux at the outer mid-plane. Most of the results obtained are in qualitative agreement with the experimental...

  17. Studying fractal geometry on submicron length scales by small-angle scattering

    International Nuclear Information System (INIS)

    Wong, P.; Lin, J.

    1988-01-01

    Recent studies have shown that internal surfaces of porous geological materials, such as rocks and lignite coals, can be described by fractals down to atomic length scales. In this paper, the basic properties of self-similar and self-affine fractals are reviewed and how fractal dimensions can be measured by small-angle scattering experiments are discussed

  18. Interpretation of scanning electron microscope measurements of minority carrier diffusion lengths in semiconductors

    Science.gov (United States)

    Flat, A.; Milnes, A. G.

    1978-01-01

    In scanning electron microscope (SEM) injection measurements of minority carrier diffusion lengths some uncertainties of interpretation exist when the response current is nonlinear with distance. This is significant in epitaxial layers where the layer thickness is not large in relation to the diffusion length, and where there are large surface recombination velocities on the incident and contact surfaces. An image method of analysis is presented for such specimens. A method of using the results to correct the observed response in a simple convenient way is presented. The technique is illustrated with reference to measurements in epitaxial layers of GaAs. Average beam penetration depth may also be estimated from the curve shape.

  19. Scale and time dependence of serial correlations in word-length time series of written texts

    Science.gov (United States)

    Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.

    2014-11-01

    This work considered the quantitative analysis of large written texts. To this end, the text was converted into a time series by taking the sequence of word lengths. The detrended fluctuation analysis (DFA) was used for characterizing long-range serial correlations of the time series. To this end, the DFA was implemented within a rolling window framework for estimating the variations of correlations, quantified in terms of the scaling exponent, strength along the text. Also, a filtering derivative was used to compute the dependence of the scaling exponent relative to the scale. The analysis was applied to three famous English-written literary narrations; namely, Alice in Wonderland (by Lewis Carrol), Dracula (by Bram Stoker) and Sense and Sensibility (by Jane Austen). The results showed that high correlations appear for scales of about 50-200 words, suggesting that at these scales the text contains the stronger coherence. The scaling exponent was not constant along the text, showing important variations with apparent cyclical behavior. An interesting coincidence between the scaling exponent variations and changes in narrative units (e.g., chapters) was found. This suggests that the scaling exponent obtained from the DFA is able to detect changes in narration structure as expressed by the usage of words of different lengths.

  20. Dependence of exponents on text length versus finite-size scaling for word-frequency distributions

    Science.gov (United States)

    Corral, Álvaro; Font-Clos, Francesc

    2017-08-01

    Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.

  1. Determining the minimal length scale of the generalized uncertainty principle from the entropy-area relationship

    International Nuclear Information System (INIS)

    Kim, Wontae; Oh, John J.

    2008-01-01

    We derive the formula of the black hole entropy with a minimal length of the Planck size by counting quantum modes of scalar fields in the vicinity of the black hole horizon, taking into account the generalized uncertainty principle (GUP). This formula is applied to some intriguing examples of black holes - the Schwarzschild black hole, the Reissner-Nordstrom black hole, and the magnetically charged dilatonic black hole. As a result, it is shown that the GUP parameter can be determined by imposing the black hole entropy-area relationship, which has a Planck length scale and a universal form within the near-horizon expansion

  2. CHANG-ES. IX. Radio scale heights and scale lengths of a consistent sample of 13 spiral galaxies seen edge-on and their correlations

    Science.gov (United States)

    Krause, Marita; Irwin, Judith; Wiegert, Theresa; Miskolczi, Arpad; Damas-Segovia, Ancor; Beck, Rainer; Li, Jiang-Tao; Heald, George; Müller, Peter; Stein, Yelena; Rand, Richard J.; Heesen, Volker; Walterbos, Rene A. M.; Dettmar, Ralf-Jürgen; Vargas, Carlos J.; English, Jayanne; Murphy, Eric J.

    2018-03-01

    Aim. The vertical halo scale height is a crucial parameter to understand the transport of cosmic-ray electrons (CRE) and their energy loss mechanisms in spiral galaxies. Until now, the radio scale height could only be determined for a few edge-on galaxies because of missing sensitivity at high resolution. Methods: We developed a sophisticated method for the scale height determination of edge-on galaxies. With this we determined the scale heights and radial scale lengths for a sample of 13 galaxies from the CHANG-ES radio continuum survey in two frequency bands. Results: The sample average values for the radio scale heights of the halo are 1.1 ± 0.3 kpc in C-band and 1.4 ± 0.7 kpc in L-band. From the frequency dependence analysis of the halo scale heights we found that the wind velocities (estimated using the adiabatic loss time) are above the escape velocity. We found that the halo scale heights increase linearly with the radio diameters. In order to exclude the diameter dependence, we defined a normalized scale height h˜ which is quite similar for all sample galaxies at both frequency bands and does not depend on the star formation rate or the magnetic field strength. However, h˜ shows a tight anticorrelation with the mass surface density. Conclusions: The sample galaxies with smaller scale lengths are more spherical in the radio emission, while those with larger scale lengths are flatter. The radio scale height depends mainly on the radio diameter of the galaxy. The sample galaxies are consistent with an escape-dominated radio halo with convective cosmic ray propagation, indicating that galactic winds are a widespread phenomenon in spiral galaxies. While a higher star formation rate or star formation surface density does not lead to a higher wind velocity, we found for the first time observational evidence of a gravitational deceleration of CRE outflow, e.g. a lowering of the wind velocity from the galactic disk.

  3. Electron heating caused by the ion-acoustic decay instability in a finite-length system

    International Nuclear Information System (INIS)

    Rambo, P.W.; Woo, W.; DeGroot, J.S.; Mizuno, K.

    1984-01-01

    The ion-acoustic decay instability is investigated for a finite-length plasma with density somewhat below the cutoff density of the electromagnetic driver (napprox.0.7n/sub c/). For this regime, the heating in a very long system can overpopulate the electron tail and cause linear saturation of the low phase velocity electron plasma waves. For a short system, the instability is nonlinearly saturated at larger amplitude by ion trapping. Absorption can be significantly increased by the large-amplitude ion waves. These results compare favorably with microwave experiments

  4. In vitro comparison of working length determination using three different electronic apex locators

    Directory of Open Access Journals (Sweden)

    Alper Kuştarci

    2014-01-01

    Full Text Available Background: The aim of this study was to compare the accuracy of the apex-locating functions of DentaPort ZX, Raypex 5 and Endo Master electronic apex locators (EALs in vitro. Materials and Methods: Thirty extracted human single-rooted teeth with mature apices were used for the study. The real working length (RWL was established by subtracting 0.5 mm from the actual root canal length. All teeth were mounted in an alginate model that was especially developed to test the EALs and the teeth were then measured with each EAL. The results were compared with the corresponding RWL, which was subtracted from the electronically determined distance. Data were analyzed using a paired-samples t-test, a Chi-square test and a repeated measure analysis of variance evaluation at the 0.05 level of significance. Results: Statistical analysis showed that no significant difference was found among all EALs (P > 0.05. Conclusion: The accuracy of the EALs was evaluated and all of the devices showed an acceptable determination of electronic working length between the ranges of ±0.5 mm.

  5. Length-scale effect due to periodic variation of geometrically necessary dislocation densities

    DEFF Research Database (Denmark)

    Oztop, M. S.; Niordson, Christian Frithiof; Kysar, J. W.

    2013-01-01

    Strain gradient plasticity theories have been successful in predicting qualitative aspects of the length scale effect, most notably the increase in yield strength and hardness as the size of the deforming volume decreases. However new experimental methodologies enabled by recent developments...... the microstructure of deformed metals in addition to the size effect. Recent GND measurements have revealed a distribution of length scales that evolves within a metal undergoing plastic deformation. Furthermore, these experiments have shown an accumulation of GND densities in cell walls as well as a variation...... of the saturation value of dislocation densities in these cell walls and dislocation structures. In this study, a strain gradient plasticity framework is extended by incorporating the physical quantities obtained from experimental observations: the quasi-periodicity and the saturation value of GND densities...

  6. The "lotus effect" explained: two reasons why two length scales of topography are important.

    Science.gov (United States)

    Gao, Lichao; McCarthy, Thomas J

    2006-03-28

    Surfaces containing 4 x 8 x 40 microm staggered rhombus posts were hydrophobized using two methods. One, using a dimethyldichlorosilane reaction in the vapor phase, introduces a smooth modified layer, and the other, a solution reaction using methyltrichlorosilane, imparts a second (nanoscopic) length scale of topography. The smooth modified surface exhibits contact angles of thetaA/thetaR = 176 degrees /156 degrees . Arguments are made that the pinning of the receding contact line by the post tops (with thetaA/thetaR = 104 degrees /103 degrees ) is responsible for the hysteresis. The second level of topography raises the contact angles of the post tops and the macroscopic sample to theta(A)/theta(R) = >176 degrees />176 degrees and eliminates hysteresis. The increase in Laplace pressure due to the increase in the advancing contact angle of the post tops is a second reason that two length scales of topography are important.

  7. The length-scale dependence of strain in networks by SANS

    CERN Document Server

    Pyckhout-Hintzen, W; Heinrich, M; Richter, D; Westermann, S; Straube, E

    2002-01-01

    We present a SANS study of the length-scale dependence of chain deformation by means of a suitable labeling in dense, cross-linked elastomers of the HDH-type. This length scale is controlled by the size of the label as well as the cross-link density. The results are compared to long homopolymers. The data are analyzed by means of the tube model of topology in rubber elasticity in combination with the random-phase approximation (RPA) to account for interchain correlations. Chain degradation during cross linking is treated by the standard RPA approach for polydisperse multicomponent systems. A transition from locally freely fluctuating to tube-constrained segmental motion was observed. (orig.)

  8. Penetration length-dependent hot electrons in the field emission from ZnO nanowires

    Science.gov (United States)

    Chen, Yicong; Song, Xiaomeng; Li, Zhibing; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-01-01

    In the framework of field emission, whether or not hot electrons can form in the semiconductor emitters under a surface penetration field is of great concern, which will provide not only a comprehensive physical picture of field emission from semiconductor but also guidance on how to improve device performance. However, apart from some theoretical work, its experimental evidence has not been reported yet. In this article, the field penetration length-dependent hot electrons were observed in the field emission of ZnO nanowires through the in-situ study of its electrical and field emission characteristic before and after NH3 plasma treatment in an ultrahigh vacuum system. After the treatment, most of the nanowires have an increased carrier density but reduced field emission current. The raised carrier density was caused by the increased content of oxygen vacancies, while the degraded field emission current was attributed to the lower kinetic energy of hot electrons caused by the shorter penetration length. All of these results suggest that the field emission properties of ZnO nanowires can be optimized by modifying their carrier density to balance both the kinetic energy of field induced hot electrons and the limitation of saturated current under a given field.

  9. Observation of two length scales in the magnetic critical fluctuations of holmium

    International Nuclear Information System (INIS)

    Thurston, T.R.; Helgesen, G.; Gibbs, D.; Hill, J.P.; Gaulin, B.D.; Shirane, G.

    1993-01-01

    The short-ranged correlations associated with magneitc ordering in the rare earth antiferromagnet holmium have been characterized in high-resolution x-ray and neutron scattering studies. We find that within about 2 K of T c , the magnetic fluctuations exhibit two length scales, instead of one as expected in an ideal system. This result is reminiscent of behavior observed at the cubic-to-tegragonal structural phase transitions of the perovskites

  10. Atomic scale electron vortices for nanoresearch

    International Nuclear Information System (INIS)

    Verbeeck, J.; Van Tendeloo, G.; Schattschneider, P.; Loeffler, S.; Lazar, S.; Stoeger-Pollach, M.; Steiger-Thirsfeld, A.

    2011-01-01

    Electron vortex beams were only recently discovered and their potential as a probe for magnetism in materials was shown. Here we demonstrate a method to produce electron vortex beams with a diameter of less than 1.2 Angst . This unique way to prepare free electrons to a state resembling atomic orbitals is fascinating from a fundamental physics point of view and opens the road for magnetic mapping with atomic resolution in an electron microscope.

  11. Electron Cloud Cyclotron Resonances in the Presence of a Short-bunch-length Relativistic Beam

    International Nuclear Information System (INIS)

    Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Wu, Jennifer W.

    2008-01-01

    Computer simulations using the 2D code 'POSINST' were used to study the formation of the electron cloud in the wiggler section of the positron damping ring of the International Linear Collider. In order to simulate an x-y slice of the wiggler (i.e., a slice perpendicular to the beam velocity), each simulation assumed a constant vertical magnetic field. At values of the magnetic field where the cyclotron frequency was an integral multiple of the bunch frequency, and where the field strength was less than approximately 0.6 T, equilibrium average electron densities were up to three times the density found at other neighboring field values. Effects of this resonance between the bunch and cyclotron frequency are expected to be non-negligible when the beam bunch length is much less than the product of the electron cyclotron period and the beam

  12. Length scale effects and multiscale modeling of thermally induced phase transformation kinetics in NiTi SMA

    Science.gov (United States)

    Frantziskonis, George N.; Gur, Sourav

    2017-06-01

    Thermally induced phase transformation in NiTi shape memory alloys (SMAs) shows strong size and shape, collectively termed length scale effects, at the nano to micrometer scales, and that has important implications for the design and use of devices and structures at such scales. This paper, based on a recently developed multiscale model that utilizes molecular dynamics (MDs) simulations at small scales and MD-verified phase field (PhF) simulations at larger scales, reports results on specific length scale effects, i.e. length scale effects in martensite phase fraction (MPF) evolution, transformation temperatures (martensite and austenite start and finish) and in the thermally cyclic transformation between austenitic and martensitic phase. The multiscale study identifies saturation points for length scale effects and studies, for the first time, the length scale effect on the kinetics (i.e. developed internal strains) in the B19‧ phase during phase transformation. The major part of the work addresses small scale single crystals in specific orientations. However, the multiscale method is used in a unique and novel way to indirectly study length scale and grain size effects on evolution kinetics in polycrystalline NiTi, and to compare the simulation results to experiments. The interplay of the grain size and the length scale effect on the thermally induced MPF evolution is also shown in this present study. Finally, the multiscale coupling results are employed to improve phenomenological material models for NiTi SMA.

  13. Image processing for quantifying fracture orientation and length scale transitions during brittle deformation

    Science.gov (United States)

    Rizzo, R. E.; Healy, D.; Farrell, N. J.

    2017-12-01

    We have implemented a novel image processing tool, namely two-dimensional (2D) Morlet wavelet analysis, capable of detecting changes occurring in fracture patterns at different scales of observation, and able of recognising the dominant fracture orientations and the spatial configurations for progressively larger (or smaller) scale of analysis. Because of its inherited anisotropy, the Morlet wavelet is proved to be an excellent choice for detecting directional linear features, i.e. regions where the amplitude of the signal is regular along one direction and has sharp variation along the perpendicular direction. Performances of the Morlet wavelet are tested against the 'classic' Mexican hat wavelet, deploying a complex synthetic fracture network. When applied to a natural fracture network, formed triaxially (σ1>σ2=σ3) deforming a core sample of the Hopeman sandstone, the combination of 2D Morlet wavelet and wavelet coefficient maps allows for the detection of characteristic scale orientation and length transitions, associated with the shifts from distributed damage to the growth of localised macroscopic shear fracture. A complementary outcome arises from the wavelet coefficient maps produced by increasing the wavelet scale parameter. These maps can be used to chart the variations in the spatial distribution of the analysed entities, meaning that it is possible to retrieve information on the density of fracture patterns at specific length scales during deformation.

  14. Chirality transfer across length-scales in nematic liquid crystals: fundamentals and applications.

    Science.gov (United States)

    Pieraccini, Silvia; Masiero, Stefano; Ferrarini, Alberta; Piero Spada, Gian

    2011-01-01

    When a chiral dopant is dissolved in an achiral liquid crystal medium, the whole sample organizes into a helical structure with a characteristic length-scale of the order of microns. The relation between chirality at these quite different length-scales can be rationalized by a relatively simple model, which retains the relevant factors coming into play: the molecular shape of the chiral dopant, which controls the chirality of short range intermolecular interactions, and the elastic properties of the nematic environment, which control the restoring torques opposing distortion of the director. In this tutorial review the relation between molecular and phase chirality will be reviewed and several applications of the chiral doping of nematic LCs will be discussed. These range from the exploitation of the amplified molecular chirality for stereochemical purposes (e.g., the determination of the absolute configuration or the enantiomeric excess), to newer applications in physico-chemical fields. The latter take advantage of the periodicity of the chiral field, with length-scales ranging from hundreds to thousands of nanometres, which characterise the cholesteric phase.

  15. Differential scaling patterns of vertebrae and the evolution of neck length in mammals.

    Science.gov (United States)

    Arnold, Patrick; Amson, Eli; Fischer, Martin S

    2017-06-01

    Almost all mammals have seven vertebrae in their cervical spines. This consistency represents one of the most prominent examples of morphological stasis in vertebrae evolution. Hence, the requirements associated with evolutionary modifications of neck length have to be met with a fixed number of vertebrae. It has not been clear whether body size influences the overall length of the cervical spine and its inner organization (i.e., if the mammalian neck is subject to allometry). Here, we provide the first large-scale analysis of the scaling patterns of the cervical spine and its constituting cervical vertebrae. Our findings reveal that the opposite allometric scaling of C1 and C2-C7 accommodate the increase of neck bending moment with body size. The internal organization of the neck skeleton exhibits surprisingly uniformity in the vast majority of mammals. Deviations from this general pattern only occur under extreme loading regimes associated with particular functional and allometric demands. Our results indicate that the main source of variation in the mammalian neck stems from the disparity of overall cervical spine length. The mammalian neck reveals how evolutionary disparity manifests itself in a structure that is otherwise highly restricted by meristic constraints. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  16. Lower Length Scale Model Development for Embrittlement of Reactor Presure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the lower-length-scale effort during FY 2016 in developing mesoscale capabilities for microstructure evolution, plasticity and fracture in reactor pressure vessel steels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation induced defect accumulation and irradiation enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. A crystal plasticity model to capture defect-dislocation interaction and a damage model for cleavage micro-crack propagation is also provided.

  17. Self-Consistent Field Theories for the Role of Large Length-Scale Architecture in Polymers

    Science.gov (United States)

    Wu, David

    At large length-scales, the architecture of polymers can be described by a coarse-grained specification of the distribution of branch points and monomer types within a molecule. This includes molecular topology (e.g., cyclic or branched) as well as distances between branch points or chain ends. Design of large length-scale molecular architecture is appealing because it offers a universal strategy, independent of monomer chemistry, to tune properties. Non-linear analogs of linear chains differ in molecular-scale properties, such as mobility, entanglements, and surface segregation in blends that are well-known to impact rheological, dynamical, thermodynamic and surface properties including adhesion and wetting. We have used Self-Consistent Field (SCF) theories to describe a number of phenomena associated with large length-scale polymer architecture. We have predicted the surface composition profiles of non-linear chains in blends with linear chains. These predictions are in good agreement with experimental results, including from neutron scattering, on a range of well-controlled branched (star, pom-pom and end-branched) and cyclic polymer architectures. Moreover, the theory allows explanation of the segregation and conformations of branched polymers in terms of effective surface potentials acting on the end and branch groups. However, for cyclic chains, which have no end or junction points, a qualitatively different topological mechanism based on conformational entropy drives cyclic chains to a surface, consistent with recent neutron reflectivity experiments. We have also used SCF theory to calculate intramolecular and intermolecular correlations for polymer chains in the bulk, dilute solution, and trapped at a liquid-liquid interface. Predictions of chain swelling in dilute star polymer solutions compare favorably with existing PRISM theory and swelling at an interface helps explain recent measurements of chain mobility at an oil-water interface. In collaboration

  18. Diffusion length measurement using the scanning electron microscope. [for silicon solar cell

    Science.gov (United States)

    Weizer, V. G.

    1975-01-01

    The present work describes a measuring technique employing the scanning electron microscope in which values of the true bulk diffusion length are obtained. It is shown that surface recombination effects can be eliminated through application of highly doped surface field layers. The effects of high injection level and low-high junction current generation are investigated. Results obtained with this technique are compared to those obtained by a penetrating radiation (X-ray) method, and a close agreement is found. The SEM technique is limited to cells that contain a back surface field layer.

  19. Second-moment closures and length scales for weakly stratified turbulent shear flows

    Science.gov (United States)

    Baumert, Helmut; Peters, Hartmut

    2000-03-01

    For the special hydrodynamic situation of unbounded homogeneous shear layers, turbulence closure models of Mellor-Yamada type (MY) and k-ɛ type are put into a single canonical form. For this situation we show that conventional versions of MY and various k-ɛ versions lack a proper steady state, and are unable to simulate the most basic properties of stratified shear flows exemplified in, for example, the Rohr et al. [1988] experiments: exponential growth at sufficiently low gradient Richardson number (Rg), exponential decay at sufficiently large Rg, and a steady state in between. Proper choice of one special model parameter readily solves the problems. In the fairly general case of structural equilibrium (state of exponential evolution) in weakly to moderately stratified turbulence (Rg ≲ 0.25), the ratio between the Thorpe scale (or Ellison scale) and the Ozmidov scale varies like the gradient Richardson number (Rg) to the power 3/4, and the ratio of the Thorpe scale to the buoyancy scale varies like Rg1/2. Length scales predicted by our current model are consistent with laboratory measurements of Rohr et al. [1988], with large-eddy numerical simulations of Schumann and Gerz [1995], and with microstructure measurements from the 1987 Tropic Heat Experiment in the equatorial Pacific by Peters et al. [1995].

  20. Nature of the spin-glass phase at experimental length scales

    International Nuclear Information System (INIS)

    Alvarez Baños, R; Cruz, A; Fernandez, L A; Gil-Narvion, J M; Gordillo-Guerrero, A; Maiorano, A; Martin-Mayor, V; Monforte-Garcia, J; Perez-Gaviro, S; Ruiz-Lorenzo, J J; Seoane, B; Tarancon, A; Guidetti, M; Mantovani, F; Schifano, S F; Tripiccione, R; Marinari, E; Parisi, G; Muñoz Sudupe, A; Navarro, D

    2010-01-01

    We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L = 32 lattices down to T ≈ 0.64T c . We demonstrate the relevance of equilibrium finite size simulations to understanding experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a timescale of 1 h can be matched with equilibrium results on L ≈ 110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies in ensuring equilibration in parallel tempering simulations

  1. Characteristic length scale of input data in distributed models: implications for modeling grid size

    Science.gov (United States)

    Artan, G. A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  2. Characteristic length scale of input data in distributed models: implications for modeling grain size

    Science.gov (United States)

    Artan, Guleid A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  3. New electronic apex locator Romiapex A-15 presented accuracy for working length determination in permanent teeth

    Directory of Open Access Journals (Sweden)

    Etevaldo Matos Maia Filho

    2014-12-01

    Full Text Available Purpose: The present study aims to evaluate, ex vivo, the accuracy of electronic apex locators Root ZX II and Romiapex-15, for working length (WL determination in permanent teeth. Materials and Methods: Fourteen single-rooted teeth (incisors and canines, with their apices fully formed were used. The dental crowns were removed. The anatomic length of the tooth (real measurement was visually determined through the insertion of a size 10 K-file until the tip of the instrument could be observed in the apical foramen under a microscope (20X. Teeth were fixed in a model of resin and adapted into alginate soaked with saline solution, which was used as an  electrical conductor. Using a K-file, root canals were measured electronically using both devices. The results obtained for each apex locator were compared to the real measurements. The accuracy between the devices was statistically analyzed using the Bland-Altman graph, Intraclass Correlation Coefficient (ICC, and Student’s t-test. Results: The mean difference between the measurements using the Root ZX II was 0.277mm greater than the real measurement, while the measurements from the Romiapex-15 were 0.308mm higher on average. The comparison between Root ZX II and Romiapex-15 had no significant difference (p= 0.868. Conclusion: It was concluded that Root ZX II and Romiapex-15 had similar accuracy. Romiapex-15 could be an option for WL determination in permanent teeth.

  4. Length Scale Dependence of the Dynamic Properties of Hyaluronic Acid Solutions in the Presence of Salt

    Energy Technology Data Exchange (ETDEWEB)

    Horkay, Ferenc; Falus, Peter; Hecht, Anne-Marie; Geissler, Erik (CNRS-UMR); (NIH); (ILL)

    2010-12-07

    In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D{sub NSE} measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D{sub DLS}. This behavior contrasts with neutral polymer solutions. With increasing salt content, D{sub DLS} approaches D{sub NSE}, which is independent of ionic strength. Contrary to theoretical expectation, the ion-polymer coupling, which dominates the low q dynamics of polyelectrolyte solutions, already breaks down at distance scales greater than the Debye-Hueckel length.

  5. Synchrotron X-Ray Scattering as a Tool for Characterising Catalysts on Multiple Length Scales

    International Nuclear Information System (INIS)

    Hudspeth, Jessica M.; Kvashnina, Kristina O.; Kimber, Simon A.J.; Mitchell, Edward P.

    2015-01-01

    Optimising the properties of catalysts for industrial processes requires a detailed knowledge of their structure and properties on multiple length scales. Synchrotron light sources are ideal tools for characterising catalysts for industrial R and D, providing data with high temporal and spatial resolution, under realistic operating conditions, in a non-destructive way. Here, we describe the different synchrotron techniques that can be employed to gain a wealth of complementary information, and highlight recent developments that have allowed remarkable insight to be gained into working catalytic systems. These techniques have the potential to guide future industrial catalyst design. (authors)

  6. Explanation of the values of Hack's drainage basin, river length scaling exponent

    Science.gov (United States)

    Hunt, A. G.

    2015-08-01

    Percolation theory can be used to find water flow paths of least resistance. The application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law allows interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  7. Brief communication: Possible explanation of the values of Hack's drainage basin, river length scaling exponent

    Science.gov (United States)

    Hunt, Allen G.

    2016-04-01

    Percolation theory can be used to find water flow paths of least resistance. Application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law may allow interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  8. A multiple length scale description of the mechanism of elastomer stretching

    DEFF Research Database (Denmark)

    Neuefeind, J.; Skov, Anne Ladegaard; Daniels, J. E.

    2016-01-01

    Conventionally, the stretching of rubber is modeled exclusively by rotations of segments of the embedded polymer chains; i.e. changes in entropy. However models have not been tested on all relevant length scales due to a lack of appropriate probes. Here we present a universal X-ray based method...... within the individual monomers, but among the contributions is also an elastic strain, acting between chains, which is 3-4 orders of magnitude smaller than the macroscopic strain, and of the opposite sign, i.e. extension of polymer chains in the direction perpendicular to the stretch. This may be due...

  9. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.

  10. Strain rate, temperature and representative length scale influence on plasticity and yield stress in copper

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Virginie [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory

    2011-01-18

    Shock compression of materials constitutes a complex process involving high strain rates, elevated temperatures and compression of the lattice. Materials properties are greatly affected by temperature, the representative length scale and the strain rate of the deformation. Experimentally, it is difficult to study the dynamic microscopic mechanisms that affect materials properties following high intensity shock loading, but they can be investigated using molecular dynamics (MD) simulations. Moreover, MD allows a better control over some parameters. We are using MD simulations to study the effect of the strain rate, representative length scale and temperature on the properties of metals during compression. A half-million-atom Cu sample is subjected to strain rates ranging from 10{sup 7} s{sup -1} to 10{sup 12} s{sup -1} at different temperatures ranging from 50K to 1500K. Single crystals as well as polycrystals are investigated. Plasticity mechanisms as well as the evolution of the micro- and macro-yield stress are observed. Our results show that the yield stress increases with increasing strain rate and decreasing temperature. We also show that the strain rate at which the transition between constant and increasing yield stress as a function of the temperature occurs increases with increasing temperature. Calculations at different grain sizes will give an insight into the grain size effect on the plasticity mechanisms and the yield stress.

  11. Origin of the second length scale found above TN in UO2

    International Nuclear Information System (INIS)

    Watson, G.M.; Gaulin, B.D.; Gibbs, D.; Thurston, T.R.; Simpson, P.J.; Shapiro, S.M.; Lander, G.H.; Matzke, H.; Wang, S.; Dudley, M.

    1996-01-01

    We present the results of x-ray- and neutron-scattering studies of the temperature dependence of the magnetic scattering exhibited by the type-I, triple-Q antiferromagnet UO 2 . Our neutron-scattering results are consistent with those of earlier studies, including the observation of short-ranged magnetic correlations at temperatures near and above T N . However, it is found by x-ray diffraction that a second, longer length scale is induced near T N when the near-surface volume of the sample is mechanically roughened. The longitudinal and transverse widths of the additional scattering increase continuously with increasing temperature above T N , similar to that which has been observed near the magnetic ordering transitions of Ho, Tb, and NpAs and near the tetragonal-to-cubic transitions of various perovskites. Another unusual feature of the present results for UO 2 involves the apparent shift with temperature of the magnetic scattering along the surface normal direction at the (1,1,0) reflection, but not at the (2,1,0) reflection. To our knowledge, this is the first observation of a second length scale near a first-order transition. copyright 1996 The American Physical Society

  12. A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales

    International Nuclear Information System (INIS)

    Atzberger, Paul J.; Kramer, Peter R.; Peskin, Charles S.

    2007-01-01

    In modeling many biological systems, it is important to take into account flexible structures which interact with a fluid. At the length scale of cells and cell organelles, thermal fluctuations of the aqueous environment become significant. In this work, it is shown how the immersed boundary method of [C.S. Peskin, The immersed boundary method, Acta Num. 11 (2002) 1-39.] for modeling flexible structures immersed in a fluid can be extended to include thermal fluctuations. A stochastic numerical method is proposed which deals with stiffness in the system of equations by handling systematically the statistical contributions of the fastest dynamics of the fluid and immersed structures over long time steps. An important feature of the numerical method is that time steps can be taken in which the degrees of freedom of the fluid are completely underresolved, partially resolved, or fully resolved while retaining a good level of accuracy. Error estimates in each of these regimes are given for the method. A number of theoretical and numerical checks are furthermore performed to assess its physical fidelity. For a conservative force, the method is found to simulate particles with the correct Boltzmann equilibrium statistics. It is shown in three dimensions that the diffusion of immersed particles simulated with the method has the correct scaling in the physical parameters. The method is also shown to reproduce a well-known hydrodynamic effect of a Brownian particle in which the velocity autocorrelation function exhibits an algebraic (τ -3/2 ) decay for long times [B.J. Alder, T.E. Wainwright, Decay of the Velocity Autocorrelation Function, Phys. Rev. A 1(1) (1970) 18-21]. A few preliminary results are presented for more complex systems which demonstrate some potential application areas of the method. Specifically, we present simulations of osmotic effects of molecular dimers, worm-like chain polymer knots, and a basic model of a molecular motor immersed in fluid subject to a

  13. Tuning the electronic properties by width and length modifications of narrow-diameter carbon nanotubes for nanomedicine

    KAUST Repository

    Poater, Albert

    2012-10-01

    The distinctive characteristics of nanoparticles, resulting from properties that arise at the nano-scale, underlie their potential applications in the biomedical sector. However, the very same characteristics also result in widespread concerns about the potentially toxic effects of nanoparticles. Given the large number of nanoparticles that are being developed for possible biomedical use, there is a need to develop rapid screening methods based on in silico methods. This study illustrates the application of conceptual Density Functional Theory (DFT) to some carbon nanotubes (CNTs) optimized by means of static DFT calculations. The computational efforts are focused on the geometry of a family of packed narrow-diameter carbon nanotubes (CNTs) formed by units from four to twelve carbons evaluating the strength of the C-C bonds by means of Mayer Bond Orders (MBO). Thus, width and length are geometrical features that might be used to tune the electronic properties of the CNTs. At infinite length, partial semi-conductor characteristics are expected. © 2012 Bentham Science Publishers.

  14. The large-scale isolated disturbances dynamics in the main peak of electronic concentration of ionosphere

    Science.gov (United States)

    Kalinin, U. K.; Romanchuk, A. A.; Sergeenko, N. P.; Shubin, V. N.

    2003-07-01

    The vertical sounding data at chains of ionosphere stations are used to obtain relative variations of electron concentration in the F2 ionosphere region. Specific isolated traveling large-scale irregularities are distinguished in the diurnal succession of the fcF2 relative variations records. The temporal shifts of the irregularities at the station chains determine their motion velocity (of the order of speed of sound) and spatial scale (of order of 3000-5000km, the trajectory length being up to 10000km). The motion trajectories of large-scale isolated irregularities which had preceded the earthquakes are reconstructed.

  15. On the Evolution of the Integral Length Scale in the Wake of Wind Turbines and within Wind Farms

    Science.gov (United States)

    Liu, Huiwen; Jin, Yaqing; Hayat, Imran; Chamorro, Leonardo P.

    2017-11-01

    Wind tunnel experiments were performed to characterize the evolution of integral length scale in the wake of a single turbine, and around wind farms. Hotwire anemometry was used to obtain high-resolution measurements of the streamwise velocity fluctuation at various locations. Negligible and high freestream turbulence levels were considered in the case of single turbine. The integral length scale along the rotor axis is found to grow nearly linearly with distance independent of the incoming turbulence levels, and appears to reach the incoming level in the high turbulence case at about 35-40 rotor diameters downstream. In the wind farm, results suggest that the distribution of integral length scale can be roughly described by a power-law growth with distance within consecutive turbines. Approximately past the third row, the integral length scale appears to reach equilibrium of the spatial distribution.

  16. Statistical theory and transition in multiple-scale-lengths turbulence in plasmas

    International Nuclear Information System (INIS)

    Itoh, Sanae-I.; Itoh, Kimitaka

    2001-06-01

    The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Nonlinear interactions in the same kind of fluctuations as well as nonlinear interplay between different classes of fluctuations are kept in the analysis. Nonlinear interactions are modelled as turbulent drag, nonlinear noise and nonlinear drive, and a set of Langevin equations is formulated. With the help of an Ansatz of a large number of degrees of freedom with positive Lyapunov number, Langevin equations are solved and the fluctuation dissipation theorem in the presence of strong plasma turbulence has been derived. A case where two driving mechanisms (one for micro mode and the other for semi-micro mode) coexist is investigated. It is found that there are several states of fluctuations: in one state, the micro mode is excited and the semi-micro mode is quenched; in the other state, the semi-micro mode is excited, and the micro mode remains at finite but suppressed level. New type of turbulence transition is obtained, and a cusp type catastrophe is revealed. A phase diagram is drawn for turbulence which is composed of multiple classes of fluctuations. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. Finally, the nonlocal heat transport due to the long-wave-length fluctuations, which are noise-pumped by shorter-wave-length ones, is analyzed and the impact on transient transport problems is discussed. (author)

  17. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering

    Science.gov (United States)

    Kelley, Shana O.; Mirkin, Chad A.; Walt, David R.; Ismagilov, Rustem F.; Toner, Mehmet; Sargent, Edward H.

    2014-12-01

    Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices.

  18. Hierarchical self-assembly of two-length-scale multiblock copolymers

    International Nuclear Information System (INIS)

    Brinke, Gerrit ten; Loos, Katja; Vukovic, Ivana; Du Sart, Gerrit Gobius

    2011-01-01

    The self-assembly in diblock copolymer-based supramolecules, obtained by hydrogen bonding short side chains to one of the blocks, as well as in two-length-scale linear terpolymers results in hierarchical structure formation. The orientation of the different domains, e.g. layers in the case of a lamellar-in-lamellar structure, is determined by the molecular architecture, graft-like versus linear, and the relative magnitude of the interactions involved. In both cases parallel and perpendicular arrangements have been observed. The comb-shaped supramolecules approach is ideally suited for the preparation of nanoporous structures. A bicontinuous morphology with the supramolecular comb block forming the channels was finally achieved by extending the original approach to suitable triblock copolymer-based supramolecules.

  19. Comparison of relativity theories with observer-independent scales of both velocity and length/mass

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Benedetti, Dario; D'Andrea, Francesco; Procaccini, Andrea

    2003-01-01

    We consider the two most studied proposals of relativity theories with observer-independent scales of both velocity and length/mass: the one discussed by Amelino-Camelia as an illustrative example for the original proposal (Preprint gr-qc/0012051) of theories with two relativistic invariants, and an alternative more recently proposed by Magueijo and Smolin (Preprint hep-th/0112090). We show that these two relativistic theories are much more closely connected than it would appear on the basis of a naive analysis of their original formulations. In particular, in spite of adopting a rather different formal description of the deformed boost generators, they end up assigning the same dependence of momentum on rapidity, which can be described as the core feature of these relativistic theories. We show that this observation can be used to clarify the concepts of particle mass, particle velocity and energy-momentum conservation rules in these theories with two relativistic invariants

  20. In Situ Observation of Strain Evolution in Cp-Ti Over Multiple Length Scales

    Science.gov (United States)

    Bettles, C. J.; Lynch, P. A.; Stevenson, A. W.; Tomus, D.; Gibson, M. A.; Wallwork, K.; Kimpton, J.

    2011-01-01

    The strain evolution in polycrystalline CP-Ti strip under tension was studied in situ and at two length scales using Synchrotron X-ray diffraction. To establish the bulk material behavior, experiments were performed at the Australian Synchrotron facility. Because of the relatively large grain size, discontinuous "spotty" Debye ring patterns were observed, and a peak fitting algorithm was developed to determine the individual spot positions with the necessary precision for strain determination. The crystallographic directional dependence of strain anisotropy during the loading cycle was determined. Strain anisotropy and yielding of individual crystallographic planes prior to the macroscopic yield point were further clarified by in situ loading experiments performed at the Advanced Light Source (ALS). The deviatoric strain accumulation and plastic response were mapped on a grain-by-grain basis. The onset of microscopic yielding in the grains was identified and correlated with the relative orientation of the grains with respect to the loading direction.

  1. Soft x-ray microscopy - a powerful analytical tool to image magnetism down to fundamental length and times scales

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Peter

    2008-08-01

    The magnetic properties of low dimensional solid state matter is of the utmost interest both scientifically as well as technologically. In addition to the charge of the electron which is the base for current electronics, by taking into account the spin degree of freedom in future spintronics applications open a new avenue. Progress towards a better physical understanding of the mechanism and principles involved as well as potential applications of nanomagnetic devices can only be achieved with advanced analytical tools. Soft X-ray microscopy providing a spatial resolution towards 10nm, a time resolution currently in the sub-ns regime and inherent elemental sensitivity is a very promising technique for that. This article reviews the recent achievements of magnetic soft X-ray microscopy by selected examples of spin torque phenomena, stochastical behavior on the nanoscale and spin dynamics in magnetic nanopatterns. The future potential with regard to addressing fundamental magnetic length and time scales, e.g. imaging fsec spin dynamics at upcoming X-ray sources is pointed out.

  2. Zebrafish brain mapping--standardized spaces, length scales, and the power of N and n.

    Science.gov (United States)

    Hunter, Paul R; Hendry, Aenea C; Lowe, Andrew S

    2015-06-01

    Mapping anatomical and functional parameters of the zebrafish brain is moving apace. Research communities undertaking such studies are becoming ever larger and more diverse. The unique features, tools, and technologies associated with zebrafish are propelling them as the 21st century model organism for brain mapping. Uniquely positioned as a vertebrate model system, the zebrafish enables imaging of anatomy and function at different length scales from intraneuronal compartments to sparsely distributed whole brain patterns. With a variety of diverse and established statistical modeling and analytic methods available from the wider brain mapping communities, the richness of zebrafish neuroimaging data is being realized. The statistical power of population observations (N) within and across many samples (n) projected onto a standardized space will provide vast databases for data-driven biological approaches. This article reviews key brain mapping initiatives at different levels of scale that highlight the potential of zebrafish brain mapping. By way of introduction to the next wave of brain mappers, an accessible introduction to the key concepts and caveats associated with neuroimaging are outlined and discussed. © 2014 Wiley Periodicals, Inc.

  3. Evaluating the accuracy of finite element models at reduced length scales

    Science.gov (United States)

    Kemp, Connor

    Finite element models are used frequently in both engineering and scientific research. While they can provide useful information as to the performance of materials, as length scales are decreased more sophisticated model descriptions are required. It is also important to develop methods by which existing models may be verified against experimental findings. The present study evaluates the ability of various finite element models to predict materials behaviour at length scales ranging from several microns to tens of nanometers. Considering this motivation, this thesis is provided in manuscript form with the bulk of material coming from two case studies. Following an overview of relevant literature in Chapter 2, Chapter 3 considers the nucleation of delta-zirconium hydrides in a Zircaloy-2 matrix. Zirconium hydrides are an important topic in the nuclear industry as they form a brittle phase which leads to delayed hydride cracking during reactor start-up and shut-down. Several FE models are used to compare present results with literature findings and illustrate the weaknesses of standard FE approaches. It is shown that standard continuum techniques do not sufficiently capture the interfacial effects of an inclusion-matrix system. By using nano-scale material descriptions, nucleation lattice strains are obtained which are in good agreement with previous experimental studies. The motivation for Chapter 4 stems from a recognized need to develop a method for modeling corrosion behaviour of materials. Corrosion is also an issue for reactor design and an ability to predict failure points is needed. Finite element models could be used for this purpose, provided model accuracy is verified first. In Chapter 4 a technique is developed which facilitates the extraction of sub-micron resolution strain data from correlation images obtained during in-situ tensile deformation. By comparing image correlation results with a crystal plasticity finite element code it is found that good

  4. Influence of the course boundary value problem on length scale parmeters for second-gradient continuum theories

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Darby J [Los Alamos National Laboratory; Bronkhorst, Curt A [Los Alamos National Laboratory; Mc Dowell, David L [GEORGIA TECH

    2010-12-20

    All nonlocal continuum descriptions of inelastic material response involve length scale parameters that either directly or implicitly quantify the physical dimensions of a neighborhood of response which influences the behavior at a particular point. The second-gradient continuum theories such as those developed by Germain, Toupin and Mindlin, and Eringen, and giving rise to strain-gradient plasticity, is becoming a common coarse-scale basis for homogenization of material response that respects the non local nature of heterogeneous material response. Ideally, the length scale parameters involved in such homogenization would be intrinsically associated with dominant aspects of the microstructure. However, these parameters, at least in some cases, are inextricably linked to the details of the coarse scale boundary value problem. Accordingly, they cannot be viewed as pure constitutive parameters. An example problem of multiscale homogenization is presented to underscore the dependence of second-gradient length scale parameters on the coarse scale boundary value problem, namely the multiscale response of an idealized porous microstructure. The fine scale (microstructure) comprises elastic perfectly plastic matrix with a periodic array of circular voids. This fine scale description of the problem is identical for two separate classes of coarse scale boundary value problem, viz. an extruded channel subject to compression and eventually developing plastic shear bands and a thin layer of material with larger (coarse scale) elliptical voids subject to shear deformation. Implications of the relationship between length scale parameters and the details of the coarse scale boundary value problem are discussed and ideas to ascertain such length parameters from evolving response fields are presented.

  5. A dual length scale method for plane-wave-based, simulation studies of chemical systems modeled using mixed ab initio/empirical force field descriptions

    Science.gov (United States)

    Yarne, Dawn A.; Tuckerman, Mark E.; Martyna, Glenn J.

    2001-08-01

    Mixed ab initio/empirical force-field simulation studies, calculations in which one part of the system is treated using a fully ab initio description and another part is treated using an empirical description, are becoming increasingly popular. Here, the ability of the commonly used, plane wave-based generalized gradient approximation to density functional theory is extended to model systems in which the electrons are assumed to be localized in a single small region of space, that is, itself, embedded within a large chemically inert bath. This is accomplished by introducing two length scales, so that the rapidly varying, short range, electron-electron and electron-atom interactions, arising from the region where the electrons are localized, can be treated using an appropriately large plane wave basis, while the corresponding, slowly varying, long range interactions of the electrons with the full system or bath, can be treated using a small basis. Briefly, a novel Cardinal B-spline based formalism is employed to derive a smooth, differentiable, and rapidly convergent (with respect to the small basis) expression for the total electronic energy, which explicitly contains the two length scales. The method allows reciprocal space based techniques designed to treat clusters, wires, surfaces and solids/liquids (open, and 1-D and 2-D periodic boundary conditions, respectively) to be utilized. Other plane wave-based "mixed" methods are restricted to clusters. The new methodology, which scales as N log N at fixed size of the chemically active region, has been implemented for parallel computing platforms and tested through applications to both model and realistic problems including an enzyme, human carbonic anhydrase II solvated in an explicit bath of water molecules.

  6. Failure analysis of fuel cell electrodes using three-dimensional multi-length scale X-ray computed tomography

    Science.gov (United States)

    Pokhrel, A.; El Hannach, M.; Orfino, F. P.; Dutta, M.; Kjeang, E.

    2016-10-01

    X-ray computed tomography (XCT), a non-destructive technique, is proposed for three-dimensional, multi-length scale characterization of complex failure modes in fuel cell electrodes. Comparative tomography data sets are acquired for a conditioned beginning of life (BOL) and a degraded end of life (EOL) membrane electrode assembly subjected to cathode degradation by voltage cycling. Micro length scale analysis shows a five-fold increase in crack size and 57% thickness reduction in the EOL cathode catalyst layer, indicating widespread action of carbon corrosion. Complementary nano length scale analysis shows a significant reduction in porosity, increased pore size, and dramatically reduced effective diffusivity within the remaining porous structure of the catalyst layer at EOL. Collapsing of the structure is evident from the combination of thinning and reduced porosity, as uniquely determined by the multi-length scale approach. Additionally, a novel image processing based technique developed for nano scale segregation of pore, ionomer, and Pt/C dominated voxels shows an increase in ionomer volume fraction, Pt/C agglomerates, and severe carbon corrosion at the catalyst layer/membrane interface at EOL. In summary, XCT based multi-length scale analysis enables detailed information needed for comprehensive understanding of the complex failure modes observed in fuel cell electrodes.

  7. Length Scales of Reactive Transport in Basalt: Hydrothermal Flow-through Experiments and Anhydrite Precipitation

    Science.gov (United States)

    Los, C.; Kahl, W. A.; Bach, W.

    2017-12-01

    Hydrothermal circulation is a large contributor to mass and heat exchange between oceanic lithosphere and hydrosphere. Cold, unaltered seawater infiltrates in the shallow basaltic crust, leading to sulfate precipitation and clogging of fluid pathways. Anhydrite (CaSO4) veins are common in hydrothermal discharge zones, where entrained seawater is heated and anhydrite quickly forms. Anhydrite is also found in hydrothermal recharge zones, but questions regarding time and length scale in this setting remain. To investigate element transport and anhydrite precipitation we have conducted flow-through experiments using a gypsum-undersaturated CaSO4 solution in pre-fractured basalt at 95, 110 and 140°C. Each run was terminated upon clogging of the input tubes, which took 2-8 weeks. The rock core was scanned before the run and weekly during the experiment using X-ray tomography. Fluid major element chemistry was analyzed using ICP-OES. Geochemical modeling with the software package EQ3/6 showed that the starting solution became supersaturated in anhydrite (SI=IAP/K of 2.5 or higher) in all cases upon heating to the experimental temperature. The software CRUNCH FLOW was used to analyze chemical effects over the length of the core (3cm). The 95°C run and a first run at 110°C did not show any anhydrite. Instead, hematite rosettes and sulfur-bearing (maximum of 1 wt.%) globular Fe-rich structures were present. Tomography images showed that fractures and pores were slightly thinned over the whole core length. Single pores in a second 110°C run and fractures in the 140°C run did show formation of anhydrite and quartz close to the outlet. CRUNCH FLOW modeling predicts the observed release of Mg, Fe, Si, Al, Na and K due to silicate dissolution close to the inlet, while the outlet area should contain some anhydrite. No other sulfur-bearing phases were predicted. The results of this study show that anhydrite needs a large supersaturation (SI>2.5) to precipitate at temperatures

  8. Instantaneous equations for multiphase flow in porous media without length-scale restrictions using a non-local averaging volume

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto

    2010-01-01

    The aim of this paper is to propose a framework to obtain a new formulation for multiphase flow conservation equations without length-scale restrictions, based on the non-local form of the averaged volume conservation equations. The simplification of the local averaging volume of the conservation equations to obtain practical equations is subject to the following length-scale restrictions: d << l << L, where d is the characteristic length of the dispersed phases, l is the characteristic length of the averaging volume, and L is the characteristic length of the physical system. If the foregoing inequality does not hold, or if the scale of the problem of interest is of the order of l, the averaging technique and therefore, the macroscopic theories of multiphase flow should be modified in order to include appropriate considerations and terms in the corresponding equations. In these cases the local form of the averaged volume conservation equations are not appropriate to describe the multiphase system. As an example of the conservation equations without length-scale restrictions, the natural circulation boiling water reactor was consider to study the non-local effects on the thermal-hydraulic core performance during steady-state and transient behaviors, and the results were compared with the classic local averaging volume conservation equations.

  9. SCALING OF THE ELECTRON DISSIPATION RANGE OF SOLAR WIND TURBULENCE

    International Nuclear Information System (INIS)

    Sahraoui, F.; Belmont, G.; Rétino, A.; Robert, P.; De Patoul, J.; Huang, S. Y.; Goldstein, M. L.

    2013-01-01

    Electron scale solar wind (SW) turbulence has attracted great interest in recent years. Considerable evidence exists that the turbulence is not fully dissipated near the proton scale, but continues cascading down to electron scales. However, the scaling of the magnetic energy spectra as well as the nature of the plasma modes involved at those small scales are still not fully determined. Here we survey 10 yr of the Cluster STAFF search-coil magnetometer waveforms measured in the SW and perform a statistical study of the magnetic energy spectra in the frequency range [1, 180] Hz. We found that 75% of the analyzed spectra exhibit breakpoints near the electron gyroscale ρ e , followed by steeper power-law-like spectra. We show that the scaling below the electron breakpoint cannot be determined unambiguously due to instrumental limitations that we discuss in detail. We compare our results to those reported in other studies and discuss their implications for the physical mechanisms involved and for theoretical modeling of energy dissipation in the SW

  10. Low frequency energy scavenging using sub-wave length scale acousto-elastic metamaterial

    Directory of Open Access Journals (Sweden)

    Riaz U. Ahmed

    2014-11-01

    Full Text Available This letter presents the possibility of energy scavenging (ES utilizing the physics of acousto-elastic metamaterial (AEMM at low frequencies (<∼3KHz. It is proposed to use the AEMM in a dual mode (Acoustic Filter and Energy Harvester, simultaneously. AEMM’s are typically reported for filtering acoustic waves by trapping or guiding the acoustic energy, whereas this letter shows that the dynamic energy trapped inside the soft constituent (matrix of metamaterials can be significantly harvested by strategically embedding piezoelectric wafers in the matrix. With unit cell AEMM model, we experimentally asserted that at lower acoustic frequencies (< ∼3 KHz, maximum power in the micro Watts (∼35µW range can be generated, whereas, recently reported phononic crystal based metamaterials harvested only nano Watt (∼30nW power against 10KΩ resistive load. Efficient energy scavengers at low acoustic frequencies are almost absent due to large required size relevant to the acoustic wavelength. Here we report sub wave length scale energy scavengers utilizing the coupled physics of local, structural and matrix resonances. Upon validation of the argument through analytical, numerical and experimental studies, a multi-frequency energy scavenger (ES with multi-cell model is designed with varying geometrical properties capable of scavenging energy (power output from ∼10µW – ∼90µW between 0.2 KHz and 1.5 KHz acoustic frequencies.

  11. Genetic variability of the stable fly assessed on a global scale using amplified fragment length polymorphism.

    Science.gov (United States)

    Kneeland, Kathleen M; Skoda, Steven R; Foster, John E

    2016-10-01

    The stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), is a blood-feeding, economically important pest of animals and humans worldwide. Improved management strategies are essential and their development would benefit from studies on genetic diversity of stable flies. Especially if done on a global scale, such research could generate information necessary for the development and application of more efficient control methods. Herein we report on a genetic study of stable flies using amplified fragment length polymorphism, with samples of 10-40 individuals acquired from a total of 25 locations in the Nearctic, Neotropic, Palearctic, Afrotropic and Australasian biogeographical regions. We hypothesized that genetic differentiation would exist across geographical barriers. Although FST (0.33) was moderately high, the GST (0.05; representing genetic diversity between individuals) was very low; Nm values (representing gene flow) were high (9.36). The mismatch distribution and tests of neutrality suggested population expansion, with no genetic differentiation between locations. The analysis of molecular variance (AMOVA) results showed the majority of genetic diversity was within groups. The mantel test showed no correlation between geographic and genetic distance; this strongly supports the AMOVA results. These results suggest that stable flies did not show genetic differentiation but are panmictic, with no evidence of isolation by distance or across geographical barriers. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  12. Relevant time- and length scale of touch-down for drops impacting on a heated surface

    Science.gov (United States)

    van Limbeek, Michiel A. J.; Shirota, Minori; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2015-11-01

    The vapor generated from a liquid drop impacting a hot solid surface can prevent it to make contact, depending on the solid temperature. The minimum temperature when no contact is made between the drop and the solid is called the dynamic Leidenfrost temperature. The latent heat needed to generated the vapor is drawn from the solid, and in general the Leidenfrost temperature depends on the solid thermal properties. Here we show experiments conducted on a sapphire plate, to minimize the cooling of the solid and ensuring nearly isothermal conditions. By using high speed total internal reflection imaging, we observe the drop base during impact up to about 100nm above the substrate surface. By this technique we are able to study the processes responsible for the transition between fully wetting and fully levitating drop impact conditions as the solid temperature increases. We reveal the relevant length- and time-scales for the dimple formation under the drop and explain their relevance for the late-time dynamics. As the transition regime is traversed from low to high temperature, the liquid-solid contact gradually decreases which reduces the friction with the solid, enhancing the spreading of the drop considerably.

  13. Extending the length and time scales of Gram–Schmidt Lyapunov vector computations

    International Nuclear Information System (INIS)

    Costa, Anthony B.; Green, Jason R.

    2013-01-01

    Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram–Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N 2 (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram–Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard–Jones fluids from N=100 to 1300 between Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram–Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra

  14. Bifurcation and phase diagram of turbulence constituted from three different scale-length modes

    International Nuclear Information System (INIS)

    Itoh, S.-I.; Kitazawa, A.; Yagi, M.; Itoh, K.

    2002-04-01

    Cases where three kinds of fluctuations having the different typical scale-lengths coexist are analyzed, and the statistical theory of strong turbulence in inhomogeneous plasmas is developed. Statistical nonlinear interactions between fluctuations are kept in the analysis as the renormalized drag, statistical noise and the averaged drive. The nonlinear interplay through them induces a quenching or suppressing effect, even if all the modes are unstable when they are analyzed independently. Variety in mode appearance takes place: one mode quenches the other two modes, or one mode is quenched by the other two modes, etc. The bifurcation of turbulence is analyzed and a phase diagram is drawn. Phase diagrams with cusp type catastrophe and butterfly type catastrophe are obtained. The subcritical bifurcation is possible to occur through the nonlinear interplay, even though each one is supercritical turbulence when analyzed independently. Analysis reveals that the nonlinear stability boundary (marginal point) and the amplitude of each mode may substantially shift from the conventional results of independent analyses. (author)

  15. Cellular adaptation to biomechanical stress across length scales in tissue homeostasis and disease.

    Science.gov (United States)

    Gilbert, Penney M; Weaver, Valerie M

    2017-07-01

    Human tissues are remarkably adaptable and robust, harboring the collective ability to detect and respond to external stresses while maintaining tissue integrity. Following injury, many tissues have the capacity to repair the damage - and restore form and function - by deploying cellular and molecular mechanisms reminiscent of developmental programs. Indeed, it is increasingly clear that cancer and chronic conditions that develop with age arise as a result of cells and tissues re-implementing and deregulating a selection of developmental programs. Therefore, understanding the fundamental molecular mechanisms that drive cell and tissue responses is a necessity when designing therapies to treat human conditions. Extracellular matrix stiffness synergizes with chemical cues to drive single cell and collective cell behavior in culture and acts to establish and maintain tissue homeostasis in the body. This review will highlight recent advances that elucidate the impact of matrix mechanics on cell behavior and fate across these length scales during times of homeostasis and in disease states. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Revisiting the Scale Length-μ0 Plane and the Freeman Law in the Local Universe

    Science.gov (United States)

    Fathi, Kambiz

    2010-10-01

    We have used Virtual Observatory technology to analyze the disk scale length rd and central surface brightness μ0 for a sample of 29,955 bright disk galaxies from the Sloan Digital Sky Survey. We use the results in the r band and revisit the relation between these parameters and the galaxy morphology, and find the average value langμ0rang = 20.2 ± 0.7 mag arcsec-2. We confirm that late-type spirals populate the lower left corner of the rd -μ0 plane and that the early and intermediate spirals are mixed in this diagram, with disky ellipticals at the top left corner. We further investigate the Freeman Law and confirm that it indeed defines an upper limit for μ0 in bright disk galaxies with r mag = 6) have fainter central surface brightness. Our results are based on a volume-corrected sample of galaxies in the local universe (z numerical simulations of galaxy formation and evolution.

  17. Quantum chaos of a particle in a square well: Competing length scales and dynamical localization

    Science.gov (United States)

    Sankaranarayanan, R.; Lakshminarayan, A.; Sheorey, V. B.

    2001-10-01

    The classical and quantum dynamics of a particle trapped in a one-dimensional infinite square well with a time-periodic pulsed field is investigated. This is a two-parameter non-KAM (Kolmogorov-Arnold-Moser) generalization of the kicked rotor, which can be seen as the standard map of particles subjected to both smooth and hard potentials. The virtue of the generalization lies in the introduction of an extra parameter R, which is the ratio of two length scales, namely, the well width and the field wavelength. If R is a noninteger the dynamics is discontinuous and non-KAM. We have explored the role of R in controlling the localization properties of the eigenstates. In particular, the connection between classical diffusion and localization is found to generalize reasonably well. In unbounded chaotic systems such as these, while the nearest neighbor spacing distribution of the eigenvalues is less sensitive to the nature of the classical dynamics, the distribution of participation ratios of the eigenstates proves to be a sensitive measure; in the chaotic regimes the latter is log-normal. We find that the tails of the well converged localized states are exponentially localized despite the discontinuous dynamics while the bulk part shows fluctuations that tend to be closer to random matrix theory predictions. Time evolving states show considerable R dependence, and tuning R to enhance classical diffusion can lead to significantly larger quantum diffusion for the same field strengths, an effect that is potentially observable in present day experiments.

  18. Surface-immobilized hydrogel patterns on length scales from micrometer to nanometer

    Science.gov (United States)

    Zeira, Assaf

    The present work concentrates on the study of pattern generation and transfer processes of monolayer covered surfaces, deriving from the basic working concept of Constructive Lithography. As an advancement of constructive lithography, we developed a direct, one-step printing (contact electrochemical printing, CEP) and replication (contact electrochemical replication, CER) of hydrophilic organic monolayer patterns surrounded by a hydrophobic monolayer background. In addition, we present a process of transfer of metal between two contacting solid surfaces to predefined monolayer template pattern sites (contact electrochemical transfer, CET). This thesis shows that CEP, CER, and CET may be implemented under a variety of different experimental conditions, regardless of whether the initial "master" pattern was created by a parallel (fast) or serial (slow) patterning process. CEP and CER also posses the unique attractive property that each replica may equally function as master stamp in the fabrication of additional replicas. Moreover, due to a mechanism of selfcorrection patterned surfaces produced these process are often free of defects that the initial "master" stamp may had. We finally show that the electrochemical patterning of OTS monolayers on silicon can be further extended to flexible polymeric substrate materials as well as to a variety of chemical manipulations, allowing the fabrication of tridimensional (3D) composite structures made on the basis of readily available OTS compound. The results obtained suggest that such contact electrochemical processes could be used to rapidly generate multiple copies of surface patterns spanning variable length scales, this basic approach being applicable to rigid as well as flexible substrate materials.

  19. Comparison of the Effects of the Different Methods for Computing the Slope Length Factor at a Watershed Scale

    Directory of Open Access Journals (Sweden)

    Fu Suhua

    2013-09-01

    Full Text Available The slope length factor is one of the parameters of the Universal Soil Loss Equation (USLE and the Revised Universal Soil Loss Equation (RUSLE and is sometimes calculated based on a digital elevation model (DEM. The methods for calculating the slope length factor are important because the values obtained may depend on the methods used for calculation. The purpose of this study was to compare the difference in spatial distribution of the slope length factor between the different methods at a watershed scale. One method used the uniform slope length factor equation (USLFE where the effects of slope irregularities (such as slope gradient, etc. on soil erosion by water were not considered. The other method used segmented slope length factor equation(SSLFE which considered the effects of slope irregularities on soil erosion by water. The Arc Macro Language (AML Version 4 program for the revised universal soil loss equation(RUSLE.which uses the USLFE, was chosen to calculate the slope length factor. In a parallel analysis, the AML code of RUSLE Version 4 was modified according to the SSLFE to calculate the slope length factor. Two watersheds with different slope and gully densities were chosen. The results show that the slope length factor and soil loss using the USLFE method were lower than those using the SSLFE method, especially on downslopes watershed with more frequent steep slopes and higher gully densities. In addition, the slope length factor and soil loss calculated by the USLFE showed less spatial variation.

  20. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales.

    Science.gov (United States)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A L David; Belcher, Warwick J; Dastoor, Paul C

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  1. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Science.gov (United States)

    Burke, Kerry B.; Stapleton, Andrew J.; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A. L. David; Belcher, Warwick J.; Dastoor, Paul C.

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  2. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    International Nuclear Information System (INIS)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C; Kilcoyne, A L David

    2011-01-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N ' -(4-butylphenyl)-bis-N, N ' -phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  3. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia); Kilcoyne, A L David, E-mail: Paul.Dastoor@newcastle.edu.au [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N{sup '}-(4-butylphenyl)-bis-N, N{sup '}-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  4. Contact damage and fracture micromechanisms of multilayered TiN/CrN coatings at micro- and nano-length scales

    Energy Technology Data Exchange (ETDEWEB)

    Roa, J.J., E-mail: joan.josep.roa@upc.edu [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Universitat Politècnica de Catalunya, C. Pasqual i Vila 15, 08028 Barcelona (Spain); Jiménez-Piqué, E. [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Universitat Politècnica de Catalunya, C. Pasqual i Vila 15, 08028 Barcelona (Spain); Martínez, R. [Centro de Ingeniería Avanzada de Superfícies, Asociación de la Industria Navarra — AIN, Crta. Pamplona, 1, Edificio AIN, 31191 Cordovilla (Spain); Ramírez, G. [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnològic, Avda. Bases de Manresa 1, 08243 Manresa (Spain); Tarragó, J.M. [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Universitat Politècnica de Catalunya, C. Pasqual i Vila 15, 08028 Barcelona (Spain); and others

    2014-11-28

    In this study, systematic nanomechanical and micromechanical studies have been conducted in three multilayer TiN/CrN systems with different bilayer periods (8, 19 and 25 nm). Additionally, experimental work has been performed on corresponding TiN and CrN single layers, for comparison purposes. The investigation includes the use of different indenter tip geometries as well as contact loading conditions (i.e. indentation/scratch) such to induce different stress field and damage scenarios within the films. The surface and subsurface damage under the different indentation imprints and scratch tracks have been observed by atomic force microscopy, field emission scanning electron microscopy and focused ion beam. Multilayer TiN/CrN coated systems are found to exhibit higher adhesion strength (under sliding contact load) and cracking resistance (under spherical indentation) than those coated with reference TiN and CrN monolayers. The main reason behind these findings is the effective development of microstructurally-driven deformation and cracking resistant micromechanisms: rotation of columnar grains (and associated distortion of bilayer period) and crack deflection of interlayer thickness length scale, respectively. - Highlights: • Nanomechanical and micromechanical study in TiN/CrN systems • TiN/CrN coated systems exhibit higher adhesion strength and cracking resistance. • Main deformation and cracking micromechanisms: columnar grain rotation and crack deflection.

  5. Diffusion effects on volume-selective NMR at small length scales

    International Nuclear Information System (INIS)

    Gaedke, Achim

    2009-01-01

    In this thesis, the interplay between diffusion and relaxation effects in spatially selective NMR experiments at short length scales is explored. This is especially relevant in the context of both conventional and mechanically detected MRI at (sub)micron resolution in biological specimens. Recent results on selectively excited very thin slices showed an in-slice-magnetization recovery orders of magnitude faster than the longitudinal relaxation time T1. However, those experiments were run on fully relaxed samples while MRI and especially mechanically detected NMR experiments are typically run in a periodic fashion with repetition times far below T1. The main purpose of this work therefore was to extend the study of the interplay between diffusion and longitudinal relaxation to periodic excitations. In some way, this is inverse phenomenon to the DESIRE (Diffusive Enhancement of SIgnal and REsolution) approach, proposed 1992 by Lauterbur. Experiments on periodically excited thin slices were carried out at a dedicated static field gradient cryomagnet with magnetic field gradients up to 180 T/m. In order to obtain plane slices, an appropriate isosurface of the gradient magnet had to be identified. It was found at a field of 3.8 T with a gradient of 73 T/m. In this field, slices down to a thickness of 3.2 μm could be excited. The detection of the NMR signal was done using FIDs instead of echoes as the excitation bandwidth of those thin slices is sufficiently small to observe FIDs which are usually considered to be elusive to detection in such strong static field gradients. A simulation toolbox based on the full Bloch-Torrey-equation was developed to describe the excitation and the formation of NMR signals under those unusual conditions as well as the interplay of diffusion and magnetization recovery. Both the experiments and the simulations indicate that diffusion effects lead to a strongly enhanced magnetization modulation signal also under periodic excitation

  6. Magnetospheric Multiscale Observations of Electron Scale Magnetic Peak

    Science.gov (United States)

    Yao, S. T.; Shi, Q. Q.; Guo, R. L.; Yao, Z. H.; Tian, A. M.; Degeling, A. W.; Sun, W. J.; Liu, J.; Wang, X. G.; Zong, Q. G.; Zhang, H.; Pu, Z. Y.; Wang, L. H.; Fu, S. Y.; Xiao, C. J.; Russell, C. T.; Giles, B. L.; Feng, Y. Y.; Xiao, T.; Bai, S. C.; Shen, X. C.; Zhao, L. L.; Liu, H.

    2018-01-01

    The sudden enhancements of magnetic strength, named magnetic peaks (MPs), are often observed in the magnetosheath of magnetized planets. They are usually identified as flux ropes (FRs) or magnetic mirror mode structures. Previous studies of MPs are mostly on the magnetohydrodynamics (MHD) scale. In this study, an electron scale MP is reported in the Earth magnetosheath. We present a typical case with a scale of 7 electron gyroradii and a duration of 0.18 s. A strong magnetic disturbance and associated electrical current are detected. Electron vortex is found perpendicular to the magnetic field line and is self-consist with the peak. We use multipoint spacecraft techniques to determine the propagation velocity of the MP structure and find that the magnetic peak does propagate relative to the plasma (ion) flow. This is very different from the magnetic mirror mode that does not propagate relative to the plasma flow. Furthermore, we developed an efficient method that can effectively distinguish "magnetic bottle like" and "FRs like" structures. The MP presented in this study is identified as magnetic bottle like type. The mechanism to generate the electron scale magnetic bottle like structure is still unclear, suggesting that new theory needs to be developed to understand such small-scale phenomena.

  7. Continuum and crystal strain gradient plasticity with energetic and dissipative length scales

    Science.gov (United States)

    Faghihi, Danial

    This work, standing as an attempt to understand and mathematically model the small scale materials thermal and mechanical responses by the aid of Materials Science fundamentals, Continuum Solid Mechanics, Misro-scale experimental observations, and Numerical methods. Since conventional continuum plasticity and heat transfer theories, based on the local thermodynamic equilibrium, do not account for the microstructural characteristics of materials, they cannot be used to adequately address the observed mechanical and thermal response of the micro-scale metallic structures. Some of these cases, which are considered in this dissertation, include the dependency of thin films strength on the width of the sample and diffusive-ballistic response of temperature in the course of heat transfer. A thermodynamic-based higher order gradient framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. The concept of the thermal activation energy, the dislocations interaction mechanisms, nonlocal energy exchange between energy carriers and phonon-electrons interactions are taken into consideration in proposing the thermodynamic potentials such as Helmholtz free energy and rate of dissipation. The same approach is also adopted to incorporate the effect of the material microstructural interface between two materials (e.g. grain boundary in crystals) into the formulation. The developed grain boundary flow rule accounts for the energy storage at the grain boundary due to the dislocation pile up as well as energy dissipation caused by the dislocation transfer through the grain boundary. Some of the abovementioned responses of small scale metallic compounds are addressed by means of the numerical implementation of the developed framework within the finite element context. In this regard, both displacement and plastic strain fields are independently discretized and the numerical implementation is performed in

  8. Quantitative atom probe analysis of nanostructure containing clusters and precipitates with multiple length scales

    International Nuclear Information System (INIS)

    Marceau, R.K.W.; Stephenson, L.T.; Hutchinson, C.R.; Ringer, S.P.

    2011-01-01

    A model Al-3Cu-(0.05 Sn) (wt%) alloy containing a bimodal distribution of relatively shear-resistant θ' precipitates and shearable GP zones is considered in this study. It has recently been shown that the addition of the GP zones to such microstructures can lead to significant increases in strength without a decrease in the uniform elongation. In this study, atom probe tomography (APT) has been used to quantitatively characterise the evolution of the GP zones and the solute distribution in the bimodal microstructure as a function of applied plastic strain. Recent nuclear magnetic resonance (NMR) analysis has clearly shown strain-induced dissolution of the GP zones, which is supported by the current APT data with additional spatial information. There is significant repartitioning of Cu from the GP zones into the solid solution during deformation. A new approach for cluster finding in APT data has been used to quantitatively characterise the evolution of the sizes and shapes of the Cu containing features in the solid solution solute as a function of applied strain. -- Research highlights: → A new approach for cluster finding in atom probe tomography (APT) data has been used to quantitatively characterise the evolution of the sizes and shapes of the Cu containing features with multiple length scales. → In this study, a model Al-3Cu-(0.05 Sn) (wt%) alloy containing a bimodal distribution of relatively shear-resistant θ' precipitates and shearable GP zones is considered. → APT has been used to quantitatively characterise the evolution of the GP zones and the solute distribution in the bimodal microstructure as a function of applied plastic strain. → It is clearly shown that there is strain-induced dissolution of the GP zones with significant repartitioning of Cu from the GP zones into the solid solution during deformation.

  9. In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale.

    Directory of Open Access Journals (Sweden)

    Min Jae Song

    2010-09-01

    Full Text Available A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms.

  10. Scaling laws in high energy electron-nuclear processes

    Science.gov (United States)

    Chemtob, Marc

    We survey the parton model description of high momentum transfer electron scattering processes with nuclei. We discuss both nucleon and quark parton models and confront the patterns of scaling laws violations, induced by binding effects, in the former, and perturbative QCD effects, in the latter.

  11. Imaging nanometer-scale beamlets arrays of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, R. K.; To, H.; Musumeci, P. [Department of Physics and Astronomy, UCLA, Los Angeles, California, 90095 (United States)

    2012-12-21

    In this paper we study the evolution of nanometer scale transverse density modulation of a high brightness electron beam through a drift and simple focusing channel. With the help of particle tracking simulations we analyze the effects of space charge forces, emittance and energy spread on the feasibility of recovering an initial nm-scale transverse modulation after transport through a magnifying optical system. These studies are relevant for applications such as time-resolved MeV transmission electron microscopy and in the high brightness electron beam community due to the recent developments of nano-structured cathodes and due to the possibility of taking advantage of nm-structures in the beam for coherent radiation generation.

  12. Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields

    Directory of Open Access Journals (Sweden)

    J. B. Rosenzweig

    2004-06-01

    Full Text Available The energy loss and gain of a beam in the nonlinear, “blowout” regime of the plasma wakefield accelerator, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion, has been asserted, through previous observations in simulations, to scale linearly with beam charge. Additionally, from a recent analysis by Barov et al., it has been concluded that for an infinitesimally short beam, the energy loss is indeed predicted to scale linearly with beam charge for arbitrarily large beam charge. This scaling is predicted to hold despite the onset of a relativistic, nonlinear response by the plasma, when the number of beam particles occupying a cubic plasma skin depth exceeds that of plasma electrons within the same volume. This paper is intended to explore the deviations from linear energy loss using 2D particle-in-cell simulations that arise in the case of experimentally relevant finite length beams. The peak accelerating field in the plasma wave excited behind the finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude into the nonlinear regime. At large enough normalized charge, the linear scaling of both decelerating and accelerating fields collapses, with serious consequences for plasma wave excitation efficiency. Using the results of parametric particle-in-cell studies, the implications of these results for observing severe deviations from linear scaling in present and planned experiments are discussed.

  13. Manufacturing test of large scale hollow capsule and long length cladding in the large scale oxide dispersion strengthened (ODS) martensitic steel

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2004-04-01

    Mass production capability of oxide dispersion strengthened (ODS) martensitic steel cladding (9Cr) has being evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube (raw materials powder production, mechanical alloying (MA) by ball mill, canning, hot extrusion, and machining) is a dominant factor in the total cost for manufacturing ODS ferritic steel cladding. In this study, the large-sale 9Cr-ODS martensitic steel mother tube which is made with a large-scale hollow capsule, and long length claddings were manufactured, and the applicability of these processes was evaluated. Following results were obtained in this study. (1) Manufacturing the large scale mother tube in the dimension of 32 mm OD, 21 mm ID, and 2 m length has been successfully carried out using large scale hollow capsule. This mother tube has a high degree of accuracy in size. (2) The chemical composition and the micro structure of the manufactured mother tube are similar to the existing mother tube manufactured by a small scale can. And the remarkable difference between the bottom and top sides in the manufactured mother tube has not been observed. (3) The long length cladding has been successfully manufactured from the large scale mother tube which was made using a large scale hollow capsule. (4) For reducing the manufacturing cost of the ODS steel claddings, manufacturing process of the mother tubes using a large scale hollow capsules is promising. (author)

  14. Taylor-plasticity-based analysis of length scale effects in void growth

    KAUST Repository

    Liu, Junxian

    2014-09-25

    We have studied the void growth problem by employing the Taylor-based strain gradient plasticity theories, from which we have chosen the following three, namely, the mechanism-based strain gradient (MSG) plasticity (Gao et al 1999 J. Mech. Phys. Solids 47 1239, Huang et al 2000 J. Mech. Phys. Solids 48 99-128), the Taylor-based nonlocal theory (TNT; 2001 Gao and Huang 2001 Int. J. Solids Struct. 38 2615) and the conventional theory of MSG (CMSG; Huang et al 2004 Int. J. Plast. 20 753). We have addressed the following three issues which occur when plastic deformation at the void surface is unconstrained. (1) Effects of elastic deformation. Elasticity is essential for cavitation instability. It is therefore important to guarantee that the gradient term entering the Taylor model is the effective plastic strain gradient instead of the total strain gradient. We propose a simple elastic-plastic decomposition method. When the void size approaches the minimum allowable initial void size related to the maximum allowable geometrically necessary dislocation density, overestimation of the flow stress due to the negligence of the elastic strain gradient is on the order of lεY/R0 near the void surface, where l, εY and R0 are, respectively, the intrinsic material length scale, the yield strain and the initial void radius. (2) MSG intrinsic inconsistency, which was initially mentioned in Gao et al (1999 J. Mech. Phys. Solids 47 1239) but has not been the topic of follow-up studies. We realize that MSG higher-order stress arises due to the linear-strain-field approximation within the mesoscale cell with a nonzero size, lε. Simple analysis shows that within an MSG mesoscale cell near the void surface, the difference between microscale and mesoscale strains is on the order of (lε/R0)2, indicating that when lε/R0 ∼ 1.0, the higher-order stress effect can make the MSG result considerably different from the TNT or CMSG results. (3) Critical condition for cavitation instability

  15. Hierarchical Self-Assembly of Peptide Amphiphiles: Form and Function at Multiple Length Scales

    Science.gov (United States)

    Zha, Runye Helen

    Hierarchical self-assembly, the organization of molecules into supramolecular structures of increasing size and complexity, is a potent tool for materials synthesis and requires understanding the connections of structure across multiple length scales. Herein, self-assembly of peptide amphiphiles (PAs) into nanoscopic and macroscopic materials is explored, and their anti-cancer applications are investigated. First, nanoscale assembly is examined in the context of an anti-angiogenic PA bearing the G-helix motif of maspin, a tumor suppressor protein. Assembly of this maspin-mimetic PA (MMPA) stabilizes the native G-helix conformation and improves binding to endothelial cells. Furthermore, PA nanostructures significantly increase cell adhesion to fibronectin as compared to G-helix peptide alone. Combined with its inhibitory effect on cell migration, MMPA nanostructures thus show anti-angiogenic activity on par with maspin protein in vitro and in vivo. Second, assembly of cationic PAs with hyaluronic acid (HA), an anionic polyelectrolyte, into macroscopic membranes is explored using PAs with identical formal charge but systematically varied self-assembly domains. Results suggest that membrane formation is dictated by the initial moments of component aggregation and is highly sensitive to PA molecular structure via nanoscale assembly. Specifically, PAs with beta-sheet forming residues are nanofibrous and have high surface charge density, leading to robust membranes with aligned-fiber microstructure. PAs without beta-sheet forming residues are nanospherical and have low surface charge density, leading to weak membranes with non-fibrous finger-like microstructure. Lastly, the principles of PA-HA membrane assembly are applied towards development of anti-cancer therapeutic biomaterials. Here, cytotoxic PAs bearing the epitope (KLAKLAKbeta)2 are co-assembled with non-bioactive cationic PA in order to achieve varying nanoscale morphology. These nanostructures are then

  16. A comparative evaluation of electronic and radiographic determination of root canal length in primary teeth: An in vitro study

    Directory of Open Access Journals (Sweden)

    Iyer Satishkumar Krishnan

    2012-01-01

    Full Text Available Aims: The purpose of this in vitro study was to compare the root canal length determination by Electronic apex locator (EAL (Raypex 5 and conventional radiography, and then compare them with the actual measurements obtained by direct visualization. Settings and Design: This study was conducted at the Department of Pedodontics and Preventive Dentistry, Government Dental College, Thiruvananthapuram, Kerala, India. Subjects and Methods: One hundred single rooted primary teeth extracted due to extensive caries, trauma, serial extraction or unwillingness of the parent to save the teeth were selected. The teeth were numbered and root canal length was determined using the visual, electronic and the radiographic methods. The actual, electronic and the radiographic measurements were recorded. Statistical Analysis Used: Data were analyzed using Intraclass correlation test and linear regression analysis. Results: The accuracy of EAL and radiographic methods were 92% and 72%, respectively within + 0.5 mm. Both the electronic and conventional radiographic methods showed a high correlation and agreement (ICC intraclass correlation coefficient = 0.99 and 0.98 respectively with the actual measurements. Conclusions: EALs proved to be more accurate in determining the root canal length than the radiographic method.

  17. Structural and electron diffraction scaling of twisted graphene bilayers

    Science.gov (United States)

    Zhang, Kuan; Tadmor, Ellad B.

    2018-03-01

    Multiscale simulations are used to study the structural relaxation in twisted graphene bilayers and the associated electron diffraction patterns. The initial twist forms an incommensurate moiré pattern that relaxes to a commensurate microstructure comprised of a repeating pattern of alternating low-energy AB and BA domains surrounding a high-energy AA domain. The simulations show that the relaxation mechanism involves a localized rotation and shrinking of the AA domains that scales in two regimes with the imposed twist. For small twisting angles, the localized rotation tends to a constant; for large twist, the rotation scales linearly with it. This behavior is tied to the inverse scaling of the moiré pattern size with twist angle and is explained theoretically using a linear elasticity model. The results are validated experimentally through a simulated electron diffraction analysis of the relaxed structures. A complex electron diffraction pattern involving the appearance of weak satellite peaks is predicted for the small twist regime. This new diffraction pattern is explained using an analytical model in which the relaxation kinematics are described as an exponentially-decaying (Gaussian) rotation field centered on the AA domains. Both the angle-dependent scaling and diffraction patterns are in quantitative agreement with experimental observations. A Matlab program for extracting the Gaussian model parameters accompanies this paper.

  18. Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model.

    Science.gov (United States)

    Kalwarczyk, Tomasz; Sozanski, Krzysztof; Ochab-Marcinek, Anna; Szymanski, Jedrzej; Tabaka, Marcin; Hou, Sen; Holyst, Robert

    2015-09-01

    This paper deals with the recent phenomenological model of the motion of nanoscopic objects (colloidal particles, proteins, nanoparticles, molecules) in complex liquids. We analysed motion in polymer, micellar, colloidal and protein solutions and the cytoplasm of living cells using the length-scale dependent viscosity model. Viscosity monotonically approaches macroscopic viscosity as the size of the object increases and thus gives a single, coherent picture of motion at the nano and macro scale. The model includes interparticle interactions (solvent-solute), temperature and the internal structure of a complex liquid. The depletion layer ubiquitously occurring in complex liquids is also incorporated into the model. We also discuss the biological aspects of crowding in terms of the length-scale dependent viscosity model. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A micromechanical approach of suffusion based on a length scale analysis of the grain detachment and grain transport processes.

    Science.gov (United States)

    Wautier, Antoine; Bonelli, Stéphane; Nicot, François

    2017-06-01

    Suffusion is the selective erosion of the finest particles of a soil subjected to an internal flow. Among the four types of internal erosion and piping identified today, suffusion is the least understood. Indeed, there is a lack of micromechanical approaches for identifying the critical microstructural parameters responsible for this process. Based on a discrete element modeling of non cohesive granular assemblies, specific micromechanical tools are developed in a unified framework to account for the two first steps of suffusion, namely the grain detachment and the grain transport processes. Thanks to the use of an enhanced force chain definition and autocorrelation functions the typical lengths scales associated with grain detachment are characterized. From the definition of transport paths based on a graph description of the pore space the typical lengths scales associated with grain transport are recovered. For a uniform grain size distribution, a separation of scales between these two processes exists for the finest particles of a soil

  20. Sub-pixel correlation length neutron imaging: Spatially resolved scattering information of microstructures on a macroscopic scale

    Science.gov (United States)

    Harti, Ralph P.; Strobl, Markus; Betz, Benedikt; Jefimovs, Konstantins; Kagias, Matias; Grünzweig, Christian

    2017-01-01

    Neutron imaging and scattering give data of significantly different nature and traditional methods leave a gap of accessible structure sizes at around 10 micrometers. Only in recent years overlap in the probed size ranges could be achieved by independent application of high resolution scattering and imaging methods, however without providing full structural information when microstructures vary on a macroscopic scale. In this study we show how quantitative neutron dark-field imaging with a novel experimental approach provides both sub-pixel resolution with respect to microscopic correlation lengths and imaging of macroscopic variations of the microstructure. Thus it provides combined information on multiple length scales. A dispersion of micrometer sized polystyrene colloids was chosen as a model system to study gravity induced crystallisation of microspheres on a macro scale, including the identification of ordered as well as unordered phases. Our results pave the way to study heterogeneous systems locally in a previously impossible manner. PMID:28303923

  1. A micromechanical approach of suffusion based on a length scale analysis of the grain detachment and grain transport processes.

    Directory of Open Access Journals (Sweden)

    Wautier Antoine

    2017-01-01

    Full Text Available Suffusion is the selective erosion of the finest particles of a soil subjected to an internal flow. Among the four types of internal erosion and piping identified today, suffusion is the least understood. Indeed, there is a lack of micromechanical approaches for identifying the critical microstructural parameters responsible for this process. Based on a discrete element modeling of non cohesive granular assemblies, specific micromechanical tools are developed in a unified framework to account for the two first steps of suffusion, namely the grain detachment and the grain transport processes. Thanks to the use of an enhanced force chain definition and autocorrelation functions the typical lengths scales associated with grain detachment are characterized. From the definition of transport paths based on a graph description of the pore space the typical lengths scales associated with grain transport are recovered. For a uniform grain size distribution, a separation of scales between these two processes exists for the finest particles of a soil

  2. Solar Wind Turbulence at Sub-Ion and Electron Scales

    Science.gov (United States)

    Alexandrova, O.; Lacombe, C.; Matteini, L.; Zaslavsky, A.; Orel, I.

    2017-12-01

    We study magnetic fluctuations at sub-ion scales and down to sub-electron scales (from 1 to 200Hz) using two complementary approaches: (i) a statistical study of the turbulent spectra of the different field components in the reference frame based on the quasi-local mean field B and velocity V; (ii) a detailed analysis of magnetic waveforms in the same reference frame. For this statistical study, we consider 93 10-minute intervals of Cluster/STAFF measurements. We find that the fluctuations are non-gyrotropic at a given frequency f, a property already observed at larger scales. This non-gyrotropy provides indications on the angular distribution of the wave vectors k: at f> k||, mainly in the fast wind; at f>10Hz, the k are more isotropic. We then consider the magnetic compressibility of the fluctuations: it increases with f and at electron scales the fluctuations become isotropic. From 1 to 20Hz, there is a strong correlation between the observed compressibility and the one expected for the kinetic Alfven waves (KAWs), which only depends on the total plasma beta. For f>20Hz, the observed compressibility is larger than the one expected for classical KAWs, and it is stronger in the slow wind: this could be an indication of the presence of a slow-ion acoustic mode of fluctuations, which is more compressive and is favoured by the larger values of the electron to proton temperature ratio generally observed in the slow wind. For the analysis of the magnetic waveforms, we use burst mode intervals in the solar wind and in the Earth's magnetosheath during the Cluster Guest Investigator campaign in 2015, when C3 and C4 were at 7km apart only. Time-frequency analysis using Morlet wavelets shows that the turbulence is non-homogeneous and filled in with intermittent events. A detailed study of magnetic fluctuations on C3 and C4 shows signatures of electron-scale magnetic vortices, but with strong compressible components, in agreement with our statistical study discussed above

  3. Accuracy control in ultra-large-scale electronic structure calculation

    OpenAIRE

    Hoshi, Takeo

    2007-01-01

    Numerical aspects are investigated in ultra-large-scale electronic structure calculation. Accuracy control methods in process (molecular-dynamics) calculation are focused. Flexible control methods are proposed so as to control variational freedoms, automatically at each time step, within the framework of generalized Wannier state theory. The method is demonstrated in silicon cleavage simulation with 10^2-10^5 atoms. The idea is of general importance among process calculations and is also used...

  4. Constraints on Exotic Dipole-Dipole Couplings between Electrons at the Micrometer Scale.

    Science.gov (United States)

    Kotler, Shlomi; Ozeri, Roee; Kimball, Derek F Jackson

    2015-08-21

    New constraints on exotic dipole-dipole interactions between electrons at the micrometer scale are established, based on a recent measurement of the magnetic interaction between two trapped 88Sr(+) ions. For light bosons (mass≤0.1  eV) we obtain a 90% confidence interval for an axial-vector-mediated interaction strength of |g(A)(e)g(A)(e)/4πℏc|≤1.2×10(-17). Assuming CPT invariance, this constraint is compared to that on anomalous electron-positron interactions, derived from positronium hyperfine spectroscopy. We find that the electron-electron constraint is 6 orders of magnitude more stringent than the electron-positron counterpart. Bounds on pseudoscalar-mediated interaction as well as on torsion gravity are also derived and compared with previous work performed at different length scales. Our constraints benefit from the high controllability of the experimental system which contained only two trapped particles. It therefore suggests a useful new platform for exotic particle searches, complementing other experimental efforts.

  5. Channel length scaling and the impact of metal gate work function ...

    Indian Academy of Sciences (India)

    port and experimental data extracted in DG-MOSFETs devices. At these channel length limits, the susceptibility of the transistor to short-channel effects (SCE) is monitored in several ways such as threshold voltage (VTH), subthreshold voltage slope (S), leakage current (IOFF) and the drain-induced barrier lowering (DIBL).

  6. A multi-resolution analysis of lidar-DTMs to identify geomorphic processes from characteristic topographic length scales

    Science.gov (United States)

    Sangireddy, H.; Passalacqua, P.; Stark, C. P.

    2013-12-01

    Characteristic length scales are often present in topography, and they reflect the driving geomorphic processes. The wide availability of high resolution lidar Digital Terrain Models (DTMs) allows us to measure such characteristic scales, but new methods of topographic analysis are needed in order to do so. Here, we explore how transitions in probability distributions (pdfs) of topographic variables such as (log(area/slope)), defined as topoindex by Beven and Kirkby[1979], can be measured by Multi-Resolution Analysis (MRA) of lidar DTMs [Stark and Stark, 2001; Sangireddy et al.,2012] and used to infer dominant geomorphic processes such as non-linear diffusion and critical shear. We show this correlation between dominant geomorphic processes to characteristic length scales by comparing results from a landscape evolution model to natural landscapes. The landscape evolution model MARSSIM Howard[1994] includes components for modeling rock weathering, mass wasting by non-linear creep, detachment-limited channel erosion, and bedload sediment transport. We use MARSSIM to simulate steady state landscapes for a range of hillslope diffusivity and critical shear stresses. Using the MRA approach, we estimate modal values and inter-quartile ranges of slope, curvature, and topoindex as a function of resolution. We also construct pdfs at each resolution and identify and extract characteristic scale breaks. Following the approach of Tucker et al.,[2001], we measure the average length to channel from ridges, within the GeoNet framework developed by Passalacqua et al.,[2010] and compute pdfs for hillslope lengths at each scale defined in the MRA. We compare the hillslope diffusivity used in MARSSIM against inter-quartile ranges of topoindex and hillslope length scales, and observe power law relationships between the compared variables for simulated landscapes at steady state. We plot similar measures for natural landscapes and are able to qualitatively infer the dominant geomorphic

  7. A COMPARATIVE STUDY ON THE PRECISION OF THE RADIOLOGICAL AND ELECTRONIC METHODS FOR DETERMINING ROOT CANAL WORKING LENGTHS

    Directory of Open Access Journals (Sweden)

    S. Andrian

    2012-09-01

    Full Text Available The objective of the present investigation was to compare the precision of canal working length (Ll measurements by electronic and radiological methods. Materials and method. The study was developed on a group of 122 anterior teeth of 118 patients, with ages between 23 and 58 years. The teeth were divided into 3 groups. The first one included 45 teeth, for which the working length was calculated with an electronic device (Apex Locator model iPex, NSK, Japan. In the second group of teeth (39 in all, the working length was calculated by the radiographic method of Ingle and, in the third one (38 – by the method of Bregman. When the technique of canal modeling was applied to all groups of teeth, a primary gutta percha cone (master was positioned on the canal at the exact working length calculated for each tooth in part, after which an intra-oral radiography was made and the distance between the apical end of the master cone and the apical constriction was measured. Results. In group I, 91.1% of the Ll measurements were exact, and 8.9% of them were shorter, yet remaining within the limit of 2 mm versus the apical constriction. In group II, 71.7% of Ll were correctly measured, in 5.1% of the cases the calculated length was higher and in 23.2% of them the obtained values led to sub-obturation. Out of the inexact measurements, 44.4% evidenced the tip of the master cone within the limit of 2 mm versus the apical stricture. In group III, 60.5% of the measurements gave exact results, 13.1% of them – higher and 26.4%, respectively – lower. 53.8% of the cases of over- or sub-instrumentations occurred within the limit of 2 mm versus the apical constriction. Conclusions. The method for the calculation of working length with an electronic device of apical localization appeared as the most correct one, being followed by the radiographic technique of Ingle and by the method of Bregman. Application of the electronic method showed no case of apical over

  8. Modelling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks

    International Nuclear Information System (INIS)

    Amanifard, N.; Nariman-Zadeh, N.; Farahani, M.H.; Khalkhali, A.

    2008-01-01

    Over the past 15 years there have been several research efforts to capture the stall inception nature in axial flow compressors. However previous analytical models could not explain the formation of short-length-scale stall cells. This paper provides a new model based on evolved GMDH neural network for transient evolution of multiple short-length-scale stall cells in an axial compressor. Genetic Algorithms (GAs) are also employed for optimal design of connectivity configuration of such GMDH-type neural networks. In this way, low-pass filter (LPF) pressure trace near the rotor leading edge is modelled with respect to the variation of pressure coefficient, flow rate coefficient, and number of rotor rotations which are defined as inputs

  9. Distinct Length Scales in the VO2 Metal-Insulator Transition Revealed by Bi-chromatic Optical Probing

    International Nuclear Information System (INIS)

    Wang, Lei; Novikova, Irina B.; Klopf, John M.; Madaras, Scott E.; Williams, Gwyn P.; Madaras, Eric; Lu, Liwei; Wolf, Stuart A.; Lukaszew, Rosa A.

    2014-01-01

    Upon a heating-induced metal-insulator transition (MIT) in VO 2 , microscopic metallic VO 2 puddles nucleate and coarsen within the insulating matrix. This coexistence of the two phases across the transition spans distinct length scales as their relative domain sizes change. Far-field optical probing is applied to follow the dynamic evolution of the highly correlated metallic domains as the MIT progresses

  10. Correlation Lengths for Estimating the Large-Scale Carbon and Heat Content of the Southern Ocean

    Science.gov (United States)

    Mazloff, M. R.; Cornuelle, B. D.; Gille, S. T.; Verdy, A.

    2018-02-01

    The spatial correlation scales of oceanic dissolved inorganic carbon, heat content, and carbon and heat exchanges with the atmosphere are estimated from a realistic numerical simulation of the Southern Ocean. Biases in the model are assessed by comparing the simulated sea surface height and temperature scales to those derived from optimally interpolated satellite measurements. While these products do not resolve all ocean scales, they are representative of the climate scale variability we aim to estimate. Results show that constraining the carbon and heat inventory between 35°S and 70°S on time-scales longer than 90 days requires approximately 100 optimally spaced measurement platforms: approximately one platform every 20° longitude by 6° latitude. Carbon flux has slightly longer zonal scales, and requires a coverage of approximately 30° by 6°. Heat flux has much longer scales, and thus a platform distribution of approximately 90° by 10° would be sufficient. Fluxes, however, have significant subseasonal variability. For all fields, and especially fluxes, sustained measurements in time are required to prevent aliasing of the eddy signals into the longer climate scale signals. Our results imply a minimum of 100 biogeochemical-Argo floats are required to monitor the Southern Ocean carbon and heat content and air-sea exchanges on time-scales longer than 90 days. However, an estimate of formal mapping error using the current Argo array implies that in practice even an array of 600 floats (a nominal float density of about 1 every 7° longitude by 3° latitude) will result in nonnegligible uncertainty in estimating climate signals.

  11. Calibration of Eringen's small length scale coefficient for initially stressed vibrating nonlocal Euler beams based on microstructured beam model

    International Nuclear Information System (INIS)

    Wang, C M; Zhang, Z; Challamel, N; Duan, W H

    2013-01-01

    In this paper, we calibrate Eringen's small length scale coefficient e 0 for an initially stressed vibrating nonlocal Euler beam via a microstructured beam modelled by some repetitive cells comprising finite rigid segments and elastic rotational springs. By adopting the pseudo-differential operator and Padé's approximation, an analytical solution for the vibration frequency in terms of initial stress may be developed for the microstructured beam model. When comparing this analytical solution with the established exact vibration solution from the nonlocal beam theory, one finds that the calibrated Eringen's small length scale coefficient e 0 is given by e 0 = √(1/6)-(1/12)(σ 0 /σ-breve m ) where σ 0 is the initial stress and σ-breve m is the mth mode buckling stress of the corresponding local Euler beam. It is shown that e 0 varies with respect to the initial axial stress, from 1/√(12)∼0.289 at the buckling compressive stress to 1/√6∼0.408 when the axial stress is zero and it monotonically increases with increasing initial tensile stress. The small length scale coefficient e 0 , however, does not depend on the vibration/buckling mode considered. (paper)

  12. Dosimetry with semiconductor diodes in the application to the full-length irradiation technique of electrons

    International Nuclear Information System (INIS)

    Madrid G, O. A.; Rivera M, T.

    2012-10-01

    The use of charged particles as electrons for the tumor-like lesions treatment to total surface of skin is not very frequent, the types of fungo id mycosis and cutaneous lymphomas compared with other neoplasms they are relatively scarce, however for the existent cases a non conventional technique should be contemplated as treatment alternative that can reach an effective control. In this work the variables of more influence with ionization chamber and semiconductor diodes are studied for to determine the quality of an electrons beam. (Author)

  13. Electron beam bunch length characterizations using incoherent and coherent transition radiation on the APS SASE FEL project

    CERN Document Server

    Lumpkin, Alex H; Berg, W J; Lewellen, J W; Sereno, N S; Happek, U

    2000-01-01

    The Advanced Photon Source (APS) injector linac has been reconfigured with a low-emittance RF thermionic gun and a photocathode (PC) RF gun to support self-amplified spontaneous emission (SASE) free-electron laser (FEL) experiments. One of the most critical parameters for optimizing SASE performance (gain length) is the electron beam peak current, which requires a charge measurement and a bunch length measurement capability. We report here initial measurements of the latter using both incoherent optical transition radiation (OTR) and coherent transition radiation (CTR). A visible light Hamamatsu C5680 synchroscan streak camera was used to measure the thermionic RF gun beam's bunch length (sigma approx 2-3 ps) via OTR generated by the beam at 220 MeV and 200 mA macropulse average current. In addition, a CTR monitor (Michelson Interferometer) based on a Golay cell as the far-infrared (FIR) detector has been installed at the 40-MeV station in the beamline. Initial observations of CTR signal strength variation wi...

  14. Synthesis and Electronic Properties of Length-Defined 9,10-Anthrylene-Butadiynylene Oligomers.

    Science.gov (United States)

    Nagaoka, Maiko; Tsurumaki, Eiji; Nishiuchi, Mai; Iwanaga, Tetsuo; Toyota, Shinji

    2018-04-18

    Linear π-conjugated oligomers consisting of anthracene and diacetylene units were readily synthesized by a one-pot process that involved desilylation and oxidative coupling from appropriate building units. We were able to isolate length-defined oligomers ranging from 2-mer to 6-mer as stable and soluble solids having characteristic colors. X-ray analysis and DFT calculations revealed that these oligomers had linear structures and coplanar conformations. The bathochromic shifts in the UV-vis spectra suggested that the π-conjugation was extended with elongation of the linear chain. Cyclic voltammetric measurements showed characteristic reversible oxidation waves that were dependent on the number of anthracene units.

  15. Long-gauge length embedded fiber optic ultrasonic sensor for large-scale concrete structures

    Science.gov (United States)

    Yuan, Libo; Zhou, Limin; Jin, Wei

    2004-02-01

    A fiber optic ultrasonic sensor based on Fizeau interferometer has been developed and demonstrated. A helium-neon laser light source with wavelength 0.6328 μm is used in our experiment. A special feature is its Fizeau configuration, which enables one to eliminate much undesirable noise by combining both the reference arm and the sensing arm within the same length of fiber. The dynamic response model of photo-elastic effect of ultrasonic wave and optical fiber is established. The fiber optic ultrasonic sensor experimental results are obtained and compared with the convenient PZT transducer.

  16. Magnetic Field-Line Lengths in Interplanetary Coronal Mass Ejections Inferred From Energetic Electron Events (Postprint)

    Science.gov (United States)

    2012-05-03

    extended by draping (McComas et al. 1989; Odstrcil & Pizzo 1999; Jones et al. 2002; Owens & Cargill 2004), so we also included all electron events with...Pizzo, V. J. 1999, J. Geophys. Res., 104, 28225 Owens, M., & Cargill , P. 2004, Ann. Geophys., 22, 4397 Phan, T. D., et al. 2010, ApJ, 719, L199 Qiu, J

  17. Anatomy of Bond Formation. Bond Length Dependence of the Extent of Electron Sharing in Chemical Bonds

    Czech Academy of Sciences Publication Activity Database

    Ponec, Robert; Cooper, D.

    2005-01-01

    Roč. 727, 1-3 (2005), s. 133-138 ISSN 0166-1280 R&D Projects: GA AV ČR(CZ) IAA4072403 Institutional research plan: CEZ:AV0Z40720504 Keywords : electron sharing * chemical bonds Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.045, year: 2005

  18. Measurements of Electron Transport in Foils Irradiated with a Picosecond Time Scale Laser Pulse

    International Nuclear Information System (INIS)

    Brown, C. R. D.; Hoarty, D. J.; James, S. F.; Swatton, D.; Hughes, S. J.; Morton, J. W.; Guymer, T. M.; Hill, M. P.; Chapman, D. A.; Andrew, J. E.; Comley, A. J.; Shepherd, R.; Dunn, J.; Chen, H.; Schneider, M.; Brown, G.; Beiersdorfer, P.; Emig, J.

    2011-01-01

    The heating of solid foils by a picosecond time scale laser pulse has been studied by using x-ray emission spectroscopy. The target material was plastic foil with a buried layer of a spectroscopic tracer material. The laser pulse length was either 0.5 or 2 ps, which resulted in a laser irradiance that varied over the range 10 16 -10 19 W/cm 2 . Time-resolved measurements of the buried layer emission spectra using an ultrafast x-ray streak camera were used to infer the density and temperature conditions as a function of laser parameters and depth of the buried layer. Comparison of the data to different models of electron transport showed that they are consistent with a model of electron transport that predicts the bulk of the target heating is due to return currents.

  19. Scaling of electron beam sources for laser fusion applications

    International Nuclear Information System (INIS)

    Schlitt, L.G.; Bradley, L.P.

    1975-01-01

    The purpose of this study is to develop a scheme for constructing electron beam machines capable of pumping large volumes of gas, to analyze their performance within the framework of existing knowledge of the physical mechanisms involved, to use this analysis to assess the viability of the overall concept, pinpoint weaknesses in the understanding of the physics, identify the most important limiting physical processes, and hence to propose a program to prepare for the eventual construction of a large scale gas laser system. (auth)

  20. On the performance of a generic length scale turbulence model within an adaptive finite element ocean model

    Science.gov (United States)

    Hill, Jon; Piggott, M. D.; Ham, David A.; Popova, E. E.; Srokosz, M. A.

    2012-10-01

    Research into the use of unstructured mesh methods for ocean modelling has been growing steadily in the last few years. One advantage of using unstructured meshes is that one can concentrate resolution where it is needed. In addition, dynamic adaptive mesh optimisation (DAMO) strategies allow resolution to be concentrated when this is required. Despite the advantage that DAMO gives in terms of improving the spatial resolution where and when required, small-scale turbulence in the oceans still requires parameterisation. A two-equation, generic length scale (GLS) turbulence model (one equation for turbulent kinetic energy and another for a generic turbulence length-scale quantity) adds this parameterisation and can be used in conjunction with adaptive mesh techniques. In this paper, an implementation of the GLS turbulence parameterisation is detailed in a non-hydrostatic, finite-element, unstructured mesh ocean model, Fluidity-ICOM. The implementation is validated by comparing to both a laboratory-scale experiment and real-world observations, on both fixed and adaptive meshes. The model performs well, matching laboratory and observed data, with resolution being adjusted as necessary by DAMO. Flexibility in the prognostic fields used to construct the error metric used in DAMO is required to ensure best performance. Moreover, the adaptive mesh models perform as well as fixed mesh models in terms of root mean square error to observation or theoretical mixed layer depths, but uses fewer elements and hence has a reduced computational cost.

  1. Nano-regime Length Scales Extracted from the First Sharp Diffraction Peak in Non-crystalline SiO2 and Related Materials: Device Applications

    Directory of Open Access Journals (Sweden)

    Phillips James

    2010-01-01

    Full Text Available Abstract This paper distinguishes between two different scales of medium range order, MRO, in non-crystalline SiO2: (1 the first is ~0.4 to 0.5 nm and is obtained from the position of the first sharp diffraction peak, FSDP, in the X-ray diffraction structure factor, S(Q, and (2 the second is ~1 nm and is calculated from the FSDP full-width-at-half-maximum FWHM. Many-electron calculations yield Si–O third- and O–O fourth-nearest-neighbor bonding distances in the same 0.4–0.5 nm MRO regime. These derive from the availability of empty Si dπ orbitals for back-donation from occupied O pπ orbitals yielding narrow symmetry determined distributions of third neighbor Si–O, and fourth neighbor O–O distances. These are segments of six member rings contributing to connected six-member rings with ~1 nm length scale within the MRO regime. The unique properties of non-crystalline SiO2 are explained by the encapsulation of six-member ring clusters by five- and seven-member rings on average in a compliant hard-soft nano-scaled inhomogeneous network. This network structure minimizes macroscopic strain, reducing intrinsic bonding defects as well as defect precursors. This inhomogeneous CRN is enabling for applications including thermally grown ~1.5 nm SiO2 layers for Si field effect transistor devices to optical components with centimeter dimensions. There are qualitatively similar length scales in nano-crystalline HfO2 and phase separated Hf silicates based on the primitive unit cell, rather than a ring structure. Hf oxide dielectrics have recently been used as replacement dielectrics for a new generation of Si and Si/Ge devices heralding a transition into nano-scale circuits and systems on a Si chip.

  2. Scaling laws in high-energy electron-nuclear scattering

    Science.gov (United States)

    Chemtob, Marc

    1980-03-01

    The approximate scaling behavior suggested by recent measurements of electron scattering form factors and inelastic structure functions of few-body nuclei (mass 2, 3, 4) is discussed in a relativistic impulse approximation model. The model is a straightforward extension incorporating spin of a nucleon parton model introduced in recent works. We present results for electric and magnetic form factors as well as inelastic structure functions near threshold. The important corrections to scaling which are present in the preasymptotic regions are found to be well accounted for by the type of binding effects included in the phenomenologically constructed infinite-momentum frame nuclear wave functions. While predicted form factors are very sensitive to the parameters in the wave functions it does not appear possible to associate unambiguous dynamical meaning to these parameters. We find that spin effects bring significant and useful corrections.

  3. Electronic transport properties of copper and gold at atomic scale

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadzadeh, Saeideh

    2010-11-23

    The factors governing electronic transport properties of copper and gold atomic-size contacts are theoretically examined in the present work. A two-terminal conductor using crystalline electrodes is adopted. The non-equilibrium Green's function combined with the density functional tight-binding method is employed via gDFTB simulation tool to calculate the transport at both equilibrium and non-equilibrium conditions. The crystalline orientation, length, and arrangement of electrodes have very weak influence on the electronic characteristics of the considered atomic wires. The wire width is found to be the most effective geometric aspect determining the number of conduction channels. The obtained conductance oscillation and linear current-voltage curves are interpreted. To analyze the conduction mechanism in detail, the transmission channels and their decomposition to the atomic orbitals are calculated in copper and gold single point contacts. The presented results offer a possible explanation for the relation between conduction and geometric structure. Furthermore, the results are in good agreement with available experimental and theoretical studies. (orig.)

  4. On the length dependence of bridge-mediated electron transfer reactions

    International Nuclear Information System (INIS)

    Petrov, E.G.; Shevchenko, Ye.V.; May, V.

    2003-01-01

    Bridge-mediated nonadiabatic donor-acceptor (D-A) electron transfer (ET) is studied for the case of a regular molecular bridge of N identical units. It is shown that the multi-exponential ET kinetics reduces to a single-exponential transfer if, and only if, the integral population of the bridge remains small (less than 10 -2 ). An analytical expression for the overall D-A ET rate is derived and the necessary and sufficient conditions are formulated at which the rate is given as a sum of a superexchange and a sequential contribution. To describe experimental data on the N-dependence of ET reactions an approximate form of the overall transfer rate is derived. This expression is used to reproduce experimental data on distant ET through polyproline chains. Finally it is noted that the obtained analytical results can also be used for the description of more complex two-electron transfer reactions if the latter comprises separate single-electron pathways

  5. Introduction of the Abbreviated Westmead Post-Traumatic Amnesia Scale and Impact on Length of Stay

    NARCIS (Netherlands)

    Watson, C. E.; Clous, E. A.; Jaeger, M.; D'Amours, S. K.

    2017-01-01

    Mild traumatic brain injury is a common presentation to Emergency Departments. Early identification of patients with cognitive deficits and provision of discharge advice are important. The Abbreviated Westmead Post-traumatic Amnesia Scale provides an early and efficient assessment of post-traumatic

  6. Gate length scaling trends of drive current enhancement in CMOSFETs with dual stress overlayers and embedded-SiGe

    International Nuclear Information System (INIS)

    Flachowsky, S.; Wei, A.; Herrmann, T.; Illgen, R.; Horstmann, M.; Richter, R.; Salz, H.; Klix, W.; Stenzel, R.

    2008-01-01

    Strain engineering in MOSFETs using tensile nitride overlayer (TOL) films, compressive nitride overlayer (COL) films, and embedded-SiGe (eSiGe) is studied by extensive device experiments and numerical simulations. The scaling behavior was analyzed by gate length reduction down to 40 nm and it was found that drive current strongly depends on the device dimensions. The reduction of drain-current enhancement for short-channel devices can be attributed to two competing factors: shorter gate length devices have increased longitudinal and vertical stress components which should result in improved drain-currents. However, there is a larger degradation from external resistance as the gate length decreases, due to a larger voltage dropped across the external resistance. Adding an eSiGe stressor reduces the external resistance in the p-MOSFET, to the extent that the drive current improvement from COL continues to increase even down the shortest gate length studied. This is due to the reduced resistivity of SiGe itself and the SiGe valence band offset relative to Si, leading to a smaller silicide-active contact resistance. It demonstrates the advantage of combining eSiGe and COL, not only for increased stress, but also for parasitic resistance reduction to enable better COL drive current benefit

  7. Method for single-shot measurement of picosecond laser pulse-lengths without electronic time dispersion

    International Nuclear Information System (INIS)

    Kyrala, G.A.

    1987-01-01

    A two-source shear pattern recording is proposed as a method for single-shot measurement of the pulse shape from nearly monochromatic sources whose pulse lengths are shorter than their coherence times. The basis of this method relies on the assertion that if two identical electromagnetic pulses are recombined with a time delay greater than the sum of their pulse widths, the recordable spatial pattern has no fringes in it. At an arbitrary delay, translated into an actual spatial recording position, the recorded modulated intensity will sample the corresponding laser intensity at that delay time, but with a modulation due to the coherence function of the electromagnetic pulse. Two arrangements are proposed for recording the pattern. The principles, the design parameters, and the methodologies of these arrangements are presented. Resolutions of the configurations and their limitations are given as well

  8. Membrane undulations in a structured fluid: Universal dynamics at intermediate length and time scales.

    Science.gov (United States)

    Granek, Rony; Diamant, Haim

    2018-01-05

    The dynamics of membrane undulations inside a viscous solvent is governed by distinctive, anomalous, power laws. Inside a viscoelastic continuous medium these universal behaviors are modified by the specific bulk viscoelastic spectrum. Yet, in structured fluids the continuum limit is reached only beyond a characteristic correlation length. We study the crossover to this asymptotic bulk dynamics. The analysis relies on a recent generalization of the hydrodynamic interaction in structured fluids, which shows a slow spatial decay of the interaction toward the bulk limit. For membranes which are weakly coupled to the structured medium we find a wide crossover regime characterized by different, universal, dynamic power laws. We discuss various systems for which this behavior is relevant, and delineate the time regime over which it may be observed.

  9. Reduced 3d modeling on injection schemes for laser wakefield acceleration at plasma scale lengths

    Science.gov (United States)

    Helm, Anton; Vieira, Jorge; Silva, Luis; Fonseca, Ricardo

    2017-10-01

    Current modelling techniques for laser wakefield acceleration (LWFA) are based on particle-in-cell (PIC) codes which are computationally demanding. In PIC simulations the laser wavelength λ0, in μm-range, has to be resolved over the acceleration lengths in meter-range. A promising approach is the ponderomotive guiding center solver (PGC) by only considering the laser envelope for laser pulse propagation. Therefore only the plasma skin depth λp has to be resolved, leading to speedups of (λp /λ0) 2. This allows to perform a wide-range of parameter studies and use it for λ0 Tecnologia (FCT), Portugal, through Grant No. PTDC/FIS-PLA/2940/2014 and PD/BD/105882/2014.

  10. The role of discharge variation in scaling of drainage area and food chain length in rivers

    Science.gov (United States)

    Sabo, John L.; Finlay, Jacques C.; Kennedy, Theodore A.; Post, David M.

    2010-01-01

    Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

  11. Accurate switching intensities and length scales in quasi-phase-matched materials

    DEFF Research Database (Denmark)

    Bang, Ole; Graversen, Torben Winther; Corney, Joel Frederick

    2001-01-01

    We consider unseeded typeI second-harmonic generation in quasi-phase-matched quadratic nonlinear materials and derive an accurate analytical expression for the evolution of the average intensity. The intensity- dependent nonlinear phase mismatch that is due to the cubic nonlinearity induced...... by quasi phase matching is found. The equivalent formula for the intensity of maximum conversion, the crossing of which changes the one-period nonlinear phase shift of the fundamental abruptly by p , corrects earlier estimates [Opt.Lett. 23, 506 (1998)] by a factor of 5.3. We find the crystal lengths...... that are necessary to obtain an optimal flat phase versus intensity response on either side of this separatrix intensity....

  12. Chain length distributions in linear polyaddition proceeding in nano-scale small volumes without mass transfer

    Science.gov (United States)

    Szymanski, R.; Sosnowski, S.

    2017-01-01

    Computer simulations (Monte Carlo and numerical integration of differential equations) and theoretical analysis show that the statistical nature of polyaddition, both irreversible and reversible one, affects the way the macromolecules of different lengths are distributed among the small volume nano-reactors (droplets in this study) at any reaction time. The corresponding droplet distributions in respect to the number of reacting chains as well as the chain length distributions depend, for the given reaction time, on rate constants of polyaddition kp and depolymerization kd (reversible process), and the initial conditions: monomer concentration and the number of its molecules in a droplet. As a model reaction, a simple polyaddition process (M)1+(M)1 ⟶ ⟵ (M)2 , (M)i+(M)j ⟶ ⟵ (M)i+j was chosen, enabling to observe both kinetic and thermodynamic (apparent equilibrium constant) effects of a small number of reactant molecules in a droplet. The average rate constant of polymerization is lower than in a macroscopic system, depending on the average number of reactant molecules in a droplet. The apparent equilibrium constants of polymerization Ki j=[(M)i +j] ¯ /([(M)i] ¯ [(M)j] ¯ ) appear to depend on oligomer/polymer sizes as well as on the initial number of monomer molecules in a droplet. The corresponding equations, enabling prediction of the equilibrium conditions, were derived. All the analyzed effects are observed not only for ideally dispersed systems, i.e. with all droplets containing initially the same number of monomer (M)1 molecules, but also when initially the numbers of monomer molecules conform the Poisson distribution, expected for dispersions of reaction mixtures.

  13. σ-Bond Electron Delocalization in Oligosilanes as Function of Substitution Pattern, Chain Length, and Spatial Orientation

    Directory of Open Access Journals (Sweden)

    Johann Hlina

    2016-08-01

    Full Text Available Polysilanes are known to exhibit the interesting property of σ-bond electron delocalization. By employing optical spectroscopy (UV-vis, it is possible to judge the degree of delocalization and also differentiate parts of the molecules which are conjugated or not. The current study compares oligosilanes of similar chain length but different substitution pattern. The size of the substituents determines the spatial orientation of the main chain and also controls the conformational flexibility. The chemical nature of the substituents affects the orbital energies of the molecules and thus the positions of the absorption bands.

  14. Millimeter scale electron conduction through exoelectrogenic mixed species biofilms.

    Science.gov (United States)

    Li, Cheng; Lesnik, Keaton Larson; Fan, Yanzhen; Liu, Hong

    2016-08-01

    The functioning of many natural and engineered environments is dependent on long distance electron transfer mediated through electrical currents. These currents have been observed in exoelectrogenic biofilms and it has been proposed that microbial biofilms can mediate electron transfer via electrical currents on the centimeter scale. However, direct evidence to confirm this hypothesis has not been demonstrated and the longest known electrical transfer distance for single species exoelectrogenic biofilms is limited to 100 μm. In the present study, biofilms were developed on electrodes with electrically non-conductive gaps from 50 μm to 1 mm and the in situ conductance of biofilms was evaluated over time. Results demonstrated that the exoelectrogenic mixed species biofilms in the present study possess the ability to transfer electrons through electrical currents over a distance of up to 1 mm, 10 times further than previously observed. Results indicate the possibility of interspecies interactions playing an important role in the spatial development of exoelectrogenic biofilms, suggesting that these biological networks might remain conductive even at longer distance. These findings have significant implications in regards to future optimization of microbial electrochemical systems. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Electron transport in nano-scaled piezoelectronic devices

    Science.gov (United States)

    Jiang, Zhengping; Kuroda, Marcelo A.; Tan, Yaohua; Newns, Dennis M.; Povolotskyi, Michael; Boykin, Timothy B.; Kubis, Tillmann; Klimeck, Gerhard; Martyna, Glenn J.

    2013-05-01

    The Piezoelectronic Transistor (PET) has been proposed as a post-CMOS device for fast, low-power switching. In this device, the piezoresistive channel is metalized via the expansion of a relaxor piezoelectric element to turn the device on. The mixed-valence compound SmSe is a good choice of PET channel material because of its isostructural pressure-induced continuous metal insulator transition, which is well characterized in bulk single crystals. Prediction and optimization of the performance of a realistic, nano-scaled PET based on SmSe requires the understanding of quantum confinement, tunneling, and the effect of metal interface. In this work, a computationally efficient empirical tight binding (ETB) model is developed for SmSe to study quantum transport in these systems and the scaling limit of PET channel lengths. Modulation of the SmSe band gap under pressure is successfully captured by ETB, and ballistic conductance shows orders of magnitude change under hydrostatic strain, supporting operability of the PET device at nanoscale.

  16. Length-Displacement Scaling of Lunar Thrust Faults and the Formation of Uphill-Facing Scarps

    Science.gov (United States)

    Hiesinger, Harald; Roggon, Lars; Hetzel, Ralf; Clark, Jaclyn D.; Hampel, Andrea; van der Bogert, Carolyn H.

    2017-04-01

    Lobate scarps are straight to curvilinear positive-relief landforms that occur on all terrestrial bodies [e.g., 1-3]. They are the surface manifestation of thrust faults that cut through and offset the upper part of the crust. Fault scarps on planetary surfaces provide the opportunity to study the growth of faults under a wide range of environmental conditions (e.g., gravity, temperature, pore pressure) [4]. We studied four lunar thrust-fault scarps (Simpelius-1, Morozov (S1), Fowler, Racah X-1) ranging in length from 1.3 km to 15.4 km [5] and found that their maximum total displacements are linearly correlated with length over one order of magnitude. We propose that during the progressive accumulation of slip, lunar faults propagate laterally and increase in length. On the basis of our measurements, the ratio of maximum displacement, D, to fault length, L, ranges from 0.017 to 0.028 with a mean value of 0.023 (or 2.3%). This is an order of magnitude higher than the value of 0.1% derived by theoretical considerations [4], and about twice as large as the value of 0.012-0.013 estimated by [6,7]. Our results, in addition to recently published findings for other lunar scarps [2,8], indicate that the D/L ratios of lunar thrust faults are similar to those of faults on Mercury and Mars (e.g., 1, 9-11], and almost as high as the average D/L ratio of 3% for faults on Earth [16,23]. Three of the investigated thrust fault scarps (Simpelius-1, Morozov (S1), Fowler) are uphill-facing scarps generated by slip on faults that dip in the same direction as the local topography. Thrust faults with such a geometry are common ( 60% of 97 studied scarps) on the Moon [e.g., 2,5,7]. To test our hypothesis that the surface topography plays an important role in the formation of uphill-facing fault scarps by controlling the vertical load on a fault plane, we simulated thrust faulting and its relation to topography with two-dimensional finite-element models using the commercial code ABAQUS

  17. The Sensitivity of Income Polarization - Time, length of accounting periods, equivalence scales, and income definitions

    DEFF Research Database (Denmark)

    Azhar, Hussain

    This study looks at polarization and its components’ sensitivity to assumptions about equivalence scales, income definition, ethical income distribution parameters, and the income accounting period. A representative sample of Danish individual incomes from 1984 to 2002 is utilised. Results show...... that polarization has increased over time, regardless of the applied measure, when the last part of the period is compared to the first part of the period. Primary causes being increased inequality (alienation) and faster income growth among high incomes relative to those in the middle of the distribution...

  18. High Temperature Thermoelectric Oxides Engineered At Multiple Length Scales For Energy Harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Ohuchi, Fumio [Univ. of Washington, Seattle, WA (United States); Bordia, Rajendra [Clemson Univ., SC (United States)

    2014-12-20

    Thermoelectric aspects of the processing parameters the n-type relaxors, including SrxBa1-xNb2O6 (SBN100x), Sr2Nb2O7 (SN) and SrBi2Nb2O9 (SBiN), were investigated. A solution combustion synthesis (SCS) route was devised to fabricate SBN, SN and SBiN nanoparticles with excellent phase purity. X-ray photoelectron spectroscopy (XPS) was used to deduce the local cation site occupancy, and detailed thermoelectric transport processes were investigated. Based on the identified behavior, effectiveness of pore formers on the thermoelectric performance was investigated with the goal of decreasing κ through enhanced phonon scattering while preserving the electron transport characteristics.

  19. Mechanical behavior of osteoporotic bone at sub-lamellar length scales

    Science.gov (United States)

    Jimenez-Palomar, Ines; Shipov, Anna; Shahar, Ron; Barber, Asa

    2015-02-01

    Osteoporosis is a disease known to promote bone fragility but the effect on the mechanical properties of bone material, which is independent of geometric effects, is particularly unclear. To address this problem, micro-beams of osteoporotic bone were prepared using focused ion beam (FIB) microscopy and mechanically tested in compression using an atomic force microscope (AFM) while observing using in situ electron microscopy. This experimental approach was shown to be effective at measuring the subtle changes in the mechanical properties of bone material required to evaluate the effects of osteoporosis. Osteoporotic bone material was found to have lower elastic modulus and increased strain to failure when compared to healthy bone material, while the strength of osteoporotic and healthy bone was similar. A mechanism is suggested based on these results and previous literature that indicates degradation of the organic material in osteoporosis bone is responsible for resultant mechanical properties.

  20. Quasi-Continuum Reduction of Field Theories: A Route to Seamlessly Bridge Quantum and Atomistic Length-Scales with Continuum

    Science.gov (United States)

    2016-04-01

    this form contains classified information, stamp classification level on the top and bottom of this page. 17. LIMITATION OF ABSTRACT. This block... techniques have been developed that enable large-scale real-space electronic structure calculations using Kohn-Sham density functional theory. In...particular, the various components of the developed techniques include (i) real-space formulation of Kohn-Sham density-functional theory (DFT) for both

  1. Characterizing the reinforcement mechanisms in multiwall nanotube/polycarbonate composites across different length and time scales

    Science.gov (United States)

    Duncan, Renee Kelly

    The enthusiasm and interest in the potential properties of nanotube (NT)/polymer composites are based on several factors, including the potential for unsurpassed enhancements in mechanical properties together with electrical, thermal and optical properties. Using multiwall nanotubes (MWNTs) grown to a long aspect ratio, the study found that fragmentation tests can be completed in a similar manner to traditional fiber composites. It was found that the fragmentation length does not depend on the angle of the nanotube to the loading direction hence the ISS does not change with the orientation angle of the nanotube in the composite. A critical aspect ratio of 100 and 300 for untreated nanotubes (ARNT) and treated nanotubes (EPNT), respectively was also measured. For nanotubes that are well dispersed in the polycarbonate, it was observed at a critical angle of 60° that there was a change in failure mechanism from pullout to fracture of the nanotubes due to bending shear. Because the tensile strength of a MWNT is unknown a cumulative distribution was used to characterize the relative interfacial shear strength as a function of nanotube chemical modification. The second goal of this thesis is to use Dynamic Mechanical Thermal Analysis (DMTA) with controlled aspect ratios of multiwall nanotubes (MWNT) to isolate and quantify the effects of the interfacial region on modulus enhancements in nanotube-reinforced composites. One major finding of this study was that the shortest aspect ratio showed a significantly broadened relaxation spectrum than the longer aspect ratio nanotubes, despite the longer aspect ratio nanotubes being more percolated at the given weight percent. There is also a direct correlation between the free space parameter of the short aspect ratio nantoubes network and broadening of the relaxation spectrum, concluded to be a result of increased interaction of the interfacial polymer. The study found agreement with the premise that at a constant filler weight

  2. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  3. Polyelectrolytes processing at pilot scale level by electron beam irradiation

    International Nuclear Information System (INIS)

    Martin, D.; Cirstea, E.; Craciun, G.; Ighigeanu, D.; Marin, Gheorghe G.

    2002-01-01

    Three years of research, combined with engineering activities, have culminated in the development of a new method of electron beam processing applicable up to the pilot scale level, namely, the polyelectrolytes (acrylamide - acrylic acid copolymers) electron beam processing. This new radiation processing method has been achieved by bilateral co-operation between the National Institute for Laser, Plasma and Radiation Physics (NILPRP) and the Electrical Design and Research Institute, EDRI - Bucharest. The polyelectrolytes electron beam (EB) processing was put in operation at EDRI, where, recently, an industrial electron accelerator of 2 MeV and 20 kW, manufactured by Institute of Nuclear Physics, Novosibirsk, Russia was installed in a specially designed irradiation facility. Automatic start-up via computer control makes it compatible with industrial processing. According to the first conclusions, which resulted from our experimental research with regard to acrylamide - acrylic acid copolymers production by EB irradiation, the proper physical and chemical characteristics can be well controlled by chemical composition to be treated and by suitable adjustment of absorbed dose and absorbed dose rate. So, it was possible to obtain a very large area of characteristics and therefore a large area of applications. The conversion coefficient is very high (> 98%) and concentration of the residual monomer is under 0.05%. The tests applied to some wastewaters from the vegetable oil plants demonstrated that the fatty substances, matters in suspension, chemical oxygen demand and biological oxygen demand over 5 days were much reduced, in comparison with classical treatment. Also, sedimentation time was around four times smaller and sediment volume was 60% smaller than the values obtained in case of classical treatment. The necessary EB absorbed dose for the acrylamide - acrylic acid aqueous solution polymerization, established by optimization of chemical composition and irradiation

  4. Surface Tension Directed Fluidic Self-Assembly of Semiconductor Chips across Length Scales and Material Boundaries

    Directory of Open Access Journals (Sweden)

    Shantonu Biswas

    2016-03-01

    Full Text Available This publication provides an overview and discusses some challenges of surface tension directed fluidic self-assembly of semiconductor chips which are transported in a liquid medium. The discussion is limited to surface tension directed self-assembly where the capture, alignment, and electrical connection process is driven by the surface free energy of molten solder bumps where the authors have made a contribution. The general context is to develop a massively parallel and scalable assembly process to overcome some of the limitations of current robotic pick and place and serial wire bonding concepts. The following parts will be discussed: (2 Single-step assembly of LED arrays containing a repetition of a single component type; (3 Multi-step assembly of more than one component type adding a sequence and geometrical shape confinement to the basic concept to build more complex structures; demonstrators contain (3.1 self-packaging surface mount devices, and (3.2 multi-chip assemblies with unique angular orientation. Subsequently, measures are discussed (4 to enable the assembly of microscopic chips (10 μm–1 mm; a different transport method is introduced; demonstrators include the assembly of photovoltaic modules containing microscopic silicon tiles. Finally, (5 the extension to enable large area assembly is presented; a first reel-to-reel assembly machine is realized; the machine is applied to the field of solid state lighting and the emerging field of stretchable electronics which requires the assembly and electrical connection of semiconductor devices over exceedingly large area substrates.

  5. Independent and collective roles of surface structures at different length scales on pool boiling heat transfer

    Science.gov (United States)

    Li, Calvin H.; Rioux, Russell P.

    2016-01-01

    Spherical Cu nanocavity surfaces are synthesized to examine the individual role of contact angles in connecting lateral Rayleigh-Taylor wavelength to vertical Kevin-Helmholtz wavelength on hydrodynamic instability for the onset of pool boiling Critical Heat Flux (CHF). Solid and porous Cu pillar surfaces are sintered to investigate the individual role of pillar structure pitch at millimeter scale, named as module wavelength, on hydrodynamic instability at CHF. Last, spherical Cu nanocavities are coated on the porous Cu pillars to create a multiscale Cu structure, which is studied to examine the collective role and relative significance of contact angles and module wavelength on hydrodynamic instability at CHF, and the results indicate that module wavelength plays the dominant role on hydrodynamic instability at CHF when the height of surface structures is equal or above ¼ Kelvin-Helmholtz wavelength. Pool boiling Heat Transfer Coefficient (HTC) enhancements on spherical Cu nanocavity surfaces, solid and porous Cu pillar surfaces, and the integrated multiscale structure have been investigated, too. The experimental results reveal that the nanostructures and porous pillar structures can be combined together to achieve even higher enhancement of HTC than that of individual structures. PMID:27841322

  6. Scaled electron experiments at the University of Maryland

    International Nuclear Information System (INIS)

    Haber, I.; Bai, G.; Bernal, S.; Beaudoin, B.; Feldman, D.; Fiorito, R.B.; Godlove, T.F.; Kishek, R.A.; O'Shea, P.G.; Quinn, B.; Papadopoulos, C.; Reiser, M.; Rodgers, J.; Stratakis, D.; Sutter, D.; Thangaraj, J.C.T.; Tian, K.; Walter, M.; Wu, C.

    2007-01-01

    The University of Maryland Electron Ring (UMER) and the Long Solenoid Experiment (LSE) are two electron machines that were designed explicitly to study the physics of space-charge-dominated beams. The operating parameters of these machines can be varied by choice of apertures and gun operating conditions to access a wide range of parameters that reproduce, on a scaled basis, the full nonlinear time-dependent physics that is expected in much costlier ion systems. Early operation of these machines has demonstrated the importance of the details of beam initial conditions in determining the downstream evolution. These machines have also been a convenient tested for benchmarking simulation codes such as WARP, and for development of several novel diagnostic techniques. We present our recent experience with multi-turn operation as well as recent longitudinal and transverse physics experiments and comparisons to simulation results. Development of novel diagnostic techniques such as time-dependent imaging using optical transition radiation and tomographic beam reconstruction are also described

  7. Role of Length Scales on Environmental Performance Metrics for Statistical Characterization of Well-Head Protection Regions

    Science.gov (United States)

    de Barros, F.; Guadagnini, A.; Fernandez-Garcia, D.; Riva, M.; Sanchez-Vila, X.

    2012-12-01

    We address the value of typically available hydrogeological information on environmental performance metrics (EPMs) as a function of several characteristic length scales that define groundwater flow and nonreactive solute transport in the presence of a pumping well. Improvement in the delineation of the well region of influence and reduction of the uncertainty associated with transport predictions is usually performed by means of hydrogeological sampling campaigns. We model aquifer heterogeneity through a spatially random hydraulic conductivity distribution and assess the ensuing uncertainty associated with predictions of key transport quantities conditioned to the probability that a distributed contaminant spill is captured by the well. We focus on the assessment of the impact of the acquisition of typical hydrogeological data on the reduction of uncertainty linked to the environmental scenario analyzed. We present a numerical investigation of the significance of the amount of available transmissivity measurements to yield predictions at a desired level of uncertainty of the following EPMs: (a) characteristic solute residence times in the system, and (b) the total mass exceeding a given threshold which is recovered by the well. We elucidate the role of the main (dimensionless) length scales that define and control the uncertainty associated with the target EPMs and infer a probabilistic model characterizing such uncertainty.

  8. Beam displacement as a function of temperature and turbulence length scale at two different laser radiation wavelengths.

    Science.gov (United States)

    Isterling, William M; Dally, Bassam B; Alwahabi, Zeyad T; Dubovinsky, Miro; Wright, Daniel

    2012-01-01

    Narrow laser beams directed from aircraft may at times pass through the exhaust plume of the engines and potentially degrade some of the laser beam characteristics. This paper reports on controlled studies of laser beam deviation arising from propagation through turbulent hot gases, in a well-characterized laboratory burner, with conditions of relevance to aircraft engine exhaust plumes. The impact of the temperature, laser wavelength, and turbulence length scale on the beam deviation has been investigated. It was found that the laser beam displacement increases with the turbulent integral length scale. The effect of temperature on the laser beam angular deviation, σ, using two different laser wavelengths, namely 4.67 μm and 632.8 nm, was recorded. It was found that the beam deviation for both wavelengths may be semiempirically modeled using a single function of the form, σ=a(b+(1/T)(2))(-1), with two parameters only, a and b, where σ is in microradians and T is the temperature in °C. © 2012 Optical Society of America

  9. Size effects on the structural, electronic, and optical properties of (5,0) finite-length carbon nanotube: An ab-initio electronic structure study

    Energy Technology Data Exchange (ETDEWEB)

    Tarighi Ahmadpour, Mahdi; Rostamnejadi, Ali [Electroceram Research Center, Malek Ashtar University of Technology, Shahin Shahr (Iran, Islamic Republic of); Hashemifar, S. Javad [Department of Physics, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of)

    2016-07-07

    We use density functional computations to study the zero temperature structural, electronic, magnetic, and optical properties of (5,0) finite carbon nanotubes (FCNT), with length in the range of 4–44 Å. It is found that the structural and electronic properties of (5,0) FCNTs, in the ground state, converge at a length of about 30 Å, while the excited state properties exhibit long-range edge effects. We discuss that curvature effects enhance energy gap of FCNTs, in contrast to the known trend in the periodic limit. It is seen that compensation of curvature effects in two special small sizes may give rise to spontaneous magnetization. The obtained cohesive energies provide some insights into the effects of environment on the growth of FCNTs. The second-order difference of the total energies reveals an important magic size of about 15 Å. The optical and dynamical magnetic responses of the FCNTs to polarized electromagnetic pulses are studied by time dependent density functional theory. The results show that the static and dynamic magnetic properties mainly come from the edge carbon atoms. The optical absorption properties are described in terms of local field effects and characterized by Casida linear response method.

  10. Finite size scaling analysis of disordered electron systems

    International Nuclear Information System (INIS)

    Markos, P.

    2012-01-01

    We demonstrated the application of the finite size scaling method to the analysis of the transition of the disordered system from the metallic to the insulating regime. The method enables us to calculate the critical point and the critical exponent which determines the divergence of the correlation length in the vicinity of the critical point. The universality of the metal-insulator transition was verified by numerical analysis of various physical parameters and the critical exponent was calculated with high accuracy for different disordered models. Numerically obtained value of the critical exponent for the three dimensional disordered model (1) has been recently supported by the semi-analytical work and verified by experimental optical measurements equivalent to the three dimensional disordered model (1). Another unsolved problem of the localization is the disagreement between numerical results and predictions of the analytical theories. At present, no analytical theory confirms numerically obtained values of critical exponents. The reason for this disagreement lies in the statistical character of the process of localization. The theory must consider all possible scattering processes on randomly distributed impurities. All physical variables are statistical quantities with broad probability distributions. It is in general not know how to calculate analytically their mean values. We believe that detailed numerical analysis of various disordered systems bring inspiration for the formulation of analytical theory. (authors)

  11. Magneto-Induced ac Electrical Permittivity of Metal-Dielectric Composites with a Two Characteristic Length Scales Periodic Microstructure

    International Nuclear Information System (INIS)

    Strelniker, Y.M.; Bergman, D.J.

    1998-01-01

    A new effect was recently predicted in conducting composites that have a periodic microstructure: an induced strongly anisotropic dc magneto-resistance. This phenomenon is already verified on high mobility n-GaAs films. Here we discuss the possibility of observing analogous behavior in the ac electric permittivity of a metal-dielectric composite with a periodic microstructure in the presence of a strong magnetic field. We developed new analytical and numerical methods to treat the low-frequency magneto-optical properties in composite media with both disordered and periodic conducting micro-structures. Those methods allow us to study composites with inclusions of arbitrary shape (and arbitrary volume fraction) at arbitrarily strong magnetic field. This is exploited in order to calculate an effective dielectric tensor for this system as a function of applied magnetic field and ac frequency. We show that in a non-dilute metal-dielectric composite medium the magneto-plasma resonance and the cyclotron resonance depend upon both the applied magnetic field as well as on the geometric shape of the inclusion. Near such a resonance, it is possible to achieve large values for the ratio of the off-diagonal-to-diagonal electric permittivity tensor components, ε xy /ε xx , (since ε xx →0, while ε xy ≠0), which is analogous to similar ratio of the resistivity tensor components, ρ xy /ρ xx , in the case of dc magneto-transport problem. Motivated by this observation and by results of previous studies of dc magneto-transport in composite conductors, we then performed a numerical study of the ac magneto-electric properties of a particular metal-dielectric composite film with a periodic columnar microstructure which has a two characteristic length scales. The unit cell of such composite is prepared as follows: We placed the conducting square (in cross section) rods (first characteristic length scale) along the perimeter of the unit cell in order to create a dielectric host

  12. Predicting permeability of regular tissue engineering scaffolds: scaling analysis of pore architecture, scaffold length, and fluid flow rate effects.

    Science.gov (United States)

    Rahbari, A; Montazerian, H; Davoodi, E; Homayoonfar, S

    2017-02-01

    The main aim of this research is to numerically obtain the permeability coefficient in the cylindrical scaffolds. For this purpose, a mathematical analysis was performed to derive an equation for desired porosity in terms of morphological parameters. Then, the considered cylindrical geometries were modeled and the permeability coefficient was calculated according to the velocity and pressure drop values based on the Darcy's law. In order to validate the accuracy of the present numerical solution, the obtained permeability coefficient was compared with the published experimental data. It was observed that this model can predict permeability with the utmost accuracy. Then, the effect of geometrical parameters including porosity, scaffold pore structure, unit cell size, and length of the scaffolds as well as entrance mass flow rate on the permeability of porous structures was studied. Furthermore, a parametric study with scaling laws analysis of sample length and mass flow rate effects on the permeability showed good fit to the obtained data. It can be concluded that the sensitivity of permeability is more noticeable at higher porosities. The present approach can be used to characterize and optimize the scaffold microstructure due to the necessity of cell growth and transferring considerations.

  13. Large-scale amplification, cloning and sequencing of near full-length HIV-1 subtype C genomes.

    Science.gov (United States)

    Rousseau, Christine M; Birditt, Brian A; McKay, Angela R; Stoddard, Julia N; Lee, Tsan Chun; McLaughlin, Sherry; Moore, Sarah W; Shindo, Nice; Learn, Gerald H; Korber, Bette T; Brander, Christian; Goulder, Philip J R; Kiepiela, Photini; Walker, Bruce D; Mullins, James I

    2006-09-01

    Full-length HIV-1 genome sequencing provides important data needed to address several vaccine design, molecular epidemiologic and pathogenesis questions. A protocol is presented for obtaining near full-length genomes (NFLGs) from subjects infected with HIV-1 subtype C. This protocol was used to amplify NFLGs from 244 of 366 (67%) samples collected at two clinics in Durban, South Africa (SK and PS). Viral load was directly associated with frequency of successful NFLG amplification for both cohorts (PS; p = 0.005 and SK; p clones were obtained from all 244 NFLG-positive PCR products, and both strands of each genome were sequenced, using a primary set of 46 primers. These methods thus allow the large-scale collection of HIV-1 NFLGs from populations infected primarily with subtype C. The methods are readily adaptable to other HIV-1 subtypes, and provide materials for viral functional analyses and population-based molecular epidemiology studies that include analysis of viral genome chimerization.

  14. Influence of Growth Rate on Microstructural Length Scales in Directionally Solidified NiAl-Mo Hypo-Eutectic Alloy

    Science.gov (United States)

    Zhang, Jianfei; Ma, Xuewei; Ren, Huiping; Chen, Lin; Jin, Zili; Li, Zhenliang; Shen, Jun

    2016-01-01

    In this article, the Ni-46.1Al-7.8Mo (at.%) alloy was directionally solidified at different growth rates ranging from 15 μm/s to 1000 μm/s under a constant temperature gradient (334 K/cm). The dependence of microstructural length scales on the growth rate was investigated. The results show that, with the growth rate increasing, the primary dendritic arm spacings (PDAS) and secondary dendritic arm spacings (SDAS) decreased. There exists a large distribution range in PDAS under directional solidification conditions at a constant temperature gradient. The average PDAS and SDAS as a function of growth rate can be given as λ1 = 848.8967 V-0.4509 and λ2 = 64.2196 V-0.4140, respectively. In addition, a comparison of our results with the current theoretical models and previous experimental results has also been made.

  15. Length-scales of Slab-induced Asthenospheric Deformation from Geodynamic Modeling, Mantle Deformation Fabric, and Synthetic Shear Wave Splitting

    Science.gov (United States)

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2017-12-01

    The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear

  16. Student Off-Task Electronic Multitasking Predictors: Scale Development and Validation

    Science.gov (United States)

    Qian, Yuxia; Li, Li

    2017-01-01

    In an attempt to better understand factors contributing to students' off-task electronic multitasking behavior in class, the research included two studies that developed a scale of students' off-task electronic multitasking predictors (the SOTEMP scale), and explored relationships between the scale and various classroom communication processes and…

  17. Charge Separation in Intermixed Polymer:PC70BM Photovoltaic Blends: Correlating Structural and Photophysical Length Scales as a Function of Blend Composition

    KAUST Repository

    Utzat, Hendrik

    2017-04-24

    A key challenge in achieving control over photocurrent generation by bulk-heterojunction organic solar cells is understanding how the morphology of the active layer impacts charge separation and in particular the separation dynamics within molecularly intermixed donor-acceptor domains versus the dynamics between phase-segregated domains. This paper addresses this issue by studying blends and devices of the amorphous silicon-indacenodithiophene polymer SiIDT-DTBT and the acceptor PCBM. By changing the blend composition, we modulate the size and density of the pure and intermixed domains on the nanometer length scale. Laser spectroscopic studies show that these changes in morphology correlate quantitatively with the changes in charge separation dynamics on the nanosecond time scale and with device photocurrent densities. At low fullerene compositions, where only a single, molecularly intermixed polymer-fullerene phase is observed, photoexcitation results in a ∼ 30% charge loss from geminate polaron pair recombination, which is further studied via light intensity experiments showing that the radius of the polaron pairs in the intermixed phase is 3-5 nm. At high fullerene compositions (≥67%), where the intermixed domains are 1-3 nm and the pure fullerene phases reach ∼4 nm, the geminate recombination is suppressed by the reduction of the intermixed phase, making the fullerene domains accessible for electron escape.

  18. On mechanics and material length scales of failure in heterogeneous interfaces using a finite strain high performance solver

    Science.gov (United States)

    Mosby, Matthew; Matouš, Karel

    2015-12-01

    Three-dimensional simulations capable of resolving the large range of spatial scales, from the failure-zone thickness up to the size of the representative unit cell, in damage mechanics problems of particle reinforced adhesives are presented. We show that resolving this wide range of scales in complex three-dimensional heterogeneous morphologies is essential in order to apprehend fracture characteristics, such as strength, fracture toughness and shape of the softening profile. Moreover, we show that computations that resolve essential physical length scales capture the particle size-effect in fracture toughness, for example. In the vein of image-based computational materials science, we construct statistically optimal unit cells containing hundreds to thousands of particles. We show that these statistically representative unit cells are capable of capturing the first- and second-order probability functions of a given data-source with better accuracy than traditional inclusion packing techniques. In order to accomplish these large computations, we use a parallel multiscale cohesive formulation and extend it to finite strains including damage mechanics. The high-performance parallel computational framework is executed on up to 1024 processing cores. A mesh convergence and a representative unit cell study are performed. Quantifying the complex damage patterns in simulations consisting of tens of millions of computational cells and millions of highly nonlinear equations requires data-mining the parallel simulations, and we propose two damage metrics to quantify the damage patterns. A detailed study of volume fraction and filler size on the macroscopic traction-separation response of heterogeneous adhesives is presented.

  19. Large Scale Cleaning Telescope Mirrors with Electron Beams Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cleaning Lenses and Mirrored Surfaces with Electrons tasks include: Development of Fractal Wand Geometries; Vacuum Chamber testing for Fractal Wand Prototypes;...

  20. Determination of bulk diffusion lengths for angle-lapped semiconductor material via the scanning electron microscope: A theoretical analysis

    Science.gov (United States)

    Vonroos, O.

    1978-01-01

    A standard procedure for the determination of the minority carrier diffusion length by means of a scanning electron microscope (SEM) consists in scanning across an angle-lapped surface of a P-N junction and measuring the resultant short circuit current I sub sc as a function of beam position. A detailed analysis of the I sub sc originating from this configuration is presented. It is found that, for a point source excitation, the I sub sc depends very simply on x, the variable distance between the surface and the junction edge. The expression for the I sub sc of a planar junction device is well known. If d, the constant distance between the plane of the surface of the semiconductor and the junction edge in the expression for the I of a planar junction is merely replaced by x, the variable distance of the corresponding angle-lapped junction, an expression results which is correct to within a small fraction of a percent as long as the angle between the surfaces, 2 theta sub 1, is smaller than 10 deg.

  1. Length-scales of chemical and isotopic heterogeneity in the mantle section of the Shetland Ophiolite Complex, Scotland

    Science.gov (United States)

    O'Driscoll, B.; Walker, R. J.; Clay, P. L.; Day, J. M. D.; Ash, R. D.; Daly, J. S.

    2018-04-01

    Kilometre to sub-metre scale heterogeneities have been inferred in the oceanic mantle based on sampling of both ophiolites and abyssal peridotites. The ∼492 Ma Shetland Ophiolite Complex (SOC) contains a well-preserved mantle section that is dominated by harzburgite (∼70 vol.%) previously reported to have variable major and trace element compositions, yet dominantly chondritic initial 187Os/188Os compositions. To assess the preservation of compositional heterogeneities at sub-metre length-scales in the oceanic mantle, a ∼45 m2 area of the SOC mantle section was mapped and sampled in detail. Harzburgites, dunites and a pyroxenite from this area were analysed for lithophile and highly-siderophile element (HSE) abundances, as well as for 187Os/188Os ratios. Lithophile element data for most rocks are characteristic of supra-subduction zone (SSZ) metasomatic processes. Two dunites have moderately fractionated HSE patterns and suprachondritic γOs(492 Ma) values (+5.1 and +7.5) that are also typical of ophiolitic dunites generated by SSZ melt-rock interactions. By contrast, six harzburgites and four dunites have approximately chondritic-relative abundances of Os, Ir and Ru, and γOs(492 Ma) values ranging only from -0.6 to +2.7; characteristics that imply no significant influence during SSZ processes. Two harzburgites are also characterised by significantly less radiogenic γOs(492 Ma) values (-3.5 and -4), and yield Mesoproterozoic time of Re depletion (TRD) model ages. The range of Os isotope compositions in the studied area is comparable to the range reported for a suite of samples representative of the entire SOC mantle section, and approaches the total isotopic variation of the oceanic mantle, as observed in abyssal peridotites. Mechanisms by which this heterogeneity can be formed and preserved involve inefficient and temporally distinct melt extraction events and strong localised channelling of these melts.

  2. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development.

    Science.gov (United States)

    Lorite, Gabriela S; Janissen, Richard; Clerici, João H; Rodrigues, Carolina M; Tomaz, Juarez P; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A; Cotta, Mônica A

    2013-01-01

    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.

  3. Large Scale Cleaning Telescope Mirrors with Electron Beams Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cleaning Lenses and Mirrored Surfaces with Electrons tasks include: Development of Fractal Wand Geometries; Vacuum Chamber testing of Fractal Wand...

  4. Diffusion effects on volume-selective NMR at small length scales; Diffusionseffekte in volumenselektiver NMR auf kleinen Laengenskalen

    Energy Technology Data Exchange (ETDEWEB)

    Gaedke, Achim

    2009-01-21

    In this thesis, the interplay between diffusion and relaxation effects in spatially selective NMR experiments at short length scales is explored. This is especially relevant in the context of both conventional and mechanically detected MRI at (sub)micron resolution in biological specimens. Recent results on selectively excited very thin slices showed an in-slice-magnetization recovery orders of magnitude faster than the longitudinal relaxation time T1. However, those experiments were run on fully relaxed samples while MRI and especially mechanically detected NMR experiments are typically run in a periodic fashion with repetition times far below T1. The main purpose of this work therefore was to extend the study of the interplay between diffusion and longitudinal relaxation to periodic excitations. In some way, this is inverse phenomenon to the DESIRE (Diffusive Enhancement of SIgnal and REsolution) approach, proposed 1992 by Lauterbur. Experiments on periodically excited thin slices were carried out at a dedicated static field gradient cryomagnet with magnetic field gradients up to 180 T/m. In order to obtain plane slices, an appropriate isosurface of the gradient magnet had to be identified. It was found at a field of 3.8 T with a gradient of 73 T/m. In this field, slices down to a thickness of 3.2 {mu}m could be excited. The detection of the NMR signal was done using FIDs instead of echoes as the excitation bandwidth of those thin slices is sufficiently small to observe FIDs which are usually considered to be elusive to detection in such strong static field gradients. A simulation toolbox based on the full Bloch-Torrey-equation was developed to describe the excitation and the formation of NMR signals under those unusual conditions as well as the interplay of diffusion and magnetization recovery. Both the experiments and the simulations indicate that diffusion effects lead to a strongly enhanced magnetization modulation signal also under periodic excitation

  5. Electron Gyro-scale Fluctuation Measurements in National Spherical Torus Experiment H-mode Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D R; Lee, W; Mazzucato, E; Park, H K; Bell, R E; Domier, C W; LeBlanc, B P; Levinton, F M; Luhmann, N C; Menard, J E

    2009-08-10

    A collective scattering system has measured electron gyro-scale fluctuations in National Spherical Torus Experiment (NSTX) H-mode plasmas to investigate electron temperature gradient (ETG) turbulence. Observations and results pertaining to fluctuation measurements in ETGstable regimes, the toroidal field scaling of fluctuation amplitudes, the relation between between fluctuation amplitudes and transport quantities, and fluctuation magnitudes and k-spectra are presented. Collectively, the measurements provide insight and guidance for understanding ETG turbulence and anomalous electron thermal transport.

  6. Multi-Scale Simulations of Carbon Nanotubes: Mechanics and Electronics

    Science.gov (United States)

    Srivastava, Deepak

    2003-01-01

    Carbon Nanotube (CNT) is a tubular form of carbon with diameter as small as 1 nm. Length: few mn to microns. CNT is configurationally equivalent to a two dimensional graphene sheet rolled into a tube. CNT exhibits extraordinary mechanical properties; Young's modulus over 1 Tera Pascal, as stiff as diamond, and tensile strength approx. 200 GPa. CNT can be metallic or semiconducting, depending on chirality.

  7. Accessible length scale of the in-plane structure in polarized neutron off-specular and grazing-incidence small-angle scattering measurements

    Science.gov (United States)

    Maruyama, R.; Bigault, T.; Wildes, A. R.; Dewhurst, C. D.; Saerbeck, T.; Honecker, D.; Yamazaki, D.; Soyama, K.; Courtois, P.

    2017-06-01

    Polarized neutron off-specular and grazing-incidence small-angle scattering measurements are useful methods to investigate the in-plane structure and its correlation of layered systems. Although these measurements give information on complementary and overlapping length scale, the different characteristics between them need to be taken into account when performed. In this study, the difference in the accessible length scale of the in-plane structure, which is one of the most important characteristics, was discussed using an Fe/Si multilayer together with simulations based on the distorted wave Born approximation.

  8. The Dissipation of Solar Wind Turbulent Fluctuations at Electron Scales

    NARCIS (Netherlands)

    E. Camporeale (Enrico); D. Burgess

    2011-01-01

    textabstractWe present two-dimensional fully kinetic particle-in-cell simulations of decaying electromagnetic fluctuations. The computational box is such that wavelengths ranging from electron to ion gyroradii are resolved. The parameters used are realistic for the solar wind, and the

  9. Size-scaling behaviour of the electronic polarizability of one-dimensional interacting systems

    Science.gov (United States)

    Chiappe, G.; Louis, E.; Vergés, J. A.

    2018-05-01

    Electronic polarizability of finite chains is accurately calculated from the total energy variation of the system produced by small but finite static electric fields applied along the chain direction. Normalized polarizability, that is, polarizability divided by chain length, diverges as the second power of length for metallic systems but approaches a constant value for insulating systems. This behaviour provides a very convenient way to characterize the wave-function malleability of finite systems as it avoids the need of attaching infinite contacts to the chain ends. Hubbard model calculations at half filling show that the method works for a small U  =  1 interaction value that corresponds to a really small spectral gap of 0.005 (hopping t  =  ‑1 is assumed). Once successfully checked, the method has been applied to the long-range hopping model of Gebhard and Ruckenstein showing 1/r hopping decay (Gebhard and Ruckenstein 1992 Phys. Rev. Lett. 68 244; Gebhard et al 1994 Phys. Rev. B 49 10926). Metallicity for U values below the reported metal-insulator transition is obtained but the surprise comes for U values larger than the critical one (when a gap appears in the spectral density of states) because a steady increase of the normalized polarizability with size is obtained. This critical size-scaling behaviour can be understood as corresponding to a molecule which polarizability is unbounded. We have checked that a real transfer of charge from one chain end to the opposite occurs as a response to very small electric fields in spite of the existence of a large gap of the order of U for one-particle excitations. Finally, ab initio quantum chemistry calculations of realistic poly-acetylene chains prove that the occurrence of such critical behaviour in real systems is unlikely.

  10. Mixing the Solar Wind Proton and Electron Scales: Effects of Electron Temperature Anisotropy on the Oblique Proton Firehose Instability

    Science.gov (United States)

    Maneva, Y.; Lazar, M.; Vinas, A.; Poedts, S.

    2016-01-01

    The double adiabatic expansion of the nearly collisionless solar wind plasma creates conditions for the firehose instability to develop and efficiently prevent the further increase of the plasma temperature in the direction parallel to the interplanetary magnetic field. The conditions imposed by the firehose instability have been extensively studied using idealized approaches that ignore the mutual effects of electrons and protons. Recently, more realistic approaches have been proposed that take into account the interplay between electrons and protons,? unveiling new regimes of the parallel oscillatory modes. However, for oblique wave propagation the instability develops distinct branches that grow much faster and may therefore be more efficient than the parallel firehose instability in constraining the temperature anisotropy of the plasma particles. This paper reports for the first time on the effects of electron plasma properties on the oblique proton firehose (PFH) instability and provides a comprehensive vision of the entire unstable wave-vector spectrum, unifying the proton and the smaller electron scales. The plasma ß and temperature anisotropy regimes considered here are specific for the solar wind and magnetospheric conditions, and enable the electrons and protons to interact via the excited electromagnetic fluctuations. For the selected parameters, simultaneous electron and PFH instabilities can be observed with a dispersion spectrum of the electron firehose (EFH) extending toward the proton scales. Growth rates of the PFH instability are markedly boosted by the anisotropic electrons, especially in the oblique direction where the EFH growth rates are orders of magnitude higher.

  11. Large scale radiation tolerance assurance for LHC machine electronics

    CERN Document Server

    Wijnands, Thijs; Presland, A; Rausch, R; Tsoulou, A

    2004-01-01

    The LHC (Large Hadron Collider) is a high intensity, high-energy proton collider presently under construction at CERN. Electronic equipment will be placed in the machine tunnel and underground areas close to the beam. This equipment will have to operate reliable in a complex radiation field with high energetic neutrons in the GeV energy range. In this paper we present an efficient and original radiation tolerance assurance approach. It consists of exposing candidate components and entire systems to a complex radiation field, similar to the application radiation field. The method allows making a pre-selection of commercial off the shelf electronics. Irradiation in the complex field is also used to test the functionality of final prototypes and series produced devices.

  12. Electron-scale measurements of magnetic reconnection in space

    Science.gov (United States)

    Burch, J. L.; Torbert, R. B.; Phan, T. D.; Chen, L.-J.; Moore, T. E.; Ergun, R. E.; Eastwood, J. P.; Gershman, D. J.; Cassak, P. A.; Argall, M. R.; Wang, S.; Hesse, M.; Pollock, C. J.; Giles, B. L.; Nakamura, R.; Mauk, B. H.; Fuselier, S. A.; Russell, C. T.; Strangeway, R. J.; Drake, J. F.; Shay, M. A.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Marklund, G.; Wilder, F. D.; Young, D. T.; Torkar, K.; Goldstein, J.; Dorelli, J. C.; Avanov, L. A.; Oka, M.; Baker, D. N.; Jaynes, A. N.; Goodrich, K. A.; Cohen, I. J.; Turner, D. L.; Fennell, J. F.; Blake, J. B.; Clemmons, J.; Goldman, M.; Newman, D.; Petrinec, S. M.; Trattner, K. J.; Lavraud, B.; Reiff, P. H.; Baumjohann, W.; Magnes, W.; Steller, M.; Lewis, W.; Saito, Y.; Coffey, V.; Chandler, M.

    2016-06-01

    Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.

  13. Controlling time scales for electron transfer through proteins

    Directory of Open Access Journals (Sweden)

    Scot Wherland

    2015-12-01

    Full Text Available Electron transfer processes within proteins constitute key elements in biological energy conversion processes as well as in a wide variety of biochemical transformations. Pursuit of the parameters that control the rates of these processes is driven by the great interest in the latter reactions. Here, we review a considerable body of results emerging from investigation of intramolecular electron transfer (ET reactions in two types of proteins, all done by the use of the pulse-radiolysis method: first are described results of extensive studies of a model system, the bacterial electron mediating protein azurin, where an internal ET between the disulfide radical ion and the Cu(II is induced. Impact of specific structural changes introduced into azurin on the reaction rates and the parameters controlling it are discussed. Then, the presentation is extended to results of investigations of intra-protein ET reactions that are part of catalytic cycles of multi-copper containing enzymes. Again, the rates and the parameters controlling them are presented and discussed in the context of their efficacy and possible constraints set on their evolution.

  14. Effect of polydispersity on the structure factor of a melt of binary multiblock copolymers with a two-length-scale macromolecular architecture

    NARCIS (Netherlands)

    Kuchanov, S.; Zharnikov, T.; Brinke, G. ten

    2011-01-01

    A theoretical study on the effect of polydispersity of two-length-scale binary multiblock copolymers on the shape of the structure factor is presented. A bifurcation diagram is constructed showing the partition of the parameter space into domains differing in the way in which the homogeneous melt

  15. On the validity of 2D critical taper theory in 3D wedges: defining a lateral deformation length scale

    Science.gov (United States)

    Leever, Karen; Oncken, Onno; Thorden Haug, Øystein

    2015-04-01

    For 2D critical taper theory to be applicable to 3D natural cases, cylindric deformation is a requirement. The assumption of cylindricity is violated in case of localized perturbations (subducting seamount, localized sedimentation) or due to a lateral change in decollement strength or depth. In natural accretionary wedges and fold-and-thrust belts, along strike changes may occur in a variety of ways: geometrical (due to a protruding indenter or a change in decollement depth), through a lateral change in basal friction (leading to laterally different tapers), or through a change in surface slope (by strongly localized fan sedimentation on accretionary wedges). Recent numerical modelling results (Ruh et al., 2013) have shown that lateral coupling preferentially occurs for relatively small perturbations, i.e. the horizontal shear stress caused by the perturbation is supported by the system. Lateral linking of the wedge in front of a protruding indenter to the wedge in front of the trailing edge of the back stop leads to curved thrust fronts and importantly it has been noted that even outside the curved zone, where the wedge front is again parallel to the direction of tectonic transport, the lateral effect is still evident: both tapers are different from the analytical prediction. We present results from a 3D analogue modelling parameter study to investigate this behavior more quantitatively, with the objective of empirically finding a lateral length scale of deformation in brittle contractional wedges. For a given wedge strength (angle of internal friction), we infer this to be a function of the size (width) of the perturbation and its magnitude (difference in basal friction). To this end we run different series of models in which we systematically vary the width and/or magnitude of a local perturbation. In the first series, the width of a zone of high basal friction is varied, in the second series we vary the width of an indenter and in the third series

  16. 'Length'at Length

    Indian Academy of Sciences (India)

    Admin

    He was interested to know how `large' is the set of numbers x for which the series is convergent. Here large refers to its length. But his set is not in the class ♢. Here is another problem discussed by Borel. Consider .... have an infinite collection of pairs of new shoes and want to choose one shoe from each pair. We have an ...

  17. Scaling Beyond Moore: Single Electron Transistor and Single Atom Transistor Integration on CMOS

    OpenAIRE

    Deshpande , Veeresh

    2012-01-01

    Continuous scaling of MOSFET dimensions has led us to the era of nanoelectronics. Multigate FET (MuGFET) architecture with 'nanowire channel'is being considered as one feasible enabler of MOSFET scaling to end-of-roadmap. Alongside classical CMOS or Moore's law scaling, many novel device proposals exploiting nanoscale phenomena have been made. Single Electron Transistor (SET), with its unique 'Coulomb Blockade' phenomena, and Single Atom Transistor (SAT), as an ultimately scaled transistor, a...

  18. Femtosecond planar electron beam source for micron-scale dielectric wake field accelerator

    Directory of Open Access Journals (Sweden)

    T. C. Marshall

    2001-12-01

    Full Text Available A new accelerator, LACARA (laser-driven cyclotron autoresonance accelerator, under construction at the Accelerator Test Facility at Brookhaven National Laboratory, is to be powered by a 1 TW CO_{2} laser beam and a 50 MeV injected electron pulse. LACARA will produce inside a 2 m, 6 T solenoid a 100 MeV gyrating electron bunch, with ∼3% energy spread, approximately 1 psec in length with particles advancing in phase at the laser frequency, executing one cycle each 35 fsec. A beamstop with a small off axis channel will transmit a short beam pulse every optical cycle, thereby producing a train of about 30, 3.5 fsec long, 1–3 pC microbunches for each laser pulse. We describe here a novel accelerator, a micron-scale dielectric wake field accelerator driven by a 500 MeV LACARA-type injector that takes the output train of microbunches and transforms them into a near-rectangular cross section having a narrow dimension of ∼10 μm and height of ∼150 μm using a magnetic quadrupole; these bunches may be injected into a planar dielectric-lined waveguide (slightly larger than the bunch where cumulative buildup of wake fields can lead to an accelerating gradient >1 GV/m. This proposed vacuum-based wake field structure is physically rigid and capable of microfabrication accuracy, factors important in staging a large number of accelerator modules. Furthermore, the accelerating gradients it promises are comparable with those for plasma accelerators. A LACARA unit for preparing suitable bunches at 500 MeV is described. Physics issues are discussed, including bunch spreading and transport, bunch shaping, coherent diffraction radiation from the aperture, dielectric breakdown, and bunch stability in the rectangular wake field structure.

  19. Metal substrates with nanometer scale surface roughness for flexible electronics

    Science.gov (United States)

    Lee, Jong-Lam; Kim, Kisoo

    2012-09-01

    In this work, we present a novel way in fabricating a metal substrate with nanometer scale in surface roughness (Ra INVAR (Invariable alloy) one (20 cm × 20 cm, Ra = 1.40 nm) were demonstrated. The INVAR film was used as a substrate for fabricating organic light emitting diodes (OLED) and organic photovoltaic (OPV). The optical and electrical characteristics of OLEDs and OPVs using the INVAR were comparable to those using a conventional ITO glass substrate.

  20. Effect of artificial length scales in large eddy simulation of a neutral atmospheric boundary layer flow: A simple solution to log-layer mismatch

    Science.gov (United States)

    Chatterjee, Tanmoy; Peet, Yulia T.

    2017-07-01

    A large eddy simulation (LES) methodology coupled with near-wall modeling has been implemented in the current study for high Re neutral atmospheric boundary layer flows using an exponentially accurate spectral element method in an open-source research code Nek 5000. The effect of artificial length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and structure of the inner and outer layer eddies is studied using varying SGS and NWM parameters in the spectral element framework. The study provides an understanding of the various length scales and dynamics of the eddies affected by the LES model and also the fundamental physics behind the inner and outer layer eddies which are responsible for the correct behavior of the mean statistics in accordance with the definition of equilibrium layers by Townsend. An economical and accurate LES model based on capturing the near wall coherent eddies has been designed, which is successful in eliminating the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the streamwise variance.

  1. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device

    International Nuclear Information System (INIS)

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-01

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.

  2. Current increment of tunnel field-effect transistor using InGaAs nanowire/Si heterojunction by scaling of channel length

    OpenAIRE

    Tomioka, Katsuhiro; Fukui, Takashi

    2014-01-01

    We report on a fabrication of tunnel field-effect transistors using InGaAs nanowire/Si heterojunctions and the characterization of scaling of channel lengths. The devices consisted of single InGaAs nanowires with a diameter of 30 nm grown on p-type Si(111) substrates. The switch demonstrated steep subthreshold-slope (30 mV/decade) at drain-source voltage (V-DS) of 0.10 V. Also, pinch-off behavior appeared at moderately low VDS, below 0.10 V. Reducing the channel length of the transistors atta...

  3. Electron-enhanced nano scaled atomic processes in classic semiconductors and polymers

    International Nuclear Information System (INIS)

    Turaeva, N.N.

    2007-06-01

    Key words:quasiparticles, self-trapping, polaron, inversion, fluctuon, exciton, defect, quantum diffusion, dislocation, dispersion, amorphization, polymer, hydrogen key, photo-destruction, conformation, persistent length, mutation, self-compensation. Subjects of the inquiry: silicon, hydrogenated amorphous silicon, porous semiconductors, polymers, DNA, polymer solutions. Aim of the inquiry: Investigation of electron-enhanced atomic re buildings in classic semiconductors and polymers on nano scales. Method of inquiry: solid states theory, quantum mechanics, statistic physics, thermodynamics, theory aspects of radiation physics of condensed matter, self-trapping theory, scattering theory, polymer physics. The results achieved and their novelty: For the first time it was shown that electron-phonon interaction was able to amplify the quantum nature of atomic subsystem in condensed matter by means of De Boer parameter increasing of one and multi-atomic defects. It was constructed the exciton theory of Staebler Wronsky effect in hydrogenated amorphous silicon which was based on the Rice, Kossel, Paspreger mechanism of hydrogen atom dissociation. It was constructed the theoretical model of radiation defect production in porous semiconductors by particle (electrons and neutrons) irradiation in frames of stochastic model of defect production. In frames of scattering matrix formalism was received the dispersion law of the quasiparticle-inversion responsible for interstitial atom migration at low temperatures in semiconductors. It was constructed the theoretical model of nano scaled dislocation kinks tunneling amplifying by electrons self-trapping on them. It was worked out the theoretical model of disordering and annealing in semiconductors taking into account the electrons stopping at ionic irradiation. It was shown that disordering was the accumulation of nano scaled exciton-lattice excitements(fluctuons). It was worked out the Auger-destruction theory in polymers taking

  4. Can active signals of cellphone interfere with electronic working length determination of a root canal in a dental clinic? Anin vivostudy.

    Science.gov (United States)

    Gohil, Umadevi Kiritsinh; Parekh, Vaishali V; Kinariwala, Niraj; Oza, Kaushal M; Somani, Mona C

    2017-01-01

    To evaluate the interference of active cellphones during electronic working length (EWL) determination of a root canal. Thirty patients requiring root canal treatment in the anterior teeth or premolars having single canal and mature apices were selected for this study. Working length determination was done using no. 15 K-file. Electronic apex locators ProPex Pixi and Root ZX mini were used for working length determination. Cellphones iPhone 6s and Xolo Q3000 were evaluated for their interference. The experiment was conducted in a closed room (9 feet × 9 feet). Working length was measured with no cellphone in the room, iPhone 6s in a calling mode, Xolo Q3000 in a calling mode, and Xolo Q3000 and iPhone 6s simultaneously in a calling mode. Stability of the readings was also determined for every condition. The data were statistically analyzed using one-way ANOVA and paired t -test at 0.05 level of significance. Results were not statistically significant. Within the limitations of the present study, cellphones do not interfere with the EWL determination.

  5. Lab-scale thermal analysis of electronic waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong, E-mail: jhong@ustc.edu.cn; Yu, Han-Qing

    2016-06-05

    Highlights: • We provided the experimental evidence that WEEE can be recovered by pyrolysis method. • We explored the thermochemical behaviors of WEEE using online TG–FTIR–MS technology. • The intramolecular oxygen atoms play a pivotal role in the formation of PBDD/Fs. - Abstract: In this work, we experimentally revealed the thermochemical decomposition pathway of Decabromodiphenyl ethane (DBDPE) and tetrabromobisphenol A (TBBPA) containing electronic waste plastics using an online thermogravimetric–fourier transform infrared–mass spectroscopy (TG–FTIR–MS) system, a high resolution gas chromatography/high resolution mass (HRGC–MS) spectroscopy, and a fixed-bed reactor. We found the distribution and species of produced bromides can be easily controlled by adjusting pyrolytic temperature, which is particularly crucial to their recycle. From the analysis of the liquid and solid phase obtained from the fixed-bed reactor, we proposed that the ·Br radicals formed during the pyrolysis process may be captured by organic species derived from the depolymerization of plastics to form brominated compounds or by the inorganic species in the plastics, and that these species remained in the char residue after pyrolysis. Our work for the first time demonstrates intramolecular oxygen atoms play a pivotal role in the formation of PBDD/Fs that pyrolysis of oxygen-free BFRs is PBDD/Fs-free, whereas pyrolysis of oxygen-containing BFRs is PBDD/Fs-reduced.

  6. Effects of correlations between particle longitudinal positions and transverse plane on bunch length measurement: a case study on GBS electron LINAC at ELI-NP

    Science.gov (United States)

    Sabato, L.; Arpaia, P.; Cianchi, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Variola, A.

    2018-02-01

    In high-brightness LINear ACcelerators (LINACs), electron bunch length can be measured indirectly by a radio frequency deflector (RFD). In this paper, the accuracy loss arising from non-negligible correlations between particle longitudinal positions and the transverse plane (in particular the vertical one) at RFD entrance is analytically assessed. Theoretical predictions are compared with simulation results, obtained by means of ELEctron Generation ANd Tracking (ELEGANT) code, in the case study of the gamma beam system (GBS) at the extreme light infrastructure—nuclear physics (ELI-NP). In particular, the relative error affecting the bunch length measurement, for bunches characterized by both energy chirp and fixed correlation coefficients between longitudinal particle positions and the vertical plane, is reported. Moreover, the relative error versus the correlation coefficients is shown for fixed RFD phase 0 rad and π rad. The relationship between relative error and correlations factors can help the decision of using the bunch length measurement technique with one or two vertical spot size measurements in order to cancel the correlations contribution. In the case of the GBS electron LINAC, the misalignment of one of the quadrupoles before the RFD between  ‑2 mm and 2 mm leads to a relative error less than 5%. The misalignment of the first C-band accelerating section between  ‑2 mm and 2 mm could lead to a relative error up to 10%.

  7. Dynamics of an elastic sphere containing a thin creeping region and immersed in an acoustic region for similar viscous-elastic and acoustic time- and length-scales

    Science.gov (United States)

    Gat, Amir; Friedman, Yonathan

    2017-11-01

    The characteristic time of low-Reynolds number fluid-structure interaction scales linearly with the ratio of fluid viscosity to solid Young's modulus. For sufficiently large values of Young's modulus, both time- and length-scales of the viscous-elastic dynamics may be similar to acoustic time- and length-scales. However, the requirement of dominant viscous effects limits the validity of such regimes to micro-configurations. We here study the dynamics of an acoustic plane wave impinging on the surface of a layered sphere, immersed within an inviscid fluid, and composed of an inner elastic sphere, a creeping fluid layer and an external elastic shell. We focus on configurations with similar viscous-elastic and acoustic time- and length-scales, where the viscous-elastic speed of interaction between the creeping layer and the elastic regions is similar to the speed of sound. By expanding the linearized spherical Reynolds equation into the relevant spectral series solution for the hyperbolic elastic regions, a global stiffness matrix of the layered elastic sphere was obtained. This work relates viscous-elastic dynamics to acoustic scattering and may pave the way to the design of novel meta-materials with unique acoustic properties. ISF 818/13.

  8. First-principles electron transport with phonon coupling: Large scale at low cost

    DEFF Research Database (Denmark)

    Gunst, Tue; Markussen, Troels; Palsgaard, Mattias L. N.

    2017-01-01

    Phonon-assisted tunneling plays a crucial role for electronic device performance and even more so with future size down-scaling. We show how one can include this effect in large-scale first-principles calculations using a single "special thermal displacement" (STD) of the atomic coordinates...

  9. Mechanical Behavior of UO2 at Sub-grain Length Scales: Quantification of Elastic, Plastic and Creep Properties via Microscale Testing

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, Pedro

    2018-04-16

    Techniques were developed to measure properties at sub-grain scales using depleted Uranium Oxide (d-UO2) samples heat-treated to obtain different grain sizes and oxygen stoichiometries, through three main tasks: 1) sample processing and characterization, 2) microscale and conventional testing and 3) modeling. Grain size and crystallography were characterized using Scanning Electron Microscopy (SEM), in conjunction with Electron Backscattering Diffraction (EBSD) and Electron Channeling Contrast Imaging (ECCI). Grains were then carefully selected based on their crystallographic orientations to perform ex-situ micromechanical tests with samples machined via Focused Ion Beam (FIB), with emphasis on micro-cantilever bending. These experiments were performed under controlled atmospheres, to insure stoichiometry control, at temperatures up to 700 °C and allowed measurements involving elastic (effective Young’s modulus), plastic (critical resolved shear stresses) and creep (creep strain rates) behavior. Conventional compression experiments were performed simultaneously to compare with the ex-situ measurements and study potential size effects. Modeling was implemented using anisotropic elasticity and inelastic constitutive relations for plasticity and creep based on kinematics and kinetics of dislocation glide that account for the effects of crystal orientation, and stress. The models will be calibrated and validated using the experimental data. This project provided insight on correlations among stoichiometry, crystallography and mechanical behavior in advanced oxide fuels, provided valuable experimental data to validate and calibrate mesoscale fuel performance codes and also a framework to measure sub-grain scale mechanical properties that should be suitable for use with irradiated samples due to small volumes required. The goals and metrics of the ongoing study of thermo-mechanical behavior in depleted uranium dioxide (d-UO2) outlined in this project have been

  10. Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure.

    Science.gov (United States)

    Hoy, Erik P; Mazziotti, David A

    2015-08-14

    Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.

  11. Development of Lab-to-Fab Production Equipment Across Several Length Scales for Printed Energy Technologies, Including Solar Cells

    DEFF Research Database (Denmark)

    Hösel, Markus; Dam, Henrik Friis; Krebs, Frederik C

    2015-01-01

    We describe and review how the scaling of printed energy technologies not only requires scaling of the input materials but also the machinery used in the processes. The general consensus that ultrafast processing of technologies with large energy capacity can only be realized using roll-to-roll m......We describe and review how the scaling of printed energy technologies not only requires scaling of the input materials but also the machinery used in the processes. The general consensus that ultrafast processing of technologies with large energy capacity can only be realized using roll...... the lower end of the industrial scale. The machinery bridges the gap through firstly achieving improved ink efficiency without surface contact, followed by better ink efficiency at higher speeds, and finally large-area processing at high speed with very high ink efficiency....

  12. Effects of thermal annealing on deep-level defects and minority-carrier electron diffusion length in Be-doped InGaAsN

    International Nuclear Information System (INIS)

    Xie, S.Y.; Yoon, S.F.; Wang, S.Z.

    2005-01-01

    We report the effects of ex situ thermal annealing on the deep-level defects and the minority-carrier electron diffusion length in Be-doped, p-type In 0.03 Ga 0.97 As 0.99 N 0.01 grown by solid source molecular-beam epitaxy. Deep-level transient spectroscopy measurements reveal two majority-carrier hole traps, HT1 (0.18 eV) and HT4 (0.59 eV), and two minority-carrier electron traps, ET1 (0.09 eV) and ET3 (0.41 eV), in the as-grown sample. For the sample with postgrowth thermal annealing, the overall deep-level defect-concentration is decreased. Two hole traps, HT2 (0.39 eV) and HT3 (0.41 eV), and one electron trap, ET2 (0.19 eV), are observed. We found that the minority-carrier electron diffusion length increases by ∼30% and the leakage current of the InGaAsN/GaAs p-n junction decreases by 2-3 orders after thermal annealing. An increase of the net acceptor concentration after annealing is also observed and can be explained by a recently proposed three-center-complex model

  13. Application of a Low-Energy Electron Beam as a Tool for ultrashort bunch length measurement in circular machines

    CERN Document Server

    Nikiforov, D A; Malyutin, D; Matveenko, A; Rusinov, K; Starostenko, A A

    2017-01-01

    A new diagnostic device designed for non-destructive ultrashort bunch length measurement is described. The operating principle of the device and the measuring technique are described. The possible scheme of arrangement of the device elements are described. The results of simulations of EBP application for different beams under investigation are presented. The quality requirements of the low energy testing beam are considered and resolving detector ability is determined.

  14. Comparison of the Mercury and earth magnetospheres - electron measurements and substorm time scales

    International Nuclear Information System (INIS)

    Christon, S.P.

    1987-01-01

    The present search for similarities between earth and Mercury plasma electron distribution and large-scale dynamics notes that both spectral shapes are similar to a kappa-distribution. A model distribution of this type which incorporates convective flow is used to simulate the observed plasma electron spectral variations near the Mariner 10-Mercury 1 A event; convection appears to be stronger before, rather than during, the A event, in contradiction to the Baker (1986) convective injection model for Mercury's two relativistic electron flux enhancements. Mercury's postmidnight energetic electron B and B-prime events seem to be multiple onsets in the course of a substorm. 65 references

  15. Microinstabilities from the Ion Inertia Length to the Electron Gyroradius Due to Reflected Ions in the Front of Supercritical Perpendicular Shocks

    Science.gov (United States)

    Muschietti, L.; Lembege, B.

    2014-12-01

    We present a synthetic view of the plasma microinstabilities which can occur in the foot of supercritical perpendicular shocks. In these shocks a substantial fraction of ions is reflected at the steep shock ramp. Then, some streaming instabilities are excited by the relative drifts between populations of incoming ions, reflected ions, and electrons across the foot's magnetic field. The instabilities cover wavelengths from the ion inertia length to the electron gyroradius and frequencies from the lower-hybrid to the electron cyclotron, depending upon solar wind characteristics. The particle distributions are modelled as three components: a broad electron population and two ion populations, namely a core and a beam representing the reflected ions. The two ion populations drift in opposite direction with respect to the electron population so as to ensure the zero current condition along the shock normal direction. Assuming the ion beam is directed along the shock normal at 90° to B0, we investigate the possible instabilities under various wave propagation angles. The plasma considered is characterized by a double anisotropy: one defined by the direction of B0, the other by that of the reflected beam. Let Ψ be the magnetic coplanarity plane defined by these two directions. There are therefore two main angles playing a role for the instabilities: (a) the angle θbk between the wave vector and B0, (b) the angle ψvk between the wave vector and the plane Ψ containing the beam. As a result the 3 × 3 dielectric tensor Q is full with terms that are distinct. We show three types of instability at various angles: 1) one about the electron gyroradius with frequencies at the electron cyclotron frequency Ωe and harmonics; 2) one about the electron inertia length with frequencies less than Ωe ; 3) one about the ion inertia length with frequencies of the order of the lower-hybrid. The dispersion relation is computed with the dielectric tensor Q for different parameter values

  16. Multi-scale modelling and numerical simulation of electronic kinetic transport

    International Nuclear Information System (INIS)

    Duclous, R.

    2009-11-01

    This research thesis which is at the interface between numerical analysis, plasma physics and applied mathematics, deals with the kinetic modelling and numerical simulations of the electron energy transport and deposition in laser-produced plasmas, having in view the processes of fuel assembly to temperature and density conditions necessary to ignite fusion reactions. After a brief review of the processes at play in the collisional kinetic theory of plasmas, with a focus on basic models and methods to implement, couple and validate them, the author focuses on the collective aspect related to the free-streaming electron transport equation in the non-relativistic limit as well as in the relativistic regime. He discusses the numerical development and analysis of the scheme for the Vlasov-Maxwell system, and the selection of a validation procedure and numerical tests. Then, he investigates more specific aspects of the collective transport: the multi-specie transport, submitted to phase-space discontinuities. Dealing with the multi-scale physics of electron transport with collision source terms, he validates the accuracy of a fast Monte Carlo multi-grid solver for the Fokker-Planck-Landau electron-electron collision operator. He reports realistic simulations for the kinetic electron transport in the frame of the shock ignition scheme, the development and validation of a reduced electron transport angular model. He finally explores the relative importance of the processes involving electron-electron collisions at high energy by means a multi-scale reduced model with relativistic Boltzmann terms

  17. Simple scalings for various regimes of electron acceleration in surface plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Riconda, C.; Vialis, T. [LULI, Sorbonne Université, Université Pierre et Marie Curie, Ecole Polytechnique, CNRS UMR 7605, CEA, Paris 75005 (France); Raynaud, M. [Laboratoire des Solides Irradiés, CNRS UMR 7642, CEA-DSM-IRAMIS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau (France); Grech, M. [LULI, CNRS UMR 7605, Université Pierre et Marie Curie, Ecole Polytechnique, CEA, 91128 Palaiseau (France)

    2015-07-15

    Different electron acceleration regimes in the evanescent field of a surface plasma wave are studied by considering the interaction of a test electron with the high-frequency electromagnetic field of a surface wave. The non-relativistic and relativistic limits are investigated. Simple scalings are found demonstrating the possibility to achieve an efficient conversion of the surface wave field energy into electron kinetic energy. This mechanism of electron acceleration can provide a high-frequency pulsed source of relativistic electrons with a well defined energy. In the relativistic limit, the most energetic electrons are obtained in the so-called electromagnetic regime for surface waves. In this regime, the particles are accelerated to velocities larger than the wave phase velocity, mainly in the direction parallel to the plasma-vacuum interface.

  18. Intense Far-Infrared Free-Electron Laser-Pulses with a Length of 6 Optical Cycles

    NARCIS (Netherlands)

    Knippels, G.M.H.; R F X A M Mols,; van der Meer, A. F. G.; Oepts, D.; van Amersfoort, P. W.

    1995-01-01

    Second-order optical autocorrelation measurements are reported for a far-infrared free-electron laser. Second-harmonic generation in an 840-mu m-long CdTe crystal is used to provide the nonlinear autocorrelation signal. At wavelengths of 10.4 and 24.5 mu m, FWHM pulse durations of 220 and 500 fs,

  19. Electric and magnetic spectra from MHD to electron scales in the magnetosheath

    Science.gov (United States)

    Matteini, L.; Alexandrova, O.; Chen, C. H. K.; Lacombe, C.

    2017-04-01

    We investigate the transition of the turbulence from large to kinetic scales using Cluster observations. Simultaneous spectra of magnetic and electric fields in the Earth's magnetosheath from magnetohydrodynamic (MHD) to electron scales are presented for the first time. While the two spectra have approximatively similar behaviour in the fluid-MHD regime, they show different trends in the kinetic range. As the magnetic field spectrum steepens at ion scales, the electric field spectrum is characterized by a shallower power law continuing down to electron scales. Such an evolution is consistent with theoretical expectations, assuming that the turbulence is dominated by highly oblique {k}-vectors and that between ion and electron scales the electric field is governed by the non-ideal terms in the generalized Ohm's law. This leads to an expected linear increase of the electric-to-magnetic ratio of fluctuations, consistent with observations presented here. The influence of local whistler wave activity on electron-scale spectra is also discussed.

  20. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition

    International Nuclear Information System (INIS)

    Jiang, L.; Li, J.K.; Liu, G.; Wang, R.H.; Chen, B.A.; Zhang, J.Y.; Sun, J.; Yang, M.X.; Yang, G.; Yang, J.; Cao, X.Z.

    2015-01-01

    Heat-treatable Al alloys containing Al–2.5 wt% Cu (Al–Cu) and Al–2.5 wt% Cu–0.3 wt% Sc (Al–Cu–Sc) with different grain length scales, i.e., average grain size >10 μm ( defined coarse grained, CG), 1–2 μm (fine grained, FG), and <1 μm (ultrafine grained, UFG), were prepared by equal-channel angular pressing (ECAP). The length scale and Sc microalloying effects and their interplay on the precipitation behavior and mechanical properties of the Al–Cu alloys were systematically investigated. In the Al–Cu alloys, intergranular θ-Al 2 Cu precipitation gradually dominated by sacrificing the intragranular θ′-Al 2 Cu precipitation with reducing the length scale. Especially in the UFG regime, only intergranular θ-Al 2 Cu particles were precipitated and intragranular θ′-Al 2 Cu precipitation was completely disappeared. This led to a remarkable reduction in yield strength and ductility due to insufficient dislocation storage capacity. The minor Sc addition resulted in a microalloying effect in the Al–Cu alloy, which, however, is strongly dependent on the length scale. The smaller is the grain size, the more active is the microalloying effect that promotes the intragranular precipitation while reduces the intergranular precipitation. Correspondingly, compared with their Sc-free counterparts, the yield strength of post-aged CG, FG, and UFG Al–Cu alloys with Sc addition increased by ~36 MPa, ~56 MPa, and ~150 MPa, simultaneously in tensile elongation by ~20%, ~30%, and 280%, respectively. The grain size-induced evolutions in vacancy concentration/distribution and number density of vacancy-solute/solute–solute clusters and their influences on precipitation nucleation and kinetics have been comprehensively considered to rationalize the length scale-dependent Sc microalloying mechanisms using positron annihilation lifetime spectrum and three dimension atom probe. The increase in ductility was analyzed in the light of Sc microalloying effect and the

  1. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L.; Li, J.K. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, G., E-mail: lgsammer@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, R.H. [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Chen, B.A.; Zhang, J.Y. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Sun, J., E-mail: junsun@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Yang, M.X.; Yang, G. [Central Iron and Steel Research Institute, Beijing 100081 (China); Yang, J.; Cao, X.Z. [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-06-18

    Heat-treatable Al alloys containing Al–2.5 wt% Cu (Al–Cu) and Al–2.5 wt% Cu–0.3 wt% Sc (Al–Cu–Sc) with different grain length scales, i.e., average grain size >10 μm ( defined coarse grained, CG), 1–2 μm (fine grained, FG), and <1 μm (ultrafine grained, UFG), were prepared by equal-channel angular pressing (ECAP). The length scale and Sc microalloying effects and their interplay on the precipitation behavior and mechanical properties of the Al–Cu alloys were systematically investigated. In the Al–Cu alloys, intergranular θ-Al{sub 2}Cu precipitation gradually dominated by sacrificing the intragranular θ′-Al{sub 2}Cu precipitation with reducing the length scale. Especially in the UFG regime, only intergranular θ-Al{sub 2}Cu particles were precipitated and intragranular θ′-Al{sub 2}Cu precipitation was completely disappeared. This led to a remarkable reduction in yield strength and ductility due to insufficient dislocation storage capacity. The minor Sc addition resulted in a microalloying effect in the Al–Cu alloy, which, however, is strongly dependent on the length scale. The smaller is the grain size, the more active is the microalloying effect that promotes the intragranular precipitation while reduces the intergranular precipitation. Correspondingly, compared with their Sc-free counterparts, the yield strength of post-aged CG, FG, and UFG Al–Cu alloys with Sc addition increased by ~36 MPa, ~56 MPa, and ~150 MPa, simultaneously in tensile elongation by ~20%, ~30%, and 280%, respectively. The grain size-induced evolutions in vacancy concentration/distribution and number density of vacancy-solute/solute–solute clusters and their influences on precipitation nucleation and kinetics have been comprehensively considered to rationalize the length scale-dependent Sc microalloying mechanisms using positron annihilation lifetime spectrum and three dimension atom probe. The increase in ductility was analyzed in the light of Sc microalloying

  2. Unconventional scaling of the anomalous Hall effect accompanying electron localization correction in the dirty regime

    KAUST Repository

    Lu, Y. M.

    2013-03-05

    Scaling of the anomalous Hall conductivity to longitudinal conductivity σAH∝σ2xx has been observed in the dirty regime of two-dimensional weak and strong localization regions in ultrathin, polycrystalline, chemically disordered, ferromagnetic FePt films. The relationship between electron transport and temperature reveals a quantitatively insignificant Coulomb interaction in these films, while the temperature dependent anomalous Hall conductivity experiences quantum correction from electron localization. At the onset of this correction, the low-temperature anomalous Hall resistivity begins to be saturated when the thickness of the FePt film is reduced, and the corresponding Hall conductivity scaling exponent becomes 2, which is above the recent unified theory of 1.6 (σAH∝σ1.6xx). Our results strongly suggest that the correction of the electron localization modulates the scaling exponent of the anomalous Hall effect.

  3. Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, Thellungiella halophila

    Directory of Open Access Journals (Sweden)

    Seki Motoaki

    2008-11-01

    Full Text Available Abstract Background Thellungiella halophila (also known as Thellungiella salsuginea is a model halophyte with a small plant size, short life cycle, and small genome. It easily undergoes genetic transformation by the floral dipping method used with its close relative, Arabidopsis thaliana. Thellungiella genes exhibit high sequence identity (approximately 90% at the cDNA level with Arabidopsis genes. Furthermore, Thellungiella not only shows tolerance to extreme salinity stress, but also to chilling, freezing, and ozone stress, supporting the use of Thellungiella as a good genomic resource in studies of abiotic stress tolerance. Results We constructed a full-length enriched Thellungiella (Shan Dong ecotype cDNA library from various tissues and whole plants subjected to environmental stresses, including high salinity, chilling, freezing, and abscisic acid treatment. We randomly selected about 20 000 clones and sequenced them from both ends to obtain a total of 35 171 sequences. CAP3 software was used to assemble the sequences and cluster them into 9569 nonredundant cDNA groups. We named these cDNAs "RTFL" (RIKEN Thellungiella Full-Length cDNAs. Information on functional domains and Gene Ontology (GO terms for the RTFL cDNAs were obtained using InterPro. The 8289 genes assigned to InterPro IDs were classified according to the GO terms using Plant GO Slim. Categorical comparison between the whole Arabidopsis genome and Thellungiella genes showing low identity to Arabidopsis genes revealed that the population of Thellungiella transport genes is approximately 1.5 times the size of the corresponding Arabidopsis genes. This suggests that these genes regulate a unique ion transportation system in Thellungiella. Conclusion As the number of Thellungiella halophila (Thellungiella salsuginea expressed sequence tags (ESTs was 9388 in July 2008, the number of ESTs has increased to approximately four times the original value as a result of this effort. Our

  4. The low-energy electron accelerator lea for pilot scale operations

    Science.gov (United States)

    Mehnert, R.; Klenert, P.

    An electron processor equipped with a linear cathode has been developed for use in pilot scale radiation processing. It can provide electron beam powers up to 6 kW at energies between 150 and 200 keV. The design of some components of the processor system and first results of its operation as part of a pilot unit for curing of furniture elements will be discussed.

  5. High Resolution Electron Microbeam Examination and 3D Reconstruction of Alligator Gar Scale

    Science.gov (United States)

    2016-06-27

    Distribution Unlimited UU UU UU UU 27-06-2016 15-Nov-2012 14-Nov-2015 Final Report: High Resolution Electron Microbeam Examination and 3D...Resolution Electron Microbeam Examination and 3D reconstruction of Alligator Gar Scale Report Title Engineered laminate composites have been widely used...peer-reviewed journals: Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts): Peer-Reviewed Conference Proceeding

  6. Criterion Noise in Ratings-Based Recognition: Evidence from the Effects of Response Scale Length on Recognition Accuracy

    Science.gov (United States)

    Benjamin, Aaron S.; Tullis, Jonathan G.; Lee, Ji Hae

    2013-01-01

    Rating scales are a standard measurement tool in psychological research. However, research has suggested that the cognitive burden involved in maintaining the criteria used to parcel subjective evidence into ratings introduces "decision noise" and affects estimates of performance in the underlying task. There has been debate over whether…

  7. Semiempirical description of the PWBA scaled electron ionization cross section for atoms

    International Nuclear Information System (INIS)

    Campeanu, R.I.; Koch, S.

    1981-01-01

    Accurate electron ionization cross sections on atoms and ions are required in many areas of physics, such as the modeling of impurity effects in tokamak plasmas, or the modeling of laser-produced plasmas. The large number of the data needed in these cases precludes the possibility of the quantum calculations, which are even on fast computers time-consuming. This situation encouraged the studies on semiempirical formulae and on scaling laws. It is therefore useful to perform semiempirical calculations based on scaled theoretical cross sections. Our paper gives a semiempirical description of the electron single ionization on atoms. (orig./FKS)

  8. Comparison of the electron work function, hole concentration and exciton diffusion length for P3HT and PT prepared by thermal or acid cleavage

    DEFF Research Database (Denmark)

    Tousek, J.; Touskova, J.; Ludvík, J.

    2016-01-01

    The electron work function, hole concentration and diffusion length were compared for poly(3-hexylthiophene) polymer (P3HT) that is commonly used for construction of solar cells, and two types of native polythiophene (PT) samples which are prospective candidates for this purpose. The polythiophene...... samples were prepared from 2 different precursors by thermal or chemical treatment at room temperature. Cyclic voltammetry and work function measurements were used for estimating the concentration of holes. The measured data were evaluated assuming the validity of band theory based on the tight...

  9. Current increment of tunnel field-effect transistor using InGaAs nanowire/Si heterojunction by scaling of channel length

    Science.gov (United States)

    Tomioka, Katsuhiro; Fukui, Takashi

    2014-02-01

    We report on a fabrication of tunnel field-effect transistors using InGaAs nanowire/Si heterojunctions and the characterization of scaling of channel lengths. The devices consisted of single InGaAs nanowires with a diameter of 30 nm grown on p-type Si(111) substrates. The switch demonstrated steep subthreshold-slope (30 mV/decade) at drain-source voltage (VDS) of 0.10 V. Also, pinch-off behavior appeared at moderately low VDS, below 0.10 V. Reducing the channel length of the transistors attained a steep subthreshold slope (<60 mV/decade) and enhanced the drain current, which was 100 higher than that of the longer channels.

  10. Effect of 1.5 MeV electron irradiation on β-Ga2O3 carrier lifetime and diffusion length

    Science.gov (United States)

    Lee, Jonathan; Flitsiyan, Elena; Chernyak, Leonid; Yang, Jiancheng; Ren, Fan; Pearton, Stephen J.; Meyler, Boris; Salzman, Y. Joseph

    2018-02-01

    The influence of 1.5 MeV electron irradiation on minority transport properties of Si doped β-Ga2O3 vertical Schottky rectifiers was observed for fluences up to 1.43 × 1016 cm-2. The Electron Beam-Induced Current technique was used to determine the minority hole diffusion length as a function of temperature for each irradiation dose. This revealed activation energies related to shallow donors at 40.9 meV and radiation-induced defects with energies at 18.1 and 13.6 meV. Time-resolved cathodoluminescence measurements showed an ultrafast 210 ps decay lifetime and reduction in carrier lifetime with increased irradiation.

  11. Length-displacement scaling of thrust faults on the Moon and the formation of uphill-facing scarps

    Science.gov (United States)

    Roggon, Lars; Hetzel, Ralf; Hiesinger, Harald; Clark, Jaclyn D.; Hampel, Andrea; van der Bogert, Carolyn H.

    2017-08-01

    Fault populations on terrestrial planets exhibit a linear relationship between their length, L, and the maximum displacement, D, which implies a constant D/L ratio during fault growth. Although it is known that D/L ratios of faults are typically a few percent on Earth and 0.2-0.8% on Mars and Mercury, the D/L ratios of lunar faults are not well characterized. Quantifying the D/L ratios of faults on the Moon is, however, crucial for a better understanding of lunar tectonics, including for studies of the amount of global lunar contraction. Here, we use high-resolution digital terrain models to perform a topographic analysis of four lunar thrust faults - Simpelius-1, Morozov (S1), Fowler, and Racah X-1 - that range in length from 1.3 km to 15.4 km. First, we determine the along-strike variation of the vertical displacement from ≥ 20 topographic profiles across each fault. For measuring the vertical displacements, we use a method that is commonly applied to fault scarps on Earth and that does not require detrending of the profiles. The resulting profiles show that the displacement changes gradually along these faults' strike, with maximum vertical displacements ranging from 17 ± 2 m for Simpelius-1 to 192 ± 30 m for Racah X-1. Assuming a fault dip of 30° yields maximum total displacements (D) that are twice as large as the vertical displacements. The linear relationship between D and L supports the inference that lunar faults gradually accumulate displacement as they propagate laterally. For the faults we investigated, the D/L ratio is ∼2.3%, an order of magnitude higher than theoretical predictions for the Moon, but a value similar for faults on Earth. We also employ finite-element modeling and a Mohr circle stress analysis to investigate why many lunar thrust faults, including three of those studied here, form uphill-facing scarps. Our analysis shows that fault slip is preferentially initiated on planes that dip in the same direction as the topography, because

  12. Morphological quantification of hierarchical geomaterials by X-ray nano-CT bridges the gap from nano to micro length scales

    KAUST Repository

    Brisard, S.

    2012-01-30

    Morphological quantification of the complex structure of hierarchical geomaterials is of great relevance for Earth science and environmental engineering, among others. To date, methods that quantify the 3D morphology on length scales ranging from a few tens of nanometers to several hun-dred nanometers have had limited success. We demonstrate, for the first time, that it is possible to go beyond visualization and to extract quantitative morphological information from X-ray images in the aforementioned length scales. As examples, two different hierarchical geomaterials exhibiting complex porous structures ranging from nanometer to macroscopic scale are studied: a flocculated clay water suspension and two hydrated cement pastes. We show that from a single projection image it is possible to perform a direct computation of the ultra-small angle-scattering spectra. The predictions matched very well the experimental data obtained by the best ultra-small angle-scattering experimental setups as observed for the cement paste. In this context, we demonstrate that the structure of flocculated clay suspension exhibit two well-distinct regimes of aggregation, a dense mass fractal aggregation at short distance and a more open structure at large distance, which can be generated by a 3D reaction limited cluster-cluster aggregation process. For the first time, a high-resolution 3D image of fibrillar cement paste cluster was obtained from limited angle nanotomography.

  13. Search for Screened Interactions Associated with Dark Energy below the 100 μm Length Scale.

    Science.gov (United States)

    Rider, Alexander D; Moore, David C; Blakemore, Charles P; Louis, Maxime; Lu, Marie; Gratta, Giorgio

    2016-09-02

    We present the results of a search for unknown interactions that couple to mass between an optically levitated microsphere and a gold-coated silicon cantilever. The scale and geometry of the apparatus enable a search for new forces that appear at distances below 100  μm and which would have evaded previous searches due to screening mechanisms. The data are consistent with electrostatic backgrounds and place upper limits on the strength of new interactions at 5.6×10^{4} in the region of parameter space where the self-coupling Λ≳5  meV and the microspheres are not fully screened.

  14. Multi-length-scale Material Model for SiC/SiC Ceramic-Matrix Composites (CMCs): Inclusion of In-Service Environmental Effects

    Science.gov (United States)

    Grujicic, M.; Galgalikar, R.; Snipes, J. S.; Ramaswami, S.

    2016-01-01

    In our recent work, a multi-length-scale room-temperature material model for SiC/SiC ceramic-matrix composites (CMCs) was derived and parameterized. The model was subsequently linked with a finite-element solver so that it could be used in a general room-temperature, structural/damage analysis of gas-turbine engine CMC components. Due to its multi-length-scale character, the material model enabled inclusion of the effects of fiber/tow (e.g., the volume fraction, size, and properties of the fibers; fiber-coating material/thickness; decohesion properties of the coating/matrix interfaces; etc.) and ply/lamina (e.g., the 0°/90° cross-ply versus plain-weave architectures, the extent of tow crimping in the case of the plain-weave plies, cohesive properties of the inter-ply boundaries, etc.) length-scale microstructural/architectural parameters on the mechanical response of the CMCs. One of the major limitations of the model is that it applies to the CMCs in their as-fabricated conditions (i.e., the effect of prolonged in-service environmental exposure and the associated material aging-degradation is not accounted for). In the present work, the model is upgraded to include such in-service environmental-exposure effects. To demonstrate the utility of the upgraded material model, it is used within a finite-element structural/failure analysis involving impact of a toboggan-shaped turbine shroud segment by a foreign object. The results obtained clearly revealed the effects that different aspects of the in-service environmental exposure have on the material degradation and the extent of damage suffered by the impacted CMC toboggan-shaped shroud segment.

  15. Density functional theory study of silodithiophene thiophenepyrrolopyrroledion-based small molecules: The effect of alkyl side chain length in electron donor materials

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong Kyun; Yeo, Hak; Kwak, Kyung Won [Dept. of Chemistry, Chung-Ang University, Seoul (Korea, Republic of); Yoon, Young Woon; Kim, Bong Soo [Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Kyung Koo [Dept. of Chemistry, Kunsan National University, Gunsan (Korea, Republic of)

    2015-02-15

    Push–pull small molecules are promising electron-donor materials for organic solar cells. Thus, precise prediction of their electronic structures is of paramount importance to control the optical and electrical properties of the solar cells. Various types of alkyl chains are usually introduced to increase solubility and modify the morphology of the resulting molecular films. Here, using density functional theory (DFT) and time-dependent DFT (TD-DFT), we report the precise effect of increasing the length of the alkyl chain on the electronic structure of an electron donor molecule 6,60-((4,4-dialkyl-4H-silolo[3,2-b:4,5-b′]-dithiophene-2,6-diyl) bis(thiophene-5,2-diyl))bis(2,5-alkyl-3-(thiophen-2-yl) -2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (DTS1TDPP). Alkyl groups were attached to the bridging position (silicon atom) of the fused rings and nitrogen atom of the pyrrolopyrroledione groups. We demonstrate that the alkyl groups do not perturb the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels, π-delocalized backbone structure, and UV–Vis absorption spectrum when they are placed at the least steric effect positions.

  16. Splitting rules for the electronic spectra of two-dimensional Fibonacci-class quasicrystals with one kind of atom and two bond lengths

    Science.gov (United States)

    Yang, Xiangbo; Xing, Da

    2002-04-01

    On the basis of the substitution rules for a one-dimensional Fibonacci-class chain, we construct two-dimensional Fibonacci-class quasicrystals with one kind of atom and two bond lengths. In the framework of the single-electron tight-binding nearest-interaction transfer model, we study the splitting rules of the electronic energy spectra for two-dimensional Fibonacci-class quasicrystals by means of a decomposition-decimation method based on a renormalization-group technique, and we also calculate the electronic energy spectra numerically. It is found that there exist only three kinds of clusters-n×n, n×(n+1), and (n+1)×(n+1)-for all classes of two-dimensional quasilattices, and that the electronic energy bands split as Ym-n-l. The general formula of the number for energy levels is obtained. We discover that there is a kind of so-called Fibonacci-class-number set for the parameters used to describe the energy-level number, and we obtain the set formulas. The experienced formula are sought out. The analytical results are confirmed by numerical simulations.

  17. Electronic Government in the City of Fez, Morocco : Scaling up to the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    In the pilot phase of the project (101980), electronic service delivery was introduced and successfully deployed in the Fez-Agdal local government office. This phase will scale up the project to include the remaining local government offices in the city of Fez. It will also upgrade, enhance and complete the automation of the ...

  18. Intensity limits for propagation of 0.527 μm laser beams through large-scale-length plasmas for inertial confinement fusion

    International Nuclear Information System (INIS)

    Niemann, C.; Divol, L.; Froula, D.H.; Gregori, G.; Jones, O.; Kirkwood, R.K.; MacKinnon, A.J.; Meezan, N.B.; Moody, J.D.; Sorce, C.; Suter, L.J.; Glenzer, S.H.; Bahr, R.; Seka, W.

    2005-01-01

    We have established the intensity limits for propagation of a frequency-doubled (2ω, 527 nm) high intensity interaction beam through an underdense large-scale-length plasma. We observe good beam transmission at laser intensities at or below 2x10 14 W/cm 2 and a strong reduction at intensities up to 10 15 W/cm 2 due to the onset of parametric scattering instabilities. We show that temporal beam smoothing by spectral dispersion allows a factor of 2 higher intensities while keeping the beam spray constant, which establishes frequency-doubled light as an option for ignition and burn in inertial confinement fusion experiments

  19. Electron beam absorption in solid and in water phantoms: depth scaling and energy-range relations

    International Nuclear Information System (INIS)

    Grosswendt, B.; Roos, M.

    1989-01-01

    In electron dosimetry energy parameters are used with values evaluated from ranges in water. The electron ranges in water may be deduced from ranges measured in solid phantoms. Several procedures recommended by national and international organisations differ both in the scaling of the ranges and in the energy-range relations for water. Using the Monte Carlo method the application of different procedures for electron energies below 10 MeV is studied for different phantom materials. It is shown that deviations in the range scaling and in the energy-range relations for water may accumulate to give energy errors of several per cent. In consequence energy-range relations are deduced for several solid phantom materials which enable a single-step energy determination. (author)

  20. PbCl2-tuned inorganic cubic CsPbBr3(Cl) perovskite solar cells with enhanced electron lifetime, diffusion length and photovoltaic performance

    Science.gov (United States)

    Li, Bo; Zhang, Yanan; Zhang, Luyuan; Yin, Longwei

    2017-08-01

    Inorganic CsPbBr3 perovskite is arousing great interest following after organic-inorganic hybrid halide perovskites, and is found as a good candidate for photovoltaic devices for its prominent photoelectric property and stability. Herein, we for the first time report on PbCl2-tuned inorganic Cl-doped CsPbBr3(Cl) perovskite solar cells with adjustable crystal structure and Cl doping for enhanced carrier lifetime, extraction rate and photovoltaic performance. The effect of PbCl2 on the morphologies, structures, optical, and photovoltaic performance of CsPbBr3 perovskite solar cells is investigated systemically. Compared with orthorhombic CsPbBr3, cubic CsPbBr3 demonstrates a significant improvement for electron lifetime (from 6.7 ns to 12.3 ns) and diffusion length (from 69 nm to 197 nm), as well as the enhanced electron extraction rate from CsPbBr3 to TiO2. More importantly, Cl doping benefits the further enhancement of carrier lifetime (14.3 ns) and diffusion length (208 nm). The Cl doped cubic CsPbBr3(Cl) perovskite solar cell exhibits a Jsc of 8.47 mA cm-2 and a PCE of 6.21%, superior to that of pure orthorhombic CsPbBr3 (6.22 mA cm-2 and 3.78%). The improvement of photovoltaic performance can be attributed to enhanced carrier lifetime, diffusion length and extraction rates, as well as suppressed nonradiative recombination.

  1. Intersubunit distances in full-length, dimeric, bacterial phytochrome Agp1, as measured by pulsed electron-electron double resonance (PELDOR) between different spin label positions, remain unchanged upon photoconversion.

    Science.gov (United States)

    Kacprzak, Sylwia; Njimona, Ibrahim; Renz, Anja; Feng, Juan; Reijerse, Edward; Lubitz, Wolfgang; Krauss, Norbert; Scheerer, Patrick; Nagano, Soshichiro; Lamparter, Tilman; Weber, Stefan

    2017-05-05

    Bacterial phytochromes are dimeric light-regulated histidine kinases that convert red light into signaling events. Light absorption by the N-terminal photosensory core module (PCM) causes the proteins to switch between two spectrally distinct forms, Pr and Pfr, thus resulting in a conformational change that modulates the C-terminal histidine kinase region. To provide further insights into structural details of photoactivation, we investigated the full-length Agp1 bacteriophytochrome from the soil bacterium Agrobacterium fabrum using a combined spectroscopic and modeling approach. We generated seven mutants suitable for spin labeling to enable application of pulsed EPR techniques. The distances between attached spin labels were measured using pulsed electron-electron double resonance spectroscopy to probe the arrangement of the subunits within the dimer. We found very good agreement of experimental and calculated distances for the histidine-kinase region when both subunits are in a parallel orientation. However, experimental distance distributions surprisingly showed only limited agreement with either parallel- or antiparallel-arranged dimer structures when spin labels were placed into the PCM region. This observation indicates that the arrangements of the PCM subunits in the full-length protein dimer in solution differ significantly from that in the PCM crystals. The pulsed electron-electron double resonance data presented here revealed either no or only minor changes of distance distributions upon Pr-to-Pfr photoconversion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Phase Behavior of Blends of Linear and Branched Polyethylenes on Micron-Length Scales via Ultra-Small-Angle Neutron Scattering (USANS)

    International Nuclear Information System (INIS)

    Agamalian, M.M.; Alamo, R.G.; Londono, J.D.; Mandelkern, L.; Wignall, G.D.

    1999-01-01

    SANS experiments on blends of linear, high density (HD) and long chain branched, low density (LD) polyethylenes indicate that these systems form a one-phase mixture in the melt. However, the maximum spatial resolution of pinhole cameras is approximately equal to 10 3 and it has therefore been suggested that data might also be interpreted as arising from a bi-phasic melt with large a particle size ( 1 m), because most of the scattering from the different phases would not be resolved. We have addressed this hypothesis by means of USANS experiments, which confirm that HDPEILDPE blends are homogenous in the melt on length scales up to 20 m. We have also studied blends of HDPE and short-chain branched linear low density polyethylenes (LLDPEs), which phase separate when the branch content is sufficiently high. LLDPEs prepared with Ziegler-Natta catalysts exhibit a wide distribution of compositions, and may therefore be thought of as a blend of different species. When the composition distribution is broad enough, a fraction of highly branched chains may phase separate on m-length scales, and USANS has also been used to quantify this phenomenon

  3. Constraints on exotic dipole-dipole couplings between electrons at the micron scale

    Science.gov (United States)

    Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek

    2015-05-01

    Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.

  4. Studying Soft-matter and Biological Systems over a Wide Length-scale from Nanometer and Micrometer Sizes at the Small-angle Neutron Diffractometer KWS-2

    Science.gov (United States)

    Radulescu, Aurel; Szekely, Noemi Kinga; Appavou, Marie-Sousai; Pipich, Vitaliy; Kohnke, Thomas; Ossovyi, Vladimir; Staringer, Simon; Schneider, Gerald J.; Amann, Matthias; Zhang-Haagen, Bo; Brandl, Georg; Drochner, Matthias; Engels, Ralf; Hanslik, Romuald; Kemmerling, Günter

    2016-01-01

    The KWS-2 SANS diffractometer is dedicated to the investigation of soft matter and biophysical systems covering a wide length scale, from nm to µm. The instrument is optimized for the exploration of the wide momentum transfer Q range between 1x10-4 and 0.5 Å-1 by combining classical pinhole, focusing (with lenses), and time-of-flight (with chopper) methods, while simultaneously providing high-neutron intensities with an adjustable resolution. Because of its ability to adjust the intensity and the resolution within wide limits during the experiment, combined with the possibility to equip specific sample environments and ancillary devices, the KWS-2 shows a high versatility in addressing the broad range of structural and morphological studies in the field. Equilibrium structures can be studied in static measurements, while dynamic and kinetic processes can be investigated over time scales between minutes to tens of milliseconds with time-resolved approaches. Typical systems that are investigated with the KWS-2 cover the range from complex, hierarchical systems that exhibit multiple structural levels (e.g., gels, networks, or macro-aggregates) to small and poorly-scattering systems (e.g., single polymers or proteins in solution). The recent upgrade of the detection system, which enables the detection of count rates in the MHz range, opens new opportunities to study even very small biological morphologies in buffer solution with weak scattering signals close to the buffer scattering level at high Q. In this paper, we provide a protocol to investigate samples with characteristic size levels spanning a wide length scale and exhibiting ordering in the mesoscale structure using KWS-2. We present in detail how to use the multiple working modes that are offered by the instrument and the level of performance that is achieved. PMID:28060296

  5. Capacitance scaling law for diatomic molecules and prediction of their electron detachment energies

    International Nuclear Information System (INIS)

    Ellenbogen, James C.

    2010-01-01

    The variation or 'scaling' of the quantum capacitances is explored for 45 diatomic molecules as a function of their dimensions. Scaling trends in the capacitances of these diatomic molecules dictate an 'atoms-in-molecules' view of their valence energetics. That is, experimentally derived quantum capacitances for both homonuclear and heteronuclear diatomic molecules scale linearly with the average of the mean radii for the outermost orbitals of their component atoms. This is in accord with Maxwell's law for classical capacitors formed from two conducting atom-sized spheres in tangential contact. However, the scaling behavior for the molecules has some nonclassical features. Notably, the quantum capacitances extrapolate to nonzero values at zero dimensions. Radius-capacitance points of the homonuclear diatomics lie primarily along five scaling lines, with each determined by points for molecules composed of atoms with the same atomic symmetry (i.e., atoms from the same column in the periodic table). Five scaling lines for heteronuclear diatomics each are determined by points for molecules of the same or similar molecular symmetries. The molecules' quantum capacitances are calculated from their ionization potentials (IPs) and electron affinities (EAs). Thus, equations or laws for the scaling lines impose mutual consistency conditions among these electron detachment energies for different diatomics of similar symmetries. By taking advantage of this, the linear quantum capacitance scaling laws and ab initio atomic mean radii are used to predict IPs for two diatomics with known EAs (Ga 2 and SeO), but for which there is no standard value of the IP. Similarly, the laws are used to predict EAs that were unknown or uncertain for several diatomics (Li 2 , LiF, CSe, PN, BF, BCl, SiO, GeO, NCl, CaO, SrO, and BaO) with known IPs.

  6. Paleoclassical electron heat transport

    International Nuclear Information System (INIS)

    Callen, J.D.

    2005-01-01

    Radial electron heat transport in low collisionality, magnetically-confined toroidal plasmas is shown to result from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature equilibrates along magnetic field lines a long length L, which is the minimum of the electron collision length and a maximum effective half length of helical field lines. Thus, the diffusing field lines induce a radial electron heat diffusivity M ≅ L/(πR 0q ) ∼ 10 >> 1 times the magnetic field diffusivity η/μ 0 ≅ ν e (c/ω p ) 2 . The paleoclassical electron heat flux model provides interpretations for many features of 'anomalous' electron heat transport: magnitude and radial profile of electron heat diffusivity (in tokamaks, STs, and RFPs), Alcator scaling in high density plasmas, transport barriers around low order rational surfaces and near a separatrix, and a natural heat pinch (or minimum temperature gradient) heat flux form. (author)

  7. FLARE: a New User Facility for Studies of Magnetic Reconnection Through Simultaneous, in-situ Measurements on MHD Scales, Ion Scales and Electron Scales

    Science.gov (United States)

    Ji, H.; Bhattacharjee, A.; Goodman, A.; Prager, S.; Daughton, W. S.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Kozub, T.; Jara-Almonte, J.; Myers, C. E.; Ren, Y.; Sloboda, P.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S. E.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.

    2017-12-01

    The FLARE device (Facility for Laboratory Reconnection Experiments; flare.pppl.gov) is a new laboratory experiment under construction at Princeton for the studies of magnetic reconnection in the multiple X-line regimes directly relevant to space, solar, astrophysical, and fusion plasmas, as guided by a reconnection phase diagram [Ji & Daughton, (2011)]. The whole device has been successfully assembled with rough leak check completed. The first plasmas are expected in the fall to winter. The main diagnostic is an extensive set of magnetic probe arrays to cover multiple scales from local electron scales ( ˜2 mm), to intermediate ion scales ( ˜10 cm), and global MHD scales ( ˜1 m), simultaneously providing in-situ measurements over all these relevant scales. By using these laboratory data, not only the detailed spatial profiles around each reconnecting X-line are available for direct comparisons with spacecraft data, but also the global conditions and consequences of magnetic reconnection, which are often difficult to quantify in space, can be controlled or studied systematically. The planned procedures and example topics as a user facility will be discussed in detail.

  8. Large-Scale Direct-Writing of Aligned Nanofibers for Flexible Electronics.

    Science.gov (United States)

    Ye, Dong; Ding, Yajiang; Duan, Yongqing; Su, Jiangtao; Yin, Zhouping; Huang, Yong An

    2018-02-23

    Nanofibers/nanowires usually exhibit exceptionally low flexural rigidities and remarkable tolerance against mechanical bending, showing superior advantages in flexible electronics applications. Electrospinning is regarded as a powerful process for this 1D nanostructure; however, it can only be able to produce chaotic fibers that are incompatible with the well-patterned microstructures in flexible electronics. Electro-hydrodynamic (EHD) direct-writing technology enables large-scale deposition of highly aligned nanofibers in an additive, noncontact, real-time adjustment, and individual control manner on rigid or flexible, planar or curved substrates, making it rather attractive in the fabrication of flexible electronics. In this Review, the ground-breaking research progress in the field of EHD direct-writing technology is summarized, including a brief chronology of EHD direct-writing techniques, basic principles and alignment strategies, and applications in flexible electronics. Finally, future prospects are suggested to advance flexible electronics based on orderly arranged EHD direct-written fibers. This technology overcomes the limitations of the resolution of fabrication and viscosity of ink of conventional inkjet printing, and represents major advances in manufacturing of flexible electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electron Scale Turbulence and Transport in an NSTX H-mode Plasma Using a Synthetic Diagnostic for High-k Scattering Measurements

    Science.gov (United States)

    Ruiz Ruiz, Juan; Guttenfelder, Walter; Loureiro, Nuno; Ren, Yang; White, Anne; MIT/PPPL Collaboration

    2017-10-01

    Turbulent fluctuations on the electron gyro-radius length scale are thought to cause anomalous transport of electron energy in spherical tokamaks such as NSTX and MAST in some parametric regimes. In NSTX, electron-scale turbulence is studied through a combination of experimental measurements from a high-k scattering system and gyrokinetic simulations. Until now most comparisons between experiment and simulation of electron scale turbulence have been qualitative, with recent work expanding to more quantitative comparisons via synthetic diagnostic development. In this new work, we propose two alternate, complementary ways to perform a synthetic diagnostic using the gyrokinetic code GYRO. The first approach builds on previous work and is based on the traditional selection of wavenumbers using a wavenumber filter, for which a new wavenumber mapping was implemented for general axisymmetric geometry. A second alternate approach selects wavenumbers in real-space to compute the power spectra. These approaches are complementary, and recent results from both synthetic diagnostic approaches applied to NSTX plasmas will be presented. Work supported by U.S. DOE contracts DE-AC02-09CH11466 and DE-AC02-05CH11231.

  10. Nearly constant ratio between the proton inertial scale and the spectrum break length scale in the plasma beta range from 0.2 to 1.4 in the solar wind turbulence

    Science.gov (United States)

    Wang, X.; Tu, C. Y.; He, J.; Wang, L.

    2017-12-01

    The spectrum break at the ion scale of the solar wind magnetic fluctuations are considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable ones are the two mechanisms that related respectively with proton thermal gyro-radius and proton inertial length. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar values in the normal plasma beta range. Here we do a statistical study for the first time to see if the two mechanism predictions have different dependence on the solar wind velocity and on the plasma beta in the normal plasma beta range in the solar wind at 1 AU. From magnetic measurements by Wind, Ulysses and Messenger, we select 60 data sets with duration longer than 8 hours. We found that the ratio between the proton inertial scale and the spectrum break scale do not change considerably with both varying the solar wind speed from 300km/s to 800km/s and varying the plasma beta from 0.2 to 1.4. The average value of the ratio times 2pi is 0.46 ± 0.08. However, the ratio between the proton gyro-radius and the break scale changes clearly. This new result shows that the proton inertial scale could be a single factor that determines the break length scale and hence gives a strong evidence to support the dissipation mechanism related to it in the normal plasma beta range. The value of the constant ratio may relate with the dissipation mechanism, but it needs further theoretical study to give detailed explanation.

  11. DNA electronic circular dichroism on the inter-base pair scale

    DEFF Research Database (Denmark)

    Di Meo, Florent; Nørby, Morten Steen; Rubio-Magnieto, Jenifer

    2015-01-01

    A successful elucidation of the near-ultraviolet electronic circular dichroism spectrum of a short double-stranded DNA is reported. Time-dependent density functional theory methods are shown to accurately predict spectra and assign bands on the microscopic base-pair scale, a finding that opens th...... the field for using circular dichroism spectroscopy as a sensitive nanoscale probe of DNA to reveal its complex interactions with the environment. (Chemical Equation Presented)....

  12. Overview of lower length scale model development for accident tolerant fuels regarding U3Si2 fuel and FeCrAl cladding

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Laboratory

    2016-09-01

    U3Si2 and FeCrAl have been proposed as fuel and cladding concepts, respectively, for accident tolerance fuels with higher tolerance to accident scenarios compared to UO2. However, a lot of key physics and material properties regarding their in-pile performance are yet to be explored. To accelerate the understanding and reduce the cost of experimental studies, multiscale modeling and simulation are used to develop physics-based materials models to assist engineering scale fuel performance modeling. In this report, the lower-length-scale efforts in method and material model development supported by the Accident Tolerance Fuel (ATF) high-impact-problem (HIP) under the NEAMS program are summarized. Significant progresses have been made regarding interatomic potential, phase field models for phase decomposition and gas bubble formation, and thermal conductivity for U3Si2 fuel, and precipitation in FeCrAl cladding. The accomplishments are very useful by providing atomistic and mesoscale tools, improving the current understanding, and delivering engineering scale models for these two ATF concepts.

  13. Scaling laws for positron production in laser-electron beam collisions

    Science.gov (United States)

    Blackburn, Tom; Ilderton, Anton; Murphy, Christopher; Marklund, Mattias

    2017-10-01

    Showers of gamma rays and positrons are produced when a multi-GeV electron beam collides with a super-intense laser pulse. All-optical realisation of this geometry, where the electron beam is generated by laser-wakefield acceleration, is currently attracting much experimental interest as a probe of radiation reaction and QED effects. These interactions may be modelled theoretically in the framework of strong-field QED or numerically by large-scale PIC simulation. To complement these, we present analytical scaling laws for the electron beam energy loss, gamma ray spectrum, and the positron yield and energy that are valid in the radiation-reaction-dominated regime. These indicate that by employing the collision of a 2 GeV electron beam with a laser pulse of intensity 5 ×1021Wcm-2 , it is possible to produce 10,000 positrons in a single shot at currently available laser facilities. The authors acknowledge support from the Knut and Alice Wallenberg Foundation.

  14. Measurement of the penetration depth and coherence length of MgB2 in all directions using transmission electron microscopy

    DEFF Research Database (Denmark)

    Loudon, J. C.; Yazdi, Sadegh; Kasama, Takeshi

    2015-01-01

    lengths. This gave penetration depths Lambda(ab) = 100 +/- 35 nm and Lambda(c) = 120 +/- 15 nm at 10.8 K in a field of 4.8 mT. The large error in Lambda(ab) is a consequence of tilting the sample about a and had it been tilted about c, the errors on Lambda(ab) and Lambda(c) would be reversed. Thus...... gives Lambda(ab) = 107 +/- 8 nm, Lambda(c) = 120 +/- 15 nm, xi(ab) = 39 +/- 11 nm, and xi(c) = 35 +/- 10 nm, which agree well with measurements made using other techniques. The experiment required two days to conduct and does not require large-scale facilities. It was performed on a very small sample...

  15. Vortex matter beyond SANS. Neutron studies of vortex structures covering a length scale of 0.01 ti 10 μm

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Tommy

    2017-01-09

    This thesis is concerned with different generic types of vortex matter arising in the intermediate state of the type-I superconductor lead, the intermediate mixed state of the type-II superconductor niobium, and the helimagnetic phase of the compound manganese silicide. It is demonstrated and explained how a combination of i) the radiographic techniques neutron grating interferometry and neutron diffractive imaging with ii) scattering methods such as small-angle-neutron scattering and ultra-small-angle neutron scattering can provide novel insight into the bulk behavior of these vortex systems. By means of the used scattering methods, detailed information on the morphology of the vortex phases covering a length scale of 0.01 to 10 μm are obtained, while the radiographic approaches additionally map the spatial distribution of vortices within the sample. In particular, this thesis focuses on the strong influences of demagnetization, geometric barriers and pinning on the vortex configuration.

  16. The Extended Relativity Theory in Born-Clifford Phase Spaces with a Lower and Upper Length Scales and Clifford Group Geometric Unification

    CERN Document Server

    Castro, C

    2004-01-01

    We construct the Extended Relativity Theory in Born-Clifford-Phase spaces with an upper and lower length scales (infrared/ultraviolet cutoff). The invariance symmetry leads naturally to the real Clifford algebra Cl (2, 6, R ) and complexified Clifford Cl_C ( 4 ) algebra related to Twistors. We proceed with an extensive review of Smith's 8D model based on the Clifford algebra Cl ( 1 ,7) that reproduces at low energies the physics of the Standard Model and Gravity; including the derivation of all the coupling constants, particle masses, mixing angles, ....with high precision. Further results by Smith are discussed pertaining the interplay among Clifford, Jordan, Division and Exceptional Lie algebras within the hierarchy of dimensions D = 26, 27, 28 related to bosonic string, M, F theory. Two Geometric actions are presented like the Clifford-Space extension of Maxwell's Electrodynamics, Brandt's action related the 8D spacetime tangent-bundle involving coordinates and velocities (Finsler geometries) followed by a...

  17. Vortex matter beyond SANS. Neutron studies of vortex structures covering a length scale of 0.01 ti 10 μm

    International Nuclear Information System (INIS)

    Reimann, Tommy

    2017-01-01

    This thesis is concerned with different generic types of vortex matter arising in the intermediate state of the type-I superconductor lead, the intermediate mixed state of the type-II superconductor niobium, and the helimagnetic phase of the compound manganese silicide. It is demonstrated and explained how a combination of i) the radiographic techniques neutron grating interferometry and neutron diffractive imaging with ii) scattering methods such as small-angle-neutron scattering and ultra-small-angle neutron scattering can provide novel insight into the bulk behavior of these vortex systems. By means of the used scattering methods, detailed information on the morphology of the vortex phases covering a length scale of 0.01 to 10 μm are obtained, while the radiographic approaches additionally map the spatial distribution of vortices within the sample. In particular, this thesis focuses on the strong influences of demagnetization, geometric barriers and pinning on the vortex configuration.

  18. Decrease in effective electron mobility in the channel of a metal-oxide-semiconductor transistor as the gate length is decreased

    International Nuclear Information System (INIS)

    Frantsuzov, A. A.; Boyarkina, N. I.; Popov, V. P.

    2008-01-01

    Effective electron mobility μ eff in channels of metal-oxide-semiconductor transistors with a gate length L in the range of 3.8 to 0.34 μm was measured; the transistors were formed on wafers of the silicon-oninsulator type. It was found that μ eff decreases as L is decreased. It is shown that this decrease can be accounted for by the effect of series resistances of the source and drain only if it is assumed that there is a rapid increase in these resistances as the gate voltage is decreased. This assumption is difficult to substantiate. A more realistic model is suggested; this model accounts for the observed decrease in μ eff as L is decreased. The model implies that zones with a mobility lower than that in the middle part of the channel originate at the edges of the gate. An analysis shows that, in this case, the plot of the dependence of 1/μ eff on 1/L should be linear, which is exactly what is observed experimentally. The use of this plot makes it possible to determine both the electron mobility μ 0 in the middle part of the channel and the quantity A that characterizes the zones with lowered mobility at the gate’s edges.

  19. Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales

    International Nuclear Information System (INIS)

    Howes, G. G.; TenBarge, J. M.; Dorland, W.; Numata, R.; Quataert, E.; Schekochihin, A. A.; Tatsuno, T.

    2011-01-01

    A three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k -2.8 as observed in in situ spacecraft measurements of the 'dissipation range' of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic Alfven wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at subion-Larmor radius scales, which provides evidence of the ion entropy cascade in an electromagnetic turbulence simulation.

  20. GPU-Accelerated Large-Scale Electronic Structure Theory on Titan with a First-Principles All-Electron Code

    Science.gov (United States)

    Huhn, William Paul; Lange, Björn; Yu, Victor; Blum, Volker; Lee, Seyong; Yoon, Mina

    Density-functional theory has been well established as the dominant quantum-mechanical computational method in the materials community. Large accurate simulations become very challenging on small to mid-scale computers and require high-performance compute platforms to succeed. GPU acceleration is one promising approach. In this talk, we present a first implementation of all-electron density-functional theory in the FHI-aims code for massively parallel GPU-based platforms. Special attention is paid to the update of the density and to the integration of the Hamiltonian and overlap matrices, realized in a domain decomposition scheme on non-uniform grids. The initial implementation scales well across nodes on ORNL's Titan Cray XK7 supercomputer (8 to 64 nodes, 16 MPI ranks/node) and shows an overall speed up in runtime due to utilization of the K20X Tesla GPUs on each Titan node of 1.4x, with the charge density update showing a speed up of 2x. Further acceleration opportunities will be discussed. Work supported by the LDRD Program of ORNL managed by UT-Battle, LLC, for the U.S. DOE and by the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

  1. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  2. THE EFFECT OF LARGE-SCALE MAGNETIC TURBULENCE ON THE ACCELERATION OF ELECTRONS BY PERPENDICULAR COLLISIONLESS SHOCKS

    International Nuclear Information System (INIS)

    Guo Fan; Giacalone, Joe

    2010-01-01

    We study the physics of electron acceleration at collisionless shocks that move through a plasma containing large-scale magnetic fluctuations. We numerically integrate the trajectories of a large number of electrons, which are treated as test particles moving in the time-dependent electric and magnetic fields determined from two-dimensional hybrid simulations (kinetic ions and fluid electron). The large-scale magnetic fluctuations effect the electrons in a number of ways and lead to efficient and rapid energization at the shock front. Since the electrons mainly follow along magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons to cross the shock front several times, leading to efficient acceleration. Ripples in the shock front occurring at various scales will also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. The current study is also helpful in understanding the injection problem for electron acceleration by collisionless shocks. It is also shown that the spatial distribution of energetic electrons is similar to in situ observations. The process may be important to our understanding of energetic electrons in planetary bow shocks and interplanetary shocks, and explaining herringbone structures seen in some type II solar radio bursts.

  3. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.

    Science.gov (United States)

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-03-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  4. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale

    International Nuclear Information System (INIS)

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-01-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  5. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  6. Predictors of extended length of stay, discharge to inpatient rehab, and hospital readmission following elective lumbar spine surgery: introduction of the Carolina-Semmes Grading Scale.

    Science.gov (United States)

    McGirt, Matthew J; Parker, Scott L; Chotai, Silky; Pfortmiller, Deborah; Sorenson, Jeffrey M; Foley, Kevin; Asher, Anthony L

    2017-10-01

    OBJECTIVE Extended hospital length of stay (LOS), unplanned hospital readmission, and need for inpatient rehabilitation after elective spine surgery contribute significantly to the variation in surgical health care costs. As novel payment models shift the risk of cost overruns from payers to providers, understanding patient-level risk of LOS, readmission, and inpatient rehabilitation is critical. The authors set out to develop a grading scale that effectively stratifies risk of these costly events after elective surgery for degenerative lumbar pathologies. METHODS The Quality and Outcomes Database (QOD) registry prospectively enrolls patients undergoing surgery for degenerative lumbar spine disease. This registry was queried for patients who had undergone elective 1- to 3-level lumbar surgery for degenerative spine pathology. The association between preoperative patient variables and extended postoperative hospital LOS (LOS ≥ 7 days), discharge status (inpatient facility vs home), and 90-day hospital readmission was assessed using stepwise multivariate logistic regression. The Carolina-Semmes grading scale was constructed using the independent predictors for LOS (0-12 points), discharge to inpatient facility (0-18 points), and 90-day readmission (0-6 points), and its performance was assessed using the QOD data set. The performance of the grading scale was then confirmed separately after using it in 2 separate neurosurgery practice sites (Carolina Neurosurgery & Spine Associates [CNSA] and Semmes Murphey Clinic). RESULTS A total of 6921 patients were analyzed. Overall, 290 (4.2%) patients required extended LOS, 654 (9.4%) required inpatient facility care/rehabilitation on hospital discharge, and 474 (6.8%) were readmitted to the hospital within 90 days postdischarge. Variables that remained as independently associated with these unplanned events in multivariate analysis included age ≥ 70 years, American Society of Anesthesiologists Physical Classification System

  7. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory

    International Nuclear Information System (INIS)

    Guo, Yang; Sivalingam, Kantharuban; Neese, Frank; Valeev, Edward F.

    2016-01-01

    Multi-reference (MR) electronic structure methods, such as MR configuration interaction or MR perturbation theory, can provide reliable energies and properties for many molecular phenomena like bond breaking, excited states, transition states or magnetic properties of transition metal complexes and clusters. However, owing to their inherent complexity, most MR methods are still too computationally expensive for large systems. Therefore the development of more computationally attractive MR approaches is necessary to enable routine application for large-scale chemical systems. Among the state-of-the-art MR methods, second-order N-electron valence state perturbation theory (NEVPT2) is an efficient, size-consistent, and intruder-state-free method. However, there are still two important bottlenecks in practical applications of NEVPT2 to large systems: (a) the high computational cost of NEVPT2 for large molecules, even with moderate active spaces and (b) the prohibitive cost for treating large active spaces. In this work, we address problem (a) by developing a linear scaling “partially contracted” NEVPT2 method. This development uses the idea of domain-based local pair natural orbitals (DLPNOs) to form a highly efficient algorithm. As shown previously in the framework of single-reference methods, the DLPNO concept leads to an enormous reduction in computational effort while at the same time providing high accuracy (approaching 99.9% of the correlation energy), robustness, and black-box character. In the DLPNO approach, the virtual space is spanned by pair natural orbitals that are expanded in terms of projected atomic orbitals in large orbital domains, while the inactive space is spanned by localized orbitals. The active orbitals are left untouched. Our implementation features a highly efficient “electron pair prescreening” that skips the negligible inactive pairs. The surviving pairs are treated using the partially contracted NEVPT2 formalism. A detailed

  8. A study of small-scale foliation in lengths of core enclosing fault zones in borehole WD-3, Permit Area D, Lac du Bonnet Batholith

    Energy Technology Data Exchange (ETDEWEB)

    Ejeckam, R.B.

    1992-12-01

    Small-scale foliation measurements in lengths of core from borehole WD-3 of Permit Area D of the Lac du Bonnet Batholith have defined five major mean orientation sets. They strike NW, N and NE. The orientations (strike to the left of the dip direction/dip) of these sets are as follows: Set I - 028/74 deg; II - 001/66 deg; III - 100/58 deg; IV - 076/83 deg; and V - 210/40 deg. The small-scale foliations were defined by different mineral types such as biotite crystals, plagioclase, mineral banding and quartz lenses. Well-developed biotite foliation is commonly present whenever well-developed plagioclase foliation exists, but as the strength of development weakens, the preferred orientations of plagioclase foliation do not correspond to those of biotite. It is also noted that the foliations appear to strike in directions orthogonal to the fractures in the fracture zones in the same depth interval. No significant change in foliation orientation was observed in Zones I to IV. Set V, however, whose mean orientation is 210/40 deg, is absent from the Zone IV interval, ranging from 872 to 905 m. (auth)

  9. Static and Dynamic Electron Microscopy Investigations at the Atomic and Ultrafast Scales

    Science.gov (United States)

    Suri, Pranav Kumar

    Advancements in the electron microscopy capabilities - aberration-corrected imaging, monochromatic spectroscopy, direct-electron detectors - have enabled routine visualization of atomic-scale processes with millisecond temporal resolutions in this decade. This, combined with progress in the transmission electron microscopy (TEM) specimen holder technology and nanofabrication techniques, allows comprehensive experiments on a wide range of materials in various phases via in situ methods. The development of ultrafast (sub-nanosecond) time-resolved TEM with ultrafast electron microscopy (UEM) has further pushed the envelope of in situ TEM to sub-nanosecond temporal resolution while maintaining sub-nanometer spatial resolution. A plethora of materials phenomena - including electron-phonon coupling, phonon transport, first-order phase transitions, bond rotation, plasmon dynamics, melting, and dopant atoms arrangement - are not yet clearly understood and could be benefitted with the current in situ TEM capabilities having atomic-level and ultrafast precision. Better understanding of these phenomena and intrinsic material dynamics (e.g. how phonons propagate in a material, what time-scales are involved in a first-order phase transition, how fast a material melts, where dopant atoms sit in a crystal) in new-generation and technologically important materials (e.g. two-dimensional layered materials, semiconductor and magnetic devices, rare-earth-element-free permanent magnets, unconventional superconductors) could bring a paradigm shift in their electronic, structural, magnetic, thermal and optical applications. Present research efforts, employing cutting-edge static and dynamic in situ electron microscopy resources at the University of Minnesota, are directed towards understanding the atomic-scale crystallographic structural transition and phonon transport in an iron-pnictide parent compound LaFeAsO, studying the mechanical stability of fast moving hard-drive heads in heat

  10. A model of the saturation of coupled electron and ion scale gyrokinetic turbulence

    Science.gov (United States)

    Staebler, G. M.; Howard, N. T.; Candy, J.; Holland, C.

    2017-06-01

    A new paradigm of zonal flow mixing as the mechanism by which zonal E × B fluctuations impact the saturation of gyrokinetic turbulence has recently been deduced from the nonlinear 2D spectrum of electric potential fluctuations in gyrokinetic simulations. These state of the art simulations span the physical scales of both ion and electron turbulence. It was found that the zonal flow mixing rate, rather than zonal flow shearing rate, competes with linear growth at both electron and ion scales. A model for saturation of the turbulence by the zonal flow mixing was developed and applied to the quasilinear trapped gyro-Landau fluid transport model (TGLF). The first validation tests of the new saturation model are reported in this paper with data from L-mode and high-β p regime discharges from the DIII-D tokamak. The shortfall in the predicted L-mode edge electron energy transport is improved with the new saturation model for these discharges but additional multiscale simulations are required in order to verify the safety factor and collisionality dependencies found in the modeling.

  11. Joint denoising and distortion correction of atomic scale scanning transmission electron microscopy images

    Science.gov (United States)

    Berkels, Benjamin; Wirth, Benedikt

    2017-09-01

    Nowadays, modern electron microscopes deliver images at atomic scale. The precise atomic structure encodes information about material properties. Thus, an important ingredient in the image analysis is to locate the centers of the atoms shown in micrographs as precisely as possible. Here, we consider scanning transmission electron microscopy (STEM), which acquires data in a rastering pattern, pixel by pixel. Due to this rastering combined with the magnification to atomic scale, movements of the specimen even at the nanometer scale lead to random image distortions that make precise atom localization difficult. Given a series of STEM images, we derive a Bayesian method that jointly estimates the distortion in each image and reconstructs the underlying atomic grid of the material by fitting the atom bumps with suitable bump functions. The resulting highly non-convex minimization problems are solved numerically with a trust region approach. Existence of minimizers and the model behavior for faster and faster rastering are investigated using variational techniques. The performance of the method is finally evaluated on both synthetic and real experimental data.

  12. Electronic Structure Changes Due to Crystal Phase Switching at the Atomic Scale Limit.

    Science.gov (United States)

    Knutsson, Johan Valentin; Lehmann, Sebastian; Hjort, Martin; Lundgren, Edvin; Dick, Kimberly A; Timm, Rainer; Mikkelsen, Anders

    2017-10-24

    The perfect switching between crystal phases with different electronic structure in III-V nanowires allows for the design of superstructures with quantum wells only a single atomic layer wide. However, it has only been indirectly inferred how the electronic structure will vary down to the smallest possible crystal segments. We use low-temperature scanning tunneling microscopy and spectroscopy to directly probe the electronic structure of Zinc blende (Zb) segments in Wurtzite (Wz) InAs nanowires with atomic-scale precision. We find that the major features in the band structure change abruptly down to a single atomic layer level. Distinct Zb electronic structure signatures are observed on both the conduction and valence band sides for the smallest possible Zb segment: a single InAs bilayer. We find evidence of confined states in the region of both single and double bilayer Zb segments indicative of the formation of crystal segment quantum wells due to the smaller band gap of Zb as compared to Wz. In contrast to the internal electronic structure of the nanowire, surface states located in the band gap were found to be only weakly influenced by the presence of the smallest Zb segments. Our findings directly demonstrate the feasibility of crystal phase switching for the ultimate limit of atomistic band structure engineering of quantum confined structures. Further, it indicates that band gap values obtained for the bulk are reasonable to use even for the smallest crystal segments. However, we also find that the suppression of surface and interface states could be necessary in the use of this effect for engineering of future electronic devices.

  13. Long length scales of element transport during reaction texture development in orthoamphibole-cordierite gneiss: Thor-Odin dome, British Columbia, Canada

    Science.gov (United States)

    Goergen, Eric T.; Whitney, Donna L.

    2012-02-01

    First-order factors controlling the textural and chemical evolution of metamorphic rocks are bulk composition and pressure-temperature-time ( P- T- t) path. Although it is common to assume that major element bulk composition does not change during regional metamorphism, rocks with reaction textures such as corona structures record evidence for major changes in effective bulk composition (EBC) and therefore provide significant insight into the scale, pathways, and mechanisms of element transport during metamorphism. Quantifying changes in EBC is essential for petrologic applications such as calculation of phase diagrams (pseudosections). The progressive growth of complex corona structures on garnet and Al2SiO5 porphyroblasts in orthoamphibole-cordierite gneiss Thor-Odin dome (British Columbia, Canada) reduced the EBC volume of the rock during metamorphism and therefore had a dramatic effect on the evolution of the stable mineral assemblage. These rocks contain a chemical and textural record of metamorphic reactions and preserve 3D networks (reaction pathways) connecting corona structures. These coronal networks record long (>cm) length scales of localized element transport during metamorphism. P- T, T- X, and P- X pseudosections are used to investigate the control of effective bulk composition on phase assemblage evolution. Despite textural complexity and evidence for disequilibrium, mineral assemblages and compositions were successfully modeled and peak metamorphic conditions estimated at 750°C and 9 kbar. These results illustrate how textural and chemical changes during metamorphism can be evaluated using an integrated petrographic and pseudosection approach, highlight the importance of effective bulk composition choice for application of phase equilibria methods in metamorphic rocks, and show how corona structures can be used to understand the scale of compositional change and element transport during metamorphism.

  14. Tailoring the graphene/silicon carbide interface for monolithic wafer-scale electronics.

    Science.gov (United States)

    Hertel, S; Waldmann, D; Jobst, J; Albert, A; Albrecht, M; Reshanov, S; Schöner, A; Krieger, M; Weber, H B

    2012-07-17

    Graphene is an outstanding electronic material, predicted to have a role in post-silicon electronics. However, owing to the absence of an electronic bandgap, graphene switching devices with high on/off ratio are still lacking. Here in the search for a comprehensive concept for wafer-scale graphene electronics, we present a monolithic transistor that uses the entire material system epitaxial graphene on silicon carbide (0001). This system consists of the graphene layer with its vanishing energy gap, the underlying semiconductor and their common interface. The graphene/semiconductor interfaces are tailor-made for ohmic as well as for Schottky contacts side-by-side on the same chip. We demonstrate normally on and normally off operation of a single transistor with on/off ratios exceeding 10(4) and no damping at megahertz frequencies. In its simplest realization, the fabrication process requires only one lithography step to build transistors, diodes, resistors and eventually integrated circuits without the need of metallic interconnects.

  15. Decay of MHD-scale Kelvin-Helmholtz vortices mediated by parasitic electron dynamics

    International Nuclear Information System (INIS)

    Nakamura, T.K.M.; Hayashi, D.; Fujimoto, M.; Shinohara, I.

    2004-01-01

    We have simulated nonlinear development of MHD-scale Kelvin-Helmholtz (KH) vortices by a two-dimensional two-fluid system including finite electron inertial effects. In the presence of moderate density jump across a shear layer, in striking contrast to MHD results, MHD KH vortices are found to decay by the time one eddy turnover is completed. The decay is mediated by smaller vortices that appear within the parent vortex and stays effective even when the shear layer width is made larger. It is shown that the smaller vortices are basically of MHD nature while the seeding for these is achieved by the electron inertial effect. Application of the results to the magnetotail boundary layer is discussed

  16. Laboratory scale electron beam system for treatment of flue gases from diesel combustion

    International Nuclear Information System (INIS)

    Siti Aiasah Hashim; Khairul Zaman Mohd Dahlan; Khomsaton Abu Bakar; Ayub Muhammad

    2004-01-01

    Laboratory scale test rig to treat simulated flue gas using electron beam technology was installed at the Alurtron EB-Irradiation Center, MINT. The experiment test rig was proposed as a result of feasibility studies conducted jointly by IAEA, MINT and TNB Research in 1997. The test rig system consists of several components, among other, diesel generator sets, pipe ducts, spray cooler, ammonia dosage system, irradiation vessel, bag filter and gas analyzers. The installation was completed and commissioned in October 2001. results from the commissioning test runs and subsequent experimental work showed that the efficiency of flue gas treatment is high. It was proven that electron beam technology might be applied in the treatment of air pollutants. This paper describes the design and work function of the individual major components as well as the full system function. Results from the initial experimental works are also presented. (Author)

  17. Correlations of properties and structures at different length scales of hydro- and organo-gels based on N-alkyl-(R)-12-hydroxyoctadecylammonium chlorides.

    Science.gov (United States)

    Mallia, V Ajay; Terech, Pierre; Weiss, Richard G

    2011-11-03

    The self-assembly and gelating ability of a set of N-alkyl-(R)-12-hydroxyoctadecylammonium chlorides (NCl-n, where n = 0-6, 18 is the length of the alkyl chain on nitrogen) are described. Several are found to be ambidextrous (gelating both water and a variety of organic liquids) and very efficient (needing less than ca. 0.5 wt % at room temperature). Structure-property correlations at different distance scales of the NCl-n in their hydro- and organo-gels and neat, solid states have been made using X-ray diffraction, neutron scattering, thermal, optical, cryo-SEM and rheological techniques. The self-assembled fibrillar networks consist of spherulitic objects with fibers whose diameters and degrees of twisting differ in the hydro- and organo-gels. Increasing n (and, thus, the molecular length) increases the width of the fibers in their hydrogels; an irregular, less pronounced trend between n and fiber width is observed in the corresponding toluene gels. Time-dependent, small angle neutron scattering data for the isothermal sol-to-gel transformation of sols of NCl-18/toluene to their gels, treated according to Avrami theory, indicate heterogeneous nucleation involving rodlike growth. Rheological studies of gels of NCl-3 in water and toluene confirm their viscoelastic nature and show that the hydrogel is mechanically stronger than the toluene gel. Models for the different molecular packing arrangements within the fibrillar gel networks of the hydro- and organogels have been inferred from X-ray diffraction. The variations in the fibrillar networks provide a comprehensive picture and detailed insights into why seemingly very similar NCl-n behave very differently during their self-assembly processes in water and organic liquids. It is shown that the NCl-n provide a versatile platform for interrogating fundamental questions regarding the links between molecular structure and one-dimensional self-aggregation, leading to gelation.

  18. Improved Performance of Highly Scaled AlGaN/GaN High-Electron-Mobility Transistors Using an AlN Back Barrier

    Science.gov (United States)

    Kong, Xin; Wei, Ke; Liu, Guoguo; Liu, Xinyu; Wang, Cuimei; Wang, Xiaoliang

    2013-05-01

    An ultrathin AlN layer is inserted between the GaN channel and buffer in the fabrication of deep-submicrometer AlGaN/GaN high-electron-mobility transistors (HEMTs). The wide bandgap of AlN establishes a high back barrier and thus enhances the confinement of two-dimensional electron gas under high drain bias voltages. Owning to the effective suppression of short-channel effects in the device with a highly scaled gate length, the fabricated AlN back barrier HEMTs show better pinch-off quality, lower subthreshold current, lower drain-induced barrier lowering factor, and better high-frequency response than the reference device without an AlN back barrier.

  19. Auto-thermal reforming using mixed ion-electronic conducting ceramic membranes for a small-scale H₂ production plant.

    Science.gov (United States)

    Spallina, Vincenzo; Melchiori, Tommaso; Gallucci, Fausto; van Sint Annaland, Martin

    2015-03-18

    The integration of mixed ionic electronic conducting (MIEC) membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650-850 Nm3/h) via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) give sufficiently high oxygen fluxes at temperatures above 800 °C with high purity (higher than 99%). Experimental results of membrane permeation tests are presented and used for the reactor design with a detailed reactor model. The assessment of the H2 plant has been carried out for different operating conditions and reactor geometry and an energy analysis has been carried out with the flowsheeting software Aspen Plus, including also the turbomachines required for a proper thermal integration. A micro-gas turbine is integrated in the system in order to supply part of the electricity required in the system. The analysis of the system shows that the reforming efficiency is in the range of 62%-70% in the case where the temperature at the auto-thermal reforming membrane reactor (ATR-MR) is equal to 900 °C. When the electric consumption and the thermal export are included the efficiency of the plant approaches 74%-78%. The design of the reactor has been carried out using a reactor model linked to the Aspen flowsheet and the results show that with a larger reactor volume the performance of the system can be improved, especially because of the reduced electric consumption. From this analysis it has been found that for a production of about 790 Nm3/h pure H2, a reactor with a diameter of 1 m and length of 1.8 m with about 1500 membranes of 2 cm diameter is required.

  20. Tokamak electron heat transport by direct numerical simulation of small scale turbulence

    International Nuclear Information System (INIS)

    Labit, B.

    2002-10-01

    In a fusion machine, understanding plasma turbulence, which causes a degradation of the measured energy confinement time, would constitute a major progress in this field. In tokamaks, the measured ion and electron thermal conductivities are of comparable magnitude. The possible sources of turbulence are the temperature and density gradients occurring in a fusion plasma. Whereas the heat losses in the ion channel are reasonably well understood, the origin of the electron losses is more uncertain. In addition to the radial velocity associated to the fluctuations of the electric field, electrons are more affected than ions by the magnetic field fluctuations. In experiments, the confinement time can be conveniently expressed in terms of dimensionless parameters. Although still somewhat too imprecise, these scaling laws exhibit strong dependencies on the normalized pressure β or the normalized Larmor radius, ρ * . The present thesis assesses whether a tridimensional, electromagnetic, nonlinear fluid model of plasma turbulence driven by a specific instability can reproduce the dependence of the experimental electron heat losses on the dimensionless parameters β and ρ * . The investigated interchange instability is the Electron Temperature Gradient driven one (ETG). The model is built by using the set of Braginskii equations. The developed simulation code is global in the sense that a fixed heat flux is imposed at the inner boundary, leaving the gradients free to evolve. From the nonlinear simulations, we have put in light three characteristics for the ETG turbulence: the turbulent transport is essentially electrostatic; the potential and pressure fluctuations form radially elongated cells called streamers; the transport level is very low compared to the experimental values. The thermal transport dependence study has shown a very small role of the normalized pressure, which is in contradiction with the Ohkama's formula. On the other hand, the crucial role of the

  1. Diffusion length and junction spectroscopy analysis of low-temperature annealing of electron irradiation-induced deep levels in 4H-SiC

    International Nuclear Information System (INIS)

    Castaldini, A.; Cavallini, A.; Rigutti, L.; Pizzini, S.; Le Donne, A.; Binetti, S.

    2006-01-01

    The effects of low-temperature annealing in 8.2 MeV electron-irradiated 4H-SiC Schottky diodes were investigated. Deep-level transient spectroscopy and minority-carrier diffusion length (L d ) measurements were carried out on not-irradiated samples and on irradiated samples before and after thermal treatments up to T=450 deg. C. We found that several deep levels in the upper half band gap (S1 with enthalpy E T =0.27 eV, S2 with E T =0.35 eV, S4 with E T =0.71 eV, and S5 with E T =0.96 eV) anneal out or modify at temperature values lower or equal to T=450 deg. C, whereby their progressive annealing out is accompanied by a net increase of L d , up to 50% of the value in the as-irradiated sample. We drew some conclusions regarding the microscopic nature of the defects related to the deep levels, according to their annealing behavior

  2. Modeling Nonreactive Molecule-Surface Systems on Experimentally Relevant Time and Length Scales: Dynamics and Conductance of Polyfluorene on Au(111).

    Science.gov (United States)

    Li, Zhi; Tkatchenko, Alexandre; Franco, Ignacio

    2018-03-01

    We propose a computationally efficient strategy to accurately model nonreactive molecule-surface interactions that adapts density functional theory calculations with the Tkatchenko-Scheffler scheme for van der Waals interactions into a simple classical force field. The resulting force field requires just two adjustable parameters per atom type that are needed to capture short-range and polarization interactions. The developed strategy allows for classical molecular dynamics simulation of molecules on surfaces with the accuracy of high-level electronic structure methods but for system sizes (10 3 to 10 7 atoms) and timescales (picoseconds to microseconds) that go well beyond what can be achieved with first-principles methods. Parameters for H, sp 2 C, and O on Au(111) are developed and employed to atomistically model experiments that measure the conductance of a single polyfluorene on Au(111) as a continuous function of its length. The simulations qualitatively capture both the gross and fine features of the observed conductance decay during initial junction elongation and lead to a revised atomistic understanding of the experiment.

  3. A transmission electron microscopy study of the deformation behavior underneath nanoindents in nano-scale Al-TiN multilayered composites

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Dhriti [Los Alamos National Laboratory; Mara, Nathan A [Los Alamos National Laboratory; Dickerson, Patricia O [Los Alamos National Laboratory; Misra, Amit [Los Alamos National Laboratory; Hoagland, R G [Los Alamos National Laboratory

    2009-01-01

    Nano-scale multilayered Al-TiN composites were deposited with DC magnetron sputtering technique in two different layer thickness ratios - Al:TiN = 1:1 and Al:TiN = 9:1. The Al layer thickness varied from 2 nm to 450 nm. The hardness of the samples was tested by nanoindentation using a Berkovich tip. Cross-sectional Transmission Electron Microscopy (TEM) was carried out on samples extracted with Focused Ion Beam (FIB) from below the nanoindents. This paper presents the results of the hardness tests in the Al-TiN multilayers with the two different thickness ratios and the observations from the cross-sectional TEM studies of the regions underneath the indents. These studies showed remarkable strength in the multilayers, as well as some very interesting deformation behavior in the TiN layers at extremely small length scales, where the hard TiN layers undergo co-deformation with the Al layers.

  4. Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes

    International Nuclear Information System (INIS)

    Hu, Wei; Yang, Chao; Lin, Lin; Yang, Jinlong

    2014-01-01

    With the help of the recently developed SIESTA-pole (Spanish Initiative for Electronic Simulations with Thousands of Atoms) - PEXSI (pole expansion and selected inversion) method [L. Lin, A. García, G. Huhs, and C. Yang, J. Phys.: Condens. Matter 26, 305503 (2014)], we perform Kohn-Sham density functional theory calculations to study the stability and electronic structure of hydrogen passivated hexagonal graphene nanoflakes (GNFs) with up to 11 700 atoms. We find the electronic properties of GNFs, including their cohesive energy, edge formation energy, highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap, edge states, and aromaticity, depend sensitively on the type of edges (armchair graphene nanoflakes (ACGNFs) and zigzag graphene nanoflakes (ZZGNFs)), size and the number of electrons. We observe that, due to the edge-induced strain effect in ACGNFs, large-scale ACGNFs’ edge formation energy decreases as their size increases. This trend does not hold for ZZGNFs due to the presence of many edge states in ZZGNFs. We find that the energy gaps E g of GNFs all decay with respect to 1/L, where L is the size of the GNF, in a linear fashion. But as their size increases, ZZGNFs exhibit more localized edge states. We believe the presence of these states makes their gap decrease more rapidly. In particular, when L is larger than 6.40 nm, we find that ZZGNFs exhibit metallic characteristics. Furthermore, we find that the aromatic structures of GNFs appear to depend only on whether the system has 4N or 4N + 2 electrons, where N is an integer

  5. Fundamental length

    International Nuclear Information System (INIS)

    Pradhan, T.

    1975-01-01

    The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)

  6. Transmission electron microscopical study of teenage crown dentin on the nanometer scale

    International Nuclear Information System (INIS)

    Panfilov, Peter; Kabanova, Anna; Guo, Jinming; Zhang, Zaoli

    2017-01-01

    Statement of significance: This is the first transmission electron microscopic study of teenage crown dentin on the nanometer scale. Samples for TEM were prepared by mechanical thinning and chemical polishing that allowed obtaining the electron transparent foils. It was firstly shown that human dentin possesses the layered morphology: the layers are oriented normally to the main axis of a tooth and have the thickness of ~ 50 nm. HA inorganic phase of teenage crown dentin is in the amorphous state. The cellular structure, which was formed from collagen fibers (diameter is ~ 5 nm), are observed near DEJ region in teenage dentin, whereas bioorganic phase of teenage crown dentin near the pulp camera does not contain the collagen fibers. Cracks in dentin thin foils have sharp tips, but big angles of opening (~ 30 ° ) with plastic zone ahead crack tip. It means that young crown human dentin exhibits ductile or viscous-elastic fracture behavior on the nanometer scale. - Highlights: • Dentin has layered morphology. • Mineral component of dentin is in amorphous state. • Collagen fibers form cellular structure in dentin. • Cracks in dentin behave by elastic-plastic manner.

  7. Multi-length scale tomography for the determination and optimization of the effective microstructural properties in novel hierarchical solid oxide fuel cell anodes

    Science.gov (United States)

    Lu, Xuekun; Taiwo, Oluwadamilola O.; Bertei, Antonio; Li, Tao; Li, Kang; Brett, Dan J. L.; Shearing, Paul R.

    2017-11-01

    Effective microstructural properties are critical in determining the electrochemical performance of solid oxide fuel cells (SOFCs), particularly when operating at high current densities. A novel tubular SOFC anode with a hierarchical microstructure, composed of self-organized micro-channels and sponge-like regions, has been fabricated by a phase inversion technique to mitigate concentration losses. However, since pore sizes span over two orders of magnitude, the determination of the effective transport parameters using image-based techniques remains challenging. Pioneering steps are made in this study to characterize and optimize the microstructure by coupling multi-length scale 3D tomography and modeling. The results conclusively show that embedding finger-like micro-channels into the tubular anode can improve the mass transport by 250% and the permeability by 2-3 orders of magnitude. Our parametric study shows that increasing the porosity in the spongy layer beyond 10% enhances the effective transport parameters of the spongy layer at an exponential rate, but linearly for the full anode. For the first time, local and global mass transport properties are correlated to the microstructure, which is of wide interest for rationalizing the design optimization of SOFC electrodes and more generally for hierarchical materials in batteries and membranes.

  8. Derivation of effective fission gas diffusivities in UO2 from lower length scale simulations and implementation of fission gas diffusion models in BISON

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perriot, Romain Thibault [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tonks, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-07

    This report summarizes the development of new fission gas diffusion models from lower length scale simulations and assessment of these models in terms of annealing experiments and fission gas release simulations using the BISON fuel performance code. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations, continuum models for diffusion of xenon (Xe) in UO2 were derived for both intrinsic conditions and under irradiation. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and stability. These models were implemented in the MARMOT phase field code, which is used to calculate effective Xe diffusivities for various irradiation conditions. The effective diffusivities were used in BISON to calculate fission gas release for a number of test cases. The results are assessed against experimental data and future directions for research are outlined based on the conclusions.

  9. Characteristic length scale of the magnon accumulation in Fe{sub 3}O{sub 4}/Pt bilayer structures by incoherent thermal excitation

    Energy Technology Data Exchange (ETDEWEB)

    Anadón, A., E-mail: anadonb@unizar.es; Lucas, I.; Morellón, L. [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Ramos, R. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); Algarabel, P. A. [Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009 Zaragoza (Spain); Ibarra, M. R.; Aguirre, M. H. [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Laboratorio de Microscopías avanzadas, Universidad de Zaragoza, 50018 Zaragoza (Spain)

    2016-07-04

    The dependence of Spin Seebeck effect (SSE) with the thickness of the magnetic materials is studied by means of incoherent thermal excitation. The SSE voltage signal in Fe{sub 3}O{sub 4}/Pt bilayer structure increases with the magnetic material thickness up to 100 nm, approximately, showing signs of saturation for larger thickness. This dependence is well described in terms of a spin current pumped in the platinum film by the magnon accumulation in the magnetic material. The spin current is generated by a gradient of temperature in the system and detected by the Pt top contact by means of inverse spin Hall effect. Calculations in the frame of the linear response theory adjust with a high degree of accuracy the experimental data, giving a thermal length scale of the magnon accumulation (Λ) of 17 ± 3 nm at 300 K and Λ = 40 ± 10 nm at 70 K.

  10. Chemical mapping and quantification at the atomic scale by scanning transmission electron microscopy.

    Science.gov (United States)

    Chu, Ming-Wen; Chen, Cheng Hsuan

    2013-06-25

    With innovative modern material-growth methods, a broad spectrum of fascinating materials with reduced dimensions-ranging from single-atom catalysts, nanoplasmonic and nanophotonic materials to two-dimensional heterostructural interfaces-is continually emerging and extending the new frontiers of materials research. A persistent central challenge in this grand scientific context has been the detailed characterization of the individual objects in these materials with the highest spatial resolution, a problem prompting the need for experimental techniques that integrate both microscopic and spectroscopic capabilities. To date, several representative microscopy-spectroscopy combinations have become available, such as scanning tunneling microscopy, tip-enhanced scanning optical microscopy, atom probe tomography, scanning transmission X-ray microscopy, and scanning transmission electron microscopy (STEM). Among these tools, STEM boasts unique chemical and electronic sensitivity at unparalleled resolution. In this Perspective, we elucidate the advances in STEM and chemical mapping applications at the atomic scale by energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy with a focus on the ultimate challenge of chemical quantification with atomic accuracy.

  11. Wafer-scale design of lightweight and transparent electronics that wraps around hairs

    Science.gov (United States)

    Salvatore, Giovanni A.; Münzenrieder, Niko; Kinkeldei, Thomas; Petti, Luisa; Zysset, Christoph; Strebel, Ivo; Büthe, Lars; Tröster, Gerhard

    2014-01-01

    Electronics on very thin substrates have shown remarkable bendability, conformability and lightness, which are important attributes for biological tissues sensing, wearable or implantable devices. Here we propose a wafer-scale process scheme to realize ultra flexible, lightweight and transparent electronics on top of a 1-μm thick parylene film that is released from the carrier substrate after the dissolution in water of a polyvinyl- alcohol layer. The thin substrate ensures extreme flexibility, which is demonstrated by transistors that continue to work when wrapped around human hairs. In parallel, the use of amorphous oxide semiconductor and high-K dielectric enables the realization of analogue amplifiers operating at 12 V and above 1 MHz. Electronics can be transferred on any object, surface and on biological tissues like human skin and plant leaves. We foresee a potential application as smart contact lenses, covered with light, transparent and flexible devices, which could serve to monitor intraocular pressure for glaucoma disease.

  12. Epitaxial Lift-Off of Centimeter-Scaled Spinel Ferrite Oxide Thin Films for Flexible Electronics.

    Science.gov (United States)

    Shen, Lvkang; Wu, Liang; Sheng, Quan; Ma, Chunrui; Zhang, Yong; Lu, Lu; Ma, Ji; Ma, Jing; Bian, Jihong; Yang, Yaodong; Chen, Aiping; Lu, Xiaoli; Liu, Ming; Wang, Hong; Jia, Chun-Lin

    2017-09-01

    Mechanical flexibility of electronic devices has attracted much attention from research due to the great demand in practical applications and rich commercial value. Integration of functional oxide materials in flexible polymer materials has proven an effective way to achieve flexibility of functional electronic devices. However, the chemical and mechanical incompatibilities at the interfaces of dissimilar materials make it still a big challenge to synthesize high-quality single-crystalline oxide thin film directly on flexible polymer substrates. This study reports an improved method that is employed to successfully transfer a centimeter-scaled single-crystalline LiFe 5 O 8 thin film on polyimide substrate. Structural characterizations show that the transferred films have essentially no difference in comparison with the as-grown films with respect to the microstructure. In particular, the transferred LiFe 5 O 8 films exhibit excellent magnetic properties under various mechanical bending statuses and show excellent fatigue properties during the bending cycle tests. These results demonstrate that the improved transfer method provides an effective way to compose single-crystalline functional oxide thin films onto flexible substrates for applications in flexible and wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Collisionless magnetic reconnection in large-scale electron-positron plasmas

    International Nuclear Information System (INIS)

    Daughton, William; Karimabadi, Homa

    2007-01-01

    One of the most fundamental questions in reconnection physics is how the dynamical evolution will scale to macroscopic systems of physical relevance. This issue is examined for electron-positron plasmas using two-dimensional fully kinetic simulations with both open and periodic boundary conditions. The resulting evolution is complex and highly dynamic throughout the entire duration. The initial phase is distinguished by the coalescence of tearing islands to larger scale while the later phase is marked by the expansion of diffusion regions into elongated current layers that are intrinsically unstable to plasmoid generation. It appears that the repeated formation and ejection of plasmoids plays a key role in controlling the average structure of a diffusion region and preventing the further elongation of the layer. The reconnection rate is modulated in time as the current layers expand and new plasmoids are formed. Although the specific details of this evolution are affected by the boundary and initial conditions, the time averaged reconnection rate remains fast and is remarkably insensitive to the system size for sufficiently large systems. This dynamic scenario offers an alternative explanation for fast reconnection in large-scale systems

  14. EISCAT observations of large scale electron temperture and electron density perturbations caused by high power HF radio waves

    Science.gov (United States)

    Stocker, A. J.; Honary, F.; Robinson, T. R.; Jones, T. B.; Stubbe, P.; Kopka, H.

    In this paper EISCAT observations of the effect of artificial modification on the F-region electron temperature and electron density during several heating experiments at Tromsø are reported. During O-mode heating at full power ( ERP = 240 MW) the electron temperature is increased by up to 55% of its ambient value at altitudes close to the heater interaction height. Measurements of the electron density have revealed both enhancements and depletions in the vicinity of the heater reflection height. These differences are indicative of variations in the balance between the transport and chemical effects. These results are compared with a time dependent numerical model developed from the perturbation equations of VAS'KOV and GUREVICH [(1975) Geomagn. Aeron.15, 51]. The results of numerical modelling of the electron temperature are in good agreement with the EISCAT observations, whereas there is less good agreement with regard to electron density.

  15. Multi-scale 3D investigations of a commercial 18650 Li-ion battery with correlative electron- and X-ray microscopy

    Science.gov (United States)

    Gelb, Jeff; Finegan, Donal P.; Brett, Dan J. L.; Shearing, Paul R.

    2017-07-01

    In the present study, a commercial 18650 Li-ion cylindrical cell is investigated with non-destructive 3D X-ray microscopy across a range of length scales, beginning with a survey of the entire cell and non-destructively enlarging a smaller section. Active materials are extracted from a disassembled cell and imaging performed using a combination of sub-micron X-ray microscopy and 2D scanning-electron microscopy, which point toward the need for multi-scale analysis in order to accurately characterize the cell. Furthermore, a small section is physically isolated for 3D nano-scale X-ray microscopy, which provides a measurement of porosity and enables the effective diffusivity and 3-dimensional tortuosities to be calculated via computer simulation. Finally, the 3D X-ray microscopy data is loaded into a correlative microscopy environment, where a representative sub-surface region is identified and, subsequently, analyzed using electron microscopy and energy-dispersive X-ray spectroscopy. The results of this study elucidate the microstructural characteristics and potential degradation mechanisms of a commercial NCA battery and, further, establish a technique for extracting the Bruggeman exponent for a real-world microstructure using correlative microscopy.

  16. Small scale density variations of electrons and charged particles in the vicinity of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2003-01-01

    Full Text Available We present small scale variations of electron number densities and particle charge number densities measured in situ in the presence of polar mesosphere summer echoes. It turns out that the small scale fluctuations of electrons and negatively charged particles show a strong anticorrelation down to the smallest scales observed. Comparing these small scale structures with the simultaneously measured radar signal to noise profile, we find that the radar profile is well described by the power spectral density of both electrons and charged particles at the radar half wavelength (=the Bragg scale. Finally, we consider the shape of the power spectra of the observed plasma fluctuations and find that both charged particles and electrons show spectra that can be explained in terms of either neutral air turbulence acting on the distribution of a low diffusivity tracer or the fossil remnants of a formerly active turbulent region. All these results are consistent with the theoretical ideas by Rapp and Lübken (2003 suggesting that PMSE can be explained by a combination of active and fossil neutral air turbulence acting on the large and heavy charged aerosol particles which are subsequently mirrored in the electron number density distribution that becomes visible to a VHF radar when small scale fluctuations are present.

  17. Size variation and collapse of emphysema holes at inspiration and expiration CT scan: evaluation with modified length scale method and image co-registration

    Directory of Open Access Journals (Sweden)

    Oh SY

    2017-07-01

    Full Text Available Sang Young Oh,1,* Minho Lee,1,* Joon Beom Seo,1,* Namkug Kim,1,2,* Sang Min Lee,1 Jae Seung Lee,3 Yeon Mok Oh3 1Department of Radiology, 2Department of Convergence Medicine, 3Department of Pulmonology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: A novel approach of size-based emphysema clustering has been developed, and the size variation and collapse of holes in emphysema clusters are evaluated at inspiratory and expiratory computed tomography (CT. Thirty patients were visually evaluated for the size-based emphysema clustering technique and a total of 72 patients were evaluated for analyzing collapse of the emphysema hole in this study. A new approach for the size differentiation of emphysema holes was developed using the length scale, Gaussian low-pass filtering, and iteration approach. Then, the volumetric CT results of the emphysema patients were analyzed using the new method, and deformable registration was carried out between inspiratory and expiratory CT. Blind visual evaluations of EI by two readers had significant correlations with the classification using the size-based emphysema clustering method (r-values of reader 1: 0.186, 0.890, 0.915, and 0.941; reader 2: 0.540, 0.667, 0.919, and 0.942. The results of collapse of emphysema holes using deformable registration were compared with the pulmonary function test (PFT parameters using the Pearson’s correlation test. The mean extents of low-attenuation area (LAA, E1 (<1.5 mm, E2 (<7 mm, E3 (<15 mm, and E4 (≥15 mm were 25.9%, 3.0%, 11.4%, 7.6%, and 3.9%, respectively, at the inspiratory CT, and 15.3%, 1.4%, 6.9%, 4.3%, and 2.6%, respectively at the expiratory CT. The extents of LAA, E2, E3, and E4 were found to be significantly correlated with the PFT ­parameters (r=−0.53, −0.43, −0.48, and −0.25, with forced expiratory volume in 1 second (FEV1; −0.81, −0.62, −0.75, and

  18. Evidence-Based Thresholds for the Volume and Length of Stay Relationship in Total Hip Arthroplasty: Outcomes and Economies of Scale.

    Science.gov (United States)

    Ramkumar, Prem N; Navarro, Sergio M; Frankel, William C; Haeberle, Heather S; Delanois, Ronald E; Mont, Michael A

    2018-02-05

    Several studies have indicated that high-volume surgeons and hospitals deliver higher value care. However, no evidence-based volume thresholds currently exist in total hip arthroplasty (THA). The primary objective of this study was to establish meaningful thresholds taking patient outcomes into consideration for surgeons and hospitals performing THA. A secondary objective was to examine the market share of THAs for each surgeon and hospital strata. Using 136,501 patients undergoing hip arthroplasty, we used stratum-specific likelihood ratio (SSLR) analysis of a receiver-operating characteristic curve to generate volume thresholds predictive of increased length of stay (LOS) for surgeons and hospitals. Additionally, we examined the relative proportion of annual THA cases performed by each surgeon and hospital strata established. SSLR analysis of LOS by annual surgeon THA volume produced 3 strata: 0-69 (low), 70-121 (medium), and 121 or more (high). Analysis by annual hospital THA volume produced strata at: 0-120 (low), 121-357 (medium), and 358 or more (high). LOS decreased significantly (P economies of scale in THA by demonstrating a direct relationship between volume and value for THA through risk-based volume stratification of surgeons and hospitals using SSLR analysis of receiver-operating characteristic curves to identify low-, medium-, and high-volume surgeons and hospitals. While the majority of primary THAs are performed at high-volume centers, low-volume surgeons are performing the majority of these cases, which may offer room for improvement in delivering value-based care. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. MMS Observations of Electron-Scale Filamentary Currents in the Reconnection Exhaust and Near the X Line

    Science.gov (United States)

    Phan, T. D.; Eastwood, J. P.; Cassak, P. A.; Oieroset, M.; Gosling, J. T.; Gershman, D. J.; Mozer, F. S.; Shay, M. A.; Fujimoto, M.; Daughton, W.; hide

    2016-01-01

    We report Magnetospheric Multiscale observations of macroscopic and electron-scale current layers in asymmetric reconnection. By intercomparing plasma, magnetic, and electric field data at multiple crossings of a reconnecting magnetopause on 22 October 2015, when the average interspacecraft separation was approximately 10 km, we demonstrate that the ion and electron moments are sufficiently accurate to provide reliable current density measurements at 30ms cadence. These measurements, which resolve current layers narrower than the interspacecraft separation, reveal electron-scale filamentary Hall currents and electron vorticity within the reconnection exhaust far downstream of the X line and even in the magnetosheath. Slightly downstream of the X line, intense (up to 3 µA/m2) electron currents, a super-Alfvenic outflowing electron jet, and nongyrotropic crescent shape electron distributions were observed deep inside the ion-scale magnetopause current sheet and embedded in the ion diffusion region. These characteristics are similar to those attributed to the electron dissipation/diffusion region around the X line.

  20. Pilot-scale test for electron beam purification of flue gas from coal-combustion boiler

    Science.gov (United States)

    Namba, Hideki; Tokunaga, Okihiro; Hashimoto, Shoji; Tanaka, Tadashi; Ogura, Yoshimi; Doi, Yoshitaka; Aoki, Shinji; Izutsu, Masahiro

    1995-09-01

    A pilot-scale test for electron beam treatment of flue gas (12,000m3N/hr) from coal-fired boiler was conducted by Japan Atomic Energy Research Institute, Chubu Electric Power Company and Ebara Corporation, in the site of Shin-Nagoya Thermal Power Plant in Nagoya, Japan. During 14 months operation, it was proved that the method is possible to remove SO2 and NOX simultaneously in wide concentration range of SO2 (250-2,000ppm) and NOX (140-240ppm) with higher efficiency than the conventional methods, with appropriate operation conditions (dose, temperature etc.). The pilot plant was easily operated with well controllability and durability, and was operated for long period of time without serious problems. The byproduct, ammonium sulfate and ammonium nitrate, produced by the treatment was proved to be a nitrogenous fertilizer with excellent quality.

  1. The suitability of gray-scale electronic readers for dermatology journals.

    Science.gov (United States)

    Choi, Jae Eun; Kim, Dai Hyun; Seo, Soo Hong; Kye, Young Chul; Ahn, Hyo Hyun

    2014-12-01

    The rapid development of information and communication technology has replaced traditional books by electronic versions. Most print dermatology journals have been replaced with electronic journals (e-journals), which are readily used by clinicians and medical students. The objectives of this study were to determine whether e-readers are appropriate for reading dermatology journals, to conduct an attitude study of both medical personnel and students, and to find a way of improving e-book use in the field of dermatology. All articles in the Korean Journal of Dermatology published from January 2010 to December 2010 were utilized in this study. Dermatology house officers, student trainees in their fourth year of medical school, and interns at Korea University Medical Center participated in the study. After reading the articles with Kindle 2, their impressions and evaluations were recorded using a questionnaire with a 5-point Likert scale. The results demonstrated that gray-scale e-readers might not be suitable for reading dermatology journals, especially for case reports compared to the original articles. Only three of the thirty-one respondents preferred e-readers to printed papers. The most common suggestions from respondents to encourage usage of e-books in the field of dermatology were the introduction of a color display, followed by the use of a touch screen system, a cheaper price, and ready-to-print capabilities. In conclusion, our study demonstrated that current e-readers might not be suitable for reading dermatology journals. However, they may be utilized in selected situations according to the type and topic of the papers.

  2. Universal scaling relations for the energies of many-electron Hooke atoms

    Science.gov (United States)

    Odriazola, A.; Solanpää, J.; Kylänpää, I.; González, A.; Räsänen, E.

    2017-04-01

    A three-dimensional harmonic oscillator consisting of N ≥2 Coulomb-interacting charged particles, often called a (many-electron) Hooke atom, is a popular model in computational physics for, e.g., semiconductor quantum dots and ultracold ions. Starting from Thomas-Fermi theory, we show that the ground-state energy of such a system satisfies a nontrivial relation: Eg s=ω N4 /3fg s(β N1 /2) , where ω is the oscillator strength, β is the ratio between Coulomb and oscillator characteristic energies, and fg s is a universal function. We perform extensive numerical calculations to verify the applicability of the relation. In addition, we show that the chemical potentials and addition energies also satisfy approximate scaling relations. In all cases, analytic expressions for the universal functions are provided. The results have predictive power in estimating the key ground-state properties of the system in the large-N limit, and can be used in the development of approximative methods in electronic structure theory.

  3. Bringing about matrix sparsity in linear-scaling electronic structure calculations.

    Science.gov (United States)

    Rubensson, Emanuel H; Rudberg, Elias

    2011-05-01

    The performance of linear-scaling electronic structure calculations depends critically on matrix sparsity. This article gives an overview of different strategies for removal of small matrix elements, with emphasis on schemes that allow for rigorous control of errors. In particular, a novel scheme is proposed that has significantly smaller computational overhead compared with the Euclidean norm-based truncation scheme of Rubensson et al. (J Comput Chem 2009, 30, 974) while still achieving the desired asymptotic behavior required for linear scaling. Small matrix elements are removed while ensuring that the Euclidean norm of the error matrix stays below a desired value, so that the resulting error in the occupied subspace can be controlled. The efficiency of the new scheme is investigated in benchmark calculations for water clusters including up to 6523 water molecules. Furthermore, the foundation of matrix sparsity is investigated. This includes a study of the decay of matrix element magnitude with distance between basis function centers for different molecular systems and different methods. The studied methods include Hartree–Fock and density functional theory using both pure and hybrid functionals. The relation between band gap and decay properties of the density matrix is also discussed. Copyright © 2010 Wiley Periodicals, Inc.

  4. Combining morphology, scanning electron microscopy, and molecular phylogeny to evaluate the taxonomic power of scales in genus Aphanius Nardo, 1827 (Teleostei: Cyprinodontidae

    Directory of Open Access Journals (Sweden)

    Teimori Azad

    2017-06-01

    Full Text Available Scale morphology and its structural details were studied with morphometry, geometric morphometrics, and scanning electron microscopy in five Iranian Aphanius species and examined comparatively with molecular phylogeny. Scales were cycloid and circular in A. farsicus Teimori, Esmaeili & Reichenbacher and A. vladykovi Coad, cycloid and polygonal in A. isfahanensis Hrbek, Keivany & Coad and A. sophiae (Heckel, and were spined and polygonal in A. dispar Rüppell. Univariate analysis indicated that the relative length of anterior margin of radii played a significant role in the separation of some species studied (P < 0.05. Canonical Variates Analysis (CVA based on seven landmarks showed clear separation between the Iranian inland and inland-related Aphanius species (IIRAS group (four species and the brackish water species (A. dispar. The lepidonts were conical in the IIRAS group with the exception of A. isfahanensis (rounded and were rounded in A. dispar. Based on the basal position of the brackish water Aphanius species in the phylogenetic trees of the genus Aphanius, it can be assumed that the presence of rounded lepidonts was a primary state in their scales or is the result of convergent evolution. Also, the polygonal state in the scales of Aphanius species was a primitive shared character state.

  5. Large-field electron imaging and X-ray elemental mapping unveil the morphology, structure, and fractal features of a Cretaceous fossil at the centimeter scale.

    Science.gov (United States)

    Oliveira, Naiara C; Silva, João H; Barros, Olga A; Pinheiro, Allysson P; Santana, William; Saraiva, Antônio A F; Ferreira, Odair P; Freire, Paulo T C; Paula, Amauri J

    2015-10-06

    We used here a scanning electron microscopy approach that detected backscattered electrons (BSEs) and X-rays (from ionization processes) along a large-field (LF) scan, applied on a Cretaceous fossil of a shrimp (area ∼280 mm(2)) from the Araripe Sedimentary Basin. High-definition LF images from BSEs and X-rays were essentially generated by assembling thousands of magnified images that covered the whole area of the fossil, thus unveiling morphological and compositional aspects at length scales from micrometers to centimeters. Morphological features of the shrimp such as pleopods, pereopods, and antennae located at near-surface layers (undetected by photography techniques) were unveiled in detail by LF BSE images and in calcium and phosphorus elemental maps (mineralized as hydroxyapatite). LF elemental maps for zinc and sulfur indicated a rare fossilization event observed for the first time in fossils from the Araripe Sedimentary Basin: the mineralization of zinc sulfide interfacing to hydroxyapatite in the fossil. Finally, a dimensional analysis of the phosphorus map led to an important finding: the existence of a fractal characteristic (D = 1.63) for the hydroxyapatite-matrix interface, a result of physical-geological events occurring with spatial scale invariance on the specimen, over millions of years.

  6. Potential up-scaling of inkjet-printed devices for logical circuits in flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Kalyan Yoti, E-mail: kalyan-yoti.mitra@mb.tu-chemnitz.de, E-mail: enrico.sowade@mb.tu-chemnitz.de; Sowade, Enrico, E-mail: kalyan-yoti.mitra@mb.tu-chemnitz.de, E-mail: enrico.sowade@mb.tu-chemnitz.de [Technische Universität Chemnitz, Department of Digital Printing and Imaging Technology, Chemnitz (Germany); Martínez-Domingo, Carme [Printed Microelectronics Group, CAIAC, Universitat Autònoma de Barcelona, Bellaterra, Spain and Nanobioelectronics and Biosensors Group, Catalan Institute of Nanotechnology (ICN), Universitat Autònoma de Barcelona, Bellaterra, Catalonia (Spain); Ramon, Eloi, E-mail: eloi.ramon@uab.cat [Printed Microelectronics Group, CAIAC, Universitat Autònoma de Barcelona, Bellaterra (Spain); Nanobioelectronics and Biosensors Group, Catalan Institute of Nanotechnology (ICN), Universitat Autònoma de Barcelona, Bellaterra, Catalonia (Spain); Carrabina, Jordi, E-mail: jordi.carrabina@uab.cat [Printed Microelectronics Group, CAIAC, Universitat Autònoma de Barcelona, Bellaterra (Spain); Gomes, Henrique Leonel, E-mail: hgomes@ualg.pt [Universidade do Algarve, Institute of Telecommunications, Faro (Portugal); Baumann, Reinhard R., E-mail: reinhard.baumann@mb.tu-chemnitz.de [Technische Universität Chemnitz, Department of Digital Printing and Imaging Technology, Chemnitz (Germany); Fraunhofer Institute for Electronic Nano Systems (ENAS), Department of Printed Functionalities, Chemnitz (Germany)

    2015-02-17

    Inkjet Technology is often mis-believed to be a deposition/patterning technology which is not meant for high fabrication throughput in the field of printed and flexible electronics. In this work, we report on the 1) printing, 2) fabrication yield and 3) characterization of exemplary simple devices e.g. capacitors, organic transistors etc. which are the basic building blocks for logical circuits. For this purpose, printing is performed first with a Proof of concept Inkjet printing system Dimatix Material Printer 2831 (DMP 2831) using 10 pL small print-heads and then with Dimatix Material Printer 3000 (DMP 3000) using 35 pL industrial print-heads (from Fujifilm Dimatix). Printing at DMP 3000 using industrial print-heads (in Sheet-to-sheet) paves the path towards industrialization which can be defined by printing in Roll-to-Roll format using industrial print-heads. This pavement can be termed as 'Bridging Platform'. This transfer to 'Bridging Platform' from 10 pL small print-heads to 35 pL industrial print-heads help the inkjet-printed devices to evolve on the basis of functionality and also in form of up-scaled quantities. The high printed quantities and yield of inkjet-printed devices justify the deposition reliability and potential to print circuits. This reliability is very much desired when it comes to printing of circuits e.g. inverters, ring oscillator and any other planned complex logical circuits which require devices e.g. organic transistors which needs to get connected in different staged levels. Also, the up-scaled inkjet-printed devices are characterized and they reflect a domain under which they can work to their optimal status. This status is much wanted for predicting the real device functionality and integration of them into a planned circuit.

  7. Potential up-scaling of inkjet-printed devices for logical circuits in flexible electronics

    Science.gov (United States)

    Mitra, Kalyan Yoti; Sowade, Enrico; Martínez-Domingo, Carme; Ramon, Eloi; Carrabina, Jordi; Gomes, Henrique Leonel; Baumann, Reinhard R.

    2015-02-01

    Inkjet Technology is often mis-believed to be a deposition/patterning technology which is not meant for high fabrication throughput in the field of printed and flexible electronics. In this work, we report on the 1) printing, 2) fabrication yield and 3) characterization of exemplary simple devices e.g. capacitors, organic transistors etc. which are the basic building blocks for logical circuits. For this purpose, printing is performed first with a Proof of concept Inkjet printing system Dimatix Material Printer 2831 (DMP 2831) using 10 pL small print-heads and then with Dimatix Material Printer 3000 (DMP 3000) using 35 pL industrial print-heads (from Fujifilm Dimatix). Printing at DMP 3000 using industrial print-heads (in Sheet-to-sheet) paves the path towards industrialization which can be defined by printing in Roll-to-Roll format using industrial print-heads. This pavement can be termed as "Bridging Platform". This transfer to "Bridging Platform" from 10 pL small print-heads to 35 pL industrial print-heads help the inkjet-printed devices to evolve on the basis of functionality and also in form of up-scaled quantities. The high printed quantities and yield of inkjet-printed devices justify the deposition reliability and potential to print circuits. This reliability is very much desired when it comes to printing of circuits e.g. inverters, ring oscillator and any other planned complex logical circuits which require devices e.g. organic transistors which needs to get connected in different staged levels. Also, the up-scaled inkjet-printed devices are characterized and they reflect a domain under which they can work to their optimal status. This status is much wanted for predicting the real device functionality and integration of them into a planned circuit.

  8. Potential up-scaling of inkjet-printed devices for logical circuits in flexible electronics

    International Nuclear Information System (INIS)

    Mitra, Kalyan Yoti; Sowade, Enrico; Martínez-Domingo, Carme; Ramon, Eloi; Carrabina, Jordi; Gomes, Henrique Leonel; Baumann, Reinhard R.

    2015-01-01

    Inkjet Technology is often mis-believed to be a deposition/patterning technology which is not meant for high fabrication throughput in the field of printed and flexible electronics. In this work, we report on the 1) printing, 2) fabrication yield and 3) characterization of exemplary simple devices e.g. capacitors, organic transistors etc. which are the basic building blocks for logical circuits. For this purpose, printing is performed first with a Proof of concept Inkjet printing system Dimatix Material Printer 2831 (DMP 2831) using 10 pL small print-heads and then with Dimatix Material Printer 3000 (DMP 3000) using 35 pL industrial print-heads (from Fujifilm Dimatix). Printing at DMP 3000 using industrial print-heads (in Sheet-to-sheet) paves the path towards industrialization which can be defined by printing in Roll-to-Roll format using industrial print-heads. This pavement can be termed as 'Bridging Platform'. This transfer to 'Bridging Platform' from 10 pL small print-heads to 35 pL industrial print-heads help the inkjet-printed devices to evolve on the basis of functionality and also in form of up-scaled quantities. The high printed quantities and yield of inkjet-printed devices justify the deposition reliability and potential to print circuits. This reliability is very much desired when it comes to printing of circuits e.g. inverters, ring oscillator and any other planned complex logical circuits which require devices e.g. organic transistors which needs to get connected in different staged levels. Also, the up-scaled inkjet-printed devices are characterized and they reflect a domain under which they can work to their optimal status. This status is much wanted for predicting the real device functionality and integration of them into a planned circuit

  9. Virtual rough samples to test 3D nanometer-scale scanning electron microscopy stereo photogrammetry.

    Science.gov (United States)

    Villarrubia, J S; Tondare, V N; Vladár, A E

    2016-01-01

    The combination of scanning electron microscopy for high spatial resolution, images from multiple angles to provide 3D information, and commercially available stereo photogrammetry software for 3D reconstruction offers promise for nanometer-scale dimensional metrology in 3D. A method is described to test 3D photogrammetry software by the use of virtual samples-mathematical samples from which simulated images are made for use as inputs to the software under test. The virtual sample is constructed by wrapping a rough skin with any desired power spectral density around a smooth near-trapezoidal line with rounded top corners. Reconstruction is performed with images simulated from different angular viewpoints. The software's reconstructed 3D model is then compared to the known geometry of the virtual sample. Three commercial photogrammetry software packages were tested. Two of them produced results for line height and width that were within close to 1 nm of the correct values. All of the packages exhibited some difficulty in reconstructing details of the surface roughness.

  10. GPU-accelerated brain connectivity reconstruction and visualization in large-scale electron micrographs

    KAUST Repository

    Jeong, Wonki

    2011-01-01

    This chapter introduces a GPU-accelerated interactive, semiautomatic axon segmentation and visualization system. Two challenging problems have been addressed: the interactive 3D axon segmentation and the interactive 3D image filtering and rendering of implicit surfaces. The reconstruction of neural connections to understand the function of the brain is an emerging and active research area in neuroscience. With the advent of high-resolution scanning technologies, such as 3D light microscopy and electron microscopy (EM), reconstruction of complex 3D neural circuits from large volumes of neural tissues has become feasible. Among them, only EM data can provide sufficient resolution to identify synapses and to resolve extremely narrow neural processes. These high-resolution, large-scale datasets pose challenging problems, for example, how to process and manipulate large datasets to extract scientifically meaningful information using a compact representation in a reasonable processing time. The running time of the multiphase level set segmentation method has been measured on the CPU and GPU. The CPU version is implemented using the ITK image class and the ITK distance transform filter. The numerical part of the CPU implementation is similar to the GPU implementation for fair comparison. The main focus of this chapter is introducing the GPU algorithms and their implementation details, which are the core components of the interactive segmentation and visualization system. © 2011 Copyright © 2011 NVIDIA Corporation and Wen-mei W. Hwu Published by Elsevier Inc. All rights reserved..

  11. Supernova relic electron neutrinos and anti-neutrinos in future large-scale observatories

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, C.; Welzel, J. [Institut de Physique Nuclueaire, 91 - Orsay (France)

    2007-07-01

    We investigate the signal from supernova relic neutrinos in future large scale observatories, such as MEMPHYS (UNO, Hyper-K), LENA and GLACIER, at present under study. We discuss that complementary information might be gained from the observation of supernova relic electron antineutrinos and neutrinos using the scattering on protons on one hand, and on nuclei such as oxygen, carbon or argon on the other hand. When determining the relic neutrino fluxes we also include, for the first time, the coupling of the neutrino magnetic moment to magnetic fields within the core collapse supernova. We present numerical results on both the relic {nu}{sub e} and {nu}-bar{sub e} fluxes and on the number of events for {nu}{sub e} + C{sup 12}, {nu}{sub e} + O{sup 16}, {nu}{sub e} + Ar{sup 40} and {nu}-bar{sub e} + p for various oscillation scenarios. The observation of supernova relic neutrinos might provide us with unique information on core-collapse supernova explosions, on the star formation history and on neutrino properties, that still remain unknown. (authors)

  12. Effects of magnetic order on the superconducting length scales and critical fields in single crystal ErNi2B2C

    DEFF Research Database (Denmark)

    Gammel, P.L.; Barber, B.P.; Ramirez, A.P.

    1999-01-01

    The flux line form factor in small angle neutron scattering and transport data determines the superconducting length scares and critical fields in single crystal ErNi2B2C. For H parallel to c, the coherence length xi increases and the penetration depth lambda decreases when crossing T-N = 6.0 K......, the Neel transition. The critical fields show corresponding anomalies near T-N. For H perpendicular to c, the fourfold modulation of the upper critical field H-c2 is strongly temperature dependent, changing sign near T-N, and can be modeled using the anisotropy of the sublattice magnetization....

  13. Reducing the item number to obtain the same-length self-assessment scales: a systematic approach using result of graphical loglinear rasch models

    DEFF Research Database (Denmark)

    Nielsen, Tine; Kreiner, Svend

    2011-01-01

    . For self-assessment, self-scoring and self-interpretational purposes it is deemed prudent that subscales measuring comparable constructs are of the same item length. Consequently, in order to obtain a self-assessment version of the R-D-LSI with an equal number of items in each subscale, a systematic...... approach to item reduction based on results of graphical loglinear Rasch modeling (GLLRM) was designed. This approach was then used to reduce the number of items in the subscales of the R-D-LSI which had an item-length of more than seven items, thereby obtaining the Danish Self-Assessment Learning Styles...

  14. Inexpensive read-out for coincident electron spectroscopy with a transmission electron microscope at nanometer scale using micro channel plates and multistrip anodes

    International Nuclear Information System (INIS)

    Hollander, R.W.; Bom, V.R.; Van Eijk, C.W.E.; Faber, J.S.; Hoevers, H.; Kruit, P.

    1994-01-01

    The elemental composition of a sample at nanometer scale is determined by measurement of the characteristic energy of Auger electrons, emitted in coincidence with incoming primary electrons from a microbeam in a scanning transmission electron microscope (STEM). Single electrons are detected with position sensitive detectors, consisting of MicroChannel Plates (MCP) and MultiStrip Anodes (MSA), one for the energy of the Auger electrons (Auger-detector) and one for the energy loss of primary electrons (EELS-detector). The MSAs are sensed with LeCroy 2735DC preamplifiers. The fast readout is based on LeCroy's PCOS III system. On the detection of a coincidence (Event) energy data of Auger and EELS are combined with timing data to an Event word. Event words are stored in list mode in a VME memory module. Blocks of Event words are scanned by transputers in VME and two-dimensional energy histograms are filled using the timing information to obtain a maximal true/accidental ratio. The resulting histograms are stored on disk of a PC-386, which also controls data taking. The system is designed to handle 10 5 Events per second, 90% of which are accidental. In the histograms the ''true'' to ''accidental'' ratio will be 5. The dead time is 15%. ((orig.))

  15. Detour factors in water and plastic phantoms and their use for range and depth scaling in electron-beam dosimetry

    International Nuclear Information System (INIS)

    Fernandez-Varea, J.M.; Andreo, P.; Tabata, T.

    1996-01-01

    Average penetration depths and detour factors of 1-50 MeV electrons in water and plastic materials have been computed by means of analytical calculation, within the continuous-slowing-down approximation and including multiple scattering, and using the Monte Carlo codes ITS and PENELOPE. Results are compared to detour factors from alternative definitions previously proposed in the literature. Different procedures used in low-energy electron-beam dosimetry to convert ranges and depths measured in plastic phantoms into water-equivalent ranges and depths are analysed. A new simple and accurate scaling method, based on Monte Carlo-derived ratios of average electron penetration depths and thus incorporating the effect of multiple scattering, is presented. Data are given for most plastics used in electron-beam dosimetry together with a fit which extends the method to any other low-Z plastic material. A study of scaled depth - dose curves and mean energies as a function of depth for some plastics of common usage shows that the method improves the consistency and results of other scaling procedures in dosimetry with electron beams at therapeutic energies. (author)

  16. Comparative evaluation of the length of resin tags, viscosity and microleakage of pit and fissure sealants - an in vitro scanning electron microscope study

    Directory of Open Access Journals (Sweden)

    A R Prabhakar

    2011-01-01

    Full Text Available Introduction : In this era of preventive dentistry, many techniques are available for prevention of caries, such as plaque control, use of systemic and local fluorides and pit and fissure sealants. The rationale of pit and fissure sealants is that, when they are applied into the caries prone fissures, they penetrate and seal them from the oral environment. This study aims to correlate the relationship between the viscosity of the sealant, resin tag length and microleakage. Materials and Methods : 30 third molars were selected for study. The teeth were randomly divided into 3 groups. Group E: Embrace wetbond, H: Helioseal, G: Guardian seal. Teeth were cleaned with pumice prophylaxis and pretreated with acid etching and bonding agent. The respective pit and fissure sealants were applied. Teeth were placed in 1% methylene blue dye and sectioned mesio-distally into two halves. These were used to assess the microleakage using stereomicroscope and resin tag length using SEM. Viscosity was assessed using Brooke′s field viscometer. Results : Viscosity was lowest for Embrace wetbond and highest for Guardian seal. Microleakage scores were highest with Guardian seal and lowest with Embrace wetbond. Resin tag lengths were longer with Embrace wetbond as compared to other groups. There is a definite negative correlation between viscosity, resin tag length and microleakage. Lower the viscosity, the longer were the resin tags and the microleakage decreased. Embrace wetbond pit and fissure sealant had lowest viscosity, longest resin tag length and lowest microleakage scores. Conclusion : Embrace wetbond appears to be compatible with residual moisture and ideal for use in children, where isolation is a problem.

  17. Minerals and aligned collagen fibrils in tilapia fish scales: structural analysis using dark-field and energy-filtered transmission electron microscopy and electron tomography.

    Science.gov (United States)

    Okuda, Mitsuhiro; Ogawa, Nobuhiro; Takeguchi, Masaki; Hashimoto, Ayako; Tagaya, Motohiro; Chen, Song; Hanagata, Nobutaka; Ikoma, Toshiyuki

    2011-10-01

    The mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale.

  18. A global scale picture of ionospheric peak electron density changes during geomagnetic storms

    Science.gov (United States)

    Kumar, Vickal V.; Parkinson, Murray L.

    2017-04-01

    Changes in ionospheric plasma densities can affect society more than ever because of our increasing reliance on communication, surveillance, navigation, and timing technology. Models struggle to predict changes in ionospheric densities at nearly all temporal and spatial scales, especially during geomagnetic storms. Here we combine a 50 year (1965-2015) geomagnetic disturbance storm time (Dst) index with plasma density measurements from a worldwide network of 132 vertical incidence ionosondes to develop a picture of global scale changes in peak plasma density due to geomagnetic storms. Vertical incidence ionosondes provide measurements of the critical frequency of the ionospheric F2 layer (foF2), a direct measure of the peak electron density (NmF2) of the ionosphere. By dissecting the NmF2 perturbations with respect to the local time at storm onset, season, and storm intensity, it is found that (i) the storm-associated depletions (negative storm effects) and enhancements (positive storm effects) are driven by different but related physical mechanisms, and (ii) the depletion mechanism tends to dominate over the enhancement mechanism. The negative storm effects, which are detrimental to HF radio links, are found to start immediately after geomagnetic storm onset in the nightside high-latitude ionosphere. The depletions in the dayside high-latitude ionosphere are delayed by a few hours. The equatorward expansion of negative storm effects is found to be regulated by storm intensity (farthest equatorward and deepest during intense storms), season (largest in summer), and time of day (generally deeper on the nightside). In contrast, positive storm effects typically occur on the dayside midlatitude and low-latitude ionospheric regions when the storms are in the main phase, regardless of the season. Closer to the magnetic equator, moderate density enhancements last up to 40 h during the recovery phase of equinox storms, regardless of the local time. Strikingly, high

  19. Scales

    Science.gov (United States)

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that ...

  20. Electronic energy spectrum structure of the two-dimensional Fibonacci quasilattices with three kinds of atoms and one kind of bond length

    Science.gov (United States)

    Xiang-bo, Yang; You-yan, Liu

    1995-07-01

    After establishing the method of constructing a class of two-dimensional Fibonacci quasilattices, by means of a decomposition-decimation method based on the renormalization-group technique, we have studied the rules of energy spectrum splitting for the two-dimensional Fibonacci quasilattices in the framework of single-electron tight-binding on-site model. Analytic results show that there are only six kinds of clusters and the electronic energy band consists of nine subbands. For the higher hierarchy of the spectrum, instead of the on-site model, the transfer model should be used, the electronic energy spectra split as type F. The analytic results are confirmed by numerical simulations.

  1. VLSI electronics microstructure science

    CERN Document Server

    1981-01-01

    VLSI Electronics: Microstructure Science, Volume 3 evaluates trends for the future of very large scale integration (VLSI) electronics and the scientific base that supports its development.This book discusses the impact of VLSI on computer architectures; VLSI design and design aid requirements; and design, fabrication, and performance of CCD imagers. The approaches, potential, and progress of ultra-high-speed GaAs VLSI; computer modeling of MOSFETs; and numerical physics of micron-length and submicron-length semiconductor devices are also elaborated. This text likewise covers the optical linewi

  2. MARBLE (Multiple Antenna Radio-interferometry for Baseline Length Evaluation): Development of a Compact VLBI System for Calibrating GNSS and Electronic Distance Measurement Devices

    Science.gov (United States)

    Ichikawa, R.; Ishii, A.; Takiguchi, H.; Kimura, M.; Sekido, M.; Takefuji, K.; Ujihara, H.; Hanado, Y.; Koyama, Y.; Kondo, T.; Kurihara, S.; Kokado, K.; Kawabata, R.; Nozawa, K.; Mukai, Y.; Kuroda, J.; Ishihara, M.; Matsuzaka, S.

    2012-12-01

    We are developing a compact VLBI system with a 1.6-m diameter aperture dish in order to provide reference baseline lengths for calibration. The reference baselines are used to validate surveying instruments such as GPS and EDM and is maintained by the Geospatial Information Authority of Japan (GSI). The compact VLBI system will be installed at both ends of the reference baseline. Since the system is not sensitive enough to detect fringes between the two small dishes, we have designed a new observation concept including one large dish station. We can detect two group delays between each compact VLBI system and the large dish station based on conventional VLBI measurement. A group delay between the two compact dishes can be indirectly calculated using a simple equation. We named the idea "Multiple Antenna Radio-interferometry for Baseline Length Evaluation", or MARBLE system. The compact VLBI system is easy transportable and consists of the compact dish, a new wide-band front-end system, azimuth and elevation drive units, an IF down-converter unit, an antenna control unit (ACU), a counterweight, and a monument pillar. Each drive unit is equipped with a zero-backlash harmonic drive gearing component. A monument pillar is designed to mount typical geodetic GNSS antennas easily and an offset between the GNSS antenna reference point. The location of the azimuth-elevation crossing point of the VLBI system is precisely determined with an uncertainty of less than 0.2 mm. We have carried out seven geodetic VLBI experiments on the Kashima-Tsukuba baseline (about 54 km) using the two prototypes of the compact VLBI system between December 2009 and December 2010. The average baseline length and repeatability of the experiments is 54184874.0 ± 2.4 mm. The results are well consistent with those obtained by GPS measurements. In addition, we are now planning to use the compact VLBI system for precise time and frequency comparison between separated locations.

  3. Anatomy of Bond Formation. Bond Length Dependence on the Extent of Electron Sharing in Chemical Bonds from the Analysis of Domain-Averaged Fermi holes.

    Czech Academy of Sciences Publication Activity Database

    Ponec, Robert; Cooper, D.L.

    2007-01-01

    Roč. 135, č. 7, (2007) , s. 31-41 ISSN 0301-7249 R&D Projects: GA AV ČR(CZ) IAA4072006 Institutional research plan: CEZ:AV0Z40720504 Keywords : electron sharing * chemical bonds * domain averaged fermi holes Subject RIV: CF - Physical ; Theoretical Chemistry

  4. Hot-electron production and suprathermal heat flux scaling with laser intensity from the two-plasmon–decay instability

    International Nuclear Information System (INIS)

    Vu, H. X.; DuBois, D. F.; Myatt, J. F.; Russell, D. A.

    2012-01-01

    The fully kinetic reduced-description particle-in-cell (RPIC) method has been applied to simulations of two-plasmon–decay (TPD) instability, driven by crossed laser beams, in an inhomogeneous plasma for parameters consistent with recent direct-drive experiments related to laser-driven inertial fusion. The nonlinear saturated state is characterized by very spiky electric fields, with Langmuir cavitation occurring preferentially inside density channels produced by the ponderomotive beating of the crossed laser beams and the primary TPD Langmuir waves (LWs). The heated electron distribution function is, in all cases, bi-Maxwellian, with instantaneous hot-electron temperatures in the range 60–100 keV. The net hot-electron energy flux out of the system is a small fraction (∼1% to 2%) of the input laser intensity in these simulations. Scalings of the hot-electron temperature and suprathermal heat flux as functions of the laser intensity are obtained numerically from RPIC simulations. These simulations lead to the preliminary conclusion that Langmuir cavitation and collapse provide dissipation by producing suprathermal electrons, which stabilize the system in saturation and drive the LW spectrum to the small dissipation scales at the Landau cutoff. The Langmuir turbulence originates at an electron density 0.241× the laser's critical density, where the crossed laser beams excite a “triad” mode—a common forward LW plus a pair of backward LWs. Remnants of this “triad” evolve in k-space and dominate the time-averaged energy spectrum. At times exceeding 10 ps, the excited Langmuir turbulence spreads toward lower densities. Comparisons of RPIC simulations with the extended Zakharov model are presented in appropriate regimes, and the necessary requirements for the validity of a quasi-linear Zakharov model (where the spatially averaged electron-velocity distribution is evolved) are verified by RPIC simulation results.

  5. Spin-dependent hot electron transport and nano-scale magnetic imaging of metal/Si structures

    International Nuclear Information System (INIS)

    Kaidatzis, A.

    2008-10-01

    In this work, we experimentally study spin-dependent hot electron transport through metallic multilayers (ML), containing single magnetic layers or 'spin-valve' (SV) tri layers. For this purpose, we have set up a ballistic electron emission microscope (BEEM), a three terminal extension of scanning tunnelling microscopy on metal/semiconductor structures. The implementation of the BEEM requirements into the sample fabrication is described in detail. Using BEEM, the hot electron transmission through the ML's was systematically measured in the energy range 1-2 eV above the Fermi level. By varying the magnetic layer thickness, the spin-dependent hot electron attenuation lengths were deduced. For the materials studied (Co and NiFe), they were compared to calculations and other determinations in the literature. For sub-monolayer thickness, a non uniform morphology was observed, with large transmission variations over sub-nano-metric distances. This effect is not yet fully understood. In the imaging mode, the magnetic configurations of SV's were studied under field, focusing on 360 degrees domain walls in Co layers. The effects of the applied field intensity and direction on the DW structure were studied. The results were compared quantitatively to micro-magnetic calculations, with an excellent agreement. From this, it can be shown that the BEEM magnetic resolution is better than 50 nm. (author)

  6. Optimal smoothing length scale for actuator line models of wind turbine blades based on Gaussian body force distribution: Wind energy, actuator line model

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Tossas, L. A. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore 21218 MD USA; Churchfield, M. J. [National Renewable Energy Laboratory, Golden 80401 CO USA; Meneveau, C. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore 21218 MD USA

    2017-01-20

    The actuator line model (ALM) is a commonly used method to represent lifting surfaces such as wind turbine blades within large-eddy simulations (LES). In the ALM, the lift and drag forces are replaced by an imposed body force that is typically smoothed over several grid points using a Gaussian kernel with some prescribed smoothing width e. To date, the choice of e has most often been based on numerical considerations related to the grid spacing used in LES. However, especially for finely resolved LES with grid spacings on the order of or smaller than the chord length of the blade, the best choice of e is not known. In this work, a theoretical approach is followed to determine the most suitable value of e, based on an analytical solution to the linearized inviscid flow response to a Gaussian force. We find that the optimal smoothing width eopt is on the order of 14%-25% of the chord length of the blade, and the center of force is located at about 13%-26% downstream of the leading edge of the blade for the cases considered. These optimal values do not depend on angle of attack and depend only weakly on the type of lifting surface. It is then shown that an even more realistic velocity field can be induced by a 2-D elliptical Gaussian lift-force kernel. Some results are also provided regarding drag force representation.

  7. Influence of the ratio of gate length to drain-to-source distance on the electron mobility in AlGaN/AlN/GaN heterostructure field-effect transistors.

    Science.gov (United States)

    Lv, Yuanjie; Lin, Zhaojun; Meng, Lingguo; Luan, Chongbiao; Cao, Zhifang; Yu, Yingxia; Feng, Zhihong; Wang, Zhanguo

    2012-08-03

    Using measured capacitance-voltage curves with different gate lengths and current-voltage characteristics at low drain-to-source voltage for the AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) of different drain-to-source distances, we found that the dominant scattering mechanism in AlGaN/AlN/GaN HFETs is determined by the ratio of gate length to drain-to-source distance. For devices with small ratio (here, less than 1/2), polarization Coulomb field scattering dominates electron mobility. However, for devices with large ratio (here, more than 1/2), longitudinal optical (LO) phonon scattering and interface roughness scattering are dominant. The reason is closely related to polarization Coulomb field scattering.

  8. Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics.

    Science.gov (United States)

    Aoki, Koh; Yano, Kentaro; Suzuki, Ayako; Kawamura, Shingo; Sakurai, Nozomu; Suda, Kunihiro; Kurabayashi, Atsushi; Suzuki, Tatsuya; Tsugane, Taneaki; Watanabe, Manabu; Ooga, Kazuhide; Torii, Maiko; Narita, Takanori; Shin-I, Tadasu; Kohara, Yuji; Yamamoto, Naoki; Takahashi, Hideki; Watanabe, Yuichiro; Egusa, Mayumi; Kodama, Motoichiro; Ichinose, Yuki; Kikuchi, Mari; Fukushima, Sumire; Okabe, Akiko; Arie, Tsutomu; Sato, Yuko; Yazawa, Katsumi; Satoh, Shinobu; Omura, Toshikazu; Ezura, Hiroshi; Shibata, Daisuke

    2010-03-30

    The Solanaceae family includes several economically important vegetable crops. The tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. Recently, a number of tomato resources have been developed in parallel with the ongoing tomato genome sequencing project. In particular, a miniature cultivar, Micro-Tom, is regarded as a model system in tomato genomics, and a number of genomics resources in the Micro-Tom-background, such as ESTs and mutagenized lines, have been established by an international alliance. To accelerate the progress in tomato genomics, we developed a collection of fully-sequenced 13,227 Micro-Tom full-length cDNAs. By checking redundant sequences, coding sequences, and chimeric sequences, a set of 11,502 non-redundant full-length cDNAs (nrFLcDNAs) was generated. Analysis of untranslated regions demonstrated that tomato has longer 5'- and 3'-untranslated regions than most other plants but rice. Classification of functions of proteins predicted from the coding sequences demonstrated that nrFLcDNAs covered a broad range of functions. A comparison of nrFLcDNAs with genes of sixteen plants facilitated the identification of tomato genes that are not found in other plants, most of which did not have known protein domains. Mapping of the nrFLcDNAs onto currently available tomato genome sequences facilitated prediction of exon-intron structure. Introns of tomato genes were longer than those of Arabidopsis and rice. According to a comparison of exon sequences between the nrFLcDNAs and the tomato genome sequences, the frequency of nucleotide mismatch in exons between Micro-Tom and the genome-sequencing cultivar (Heinz 1706) was estimated to be 0.061%. The collection of Micro-Tom nrFLcDNAs generated in this study will serve as a valuable genomic tool for plant biologists to bridge the gap between basic and applied studies. The nrFLcDNA sequences will help annotation of the tomato whole-genome sequence and aid in tomato functional

  9. CMOS compatible route for GaAs based large scale flexible and transparent electronics

    KAUST Repository

    Nour, Maha A.

    2014-08-01

    Flexible electronics using gallium arsenide (GaAs) for nano-electronics with high electron mobility and optoelectronics with direct band gap are attractive for many applications. Here we describe a state-of-the-art CMOS compatible batch fabrication process of transforming traditional electronic circuitry into large-area flexible, semitransparent platform. We show a simple release process for peeling off 200 nm of GaAs from 200 nm GaAs/300 nm AlAs stack on GaAs substrate using diluted hydrofluoric acid (HF). This process enables releasing a single top layer compared to peeling off all layers with small sizes at the same time. This is done utilizing a network of release holes which contributes to the better transparency (45 % at 724 nm wavelength) observed.

  10. Solid electron sources for the energy scale monitoring in the KATRIN experiment

    CERN Document Server

    Zbořil, Miroslav; Vénos, D

    The KArlsruhe TRItium Neutrino (KATRIN) experiment represents a next-generation tritium $\\beta$-decay experiment designed to perform a high precision direct measurement of the electron anti-neutrino mass m($\

  11. The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission

    Science.gov (United States)

    Breuillard, H.; Le Contel, O.; Chust, T.; Berthomier, M.; Retino, A.; Turner, D. L.; Nakamura, R.; Baumjohann, W.; Cozzani, G.; Catapano, F.; Alexandrova, A.; Mirioni, L.; Graham, D. B.; Argall, M. R.; Fischer, D.; Wilder, F. D.; Gershman, D. J.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu. V.; Marklund, G.; Ergun, R. E.; Goodrich, K. A.; Ahmadi, N.; Burch, J. L.; Torbert, R. B.; Needell, G.; Chutter, M.; Rau, D.; Dors, I.; Russell, C. T.; Magnes, W.; Strangeway, R. J.; Bromund, K. R.; Wei, H.; Plaschke, F.; Anderson, B. J.; Le, G.; Moore, T. E.; Giles, B. L.; Paterson, W. R.; Pollock, C. J.; Dorelli, J. C.; Avanov, L. A.; Saito, Y.; Lavraud, B.; Fuselier, S. A.; Mauk, B. H.; Cohen, I. J.; Fennell, J. F.

    2018-01-01

    Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency ˜100 Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2fce by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.

  12. Generation and analysis of a large-scale expressed sequence tags from a full-length enriched cDNA library of Siberian tiger (Panthera tigris altaica).

    Science.gov (United States)

    Guo, Yu; Liu, Changqing; Lu, Taofeng; Liu, Dan; Bai, Chunyu; Li, Xiangchen; Ma, Yuehui; Guan, Weijun

    2014-05-15

    In this study, a full-length enriched cDNA library was successfully constructed from Siberian tiger, the world's most endangered species. The titers of primary and amplified libraries were 1.28×10(6)pfu/mL and 1.59×10(10)pfu/mL respectively. The proportion of recombinants from unamplified library was 91.3% and the average length of exogenous inserts was 1.06kb. A total of 279 individual ESTs with sizes ranging from 316 to 1258bps were then analyzed. Furthermore, 204 unigenes were successfully annotated and involved in 49 functions of the GO classification, cell (175, 85.5%), cellular process (165, 80.9%), and binding (152, 74.5%) are the dominant terms. 198 unigenes were assigned to 156 KEGG pathways, and the pathways with the most representation are metabolic pathways (18, 9.1%). The proportion pattern of each COG subcategory was similar among Panthera tigris altaica, P. tigris tigris and Homo sapiens, and general function prediction only cluster (44, 15.8%) represents the largest group, followed by translation, ribosomal structure and biogenesis (33, 11.8%), replication, recombination and repair (24, 8.6%), and only 7.2% ESTs classified as novel genes. Moreover, the recombinant plasmid pET32a-TAT-COL6A2 was constructed, coded for the Trx-TAT-COL6A2 fusion protein with two 6× His-tags in N and C-terminal. After BCA assay, the concentration of soluble Trx-TAT-COL6A2 recombinant protein was 2.64±0.18mg/mL. This library will provide a useful platform for the functional genome and transcriptome research of for the P. tigris and other felid animals in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. PubChemQC Project: A Large-Scale First-Principles Electronic Structure Database for Data-Driven Chemistry.

    Science.gov (United States)

    Nakata, Maho; Shimazaki, Tomomi

    2017-06-26

    Large-scale molecular databases play an essential role in the investigation of various subjects such as the development of organic materials, in silico drug design, and data-driven studies with machine learning. We have developed a large-scale quantum chemistry database based on first-principles methods. Our database currently contains the ground-state electronic structures of 3 million molecules based on density functional theory (DFT) at the B3LYP/6-31G* level, and we successively calculated 10 low-lying excited states of over 2 million molecules via time-dependent DFT with the B3LYP functional and the 6-31+G* basis set. To select the molecules calculated in our project, we referred to the PubChem Project, which was used as the source of the molecular structures in short strings using the InChI and SMILES representations. Accordingly, we have named our quantum chemistry database project "PubChemQC" ( http://pubchemqc.riken.jp/ ) and placed it in the public domain. In this paper, we show the fundamental features of the PubChemQC database and discuss the techniques used to construct the data set for large-scale quantum chemistry calculations. We also present a machine learning approach to predict the electronic structure of molecules as an example to demonstrate the suitability of the large-scale quantum chemistry database.

  14. Strengthening effect of nano-scaled precipitates in Ta alloying layer induced by high current pulsed electron beam

    International Nuclear Information System (INIS)

    Tang, Guangze; Luo, Dian; Fan, Guohua; Ma, Xinxin; Wang, Liqin

    2017-01-01

    Highlights: • Ta alloying layer are fabricated by magnetron sputtering and high current pulsed electron beam. • Nano-scaled TaC precipitates forms within the δ-Fe grain after tempering treatment. • The mean diameter of TaC particles is about 5–8 nm. • The hardness of alloying layer increased by over 50% after formation of nano-scaled TaC particle. - Abstract: In this study, the combination of magnetron sputtering and high current pulsed electron beam are used for surface alloying treatment of Ta film on high speed steel. And the Ta alloying layer is about 6 μm. After tempering treatment, TaC phase forms in Ta alloying layer when the treated temperature is over 823 K. Through the TEM and HRTEM observation, a large amount of nano-scaled precipitates (mean diameter 5–8 nm) form within the δ-Fe grain in Ta alloying layer after tempering treatment and these nano-scaled precipitates are confirmed as TaC particles, which contribute to the strengthening effect of the surface alloying layer. The hardness of tempered alloying layer can reach to 18.1 GPa when the treated temperature is 823 K which increase by 50% comparing with the untreated steel sample before surface alloying treatment.

  15. Strengthening effect of nano-scaled precipitates in Ta alloying layer induced by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Guangze; Luo, Dian; Fan, Guohua [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin, E-mail: maxin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-05-01

    Highlights: • Ta alloying layer are fabricated by magnetron sputtering and high current pulsed electron beam. • Nano-scaled TaC precipitates forms within the δ-Fe grain after tempering treatment. • The mean diameter of TaC particles is about 5–8 nm. • The hardness of alloying layer increased by over 50% after formation of nano-scaled TaC particle. - Abstract: In this study, the combination of magnetron sputtering and high current pulsed electron beam are used for surface alloying treatment of Ta film on high speed steel. And the Ta alloying layer is about 6 μm. After tempering treatment, TaC phase forms in Ta alloying layer when the treated temperature is over 823 K. Through the TEM and HRTEM observation, a large amount of nano-scaled precipitates (mean diameter 5–8 nm) form within the δ-Fe grain in Ta alloying layer after tempering treatment and these nano-scaled precipitates are confirmed as TaC particles, which contribute to the strengthening effect of the surface alloying layer. The hardness of tempered alloying layer can reach to 18.1 GPa when the treated temperature is 823 K which increase by 50% comparing with the untreated steel sample before surface alloying treatment.

  16. The Microphysics Explorer (MPEX) Mission: A Small Explorer Mission to Investigate the Role of Small Scale Non-Linear Time Domain Structures (TDS) and Waves in the Energization of Electrons and Energy Flow in Space Plasmas.

    Science.gov (United States)

    Wygant, J. R.

    2016-12-01

    Evidence has accumulated that most energy conversion structures in space plasmas are characterized by intense small-scale size electric fields with strong parallel components, which are prime suspects in the rapid and efficient bulk acceleration of electrons. The proposed MPEX mission will provide, for the first time, 1 ms measurements of electrons capable of resolving the acceleration process due to these small-scale structures. These structures include Time Domain Structures (TDS) which are often organized into wave trains of hundreds of discrete structures propagating along magnetic fields lines. Recent measurements in the near Earth tail on auroral field lines indicate these wave trains are associated with electron acceleration in layers of strong energy flow in the form of particle energy flux and Poynting flux. Also coincident are kinetic Alfven waves which may be capable of driving the time domain structures or directly accelerating electrons. Other waves that may be important include lower hybrid wave packets, electron cyclotron waves, and large amplitude whistler waves. High time resolution field measurements show that such structures occur within dayside and tail reconnection regions, at the bow shock, at interplanetary shocks, and at other structures in the solar wind. The MPEX mission will be a multiphase mission with apogee boosts, which will explore all these regions. An array of electron ESAs will provide a 1 millisecond measurement of electron flux variations with nearly complete pitch angle coverage over a programmable array of selected energy channels. The electric field detector will provide measurement a fully 3-D measurement of the electric field with the benefit of an extremely large ratio of boom length to spacecraft radius and an improved sensor design. 2-D ion distribution functions will be provided by ion mass spectrometer and energetic electrons will be measured by a solid-state telescope.

  17. Towards quantitative scanning electron microscopy: Applications to nano-scale analysis

    Energy Technology Data Exchange (ETDEWEB)

    El-Gomati, M.M., E-mail: mmg@ohm.york.ac.uk [Department of Electronics, University of York (United Kingdom); Walker, C.G.H.; Zha, X. [Department of Electronics, University of York (United Kingdom)

    2011-07-21

    Although the Scanning Electron Microscope (SEM) has been in existence for many decades, it cannot be yet regarded as a true quantitative instrument-certainly when applied at the nanoscale. This is due to the presence of carbonaceous deposits at the surface and a poor understanding of the emission of secondary electrons from materials. In this paper, a short review is given of some of the progress made in the efforts to improve quantification in the SEM at York. We present results which strongly suggest that the currently accepted theory, which explains why there is a correlation between the secondary electron yield and the work function of a metal, is incorrect. In addition, we show that the backscattering coefficient from materials can be strongly influenced by surface layers at low primary electron energy. Finally, we present Auger electron spectra, which have been acquired at high speed at high vacuum (10{sup -7} mbar) and thus represent a new way to determine the composition of nanostructures in the SEM.

  18. Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope.

    Science.gov (United States)

    Cooper, David; Denneulin, Thibaud; Bernier, Nicolas; Béché, Armand; Rouvière, Jean-Luc

    2016-01-01

    The last few years have seen a great deal of progress in the development of transmission electron microscopy based techniques for strain mapping. New techniques have appeared such as dark field electron holography and nanobeam diffraction and better known ones such as geometrical phase analysis have been improved by using aberration corrected ultra-stable modern electron microscopes. In this paper we apply dark field electron holography, the geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images, nanobeam diffraction and precession diffraction, all performed at the state-of-the-art to five different types of semiconductor samples. These include a simple calibration structure comprising 10-nm-thick SiGe layers to benchmark the techniques. A SiGe recessed source and drain device has been examined in order to test their capabilities on 2D structures. Devices that have been strained using a nitride stressor have been examined to test the sensitivity of the different techniques when applied to systems containing low values of deformation. To test the techniques on modern semiconductors, an electrically tested device grown on a SOI wafer has been examined. Finally a GaN/AlN superlattice was tested in order to assess the different methods of measuring deformation on specimens that do not have a perfect crystalline structure. The different deformation mapping techniques have been compared to one another and the strengths and weaknesses of each are discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Improving extreme-scale problem solving: assessing electronic brainstorming effectiveness in an industrial setting.

    Science.gov (United States)

    Dornburg, Courtney C; Stevens, Susan M; Hendrickson, Stacey M L; Davidson, George S

    2009-08-01

    An experiment was conducted to compare the effectiveness of individual versus group electronic brainstorming to address difficult, real-world challenges. Although industrial reliance on electronic communications has become ubiquitous, empirical and theoretical understanding of the bounds of its effectiveness have been limited. Previous research using short-term laboratory experiments have engaged small groups of students in answering questions irrelevant to an industrial setting. The present experiment extends current findings beyond the laboratory to larger groups of real-world employees addressing organization-relevant challenges during the course of 4 days. Employees and contractors at a national laboratory participated, either in a group setting or individually, in an electronic brainstorm to pose solutions to a real-world problem. The data demonstrate that (for this design) individuals perform at least as well as groups in producing quantity of electronic ideas, regardless of brainstorming duration. However, when judged with respect to quality along three dimensions (originality, feasibility, and effectiveness), the individuals significantly (p industrial reliance on electronic problem-solving groups should be tempered, and large nominal groups may be more appropriate corporate problem-solving vehicles.

  20. Validating an electronic health literacy scale in an older hispanic population.

    Science.gov (United States)

    Aponte, Judith; Nokes, Kathleen M

    2017-09-01

    To examine the validity of the Spanish version of an instrument used to measure electronic health literacy (eHEALS) with an older Hispanic population from a number of Spanish-language countries living in New York City in the United States (US). Although the Internet is available globally, complex skills are needed to use this source of valuable health-related information effectively. Electronic health literacy is a multifactorial concept that includes health literacy but also requires technology skills. Cross-sectional. Recruitment occurred at a Senior Organization located in a largely Hispanic neighbourhood in New York City (N = 100). Participants completed eHEALS and selected items from the Health Information National Trends Survey (HINTS) which assesses how adults use different communication channels, including the Internet, to obtain vital health information. Data from the US HINTS sample (N = 162) were matched to the Senior Organization sample on age range and Hispanic ethnicity. The average Senior Organization participant was 68 years old, female, born in one of six different Spanish-language countries, and completed high school while the average HINTS participant was 67 years old, female and had high school or less education. Although there was no relationship with the two HINTS subscales and electronic health literacy, there were significant relationships between electronic health literacy and health status and confidence in self-care. Inadequate electronic health literacy is a barrier to positive health outcomes. The Spanish version of eHEALS could be used as a screening instrument to identify gaps and tailored interventions could be developed to increase consumer confidence in using the Internet for reliable health-related information. Knowledge in self-management is related to positive health outcomes; all persons irrespective of their electronic health literacy should be able to use all sources of health information to enhance their self-care.

  1. Residual stress determination in oxide layers at different length scales combining Raman spectroscopy and X-ray diffraction: Application to chromia-forming metallic alloys

    Science.gov (United States)

    Guerain, Mathieu; Grosseau-Poussard, Jean-Luc; Geandier, Guillaume; Panicaud, Benoit; Tamura, Nobumichi; Kunz, Martin; Dejoie, Catherine; Micha, Jean-Sebastien; Thiaudière, Dominique; Goudeau, Philippe

    2017-11-01

    In oxidizing environments, the protection of metals and alloys against further oxidation at high temperature is provided by the oxide film itself. This protection is efficient only if the formed film adheres well to the metal (substrate), i.e., without microcracks and spalls induced by thermomechanical stresses. In this study, the residual stresses at both macroscopic and microscopic scales in the oxide film adhering to the substrate and over the damaged areas have been rigorously determined on the same samples for both techniques. Ni-30Cr and Fe-47Cr alloys have been oxidized together at 900 and 1000 °C, respectively, to create films with a thickness of a few microns. A multi-scale approach was adopted: macroscopic stress was determined by conventional X-ray diffraction and Raman spectroscopy, while microscopic residual stress mappings were performed over different types of bucklings using Raman micro-spectroscopy and synchrotron micro-diffraction. A very good agreement is found at macro- and microscales between the residual stress values obtained with both techniques, giving confidence on the reliability of the measurements. In addition, relevant structural information at the interface between the metallic substrate and the oxide layer was collected by micro-diffraction, a non-destructive technique that allows mapping through the oxide layer, and both the grain size and the crystallographic orientation of the supporting polycrystalline metal located either under a buckling or not were measured.

  2. Towards TeV-scale electron-positron collisions: the Compact Linear Collider (CLIC)

    Science.gov (United States)

    Doebert, Steffen; Sicking, Eva

    2018-02-01

    The Compact Linear Collider (CLIC), a future electron-positron collider at the energy frontier, has the potential to change our understanding of the universe. Proposed to follow the Large Hardron Collider (LHC) programme at CERN, it is conceived for precision measurements as well as for searches for new phenomena.

  3. Electronic Government in the City of Fez, Morocco : Scaling up to the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    It will also upgrade, enhance and complete the automation of the Bureaux d'état civil (BEC) by electronically enabling additional citizen-oriented services such as marriage, divorce and residency ... A new website and resource library will help improve developing country registration and information systems for vital events.

  4. Scaling of differentiation in networks: nervous systems, organisms, ant colonies, ecosystems, businesses, universities, cities, electronic circuits, and Legos.

    Science.gov (United States)

    Changizi, M A; McDannald, M A; Widders, D

    2002-09-21

    Nodes in networks are often of different types, and in this sense networks are differentiated. Here we examine the relationship between network differentiation and network size in networks under economic or natural selective pressure, such as electronic circuits (networks of electronic components), Legos (networks of Lego pieces), businesses (networks of employees), universities (networks of faculty), organisms (networks of cells), ant colonies (networks of ants), and nervous systems (networks of neurons). For each of these we find that (i) differentiation increases with network size, and (ii) the relationship is consistent with a power law. These results are explained by a hypothesis that, because nodes are costly to build and maintain in such "selected networks", network size is optimized, and from this the power-law relationship may be derived. The scaling exponent depends on the particular kind of network, and is determined by the degree to which nodes are used in a combinatorial fashion to carry out network-level functions. We find that networks under natural selection (organisms, ant colonies, and nervous systems) have much higher combinatorial abilities than the networks for which human ingenuity is involved (electronic circuits, Legos, businesses, and universities). A distinct but related optimization hypothesis may be used to explain scaling of differentiation in competitive networks (networks where the nodes themselves, rather than the entire network, are under selective pressure) such as ecosystems (networks of organisms).

  5. Theoretical and experimental determination of scaling factors in electron dosimetry for 3D-printed polylactic acid.

    Science.gov (United States)

    Diamantopoulos, Stefanos; Kantemiris, Ioannis; Patatoukas, Georgios; Dilvoi, Maria; Efstathopoulos, Efstathios; Kouloulias, Vassilis; Platoni, Kalliopi

    2018-02-16

    Plastic phantoms are commonly used in daily routine for dosimetric tasks in radiation therapy. Although water is the reference medium according to the dosimetric protocols, measurements with nonwater phantoms are easier to be performed. To succeed absorbed dose determination, certain scaling factors have to be applied to the acquired measurements. Taking into account the increased availability of three-dimensional (3D) printing, we attempted to obtain scaling factors for polylactic acid (PLA), a commonly used thermoplastic material for 3D printing. Measurements were performed with a custom-made phantom from PLA material, which was designed and constructed using 3D printing technology. Depth and fluence scaling factors were obtained within the range of 6 to 20 MeV. Moreover, Monte Carlo simulations were performed to verify the measured results. Experimental and Monte Carlo (MC) values showed a good agreement, especially in lower energies. Mean value of depth scaling factor (c pl ) over the whole range of energies was 0.946, while mean fluence scaling factor (h pl ) was found to be 1.050. For energies below 10 MeV, the corresponding mean values for c pl and h pl were 0.946 and 1.054, respectively. PLA phantoms could be constructed and used for electron beam nonreference measurements, reproducing even more complex geometries, from simple quality assurance devices to geometrically complicated anthropomorphic phantoms. © 2018 American Association of Physicists in Medicine.

  6. Calculation of exit dose for conformal and dynamically‐wedged fields, based on water‐equivalent path length measured with an amorphous silicon electronic portal imaging device

    Science.gov (United States)

    Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2011-01-01

    In this study, we use the quadratic calibration method (QCM), in which an EPID image is converted into a matrix of equivalent path lengths (EPLs) and, therefore, exit doses, so as to model doses in conformal and enhanced dynamic wedge (EDW) fields. The QCM involves acquiring series of EPID images at a reference field size for different thicknesses of homogeneous solid water blocks. From these, a set of coefficients is established that is used to compute the EPL of any other irradiated material. To determine the EPL, the irradiated area must be known in order to establish the appropriate scatter correction. A method was devised for the automatic calculation of areas from the EPID image that facilitated the calculation of EPL for any field and exit dose. For EDW fields, the fitting coefficients were modified by utilizing the linac manufacturer's golden segmented treatment tables (GSTT) methodology and MU fraction model. The nonlinear response of the EPL with lower monitor units (MUs) was investigated and slight modification of the algorithm performed to account for this. The method permits 2D dose distributions at the exit of phantom or patient to be generated by relating the EPL with an appropriate depth dose table. The results indicate that the inclusion of MU correction improved the EPL determination. The irradiated field areas can be accurately determined from EPID images to within ± 1% uncertainty. Cross‐plane profiles and 2D dose distributions of EPID predicted doses were compared with those calculated with the Eclipse treatment planning system (TPS) and those measured directly with MapCHECK 2 device. Comparison of the 2D EPID dose maps to those from TPS and MapCHECK shows that more than 90% of all points passed the gamma index acceptance criteria of 3% dose difference and 3 mm distance to agreement (DTA), for both conformal and EDW study cases. We conclude that the EPID QCM is an accurate and convenient method for in vivo dosimetry and may, therefore

  7. Cascade and Dissipation of Solar Wind Turbulence at Electron Scales: Whistlers or Kinetic Alfv\\'en Waves?

    Science.gov (United States)

    Sahraoui, Fouad; Goldstein, Melvyn L.

    2010-01-01

    Over the past few decades, large-scales solar wind (SW) turbulence has been studied extensively, both theoretically and observationally. Observed power spectra of the low frequency turbulence, which can be described in the magnetohydrodynamic (MHD) limit, are shown to obey the Kolmogorov scaling, $k"{ -5/3 }$, down the local proton gyrofrequency ($C{ci} \\sim O.l$-Hz). Turbulence at frequencies above $C{ci}$ has not been thoroughly investigated and remains far less well understood. Above $C{ ci}$ the spectrum steepens to $\\sim f"{ -2.5}$ and a debate exists as to whether the turbulence has become dominated by dispersive kinetic Alfven waves (KA W) or by whistler waves, before it is dissipated at small scales, In a case study Sahraoui et al., PRL (2009) have reported the first direct determination of the dissipation range of solar wind turbulence near the electron gyroscale using the high resolution Cluster magnetic and electric field data (up to $10"2$-Hz in the spacecraft reference frame). Above the Doppler-shifted proton scale $C{\\rho i}$ a new inertial range with a scaling $\\sim f"{ -2.3}$ has been evidenced and shown to remarkably agree with theoretical predictions of a quasi-two-dimensional cascade into KA W turbulence. Here, we use a wider sample of data sets of small scale SW turbulence under different plasma conditions, and investigate under which physical criteria the KA W (or the whistler) turbulence may be observed to carry out the cascade at small scales, These new observations/criteria are compared to the predictions on the cascade and the (kinetic) dissipation from the Vlasov theory. Implications of the results on the heating problem of the solar wind will be discussed.

  8. Hydrogel wound dressing preparation at the laboratory scale by using electron beam and gamma radiation

    International Nuclear Information System (INIS)

    Rapado Raneque, Manuel; Rodriguez Rodriguez, Alejandro; Peniche Covas, Carlos

    2013-01-01

    The present work describes the preparation of hydrogel based on cross-linked networks of poly (N-vinylpirrolidone), PVP, with polyethyleneglicol and agar with 90% water and PVP nancomposites with a synthetic nanoclay, Laponite XLG, for use as burn dressings. These systems were obtained in two ways: using gamma Co-60 and electron beam radiation. The gelation obtained dose was D g = 1.72 kGy. The elastic modulus of hydrogel was independent of the method of irradiation. It was 0.39 MPa for the hydrogel irradiated with gamma Co-60 and 0.38 MPa for electron beam irradiation. The elastic modulus of the nanocomposite membrane was 1.25 MPa, three times higher. These results indicate that the PVP/Laponite XLG nanocomposite hydrogel membrane is the best choice for wound dressing applications due to its high water sorption capacity and its superior mechanical properties.

  9. Electron electric dipole moment in mirror fermion model with electroweak scale non-sterile right-handed neutrinos

    Science.gov (United States)

    Chang, Chia-Feng; Hung, P. Q.; Nugroho, Chrisna Setyo; Tran, Van Que; Yuan, Tzu-Chiang

    2018-03-01

    The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a) right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b) a horizontal symmetry of the tetrahedral group is used in the lepton and scalar sectors. We study the constraint on the parameter space of the model imposed by the latest ACME experimental limit on electron electric dipole moment. Other low energy experimental observables such as the anomalous magnetic dipole moment of the muon, charged lepton flavor violating processes like muon decays into electron plus photon and muon-to-electron conversion in titanium, gold and lead are also considered in our analysis for comparison. In addition to the well-known CP violating Dirac and Majorana phases in the neutrino mixing matrix, the dependence of additional phases of the new Yukawa couplings in the model is studied in detail for all these low energy observables.

  10. The adolescence of electronic health records: Status and perspectives for large scale implementation

    Directory of Open Access Journals (Sweden)

    Andreas Drauschke

    2013-06-01

    Full Text Available Health informatics started to evolve decades ago with the intention to support healthcare using computers. Since then Electronic health records (EHRs and personal health records (PHRs have become available but widespread adoption was limited by lack of interoperability and security issues. This paper discusses the feasibility of interoperable standards based EHRs and PHRs drawing on experience from implementation projects. It outlines challenges and goals in education and implementation for the next years.

  11. On the dynamics of large-scale structures in electron temperature gradient turbulence

    International Nuclear Information System (INIS)

    Holland, C.; Diamond, P.H.

    2005-01-01

    The electron temperature gradient mode has been proposed to be a source of experimentally relevant electron thermal transport, via a variety of non-linear phenomena such as the generation of streamers. The question of streamer stability and saturation is revisited, with the effects of geometry and perturbation stability highlighted. It is shown that the streamer saturation level is not determined by the balance of Kelvin-Helmholtz rate vs. linear growth rate, but by balancing the non-linear Kelvin-Helmholtz drive against damping mechanisms of the Kelvin-Helmholtz perturbation, suggesting a significantly lower streamer saturation level. In addition, random shear suppression of ETG turbulence by drift-ion temperature gradient (DITG) modes is studied, and it is found that streamers will be sensitive to shearing by short-wavelength DITG modes. An additional interaction mechanism, modulations of the electron temperature gradient induced by the DITG turbulence, is considered and shown to be quite significant. These considerations are used to motivate a discussion of the requirements for a credible theory of streamer transport

  12. Full scale electron beam systems for treatment of water, wastewater and medical waste

    International Nuclear Information System (INIS)

    Waite, T.D.; Kurucz, C.N.; Cooper, W.J.; Brown, D.

    1998-01-01

    High energy electron accelerators have been used in numerous applications for several decades. In the early 1980's several attempts to use electron accelerators for the disinfection of sludge proved that the technology could be used for that application. One such facility was designed, built and tested for one year at the Miami-Dade Virginia Key Wastewater Treatment Plant. The process successfully disinfected anaerobically digested sludge. However, due to changing local regulations the process was never implemented. Now this process may provide a viable alternative for the ultimate destruction of toxic and hazardous organic chemicals from water and sludges. When high energy electrons impact an aqueous solution, with or without particulate matter present, reactive transient species are formed. The three transient species of most interest are the aqueous electron, e - aq, hydrogen radical, H·, and the hydroxyl radical, ·OH. The relative concentration of these radicals in an irradiated solution of pure water is 44, 10 and 46%, respectively. The absolute concentration of the radicals is dose and water quality dependent, but is in excess of mM levels in potable, raw and secondary wastewater effluent at our facility. This paper describes the facilities at the Electron Beam Research Facility (EBRF) in Miami, FL. The accelerator is a 1.5 MeV, 50 mA insulated core transformer type. Several areas of research have been the focus of the studies with an interdisciplinary team of faculty and students in engineering and science. The areas included are, inactivation of bacteria in raw and chlorinated and unchlorinated secondary wastewater and the changes in biochemical oxygen demand and chemical oxygen demand in the raw and unchlorinated secondary wastewater. The removal of toxic chemicals has also been studied in some detail. These studies have been conducted both at the EBRF and using 60 Co gamma irradiation. To examine the effect of water quality on the destruction of the

  13. Pilot scale electron bombardment furnace for continuous casting; application to the trial preparation of 20 kg of uranium monocarbide rods

    International Nuclear Information System (INIS)

    Trouve, J.; Genard, R.; Treillou, A.; Accary, A.

    1964-01-01

    The authors describe a pilot scale electron beam furnace designed for continuous melting and casting of uranium-carbon alloys. This equipment allows the melting and casting processes to be completely automatically controlled, the cooling being carried out under vacuum and the discharge being effected without breaking the vacuum. In a pre-production run of 20 kg of slugs, the composition of practically all the pieces was controlled within ± 0,1 per cent C. The output of the furnace was 2,2 kg/hour. (authors) [fr

  14. Dosimetry with semiconductor diodes in the application to the full-length irradiation technique of electrons; Dosimetria con diodos semiconductores en la aplicacion a la tecnica de irradiacion de cuerpo entero de electrones

    Energy Technology Data Exchange (ETDEWEB)

    Madrid G, O. A.; Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Calz. Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2012-10-15

    The use of charged particles as electrons for the tumor-like lesions treatment to total surface of skin is not very frequent, the types of fungo id mycosis and cutaneous lymphomas compared with other neoplasms they are relatively scarce, however for the existent cases a non conventional technique should be contemplated as treatment alternative that can reach an effective control. In this work the variables of more influence with ionization chamber and semiconductor diodes are studied for to determine the quality of an electrons beam. (Author)

  15. Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy.

    Science.gov (United States)

    Bera, Bijoyendra; Gunda, Naga Siva Kumar; Mitra, Sushanta K; Vick, Douglas

    2012-02-01

    Sedimentary carbonate rocks are one of the principal porous structures in natural reservoirs of hydrocarbons such as crude oil and natural gas. Efficient hydrocarbon recovery requires an understanding of the carbonate pore structure, but the nature of sedimentary carbonate rock formation and the toughness of the material make proper analysis difficult. In this study, a novel preparation method was used on a dolomitic carbonate sample, and selected regions were then serially sectioned and imaged by focused ion beam-scanning electron microscopy. The resulting series of images were used to construct detailed three-dimensional representations of the microscopic pore spaces and analyze them quantitatively. We show for the first time the presence of nanometer-scale pores (50-300 nm) inside the solid dolomite matrix. We also show the degree of connectivity of these pores with micron-scale pores (2-5 μm) that were observed to further link with bulk pores outside the matrix.

  16. Auto-Thermal Reforming Using Mixed Ion-Electronic Conducting Ceramic Membranes for a Small-Scale H2 Production Plant

    Directory of Open Access Journals (Sweden)

    Vincenzo Spallina

    2015-03-01

    Full Text Available The integration of mixed ionic electronic conducting (MIEC membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650–850 Nm3/h via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF give sufficiently high oxygen fluxes at temperatures above 800 °C with high purity (higher than 99%. Experimental results of membrane permeation tests are presented and used for the reactor design with a detailed reactor model. The assessment of the H2 plant has been carried out for different operating conditions and reactor geometry and an energy analysis has been carried out with the flowsheeting software Aspen Plus, including also the turbomachines required for a proper thermal integration. A micro-gas turbine is integrated in the system in order to supply part of the electricity required in the system. The analysis of the system shows that the reforming efficiency is in the range of 62%–70% in the case where the temperature at the auto-thermal reforming membrane reactor (ATR-MR is equal to 900 °C. When the electric consumption and the thermal export are included the efficiency of the plant approaches 74%–78%. The design of the reactor has been carried out using a reactor model linked to the Aspen flowsheet and the results show that with a larger reactor volume the performance of the system can be improved, especially because of the reduced electric consumption. From this analysis it has been found that for a production of about 790 Nm3/h pure H2, a reactor with a diameter of 1 m and length of 1.8 m with about 1500 membranes of 2 cm diameter is required.

  17. Multi-time scale dynamics in power electronics-dominated power systems

    Science.gov (United States)

    Yuan, Xiaoming; Hu, Jiabing; Cheng, Shijie

    2017-09-01

    Electric power infrastructure has recently undergone a comprehensive transformation from electromagnetics to semiconductors. Such a development is attributed to the rapid growth of power electronic converter applications in the load side to realize energy conservation and on the supply side for renewable generations and power transmissions using high voltage direct current transmission. This transformation has altered the fundamental mechanism of power system dynamics, which demands the establishment of a new theory for power system control and protection. This paper presents thoughts on a theoretical framework for the coming semiconducting power systems.

  18. Efficient Computation of Sparse Matrix Functions for Large-Scale Electronic Structure Calculations: The CheSS Library.

    Science.gov (United States)

    Mohr, Stephan; Dawson, William; Wagner, Michael; Caliste, Damien; Nakajima, Takahito; Genovese, Luigi

    2017-10-10

    We present CheSS, the "Chebyshev Sparse Solvers" library, which has been designed to solve typical problems arising in large-scale electronic structure calculations using localized basis sets. The library is based on a flexible and efficient expansion in terms of Chebyshev polynomials and presently features the calculation of the density matrix, the calculation of matrix powers for arbitrary powers, and the extraction of eigenvalues in a selected interval. CheSS is able to exploit the sparsity of the matrices and scales linearly with respect to the number of nonzero entries, making it well-suited for large-scale calculations. The approach is particularly adapted for setups leading to small spectral widths of the involved matrices and outperforms alternative methods in this regime. By coupling CheSS to the DFT code BigDFT, we show that such a favorable setup is indeed possible in practice. In addition, the approach based on Chebyshev polynomials can be massively parallelized, and CheSS exhibits excellent scaling up to thousands of cores even for relatively small matrix sizes.

  19. Effect of repeated sterilization cycles on the physical properties of scaling instruments: a scanning electron microscopy study.

    Science.gov (United States)

    Porto, Alessandra Nogueira; Borges, Álvaro Henrique; Semenoff-Segundo, Alex; Raslan, Suzane A; Pedro, Fábio Luis Miranda; Jorge, Antônio Olavo Cardoso; Bandeca, Matheus Coelho

    2015-05-01

    Repeated sterilizations cycles cause undesirable alterations in the material properties of the instruments, such as corrosion, alterations in the hardness of the metal and the loss of the cutting sharpness of the instrument. This research examined the effect of repeated dry heat sterilization and autoclaves cycles on carbon steel (CS) and stainless steel (SS) curettes during the scaling and root planning. A total of 77 Gracey curettes were used in this study. Of these, 35 were SS and 42 were CS curettes submitted in different process: Dry heat, autoclave, inhibition of corrosion and autoclave, scaling, root planning and dry heat, scaling, root planning, inhibition of corrosion and autoclave. The inhibition of corrosion used on the carbon curettes (prior to sterilization in the autoclave) was sodium nitrite at 2%. The curettes received 10 consecutive cycles of sterilization and after that the cutting edges were examined in the electronic microscope, at 60 and 100 magnification times. The images were evaluated by three independent examiners, who compared the photographs of each group with the control group. The surface corrosion products and a deterioration of the edges were observed and the results showed that the SS curettes suffered little alteration with sterilization, scaling, root planning whereas the CS curettes were visibly affected by sterilization in the autoclave, but when the inhibition of corrosion was used prior to the sterilization, the oxidation was considerably reduced.

  20. Length of a Hanging Cable

    Directory of Open Access Journals (Sweden)

    Eric Costello

    2011-01-01

    Full Text Available The shape of a cable hanging under its own weight and uniform horizontal tension between two power poles is a catenary. The catenary is a curve which has an equation defined by a hyperbolic cosine function and a scaling factor. The scaling factor for power cables hanging under their own weight is equal to the horizontal tension on the cable divided by the weight of the cable. Both of these values are unknown for this problem. Newton's method was used to approximate the scaling factor and the arc length function to determine the length of the cable. A script was written using the Python programming language in order to quickly perform several iterations of Newton's method to get a good approximation for the scaling factor.

  1. Fish scale deformation analysis using scanning electron microscope: New potential biomarker in aquatic environmental monitoring of aluminum and iron contamination

    Science.gov (United States)

    Hidayati, Dewi; Sulaiman, Norela; Othman, Shuhaimi; Ismail, B. S.

    2013-11-01

    Fish scale has the potential to be a rapid biomarker due to its structure and high possibility to come into contact with any pollutant in the aquatic environment. The scale structure consists of osteoblastic cells and other bone materials such as collagen where it is possible to form a molecular complex with heavy metals such as aluminum and iron. Hence, aluminum and iron in water could possibly destroy the scale material and marked as a scale deformation that quantitatively could be analyzed by comparing it to the normal scale structure. Water sampling and fish cage experiment were performed between June and July 2011 in Porong river which represented the water body that has high aluminum and iron contamination. The filtered water samples were preserved and extracted using the acid-mixture procedure prior to measurement of the aluminum and iron concentrations using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), while samples for total suspended solid (TSS) analysis were kept at 4 °C in cool-boxes. The scales were cleaned with sterile water, then dehydrated in 30, 50, 70, and 90% ethanol and dried on filter papers. They were then mounted on an aluminum stub and coated with gold in a sputter coater prior to Scanning Electron Microscope (SEM) observation. According to the SEM analysis, it was found that there were several deformations on the scale samples taken from sites that have high concentrations of aluminum and iron i.e. the increasing number of pits, deformation and decreasing number of spherules and ridges while the control scale exhibited the normal features. However, the site with higher TSS and pH indicated lower aluminum effect. A moderate correlation was found between the number of pits with aluminum (r=0.43) and iron (r=0.41) concentrations. Fish scale deformation using SEM analysis can potentially be a rapid biomarker in aquatic monitoring of aluminum and iron contamination. However, the measurement must be accompanied by pH and

  2. Fish scale deformation analysis using scanning electron microscope: New potential biomarker in aquatic environmental monitoring of aluminum and iron contamination

    Energy Technology Data Exchange (ETDEWEB)

    Hidayati, Dewi; Sulaiman, Norela; Othman, Shuhaimi; Ismail, B. S. [School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27

    Fish scale has the potential to be a rapid biomarker due to its structure and high possibility to come into contact with any pollutant in the aquatic environment. The scale structure consists of osteoblastic cells and other bone materials such as collagen where it is possible to form a molecular complex with heavy metals such as aluminum and iron. Hence, aluminum and iron in water could possibly destroy the scale material and marked as a scale deformation that quantitatively could be analyzed by comparing it to the normal scale structure. Water sampling and fish cage experiment were performed between June and July 2011 in Porong river which represented the water body that has high aluminum and iron contamination. The filtered water samples were preserved and extracted using the acid-mixture procedure prior to measurement of the aluminum and iron concentrations using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), while samples for total suspended solid (TSS) analysis were kept at 4 °C in cool-boxes. The scales were cleaned with sterile water, then dehydrated in 30, 50, 70, and 90% ethanol and dried on filter papers. They were then mounted on an aluminum stub and coated with gold in a sputter coater prior to Scanning Electron Microscope (SEM) observation. According to the SEM analysis, it was found that there were several deformations on the scale samples taken from sites that have high concentrations of aluminum and iron i.e. the increasing number of pits, deformation and decreasing number of spherules and ridges while the control scale exhibited the normal features. However, the site with higher TSS and pH indicated lower aluminum effect. A moderate correlation was found between the number of pits with aluminum (r=0.43) and iron (r=0.41) concentrations. Fish scale deformation using SEM analysis can potentially be a rapid biomarker in aquatic monitoring of aluminum and iron contamination. However, the measurement must be accompanied by pH and

  3. Scaling of dynamical decoupling for a single electron spin in nanodiamonds at room temperature

    International Nuclear Information System (INIS)

    Liu, Dong-Qi; Liu, Gang-Qin; Chang, Yan-Chun; Pan, Xin-Yu

    2014-01-01

    Overcoming the spin qubit decoherence is a challenge for quantum science and technology. We investigate the decoherence process in nanodiamonds by Carr–Purcell–Meiboom–Gill (CPMG) technique at room temperature. We find that the coherence time T 2 scales as n γ . The elongation effect of coherence time can be represented by a constant power of the number of pulses n. Considering the filter function of CPMG decoupling sequence as a δ function, the spectrum density of noise has been reconstructed directly from the coherence time measurements and a Lorentzian noise power spectrum model agrees well with the experiment. These results are helpful for the application of nanodiamonds to nanoscale magnetic imaging

  4. Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics.

    Science.gov (United States)

    Heo, Jinseong; Byun, Kyung-Eun; Lee, Jaeho; Chung, Hyun-Jong; Jeon, Sanghun; Park, Seongjun; Hwang, Sungwoo

    2013-01-01

    Graphene heterostructures in which graphene is combined with semiconductors or other layered 2D materials are of considerable interest, as a new class of electronic devices has been realized. Here we propose a technology platform based on graphene-thin-film-semiconductor-metal (GSM) junctions, which can be applied to large-scale and power-efficient electronics compatible with a variety of substrates. We demonstrate wafer-scale integration of vertical field-effect transistors (VFETs) based on graphene-In-Ga-Zn-O (IGZO)-metal asymmetric junctions on a transparent 150 × 150 mm(2) glass. In this system, a triangular energy barrier between the graphene and metal is designed by selecting a metal with a proper work function. We obtain a maximum current on/off ratio (Ion/Ioff) up to 10(6) with an average of 3010 over 2000 devices under ambient conditions. For low-power logic applications, an inverter that combines complementary n-type (IGZO) and p-type (Ge) devices is demonstrated to operate at a bias of only 0.5 V.

  5. Determination of atomic-scale chemical composition at semiconductor heteroepitaxial interfaces by high-resolution transmission electron microscopy.

    Science.gov (United States)

    Wen, C; Ma, Y J

    2018-03-01

    The determination of atomic structures and further quantitative information such as chemical compositions at atomic scale for semiconductor defects or heteroepitaxial interfaces can provide direct evidence to understand their formation, modification, and/or effects on the properties of semiconductor films. The commonly used method, high-resolution transmission electron microscopy (HRTEM), suffers from difficulty in acquiring images that correctly show the crystal structure at atomic resolution, because of the limitation in microscope resolution or deviation from the Scherzer-defocus conditions. In this study, an image processing method, image deconvolution, was used to achieve atomic-resolution (∼1.0 Å) structure images of small lattice-mismatch (∼1.0%) AlN/6H-SiC (0001) and large lattice-mismatch (∼8.5%) AlSb/GaAs (001) heteroepitaxial interfaces using simulated HRTEM images of a conventional 300-kV field-emission-gun transmission electron microscope under non-Scherzer-defocus conditions. Then, atomic-scale chemical compositions at the interface were determined for the atomic intermixing and Lomer dislocation with an atomic step by analyzing the deconvoluted image contrast. Furthermore, the effect of dynamical scattering on contrast analysis was also evaluated for differently weighted atomic columns in the compositions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Electron energy distribution control by fiat: breaking from the conventional flux ratio scaling rules in etch

    Science.gov (United States)

    Ranjan, Alok; Wang, Mingmei; Sherpa, Sonam; Ventzek, Peter

    2015-03-01

    With shrinking critical dimensions, minimizing each of aspect ratio dependent etching (ARDE), bowing, undercut, selectivity, and within die uniformly across a wafer is met by trading off one requirement against another. The problem of trade-offs is especially critical. At the root of the problem is that roles radical flux, ion flux and ion energy play may be both good and bad. Increasing one parameter helps meeting one requirement but hinders meeting the other. Managing process by managing flux ratios and ion energy alone with conventional sources is not adequate because surface chemistry is uncontrollable. At the root of lack of control is that the electron energy distribution function (eedf) has not been controlled. Fortunately the high density surface wave sources control the eedf by fiat. High density surface wave sources are characterized by distinct plasma regions: an active plasma generation region with high electron temperature (Te) and an ionization free but chemistry rich diffusive region (low Te region). Pressure aids is segregating the regions by proving a means for momentum relaxation between the source and downstream region. "Spatial pulsing" allows access to plasma chemistry with reasonably high ion flux, from the active plasma generation region, just above the wafer. Low plasma potential enables precise passivation of surfaces which is critical for atomic layer etch (ALE) or high precision etch where the roles of plasma species can be limited to their purposed roles. High precision etch need not be at the cost of speed and manufacturability. Large ion flux at precisely controlled ion energy with RLSATM realizes fast desorption steps for ALE without compromising process throughput and precision.

  7. A simple method for large scale synthesis of highly monodisperse gold nanoparticles at room temperature and their electron relaxation properties

    International Nuclear Information System (INIS)

    Polavarapu, Lakshminarayana; Xu Qinghua

    2009-01-01

    Here we demonstrate a simple method for large scale preparation of monodisperse gold nanoparticles by simple mixing of chloroauricacid (HAuCl 4 ) with oleylamine (OA) at room temperature. The as-prepared gold nanoparticles have high monodispersity with an average diameter of 13 nm and can self-organize into two-dimensional (2D) hexagonal close-packed arrays. The size of the gold nanoparticles can be experimentally controlled. The capping agent, oleylamine, can be easily replaced with other capping agents such as thiol groups for further functionalization. The electron relaxation dynamics of these gold nanoparticles in toluene was studied by femtosecond pump-probe measurements, in comparison with the citrate-stabilized gold nanoparticles in water. The phonon-phonon relaxation time of gold nanoparticles in toluene is slower than that of citrate-capped gold nanoparticles in water, due to the lower thermal conductivity of toluene than water. The electron-phonon relaxation of the gold nanoparticles in toluene was found to display weaker pump energy dependence, compared to that of citrate-capped gold nanoparticles in water. The different electron-phonon relaxation dynamics is ascribed to the extra vibrational states provided by gold- NH 2 , which serves as an extra nonradiative relaxation pathway for the e-ph relaxation in oleylamine-capped gold nanoparticles in toluene.

  8. Size-dependent giant-magnetoresistance in millimeter scale GaAs/AlGaAs 2D electron devices

    Science.gov (United States)

    Mani, R. G.

    2013-01-01

    Large changes in the electrical resistance induced by the application of a small magnetic field are potentially useful for device-applications. Such Giant Magneto-Resistance (GMR) effects also provide new insights into the physical phenomena involved in the associated electronic transport. This study examines a “bell-shape” negative GMR that grows in magnitude with decreasing temperatures in mm-wide devices fabricated from the high-mobility GaAs/AlGaAs 2-Dimensional Electron System (2DES). Experiments show that the span of this magnetoresistance on the magnetic-field-axis increases with decreasing device width, W, while there is no concurrent Hall resistance, Rxy, correction. A multi-conduction model, including negative diagonal-conductivity, and non-vanishing off-diagonal conductivity, reproduces experimental observations. The results suggest that a size effect in the mm-wide 2DES with mm-scale electron mean-free-paths is responsible for the observed “non-ohmic” size-dependent negative GMR. PMID:24067264

  9. Polar Ozone Response to Energetic Particle Precipitation Over Decadal Time Scales: The Role of Medium-Energy Electrons

    Science.gov (United States)

    Andersson, M. E.; Verronen, P. T.; Marsh, D. R.; Seppälä, A.; Päivärinta, S.-M.; Rodger, C. J.; Clilverd, M. A.; Kalakoski, N.; van de Kamp, M.

    2018-01-01

    One of the key challenges in polar middle atmosphere research is to quantify the total forcing by energetic particle precipitation (EPP) and assess the related response over solar cycle time scales. This is especially true for electrons having energies between about 30 keV and 1 MeV, so-called medium-energy electrons (MEE), where there has been a persistent lack of adequate description of MEE ionization in chemistry-climate simulations. Here we use the Whole Atmosphere Community Climate Model (WACCM) and include EPP forcing by solar proton events, auroral electron precipitation, and a recently developed model of MEE precipitation. We contrast our results from three ensemble simulations (147 years) in total with those from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) in order to investigate the importance of a more complete description of EPP to the middle atmospheric ozone, odd hydrogen, and odd nitrogen over decadal time scales. Our results indicate average EPP-induced polar ozone variability of 12-24% in the mesosphere, and 5-7% in the middle and upper stratosphere. This variability is in agreement with previously published observations. Analysis of the simulation results indicate the importance of inclusion of MEE in the total EPP forcing: In addition to the major impact on the mesosphere, MEE enhances the stratospheric ozone response by a factor of 2. In the Northern Hemisphere, where wintertime dynamical variability is larger than in the Southern Hemisphere, longer simulations are needed in order to reach more robust conclusions.

  10. LASER PARAMETER CONTROL: Oscillation spectra of Ar-Xe and He-Ar-Xe mixtures pumpbed by a radially converging electron beam with a pulse length ~ 0.1 ms

    Science.gov (United States)

    Bugaev, A. S.; Koval', N. N.; Tarasenko, Viktor F.; Fedenev, A. V.

    1992-11-01

    We have investigated lasers oscillating on atomic transitions of xenon and pumped by a radially converging electron beam with pulse lengths between 0.07 and 0.1 ms. We have determined experimentally the dependence of the threshold beam current density and the output spectrum on the Q-factor of the laser resonator. We have shown that for beam current densities smaller than 16 mA/cm2 and for a pulse length ~ 0.1 ms there is a quasisteady lasing at wavelengths λ = 1.73, 2.65, 2.03, and 2.63 μm if the resonator output mirror and the mixture composition are chosen appropriately. We have also observed simulatenous oscillation on the following pairs of lines: λ = 1.73 and 2.03 μm, 2.03 and 2.65 μm, and 2.65 and 2.63 μm. When the lattice supporting the foil covering the beam window was cooled with water, periodic-pulse operation at a repetition rate of 5 Hz was achieved in a laser with a pumped volume ~ 18 liters.

  11. Scaling of dynamical decoupling for a single electron spin in nanodiamonds at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong-Qi; Liu, Gang-Qin; Chang, Yan-Chun; Pan, Xin-Yu, E-mail: xypan@aphy.iphy.ac.cn

    2014-01-01

    Overcoming the spin qubit decoherence is a challenge for quantum science and technology. We investigate the decoherence process in nanodiamonds by Carr–Purcell–Meiboom–Gill (CPMG) technique at room temperature. We find that the coherence time T{sub 2} scales as n{sup γ}. The elongation effect of coherence time can be represented by a constant power of the number of pulses n. Considering the filter function of CPMG decoupling sequence as a δ function, the spectrum density of noise has been reconstructed directly from the coherence time measurements and a Lorentzian noise power spectrum model agrees well with the experiment. These results are helpful for the application of nanodiamonds to nanoscale magnetic imaging.

  12. Overview of bunch length measurements

    International Nuclear Information System (INIS)

    Lumpkin, A. H.

    1999-01-01

    An overview of particle and photon beam bunch length measurements is presented in the context of free-electron laser (FEL) challenges. Particle-beam peak current is a critical factor in obtaining adequate FEL gain for both oscillators and self-amplified spontaneous emission (SASE) devices. Since measurement of charge is a standard measurement, the bunch length becomes the key issue for ultrashort bunches. Both time-domain and frequency-domain techniques are presented in the context of using electromagnetic radiation over eight orders of magnitude in wavelength. In addition, the measurement of microbunching in a micropulse is addressed

  13. Scalable electron correlation methods I.: PNO-LMP2 with linear scaling in the molecular size and near-inverse-linear scaling in the number of processors.

    Science.gov (United States)

    Werner, Hans-Joachim; Knizia, Gerald; Krause, Christine; Schwilk, Max; Dornbach, Mark

    2015-02-10

    We propose to construct electron correlation methods that are scalable in both molecule size and aggregated parallel computational power, in the sense that the total elapsed time of a calculation becomes nearly independent of the molecular size when the number of processors grows linearly with the molecular size. This is shown to be possible by exploiting a combination of local approximations and parallel algorithms. The concept is demonstrated with a linear scaling pair natural orbital local second-order Møller-Plesset perturbation theory (PNO-LMP2) method. In this method, both the wave function manifold and the integrals are transformed incrementally from projected atomic orbitals (PAOs) first to orbital-specific virtuals (OSVs) and finally to pair natural orbitals (PNOs), which allow for minimum domain sizes and fine-grained accuracy control using very few parameters. A parallel algorithm design is discussed, which is efficient for both small and large molecules, and numbers of processors, although true inverse-linear scaling with compute power is not yet reached in all cases. Initial applications to reactions involving large molecules reveal surprisingly large effects of dispersion energy contributions as well as large intramolecular basis set superposition errors in canonical MP2 calculations. In order to account for the dispersion effects, the usual selection of PNOs on the basis of natural occupation numbers turns out to be insufficient, and a new energy-based criterion is proposed. If explicitly correlated (F12) terms are included, fast convergence to the MP2 complete basis set (CBS) limit is achieved. For the studied reactions, the PNO-LMP2-F12 results deviate from the canonical MP2/CBS and MP2-F12 values by <1 kJ mol(-1), using triple-ζ (VTZ-F12) basis sets.

  14. Assessment of density matrix methods for linear scaling electronic structure calculations.

    Science.gov (United States)

    Rudberg, Elias; Rubensson, Emanuel H

    2011-02-23

    Purification and minimization methods for linear scaling computation of the one-particle density matrix for a fixed Hamiltonian matrix are compared. This is done by considering the work needed by each method to achieve a given accuracy in terms of the difference from the exact solution. Numerical tests employing orthogonal as well as non-orthogonal versions of the methods are performed using both element magnitude and cutoff radius based truncation approaches. It is investigated how the convergence speed for the different methods depends on the eigenvalue distribution in the Hamiltonian matrix. An expression for the number of iterations required for the minimization methods studied is derived, taking into account the dependence on both the band gap and the chemical potential. This expression is confirmed by numerical tests. The minimization methods are found to perform at their best when the chemical potential is located near the center of the eigenspectrum. The results indicate that purification is considerably more efficient than the minimization methods studied even when a good starting guess for the minimization is available. In test calculations without a starting guess, purification is more than an order of magnitude more efficient than minimization. © 2011 IOP Publishing Ltd

  15. Large-scale separation of single-walled carbon nanotubes by electronic type using click chemistry

    Science.gov (United States)

    Um, Jo-Eun; Song, Sun Gu; Yoo, Pil J.; Song, Changsik; Kim, Woo-Jae

    2018-01-01

    Single-walled carbon nanotubes (SWCNTs) can be either metallic or semiconducting, making their separation critical for applications in nanoelectronics, biomedical materials, and solar cells. Herein, we investigate a novel solution-phase separation method based on click chemistry (azide-alkyne Huisgen cycloaddition) and determine its efficiency and scalability. In this method, metallic SWCNTs in metallic/semiconducting SWCNT mixtures are selectively functionalized with alkyne groups by being reacted with 4-propargyloxybenezenediazonium tetrafluoroborate. Subsequently, silica nanoparticles are functionalized with azide groups and reacted with alkyne-bearing metallic SWCNTs in the SWCNT mixture in the presence of a Cu catalyst. As a result, metallic SWCNTs are anchored on silica powder, whereas non-functionalized semiconducting SWCNTs remain in solution. Low-speed centrifugation effectively removes the silica powder with attached metallic SWCNTs, furnishing a solution of highly pure semiconducting SWCNTs, as confirmed by Raman and UV-vis/near-infrared absorption measurements. This novel separation scheme exhibits the advantage of simultaneously separating both metallic and semiconducting SWCNTs from their mixtures, being cost-effective and therefore applicable at an industrial scale.

  16. Study of materials and machines for 3D printed large-scale, flexible electronic structures using fused deposition modeling

    Science.gov (United States)

    Hwang, Seyeon

    The 3 dimensional printing (3DP), called to additive manufacturing (AM) or rapid prototyping (RP), is emerged to revolutionize manufacturing and completely transform how products are designed and fabricated. A great deal of research activities have been carried out to apply this new technology to a variety of fields. In spite of many endeavors, much more research is still required to perfect the processes of the 3D printing techniques especially in the area of the large-scale additive manufacturing and flexible printed electronics. The principles of various 3D printing processes are briefly outlined in the Introduction Section. New types of thermoplastic polymer composites aiming to specified functional applications are also introduced in this section. Chapter 2 shows studies about the metal/polymer composite filaments for fused deposition modeling (FDM) process. Various metal particles, copper and iron particles, are added into thermoplastics polymer matrices as the reinforcement filler. The thermo-mechanical properties, such as thermal conductivity, hardness, tensile strength, and fracture mechanism, of composites are tested to figure out the effects of metal fillers on 3D printed composite structures for the large-scale printing process. In Chapter 3, carbon/polymer composite filaments are developed by a simple mechanical blending process with an aim of fabricating the flexible 3D printed electronics as a single structure. Various types of carbon particles consisting of multi-wall carbon nanotube (MWCNT), conductive carbon black (CCB), and graphite are used as the conductive fillers to provide the thermoplastic polyurethane (TPU) with improved electrical conductivity. The mechanical behavior and conduction mechanisms of the developed composite materials are observed in terms of the loading amount of carbon fillers in this section. Finally, the prototype flexible electronics are modeled and manufactured by the FDM process using Carbon/TPU composite filaments and

  17. Micron-scale mapping of megagauss magnetic fields using optical polarimetry to probe hot electron transport in petawatt-class laser-solid interactions.

    Science.gov (United States)

    Chatterjee, Gourab; Singh, Prashant Kumar; Robinson, A P L; Blackman, D; Booth, N; Culfa, O; Dance, R J; Gizzi, L A; Gray, R J; Green, J S; Koester, P; Kumar, G Ravindra; Labate, L; Lad, Amit D; Lancaster, K L; Pasley, J; Woolsey, N C; Rajeev, P P

    2017-08-21

    The transport of hot, relativistic electrons produced by the interaction of an intense petawatt laser pulse with a solid has garnered interest due to its potential application in the development of innovative x-ray sources and ion-acceleration schemes. We report on spatially and temporally resolved measurements of megagauss magnetic fields at the rear of a 50-μm thick plastic target, irradiated by a multi-picosecond petawatt laser pulse at an incident intensity of ~10 20 W/cm 2 . The pump-probe polarimetric measurements with micron-scale spatial resolution reveal the dynamics of the magnetic fields generated by the hot electron distribution at the target rear. An annular magnetic field profile was observed ~5 ps after the interaction, indicating a relatively smooth hot electron distribution at the rear-side of the plastic target. This is contrary to previous time-integrated measurements, which infer that such targets will produce highly structured hot electron transport. We measured large-scale filamentation of the hot electron distribution at the target rear only at later time-scales of ~10 ps, resulting in a commensurate large-scale filamentation of the magnetic field profile. Three-dimensional hybrid simulations corroborate our experimental observations and demonstrate a beam-like hot electron transport at initial time-scales that may be attributed to the local resistivity profile at the target rear.

  18. Chromosome length scaling in haploid, asexual reproduction

    International Nuclear Information System (INIS)

    Oliveira, P M C de

    2007-01-01

    We study the genetic behaviour of a population formed by haploid individuals which reproduce asexually. The genetic information for each individual is stored along a bit-string (or chromosome) with L bits, where 0-bits represent the wild allele and 1-bits correspond to harmful mutations. Each newborn inherits this chromosome from its parent with a few random mutations: on average a fixed number m of bits are flipped. Selection is implemented according to the number N of 1-bits counted along the individual's chromosome: the smaller N the higher the probability an individual has to survive a new time step. Such a population evolves, with births and deaths, and its genetic distribution becomes stabilized after sufficiently many generations have passed. The question we pose concerns the procedure of increasing L. The aim is to get the same distribution of genetic loads N/L among the equilibrated population, in spite of a larger L. Should we keep the same mutation rate m/L for different values of L? The answer is yes, which intuitively seems to be plausible. However, this conclusion is not trivial, according to our simulation results: the question also involves the population size

  19. Scale Length of the Galactic Thin Disk

    Indian Academy of Sciences (India)

    Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately.

  20. Chromosome length scaling in haploid, asexual reproduction

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, P M C de [Instituto de Fisica, Universidade Federal Fluminense, avenida Litoranea s/n, Boa Viagem, Niteroi 24210-340 (Brazil)

    2007-02-14

    We study the genetic behaviour of a population formed by haploid individuals which reproduce asexually. The genetic information for each individual is stored along a bit-string (or chromosome) with L bits, where 0-bits represent the wild allele and 1-bits correspond to harmful mutations. Each newborn inherits this chromosome from its parent with a few random mutations: on average a fixed number m of bits are flipped. Selection is implemented according to the number N of 1-bits counted along the individual's chromosome: the smaller N the higher the probability an individual has to survive a new time step. Such a population evolves, with births and deaths, and its genetic distribution becomes stabilized after sufficiently many generations have passed. The question we pose concerns the procedure of increasing L. The aim is to get the same distribution of genetic loads N/L among the equilibrated population, in spite of a larger L. Should we keep the same mutation rate m/L for different values of L? The answer is yes, which intuitively seems to be plausible. However, this conclusion is not trivial, according to our simulation results: the question also involves the population size.

  1. Scale Length of the Galactic Thin Disk

    Indian Academy of Sciences (India)

    tribpo

    We have used the first 2MASS sampler data, public release of point source catalogue, in J (1.25 µm), Η (1.65 µm) and KS band (2.17 ... information for 227,197 objects. We have used one of the 2MASS fields at .... This research has made use of the DEC ALPHA system of the Optical CCD astronomy programme of. TIFR.

  2. Scale Length of the Galactic Thin Disk

    Indian Academy of Sciences (India)

    tribpo

    the new value of hR. The model fit with data is not, however, completely satisfactory in J-KS, which might be improved by a slight change of SFR history in the model. One expects that the Galactic evolution parameters will be better known after the analysis of the Hipparcos and Tycho catalogues. The Besancon model is in a.

  3. Examining Agencies' Satisfaction with Electronic Record Management Systems in e-Government: A Large-Scale Survey Study

    Science.gov (United States)

    Hsu, Fang-Ming; Hu, Paul Jen-Hwa; Chen, Hsinchun; Hu, Han-Fen

    While e-government is propelling and maturing steadily, advanced technological capabilities alone cannot guarantee agencies’ realizing the full benefits of the enabling computer-based systems. This study analyzes information systems in e-government settings by examining agencies’ satisfaction with an electronic record management system (ERMS). Specifically, we investigate key satisfaction determinants that include regulatory compliance, job relevance, and satisfaction with support services for using the ERMS. We test our model and the hypotheses in it, using a large-scale survey that involves a total of 1,652 government agencies in Taiwan. Our results show significant effects of regulatory compliance on job relevance and satisfaction with support services, which in turn determine government agencies’ satisfaction with an ERMS. Our data exhibit a reasonably good fit to our model, which can explain a significant portion of the variance in agencies’ satisfaction with an ERMS. Our findings have several important implications to research and practice, which are also discussed.

  4. Theoretical scaling law of coronal magnetic field and electron power-law index in solar microwave burst sources

    Science.gov (United States)

    Huang, Y.; Song, Q. W.; Tan, B. L.

    2018-04-01

    It is first proposed a theoretical scaling law respectively for the coronal magnetic field strength B and electron power-law index δ versus frequency and coronal height in solar microwave burst sources. Based on the non-thermal gyro-synchrotron radiation model (Ramaty in Astrophys. J. 158:753, 1969), B and δ are uniquely solved by the observable optically-thin spectral index and turnover (peak) frequency, the other parameters (plasma density, temperature, view angle, low and high energy cutoffs, etc.) are relatively insensitive to the calculations, thus taken as some typical values. Both of B and δ increase with increasing of radio frequency but with decreasing of coronal height above photosphere, and well satisfy a square or cubic logarithmic fitting.

  5. CEBAF Upgrade Bunch Length Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mahmoud [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    Many accelerators use short electron bunches and measuring the bunch length is important for efficient operations. CEBAF needs a suitable bunch length because bunches that are too long will result in beam interruption to the halls due to excessive energy spread and beam loss. In this work, bunch length is measured by invasive and non-invasive techniques at different beam energies. Two new measurement techniques have been commissioned; a harmonic cavity showed good results compared to expectations from simulation, and a real time interferometer is commissioned and first checkouts were performed. Three other techniques were used for measurements and comparison purposes without modifying the old procedures. Two of them can be used when the beam is not compressed longitudinally while the other one, the synchrotron light monitor, can be used with compressed or uncompressed beam.

  6. Measurement of subpicosecond bunch lengths using coherent Smith-Purcell radiation

    Directory of Open Access Journals (Sweden)

    S. E. Korbly

    2006-02-01

    Full Text Available We report the use of coherent Smith-Purcell radiation to measure the bunch length of femtosecond-scale, 15 MeV electron bunches produced by a 17 GHz rf accelerator. The Smith-Purcell radiation was produced by passing a train of electron bunches above a metal grating. The radiation was verified as Smith-Purcell radiation by measuring the resonance condition, dependence on beam current, and dependence on beam height above the grating. Measurements of the intensity of the radiation vs emission angle were analyzed to obtain the bunch length. The accelerator was operated in two different modes, producing bunches that were determined to have bunch lengths of 600 and 1000±200  fs. These nondestructive bunch length measurements were found to agree well with an independent, but destructive, measurement using a microwave deflecting cavity.

  7. Direct sub-nanometer scale electron microscopy analysis of anion incorporation to self-ordered anodic alumina layers

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rovira, L.; Lopez-Haro, M.; Hungria, A.B.; El Amrani, K. [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Cadiz, Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Sanchez-Amaya, J.M. [Titania, Ensayos y Proyectos Industriales, S.L. Parque Tecnobahia, Edificio RETSE, Nave 4, 11500 El Puerto de Santa Maria (Cadiz) (Spain); Calvino, J.J. [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Cadiz, Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Botana, F.J., E-mail: javier.botana@uca.e [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Cadiz, Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain)

    2010-11-15

    Research highlights: {yields} Morphological and chemical characterization at atomic scale of porous alumina layers anodised in ordered regimes. {yields} Characterization based on the use of FEG-SEM, STEM-HAADF, STEM-EELS and STEM-X-EDS. {yields} Nanoscale distribution of P-, C- and S-bearing species in the pore wall. - Abstract: Ordered porous alumina layers prepared by two-step anodising in phosphoric, oxalic and sulphuric acids have been characterized at sub-nanometer scale using electron microscopy techniques. FEG-SEM and STEM-HAADF images allowed estimating the pore size, cell wall and pore wall thicknesses of the layers. Nanoanalytical characterization has been performed by STEM-EELS and STEM-X-EDS. Detailed features of the spatial distribution of anions in the pore wall of the films have been obtained. Maximum concentration of P-species occurs, approximately, at the middle of the pore wall; adjacent to the pore for C-species, whereas the distribution of S-species appears to be uniform.

  8. Microwave Guiding of Electrons on a Chip

    International Nuclear Information System (INIS)

    Hoffrogge, J.; Froehlich, R.; Hommelhoff, P.; Kasevich, M. A.

    2011-01-01

    We demonstrate the transverse confinement and guiding of a low energy electron beam of several electron volts in a miniaturized linear quadrupole guide. The guiding potential is generated by applying a microwave voltage to electrodes fabricated on a planar substrate, which allows the potential landscape to be precisely shaped on a microscopic scale. We realize transverse trapping frequencies of 100 MHz and guide electrons along a circular section of 37 mm length. A detailed characterization of the guiding properties in terms of potential depth and dynamic stability is given. This new technique of electron guiding promises various applications in guided matter-wave experiments such as electron interferometry.

  9. Local gauge invariant QED with fundamental length

    International Nuclear Information System (INIS)

    Kadyshevsky, V.G.; Mateev, M.D.

    1981-01-01

    A local gauge theory of electromagnetic interactions with the fundamental length l as a new universal scale is worked out. The Lagrangian contains new extra terms in which the coupling constant is proportional to the fundamental length. The theory has an elegant geometrical basis: in momentum representation one faces de Sitter momentum space with curvature radius 1/l [ru

  10. Scale-up of networked HIV treatment in Nigeria: creation of an integrated electronic medical records system.

    Science.gov (United States)

    Chaplin, Beth; Meloni, Seema; Eisen, Geoffrey; Jolayemi, Toyin; Banigbe, Bolanle; Adeola, Juliette; Wen, Craig; Reyes Nieva, Harry; Chang, Charlotte; Okonkwo, Prosper; Kanki, Phyllis

    2015-01-01

    The implementation of PEPFAR programs in resource-limited settings was accompanied by the need to document patient care on a scale unprecedented in environments where paper-based records were the norm. We describe the development of an electronic medical records system (EMRS) put in place at the beginning of a large HIV/AIDS care and treatment program in Nigeria. Databases were created to record laboratory results, medications prescribed and dispensed, and clinical assessments, using a relational database program. A collection of stand-alone files recorded different elements of patient care, linked together by utilities that aggregated data on national standard indicators and assessed patient care for quality improvement, tracked patients requiring follow-up, generated counts of ART regimens dispensed, and provided 'snapshots' of a patient's response to treatment. A secure server was used to store patient files for backup and transfer. By February 2012, when the program transitioned to local in-country management by APIN, the EMRS was used in 33 hospitals across the country, with 4,947,433 adult, pediatric and PMTCT records that had been created and continued to be available for use in patient care. Ongoing trainings for data managers, along with an iterative process of implementing changes to the databases and forms based on user feedback, were needed. As the program scaled up and the volume of laboratory tests increased, results were produced in a digital format, wherever possible, that could be automatically transferred to the EMRS. Many larger clinics began to link some or all of the databases to local area networks, making them available to a larger group of staff members, or providing the ability to enter information simultaneously where needed. The EMRS improved patient care, enabled efficient reporting to the Government of Nigeria and to U.S. funding agencies, and allowed program managers and staff to conduct quality control audits. Copyright © 2014

  11. High resolution low dose transmission electron microscopy real-time imaging and manipulation of nano-scale objects in the electron beam

    Science.gov (United States)

    Brown, Jr., R. Malcolm; Barnes, Zack [Austin, TX; Sawatari, Chie [Shizuoka, JP; Kondo, Tetsuo [Kukuoka, JP

    2008-02-26

    The present invention includes a method, apparatus and system for nanofabrication in which one or more target molecules are identified for manipulation with an electron beam and the one or more target molecules are manipulated with the electron beam to produce new useful materials.

  12. Multi-scale modelling of radiation damage in Fe-Cr based on ab initio electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Paer

    2004-04-01

    The efficiency of fast neutron reactors, such as for fusion, breeding and transmutation, depend strongly on the neutron radiation resistance of the materials used in the reactors. The binary Fe-Cr alloy, which has many attractive properties in this regard, is the base for the best steels of today which are, however, still not up to the required standards. Therefore, substantial effort has been devoted to finding new materials that can cope with the demands better. Experimental studies must be complemented with extensive theoretical modelling in order to understand the effects that different alloying elements has on the resistance properties of materials. To this end, the first steps of multi-scale modelling has been taken, starting out with ab initio calculations of the electronic structure of the complete concentration range range of the disordered binary Fe-C alloy. The mixing enthalpy of Fe-Cr has been quantitatively predicted and has, together with data from literature, been used in order to fit two sets of interatomic potentials for the purpose of simulating defect evolution with molecular dynamics and kinetic Monte-Carlo codes. These dedicated Fe-Cr alloy potentials are new and represent important additions to the pure element potentials that can be found in literature.

  13. Lattice design and beam optics calculations for the new large-scale electron-positron collider FCC-ee

    CERN Document Server

    Haerer, Bastian; Prof. Dr. Schmidt, Ruediger; Dr. Holzer, Bernhard

    Following the recommendations of the European Strategy Group for High Energy Physics, CERN launched the Future Circular Collider Study (FCC) to investigate the feasibility of large-scale circular colliders for future high energy physics research. This thesis presents the considerations taken into account during the design process of the magnetic lattice in the arc sections of the electron-positron version FCC-ee. The machine is foreseen to operate at four different centre-of-mass energies in the range of 90 to 350 GeV. Different beam parameters need to be achieved for every energy, which requires a flexible lattice design in the arc sections. Therefore methods to tune the horizontal beam emittance without re-positioning machine components are implemented. In combination with damping and excitation wigglers a precise adjustment of the emittance can be achieved. A very first estimation of the vertical emittance arising from lattice imperfections is performed. Special emphasis is put on the optimisation of the ...

  14. Trial production of low protein irradiated natural rubber latex by low energy electron beam in pilot scale

    International Nuclear Information System (INIS)

    Utama, Marga; Yoshii, F.; Kume, T.

    2006-01-01

    Three importance factors for producing low protein by low energy electron beam (250 keV/10 mA) irradiation in pilot scale (20 liters per bath) with 1,9-nonediol diacrylate (NDA) namely: maturation time of natural rubber latex before irradiation, treatment of irradiated natural rubber latex (INRL) before and after centrifugation, and standard irradiation method has been carried out. The results showed that the optimum irradiation time for producing INRL with 5 phr (part hundred ratio of rubber) of NDA as sensitize agent, and with the rotation speed of agitation 210 rpm (rotation per minutes) was between 20-30 minutes. By using this condition tensile strength of the INRL film was 26 MPa. The maturation of natural rubber latex before irradiation is the key for driving the quality of INRL. Water extractable protein content of INRL after leaching in 1% ammonia solution for 30 minutes at room temperature was around 47 μ/g, and after adding with 1 phr of PVA (poly vinyl alcohol) or 0.1 phr CMC (carboxy methyl cellulose) the water extractable protein content decrease less than 6 μ/g. (author)

  15. Multi-scale modelling of radiation damage in Fe-Cr based on ab initio electronic structure calculations

    International Nuclear Information System (INIS)

    Olsson, Paer

    2004-04-01

    The efficiency of fast neutron reactors, such as for fusion, breeding and transmutation, depend strongly on the neutron radiation resistance of the materials used in the reactors. The binary Fe-Cr alloy, which has many attractive properties in this regard, is the base for the best steels of today which are, however, still not up to the required standards. Therefore, substantial effort has been devoted to finding new materials that can cope with the demands better. Experimental studies must be complemented with extensive theoretical modelling in order to understand the effects that different alloying elements has on the resistance properties of materials. To this end, the first steps of multi-scale modelling has been taken, starting out with ab initio calculations of the electronic structure of the complete concentration range range of the disordered binary Fe-C alloy. The mixing enthalpy of Fe-Cr has been quantitatively predicted and has, together with data from literature, been used in order to fit two sets of interatomic potentials for the purpose of simulating defect evolution with molecular dynamics and kinetic Monte-Carlo codes. These dedicated Fe-Cr alloy potentials are new and represent important additions to the pure element potentials that can be found in literature

  16. Evaluation of scaling factors for the PTW RW3 plastic mannequin in electron beams; Evaluacion de los factores de puesta en escala para el maniqui plastico RW3 de PTW en haces de electrones

    Energy Technology Data Exchange (ETDEWEB)

    Moral Sanchez, S. C.; Bragado Alvarez, L.; Erzilbengoa, M.; Guisasola Berasategui, M. A.

    2011-07-01

    The International Code of Practice TRS-398 dosimetry published by the International Atomic Energy Agency (IAEA, 2004) are presented as a guide, the values ??for the scaling factor of depth, cp1, the factor scaling of flow, and the nominal density h1, p, 1, for some plastic materials discouraging in any case, its use in electron beam qualities R50> 4 g / cm (10Mev Energies above). In our study, we evaluated these scaling factors for the RW3 plastic phantom (PTW Freiburg).

  17. Random fractal characters and length uncertainty of the continental ...

    Indian Academy of Sciences (India)

    A coastline is a random fractal object in a geographical system whose length is uncertain. To determine the coastline length of a country or a region, the scaling region and fractal dimension of the coastline is first calculated, and then, the length of the coastline is measured using the scale at the lower limit or near the limit of ...

  18. Lifetime and Path Length of the Virtual Particle

    International Nuclear Information System (INIS)

    Lyuboshitz, V.L.; Lyuboshitz, V.V.

    2005-01-01

    The concepts of the lifetime and path length of a virtual particle are introduced. It is shown that, near the mass surface of the real particle, these quantities constitute a 4-vector. At very high energies, the virtual particle can propagate over considerable (even macroscopic) distances. The formulas for the lifetime and path length of an ultrarelativistic virtual electron in the process of bremsstrahlung in the Coulomb field of a nucleus are obtained. The lifetime and path length of the virtual photon at its conversion into an electron-positron pair are discussed. The connection between the path length of the virtual particle and the coherence length (formation length) is analyzed

  19. Information, polarization and term length in democracy

    DEFF Research Database (Denmark)

    Schultz, Christian

    2008-01-01

    accountable, but the re-election incentive leads to policy-distortion as the government seeks to manipulate swing voters' beliefs to make its ideology more popular. This creates a trade-off: A short term length improves accountability but gives distortions. A short term length is best for swing voters when......This paper considers term lengths in a representative democracy where the political issue divides the population on the left-right scale. Parties are ideologically different and better informed about the consequences of policies than voters are. A short term length makes the government more...

  20. Fundamental Scaling Laws in Nanophotonics

    Science.gov (United States)

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.

    2016-11-01

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.

  1. Telomere length analysis.

    Science.gov (United States)

    Canela, Andrés; Klatt, Peter; Blasco, María A

    2007-01-01

    Most somatic cells of long-lived species undergo telomere shortening throughout life. Critically short telomeres trigger loss of cell viability in tissues, which has been related to alteration of tissue function and loss of regenerative capabilities in aging and aging-related diseases. Hence, telomere length is an important biomarker for aging and can be used in the prognosis of aging diseases. These facts highlight the importance of developing methods for telomere length determination that can be employed to evaluate telomere length during the human aging process. Telomere length quantification methods have improved greatly in accuracy and sensitivity since the development of the conventional telomeric Southern blot. Here, we describe the different methodologies recently developed for telomere length quantification, as well as their potential applications for human aging studies.

  2. Inkjet printing as a roll-to-roll compatible technology for the production of large area electronic devices on a pre-industrial scale

    NARCIS (Netherlands)

    Teunissen, P.; Rubingh, E.; Lammeren, T. van; Abbel, R.J.; Groen, P.

    2014-01-01

    Inkjet printing is a promising approach towards the solution processing of electronic devices on an industrial scale. Of particular interest is the production of high-end applications such as large area OLEDs on flexible substrates. Roll-to-roll (R2R) processing technologies involving inkjet

  3. Direct momentum-resolved observation of one-dimensional confinement of externally doped electrons within a single subnanometer-scale wire.

    Science.gov (United States)

    Song, Inkyung; Oh, Dong-Hwa; Shin, Ha-Chul; Ahn, Sung-Joon; Moon, Youngkwon; Woo, Sun-Hee; Choi, Hyoung Joon; Park, Chong-Yun; Ahn, Joung Real

    2015-01-14

    Cutting-edge research in the band engineering of nanowires at the ultimate fine scale is related to the minimum scale of nanowire-based devices. The fundamental issue at the subnanometer scale is whether angle-resolved photoemission spectroscopy (ARPES) can be used to directly measure the momentum-resolved electronic structure of a single wire because of the difficulty associated with assembling single wire into an ordered array for such measurements. Here, we demonstrated that the one-dimensional (1D) confinement of electrons, which are transferred from external dopants, within a single subnanometer-scale wire (subnanowire) could be directly measured using ARPES. Convincing evidence of 1D electron confinement was obtained using two different gold subnanowires with characteristic single metallic bands that were alternately and spontaneously ordered on a stepped silicon template, Si(553). Noble metal atoms were adsorbed at room temperature onto the gold subnanowires while the overall structure of the wires was maintained. Only one type of gold subnanowire could be controlled using external noble metal dopants without transforming the metallic band of the other type of gold subnanowires. This result was confirmed by scanning tunnelling microscopy experiments and first-principles calculations. The selective control clearly showed that externally doped electrons could be confined within a single gold subnanowire. This experimental evidence was used to further investigate the effects of the disorder induced by external dopants on a single subnanowire using ARPES.

  4. Universal scaling behavior of molecular electronic stopping cross section for protons colliding with small molecules and nucleobases

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo-López, L.N.; Martínez-Flores, C. [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Ap. Postal 43-8, Cuernavaca, Morelos 62251 (Mexico); Cabrera-Trujillo, R., E-mail: trujillo@fis.unam.mx [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Ap. Postal 43-8, Cuernavaca, Morelos 62251 (Mexico); Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Ap. Postal 55-534, 09340 México, D.F. (Mexico)

    2013-10-15

    The electronic stopping cross section and mean excitation energy for molecules and 5 nucleobases have been calculated within the first Born approximation in terms of an orbital decomposition to take into account the molecular structure. The harmonic oscillator (HO) description of the stopping cross section together with a Floating Spherical Gaussian Orbital (FSGO) model is implemented to account for the chemical composition of the target. This approach allows us to use bonds, cores, and lone pairs as HO basis to describe the ground state molecular structure. In the HO model, the orbital angular frequency is the only parameter that connects naturally with the mean excitation energy. As a result, we obtain a simple expression for the equivalent mean excitation energy in terms of the orbital radius parameter, as well as an analytical expression of the stopping cross section. For gas phase molecular targets, we provide HO based orbital mean excitation energies to describe any molecule containing C, N, O, H, and P atoms. We present results for protons colliding with H{sub 2}, N{sub 2}, O{sub 2}, H{sub 2}O, CO{sub 2}, propylene (C{sub 3}H{sub 6}), methane (CH{sub 4}), ethylene (C{sub 2}H{sub 4}) and the nucleobases – guanine (C{sub 5}H{sub 5}N{sub 5}O), cytosine (C{sub 4}H{sub 5}N{sub 2}O{sub 2}), thymine (C{sub 5}H{sub 6}N{sub 2}O{sub 2}), adenine (C{sub 5}H{sub 5}N{sub 5}) and uracil (C{sub 4}H{sub 4}N{sub 2}O{sub 2}). The results for the stopping cross section are compared with available experimental and theoretical data showing good to excellent agreement in the region of validity of the model. The HO approach allows us to obtain a universal stopping cross section formula to describe a universal scaling behavior for the energy loss process. The universal scaled curve is confirmed by the experimental data.

  5. Neuroanatomy from Mesoscopic to Nanoscopic Scales: An Improved Method for the Observation of Semithin Sections by High-Resolution Scanning Electron Microscopy.

    Science.gov (United States)

    Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel

    2018-01-01

    Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM).

  6. Telomere length and depression

    DEFF Research Database (Denmark)

    Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Rode, Line

    2017-01-01

    BACKGROUND: Depression has been cross-sectionally associated with short telomeres as a measure of biological age. However, the direction and nature of the association is currently unclear. AIMS: We examined whether short telomere length is associated with depression cross-sectionally as well...... as prospectively and genetically. METHOD: Telomere length and three polymorphisms, TERT, TERC and OBFC1, were measured in 67 306 individuals aged 20-100 years from the Danish general population and associated with register-based attendance at hospital for depression and purchase of antidepressant medication....... RESULTS: Attendance at hospital for depression was associated with short telomere length cross-sectionally, but not prospectively. Further, purchase of antidepressant medication was not associated with short telomere length cross-sectionally or prospectively. Mean follow-up was 7.6 years (range 0...

  7. Myofilament length dependent activation

    Energy Technology Data Exchange (ETDEWEB)

    de Tombe, Pieter P.; Mateja, Ryan D.; Tachampa, Kittipong; Mou, Younss Ait; Farman, Gerrie P.; Irving, Thomas C. (IIT); (Loyola)

    2010-05-25

    The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca{sup 2+} ions at a longer sarcomere length, commonly referred to as myofilament length-dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the 'Frank-Starling law of the heart' constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development.

  8. Upper Extremity Length Equalization

    OpenAIRE

    DeCoster, Thomas A.; Ritterbusch, John; Crawford, Mark

    1992-01-01

    Significant upper extremity length inequality is uncommon but can cause major functional problems. The ability to position and use the hand may be impaired by shortness of any of the long bones of the upper extremity. In many respects upper and lower extremity length problems are similar. They most commonly occur after injury to a growing bone and the treatment modalities utilized in the lower extremity may be applied to the upper extremity. These treatment options include epiphysiodesis, sho...

  9. Electron rescattering at metal nanotips induced by ultrashort laser pulses

    OpenAIRE

    Wachter, Georg; Lemell, Christoph; Burgdoerfer, Joachim

    2013-01-01

    We theoretically investigate the interaction of moderate intensity near-infrared few cycle laser pulses with nano-scale metal tips. Local field enhancement in a nanometric region around the tip apex triggers coherent electron emission on the nanometer length and femtosecond time scale. The quantum dynamics at the surface are simulated with time-dependent density functional theory (TDDFT) and interpreted based on the simple man's model. We investigate the dependence of the emitted electron spe...

  10. Removal of the lower hybrid (LH) frequency time scale in test electron simulations of LH-induced tokamak edge electron flow

    Czech Academy of Sciences Publication Activity Database

    Fuchs, Vladimír; Petržílka, Václav; Gunn, J. P.; Goniche, M.

    2002-01-01

    Roč. 52, supplement D (2002), s. 45-50 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/20th./. Prague, 10.06.2002-13.06.2002] Institutional research plan: CEZ:AV0Z2043910 Keywords : tokamak, edge electrons, lower hybrid antenna Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002

  11. Stepped-wedge cluster randomised controlled trial to assess the effectiveness of an electronic medication management system to reduce medication errors, adverse drug events and average length of stay at two paediatric hospitals: a study protocol.

    Science.gov (United States)

    Westbrook, J I; Li, L; Raban, M Z; Baysari, M T; Mumford, V; Prgomet, M; Georgiou, A; Kim, T; Lake, R; McCullagh, C; Dalla-Pozza, L; Karnon, J; O'Brien, T A; Ambler, G; Day, R; Cowell, C T; Gazarian, M; Worthington, R; Lehmann, C U; White, L; Barbaric, D; Gardo, A; Kelly, M; Kennedy, P

    2016-10-21

    Medication errors are the most frequent cause of preventable harm in hospitals. Medication management in paediatric patients is particularly complex and consequently potential for harms are greater than in adults. Electronic medication management (eMM) systems are heralded as a highly effective intervention to reduce adverse drug events (ADEs), yet internationally evidence of their effectiveness in paediatric populations is limited. This study will assess the effectiveness of an eMM system to reduce medication errors, ADEs and length of stay (LOS). The study will also investigate system impact on clinical work processes. A stepped-wedge cluster randomised controlled trial (SWCRCT) will measure changes pre-eMM and post-eMM system implementation in prescribing and medication administration error (MAE) rates, potential and actual ADEs, and average LOS. In stage 1, 8 wards within the first paediatric hospital will be randomised to receive the eMM system 1 week apart. In stage 2, the second paediatric hospital will randomise implementation of a modified eMM and outcomes will be assessed. Prescribing errors will be identified through record reviews, and MAEs through direct observation of nurses and record reviews. Actual and potential severity will be assigned. Outcomes will be assessed at the patient-level using mixed models, taking into account correlation of admissions within wards and multiple admissions for the same patient, with adjustment for potential confounders. Interviews and direct observation of clinicians will investigate the effects of the system on workflow. Data from site 1 will be used to develop improvements in the eMM and implemented at site 2, where the SWCRCT design will be repeated (stage 2). The research has been approved by the Human Research Ethics Committee of the Sydney Children's Hospitals Network and Macquarie University. Results will be reported through academic journals and seminar and conference presentations. Australian New Zealand

  12. A comparative scanning electron microscopy study between hand instrument, ultrasonic scaling and erbium doped:Yttirum aluminum garnet laser on root surface: A morphological and thermal analysis

    Directory of Open Access Journals (Sweden)

    Mitul Kumar Mishra

    2013-01-01

    Full Text Available Background and Objectives: Scaling and root planing is one of the most commonly used procedures for the treatment of periodontal diseases. Removal of calculus using conventional hand instruments is incomplete and rather time consuming. In search of more efficient and less difficult instrumentation, investigators have proposed lasers as an alternative or as adjuncts to scaling and root planing. Hence, the purpose of the present study was to evaluate the effectiveness of erbium doped: Yttirum aluminum garnet (Er:YAG laser scaling and root planing alone or as an adjunct to hand and ultrasonic instrumentation. Subjects and Methods: A total of 75 freshly extracted periodontally involved single rooted teeth were collected. Teeth were randomly divided into five treatment groups having 15 teeth each: Hand scaling only, ultrasonic scaling only, Er:YAG laser scaling only, hand scaling + Er:YAG laser scaling and ultrasonic scaling + Er:YAG laser scaling. Specimens were subjected to scanning electron microscopy and photographs were evaluated by three examiners who were blinded to the study. Parameters included were remaining calculus index, loss of tooth substance index, roughness loss of tooth substance index, presence or absence of smear layer, thermal damage and any other morphological damage. Results: Er:YAG laser treated specimens showed similar effectiveness in calculus removal to the other test groups whereas tooth substance loss and tooth surface roughness was more on comparison with other groups. Ultrasonic treated specimens showed better results as compared to other groups with different parameters. However, smear layer presence was seen more with hand and ultrasonic groups. Very few laser treated specimens showed thermal damage and morphological change. Interpretation and Conclusion: In our study, ultrasonic scaling specimen have shown root surface clean and practically unaltered. On the other hand, hand instrument have produced a plane surface

  13. Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations

    Science.gov (United States)

    Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.

    1998-01-01

    We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.

  14. Relativistic Length Agony Continued

    Science.gov (United States)

    Redzic, D. V.

    2014-06-01

    We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.

  15. Telomere Length and Mortality

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P

    2008-01-01

    Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...... telomeres predicted the death of the first co-twin better than the mTRFL did (mTRFL: 0.56, 95% confidence interval (CI): 0.49, 0.63; mTRFL(50): 0.59, 95% CI: 0.52, 0.66; mTRFL(25): 0.59, 95% CI: 0.52, 0.66; MTRFL: 0.60, 95% CI: 0.53, 0.67). The telomere-mortality association was stronger in years 3-4 than...

  16. The relationship between small-scale and large-scale ionospheric electron density irregularities generated by powerful HF electromagnetic waves at high latitudes

    Directory of Open Access Journals (Sweden)

    E. D. Tereshchenko

    2006-11-01

    Full Text Available Satellite radio beacons were used in June 2001 to probe the ionosphere modified by a radio beam produced by the EISCAT high-power, high-frequency (HF transmitter located near Tromsø (Norway. Amplitude scintillations and variations of the phase of 150- and 400-MHz signals from Russian navigational satellites passing over the modified region were observed at three receiver sites. In several papers it has been stressed that in the polar ionosphere the thermal self-focusing on striations during ionospheric modification is the main mechanism resulting in the formation of large-scale (hundreds of meters to kilometers nonlinear structures aligned along the geomagnetic field (magnetic zenith effect. It has also been claimed that the maximum effects caused by small-scale (tens of meters irregularities detected in satellite signals are also observed in the direction parallel to the magnetic field. Contrary to those studies, the present paper shows that the maximum in amplitude scintillations does not correspond strictly to the magnetic zenith direction because high latitude drifts typically cause a considerable anisotropy of small-scale irregularities in a plane perpendicular to the geomagnetic field resulting in a deviation of the amplitude-scintillation peak relative to the minimum angle between the line-of-sight to the satellite and direction of the geomagnetic field lines. The variance of the logarithmic relative amplitude fluctuations is considered here, which is a useful quantity in such studies. The experimental values of the variance are compared with model calculations and good agreement has been found. It is also shown from the experimental data that in most of the satellite passes a variance maximum occurs at a minimum in the phase fluctuations indicating that the artificial excitation of large-scale irregularities is minimum when the excitation of small-scale irregularities is maximum.

  17. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory

    International Nuclear Information System (INIS)

    Riplinger, Christoph; Pinski, Peter; Becker, Ute; Neese, Frank; Valeev, Edward F.

    2016-01-01

    Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate

  18. Predicting length of stay in specialist neurological rehabilitation.

    Science.gov (United States)

    Taiwo, Whitney; Wressle, Alexandra; Bradley, Lloyd

    2018-03-01

    A retrospective case series was performed to determine which measures of complexity, dependency and function most accurately predict inpatient neurorehabilitation length of stay for individuals with post-acute neurological disorders. Sociodemographic, medical and functional variables were extracted from data submitted to the UK Rehabilitation Outcomes Collaborative. Length of stay was calculated as the total number of inpatient days, functional status was measured using Barthel Index, rehabilitation complexity was measured using Extended Rehabilitation Complexity Scale, and nursing dependency was measured using the Northwick Park Dependency Scale. The mean rehabilitation length of stay was 70.9 days, with length of stay being 35.1 days higher in inpatients with acquired brain injury than inpatients with spinal cord injury. Diagnostic category, Barthel Index scores, Extended Rehabilitation Complexity Scale scores and Northwick Park Dependency Scale scores at admission independently predicted length of stay. Multiple regressions including diagnostic group, Barthel Index, Extended Rehabilitation Complexity Scale and Northwick Park Dependency Scale statistically significantly predicted 37.9% of the variability in length of stay (p Scale on admission was most closely correlated with inpatient length of stay. In conclusion, inpatient length of stay is predicted by diagnostic category, Extended Rehabilitation Complexity Scale, Northwick Park Dependency Scale and Barthel Index. The most influential predictor of rehabilitation length of stay was Northwick Park Dependency Scale score at admission. These results may help facilitate rehabilitation resource planning and implementation of effective commissioning plans. Implications for Rehabilitation The most accurate predicting variable for length of stay in inpatient neurological rehabilitation was nursing need as measured by the Northwick Park Dependency Scale score on admission. Service users and commissioners can be

  19. A full-scale prototype for the tracking chambers of the ALICE muon spectrometer. Part II- Electronics. Preamplifier; Read-out prototype

    Energy Technology Data Exchange (ETDEWEB)

    Courtat, P.; Charlet, D.; Lebon, S.; Martin, J.M.; Sellem, R.; Wanlin, E. [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service d' Electronique Physique; Douet, R.; Harroch, H.; Bimbot, L.; Jouan, D.; Kharmandarian, L.; Le Bornec, Y.; Mac Cormick, M.; Willis, N. [Paris-11 Univ., 91 - Orsay (France). Institut de Physique Nucleaire

    1999-07-01

    A full scale prototype of one module of the first tracking station has already been constructed. It will be equipped with the new read-out electronics proposed for the final chambers. Before integration of the whole chain, tests have been carried out on the individual components in discrete circuit prototypes. The different parts of the chain are described, together with the tests performed. The final version with integrated circuits in then described. (author)

  20. A full-scale prototype for the tracking chambers of the ALICE muon spectrometer. Part II- Electronics. Preamplifier; Read-out prototype

    International Nuclear Information System (INIS)

    Courtat, P.; Charlet, D.; Lebon, S.; Martin, J.M.; Sellem, R.; Wanlin, E.; Douet, R.; Harroch, H.; Bimbot, L.; Jouan, D.; Kharmandarian, L.; Le Bornec, Y.; Mac Cormick, M.; Willis, N.

    1999-01-01

    A full scale prototype of one module of the first tracking station has already been constructed. It will be equipped with the new read-out electronics proposed for the final chambers. Before integration of the whole chain, tests have been carried out on the individual components in discrete circuit prototypes. The different parts of the chain are described, together with the tests performed. The final version with integrated circuits in then described. (author)

  1. Beam Energy Scaling of Ion-Induced Electron Yield from K+ Ions Impact on Stainless Steel Surfaces

    CERN Document Server

    Kireeff-Covo, Michel; Barnard, John J; Bieniosek, Frank; Celata, C M; Cohen, Ronald; Friedman, Alex; Grote, D P; Kwan, Joe W; Lund, Steven M; Molvik, Arthur; Seidl, Peter; Vay, Jean-Luc; Vujic, Jasmina L; Westenskow, Glen

    2005-01-01

    The cost of accelerators for heavy-ion inertial fusion energy (HIF) can be reduced by using the smallest possible clearance between the beam and the wall from the beamline. This increases beam loss to the walls, generating ion-induced electrons that could be trapped by beam space charge potential into an "electron cloud," which can cause degradation or loss of the ion beam. In order to understand the physical mechanism of production of ion-induced electrons we have measured impact of K+ ions with energies up to 400 KeV on stainless steel surfaces near grazing incidence, using the ion source test stand (STS-500) at LLNL. The electron yield will be discussed and compared with experimental measurements from 1 MeV K+ ions in the High-Current Experiment at LBNL.*

  2. Scaling c-w electron-beam-pumped rare gas lasers to ultrahigh average power. Final report, 16 May-15 Nov 90

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-11

    The overall objective of this program is to demonstrate the feasibility of efficiently scaling Ar:Xe lasers to ultra-high average power levels for strategic defense applications. The contractor has experimentally verified that the Ar:Xe laser system, which operates at near-IR wavelengths (1.73 micrometers), can achieve laser efficiencies of 4% with electron beam pumping at pump power densities as low as 10 watts/cc. This new efficient electron beam pumping regime promises cost-effective scaling of Ar:Xe laser systems to multi-megawatt average power levels while maintaining high electrical efficiency (4-6%) and near-diffraction-limited beam quality. In the Phase II effort, detailed experiments will be performed on an electron beam pumped Ar:Xe laser with a closed cycle flow loop at pump power densities of 10-20 W/cc. The objective of these experiments is to validate methods for correction and control of the optical distortions resulting from experiments is to validate methods for correction and control of the optical distortions resulting from CW pumping. Control of thermal distortions will be achieved by optimally contouring the spatial profile of electron beam power deposition in the active volume. With the optimal deposition profile, higher order optical distortions will be negligible and a diffraction limited beam will be obtained after tilt and focus corrections are made. These corrections can be made by a simple local loop by an adaptive optics system in the beam train.

  3. Full Length Research Article

    African Journals Online (AJOL)

    Administrator

    Out of the 320 male sheep examined, 87(27.2%) were infected, while 9(19.1%) of the 47 females examined were infected (Table 2). Infection varied from one abattoir to another. Age related distribution of P. cervi is shown in Table 3. Out of 356 adult sheep (>2yrs) examined, 35. Full Length Research Article. 12 ...

  4. Zero-point length from string fluctuations

    International Nuclear Information System (INIS)

    Fontanini, Michele; Spallucci, Euro; Padmanabhan, T.

    2006-01-01

    One of the leading candidates for quantum gravity, viz. string theory, has the following features incorporated in it. (i) The full spacetime is higher-dimensional, with (possibly) compact extra-dimensions; (ii) there is a natural minimal length below which the concept of continuum spacetime needs to be modified by some deeper concept. On the other hand, the existence of a minimal length (zero-point length) in four-dimensional spacetime, with obvious implications as UV regulator, has been often conjectured as a natural aftermath of any correct quantum theory of gravity. We show that one can incorporate the apparently unrelated pieces of information-zero-point length, extra-dimensions, string T-duality-in a consistent framework. This is done in terms of a modified Kaluza-Klein theory that interpolates between (high-energy) string theory and (low-energy) quantum field theory. In this model, the zero-point length in four dimensions is a 'virtual memory' of the length scale of compact extra-dimensions. Such a scale turns out to be determined by T-duality inherited from the underlying fundamental string theory. From a low energy perspective short distance infinities are cutoff by a minimal length which is proportional to the square root of the string slope, i.e., α ' . Thus, we bridge the gap between the string theory domain and the low energy arena of point-particle quantum field theory

  5. The influence of the excitation pulse length on ultrafast magnetization dynamics in nickel

    Directory of Open Access Journals (Sweden)

    A. Fognini

    2015-03-01

    Full Text Available The laser-induced demagnetization of a ferromagnet is caused by the temperature of the electron gas as well as the lattice temperature. For long excitation pulses, the two reservoirs are in thermal equilibrium. In contrast to a picosecond laser pulse, a femtosecond pulse causes a non-equilibrium between the electron gas and the lattice. By pump pulse length dependent optical measurements, we find that the magnetodynamics in Ni caused by a picosecond laser pulse can be reconstructed from the response to a femtosecond pulse. The mechanism responsible for demagnetization on the picosecond time scale is therefore contained in the femtosecond demagnetization experiment.

  6. Pilot study of synchronization on a femtosecond scale between the electronic gun REGAE and a laser-plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Titberidze, Mikheil

    2017-10-15

    Laser wakefield acceleration (LWFA) is a novel technique to accelerate charged particles. Acceleration is achieved by a high-power laser pulse transmitting a gas target where electrons and ions form a strong wakefield with gradients up to 100 GVm{sup -1}. Hence, the size of the laser-plasma accelerator (LPA) is significantly smaller compared to conventional radio frequency (RF) accelerators, because its accelerating gradients are 3 orders of magnitude higher. At present, electron beams generated by LWFA do not satisfy all requirements to make them directly usable for applications such as LPA driven free-electron laser (FEL). Pointing stability and relatively high energy spread are the major limiting factors. Typically, plasma electrons are self-injected in the plasma wake which is created by a high-power laser. There is a lack of control for the injection process and there is no direct access for diagnostics. In order to overcome these challenges and better understand the overall LWFA process, external injection experiments are planned at Deutsches Elektronen-Synchrotron (DESY) in the framework of the Laboratory for Laser and beam-driven plasma Acceleration (LAOLA) collaboration. Thus, well characterized and ultrashort (< 10 fs) electron bunches from the conventional RF accelerator Relativistic Electron Gun for Atomic Exploration (REGAE) will be injected into the laser driven plasma wake. This approach allows to reconstruct and map the plasma wakefield by post diagnosing the injected electron bunches by measuring the energy spectra of it for different injection times. To conduct such a pump-probe type of experiment, synchronization with fs accuracy is required between the electron bunches from REGAE and the high-power driver laser. Two main aspects of the laser synchronization are presented in this thesis. First, a detailed experimental investigation of the conventional, fast photodiode based direct conversion laser-to-RF synchronization setup and its limitations

  7. Pilot study of synchronization on a femtosecond scale between the electronic gun REGAE and a laser-plasma accelerator

    International Nuclear Information System (INIS)

    Titberidze, Mikheil

    2017-10-01

    Laser wakefield acceleration (LWFA) is a novel technique to accelerate charged particles. Acceleration is achieved by a high-power laser pulse transmitting a gas target where electrons and ions form a strong wakefield with gradients up to 100 GVm -1 . Hence, the size of the laser-plasma accelerator (LPA) is significantly smaller compared to conventional radio frequency (RF) accelerators, because its accelerating gradients are 3 orders of magnitude higher. At present, electron beams generated by LWFA do not satisfy all requirements to make them directly usable for applications such as LPA driven free-electron laser (FEL). Pointing stability and relatively high energy spread are the major limiting factors. Typically, plasma electrons are self-injected in the plasma wake which is created by a high-power laser. There is a lack of control for the injection process and there is no direct access for diagnostics. In order to overcome these challenges and better understand the overall LWFA process, external injection experiments are planned at Deutsches Elektronen-Synchrotron (DESY) in the framework of the Laboratory for Laser and beam-driven plasma Acceleration (LAOLA) collaboration. Thus, well characterized and ultrashort (< 10 fs) electron bunches from the conventional RF accelerator Relativistic Electron Gun for Atomic Exploration (REGAE) will be injected into the laser driven plasma wake. This approach allows to reconstruct and map the plasma wakefield by post diagnosing the injected electron bunches by measuring the energy spectra of it for different injection times. To conduct such a pump-probe type of experiment, synchronization with fs accuracy is required between the electron bunches from REGAE and the high-power driver laser. Two main aspects of the laser synchronization are presented in this thesis. First, a detailed experimental investigation of the conventional, fast photodiode based direct conversion laser-to-RF synchronization setup and its limitations are

  8. Structural complexities in the active layers of organic electronics.

    Science.gov (United States)

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  9. Gap length distributions by PEPR

    International Nuclear Information System (INIS)

    Warszawer, T.N.

    1980-01-01

    Conditions guaranteeing exponential gap length distributions are formulated and discussed. Exponential gap length distributions of bubble chamber tracks first obtained on a CRT device are presented. Distributions of resulting average gap lengths and their velocity dependence are discussed. (orig.)

  10. Length of excitable knots

    Science.gov (United States)

    Maucher, Fabian; Sutcliffe, Paul

    2017-07-01

    In this paper, we present extensive numerical simulations of an excitable medium to study the long-term dynamics of knotted vortex strings for all torus knots up to crossing number 11. We demonstrate that FitzHugh-Nagumo evolution preserves the knot topology for all the examples presented, thereby providing a field theory approach to the study of knots. Furthermore, the evolution yields a well-defined minimal length for each knot that is comparable to the ropelength of ideal knots. We highlight the role of the medium boundary in stabilizing the length of the knot and discuss the implications beyond torus knots. We also show that there is not a unique attractor within a given knot topology.

  11. Pion nucleus scattering lengths

    International Nuclear Information System (INIS)

    Huang, W.T.; Levinson, C.A.; Banerjee, M.K.

    1971-09-01

    Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs

  12. Copy Number Variation Analysis in the Context of Electronic Medical Records & Large-Scale Genomics Consortium Efforts

    Directory of Open Access Journals (Sweden)

    John J Connolly

    2014-03-01

    Full Text Available The goal of this paper is to review recent research on copy number variations (CNVs and their association with complex and rare diseases. In the latter part of this paper, we focus on how large biorepositories such as the electronic medical record and genomics (eMERGE consortium may be best leveraged to systematically mine for potentially pathogenic CNVs, and we end with a discussion of how such variants might be reported back for inclusion in electronic medical records as part of medical history.

  13. Length-weight and length-length relationships of freshwater wild ...

    African Journals Online (AJOL)

    Length-weight and length-length relationships of freshwater wild catfish Mystus bleekeri from Nala Daik, Sialkot, Pakistan. ... Linear regression analysis was used, first to compute the degree of relationship between length and weight and then among total (TL), standard (SL) and fork lengths (FL). LWR exhibited a highly ...

  14. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  15. On the electron to proton mass ratio and the proton structure

    DEFF Research Database (Denmark)

    Trinhammer, Ole L.

    2013-01-01

    We derive an expression for the electron to nucleon mass ratio from a reinterpreted lattice gauge theory Hamiltonian to describe interior baryon dynamics. We use the classical electron radius as our fundamental length scale. Based on expansions on trigonometric Slater determinants for a neutral s...... and d valence quarks of the proton....

  16. Hydrodynamics of electrons in graphene

    Science.gov (United States)

    Lucas, Andrew; Chung Fong, Kin

    2018-02-01

    Generic interacting many-body quantum systems are believed to behave as classical fluids on long time and length scales. Due to rapid progress in growing exceptionally pure crystals, we are now able to experimentally observe this collective motion of electrons in solid-state systems, including graphene. We present a review of recent progress in understanding the hydrodynamic limit of electronic motion in graphene, written for physicists from diverse communities. We begin by discussing the ‘phase diagram’ of graphene, and the inevitable presence of impurities and phonons in experimental systems. We derive hydrodynamics, both from a phenomenological perspective and using kinetic theory. We then describe how hydrodynamic electron flow is visible in electronic transport measurements. Although we focus on graphene in this review, the broader framework naturally generalizes to other materials. We assume only basic knowledge of condensed matter physics, and no prior knowledge of hydrodynamics.

  17. In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems

    Science.gov (United States)

    Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

    2006-01-01

    Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

  18. Short cervical length dilemma.

    Science.gov (United States)

    Suhag, Anju; Berghella, Vincenzo

    2015-06-01

    Preterm birth (PTB) is a leading cause of neonatal morbidity and mortality. With research efforts, the rate of PTB decreased to 11.4% in 2013. Transvaginal ultrasound (TVU) cervical length (CL) screening predicts PTB. In asymptomatic singletons without prior spontaneous PTB (sPTB), TVU CL screening should be done. If the cervix is 20 mm or less, vaginal progesterone is indicated. In asymptomatic singletons with prior sPTB, serial CL screening is indicated. In multiple gestations, routine cervical screening is not indicated. In symptomatic women with preterm labor, TVU CL screening and fetal fibronectin testing is recommended. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. discouraged by queue length

    Directory of Open Access Journals (Sweden)

    P. R. Parthasarathy

    2001-01-01

    Full Text Available The transient solution is obtained analytically using continued fractions for a state-dependent birth-death queue in which potential customers are discouraged by the queue length. This queueing system is then compared with the well-known infinite server queueing system which has the same steady state solution as the model under consideration, whereas their transient solutions are different. A natural measure of speed of convergence of the mean number in the system to its stationarity is also computed.

  20. Primary length standard adjustment

    Science.gov (United States)

    Ševčík, Robert; Guttenová, Jana

    2007-04-01

    This paper deals with problems and techniques connected with primary length standard adjusting, which includes disassembling of the device and by use of the secondary laser with collimated beam and diffraction laws successively reassembling of the laser. In the reassembling process the device was enhanced with substituting the thermal grease cooling of cold finger by copper socket cooler. This improved external cooling system enables more effective cooling of molecular iodine in the cell, which allows better pressure stability of iodine vapor and easier readjustment of the system.