WorldWideScience

Sample records for length scale factors

  1. Comparison of the Effects of the Different Methods for Computing the Slope Length Factor at a Watershed Scale

    Directory of Open Access Journals (Sweden)

    Fu Suhua

    2013-09-01

    Full Text Available The slope length factor is one of the parameters of the Universal Soil Loss Equation (USLE and the Revised Universal Soil Loss Equation (RUSLE and is sometimes calculated based on a digital elevation model (DEM. The methods for calculating the slope length factor are important because the values obtained may depend on the methods used for calculation. The purpose of this study was to compare the difference in spatial distribution of the slope length factor between the different methods at a watershed scale. One method used the uniform slope length factor equation (USLFE where the effects of slope irregularities (such as slope gradient, etc. on soil erosion by water were not considered. The other method used segmented slope length factor equation(SSLFE which considered the effects of slope irregularities on soil erosion by water. The Arc Macro Language (AML Version 4 program for the revised universal soil loss equation(RUSLE.which uses the USLFE, was chosen to calculate the slope length factor. In a parallel analysis, the AML code of RUSLE Version 4 was modified according to the SSLFE to calculate the slope length factor. Two watersheds with different slope and gully densities were chosen. The results show that the slope length factor and soil loss using the USLFE method were lower than those using the SSLFE method, especially on downslopes watershed with more frequent steep slopes and higher gully densities. In addition, the slope length factor and soil loss calculated by the USLFE showed less spatial variation.

  2. Length scale for configurational entropy in microemulsions

    NARCIS (Netherlands)

    Reiss, H.; Kegel, W.K.; Groenewold, J.

    1996-01-01

    In this paper we study the length scale that must be used in evaluating the mixing entropy in a microemulsion. The central idea involves the choice of a length scale in configuration space that is consistent with the physical definition of entropy in phase space. We show that this scale may be

  3. Minimal Length Scale Scenarios for Quantum Gravity.

    Science.gov (United States)

    Hossenfelder, Sabine

    2013-01-01

    We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.

  4. Mesoscopic Length Scale Controls the Rheology of Dense Suspensions

    Science.gov (United States)

    Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric

    2010-09-01

    From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.

  5. Minimal Length Scale Scenarios for Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Sabine Hossenfelder

    2013-01-01

    Full Text Available We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.

  6. Length scales in glass-forming liquids and related systems: a review

    International Nuclear Information System (INIS)

    Karmakar, Smarajit; Dasgupta, Chandan; Sastry, Srikanth

    2016-01-01

    The central problem in the study of glass-forming liquids and other glassy systems is the understanding of the complex structural relaxation and rapid growth of relaxation times seen on approaching the glass transition. A central conceptual question is whether one can identify one or more growing length scale(s) associated with this behavior. Given the diversity of molecular glass-formers and a vast body of experimental, computational and theoretical work addressing glassy behavior, a number of ideas and observations pertaining to growing length scales have been presented over the past few decades, but there is as yet no consensus view on this question. In this review, we will summarize the salient results and the state of our understanding of length scales associated with dynamical slow down. After a review of slow dynamics and the glass transition, pertinent theories of the glass transition will be summarized and a survey of ideas relating to length scales in glassy systems will be presented. A number of studies have focused on the emergence of preferred packing arrangements and discussed their role in glassy dynamics. More recently, a central object of attention has been the study of spatially correlated, heterogeneous dynamics and the associated length scale, studied in computer simulations and theoretical analysis such as inhomogeneous mode coupling theory. A number of static length scales have been proposed and studied recently, such as the mosaic length scale discussed in the random first-order transition theory and the related point-to-set correlation length. We will discuss these, elaborating on key results, along with a critical appraisal of the state of the art. Finally we will discuss length scales in driven soft matter, granular fluids and amorphous solids, and give a brief description of length scales in aging systems. Possible relations of these length scales with those in glass-forming liquids will be discussed. (review article)

  7. An experimental verification of the compensation of length change of line scales caused by ambient air pressure

    International Nuclear Information System (INIS)

    Takahashi, Akira; Miwa, Nobuharu

    2010-01-01

    Line scales are used as a working standard of length for the calibration of optical measuring instruments such as profile projectors, measuring microscopes and video measuring systems. The authors have developed a one-dimensional calibration system for line scales to obtain a lower uncertainty of measurement. The scale calibration system, named Standard Scale Calibrator SSC-05, employs a vacuum interferometer system for length measurement, a 633 nm iodine-stabilized He–Ne laser to calibrate the oscillating frequency of the interferometer laser light source and an Abbe's error compensation structure. To reduce the uncertainty of measurement, the uncertainty factors of the line scale and ambient conditions should not be neglected. Using the length calibration system, the expansion and contraction of a line scale due to changes in ambient air pressure were observed and the measured scale length was corrected into the length under standard atmospheric pressure, 1013.25 hPa. Utilizing a natural rapid change in the air pressure caused by a tropical storm (typhoon), we carried out an experiment on the length measurement of a 1000 mm long line scale made of glass ceramic with a low coefficient of thermal expansion. Using a compensation formula for the length change caused by changes in ambient air pressure, the length change of the 1000 mm long line scale was compensated with a standard deviation of less than 1 nm

  8. Chemical theory and modelling through density across length scales

    International Nuclear Information System (INIS)

    Ghosh, Swapan K.

    2016-01-01

    One of the concepts that has played a major role in the conceptual as well as computational developments covering all the length scales of interest in a number of areas of chemistry, physics, chemical engineering and materials science is the concept of single-particle density. Density functional theory has been a versatile tool for the description of many-particle systems across length scales. Thus, in the microscopic length scale, an electron density based description has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids. Density concept has been used in the form of single particle number density in the intermediate mesoscopic length scale to obtain an appropriate picture of the equilibrium and dynamical processes, dealing with a wide class of problems involving interfacial science and soft condensed matter. In the macroscopic length scale, however, matter is usually treated as a continuous medium and a description using local mass density, energy density and other related property density functions has been found to be quite appropriate. The basic ideas underlying the versatile uses of the concept of density in the theory and modelling of materials and phenomena, as visualized across length scales, along with selected illustrative applications to some recent areas of research on hydrogen energy, soft matter, nucleation phenomena, isotope separation, and separation of mixture in condensed phase, will form the subject matter of the talk. (author)

  9. Hydrodynamics of long-scale-length plasmas. Summary

    International Nuclear Information System (INIS)

    Craxton, R.S.

    1984-01-01

    A summary is given relating to the importance of long-scale-length plasmas to laser fusion. Some experiments are listed in which long-scale-length plasmas have been produced and studied. This talk presents SAGE simulations of most of these experiments with the emphasis being placed on understanding the hydrodynamic conditions rather than the parametric/plasma-physics processes themselves which are not modeled by SAGE. However, interpretation of the experiments can often depend on a good understanding of the hydrodynamics, including optical ray tracing

  10. Length scale of secondary stresses in fracture and fatigue

    International Nuclear Information System (INIS)

    Dong, P.

    2008-01-01

    In an attempt to provide a consistent framework for the analysis and treatment of secondary stresses associated with welding and thermal loading in the context of fracture mechanics, this paper starts with an effective stress characterization procedure by introducing a length-scale concept. With it, a traction-based stress separation procedure is then presented to provide a consistent characterization of stresses from various sources based on their length scale. Their relative contributions to fracture driving force are then quantified in terms of their characteristic length scales. Special attention is given to the implications of the length-scale argument on both analysis and treatment of welding residual stresses in fracture assessment. A series of examples is provided to demonstrate how the present developments can be applied for treating not only secondary stresses but also externally applied stresses, as well as their combined effects on the structural integrity of engineering components

  11. Progress in Long Scale Length Laser-Plasma Interactions

    International Nuclear Information System (INIS)

    Glenzer, S H; Arnold, P; Bardsley, G; Berger, R L; Bonanno, G; Borger, T; Bower, D E; Bowers, M; Bryant, R; Buckman, S.; Burkhart, S C; Campbell, K; Chrisp, M P; Cohen, B I; Constantin, G; Cooper, F; Cox, J; Dewald, E; Divol, L; Dixit, S; Duncan, J; Eder, D; Edwards, J; Erbert, G; Felker, B; Fornes, J; Frieders, G; Froula, D H; Gardner, S D; Gates, C; Gonzalez, M; Grace, S; Gregori, G; Greenwood, A; Griffith, R; Hall, T; Hammel, B A; Haynam, C; Heestand, G; Henesian, M; Hermes, G; Hinkel, D; Holder, J; Holdner, F; Holtmeier, G; Hsing, W; Huber, S; James, T; Johnson, S; Jones, O S; Kalantar, D; Kamperschroer, J H; Kauffman, R; Kelleher, T; Knight, J; Kirkwood, R K; Kruer, W L; Labiak, W; Landen, O L; Langdon, A B; Langer, S; Latray, D; Lee, A; Lee, F D; Lund, D; MacGowan, B; Marshall, S; McBride, J; McCarville, T; McGrew, L; Mackinnon, A J; Mahavandi, S; Manes, K; Marshall, C; Mertens, E; Meezan, N; Miller, G; Montelongo, S; Moody, J D; Moses, E; Munro, D; Murray, J; Neumann, J; Newton, M; Ng, E; Niemann, C; Nikitin, A; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rekow, V; Rinnert, R; Riordan, B; Rhodes, M.

    2003-01-01

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 mm and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3ω) with a total intensity of 2 x 10 15 W cm -2 . The targets were filled with 1 atm of CO 2 producing of up to 7 mm long homogeneously heated plasmas with densities of n e = 6 x 10 20 cm -3 and temperatures of T e = 2 keV. The high energy in a NIF quad of beams of 16kJ, illuminating the target from one direction, creates unique conditions for the study of laser plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last ∼1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 6% for the smallest length (∼2 mm). increasing to 12% for ∼7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modeling of the laser-plasma interactions at ignition-size scale lengths

  12. Length and time scales of atmospheric moisture recycling

    Directory of Open Access Journals (Sweden)

    R. J. van der Ent

    2011-03-01

    Full Text Available It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to quantify the spatial and temporal scale of moisture recycling, independent of the size and shape of the region under study. In contrast to previous studies, which essentially used curve fitting, the scaling laws presented by us follow directly from the process equation. thus allowing a fair comparison between regions and seasons. The calculation is based on ERA-Interim reanalysis data for the period 1999 to 2008. It is shown that in the tropics or in mountainous terrain the length scale of recycling can be as low as 500 to 2000 km. In temperate climates the length scale is typically between 3000 to 5000 km whereas it amounts to more than 7000 km in desert areas. The time scale of recycling ranges from 3 to 20 days, with the exception of deserts, where it is much longer. The most distinct seasonal differences can be observed over the Northern Hemisphere: in winter, moisture recycling is insignificant, whereas in summer it plays a major role in the climate. The length and time scales of atmospheric moisture recycling can be useful metrics to quantify local climatic effects of land use change.

  13. Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows

    Science.gov (United States)

    Assouline, S.; Lehmann, P. G.; Or, D.

    2015-12-01

    Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.

  14. Maximum length scale in density based topology optimization

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Wang, Fengwen

    2017-01-01

    The focus of this work is on two new techniques for imposing maximum length scale in topology optimization. Restrictions on the maximum length scale provide designers with full control over the optimized structure and open possibilities to tailor the optimized design for broader range...... of manufacturing processes by fulfilling the associated technological constraints. One of the proposed methods is based on combination of several filters and builds on top of the classical density filtering which can be viewed as a low pass filter applied to the design parametrization. The main idea...

  15. On the calculation of length scales for turbulent heat transfer correlation

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, M.J.; Hollingsworth, D.K.

    1999-07-01

    Turbulence length scale calculation methods were critically reviewed for their usefulness in boundary layer heat transfer correlations. Merits and deficiencies in each calculation method were presented. A rigorous method for calculating an energy-based integral scale was introduced. The method uses the variance of the streamwise velocity and a measured dissipation spectrum to calculate the length scale. Advantages and disadvantages of the new method were discussed. A principal advantage is the capability to decisively calculate length scales in a low-Reynolds-number turbulent boundary layer. The calculation method was tested with data from grid-generated, free-shear-layer, and wall-bounded turbulence. In each case, the method proved successful. The length scale is well behaved in turbulent boundary layers with momentum thickness Reynolds numbers from 400 to 2,100 and in flows with turbulent Reynolds numbers as low as 90.

  16. Scaling of the critical free length for progressive unfolding of self-bonded graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Kenny; Cranford, Steven W., E-mail: s.cranford@neu.edu [Laboratory of Nanotechnology in Civil Engineering (NICE), Department of Civil and Environmental Engineering, Northeastern University, 400 Snell Engineering, 360 Huntington Avenue, Boston, Massachusetts 02115 (United States)

    2014-05-19

    Like filled pasta, rolled or folded graphene can form a large nanocapsule surrounding a hollow interior. Use as a molecular carrier, however, requires understanding of the opening of such vessels. Here, we investigate a monolayer sheet of graphene as a theoretical trial platform for such a nanocapsule. The graphene is bonded to itself via aligned disulfide (S-S) bonds. Through theoretical analysis and atomistic modeling, we probe the critical nonbonded length (free length, L{sub crit}) that induces fracture-like progressive unfolding as a function of folding radius (R{sub i}). We show a clear linear scaling relationship between the length and radius, which can be used to determine the necessary bond density to predict mechanical opening/closing. However, stochastic dissipated energy limits any exact elastic formulation, and the required energy far exceeds the dissociation energy of the S-S bond. We account for the necessary dissipated kinetic energy through a simple scaling factor (Ω), which agrees well with computational results.

  17. A New European Slope Length and Steepness Factor (LS-Factor for Modeling Soil Erosion by Water

    Directory of Open Access Journals (Sweden)

    Panos Panagos

    2015-04-01

    Full Text Available The Universal Soil Loss Equation (USLE model is the most frequently used model for soil erosion risk estimation. Among the six input layers, the combined slope length and slope angle (LS-factor has the greatest influence on soil loss at the European scale. The S-factor measures the effect of slope steepness, and the L-factor defines the impact of slope length. The combined LS-factor describes the effect of topography on soil erosion. The European Soil Data Centre (ESDAC developed a new pan-European high-resolution soil erosion assessment to achieve a better understanding of the spatial and temporal patterns of soil erosion in Europe. The LS-calculation was performed using the original equation proposed by Desmet and Govers (1996 and implemented using the System for Automated Geoscientific Analyses (SAGA, which incorporates a multiple flow algorithm and contributes to a precise estimation of flow accumulation. The LS-factor dataset was calculated using a high-resolution (25 m Digital Elevation Model (DEM for the whole European Union, resulting in an improved delineation of areas at risk of soil erosion as compared to lower-resolution datasets. This combined approach of using GIS software tools with high-resolution DEMs has been successfully applied in regional assessments in the past, and is now being applied for first time at the European scale.

  18. Collective dynamics of glass-forming polymers at intermediate length scales

    International Nuclear Information System (INIS)

    Colmenero, J.; Alvarez, F.; Arbe, A.

    2015-01-01

    Deep understanding of the complex dynamics taking place in glass-forming systems could potentially be gained by exploiting the information provided by the collective response monitored by coherent neutron scattering. We have revisited the question of the characterization of the collective response of polyisobutylene at intermediate length scales observed by neutron spin echo (NSE) experiments. The model, generalized for sub-linear diffusion - as it is the case of glass-forming polymers - has been successfully applied by using the information on the total self-motions available from MD-simulations properly validated by direct comparison with experimental results. From the fits of the coherent NSE data, the collective time at Q → 0 has been extracted that agrees very well with compiled results from different experimental techniques directly accessing such relaxation time. We show that a unique temperature dependence governs both, the Q → 0 and Q → ∞ asymptotic characteristic times. The generalized model also gives account for the modulation of the apparent activation energy of the collective times with the static structure factor. It mainly results from changes of the short-range order at inter-molecular length scales

  19. Length scales for the Navier-Stokes equations on a rotating sphere

    International Nuclear Information System (INIS)

    Kyrychko, Yuliya N.; Bartuccelli, Michele V.

    2004-01-01

    In this Letter we obtain the dissipative length scale for the Navier-Stokes equations on a two-dimensional rotating sphere S 2 . This system is a fundamental model of the large scale atmospheric dynamics. Using the equations of motion in their vorticity form, we construct the ladder inequalities from which a set of time-averaged length scales is obtained

  20. Manufacturing test of large scale hollow capsule and long length cladding in the large scale oxide dispersion strengthened (ODS) martensitic steel

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2004-04-01

    Mass production capability of oxide dispersion strengthened (ODS) martensitic steel cladding (9Cr) has being evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube (raw materials powder production, mechanical alloying (MA) by ball mill, canning, hot extrusion, and machining) is a dominant factor in the total cost for manufacturing ODS ferritic steel cladding. In this study, the large-sale 9Cr-ODS martensitic steel mother tube which is made with a large-scale hollow capsule, and long length claddings were manufactured, and the applicability of these processes was evaluated. Following results were obtained in this study. (1) Manufacturing the large scale mother tube in the dimension of 32 mm OD, 21 mm ID, and 2 m length has been successfully carried out using large scale hollow capsule. This mother tube has a high degree of accuracy in size. (2) The chemical composition and the micro structure of the manufactured mother tube are similar to the existing mother tube manufactured by a small scale can. And the remarkable difference between the bottom and top sides in the manufactured mother tube has not been observed. (3) The long length cladding has been successfully manufactured from the large scale mother tube which was made using a large scale hollow capsule. (4) For reducing the manufacturing cost of the ODS steel claddings, manufacturing process of the mother tubes using a large scale hollow capsules is promising. (author)

  1. Transition in multiple-scale-lengths turbulence in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, S.-I.; Yagi, M.; Kawasaki, M.; Kitazawa, A. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2002-02-01

    The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Statistical nonlinear interactions between semi-micro and micro modes are first kept in the analysis as the drag, noise and drive. The nonlinear dynamics determines both the fluctuation levels and the cross field turbulent transport for the fixed global parameters. A quenching or suppressing effect is induced by their nonlinear interplay, even if both modes are unstable when analyzed independently. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. The thermal fluctuation of the scale length of {lambda}{sub D} is assumed to be statistically independent. The hierarchical structure is constructed according to the scale lengths. Transitions in turbulence are found and phase diagrams with cusp type catastrophe are obtained. Dynamics is followed. Statistical properties of the subcritical excitation are discussed. The probability density function (PDF) and transition probability are obtained. Power-laws are obtained in the PDF as well as in the transition probability. Generalization for the case where turbulence is composed of three-classes of modes is also developed. A new catastrophe of turbulent sates is obtained. (author)

  2. Transition in multiple-scale-lengths turbulence in plasmas

    International Nuclear Information System (INIS)

    Itoh, S.-I.; Yagi, M.; Kawasaki, M.; Kitazawa, A.

    2002-02-01

    The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Statistical nonlinear interactions between semi-micro and micro modes are first kept in the analysis as the drag, noise and drive. The nonlinear dynamics determines both the fluctuation levels and the cross field turbulent transport for the fixed global parameters. A quenching or suppressing effect is induced by their nonlinear interplay, even if both modes are unstable when analyzed independently. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. The thermal fluctuation of the scale length of λ D is assumed to be statistically independent. The hierarchical structure is constructed according to the scale lengths. Transitions in turbulence are found and phase diagrams with cusp type catastrophe are obtained. Dynamics is followed. Statistical properties of the subcritical excitation are discussed. The probability density function (PDF) and transition probability are obtained. Power-laws are obtained in the PDF as well as in the transition probability. Generalization for the case where turbulence is composed of three-classes of modes is also developed. A new catastrophe of turbulent sates is obtained. (author)

  3. LENGTH-WEIGHT RELATIONSHIP AND CONDITION FACTOR OF ...

    African Journals Online (AJOL)

    Data Collection and Analysis. The measurements of length (cm), weight (g) and the condition factor of individual fish sampled were recorded. The relationship between length and weight of the fish was examined by simple linear regression using WINKS software. The variations in the length-weight represented by 'b' were.

  4. Scale Length of the Galactic Thin Disk

    Indian Academy of Sciences (India)

    tribpo

    thin disk density scale length, hR, is rather short (2.7 ± 0.1 kpc). Key words. ... The 2MASS near infrared data provide, for the first time, deep star counts on a ... peaks allows to adjust the spatial extinction law in the model. ... probability that fi.

  5. Length-Weight Relationship and Condition Factor (K constant) of ...

    African Journals Online (AJOL)

    Abstract—Length-weight relationships and condition factors of Sparidae along the. Kenyan coast are unknown. This study investigated the length-weight relationship and condition factor of Dentex maroccanus Valenciennes, 1830, a sparid, found in. Malindi, Kenya, from June to August 2008. The length-weight coefficients ...

  6. Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales.

    Science.gov (United States)

    Ang, Siang Fung; Bortel, Emely L; Swain, Michael V; Klocke, Arndt; Schneider, Gerold A

    2010-03-01

    The microstructure of enamel like most biological tissues has a hierarchical structure which determines their mechanical behavior. However, current studies of the mechanical behavior of enamel lack a systematic investigation of these hierarchical length scales. In this study, we performed macroscopic uni-axial compression tests and the spherical indentation with different indenter radii to probe enamel's elastic/inelastic transition over four hierarchical length scales, namely: 'bulk enamel' (mm), 'multiple-rod' (10's microm), 'intra-rod' (100's nm with multiple crystallites) and finally 'single-crystallite' (10's nm with an area of approximately one hydroxyapatite crystallite). The enamel's elastic/inelastic transitions were observed at 0.4-17 GPa depending on the length scale and were compared with the values of synthetic hydroxyapatite crystallites. The elastic limit of a material is important as it provides insights into the deformability of the material before fracture. At the smallest investigated length scale (contact radius approximately 20 nm), elastic limit is followed by plastic deformation. At the largest investigated length scale (contact size approximately 2 mm), only elastic then micro-crack induced response was observed. A map of elastic/inelastic regions of enamel from millimeter to nanometer length scale is presented. Possible underlying mechanisms are also discussed. (c) 2009 Elsevier Ltd. All rights reserved.

  7. Length of a Hanging Cable

    Directory of Open Access Journals (Sweden)

    Eric Costello

    2011-01-01

    Full Text Available The shape of a cable hanging under its own weight and uniform horizontal tension between two power poles is a catenary. The catenary is a curve which has an equation defined by a hyperbolic cosine function and a scaling factor. The scaling factor for power cables hanging under their own weight is equal to the horizontal tension on the cable divided by the weight of the cable. Both of these values are unknown for this problem. Newton's method was used to approximate the scaling factor and the arc length function to determine the length of the cable. A script was written using the Python programming language in order to quickly perform several iterations of Newton's method to get a good approximation for the scaling factor.

  8. Many-body localization transition: Schmidt gap, entanglement length, and scaling

    Science.gov (United States)

    Gray, Johnnie; Bose, Sougato; Bayat, Abolfazl

    2018-05-01

    Many-body localization has become an important phenomenon for illuminating a potential rift between nonequilibrium quantum systems and statistical mechanics. However, the nature of the transition between ergodic and localized phases in models displaying many-body localization is not yet well understood. Assuming that this is a continuous transition, analytic results show that the length scale should diverge with a critical exponent ν ≥2 in one-dimensional systems. Interestingly, this is in stark contrast with all exact numerical studies which find ν ˜1 . We introduce the Schmidt gap, new in this context, which scales near the transition with an exponent ν >2 compatible with the analytical bound. We attribute this to an insensitivity to certain finite-size fluctuations, which remain significant in other quantities at the sizes accessible to exact numerical methods. Additionally, we find that a physical manifestation of the diverging length scale is apparent in the entanglement length computed using the logarithmic negativity between disjoint blocks.

  9. Empirical scaling of the length of the longest increasing subsequences of random walks

    Science.gov (United States)

    Mendonça, J. Ricardo G.

    2017-02-01

    We provide Monte Carlo estimates of the scaling of the length L n of the longest increasing subsequences of n-step random walks for several different distributions of step lengths, short and heavy-tailed. Our simulations indicate that, barring possible logarithmic corrections, {{L}n}∼ {{n}θ} with the leading scaling exponent 0.60≲ θ ≲ 0.69 for the heavy-tailed distributions of step lengths examined, with values increasing as the distribution becomes more heavy-tailed, and θ ≃ 0.57 for distributions of finite variance, irrespective of the particular distribution. The results are consistent with existing rigorous bounds for θ, although in a somewhat surprising manner. For random walks with step lengths of finite variance, we conjecture that the correct asymptotic behavior of L n is given by \\sqrt{n}\\ln n , and also propose the form for the subleading asymptotics. The distribution of L n was found to follow a simple scaling form with scaling functions that vary with θ. Accordingly, when the step lengths are of finite variance they seem to be universal. The nature of this scaling remains unclear, since we lack a working model, microscopic or hydrodynamic, for the behavior of the length of the longest increasing subsequences of random walks.

  10. Factors affecting length of stay in forensic hospital setting: need for therapeutic security and course of admission.

    LENUS (Irish Health Repository)

    Davoren, Mary

    2015-01-01

    Patients admitted to a secure forensic hospital are at risk of a long hospital stay. Forensic hospital beds are a scarce and expensive resource and ability to identify the factors predicting length of stay at time of admission would be beneficial. The DUNDRUM-1 triage security scale and DUNDRUM-2 triage urgency scale are designed to assess need for therapeutic security and urgency of that need while the HCR-20 predicts risk of violence. We hypothesized that items on the DUNDRUM-1 and DUNDRUM-2 scales, rated at the time of pre-admission assessment, would predict length of stay in a medium secure forensic hospital setting.

  11. Natural Length Scales of Ecological Systems: Applications at Community and Ecosystem Levels

    Directory of Open Access Journals (Sweden)

    Craig R. Johnson

    2009-06-01

    Full Text Available The characteristic, or natural, length scales of a spatially dynamic ecological landscape are the spatial scales at which the deterministic trends in the dynamic are most sharply in focus. Given recent development of techniques to determine the characteristic length scales (CLSs of real ecological systems, I explore the potential for using CLSs to address three important and vexing issues in applied ecology, viz. (i determining the optimum scales to monitor ecological systems, (ii interpreting change in ecological communities, and (iii ascertaining connectivity between species in complex ecologies. In summarizing the concept of characteristic length scales as system-level scaling thresholds, I emphasize that the primary CLS is, by definition, the optimum scale at which to monitor a system if the objective is to observe its deterministic dynamics at a system level. Using several different spatially explicit individual-based models, I then explore predictions of the underlying theory of CLSs in the context of interpreting change and ascertaining connectivity among species in ecological systems. Analysis of these models support predictions that systems with strongly fluctuating community structure, but an otherwise stable long-term dynamic defined by a stationary attractor, indicate an invariant length scale irrespective of community structure at the time of analysis, and irrespective of the species analyzed. In contrast, if changes in the underlying dynamic are forcibly induced, the shift in dynamics is reflected by a change in the primary length scale. Thus, consideration of the magnitude of the CLS through time enables distinguishing between circumstances where there are temporal changes in community structure but not in the long-term dynamic, from that where changes in community structure reflect some kind of fundamental shift in dynamics. In this context, CLSs emerge as a diagnostic tool to identify phase shifts to alternative stable states

  12. Association of Telomere Length with Breast Cancer Prognostic Factors.

    Directory of Open Access Journals (Sweden)

    Kaoutar Ennour-Idrissi

    Full Text Available Telomere length, a marker of cell aging, seems to be affected by the same factors thought to be associated with breast cancer prognosis.To examine associations of peripheral blood cell-measured telomere length with traditional and potential prognostic factors in breast cancer patients.We conducted a cross-sectional analysis of data collected before surgery from 162 breast cancer patients recruited consecutively between 01/2011 and 05/2012, at a breast cancer reference center. Data on the main lifestyle factors (smoking, alcohol consumption, physical activity were collected using standardized questionnaires. Anthropometric factors were measured. Tumor biological characteristics were extracted from pathology reports. Telomere length was measured using a highly reproducible quantitative PCR method in peripheral white blood cells. Spearman partial rank-order correlations and multivariate general linear models were used to evaluate relationships between telomere length and prognostic factors.Telomere length was positively associated with total physical activity (rs = 0.17, P = 0.033; Ptrend = 0.069, occupational physical activity (rs = 0.15, P = 0.054; Ptrend = 0.054 and transportation-related physical activity (rs = 0.19, P = 0.019; P = 0.005. Among post-menopausal women, telomere length remained positively associated with total physical activity (rs = 0.27, P = 0.016; Ptrend = 0.054 and occupational physical activity (rs = 0.26, P = 0.021; Ptrend = 0.056 and was only associated with transportation-related physical activity among pre-menopausal women (rs = 0.27, P = 0.015; P = 0.004. No association was observed between telomere length and recreational or household activities, other lifestyle factors or traditional prognostic factors.Telomeres are longer in more active breast cancer patients. Since white blood cells are involved in anticancer immune responses, these findings suggest that even regular low-intensity physical activity, such as that

  13. [Clinic-internal and -external factors of length of hospital stay].

    Science.gov (United States)

    Schariatzadeh, R; Imoberdorf, R; Ballmer, P E

    2011-01-19

    In the context of forthcoming initiation of Diagnosis Related Groups (DRG) in Switzerland, the objective of the study was to find factors having an impact on the inpatient's length of hospital stay. The study was performed on two general-medical wards of the Kantonsspital Winterthur, where all admitted patients were included in the study over two months. The various periods of diagnostic and therapeutic management of the patients and all diagnostic and therapeutic measures plus the arrangements after hospitalization were recorded. The determinants influencing the length of hospital stay were classified in clinic-internal or -external. 124 inpatients entered the study. 91 (73.4%) had a length of hospital stay without delay, whereas 33 (26.6%) patients had an extended length of hospital stay. The cumulative length of hospital stay of all patients was 1314 days, whereof 216 days (16.4%) were caused by delays. 67 days were caused by clinic-internal (5.1%) and 149 days by clinic-external factors (11.3%). Delays were substantially more generated by clinic-internal than -external factors. Clinic-internal factors were mainly weekends with interruption of the diagnostic and therapeutic procedures, dead times waiting for diagnostic results and waiting times for consultations. Clinic-external factors were caused by delayed transfer in nursing homes or rehabilitation institutions, waiting for family members for the backhaul and by indetermination of the patient. Also factors relating to the patients' characteristics had an influence on the length of hospital stay. Summing up, a substantial part of the length of hospital stay was caused by delays. However, the many different clinic-internal factors complicate solutions to lower the length of hospital stay. Moreover, factors that cannot be influenced such as waiting for microbiological results, contribute to extended length of hospital stay. Early scheduling of post-hospital arrangements may lower length of hospital stay

  14. Length-scale effect due to periodic variation of geometrically necessary dislocation densities

    DEFF Research Database (Denmark)

    Oztop, M. S.; Niordson, Christian Frithiof; Kysar, J. W.

    2013-01-01

    Strain gradient plasticity theories have been successful in predicting qualitative aspects of the length scale effect, most notably the increase in yield strength and hardness as the size of the deforming volume decreases. However new experimental methodologies enabled by recent developments...... of high spatial resolution diffraction methods in a scanning electron microscope give a much more quantitative understanding of plastic deformation at small length scales. Specifically, geometrically necessary dislocation densities (GND) can now be measured and provide detailed information about...... the microstructure of deformed metals in addition to the size effect. Recent GND measurements have revealed a distribution of length scales that evolves within a metal undergoing plastic deformation. Furthermore, these experiments have shown an accumulation of GND densities in cell walls as well as a variation...

  15. The length and time scales of water's glass transitions

    Science.gov (United States)

    Limmer, David T.

    2014-06-01

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  16. The length and time scales of water's glass transitions.

    Science.gov (United States)

    Limmer, David T

    2014-06-07

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  17. The length-scale dependence of strain in networks by SANS

    CERN Document Server

    Pyckhout-Hintzen, W; Heinrich, M; Richter, D; Westermann, S; Straube, E

    2002-01-01

    We present a SANS study of the length-scale dependence of chain deformation by means of a suitable labeling in dense, cross-linked elastomers of the HDH-type. This length scale is controlled by the size of the label as well as the cross-link density. The results are compared to long homopolymers. The data are analyzed by means of the tube model of topology in rubber elasticity in combination with the random-phase approximation (RPA) to account for interchain correlations. Chain degradation during cross linking is treated by the standard RPA approach for polydisperse multicomponent systems. A transition from locally freely fluctuating to tube-constrained segmental motion was observed. (orig.)

  18. Effective Debye length in closed nanoscopic systems: a competition between two length scales.

    Science.gov (United States)

    Tessier, Frédéric; Slater, Gary W

    2006-02-01

    The Poisson-Boltzmann equation (PBE) is widely employed in fields where the thermal motion of free ions is relevant, in particular in situations involving electrolytes in the vicinity of charged surfaces. The applications of this non-linear differential equation usually concern open systems (in osmotic equilibrium with an electrolyte reservoir, a semi-grand canonical ensemble), while solutions for closed systems (where the number of ions is fixed, a canonical ensemble) are either not appropriately distinguished from the former or are dismissed as a numerical calculation exercise. We consider herein the PBE for a confined, symmetric, univalent electrolyte and quantify how, in addition to the Debye length, its solution also depends on a second length scale, which embodies the contribution of ions by the surface (which may be significant in high surface-to-volume ratio micro- or nanofluidic capillaries). We thus establish that there are four distinct regimes for such systems, corresponding to the limits of the two parameters. We also show how the PBE in this case can be formulated in a familiar way by simply replacing the traditional Debye length by an effective Debye length, the value of which is obtained numerically from conservation conditions. But we also show that a simple expression for the value of the effective Debye length, obtained within a crude approximation, remains accurate even as the system size is reduced to nanoscopic dimensions, and well beyond the validity range typically associated with the solution of the PBE.

  19. Hydrodynamic simulations of long-scale-length two-plasmon–decay experiments at the Omega Laser Facility

    International Nuclear Information System (INIS)

    Hu, S. X.; Michel, D. T.; Edgell, D. H.; Froula, D. H.; Follett, R. K.; Goncharov, V. N.; Myatt, J. F.; Skupsky, S.; Yaakobi, B.

    2013-01-01

    G c ≃ 4. The hot-electron temperature scales roughly linear with G c . Furthermore, to mitigate TPD instability in long-scale-length plasmas, different ablator materials such as saran and aluminum have been investigated on OMEGA EP. Hot-electron generation has been reduced by a factor of 3–10 for saran and aluminum plasmas, compared to the CH case at the same incident laser intensity. draco simulations suggest that saran might be a better ablator for direct-drive–ignition designs as it balances TPD mitigation with an acceptable hydro-efficiency.

  20. Wind direction variations in the natural wind – A new length scale

    DEFF Research Database (Denmark)

    Johansson, Jens; Christensen, Silas Sverre

    2018-01-01

    During an observation period of e.g. 10min, the wind direction will differ from its mean direction for short periods of time, and a body of air will pass by from that direction before the direction changes once again. The present paper introduces a new length scale which we have labeled the angular...... length scale. This length scale expresses the average size of the body of air passing by from any deviation of wind direction away from the mean direction. Using metrological observations from two different sites under varying conditions we have shown that the size of the body of air relative to the mean...... size decreases linearly with the deviation from the mean wind direction when the deviation is normalized with the standard deviation of the wind direction. It is shown that this linear variation is independent of the standard deviation of the wind direction, and that the two full-scale data sets follow...

  1. Optimization of Kα bursts for photon energies between 1.7 and 7 keV produced by femtosecond-laser-produced plasmas of different scale length

    International Nuclear Information System (INIS)

    Ziener, Ch.; Uschmann, I.; Stobrawa, G.; Reich, Ch.; Gibbon, P.; Feurer, T.; Morak, A.; Duesterer, S.; Schwoerer, H.; Foerster, E.; Sauerbrey, R.

    2002-01-01

    The conversion efficiency of a 90 fs high-power laser pulse focused onto a solid target into x-ray Kα line emission was measured. By using three different elements as target material (Si, Ti, and Co), interesting candidates for fast x-ray diffraction applications were selected. The Kα output was measured with toroidally bent crystal monochromators combined with a GaAsP Schottky diode. Optimization was performed for different laser intensities as well as for different density scale lengths of a preformed plasma. These different scale lengths were realized by prepulses of different intensities and delay times with respect to the main pulse. Whereas the Kα yield varied by a factor of 1.8 for different laser intensities, the variation of the density scale length could provide a gain factor up to 4.6 for the Kα output

  2. Effect of length scale on mechanical properties of Al-Cu eutectic alloy

    Science.gov (United States)

    Tiwary, C. S.; Roy Mahapatra, D.; Chattopadhyay, K.

    2012-10-01

    This paper attempts a quantitative understanding of the effect of length scale on two phase eutectic structure. We first develop a model that considers both the elastic and plastic properties of the interface. Using Al-Al2Cu lamellar eutectic as model system, the parameters of the model were experimentally determined using indentation technique. The model is further validated using the results of bulk compression testing of the eutectics having different length scales.

  3. Self-assembling block copolymer systems involving competing length scales : A route toward responsive materials

    NARCIS (Netherlands)

    Nap, R; Erukhimovich, [No Value; ten Brinke, G; Erukhimovich, Igor

    2004-01-01

    The phase behavior of block copolymers melts involving competing length scales, i.e., able to microphase separate on two different length scales, is theoretically investigated using a self-consistent field approach. The specific block copolymers studied consist of a linear A-block linked to an

  4. Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows

    Science.gov (United States)

    2015-06-01

    sophisticated computational fluid dynamics ( CFD ) methods. Additionally, for 3D interactions, the length scales would require determination in spanwise as well...Manna, M. “Experimental, Analytical, and Computational Methods Applied to Hypersonic Compression Ramp Flows,” AIAA Journal, Vol. 32, No. 2, Feb. 1994

  5. Invariant length scale in relativistic kinematics: lessons from Dirichlet branes

    International Nuclear Information System (INIS)

    Schuller, Frederic P.; Pfeiffer, Hendryk

    2004-01-01

    Dirac-Born-Infeld theory is shown to possess a hidden invariance associated with its maximal electric field strength. The local Lorentz symmetry O(1,n) on a Dirichlet-n-brane is thereby enhanced to an O(1,n)xO(1,n) gauge group, encoding both an invariant velocity and acceleration (or length) scale. The presence of this enlarged gauge group predicts consequences for the kinematics of observers on Dirichlet branes, with admissible accelerations being bounded from above. An important lesson is that the introduction of a fundamental length scale into relativistic kinematics does not enforce a deformation of Lorentz boosts, as one might assume naively. The exhibited structures further show that Moffat's non-symmetric gravitational theory qualifies as a candidate for a consistent Born-Infeld type gravity with regulated solutions

  6. Multi length-scale characterisation inorganic materials series

    CERN Document Server

    Bruce, Duncan W; Walton, Richard I

    2013-01-01

    Whereas the first five volumes in the Inorganic Materials Series focused on particular classes of materials (synthesis, structures, chemistry, and properties), it is now very timely to provide complementary volumes that introduce and review state-of-the-art techniques for materials characterization. This is an important way of emphasizing the interplay of chemical synthesis and physical characterization. The methods reviewed include spectroscopic, diffraction, and surface techniques that examine the structure of materials on all length scales, from local atomic structure to long-range crystall

  7. Driving force for hydrophobic interaction at different length scales.

    Science.gov (United States)

    Zangi, Ronen

    2011-03-17

    We study by molecular dynamics simulations the driving force for the hydrophobic interaction between graphene sheets of different sizes down to the atomic scale. Similar to the prediction by Lum, Chandler, and Weeks for hard-sphere solvation [J. Phys. Chem. B 1999, 103, 4570-4577], we find the driving force to be length-scale dependent, despite the fact that our model systems do not exhibit dewetting. For small hydrophobic solutes, the association is purely entropic, while enthalpy favors dissociation. The latter is demonstrated to arise from the enhancement of hydrogen bonding between the water molecules around small hydrophobes. On the other hand, the attraction between large graphene sheets is dominated by enthalpy which mainly originates from direct solute-solute interactions. The crossover length is found to be inside the range of 0.3-1.5 nm(2) of the surface area of the hydrophobe that is eliminated in the association process. In the large-scale regime, different thermodynamic properties are scalable with this change of surface area. In particular, upon dimerization, a total and a water-induced stabilization of approximately 65 and 12 kJ/mol/nm(2) are obtained, respectively, and on average around one hydrogen bond is gained per 1 nm(2) of graphene sheet association. Furthermore, the potential of mean force between the sheets is also scalable except for interplate distances smaller than 0.64 nm which corresponds to the region around the barrier for removing the last layer of water. It turns out that, as the surface area increases, the relative height of the barrier for association decreases and the range of attraction increases. It is also shown that, around small hydrophobic solutes, the lifetime of the hydrogen bonds is longer than in the bulk, while around large hydrophobes it is the same. Nevertheless, the rearrangement of the hydrogen-bond network for both length-scale regimes is slower than in bulk water. © 2011 American Chemical Society

  8. Scattering Length Scaling Laws for Ultracold Three-Body Collisions

    International Nuclear Information System (INIS)

    D'Incao, J.P.; Esry, B.D.

    2005-01-01

    We present a simple and unifying picture that provides the energy and scattering length dependence for all inelastic three-body collision rates in the ultracold regime for three-body systems with short-range two-body interactions. Here, we present the scaling laws for vibrational relaxation, three-body recombination, and collision-induced dissociation for systems that support s-wave two-body collisions. These systems include three identical bosons, two identical bosons, and two identical fermions. Our approach reproduces all previous results, predicts several others, and gives the general form of the scaling laws in all cases

  9. Lengths of Orthologous Prokaryotic Proteins Are Affected by Evolutionary Factors

    Directory of Open Access Journals (Sweden)

    Tatiana Tatarinova

    2015-01-01

    Full Text Available Proteins of the same functional family (for example, kinases may have significantly different lengths. It is an open question whether such variation in length is random or it appears as a response to some unknown evolutionary driving factors. The main purpose of this paper is to demonstrate existence of factors affecting prokaryotic gene lengths. We believe that the ranking of genomes according to lengths of their genes, followed by the calculation of coefficients of association between genome rank and genome property, is a reasonable approach in revealing such evolutionary driving factors. As we demonstrated earlier, our chosen approach, Bubble-sort, combines stability, accuracy, and computational efficiency as compared to other ranking methods. Application of Bubble Sort to the set of 1390 prokaryotic genomes confirmed that genes of Archaeal species are generally shorter than Bacterial ones. We observed that gene lengths are affected by various factors: within each domain, different phyla have preferences for short or long genes; thermophiles tend to have shorter genes than the soil-dwellers; halophiles tend to have longer genes. We also found that species with overrepresentation of cytosines and guanines in the third position of the codon (GC3 content tend to have longer genes than species with low GC3 content.

  10. Lengths of Orthologous Prokaryotic Proteins Are Affected by Evolutionary Factors.

    Science.gov (United States)

    Tatarinova, Tatiana; Salih, Bilal; Dien Bard, Jennifer; Cohen, Irit; Bolshoy, Alexander

    2015-01-01

    Proteins of the same functional family (for example, kinases) may have significantly different lengths. It is an open question whether such variation in length is random or it appears as a response to some unknown evolutionary driving factors. The main purpose of this paper is to demonstrate existence of factors affecting prokaryotic gene lengths. We believe that the ranking of genomes according to lengths of their genes, followed by the calculation of coefficients of association between genome rank and genome property, is a reasonable approach in revealing such evolutionary driving factors. As we demonstrated earlier, our chosen approach, Bubble-sort, combines stability, accuracy, and computational efficiency as compared to other ranking methods. Application of Bubble Sort to the set of 1390 prokaryotic genomes confirmed that genes of Archaeal species are generally shorter than Bacterial ones. We observed that gene lengths are affected by various factors: within each domain, different phyla have preferences for short or long genes; thermophiles tend to have shorter genes than the soil-dwellers; halophiles tend to have longer genes. We also found that species with overrepresentation of cytosines and guanines in the third position of the codon (GC3 content) tend to have longer genes than species with low GC3 content.

  11. Multi Length Scale Finite Element Design Framework for Advanced Woven Fabrics

    Science.gov (United States)

    Erol, Galip Ozan

    Woven fabrics are integral parts of many engineering applications spanning from personal protective garments to surgical scaffolds. They provide a wide range of opportunities in designing advanced structures because of their high tenacity, flexibility, high strength-to-weight ratios and versatility. These advantages result from their inherent multi scale nature where the filaments are bundled together to create yarns while the yarns are arranged into different weave architectures. Their highly versatile nature opens up potential for a wide range of mechanical properties which can be adjusted based on the application. While woven fabrics are viable options for design of various engineering systems, being able to understand the underlying mechanisms of the deformation and associated highly nonlinear mechanical response is important and necessary. However, the multiscale nature and relationships between these scales make the design process involving woven fabrics a challenging task. The objective of this work is to develop a multiscale numerical design framework using experimentally validated mesoscopic and macroscopic length scale approaches by identifying important deformation mechanisms and recognizing the nonlinear mechanical response of woven fabrics. This framework is exercised by developing mesoscopic length scale constitutive models to investigate plain weave fabric response under a wide range of loading conditions. A hyperelastic transversely isotropic yarn material model with transverse material nonlinearity is developed for woven yarns (commonly used in personal protection garments). The material properties/parameters are determined through an inverse method where unit cell finite element simulations are coupled with experiments. The developed yarn material model is validated by simulating full scale uniaxial tensile, bias extension and indentation experiments, and comparing to experimentally observed mechanical response and deformation mechanisms. Moreover

  12. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    Science.gov (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  13. Length-weight relationships, condition factors and relative weight of ...

    African Journals Online (AJOL)

    The aim of this study was to record the length-weight relationship parameters and condition factors for some commercially important fish of Bushehr coastal waters of Persian Gulf. The length-weight relationships were calculated for five species caught during fishing surveys using different types of fishing gears (trawls, pots ...

  14. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    Science.gov (United States)

    Tiwary, C. S.; Chakraborty, S.; Mahapatra, D. R.; Chattopadhyay, K.

    2014-05-01

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.

  15. Word length, set size, and lexical factors: Re-examining what causes the word length effect.

    Science.gov (United States)

    Guitard, Dominic; Gabel, Andrew J; Saint-Aubin, Jean; Surprenant, Aimée M; Neath, Ian

    2018-04-19

    The word length effect, better recall of lists of short (fewer syllables) than long (more syllables) words has been termed a benchmark effect of working memory. Despite this, experiments on the word length effect can yield quite different results depending on set size and stimulus properties. Seven experiments are reported that address these 2 issues. Experiment 1 replicated the finding of a preserved word length effect under concurrent articulation for large stimulus sets, which contrasts with the abolition of the word length effect by concurrent articulation for small stimulus sets. Experiment 2, however, demonstrated that when the short and long words are equated on more dimensions, concurrent articulation abolishes the word length effect for large stimulus sets. Experiment 3 shows a standard word length effect when output time is equated, but Experiments 4-6 show no word length effect when short and long words are equated on increasingly more dimensions that previous demonstrations have overlooked. Finally, Experiment 7 compared recall of a small and large neighborhood words that were equated on all the dimensions used in Experiment 6 (except for those directly related to neighborhood size) and a neighborhood size effect was still observed. We conclude that lexical factors, rather than word length per se, are better predictors of when the word length effect will occur. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Length-weight relationship and condition factor of clarias gariepinus ...

    African Journals Online (AJOL)

    Length-Weight relationship and condition factor of Clarias gariepinus and Tilapia Zillii were studiedin lake Alau and Monguno hatchery, both in Borno State of Nigeria, for a period of two weeks. A total of 98 C. gariepinus and 140. T. zillii were measured. The length-weight regression coefficient (b) for both fishes in lake Alau ...

  17. Stability of icosahedral quasicrystals in a simple model with two-length scales

    International Nuclear Information System (INIS)

    Jiang, Kai; Zhang, Pingwen; Shi, An-Chang

    2017-01-01

    The phase behaviour of a free energy functional with two length scales is examined by comparing the free energy of different candidate phases including three-dimensional icosahedral quasicrystals. Accurate free energy of the quasicrystals has been obtained using the recently developed projection method. The results reveal that the icosahedral quasicrystal and body-centred-cubic spherical phase are the stable ordered phases of the model. Furthermore, the difference between the results obtained from the projection method and the one-mode approximation has been analyzed in detail. The present study extends previous results on two-dimensional systems, demonstrating that the interactions between density waves at two length scales can stabilize two- and three-dimensional quasicrystals. (paper)

  18. LPI Thresholds in Longer Scale Length Plasmas Driven by the Nike Laser*

    Science.gov (United States)

    Weaver, J.; Oh, J.; Phillips, L.; Afeyan, B.; Seely, J.; Kehne, D.; Brown, C.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Holland, G.; Lehmberg, R. H.; McLean, E.; Manka, C.

    2010-11-01

    The Krypton-Fluoride (KrF) laser is an attractive driver for inertial confinement fusion due to its short wavelength (248nm), large bandwidth (1-3 THz), and beam smoothing by induced spatial incoherence. Experiments with the Nike KrF laser have demonstrated intensity thresholds for laser plasma instabilities (LPI) higher than reported for other high power lasers operating at longer wavelengths (>=351 nm). The previous Nike experiments used short pulses (350 ps FWHM) and small spots (<260 μm FWHM) that created short density scale length plasmas (Ln˜50-70 μm) from planar CH targets and demonstrated the onset of two-plasmon decay (2φp) at laser intensities ˜2x10^15 W/cm^2. This talk will present an overview of the current campaign that uses longer pulses (0.5-4.0 ns) to achieve greater density scale lengths (Ln˜100-200 μm). X-rays, emission near ^1/2φo and ^3/2φo harmonics, and reflected laser light have been monitored for onset of 2φp. The longer density scale lengths will allow better comparison to results from other laser facilities. *Work supported by DoE/NNSA and ONR.

  19. Feasibility analysis of large length-scale thermocapillary flow experiment for the International Space Station

    Science.gov (United States)

    Alberts, Samantha J.

    The investigation of microgravity fluid dynamics emerged out of necessity with the advent of space exploration. In particular, capillary research took a leap forward in the 1960s with regards to liquid settling and interfacial dynamics. Due to inherent temperature variations in large spacecraft liquid systems, such as fuel tanks, forces develop on gas-liquid interfaces which induce thermocapillary flows. To date, thermocapillary flows have been studied in small, idealized research geometries usually under terrestrial conditions. The 1 to 3m lengths in current and future large tanks and hardware are designed based on hardware rather than research, which leaves spaceflight systems designers without the technological tools to effectively create safe and efficient designs. This thesis focused on the design and feasibility of a large length-scale thermocapillary flow experiment, which utilizes temperature variations to drive a flow. The design of a helical channel geometry ranging from 1 to 2.5m in length permits a large length-scale thermocapillary flow experiment to fit in a seemingly small International Space Station (ISS) facility such as the Fluids Integrated Rack (FIR). An initial investigation determined the proposed experiment produced measurable data while adhering to the FIR facility limitations. The computational portion of this thesis focused on the investigation of functional geometries of fuel tanks and depots using Surface Evolver. This work outlines the design of a large length-scale thermocapillary flow experiment for the ISS FIR. The results from this work improve the understanding thermocapillary flows and thus improve technological tools for predicting heat and mass transfer in large length-scale thermocapillary flows. Without the tools to understand the thermocapillary flows in these systems, engineers are forced to design larger, heavier vehicles to assure safety and mission success.

  20. Convergence of macroscopic tongue anatomy in ruminants and scaling relationships with body mass or tongue length.

    Science.gov (United States)

    Meier, Andrea R; Schmuck, Ute; Meloro, Carlo; Clauss, Marcus; Hofmann, Reinhold R

    2016-03-01

    Various morphological measures demonstrate convergent evolution in ruminants with their natural diet, in particular with respect to the browser/grazer dichotomy. Here, we report quantitative macroanatomical measures of the tongue (length and width of specific parts) of 65 ruminant species and relate them to either body mass (BM) or total tongue length, and to the percentage of grass in the natural diet (%grass). Models without and with accounting for the phylogenetic structures of the dataset were used, and models were ranked using Akaike's Information Criterion. Scaling relationships followed geometric principles, that is, length measures scaled with BM to the power of 0.33. Models that used tongue length rather than BM as a body size proxy were consistently ranked better, indicating that using size proxies that are less susceptible to a wider variety of factors (such as BM that fluctuates with body condition) should be attempted whenever possible. The proportion of the freely mobile tongue tip of the total tongue (and hence also the corpus length) was negatively correlated to %grass, in accordance with concepts that the feeding mechanism of browsers requires more mobile tongues. It should be noted that some nonbrowsers, such as cattle, use a peculiar mechanism for grazing that also requires long, mobile tongues, but they appear to be exceptions. A larger corpus width with increasing %grass corresponds to differences in snout shape with broader snouts in grazers. The Torus linguae is longer with increasing %grass, a finding that still warrants functional interpretation. This study shows that tongue measures covary with diet in ruminants. In contrast, the shape of the tongue (straight or "hourglass-shaped" as measured by the ratio of the widest and smallest corpus width) is unrelated to diet and is influenced strongly by phylogeny. © 2015 Wiley Periodicals, Inc.

  1. Numerical scalings of the decay lengths in the scrape-off layer

    DEFF Research Database (Denmark)

    Militello, F.; Naulin, V; Nielsen, Anders Henry

    2013-01-01

    Numerical simulations of L-mode turbulence in the scrape-off layer (SOL) are used to construct power scaling laws for the characteristic decay lengths of the temperature, density and heat flux at the outer mid-plane. Most of the results obtained are in qualitative agreement with the experimental...... observations despite the known limitation of the model. Quantitative agreement is also obtained for some exponents. In particular, an almost linear inverse dependence of the heat flux decay length with the plasma current is recovered. The relative simplicity of the theoretical model used allows one to gain...

  2. Activity-dependent self-regulation of viscous length scales in biological systems

    Science.gov (United States)

    Nandi, Saroj Kumar

    2018-05-01

    The cellular cortex, which is a highly viscous thin cytoplasmic layer just below the cell membrane, controls the cell's mechanical properties, which can be characterized by a hydrodynamic length scale ℓ . Cells actively regulate ℓ via the activity of force-generating molecules, such as myosin II. Here we develop a general theory for such systems through a coarse-grained hydrodynamic approach including activity in the static description of the system providing an experimentally accessible parameter and elucidate the detailed mechanism of how a living system can actively self-regulate its hydrodynamic length scale, controlling the rigidity of the system. Remarkably, we find that ℓ , as a function of activity, behaves universally and roughly inversely proportional to the activity of the system. Our theory rationalizes a number of experimental findings on diverse systems, and comparison of our theory with existing experimental data shows good agreement.

  3. Electron critical gradient scale length measurements of ICRF heated L-mode plasmas at Alcator C-Mod tokamak

    Science.gov (United States)

    Houshmandyar, S.; Hatch, D. R.; Horton, C. W.; Liao, K. T.; Phillips, P. E.; Rowan, W. L.; Zhao, B.; Cao, N. M.; Ernst, D. R.; Greenwald, M.; Howard, N. T.; Hubbard, A. E.; Hughes, J. W.; Rice, J. E.

    2018-04-01

    A profile for the critical gradient scale length (Lc) has been measured in L-mode discharges at the Alcator C-Mod tokamak, where electrons were heated by an ion cyclotron range of frequency through minority heating with the intention of simultaneously varying the heat flux and changing the local gradient. The electron temperature gradient scale length (LTe-1 = |∇Te|/Te) profile was measured via the BT-jog technique [Houshmandyar et al., Rev. Sci. Instrum. 87, 11E101 (2016)] and it was compared with electron heat flux from power balance (TRANSP) analysis. The Te profiles were found to be very stiff and already above the critical values, however, the stiffness was found to be reduced near the q = 3/2 surface. The measured Lc profile is in agreement with electron temperature gradient (ETG) models which predict the dependence of Lc-1 on local Zeff, Te/Ti, and the ratio of the magnetic shear to the safety factor. The results from linear Gene gyrokinetic simulations suggest ETG to be the dominant mode of turbulence in the electron scale (k⊥ρs > 1), and ion temperature gradient/trapped electron mode modes in the ion scale (k⊥ρs < 1). The measured Lc profile is in agreement with the profile of ETG critical gradients deduced from Gene simulations.

  4. Channel length scaling and the impact of metal gate work function ...

    Indian Academy of Sciences (India)

    As the channel length is reduced from one transistor generation to the next, ... As CMOS technology continues to scale, metal gate electrodes need to be intro .... in the z-direction, q is the electron charge, h is the Planck's constant, Ψ(x, z) is the.

  5. Length of stay after vaginal birth: sociodemographic and readiness-for-discharge factors.

    Science.gov (United States)

    Weiss, Marianne; Ryan, Polly; Lokken, Lisa; Nelson, Magdalen

    2004-06-01

    The impact of reductions in postpartum length of stay have been widely reported, but factors influencing length of hospital stay after vaginal birth have received less attention. The study purpose was to compare the sociodemographic characteristics and readiness for discharge of new mothers and their newborns at 3 discharge time intervals, and to determine which variables were associated with postpartum length of stay. The study sample comprised 1,192 mothers who were discharged within 2 postpartum days after uncomplicated vaginal birth at a tertiary perinatal center in the midwestern United States. The sample was divided into 3 postpartum length-of-stay groups: group 1 (18-30 hr), group 2 (31-42 hr), and group 3 (43-54 hr). Sociodemographic and readiness-for-discharge data were collected by self-report and from a computerized hospital information system. Measures of readiness for discharge included perceived readiness (single item and Readiness for Discharge After Birth Scale), documented maternal and neonatal clinical problems, and feeding method. Compared with other groups, the longest length-of-stay group was older; of higher socioeconomic status and education; and with more primiparous, breastfeeding, white, married mothers who were living with the baby's father, had adequate home help, and had a private payor source. This group also reported greater readiness for discharge, but their newborns had more documented clinical problems during the postbirth hospitalization. In logistic regression modeling, earlier discharge was associated with young age, multiparity, public payor source, low socioeconomic status, lack of readiness for discharge, bottle-feeding, and absence of a neonatal clinical problem. Sociodemographic characteristics and readiness for discharge (clinical and perceived) were associated with length of postpartum hospital stay. Length of stay is an outcome of a complex interface between patient, provider, and payor influences on discharge timing

  6. Cosmogenesis and the origin of the fundamental length scale

    International Nuclear Information System (INIS)

    Brout, R.; Englert, F.; Frere, J.M.; Gunzig, E.; Nardone, P.; Truffin, C.

    1980-01-01

    The creation of the universe is regarded as a self-consistent process in which matter is engendered by the space-time varying cosmological gravitational field and vice versa. Abundant production can occur only if the mass of the particles so created is of the order of the Planck mass (= ksup(-1/2)). We conjecture that this is the origin of the fundamental length scale in field theory, as it is encountered, for example, in present efforts towards grand unification. The region of particle production is steady state in character. It ceases when the produced particles decay. The geometry of this steady state is characteristic of a de Sitter space. It permits one to estimate the number of ordinary particles presently observed, N. We find log N = O (mtausub(decay)) = O(g -2 ) = O(10 2 ), with the usual estimate of g = O(10 -1 ) at the Planck length scale. This is not inconsistent with the experimental estimate N approx. = O(10 90 ). After production, cosmological history gives way to the more conventional scheme of free expansion. The present paper is a self-contained account of our view of cosmological history and the production of matter in a varying gravitational field. Special care has been taken to describe the vacuum correctly in the present context and to perform the necessary subtractions of zero-point effects. (orig.)

  7. Measurements of Turbulent Flame Speed and Integral Length Scales in a Lean Stationary Premixed Flame

    OpenAIRE

    Klingmann, Jens; Johansson, Bengt

    1998-01-01

    Turbulent premixed natural gas - air flame velocities have been measured in a stationary axi-symmetric burner using LDA. The flame was stabilized by letting the flow retard toward a stagnation plate downstream of the burner exit. Turbulence was generated by letting the flow pass through a plate with drilled holes. Three different hole diameters were used, 3, 6 and 10 mm, in order to achieve different turbulent length scales. Turbulent integral length scales were measured using two-point LD...

  8. Scale-lengths and instabilities in magnetized classical and relativistic plasma fluid models

    International Nuclear Information System (INIS)

    Diver, D A; Laing, E W

    2015-01-01

    The validity of the traditional plasma continuum is predicated on a hierarchy of scale-lengths, with the Debye length being considered to be effectively unresolvable in the continuum limit. In this article, we revisit the strong magnetic field case in which the Larmor radius is comparable or smaller than the Debye length in the classical plasma, and also for a relativistic plasma. Fresh insight into the validity of the continuum assumption in each case is offered, including a fluid limit on the Alfvén speed that may impose restrictions on the validity of magnetohydrodynamics (MHD) in some solar and fusion contexts. Additional implications concerning the role of the firehose instability are also explored. (paper)

  9. Development of the Heated Length Correction Factor

    International Nuclear Information System (INIS)

    Park, Ho-Young; Kim, Kang-Hoon; Nahm, Kee-Yil; Jung, Yil-Sup; Park, Eung-Jun

    2008-01-01

    The Critical Heat Flux (CHF) on a nuclear fuel is defined by the function of flow channel geometry and flow condition. According to the selection of the explanatory variable, there are three hypotheses to explain CHF at uniformly heated vertical rod (inlet condition hypothesis, exit condition hypothesis, local condition hypothesis). For inlet condition hypothesis, CHF is characterized by function of system pressure, rod diameter, rod length, mass flow and inlet subcooling. For exit condition hypothesis, exit quality substitutes for inlet subcooling. Generally the heated length effect on CHF in exit condition hypothesis is smaller than that of other variables. Heated length is usually excluded in local condition hypothesis to describe the CHF with only local fluid conditions. Most of commercial plants currently use the empirical CHF correlation based on local condition hypothesis. Empirical CHF correlation is developed by the method of fitting the selected sensitive local variables to CHF test data using the multiple non-linear regression. Because this kind of method can not explain physical meaning, it is difficult to reflect the proper effect of complex geometry. So the recent CHF correlation development strategy of nuclear fuel vendor is making the basic CHF correlation which consists of basic flow variables (local fluid conditions) at first, and then the geometrical correction factors are compensated additionally. Because the functional forms of correction factors are determined from the independent test data which represent the corresponding geometry separately, it can be applied to other CHF correlation directly only with minor coefficient modification

  10. Hydrological Storage Length Scales Represented by Remote Sensing Estimates of Soil Moisture and Precipitation

    Science.gov (United States)

    Akbar, Ruzbeh; Short Gianotti, Daniel; McColl, Kaighin A.; Haghighi, Erfan; Salvucci, Guido D.; Entekhabi, Dara

    2018-03-01

    The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface-only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface-only soil moisture observations. To proceed, first an observation-based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry-downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root-mean-squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation-driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge-corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east-west gradient across the contiguous United States (CONUS), such that large Δz depths (>200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale.

  11. A multiple length scale description of the mechanism of elastomer stretching

    DEFF Research Database (Denmark)

    Neuefeind, J.; Skov, Anne Ladegaard; Daniels, J. E.

    2016-01-01

    Conventionally, the stretching of rubber is modeled exclusively by rotations of segments of the embedded polymer chains; i.e. changes in entropy. However models have not been tested on all relevant length scales due to a lack of appropriate probes. Here we present a universal X-ray based method f...

  12. Differential scaling patterns of vertebrae and the evolution of neck length in mammals.

    Science.gov (United States)

    Arnold, Patrick; Amson, Eli; Fischer, Martin S

    2017-06-01

    Almost all mammals have seven vertebrae in their cervical spines. This consistency represents one of the most prominent examples of morphological stasis in vertebrae evolution. Hence, the requirements associated with evolutionary modifications of neck length have to be met with a fixed number of vertebrae. It has not been clear whether body size influences the overall length of the cervical spine and its inner organization (i.e., if the mammalian neck is subject to allometry). Here, we provide the first large-scale analysis of the scaling patterns of the cervical spine and its constituting cervical vertebrae. Our findings reveal that the opposite allometric scaling of C1 and C2-C7 accommodate the increase of neck bending moment with body size. The internal organization of the neck skeleton exhibits surprisingly uniformity in the vast majority of mammals. Deviations from this general pattern only occur under extreme loading regimes associated with particular functional and allometric demands. Our results indicate that the main source of variation in the mammalian neck stems from the disparity of overall cervical spine length. The mammalian neck reveals how evolutionary disparity manifests itself in a structure that is otherwise highly restricted by meristic constraints. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  13. Regional-scale calculation of the LS factor using parallel processing

    Science.gov (United States)

    Liu, Kai; Tang, Guoan; Jiang, Ling; Zhu, A.-Xing; Yang, Jianyi; Song, Xiaodong

    2015-05-01

    With the increase of data resolution and the increasing application of USLE over large areas, the existing serial implementation of algorithms for computing the LS factor is becoming a bottleneck. In this paper, a parallel processing model based on message passing interface (MPI) is presented for the calculation of the LS factor, so that massive datasets at a regional scale can be processed efficiently. The parallel model contains algorithms for calculating flow direction, flow accumulation, drainage network, slope, slope length and the LS factor. According to the existence of data dependence, the algorithms are divided into local algorithms and global algorithms. Parallel strategy are designed according to the algorithm characters including the decomposition method for maintaining the integrity of the results, optimized workflow for reducing the time taken for exporting the unnecessary intermediate data and a buffer-communication-computation strategy for improving the communication efficiency. Experiments on a multi-node system show that the proposed parallel model allows efficient calculation of the LS factor at a regional scale with a massive dataset.

  14. A multi-resolution analysis of lidar-DTMs to identify geomorphic processes from characteristic topographic length scales

    Science.gov (United States)

    Sangireddy, H.; Passalacqua, P.; Stark, C. P.

    2013-12-01

    Characteristic length scales are often present in topography, and they reflect the driving geomorphic processes. The wide availability of high resolution lidar Digital Terrain Models (DTMs) allows us to measure such characteristic scales, but new methods of topographic analysis are needed in order to do so. Here, we explore how transitions in probability distributions (pdfs) of topographic variables such as (log(area/slope)), defined as topoindex by Beven and Kirkby[1979], can be measured by Multi-Resolution Analysis (MRA) of lidar DTMs [Stark and Stark, 2001; Sangireddy et al.,2012] and used to infer dominant geomorphic processes such as non-linear diffusion and critical shear. We show this correlation between dominant geomorphic processes to characteristic length scales by comparing results from a landscape evolution model to natural landscapes. The landscape evolution model MARSSIM Howard[1994] includes components for modeling rock weathering, mass wasting by non-linear creep, detachment-limited channel erosion, and bedload sediment transport. We use MARSSIM to simulate steady state landscapes for a range of hillslope diffusivity and critical shear stresses. Using the MRA approach, we estimate modal values and inter-quartile ranges of slope, curvature, and topoindex as a function of resolution. We also construct pdfs at each resolution and identify and extract characteristic scale breaks. Following the approach of Tucker et al.,[2001], we measure the average length to channel from ridges, within the GeoNet framework developed by Passalacqua et al.,[2010] and compute pdfs for hillslope lengths at each scale defined in the MRA. We compare the hillslope diffusivity used in MARSSIM against inter-quartile ranges of topoindex and hillslope length scales, and observe power law relationships between the compared variables for simulated landscapes at steady state. We plot similar measures for natural landscapes and are able to qualitatively infer the dominant geomorphic

  15. Relations between overturning length scales at the Spanish planetary boundary layer

    Science.gov (United States)

    López, Pilar; Cano, José L.

    2016-04-01

    We analyze the behavior of the maximum Thorpe displacement (dT)max and the Thorpe scale LTat the atmospheric boundary layer (ABL), extending previous research with new data and improving our studies related to the novel use of the Thorpe method applied to ABL. The maximum Thorpe displacements vary between -900 m and 950 m for the different field campaigns. The maximum Thorpe displacement is always greater under convective conditions than under stable ones, independently of its sign. The Thorpe scale LT ranges between 0.2 m and 680 m for the different data sets which cover different stratified mixing conditions (turbulence shear-driven and convective regions). The Thorpe scale does not exceed several tens of meters under stable and neutral stratification conditions related to instantaneous density gradients. In contrast, under convective conditions, Thorpe scales are relatively large, they exceed hundreds of meters which may be related to convective bursts. We analyze the relation between (dT)max and the Thorpe scale LT and we deduce that they verify a power law. We also deduce that there is a difference in exponents of the power laws for convective conditions and shear-driven conditions. These different power laws could identify overturns created under different mechanisms. References Cuxart, J., Yagüe, C., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Fernández, A., Soler, M., Infante, C., Buenestado, P., Espinalt, Joergensen, H., Rees, J., Vilà, J., Redondo, J., Cantalapiedra, I. and Conangla, L.: Stable atmospheric boundary-layer experiment in Spain (Sables 98). A report, Boundary-Layer Meteorology, 96, 337-370, 2000. Dillon, T. M.: Vertical Overturns: A Comparison of Thorpe and Ozmidov Length Scales, J. Geophys. Res., 87(C12), 9601-9613, 1982. Itsweire, E. C.: Measurements of vertical overturns in stably stratified turbulent flow, Phys. Fluids, 27(4), 764-766, 1984. Kitade, Y., Matsuyama, M. and Yoshida, J.: Distribution of overturn induced by internal

  16. Sarcopenia is a risk factor for complications and an independent predictor of hospital length of stay in trauma patients.

    Science.gov (United States)

    DeAndrade, James; Pedersen, Mark; Garcia, Luis; Nau, Peter

    2018-01-01

    Sarcopenia is an independent risk factor for adverse outcomes in critically ill patients. The impact of sarcopenia on morbidity and length of stay in a trauma population has not been completely defined. This project evaluated the influence of sarcopenia on patients admitted to the trauma service. A retrospective review of 778 patients presenting as a trauma alert at a single institution from 2012-2014 was completed. Records were abstracted for comorbidities and hospital complications. The Hounsfield Unit Area Calculation was collected from admission computed tomography scans. Criteria for sarcopenia were based on the lowest 25th percentile of muscle density measurements. Relationships to patient outcomes were evaluated by univariate and multivariable regression or analyses of variance, when applicable. A total of 432 (55.6%) patients suffered a complication. Sarcopenia was associated with overall complications (P sarcopenia into a novel length of stay calculator showed increased prognostic ability for prolonged length of stay over Abbreviated Injury Scale alone (P = 0.0002). Sarcopenia is an independent risk factor for adverse outcomes and increased length of stay in trauma patients. Prognostic algorithms incorporating sarcopenia better predict hospital length of stay. Identification of patients at risk may allow for targeted interventions early in the patient's hospital course. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Bending of marble with intrinsic length scales: a gradient theory with surface energy and size effects

    International Nuclear Information System (INIS)

    Vardoulakis, I.; Kourkoulis, S.K.; Exadaktylos, G.

    1998-01-01

    A gradient bending theory is developed based on a strain energy function that includes the classical Bernoulli-Euler term, the shape correction term (microstructural length scale) introduced by Timoshenko, and a term associated with surface energy (micromaterial length scale) accounting for the bending moment gradient effect. It is shown that the last term is capable to interpret the size effect in three-point bending (3PB), namely the decrease of the failure load with decreasing beam length for the same aspect ratio. This theory is used to describe the mechanical behaviour of Dionysos-Pentelikon marble in 3PB. Series of tests with prismatic marble beams of the same aperture but with different lengths were conducted and it was concluded that the present theory predicts well the size effect. (orig.)

  18. Instantaneous equations for multiphase flow in porous media without length-scale restrictions using a non-local averaging volume

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto

    2010-01-01

    The aim of this paper is to propose a framework to obtain a new formulation for multiphase flow conservation equations without length-scale restrictions, based on the non-local form of the averaged volume conservation equations. The simplification of the local averaging volume of the conservation equations to obtain practical equations is subject to the following length-scale restrictions: d << l << L, where d is the characteristic length of the dispersed phases, l is the characteristic length of the averaging volume, and L is the characteristic length of the physical system. If the foregoing inequality does not hold, or if the scale of the problem of interest is of the order of l, the averaging technique and therefore, the macroscopic theories of multiphase flow should be modified in order to include appropriate considerations and terms in the corresponding equations. In these cases the local form of the averaged volume conservation equations are not appropriate to describe the multiphase system. As an example of the conservation equations without length-scale restrictions, the natural circulation boiling water reactor was consider to study the non-local effects on the thermal-hydraulic core performance during steady-state and transient behaviors, and the results were compared with the classic local averaging volume conservation equations.

  19. Intermediate length scale dynamics of polyisobutylene

    International Nuclear Information System (INIS)

    Farago, B.; Arbe, A.; Colmenero, J.; Faust, R.; Buchenau, U.; Richter, D.

    2002-01-01

    We report on a neutron spin echo investigation of the intermediate scale dynamics of polyisobutylene studying both the self-motion and the collective motion. The momentum transfer (Q) dependences of the self-correlation times are found to follow a Q -2/β law in agreement with the picture of Gaussian dynamics. In the full Q range of observation, their temperature dependence is weaker than the rheological shift factor. The same is true for the stress relaxation time as seen in sound wave absorption. The collective times show both temperature dependences; at the structure factor peak, they follow the temperature dependence of the viscosity, but below the peak, one finds the stress relaxation behavior

  20. Critical point phenomena: universal physics at large length scales

    International Nuclear Information System (INIS)

    Bruce, A.; Wallace, D.

    1993-01-01

    This article is concerned with the behaviour of a physical system at, or close to, a critical point (ebullition, ferromagnetism..): study of the phenomena displayed in the critical region (Ising model, order parameter, correlation length); description of the configurations (patterns) formed by the microscopic degrees of freedom near a critical point, essential concepts of the renormalization group (coarse-graining, system flow, fixed-point and scale-invariance); how these concepts knit together to form the renormalization group method; and what kind of problems may be resolved by the renormalization group method. 12 figs., 1 ref

  1. Length scale hierarchy and spatiotemporal change of alluvial morphologies over the Selenga River delta, Russia

    Science.gov (United States)

    Dong, T. Y.; Nittrouer, J.; McElroy, B. J.; Ma, H.; Czapiga, M. J.; Il'icheva, E.; Pavlov, M.; Parker, G.

    2017-12-01

    The movement of water and sediment in natural channels creates various types of alluvial morphologies that span length scales from dunes to deltas. The behavior of these morphologies is controlled microscopically by hydrodynamic conditions and bed material size, and macroscopically by hydrologic and geological settings. Alluvial morphologies can be modeled as either diffusive or kinematic waves, in accordance with their respective boundary conditions. Recently, it has been shown that the difference between these two dynamic behaviors of alluvial morphologies can be characterized by the backwater number, which is a dimensionless value normalizing the length scale of a morphological feature to its local hydrodynamic condition. Application of the backwater number has proven useful for evaluating the size of morphologies, including deltas (e.g., by assessing the preferential avulsion location of a lobe), and for comparing bedform types across different fluvial systems. Yet two critical questions emerge when applying the backwater number: First, how do different types of alluvial morphologies compare within a single deltaic system, where there is a hydrodynamic transition from uniform to non-uniform flow? Second, how do different types of morphologies evolve temporally within a system as a function of changing water discharge? This study addresses these questions by compiling and analyzing field data from the Selenga River delta, Russia, which include measurements of flow velocity, channel geometry, bed material grain size, and channel slope, as well as length scales of various morphologies, including dunes, island bars, meanders, bifurcations, and delta lobes. Data analyses reveal that the length scale of morphologies decrease and the backwater number increases as flow transitions from uniform to non-uniform conditions progressing downstream. It is shown that the evaluated length scale hierarchy and planform distribution of different morphologies can be used to

  2. Nature of the spin-glass phase at experimental length scales

    International Nuclear Information System (INIS)

    Alvarez Baños, R; Cruz, A; Fernandez, L A; Gil-Narvion, J M; Gordillo-Guerrero, A; Maiorano, A; Martin-Mayor, V; Monforte-Garcia, J; Perez-Gaviro, S; Ruiz-Lorenzo, J J; Seoane, B; Tarancon, A; Guidetti, M; Mantovani, F; Schifano, S F; Tripiccione, R; Marinari, E; Parisi, G; Muñoz Sudupe, A; Navarro, D

    2010-01-01

    We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L = 32 lattices down to T ≈ 0.64T c . We demonstrate the relevance of equilibrium finite size simulations to understanding experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a timescale of 1 h can be matched with equilibrium results on L ≈ 110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies in ensuring equilibration in parallel tempering simulations

  3. Factors affecting economies of scale in combined sewer systems.

    Science.gov (United States)

    Maurer, Max; Wolfram, Martin; Anja, Herlyn

    2010-01-01

    A generic model is introduced that represents the combined sewer infrastructure of a settlement quantitatively. A catchment area module first calculates the length and size distribution of the required sewer pipes on the basis of rain patterns, housing densities and area size. These results are fed into the sewer-cost module in order to estimate the combined sewer costs of the entire catchment area. A detailed analysis of the relevant input parameters for Swiss settlements is used to identify the influence of size on costs. The simulation results confirm that an economy of scale exists for combined sewer systems. This is the result of two main opposing cost factors: (i) increased construction costs for larger sewer systems due to larger pipes and increased rain runoff in larger settlements, and (ii) lower costs due to higher population and building densities in larger towns. In Switzerland, the more or less organically grown settlement structures and limited land availability emphasise the second factor to show an apparent economy of scale. This modelling approach proved to be a powerful tool for understanding the underlying factors affecting the cost structure for water infrastructures.

  4. Sense of security felt by the armed police with different service length and influential factors

    Directory of Open Access Journals (Sweden)

    Jing CHEN

    2011-02-01

    Full Text Available Objective To investigate the status of sense of security felt by the armed police and the influential factors thereof.Methods The sense of security,stress level,comprehension of social supports and the coping styles were measured and evaluated by use of Security Questionnaire(SQ,Psychological Stress Self-Evaluation Test(PSET,Perceived Social Support Scale(PSSS and Coping Style Scale(CSS in 725 armed police,and the differences were compared between the servicemen with different service length(1,2 and 3 years.The correlation between security sense(expressed as personal safety and determination of control and comprehension of social supports,coping styles and T score on stress level were analyzed.A stepwise regression analysis was done to screen the factors influencing the security sense of servicemen with the overall score of security sense as the dependent variable and the comprehension of social supports(expressed as inside-and outside-family support,coping styles(expressed as illusion,resignation,rationalization,self-condemned determinant,resort and problem-solving capacity and T score on stress level as the independent variables.Results Compared with the armed police with 1 year of military service,those with 2 or 3 years of military service got lower scores in personal safety,determination of control,inside-and outside-family support,and resort and problem-solving capacity(P 0.05.The two factors of comprehension of social supports(inside-and outside-family support,and the two factors of coping styles(resort and problem-solving capacity were positively correlated with the sense of security(personal safety and determination of control(P < 0.001;while the four factors of coping styles(illusion,resignation,rationalization and self-condemned determinant and the T score on stress level were negatively correlated with the sense of security(P < 0.001.It was proved by multivariate linear regression analysis that outside-family support

  5. Temperature gradient scale length measurement: A high accuracy application of electron cyclotron emission without calibration

    Energy Technology Data Exchange (ETDEWEB)

    Houshmandyar, S., E-mail: houshmandyar@austin.utexas.edu; Phillips, P. E.; Rowan, W. L. [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States); Yang, Z. J. [Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Hubbard, A. E.; Rice, J. E.; Hughes, J. W.; Wolfe, S. M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02129 (United States)

    2016-11-15

    Calibration is a crucial procedure in electron temperature (T{sub e}) inference from a typical electron cyclotron emission (ECE) diagnostic on tokamaks. Although the calibration provides an important multiplying factor for an individual ECE channel, the parameter ΔT{sub e}/T{sub e} is independent of any calibration. Since an ECE channel measures the cyclotron emission for a particular flux surface, a non-perturbing change in toroidal magnetic field changes the view of that channel. Hence the calibration-free parameter is a measure of T{sub e} gradient. B{sub T}-jog technique is presented here which employs the parameter and the raw ECE signals for direct measurement of electron temperature gradient scale length.

  6. Dependence of exponents on text length versus finite-size scaling for word-frequency distributions

    Science.gov (United States)

    Corral, Álvaro; Font-Clos, Francesc

    2017-08-01

    Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.

  7. Image processing for quantifying fracture orientation and length scale transitions during brittle deformation

    Science.gov (United States)

    Rizzo, R. E.; Healy, D.; Farrell, N. J.

    2017-12-01

    We have implemented a novel image processing tool, namely two-dimensional (2D) Morlet wavelet analysis, capable of detecting changes occurring in fracture patterns at different scales of observation, and able of recognising the dominant fracture orientations and the spatial configurations for progressively larger (or smaller) scale of analysis. Because of its inherited anisotropy, the Morlet wavelet is proved to be an excellent choice for detecting directional linear features, i.e. regions where the amplitude of the signal is regular along one direction and has sharp variation along the perpendicular direction. Performances of the Morlet wavelet are tested against the 'classic' Mexican hat wavelet, deploying a complex synthetic fracture network. When applied to a natural fracture network, formed triaxially (σ1>σ2=σ3) deforming a core sample of the Hopeman sandstone, the combination of 2D Morlet wavelet and wavelet coefficient maps allows for the detection of characteristic scale orientation and length transitions, associated with the shifts from distributed damage to the growth of localised macroscopic shear fracture. A complementary outcome arises from the wavelet coefficient maps produced by increasing the wavelet scale parameter. These maps can be used to chart the variations in the spatial distribution of the analysed entities, meaning that it is possible to retrieve information on the density of fracture patterns at specific length scales during deformation.

  8. Electropolishing effect on roughness metrics of ground stainless steel: a length scale study

    Science.gov (United States)

    Nakar, Doron; Harel, David; Hirsch, Baruch

    2018-03-01

    Electropolishing is a widely-used electrochemical surface finishing process for metals. The electropolishing of stainless steel has vast commercial application, such as improving corrosion resistance, improving cleanness, and brightening. The surface topography characterization is performed using several techniques with different lateral resolutions and length scales, from atomic force microscopy in the nano-scale (filter are adopted. While the commonly used roughness amplitude parameters (Ra, Rq and Rz) fail to characterize electropolished textures, the root mean square slope (RΔq) is found to better describe the electropolished surfaces and to be insensitive to scale.

  9. Scaling of localization length of a quasi 1D system with longitudinal boundary roughness

    International Nuclear Information System (INIS)

    Abhijit Kar Gupta; Sen, A.K.

    1994-08-01

    We introduce irregularities on one of the longitudinal boundaries of a quasi 1D strip which has no bulk disorder. We calculate the localization length of such a system within the scope of tight-binding formalism and see how it behaves with the roughness introduced on the boundary and with the strip-width. We find that localization length scales with a composite one parameter. (author). 6 refs, 4 figs

  10. Scale and time dependence of serial correlations in word-length time series of written texts

    Science.gov (United States)

    Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.

    2014-11-01

    This work considered the quantitative analysis of large written texts. To this end, the text was converted into a time series by taking the sequence of word lengths. The detrended fluctuation analysis (DFA) was used for characterizing long-range serial correlations of the time series. To this end, the DFA was implemented within a rolling window framework for estimating the variations of correlations, quantified in terms of the scaling exponent, strength along the text. Also, a filtering derivative was used to compute the dependence of the scaling exponent relative to the scale. The analysis was applied to three famous English-written literary narrations; namely, Alice in Wonderland (by Lewis Carrol), Dracula (by Bram Stoker) and Sense and Sensibility (by Jane Austen). The results showed that high correlations appear for scales of about 50-200 words, suggesting that at these scales the text contains the stronger coherence. The scaling exponent was not constant along the text, showing important variations with apparent cyclical behavior. An interesting coincidence between the scaling exponent variations and changes in narrative units (e.g., chapters) was found. This suggests that the scaling exponent obtained from the DFA is able to detect changes in narration structure as expressed by the usage of words of different lengths.

  11. Psychosocial factors predicting length of hospitalization in elderly individuals with diabetes in selected hospitals of Isfahan University of Medical Sciences, Isfahan, Iran, in 2015

    Directory of Open Access Journals (Sweden)

    Omeleila Baharlooei

    2017-06-01

    Full Text Available BACKGROUND: Currently, researchers seek to identify factors related to length of hospital stay in elderly in order to reduce burden on the health system. The importance of either physiological or psychological factors in determining health outcomes has been well stablished; however, the possible contribution of psychosocial factors particularly in elderly patients with diabetes is also of special importance. This study aimed to know what psychosocial variables predicts length of hospital stay in elderly patients with diabetes. METHODS: This was a cross-sectional, correlational study conducted on 150 elderly patients from July-October 2015. Convenient sampling method was used to recruit the subjects. The data was collected by a three-part questionnaire consisted of demographic and health related characteristics, 21-item depression anxiety stress scale (DASS-21 and multidimensional scale of perceived social support (MSPSS. RESULTS: The mean ± standard deviation of length of hospital stay was 15.6 ± 7.7 days. Findings from multiple regression analysis showed that the models of predicting length of hospital stay in subgroups of both women (P = 0.001, F6,77 = 4.45 and men (P = 0.03, F6,71 = 2.43 were significant. The entered variables in subgroups of women and men accounted for 27% and 18% of total variance (R2 of the length of hospital stay, respectively. None of the psychosocial variables in women significantly predicted the lengths of hospital stay. However, one out of three predicting psychosocial variables (i.e. stress in men significantly predicted the length of hospital stay (β = 0.39, t = 2.1, P = 0.04. CONCLUSION: The results emphasized the importance of promoting social support of elderly patients with diabetes, particularly in patients who are women, have higher levels of stress, have higher period of disease and a history of hospitalization in the past 6 months in order to lower length of hospital stay and finally promote health status

  12. Enhanced Strain in Functional Nanoporous Gold with a Dual Microscopic Length Scale Structure

    NARCIS (Netherlands)

    Detsi, Eric; Punzhin, Sergey; Rao, Jiancun; Onck, Patrick R.; De Hosson, Jeff Th. M.

    We have synthesized nanoporous Au with a dual microscopic length scale by exploiting the crystal structure of the alloy precursor. The synthesized mesoscopic material is characterized by stacked Au layers of submicrometer thickness. In addition, each layer displays nanoporosity through the entire

  13. Gate length scaling trends of drive current enhancement in CMOSFETs with dual stress overlayers and embedded-SiGe

    International Nuclear Information System (INIS)

    Flachowsky, S.; Wei, A.; Herrmann, T.; Illgen, R.; Horstmann, M.; Richter, R.; Salz, H.; Klix, W.; Stenzel, R.

    2008-01-01

    Strain engineering in MOSFETs using tensile nitride overlayer (TOL) films, compressive nitride overlayer (COL) films, and embedded-SiGe (eSiGe) is studied by extensive device experiments and numerical simulations. The scaling behavior was analyzed by gate length reduction down to 40 nm and it was found that drive current strongly depends on the device dimensions. The reduction of drain-current enhancement for short-channel devices can be attributed to two competing factors: shorter gate length devices have increased longitudinal and vertical stress components which should result in improved drain-currents. However, there is a larger degradation from external resistance as the gate length decreases, due to a larger voltage dropped across the external resistance. Adding an eSiGe stressor reduces the external resistance in the p-MOSFET, to the extent that the drive current improvement from COL continues to increase even down the shortest gate length studied. This is due to the reduced resistivity of SiGe itself and the SiGe valence band offset relative to Si, leading to a smaller silicide-active contact resistance. It demonstrates the advantage of combining eSiGe and COL, not only for increased stress, but also for parasitic resistance reduction to enable better COL drive current benefit

  14. Diagnosis of Weibel instability evolution in the rear surface density scale lengths of laser solid interactions via proton acceleration

    International Nuclear Information System (INIS)

    Scott, G G; Brenner, C M; Clarke, R J; Green, J S; Heathcote, R I; Rusby, D R; McKenna, P; Neely, D; Bagnoud, V; Zielbauer, B; Gonzalez-Izquierdo, B; Powell, H W

    2017-01-01

    It is shown for the first time that the spatial and temporal distribution of laser accelerated protons can be used as a diagnostic of Weibel instability presence and evolution in the rear surface scale lengths of a solid density target. Numerical modelling shows that when a fast electron beam is injected into a decreasing density gradient on the target rear side, a magnetic instability is seeded with an evolution which is strongly dependent on the density scale length. This is manifested in the acceleration of a filamented proton beam, where the degree of filamentation is also found to be dependent on the target rear scale length. Furthermore, the energy dependent spatial distribution of the accelerated proton beam is shown to provide information on the instability evolution on the picosecond timescale over which the protons are accelerated. Experimentally, this is investigated by using a controlled prepulse to introduce a target rear scale length, which is varied by altering the time delay with respect to the main pulse, and similar trends are measured. This work is particularly pertinent to applications using laser pulse durations of tens of picoseconds, or where a micron level density scale length is present on the rear of a solid target, such as proton-driven fast ignition, as the resultant instability may affect the uniformity of fuel energy coupling. (paper)

  15. CHANG-ES. IX. Radio scale heights and scale lengths of a consistent sample of 13 spiral galaxies seen edge-on and their correlations

    Science.gov (United States)

    Krause, Marita; Irwin, Judith; Wiegert, Theresa; Miskolczi, Arpad; Damas-Segovia, Ancor; Beck, Rainer; Li, Jiang-Tao; Heald, George; Müller, Peter; Stein, Yelena; Rand, Richard J.; Heesen, Volker; Walterbos, Rene A. M.; Dettmar, Ralf-Jürgen; Vargas, Carlos J.; English, Jayanne; Murphy, Eric J.

    2018-03-01

    Aim. The vertical halo scale height is a crucial parameter to understand the transport of cosmic-ray electrons (CRE) and their energy loss mechanisms in spiral galaxies. Until now, the radio scale height could only be determined for a few edge-on galaxies because of missing sensitivity at high resolution. Methods: We developed a sophisticated method for the scale height determination of edge-on galaxies. With this we determined the scale heights and radial scale lengths for a sample of 13 galaxies from the CHANG-ES radio continuum survey in two frequency bands. Results: The sample average values for the radio scale heights of the halo are 1.1 ± 0.3 kpc in C-band and 1.4 ± 0.7 kpc in L-band. From the frequency dependence analysis of the halo scale heights we found that the wind velocities (estimated using the adiabatic loss time) are above the escape velocity. We found that the halo scale heights increase linearly with the radio diameters. In order to exclude the diameter dependence, we defined a normalized scale height h˜ which is quite similar for all sample galaxies at both frequency bands and does not depend on the star formation rate or the magnetic field strength. However, h˜ shows a tight anticorrelation with the mass surface density. Conclusions: The sample galaxies with smaller scale lengths are more spherical in the radio emission, while those with larger scale lengths are flatter. The radio scale height depends mainly on the radio diameter of the galaxy. The sample galaxies are consistent with an escape-dominated radio halo with convective cosmic ray propagation, indicating that galactic winds are a widespread phenomenon in spiral galaxies. While a higher star formation rate or star formation surface density does not lead to a higher wind velocity, we found for the first time observational evidence of a gravitational deceleration of CRE outflow, e.g. a lowering of the wind velocity from the galactic disk.

  16. Temporal and Latitudinal Variations of the Length-Scales and Relative Intensities of the Chromospheric Network

    Science.gov (United States)

    Raju, K. P.

    2018-05-01

    The Calcium K spectroheliograms of the Sun from Kodaikanal have a data span of about 100 years and covers over 9 solar cycles. The Ca line is a strong chromospheric line dominated by chromospheric network and plages which are good indicators of solar activity. Length-scales and relative intensities of the chromospheric network have been obtained in the solar latitudes from 50 degree N to 50 degree S from the spectroheliograms. The length-scale was obtained from the half-width of the two-dimensional autocorrelation of the latitude strip which gives a measure of the width of the network boundary. As reported earlier for the transition region extreme ultraviolet (EUV) network, relative intensity and width of the chromospheric network boundary are found to be dependent on the solar cycle. A varying phase difference has been noticed in the quantities in different solar latitudes. A cross-correlation analysis of the quantities from other latitudes with ±30 degree latitude revealed an interesting phase difference pattern indicating flux transfer. Evidence of equatorward flux transfer has been observed. The average equatorward flux transfer was estimated to be 5.8 ms-1. The possible reasons of the drift could be meridional circulation, torsional oscillations, or the bright point migration. Cross-correlation of intensity and length-scale from the same latitude showed increasing phase difference with increasing latitude. We have also obtained the cross correlation of the quantities across the equator to see the possible phase lags in the two hemispheres. Signatures of lags are seen in the length scales of southern hemisphere near the equatorial latitudes, but no such lags in the intensity are observed. The results have important implications on the flux transfer over the solar surface and hence on the solar activity and dynamo.

  17. Morphology Characterization of PP/Clay Nanocomposites Across the Length Scales of the Structural Architecture

    NARCIS (Netherlands)

    Szazdi, Laszlo; Abranyi, Agnes; Pukansky Jr, Bela; Vancso, Gyula J.; Pukanszky, B.; Pukanszky, Bela

    2006-01-01

    The structure and rheological properties of a large number of layered silicate poly(propylene) nanocomposites were studied with widely varying compositions. Morphology characterization at different length scales was achieved by SEM, TEM, and XRD. Rheological measurements supplied additional

  18. Hierarchical self-assembly of two-length-scale multiblock copolymers

    International Nuclear Information System (INIS)

    Brinke, Gerrit ten; Loos, Katja; Vukovic, Ivana; Du Sart, Gerrit Gobius

    2011-01-01

    The self-assembly in diblock copolymer-based supramolecules, obtained by hydrogen bonding short side chains to one of the blocks, as well as in two-length-scale linear terpolymers results in hierarchical structure formation. The orientation of the different domains, e.g. layers in the case of a lamellar-in-lamellar structure, is determined by the molecular architecture, graft-like versus linear, and the relative magnitude of the interactions involved. In both cases parallel and perpendicular arrangements have been observed. The comb-shaped supramolecules approach is ideally suited for the preparation of nanoporous structures. A bicontinuous morphology with the supramolecular comb block forming the channels was finally achieved by extending the original approach to suitable triblock copolymer-based supramolecules.

  19. Factors related to axial length elongation and myopia progression in orthokeratology practice.

    Directory of Open Access Journals (Sweden)

    Bingjie Wang

    Full Text Available To investigate which baseline factors are predictive for axial length growth over an average period of 2.5 years in a group of children wearing orthokeratology (OK contact lenses.In this retrospective study, the clinical records of 249 new OK wearers between January 2012 and December 2013 from the contact lens clinic at the Eye and ENT Hospital of Fudan University were reviewed. The primary outcome measure was axial length change from baseline to the time of review (July-August 2015. Independent variables included baseline measures of age at initiation of OK wear, gender, refractive error (spherical equivalent, astigmatism, average keratometry, corneal toricity, central corneal thickness, white-to-white corneal diameter, pupil size, corneal topography eccentricity value (e-value, intraocular pressure (IOP and total time in follow-up (months total. The contributions of all independent variables on axial length change at the time of review were assessed using univariate and multivariable regression analyses.Univariate analyses of the right eyes of 249 OK patients showed that smaller increases in axial length were associated with older age at the onset of OK lens wear, greater baseline spherical equivalent myopic refractive error, less time in follow-up and a smaller e-value. Multivariable analyses of the significant right eye variables showed that the factors associated with smaller axial length growth were older age at the onset of OK lens wear (p<0.0001, greater baseline spherical equivalent myopic refractive error (p = 0.0046 and less time in follow-up (p<0.0001.The baseline factors demonstrating the greatest correlation with reduced axial length elongation during OK lens wear in myopic children included greater baseline spherical equivalent myopic refractive error and older age at the onset of OK lens wear.

  20. Lower Length Scale Model Development for Embrittlement of Reactor Presure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the lower-length-scale effort during FY 2016 in developing mesoscale capabilities for microstructure evolution, plasticity and fracture in reactor pressure vessel steels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation induced defect accumulation and irradiation enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. A crystal plasticity model to capture defect-dislocation interaction and a damage model for cleavage micro-crack propagation is also provided.

  1. Large-scale parent-child comparison confirms a strong paternal influence on telomere length.

    Science.gov (United States)

    Nordfjäll, Katarina; Svenson, Ulrika; Norrback, Karl-Fredrik; Adolfsson, Rolf; Roos, Göran

    2010-03-01

    Telomere length is documented to have a hereditary component, and both paternal and X-linked inheritance have been proposed. We investigated blood cell telomere length in 962 individuals with an age range between 0 and 102 years. Telomere length correlations were analyzed between parent-child pairs in different age groups and between grandparent-grandchild pairs. A highly significant correlation between the father's and the child's telomere length was observed (r=0.454, Pfather-son: r=0.465, Pfather-daughter: r=0.484, Pmothers, the correlations were weaker (mother-child: r=0.148, P=0.098; mother-son: r=0.080, P=0.561; mother-daughter: r=0.297, P=0.013). A positive telomere length correlation was also observed for grandparent-grandchild pairs (r=0.272, P=0.013). Our findings indicate that fathers contribute significantly stronger to the telomere length of the offspring compared with mothers (P=0.012), but we cannot exclude a maternal influence on the daughter's telomeres. Interestingly, the father-child correlations diminished with increasing age (P=0.022), suggesting that nonheritable factors have an impact on telomere length dynamics during life.

  2. Oblique-Length Contraction Factor in the Special Theory of Relativity

    Directory of Open Access Journals (Sweden)

    Smarandache F.

    2013-01-01

    Full Text Available In this paper one generalizes the Lorentz Contraction Factor for the case when the lengths are moving at an oblique angle with respect to the motion direction. One shows that the angles of the moving relativistic objects are distorted.

  3. Self-organization of Au–CdSe hybrid nanoflowers at different length scales via bi-functional diamine linkers

    Energy Technology Data Exchange (ETDEWEB)

    AbouZeid, Khaled Mohamed [Virginia Commonwealth University, Department of Chemistry (United States); Mohamed, Mona Bakr [Cairo University, National Institute of Laser Enhanced Science (NILES) (Egypt); El-Shall, M. Samy, E-mail: mselshal@vcu.edu [Virginia Commonwealth University, Department of Chemistry (United States)

    2016-01-15

    This work introduces a series of molecular bridging bi-functional linkers to produce laterally self-assembled nanostructures of the Au–CdSe nanoflowers on different length scales ranging from 10 nm to 100 microns. Assembly of Au nanocrystals within amorphous CdSe rods is found in the early stages of the growth of the Au–CdSe nanoflowers. The Au–CdSe nanoflowers are formed through a one-pot low temperature (150 °C) process where CdSe clusters are adsorbed on the surface of the Au cores, and they then start to form multiple arms and branches resulting in flower-shaped hybrid nanostructures. More complex assembly at a micron length scale can be achieved by means of bi-functional capping agents with appropriate alkyl chain lengths, such as 1,12-diaminododecane.

  4. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale.

    Science.gov (United States)

    Enright, Ryan; Miljkovic, Nenad; Al-Obeidi, Ahmed; Thompson, Carl V; Wang, Evelyn N

    2012-10-09

    Water condensation on surfaces is a ubiquitous phase-change process that plays a crucial role in nature and across a range of industrial applications, including energy production, desalination, and environmental control. Nanotechnology has created opportunities to manipulate this process through the precise control of surface structure and chemistry, thus enabling the biomimicry of natural surfaces, such as the leaves of certain plant species, to realize superhydrophobic condensation. However, this "bottom-up" wetting process is inadequately described using typical global thermodynamic analyses and remains poorly understood. In this work, we elucidate, through imaging experiments on surfaces with structure length scales ranging from 100 nm to 10 μm and wetting physics, how local energy barriers are essential to understand non-equilibrium condensed droplet morphologies and demonstrate that overcoming these barriers via nucleation-mediated droplet-droplet interactions leads to the emergence of wetting states not predicted by scale-invariant global thermodynamic analysis. This mechanistic understanding offers insight into the role of surface-structure length scale, provides a quantitative basis for designing surfaces optimized for condensation in engineered systems, and promises insight into ice formation on surfaces that initiates with the condensation of subcooled water.

  5. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.

  6. The small length scale effect for a non-local cantilever beam: a paradox solved.

    Science.gov (United States)

    Challamel, N; Wang, C M

    2008-08-27

    Non-local continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with microstructures or nanostructures. This paper presents some simplified non-local elastic beam models, for the bending analyses of small scale rods. Integral-type or gradient non-local models abandon the classical assumption of locality, and admit that stress depends not only on the strain value at that point but also on the strain values of all points on the body. There is a paradox still unresolved at this stage: some bending solutions of integral-based non-local elastic beams have been found to be identical to the classical (local) solution, i.e. the small scale effect is not present at all. One example is the Euler-Bernoulli cantilever nanobeam model with a point load which has application in microelectromechanical systems and nanoelectromechanical systems as an actuator. In this paper, it will be shown that this paradox may be overcome with a gradient elastic model as well as an integral non-local elastic model that is based on combining the local and the non-local curvatures in the constitutive elastic relation. The latter model comprises the classical gradient model and Eringen's integral model, and its application produces small length scale terms in the non-local elastic cantilever beam solution.

  7. Lead Selenide Nanostructures Self-Assembled across Multiple Length Scales and Dimensions

    Directory of Open Access Journals (Sweden)

    Evan K. Wujcik

    2016-01-01

    Full Text Available A self-assembly approach to lead selenide (PbSe structures that have organized across multiple length scales and multiple dimensions has been achieved. These structures consist of angstrom-scale 0D PbSe crystals, synthesized via a hot solution process, which have stacked into 1D nanorods via aligned dipoles. These 1D nanorods have arranged into nanoscale 2D sheets via directional short-ranged attraction. The nanoscale 2D sheets then further aligned into larger 2D microscale planes. In this study, the authors have characterized the PbSe structures via normal and cryo-TEM and EDX showing that this multiscale multidimensional self-assembled alignment is not due to drying effects. These PbSe structures hold promise for applications in advanced materials—particularly electronic technologies, where alignment can aid in device performance.

  8. Nearly constant ratio between the proton inertial scale and the spectrum break length scale in the plasma beta range from 0.2 to 1.4 in the solar wind turbulence

    Science.gov (United States)

    Wang, X.; Tu, C. Y.; He, J.; Wang, L.

    2017-12-01

    The spectrum break at the ion scale of the solar wind magnetic fluctuations are considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable ones are the two mechanisms that related respectively with proton thermal gyro-radius and proton inertial length. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar values in the normal plasma beta range. Here we do a statistical study for the first time to see if the two mechanism predictions have different dependence on the solar wind velocity and on the plasma beta in the normal plasma beta range in the solar wind at 1 AU. From magnetic measurements by Wind, Ulysses and Messenger, we select 60 data sets with duration longer than 8 hours. We found that the ratio between the proton inertial scale and the spectrum break scale do not change considerably with both varying the solar wind speed from 300km/s to 800km/s and varying the plasma beta from 0.2 to 1.4. The average value of the ratio times 2pi is 0.46 ± 0.08. However, the ratio between the proton gyro-radius and the break scale changes clearly. This new result shows that the proton inertial scale could be a single factor that determines the break length scale and hence gives a strong evidence to support the dissipation mechanism related to it in the normal plasma beta range. The value of the constant ratio may relate with the dissipation mechanism, but it needs further theoretical study to give detailed explanation.

  9. A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales

    International Nuclear Information System (INIS)

    Atzberger, Paul J.; Kramer, Peter R.; Peskin, Charles S.

    2007-01-01

    In modeling many biological systems, it is important to take into account flexible structures which interact with a fluid. At the length scale of cells and cell organelles, thermal fluctuations of the aqueous environment become significant. In this work, it is shown how the immersed boundary method of [C.S. Peskin, The immersed boundary method, Acta Num. 11 (2002) 1-39.] for modeling flexible structures immersed in a fluid can be extended to include thermal fluctuations. A stochastic numerical method is proposed which deals with stiffness in the system of equations by handling systematically the statistical contributions of the fastest dynamics of the fluid and immersed structures over long time steps. An important feature of the numerical method is that time steps can be taken in which the degrees of freedom of the fluid are completely underresolved, partially resolved, or fully resolved while retaining a good level of accuracy. Error estimates in each of these regimes are given for the method. A number of theoretical and numerical checks are furthermore performed to assess its physical fidelity. For a conservative force, the method is found to simulate particles with the correct Boltzmann equilibrium statistics. It is shown in three dimensions that the diffusion of immersed particles simulated with the method has the correct scaling in the physical parameters. The method is also shown to reproduce a well-known hydrodynamic effect of a Brownian particle in which the velocity autocorrelation function exhibits an algebraic (τ -3/2 ) decay for long times [B.J. Alder, T.E. Wainwright, Decay of the Velocity Autocorrelation Function, Phys. Rev. A 1(1) (1970) 18-21]. A few preliminary results are presented for more complex systems which demonstrate some potential application areas of the method. Specifically, we present simulations of osmotic effects of molecular dimers, worm-like chain polymer knots, and a basic model of a molecular motor immersed in fluid subject to a

  10. Computational domain length and Reynolds number effects on large-scale coherent motions in turbulent pipe flow

    Science.gov (United States)

    Feldmann, Daniel; Bauer, Christian; Wagner, Claus

    2018-03-01

    We present results from direct numerical simulations (DNS) of turbulent pipe flow at shear Reynolds numbers up to Reτ = 1500 using different computational domains with lengths up to ?. The objectives are to analyse the effect of the finite size of the periodic pipe domain on large flow structures in dependency of Reτ and to assess a minimum ? required for relevant turbulent scales to be captured and a minimum Reτ for very large-scale motions (VLSM) to be analysed. Analysing one-point statistics revealed that the mean velocity profile is invariant for ?. The wall-normal location at which deviations occur in shorter domains changes strongly with increasing Reτ from the near-wall region to the outer layer, where VLSM are believed to live. The root mean square velocity profiles exhibit domain length dependencies for pipes shorter than 14R and 7R depending on Reτ. For all Reτ, the higher-order statistical moments show only weak dependencies and only for the shortest domain considered here. However, the analysis of one- and two-dimensional pre-multiplied energy spectra revealed that even for larger ?, not all physically relevant scales are fully captured, even though the aforementioned statistics are in good agreement with the literature. We found ? to be sufficiently large to capture VLSM-relevant turbulent scales in the considered range of Reτ based on our definition of an integral energy threshold of 10%. The requirement to capture at least 1/10 of the global maximum energy level is justified by a 14% increase of the streamwise turbulence intensity in the outer region between Reτ = 720 and 1500, which can be related to VLSM-relevant length scales. Based on this scaling anomaly, we found Reτ⪆1500 to be a necessary minimum requirement to investigate VLSM-related effects in pipe flow, even though the streamwise energy spectra does not yet indicate sufficient scale separation between the most energetic and the very long motions.

  11. The Length-Weight, Length-Length Relationship and Condition Factor of Angora Loach, Oxynoemacheilus angorae (Steindachner, 1897 Inhabiting Kılıçözü Stream in Kızılırmak River Basin (Central Anatolia-Turkey

    Directory of Open Access Journals (Sweden)

    Okan Yazıcıoğlu

    2016-12-01

    Full Text Available In this study, length-weight relationship (LWR, length- length relationship (LLR and condition factor (K of Angora loach, Oxynoemacheilus angorae were determined. A total of 103 specimens were sampled from Kılıçözü Stream in 2014. The length and weight of specimens were ranged 3.5-9.8 cm and 0.38-6.58 g, respectively. Length-weight relationships for female, male and all samples were found as W= 0.01056.TL2.896 (r²= 0.923, W= 0.00963.TL2.940 (r²= 0.978 and W= 0.00987.TL2.929 (r²= 0.963, respectively. LWRs indicated an isometric growth in female, male and all samples. The values of Fulton’s condition factor (K ranged from 0.699 to 1.246 for females and from 0.654 to 1.072 for males. All length-length relationships were statistically significant.

  12. Characteristic length scale of input data in distributed models: implications for modeling grid size

    Science.gov (United States)

    Artan, G. A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  13. Characteristic length scale of input data in distributed models: implications for modeling grain size

    Science.gov (United States)

    Artan, Guleid A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  14. Data replicating the factor structure and reliability of commonly used measures of resilience: The Connor–Davidson Resilience Scale, Resilience Scale, and Scale of Protective Factors

    Directory of Open Access Journals (Sweden)

    A.N. Madewell

    2016-09-01

    Full Text Available The data presented in this article are related to the article entitled “Assessing Resilience in Emerging Adulthood: The Resilience Scale (RS, Connor Davidson Resilience Scale (CD-RISC, and Scale of Protective Factors (SPF” (Madewell and Ponce-Garcia, 2016 [1]. The data were collected from a sample of 451 college students from three universities located in the Southwestern region of the United States: 374 from a large public university and 67 from two smaller regional universities. The data from the three universities did not significantly differ in terms of demographics. The data represent participant responses on six measurements to include the Resilience Scale-25 (RS-25, Resilience Scale-14 (RS-14, Connor Davidson Resilience Scale-25 (CD-RISC-25, Connor Davidson Resilience Scale-10 (CD-RISC-10, Scale of Protective Factors-24 (SPF-24, and the Life Stressor Checklist Revised (LSC-R. Keywords: Scale of Protective Factors, Resilience Scale, Connor–Davidson Resilience Scale, Emerging adulthood, Confirmatory factor analysis

  15. Molecular Precision at Micrometer Length Scales: Hierarchical Assembly of DNA-Protein Nanostructures.

    Science.gov (United States)

    Schiffels, Daniel; Szalai, Veronika A; Liddle, J Alexander

    2017-07-25

    Robust self-assembly across length scales is a ubiquitous feature of biological systems but remains challenging for synthetic structures. Taking a cue from biology-where disparate molecules work together to produce large, functional assemblies-we demonstrate how to engineer microscale structures with nanoscale features: Our self-assembly approach begins by using DNA polymerase to controllably create double-stranded DNA (dsDNA) sections on a single-stranded template. The single-stranded DNA (ssDNA) sections are then folded into a mechanically flexible skeleton by the origami method. This process simultaneously shapes the structure at the nanoscale and directs the large-scale geometry. The DNA skeleton guides the assembly of RecA protein filaments, which provides rigidity at the micrometer scale. We use our modular design strategy to assemble tetrahedral, rectangular, and linear shapes of defined dimensions. This method enables the robust construction of complex assemblies, greatly extending the range of DNA-based self-assembly methods.

  16. Length-scale dependent ensemble-averaged conductance of a 1D disordered conductor: Conductance minimum

    International Nuclear Information System (INIS)

    Tit, N.; Kumar, N.; Pradhan, P.

    1993-07-01

    Exact numerical calculation of ensemble averaged length-scale dependent conductance for the 1D Anderson model is shown to support an earlier conjecture for a conductance minimum. Numerical results can be understood in terms of the Thouless expression for the conductance and the Wigner level-spacing statistics. (author). 8 refs, 2 figs

  17. Cycles, scaling and crossover phenomenon in length of the day (LOD) time series

    Science.gov (United States)

    Telesca, Luciano

    2007-06-01

    The dynamics of the temporal fluctuations of the length of the day (LOD) time series from January 1, 1962 to November 2, 2006 were investigated. The power spectrum of the whole time series has revealed annual, semi-annual, decadal and daily oscillatory behaviors, correlated with oceanic-atmospheric processes and interactions. The scaling behavior was analyzed by using the detrended fluctuation analysis (DFA), which has revealed two different scaling regimes, separated by a crossover timescale at approximately 23 days. Flicker-noise process can describe the dynamics of the LOD time regime involving intermediate and long timescales, while Brownian dynamics characterizes the LOD time series for small timescales.

  18. Factors associated with changes in vaginal length and diameter during pelvic radiotherapy for cervical cancer.

    Science.gov (United States)

    Martins, Jumara; Vaz, Ana Francisca; Grion, Regina Celia; Esteves, Sérgio Carlos Barros; Costa-Paiva, Lúcia; Baccaro, Luiz Francisco

    2017-12-01

    This study reports the incidence and factors associated with vaginal stenosis and changes in vaginal dimensions after pelvic radiotherapy for cervical cancer. A descriptive longitudinal study with 139 women with cervical cancer was conducted from January 2013 to November 2015. The outcome variables were vaginal stenosis assessed using the Common Terminology Criteria for Adverse Events (CTCAE v3.0) and changes in vaginal diameter and length after the end of radiotherapy. Independent variables were the characteristics of the neoplasm, clinical and sociodemographic data. Bivariate analysis was carried out using χ 2 , Kruskal-Wallis and Mann-Whitney's test. Multiple analysis was carried out using Poisson regression and a generalized linear model. Most women (50.4%) had stage IIIB tumors. According to CTCAE v3.0 scale, 30.2% had no stenosis, 69.1% had grade 1 and 0.7% had grade 2 stenosis after radiotherapy. Regarding changes in vaginal measures, the mean variation in diameter was - 0.6 (± 1.7) mm and the mean variation in length was - 0.6 (± 1.3) cm. In the final statistical model, having tumoral invasion of the vaginal walls (coefficient + 0.73, p vaginal stenosis and lower reduction of vaginal dimensions. Advanced clinical stage (coefficient + 1.44; p = 0.02) and receiving brachytherapy/teletherapy (coefficient - 1.17, p vaginal dimensions. Most women had mild vaginal stenosis with slight reductions in both diameter and length of the vaginal canal. Women with tumoral invasion of the vagina have an increase in vaginal length soon after radiotherapy due to a reduction in tumoral volume.

  19. How to ask about patient satisfaction? The visual analogue scale is less vulnerable to confounding factors and ceiling effect than a symmetric Likert scale.

    Science.gov (United States)

    Voutilainen, Ari; Pitkäaho, Taina; Kvist, Tarja; Vehviläinen-Julkunen, Katri

    2016-04-01

    To study the effects of scale type (visual analogue scale vs. Likert), item order (systematic vs. random), item non-response and patient-related characteristics (age, gender, subjective health, need for assistance with filling out the questionnaire and length of stay) on the results of patient satisfaction surveys. Although patient satisfaction is one of the most intensely studied issues in the health sciences, research information about the effects of possible instrument-related confounding factors on patient satisfaction surveys is scant. A quasi-experimental design was employed. A non-randomized sample of 150 surgical patients was gathered to minimize possible alterations in care quality. Data were collected in May-September 2014 from one tertiary hospital in Finland using the Revised Humane Caring Scale instrument. New versions of the instrument were created for the present purposes. In these versions, items were either in a visual analogue format or Likert-scaled, in systematic or random order. The data were analysed using an analysis of covariance and a paired samples t-test. The visual analogue scale items were less vulnerable to bias from confounding factors than were the Likert-scaled items. The visual analogue scale also avoided the ceiling effect better than Likert and the time needed to complete the visual analogue scale questionnaire was 28% shorter than that needed to complete the Likert-scaled questionnaire. The present results supported the use of visual analogue scale rather than Likert scaling in patient satisfaction surveys and stressed the need to account for as many potential confounding factors as possible. © 2015 John Wiley & Sons Ltd.

  20. Scaling behaviour of the correlation length for the two-point correlation function in the random field Ising chain

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Adrian; Stinchcombe, Robin [Theoretical Physics, University of Oxford, Oxford (United Kingdom)

    1996-07-07

    We study the general behaviour of the correlation length {zeta}(kT:h) for two-point correlation function of the local fields in an Ising chain with binary distributed fields. At zero field it is shown that {zeta} is the same as the zero-field correlation length for the spin-spin correlation function. For the field-dominated behaviour of {zeta} we find an exponent for the power-law divergence which is smaller than the exponent for the spin-spin correlation length. The entire behaviour of the correlation length can be described by a single crossover scaling function involving the new critical exponent. (author)

  1. Efficient coupling of 527 nm laser beam power to a long scale-length plasma

    International Nuclear Information System (INIS)

    Moody, J.D.; Divol, L.; Glenzer, S.H.; MacKinnon, A.J.; Froula, D.H.; Gregori, G.; Kruer, W.L.; Meezan, N.B.; Suter, L.J.; Williams, E.A.; Bahr, R.; Seka, W.

    2006-01-01

    We experimentally demonstrate that application of laser smoothing schemes including smoothing by spectral dispersion (SSD) and polarization smoothing (PS) increases the intensity range for efficient coupling of frequency doubled (527 nm) laser light to a long scale-length plasma with n e /n cr equals 0.14 and T e equals 2 keV. (authors)

  2. Modelling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks

    International Nuclear Information System (INIS)

    Amanifard, N.; Nariman-Zadeh, N.; Farahani, M.H.; Khalkhali, A.

    2008-01-01

    Over the past 15 years there have been several research efforts to capture the stall inception nature in axial flow compressors. However previous analytical models could not explain the formation of short-length-scale stall cells. This paper provides a new model based on evolved GMDH neural network for transient evolution of multiple short-length-scale stall cells in an axial compressor. Genetic Algorithms (GAs) are also employed for optimal design of connectivity configuration of such GMDH-type neural networks. In this way, low-pass filter (LPF) pressure trace near the rotor leading edge is modelled with respect to the variation of pressure coefficient, flow rate coefficient, and number of rotor rotations which are defined as inputs

  3. Explanation of the values of Hack's drainage basin, river length scaling exponent

    Science.gov (United States)

    Hunt, A. G.

    2015-08-01

    Percolation theory can be used to find water flow paths of least resistance. The application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law allows interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  4. Determining the minimal length scale of the generalized uncertainty principle from the entropy-area relationship

    International Nuclear Information System (INIS)

    Kim, Wontae; Oh, John J.

    2008-01-01

    We derive the formula of the black hole entropy with a minimal length of the Planck size by counting quantum modes of scalar fields in the vicinity of the black hole horizon, taking into account the generalized uncertainty principle (GUP). This formula is applied to some intriguing examples of black holes - the Schwarzschild black hole, the Reissner-Nordstrom black hole, and the magnetically charged dilatonic black hole. As a result, it is shown that the GUP parameter can be determined by imposing the black hole entropy-area relationship, which has a Planck length scale and a universal form within the near-horizon expansion

  5. Pollutant Dispersion in Boundary Layers Exposed to Rural-to-Urban Transitions: Varying the Spanwise Length Scale of the Roughness

    Science.gov (United States)

    Tomas, J. M.; Eisma, H. E.; Pourquie, M. J. B. M.; Elsinga, G. E.; Jonker, H. J. J.; Westerweel, J.

    2017-05-01

    Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic particle image velocimetry and laser-induced fluorescence, have been used to investigate pollutant dispersion mechanisms in regions where the surface changes from rural to urban roughness. The urban roughness was characterized by an array of rectangular obstacles in an in-line arrangement. The streamwise length scale of the roughness was kept constant, while the spanwise length scale was varied by varying the obstacle aspect ratio l / h between 1 and 8, where l is the spanwise dimension of the obstacles and h is the height of the obstacles. Additionally, the case of two-dimensional roughness (riblets) was considered in LES. A smooth-wall turbulent boundary layer of depth 10 h was used as the approaching flow, and a line source of passive tracer was placed 2 h upstream of the urban canopy. The experimental and numerical results show good agreement, while minor discrepancies are readily explained. It is found that for l/h=2 the drag induced by the urban canopy is largest of all considered cases, and is caused by a large-scale secondary flow. In addition, due to the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identified that is responsible for street-canyon ventilation for the sixth street and onwards. Moreover, it is shown that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the canopy, while the streamwise length scale does not show a similar trend.

  6. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition

    International Nuclear Information System (INIS)

    Jiang, L.; Li, J.K.; Liu, G.; Wang, R.H.; Chen, B.A.; Zhang, J.Y.; Sun, J.; Yang, M.X.; Yang, G.; Yang, J.; Cao, X.Z.

    2015-01-01

    Heat-treatable Al alloys containing Al–2.5 wt% Cu (Al–Cu) and Al–2.5 wt% Cu–0.3 wt% Sc (Al–Cu–Sc) with different grain length scales, i.e., average grain size >10 μm ( defined coarse grained, CG), 1–2 μm (fine grained, FG), and <1 μm (ultrafine grained, UFG), were prepared by equal-channel angular pressing (ECAP). The length scale and Sc microalloying effects and their interplay on the precipitation behavior and mechanical properties of the Al–Cu alloys were systematically investigated. In the Al–Cu alloys, intergranular θ-Al 2 Cu precipitation gradually dominated by sacrificing the intragranular θ′-Al 2 Cu precipitation with reducing the length scale. Especially in the UFG regime, only intergranular θ-Al 2 Cu particles were precipitated and intragranular θ′-Al 2 Cu precipitation was completely disappeared. This led to a remarkable reduction in yield strength and ductility due to insufficient dislocation storage capacity. The minor Sc addition resulted in a microalloying effect in the Al–Cu alloy, which, however, is strongly dependent on the length scale. The smaller is the grain size, the more active is the microalloying effect that promotes the intragranular precipitation while reduces the intergranular precipitation. Correspondingly, compared with their Sc-free counterparts, the yield strength of post-aged CG, FG, and UFG Al–Cu alloys with Sc addition increased by ~36 MPa, ~56 MPa, and ~150 MPa, simultaneously in tensile elongation by ~20%, ~30%, and 280%, respectively. The grain size-induced evolutions in vacancy concentration/distribution and number density of vacancy-solute/solute–solute clusters and their influences on precipitation nucleation and kinetics have been comprehensively considered to rationalize the length scale-dependent Sc microalloying mechanisms using positron annihilation lifetime spectrum and three dimension atom probe. The increase in ductility was analyzed in the light of Sc microalloying effect and the

  7. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L.; Li, J.K. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, G., E-mail: lgsammer@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, R.H. [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Chen, B.A.; Zhang, J.Y. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Sun, J., E-mail: junsun@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Yang, M.X.; Yang, G. [Central Iron and Steel Research Institute, Beijing 100081 (China); Yang, J.; Cao, X.Z. [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-06-18

    Heat-treatable Al alloys containing Al–2.5 wt% Cu (Al–Cu) and Al–2.5 wt% Cu–0.3 wt% Sc (Al–Cu–Sc) with different grain length scales, i.e., average grain size >10 μm ( defined coarse grained, CG), 1–2 μm (fine grained, FG), and <1 μm (ultrafine grained, UFG), were prepared by equal-channel angular pressing (ECAP). The length scale and Sc microalloying effects and their interplay on the precipitation behavior and mechanical properties of the Al–Cu alloys were systematically investigated. In the Al–Cu alloys, intergranular θ-Al{sub 2}Cu precipitation gradually dominated by sacrificing the intragranular θ′-Al{sub 2}Cu precipitation with reducing the length scale. Especially in the UFG regime, only intergranular θ-Al{sub 2}Cu particles were precipitated and intragranular θ′-Al{sub 2}Cu precipitation was completely disappeared. This led to a remarkable reduction in yield strength and ductility due to insufficient dislocation storage capacity. The minor Sc addition resulted in a microalloying effect in the Al–Cu alloy, which, however, is strongly dependent on the length scale. The smaller is the grain size, the more active is the microalloying effect that promotes the intragranular precipitation while reduces the intergranular precipitation. Correspondingly, compared with their Sc-free counterparts, the yield strength of post-aged CG, FG, and UFG Al–Cu alloys with Sc addition increased by ~36 MPa, ~56 MPa, and ~150 MPa, simultaneously in tensile elongation by ~20%, ~30%, and 280%, respectively. The grain size-induced evolutions in vacancy concentration/distribution and number density of vacancy-solute/solute–solute clusters and their influences on precipitation nucleation and kinetics have been comprehensively considered to rationalize the length scale-dependent Sc microalloying mechanisms using positron annihilation lifetime spectrum and three dimension atom probe. The increase in ductility was analyzed in the light of Sc microalloying

  8. Childhood adversity, social support, and telomere length among perinatal women.

    Science.gov (United States)

    Mitchell, Amanda M; Kowalsky, Jennifer M; Epel, Elissa S; Lin, Jue; Christian, Lisa M

    2018-01-01

    Adverse perinatal health outcomes are heightened among women with psychosocial risk factors, including childhood adversity and a lack of social support. Biological aging could be one pathway by which such outcomes occur. However, data examining links between psychosocial factors and indicators of biological aging among perinatal women are limited. The current study examined the associations of childhood socioeconomic status (SES), childhood trauma, and current social support with telomere length in peripheral blood mononuclear cells (PBMCs) in a sample of 81 women assessed in early, mid, and late pregnancy as well as 7-11 weeks postpartum. Childhood SES was defined as perceived childhood social class and parental educational attainment. Measures included the Childhood Trauma Questionnaire, Center for Epidemiologic Studies-Depression Scale, Multidimensional Scale of Perceived Social Support, and average telomere length in PBMCs. Per a linear mixed model, telomere length did not change across pregnancy and postpartum visits; thus, subsequent analyses defined telomere length as the average across all available timepoints. ANCOVAs showed group differences by perceived childhood social class, maternal and paternal educational attainment, and current family social support, with lower values corresponding with shorter telomeres, after adjustment for possible confounds. No effects of childhood trauma or social support from significant others or friends on telomere length were observed. Findings demonstrate that while current SES was not related to telomeres, low childhood SES, independent of current SES, and low family social support were distinct risk factors for cellular aging in women. These data have relevance for understanding potential mechanisms by which early life deprivation of socioeconomic and relationship resources affect maternal health. In turn, this has potential significance for intergenerational transmission of telomere length. The predictive value of

  9. Statistical theory and transition in multiple-scale-lengths turbulence in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-06-01

    The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Nonlinear interactions in the same kind of fluctuations as well as nonlinear interplay between different classes of fluctuations are kept in the analysis. Nonlinear interactions are modelled as turbulent drag, nonlinear noise and nonlinear drive, and a set of Langevin equations is formulated. With the help of an Ansatz of a large number of degrees of freedom with positive Lyapunov number, Langevin equations are solved and the fluctuation dissipation theorem in the presence of strong plasma turbulence has been derived. A case where two driving mechanisms (one for micro mode and the other for semi-micro mode) coexist is investigated. It is found that there are several states of fluctuations: in one state, the micro mode is excited and the semi-micro mode is quenched; in the other state, the semi-micro mode is excited, and the micro mode remains at finite but suppressed level. New type of turbulence transition is obtained, and a cusp type catastrophe is revealed. A phase diagram is drawn for turbulence which is composed of multiple classes of fluctuations. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. Finally, the nonlocal heat transport due to the long-wave-length fluctuations, which are noise-pumped by shorter-wave-length ones, is analyzed and the impact on transient transport problems is discussed. (author)

  10. Intensity limits for propagation of 0.527 μm laser beams through large-scale-length plasmas for inertial confinement fusion

    International Nuclear Information System (INIS)

    Niemann, C.; Divol, L.; Froula, D.H.; Gregori, G.; Jones, O.; Kirkwood, R.K.; MacKinnon, A.J.; Meezan, N.B.; Moody, J.D.; Sorce, C.; Suter, L.J.; Glenzer, S.H.; Bahr, R.; Seka, W.

    2005-01-01

    We have established the intensity limits for propagation of a frequency-doubled (2ω, 527 nm) high intensity interaction beam through an underdense large-scale-length plasma. We observe good beam transmission at laser intensities at or below 2x10 14 W/cm 2 and a strong reduction at intensities up to 10 15 W/cm 2 due to the onset of parametric scattering instabilities. We show that temporal beam smoothing by spectral dispersion allows a factor of 2 higher intensities while keeping the beam spray constant, which establishes frequency-doubled light as an option for ignition and burn in inertial confinement fusion experiments

  11. Diffusion effects on volume-selective NMR at small length scales

    International Nuclear Information System (INIS)

    Gaedke, Achim

    2009-01-01

    In this thesis, the interplay between diffusion and relaxation effects in spatially selective NMR experiments at short length scales is explored. This is especially relevant in the context of both conventional and mechanically detected MRI at (sub)micron resolution in biological specimens. Recent results on selectively excited very thin slices showed an in-slice-magnetization recovery orders of magnitude faster than the longitudinal relaxation time T1. However, those experiments were run on fully relaxed samples while MRI and especially mechanically detected NMR experiments are typically run in a periodic fashion with repetition times far below T1. The main purpose of this work therefore was to extend the study of the interplay between diffusion and longitudinal relaxation to periodic excitations. In some way, this is inverse phenomenon to the DESIRE (Diffusive Enhancement of SIgnal and REsolution) approach, proposed 1992 by Lauterbur. Experiments on periodically excited thin slices were carried out at a dedicated static field gradient cryomagnet with magnetic field gradients up to 180 T/m. In order to obtain plane slices, an appropriate isosurface of the gradient magnet had to be identified. It was found at a field of 3.8 T with a gradient of 73 T/m. In this field, slices down to a thickness of 3.2 μm could be excited. The detection of the NMR signal was done using FIDs instead of echoes as the excitation bandwidth of those thin slices is sufficiently small to observe FIDs which are usually considered to be elusive to detection in such strong static field gradients. A simulation toolbox based on the full Bloch-Torrey-equation was developed to describe the excitation and the formation of NMR signals under those unusual conditions as well as the interplay of diffusion and magnetization recovery. Both the experiments and the simulations indicate that diffusion effects lead to a strongly enhanced magnetization modulation signal also under periodic excitation

  12. Systematic correlation of environmental exposure and physiological and self-reported behaviour factors with leukocyte telomere length.

    Science.gov (United States)

    Patel, Chirag J; Manrai, Arjun K; Corona, Erik; Kohane, Isaac S

    2017-02-01

    It is hypothesized that environmental exposures and behaviour influence telomere length, an indicator of cellular ageing. We systematically associated 461 indicators of environmental exposures, physiology and self-reported behaviour with telomere length in data from the US National Health and Nutrition Examination Survey (NHANES) in 1999-2002. Further, we tested whether factors identified in the NHANES participants are also correlated with gene expression of telomere length modifying genes. We correlated 461 environmental exposures, behaviours and clinical variables with telomere length, using survey-weighted linear regression, adjusting for sex, age, age squared, race/ethnicity, poverty level, education and born outside the USA, and estimated the false discovery rate to adjust for multiple hypotheses. We conducted a secondary analysis to investigate the correlation between identified environmental variables and gene expression levels of telomere-associated genes in publicly available gene expression samples. After correlating 461 variables with telomere length, we found 22 variables significantly associated with telomere length after adjustment for multiple hypotheses. Of these varaibales, 14 were associated with longer telomeres, including biomarkers of polychlorinated biphenyls([PCBs; 0.1 to 0.2 standard deviation (SD) increase for 1 SD increase in PCB level, P  environmental exposures and chronic disease-related risk factors may play a role in telomere length. Our secondary analysis found no evidence of association between PCBs/smoking and gene expression of telomere-associated genes. All correlations between exposures, behaviours and clinical factors and changes in telomere length will require further investigation regarding biological influence of exposure. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association

  13. Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model.

    Science.gov (United States)

    Engel, Benjamin D; Ludington, William B; Marshall, Wallace F

    2009-10-05

    The assembly and maintenance of eukaryotic flagella are regulated by intraflagellar transport (IFT), the bidirectional traffic of IFT particles (recently renamed IFT trains) within the flagellum. We previously proposed the balance-point length control model, which predicted that the frequency of train transport should decrease as a function of flagellar length, thus modulating the length-dependent flagellar assembly rate. However, this model was challenged by the differential interference contrast microscopy observation that IFT frequency is length independent. Using total internal reflection fluorescence microscopy to quantify protein traffic during the regeneration of Chlamydomonas reinhardtii flagella, we determined that anterograde IFT trains in short flagella are composed of more kinesin-associated protein and IFT27 proteins than trains in long flagella. This length-dependent remodeling of train size is consistent with the kinetics of flagellar regeneration and supports a revised balance-point model of flagellar length control in which the size of anterograde IFT trains tunes the rate of flagellar assembly.

  14. Nano-regime Length Scales Extracted from the First Sharp Diffraction Peak in Non-crystalline SiO2 and Related Materials: Device Applications

    Directory of Open Access Journals (Sweden)

    Phillips James

    2010-01-01

    Full Text Available Abstract This paper distinguishes between two different scales of medium range order, MRO, in non-crystalline SiO2: (1 the first is ~0.4 to 0.5 nm and is obtained from the position of the first sharp diffraction peak, FSDP, in the X-ray diffraction structure factor, S(Q, and (2 the second is ~1 nm and is calculated from the FSDP full-width-at-half-maximum FWHM. Many-electron calculations yield Si–O third- and O–O fourth-nearest-neighbor bonding distances in the same 0.4–0.5 nm MRO regime. These derive from the availability of empty Si dπ orbitals for back-donation from occupied O pπ orbitals yielding narrow symmetry determined distributions of third neighbor Si–O, and fourth neighbor O–O distances. These are segments of six member rings contributing to connected six-member rings with ~1 nm length scale within the MRO regime. The unique properties of non-crystalline SiO2 are explained by the encapsulation of six-member ring clusters by five- and seven-member rings on average in a compliant hard-soft nano-scaled inhomogeneous network. This network structure minimizes macroscopic strain, reducing intrinsic bonding defects as well as defect precursors. This inhomogeneous CRN is enabling for applications including thermally grown ~1.5 nm SiO2 layers for Si field effect transistor devices to optical components with centimeter dimensions. There are qualitatively similar length scales in nano-crystalline HfO2 and phase separated Hf silicates based on the primitive unit cell, rather than a ring structure. Hf oxide dielectrics have recently been used as replacement dielectrics for a new generation of Si and Si/Ge devices heralding a transition into nano-scale circuits and systems on a Si chip.

  15. Length and time scales of the near-surface axial velocity in a high Reynolds number turbulent boundary layer

    International Nuclear Information System (INIS)

    Metzger, M.

    2006-01-01

    Reynolds number effects on relevant length and time scales in the near-wall region of a canonical turbulent boundary layer are investigated. Well resolved measurements in the atmospheric surface layer are compared with existing laboratory data to give a composite Reynolds number range spanning over three orders of magnitude. In the field experiments, a vertical rake of twenty single element hot-wires was used to measure the axial velocity, u, characteristics in the lower log layer region of the atmospheric surface layer that flows over Utah's western desert. Only data acquired under conditions of near-neutral thermal stability are analyzed. The shape of the power spectra of u as a function of distance from the wall, y, and Reynolds number is investigated, with emphasis on the appropriate scaling parameters valid across different wavenumber, k, bands. In particular, distance from the wall is found to scale the region of the u spectra around ky = 1. The presence of a k -1 slope in the spectra is also found to correlate with the Reynolds number dependence in the peak of the root mean square u profile. In addition, Reynolds number trends in the profiles of the Taylor microscales, which represent intermediate length and time scales in the boundary layer, are shown to deviate from classical scaling

  16. Density Functional Theory and Materials Modeling at Atomistic Length Scales

    Directory of Open Access Journals (Sweden)

    Swapan K. Ghosh

    2002-04-01

    Full Text Available Abstract: We discuss the basic concepts of density functional theory (DFT as applied to materials modeling in the microscopic, mesoscopic and macroscopic length scales. The picture that emerges is that of a single unified framework for the study of both quantum and classical systems. While for quantum DFT, the central equation is a one-particle Schrodinger-like Kohn-Sham equation, the classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential, the exact functional form of which is unknown. One therefore approximates the exchange-correlation potential for quantum systems and the excess free energy density functional or the direct correlation functions for classical systems. Illustrative applications of quantum DFT to microscopic modeling of molecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are highlighted.

  17. Laser scattering in large-scale-length plasmas relevant to National Ignition Facility hohlraums

    International Nuclear Information System (INIS)

    MacGowan, B.J.; Berger, R.L.; Afeyan, B.B.

    1996-10-01

    We have used homogeneous plasmas of high density (up to 1.3 X 10 21 electrons per cm 3 ) and temperature (∼ 3 keV) with large density scale lengths (∼2 mm) to approximate conditions within National Ignition Facility (NIF) hohlraums. Within these plasmas we have studied the dependence of stimulated Raman (SRS) and Brillouin (SBS) scattering on beam smoothing and plasma conditions at the relevant laser intensity (3ω, 2 X 10 15 Wcm 2 ). Both SBS and SRS are reduced by the use of smoothing by spectral dispersion (SSD)

  18. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    Science.gov (United States)

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-01

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. But how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer ‘how far is far enough,’ we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25-2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high

  19. The factor structure of the Social Interaction Anxiety Scale and the Social Phobia Scale.

    Science.gov (United States)

    Heidenreich, Thomas; Schermelleh-Engel, Karin; Schramm, Elisabeth; Hofmann, Stefan G; Stangier, Ulrich

    2011-05-01

    The Social Interaction Anxiety Scale (SIAS) and the Social Phobia Scale (SPS) are two compendium measures that have become some of the most popular self-report scales of social anxiety. Despite their popularity, it remains unclear whether it is necessary to maintain two separate scales of social anxiety. The primary objective of the present study was to examine the factor analytic structure of both measures to determine the factorial validity of each scale. For this purpose, we administered both scales to 577 patients at the beginning of outpatient treatment. Analyzing both scales simultaneously, a CFA with two correlated factors showed a better fit to the data than a single factor model. An additional EFA with an oblique rotation on all 40 items using the WLSMV estimator further supported the two factor solution. These results suggest that the SIAS and SPS measure similar, but not identical facets of social anxiety. Thus, our findings provide support to retain the SIAS and SPS as two separate scales. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. A micromechanical approach of suffusion based on a length scale analysis of the grain detachment and grain transport processes.

    Science.gov (United States)

    Wautier, Antoine; Bonelli, Stéphane; Nicot, François

    2017-06-01

    Suffusion is the selective erosion of the finest particles of a soil subjected to an internal flow. Among the four types of internal erosion and piping identified today, suffusion is the least understood. Indeed, there is a lack of micromechanical approaches for identifying the critical microstructural parameters responsible for this process. Based on a discrete element modeling of non cohesive granular assemblies, specific micromechanical tools are developed in a unified framework to account for the two first steps of suffusion, namely the grain detachment and the grain transport processes. Thanks to the use of an enhanced force chain definition and autocorrelation functions the typical lengths scales associated with grain detachment are characterized. From the definition of transport paths based on a graph description of the pore space the typical lengths scales associated with grain transport are recovered. For a uniform grain size distribution, a separation of scales between these two processes exists for the finest particles of a soil

  1. Biosynthesis of Colabomycin E, a New Manumycin-Family Metabolite, Involves an Unusual Chain-Length Factor

    Czech Academy of Sciences Publication Activity Database

    Petříčková, Kateřina; Pospíšil, Stanislav; Kuzma, Marek; Tylová, Tereza; Jágr, Michal; Tomek, P.; Chroňáková, Alica; Brabcová, E.; Anděra, Ladislav; Krištůfek, Václav; Petříček, Miroslav

    2014-01-01

    Roč. 15, č. 9 (2014), s. 1334-1345 ISSN 1439-4227 R&D Projects: GA MZd(CZ) NT13012 Institutional support: RVO:61388971 ; RVO:60077344 ; RVO:68378050 Keywords : biosynthesis * chain-length factors * manumycins Subject RIV: CE - Biochemistry Impact factor: 3.088, year: 2014

  2. Development of the heated length to diameter correction factor on critical heat flux using the artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ho; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    With using artificial neural networks (ANNs), an analytical study related to the heated length effect on critical heat flux (CHF) has been carried out to make an improvement of the CHF prediction accuracy based on local condition correlations or table. It has been carried out to suggest a feasible criterion of the threshold length-to-diameter (L/D) value in which heated length could affect CHF. And within the criterion, a L/D correction factor has been developed through conventional regression. In order to validate the developed L/D correction factor, CHF experiments for various heated lengths have been carried out under low and intermediate pressure conditions. The developed threshold L/D correlation provides a new feasible criterion of L/D threshold value. The developed correction factor gives a reasonable accuracy for the original database, showing the error of -2.18% for average and 27.75% for RMS, and promising results for new experimental data. 7 refs., 12 figs., 1 tab. (Author)

  3. Development of the heated length to diameter correction factor on critical heat flux using the artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ho; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    With using artificial neural networks (ANNs), an analytical study related to the heated length effect on critical heat flux (CHF) has been carried out to make an improvement of the CHF prediction accuracy based on local condition correlations or table. It has been carried out to suggest a feasible criterion of the threshold length-to-diameter (L/D) value in which heated length could affect CHF. And within the criterion, a L/D correction factor has been developed through conventional regression. In order to validate the developed L/D correction factor, CHF experiments for various heated lengths have been carried out under low and intermediate pressure conditions. The developed threshold L/D correlation provides a new feasible criterion of L/D threshold value. The developed correction factor gives a reasonable accuracy for the original database, showing the error of -2.18% for average and 27.75% for RMS, and promising results for new experimental data. 7 refs., 12 figs., 1 tab. (Author)

  4. Zonal Articular Cartilage Possesses Complex Mechanical Behavior Spanning Multiple Length Scales: Dependence on Chemical Heterogeneity, Anisotropy, and Microstructure

    Science.gov (United States)

    Wahlquist, Joseph A.

    This work focused on characterizing the mechanical behavior of biological material in physiologically relevant conditions and at sub millimeter length scales. Elucidating the time, length scale, and directionally dependent mechanical behavior of cartilage and other biological materials is critical to adequately recapitulate native mechanosensory cues for cells, create computational models that mimic native tissue behavior, and assess disease progression. This work focused on three broad aspects of characterizing the mechanical behavior of articular cartilage. First, we sought to reveal the causes of time-dependent deformation and variation of mechanical properties with distance from the articular surface. Second, we investigated size dependence of mechanical properties. Finally, we examined material anisotropy of both the calcified and uncalcified tissues of the osteochondral interface. This research provides insight into how articular cartilage serves to support physiologic loads and simultaneously sustain chondrocyte viability.

  5. Dealing with imperfection: quantifying potential length scale artefacts from nominally spherical indenter probes

    International Nuclear Information System (INIS)

    Constantinides, G; Silva, E C C M; Blackman, G S; Vliet, K J Van

    2007-01-01

    Instrumented nanoindenters are commonly employed to extract elastic, plastic or time-dependent mechanical properties of the indented material surface. In several important cases, accurate determination of the indenter probe radii is essential for the proper analytical interpretation of the experimental response, and it cannot be circumvented by an experimentally determined expression for the contact area as a function of depth. Current approaches quantify the indenter probe radii via inference from a series of indents on a material with known elastic modulus (e.g., fused quartz) or through the fitting of two-dimensional projected images acquired via atomic force microscopy (AFM) or scanning electron microscopy (SEM) images. Here, we propose a more robust methodology, based on concepts of differential geometry, for the accurate determination of three-dimensional indenter probe geometry. The methodology is presented and demonstrated for four conospherical indenters with probe radii of the order of 1-10 μm. The deviation of extracted radii with manufacturer specifications is emphasized and the limits of spherical approximations are presented. All four probes deviate from the assumed spherical geometry, such that the effective radii are not independent of distance from the probe apex. Significant errors in interpretation of material behaviour will result if this deviation is unaccounted for during the analysis of indentation load-depth responses obtained from material surfaces of interest, including observation of an artificial length scale that could be misinterpreted as an effect attributable to material length scales less than tens of nanometres in size or extent

  6. Umbilical cord length in singleton gestations: a Finnish population-based retrospective register study.

    Science.gov (United States)

    Georgiadis, L; Keski-Nisula, L; Harju, M; Räisänen, S; Georgiadis, S; Hannila, M-L; Heinonen, S

    2014-04-01

    Many complications of pregnancy and delivery are associated with umbilical cord length. It is important to examine the variation in length, in order to identify normal and abnormal conditions. Moreover, the factors influencing cord growth and development are not precisely known. The main objectives were to provide updated reference charts for umbilical cord length in singleton pregnancies and to evaluate potential factors affecting cord length. Birth register data of 47,284 singleton pregnant women delivering in Kuopio University Hospital, Finland was collected prospectively. Gender-specific centile charts for cord length from 22 to 44 gestational weeks were obtained using generalized additive models for location, scale, and shape (GAMLSS). Gestational, fetal, and maternal factors were studied for their potential influence on cord length with single variable analysis and stepwise multiple linear regression analysis. Cord length increased according to gestational age, while the growth decelerated post-term. Birth weight, placental weight, pregravid maternal body mass index, parity, and maternal age correlated to cord length. Gestational diabetes and previous miscarriages were associated with longer cords, while female gender and placental abruption were associated with shorter cords. Girls had shorter cords throughout gestation although there was substantial variation in length in both genders. Cord length associated significantly with birth weight, placental weight, and gestational age. Significantly shorter cords were found in women with placental abruption. This important finding requires further investigation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Do climate variables and human density affect Achatina fulica (Bowditch) (Gastropoda: Pulmonata) shell length, total weight and condition factor?

    Science.gov (United States)

    Albuquerque, F S; Peso-Aguiar, M C; Assunção-Albuquerque, M J T; Gálvez, L

    2009-08-01

    The length-weight relationship and condition factor have been broadly investigated in snails to obtain the index of physical condition of populations and evaluate habitat quality. Herein, our goal was to describe the best predictors that explain Achatina fulica biometrical parameters and well being in a recently introduced population. From November 2001 to November 2002, monthly snail samples were collected in Lauro de Freitas City, Bahia, Brazil. Shell length and total weight were measured in the laboratory and the potential curve and condition factor were calculated. Five environmental variables were considered: temperature range, mean temperature, humidity, precipitation and human density. Multiple regressions were used to generate models including multiple predictors, via model selection approach, and then ranked with AIC criteria. Partial regressions were used to obtain the separated coefficients of determination of climate and human density models. A total of 1.460 individuals were collected, presenting a shell length range between 4.8 to 102.5 mm (mean: 42.18 mm). The relationship between total length and total weight revealed that Achatina fulica presented a negative allometric growth. Simple regression indicated that humidity has a significant influence on A. fulica total length and weight. Temperature range was the main variable that influenced the condition factor. Multiple regressions showed that climatic and human variables explain a small proportion of the variance in shell length and total weight, but may explain up to 55.7% of the condition factor variance. Consequently, we believe that the well being and biometric parameters of A. fulica can be influenced by climatic and human density factors.

  8. Do climate variables and human density affect Achatina fulica (Bowditch (Gastropoda: Pulmonata shell length, total weight and condition factor?

    Directory of Open Access Journals (Sweden)

    FS. Albuquerque

    Full Text Available The length-weight relationship and condition factor have been broadly investigated in snails to obtain the index of physical condition of populations and evaluate habitat quality. Herein, our goal was to describe the best predictors that explain Achatina fulica biometrical parameters and well being in a recently introduced population. From November 2001 to November 2002, monthly snail samples were collected in Lauro de Freitas City, Bahia, Brazil. Shell length and total weight were measured in the laboratory and the potential curve and condition factor were calculated. Five environmental variables were considered: temperature range, mean temperature, humidity, precipitation and human density. Multiple regressions were used to generate models including multiple predictors, via model selection approach, and then ranked with AIC criteria. Partial regressions were used to obtain the separated coefficients of determination of climate and human density models. A total of 1.460 individuals were collected, presenting a shell length range between 4.8 to 102.5 mm (mean: 42.18 mm. The relationship between total length and total weight revealed that Achatina fulica presented a negative allometric growth. Simple regression indicated that humidity has a significant influence on A. fulica total length and weight. Temperature range was the main variable that influenced the condition factor. Multiple regressions showed that climatic and human variables explain a small proportion of the variance in shell length and total weight, but may explain up to 55.7% of the condition factor variance. Consequently, we believe that the well being and biometric parameters of A. fulica can be influenced by climatic and human density factors.

  9. Correlation of optical emission and turbulent length scale in a coaxial jet diffusion flame

    OpenAIRE

    松山, 新吾; Matsuyama, Shingo

    2014-01-01

    This article investigates the correlation between optical emission and turbulent length scale in a coaxial jet diffusion flame. To simulate the H2O emission from an H2/O2 diffusion flame, radiative transfer is calculated on flame data obtained by numerical simulation. H2O emission characteristics are examined for a one-dimensional opposed-flow diffusion flame. The results indicate that H2O emission intensity is linearly dependent on flame thickness. The simulation of H2O emission is then exte...

  10. Integrating experimental and simulation length and time scales in mechanistic studies of friction

    International Nuclear Information System (INIS)

    Sawyer, W G; Perry, S S; Phillpot, S R; Sinnott, S B

    2008-01-01

    Friction is ubiquitous in all aspects of everyday life and has consequently been under study for centuries. Classical theories of friction have been developed and used to successfully solve numerous tribological problems. However, modern applications that involve advanced materials operating under extreme environments can lead to situations where classical theories of friction are insufficient to describe the physical responses of sliding interfaces. Here, we review integrated experimental and computational studies of atomic-scale friction and wear at solid-solid interfaces across length and time scales. The influence of structural orientation in the case of carbon nanotube bundles, and molecular orientation in the case of polymer films of polytetrafluoroethylene and polyethylene, on friction and wear are discussed. In addition, while friction in solids is generally considered to be athermal, under certain conditions thermally activated friction is observed for polymers, carbon nanotubes and graphite. The conditions under which these transitions occur, and their proposed origins, are discussed. Lastly, a discussion of future directions is presented

  11. Morphological quantification of hierarchical geomaterials by X-ray nano-CT bridges the gap from nano to micro length scales

    KAUST Repository

    Brisard, S.; Chae, R. S.; Bihannic, I.; Michot, L.; Guttmann, P.; Thieme, J.; Schneider, G.; Monteiro, P. J. M.; Levitz, P.

    2012-01-01

    Morphological quantification of the complex structure of hierarchical geomaterials is of great relevance for Earth science and environmental engineering, among others. To date, methods that quantify the 3D morphology on length scales ranging from a

  12. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Javvaji, Brahmanandam [Indian Institute of Science, Department of Aerospace Engineering (India); Raha, S. [Indian Institute of Science, Department of Computational and Data Sciences (India); Mahapatra, D. Roy, E-mail: droymahapatra@aero.iisc.ernet.in [Indian Institute of Science, Department of Aerospace Engineering (India)

    2017-02-15

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  13. Length-weight relation and condition factor of @iPenaeus indicus@@ and @iMetapenaeus dobsoni@@ in the Cochin Backwater

    Digital Repository Service at National Institute of Oceanography (India)

    Devi, C.B.L.; Nair, K.K.C.; Balasubramanian, T.; Gopalakrishnan, T.C.; Aravindakshan, P.N.; Kutty, M.K.

    Length-weight relation and condition factor of @iPenaeus indicus@@ and @iMetapenaeus dobsoni@@ were estimated using samples from Cochin backwater. Statistical tests support the view that the length-weight exponent of these species may be species...

  14. Uncertainties in scaling factors for ab initio vibrational zero-point energies

    Science.gov (United States)

    Irikura, Karl K.; Johnson, Russell D.; Kacker, Raghu N.; Kessel, Rüdiger

    2009-03-01

    Vibrational zero-point energies (ZPEs) determined from ab initio calculations are often scaled by empirical factors. An empirical scaling factor partially compensates for the effects arising from vibrational anharmonicity and incomplete treatment of electron correlation. These effects are not random but are systematic. We report scaling factors for 32 combinations of theory and basis set, intended for predicting ZPEs from computed harmonic frequencies. An empirical scaling factor carries uncertainty. We quantify and report, for the first time, the uncertainties associated with scaling factors for ZPE. The uncertainties are larger than generally acknowledged; the scaling factors have only two significant digits. For example, the scaling factor for B3LYP/6-31G(d) is 0.9757±0.0224 (standard uncertainty). The uncertainties in the scaling factors lead to corresponding uncertainties in predicted ZPEs. The proposed method for quantifying the uncertainties associated with scaling factors is based upon the Guide to the Expression of Uncertainty in Measurement, published by the International Organization for Standardization. We also present a new reference set of 60 diatomic and 15 polyatomic "experimental" ZPEs that includes estimated uncertainties.

  15. Scale-relativistic cosmology

    International Nuclear Information System (INIS)

    Nottale, Laurent

    2003-01-01

    The principle of relativity, when it is applied to scale transformations, leads to the suggestion of a generalization of fundamental dilations laws. These new special scale-relativistic resolution transformations involve log-Lorentz factors and lead to the occurrence of a minimal and of a maximal length-scale in nature, which are invariant under dilations. The minimal length-scale, that replaces the zero from the viewpoint of its physical properties, is identified with the Planck length l P , and the maximal scale, that replaces infinity, is identified with the cosmic scale L=Λ -1/2 , where Λ is the cosmological constant.The new interpretation of the Planck scale has several implications for the structure and history of the early Universe: we consider the questions of the origin, of the status of physical laws at very early times, of the horizon/causality problem and of fluctuations at recombination epoch.The new interpretation of the cosmic scale has consequences for our knowledge of the present universe, concerning in particular Mach's principle, the large number coincidence, the problem of the vacuum energy density, the nature and the value of the cosmological constant. The value (theoretically predicted ten years ago) of the scaled cosmological constant Ω Λ =0.75+/-0.15 is now supported by several different experiments (Hubble diagram of Supernovae, Boomerang measurements, gravitational lensing by clusters of galaxies).The scale-relativity framework also allows one to suggest a solution to the missing mass problem, and to make theoretical predictions of fundamental energy scales, thanks to the interpretation of new structures in scale space: fractal/classical transitions as Compton lengths, mass-coupling relations and critical value 4π 2 of inverse couplings. Among them, we find a structure at 3.27+/-0.26x10 20 eV, which agrees closely with the observed highest energy cosmic rays at 3.2+/-0.9x10 20 eV, and another at 5.3x10 -3 eV, which corresponds to the

  16. Characterization of long-scale-length plasmas produced from plastic foam targets for laser plasma instability (LPI) research

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.

    2017-10-01

    We report on an experimental effort to produce plasmas with long scale lengths for the study of parametric instabilities, such as two plasmon decay (TPD) and stimulated Raman scattering (SRS), under conditions relevant to fusion plasma. In the current experiment, plasmas are formed from low density (10-100 mg/cc) CH foam targets irradiated by Nike krypton fluoride laser pulses (λ = 248 nm, 1 nsec FWHM) with energies up to 1 kJ. This experiment is conducted with two primary diagnostics: the grid image refractometer (Nike-GIR) to measure electron density and temperature profiles of the coronas, and time-resolved spectrometers with absolute intensity calibration to examine scattered light features of TPD or SRS. Nike-GIR was recently upgraded with a 5th harmonic probe laser (λ = 213 nm) to access plasma regions near quarter critical density of 248 nm light (4.5 ×1021 cm-3). The results will be discussed with data obtained from 120 μm scale-length plasmas created on solid CH targets in previous LPI experiments at Nike. Work supported by DoE/NNSA.

  17. Beam displacement as a function of temperature and turbulence length scale at two different laser radiation wavelengths.

    Science.gov (United States)

    Isterling, William M; Dally, Bassam B; Alwahabi, Zeyad T; Dubovinsky, Miro; Wright, Daniel

    2012-01-01

    Narrow laser beams directed from aircraft may at times pass through the exhaust plume of the engines and potentially degrade some of the laser beam characteristics. This paper reports on controlled studies of laser beam deviation arising from propagation through turbulent hot gases, in a well-characterized laboratory burner, with conditions of relevance to aircraft engine exhaust plumes. The impact of the temperature, laser wavelength, and turbulence length scale on the beam deviation has been investigated. It was found that the laser beam displacement increases with the turbulent integral length scale. The effect of temperature on the laser beam angular deviation, σ, using two different laser wavelengths, namely 4.67 μm and 632.8 nm, was recorded. It was found that the beam deviation for both wavelengths may be semiempirically modeled using a single function of the form, σ=a(b+(1/T)(2))(-1), with two parameters only, a and b, where σ is in microradians and T is the temperature in °C. © 2012 Optical Society of America

  18. Physics on smallest scales. An introduction to minimal length phenomenology

    International Nuclear Information System (INIS)

    Sprenger, Martin; Goethe Univ., Frankfurt am Main; Nicolini, Piero; Bleicher, Marcus

    2012-02-01

    Many modern theories which try to unite gravity with the Standard Model of particle physics, as e.g. string theory, propose two key modifications to the commonly known physical theories: - the existence of additional space dimensions - the existence of a minimal length distance or maximal resolution. While extra dimensions have received a wide coverage in publications over the last ten years (especially due to the prediction of micro black hole production at the LHC), the phenomenology of models with a minimal length is still less investigated. In a summer study project for bachelor students in 2010 we have explored some phenomenological implications of the potential existence of a minimal length. In this paper we review the idea and formalism of a quantum gravity induced minimal length in the generalised uncertainty principle framework as well as in the coherent state approach to non- commutative geometry. These approaches are effective models which can make model-independent predictions for experiments and are ideally suited for phenomenological studies. Pedagogical examples are provided to grasp the effects of a quantum gravity induced minimal length. (orig.)

  19. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    Science.gov (United States)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  20. Dither Gyro Scale Factor Calibration: GOES-16 Flight Experience

    Science.gov (United States)

    Reth, Alan D.; Freesland, Douglas C.; Krimchansky, Alexander

    2018-01-01

    This poster is a sequel to a paper presented at the 34th Annual AAS Guidance and Control Conference in 2011, which first introduced dither-based calibration of gyro scale factors. The dither approach uses very small excitations, avoiding the need to take instruments offline during gyro scale factor calibration. In 2017, the dither calibration technique was successfully used to estimate gyro scale factors on the GOES-16 satellite. On-orbit dither calibration results were compared to more traditional methods using large angle spacecraft slews about each gyro axis, requiring interruption of science. The results demonstrate that the dither technique can estimate gyro scale factors to better than 2000 ppm during normal science observations.

  1. Sensitivity of the two-dimensional shearless mixing layer to the initial turbulent kinetic energy and integral length scale

    Science.gov (United States)

    Fathali, M.; Deshiri, M. Khoshnami

    2016-04-01

    The shearless mixing layer is generated from the interaction of two homogeneous isotropic turbulence (HIT) fields with different integral scales ℓ1 and ℓ2 and different turbulent kinetic energies E1 and E2. In this study, the sensitivity of temporal evolutions of two-dimensional, incompressible shearless mixing layers to the parametric variations of ℓ1/ℓ2 and E1/E2 is investigated. The sensitivity methodology is based on the nonintrusive approach; using direct numerical simulation and generalized polynomial chaos expansion. The analysis is carried out at Reℓ 1=90 for the high-energy HIT region and different integral length scale ratios 1 /4 ≤ℓ1/ℓ2≤4 and turbulent kinetic energy ratios 1 ≤E1/E2≤30 . It is found that the most influential parameter on the variability of the mixing layer evolution is the turbulent kinetic energy while variations of the integral length scale show a negligible influence on the flow field variability. A significant level of anisotropy and intermittency is observed in both large and small scales. In particular, it is found that large scales have higher levels of intermittency and sensitivity to the variations of ℓ1/ℓ2 and E1/E2 compared to the small scales. Reconstructed response surfaces of the flow field intermittency and the turbulent penetration depth show monotonic dependence on ℓ1/ℓ2 and E1/E2 . The mixing layer growth rate and the mixing efficiency both show sensitive dependence on the initial condition parameters. However, the probability density function of these quantities shows relatively small solution variations in response to the variations of the initial condition parameters.

  2. ESTIMATION OF YELLOWFIN TUNA PRODUCTION LANDED IN BENOA PORT WITH WEIGHT-WEIGHT, LENGTH-WEIGHT RELATIONSHIPS AND CONDITION FACTOR APPROACHES

    Directory of Open Access Journals (Sweden)

    Irwan Jatmiko

    2017-01-01

    Full Text Available Yellowfin tuna (Thunnus albacares is one of the important catch for the fishing industry in Indonesia. Length-weight relationship study is one of important tools to support fisheries management. However it could not be done to yellowfin tuna landed in Benoa port since they are in the form of gilled-gutted condition. The objectives of this study are to determine the relationship between gilled-gutted weight (GW and whole weight (WW, to calculate length weight relationship between fork length (FL and estimated whole weight (WW and to assess the relative condition factor (Kn of yellowfin tuna in Eastern Indian Ocean. Data were collected from three landing sites i.e. Malang, East Java; Benoa, Bali and Kupang, East Nusa Tenggara from January 2013 to February 2014. Linear regression analysis applied to test the significance baseline between weight-weight relationships and log transformed length weight relationship. Relative condition factor (Kn used to identify fish condition among length groups and months. The results showed a significant positive linear relationships between whole weight (WW and gilled-gutted weight (GW of T. albacares (p<0.001. There was a significant positive linier relationships between log transformed fork length and log transformed whole weight of T. albacares (p<0.001. Relative condition factor (Kn showed declining pattern along with length increase and varied among months. The findings from this study provide data for management of yellowfin tuna stock and population.

  3. Length-weight and length-length relationships of common carp (Cyprinus carpio L.) in the middle and southern Iraq provinces

    Science.gov (United States)

    Al-jebory, Taymaa A.; Das, Simon K.; Usup, Gires; Bakar, Y.; Al-saadi, Ali H.

    2018-04-01

    In this study, length-weight and length-length relationships of common carp (Cyprinus carpio L.) in the middle and southern Iraq provinces were determined. Fish specimens were procured from seven provinces from July to December, 2015. A negative and positive allometric growth pattern was obtained, where the total length (TL) ranged from 25.60 cm to 33.53 cm, and body weight (BW) ranged from 700 g to 1423 g. Meanwhile, the lowest of 1.03 and highest of 3.54 in "b" value was recorded in group F and group C, respectively. Therefore, Fulton condition factor (K) range from 2.57 to 4.94. While, relative condition factor (Kn) was in the ranged of 0.95 to 1.01. A linear relationship between total length (TL) and standard length (SL) among the provinces for fish groups was obtained. The variances in "b" value ranged from 0.10 to 0.93 with correlation coefficient (r2) of 0.02 to 0.97. This research could be used as a guide to study the ecology and biology of common Carp (Cyprinus carpio L.) in the middle and southern Iraq provinces.

  4. Accurate switching intensities and length scales in quasi-phase-matched materials

    DEFF Research Database (Denmark)

    Bang, Ole; Graversen, Torben Winther; Corney, Joel Frederick

    2001-01-01

    We consider unseeded typeI second-harmonic generation in quasi-phase-matched quadratic nonlinear materials and derive an accurate analytical expression for the evolution of the average intensity. The intensity- dependent nonlinear phase mismatch that is due to the cubic nonlinearity induced...... by quasi phase matching is found. The equivalent formula for the intensity of maximum conversion, the crossing of which changes the one-period nonlinear phase shift of the fundamental abruptly by p , corrects earlier estimates [Opt.Lett. 23, 506 (1998)] by a factor of 5.3. We find the crystal lengths...... that are necessary to obtain an optimal flat phase versus intensity response on either side of this separatrix intensity....

  5. Factors affecting length of hospital stay for people with spinal cord injuries at Kanombe military hospital, Rwanda

    Directory of Open Access Journals (Sweden)

    PB Bwanjugu

    2012-12-01

    Full Text Available In patients with spinal cord injuries increased length ofhospital stay is often as a result of secondary complications such as pressuresores, urinary tract infection and respiratory infection. An increased lengthof hospital stay was observed at Kanombe Military Hospital in Rwanda.The aim of this study was to determine specific factors affecting length ofhospital stay for individuals with spinal cord injuries at Kanombe MilitaryHospital in Rwanda. The records of 124 individuals with spinal cordinjuries who were discharged from the hospital between 1st January1996and 31st December 2007 were reviewed to collect data. Information collected and captured on a data gathering sheetincluded demographic data, information relating to the injury, occurrence of medical complications and length ofhospital stay. Linear regression analysis was computed in SPSS to determine factors affecting the length of stay.The necessary ethical considerations were adhered to during the implementation of the study. Current employmentstatus and the occurrence of pressure sores were significantly associated with the length of hospital stay (p=0.021 andp=0.000 respectively. A strong relationship was noted between pressure sores and length of stay (R= 0.703. There is aneed for all members of the rehabilitation team to devise and implement effective measures to prevent the developmentof pressure sores, in patients with spinal cord injuries in the study setting.

  6. Quantifying Contributions to Transport in Ionic Polymers Across Multiple Length Scales

    Science.gov (United States)

    Madsen, Louis

    Self-organized polymer membranes conduct mobile species (ions, water, alcohols, etc.) according to a hierarchy of structural motifs that span sub-nm to >10 μm in length scale. In order to comprehensively understand such materials, our group combines multiple types of NMR dynamics and transport measurements (spectroscopy, diffusometry, relaxometry, imaging) with structural information from scattering and microscopy as well as with theories of porous media,1 electrolytic transport, and oriented matter.2 In this presentation, I will discuss quantitative separation of the phenomena that govern transport in polymer membranes, from intermolecular interactions (<= 2 nm),3 to locally ordered polymer nanochannels (a few to 10s of nm),2 to larger polymer domain structures (10s of nm and larger).1 Using this multi-scale information, we seek to give informed feedback on the design of polymer membranes for use in, e . g . , efficient batteries, fuel cells, and mechanical actuators. References: [1] J. Hou, J. Li, D. Mountz, M. Hull, and L. A. Madsen. Journal of Membrane Science448, 292-298 (2013). [2] J. Li, J. K. Park, R. B. Moore, and L. A. Madsen. Nature Materials 10, 507-511 (2011). [3] M. D. Lingwood, Z. Zhang, B. E. Kidd, K. B. McCreary, J. Hou, and L. A. Madsen. Chemical Communications 49, 4283 - 4285 (2013).

  7. Characteristic Length Scales in Fracture Networks: Hydraulic Connectivity through Periodic Hydraulic Tests

    Science.gov (United States)

    Becker, M.; Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Cole, M. C.; Guiheneuf, N.

    2017-12-01

    Determining hydraulic and transport connectivity in fractured bedrock has long been an important objective in contaminant hydrogeology, petroleum engineering, and geothermal operations. A persistent obstacle to making this determination is that the characteristic length scale is nearly impossible to determine in sparsely fractured networks. Both flow and transport occur through an unknown structure of interconnected fracture and/or fracture zones making the actual length that water or solutes travel undetermined. This poses difficulties for flow and transport models. For, example, hydraulic equations require a separation distance between pumping and observation well to determine hydraulic parameters. When wells pairs are close, the structure of the network can influence the interpretation of well separation and the flow dimension of the tested system. This issue is explored using hydraulic tests conducted in a shallow fractured crystalline rock. Periodic (oscillatory) slug tests were performed at the Ploemeur fractured rock test site located in Brittany, France. Hydraulic connectivity was examined between three zones in one well and four zones in another, located 6 m apart in map view. The wells are sufficiently close, however, that the tangential distance between the tested zones ranges between 6 and 30 m. Using standard periodic formulations of radial flow, estimates of storativity scale inversely with the square of the separation distance and hydraulic diffusivity directly with the square of the separation distance. Uncertainty in the connection paths between the two wells leads to an order of magnitude uncertainty in estimates of storativity and hydraulic diffusivity, although estimates of transmissivity are unaffected. The assumed flow dimension results in alternative estimates of hydraulic parameters. In general, one is faced with the prospect of assuming the hydraulic parameter and inverting the separation distance, or vice versa. Similar uncertainties exist

  8. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mehralian, Fahimeh [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Tadi Beni, Yaghoub, E-mail: tadi@eng.sku.ac.ir [Faculty of Engineering, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Karimi Zeverdejani, Mehran [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of)

    2017-06-01

    Featured by two small length scale parameters, nonlocal strain gradient theory is utilized to investigate the free vibration of nanotubes. A new size-dependent shell model formulation is developed by using the first order shear deformation theory. The governing equations and boundary conditions are obtained using Hamilton's principle and solved for simply supported boundary condition. As main purpose of this study, since the values of two small length scale parameters are still unknown, they are calibrated by the means of molecular dynamics simulations (MDs). Then, the influences of different parameters such as nonlocal parameter, scale factor, length and thickness on vibration characteristics of nanotubes are studied. It is also shown that increase in thickness and decrease in length parameters intensify the effect of nonlocal parameter and scale factor.

  9. Length-Scale-Dependent Phase Transformation of LiFePO4 : An In situ and Operando Study Using Micro-Raman Spectroscopy and XRD.

    Science.gov (United States)

    Siddique, N A; Salehi, Amir; Wei, Zi; Liu, Dong; Sajjad, Syed D; Liu, Fuqiang

    2015-08-03

    The charge and discharge of lithium ion batteries are often accompanied by electrochemically driven phase-transformation processes. In this work, two in situ and operando methods, that is, micro-Raman spectroscopy and X-ray diffraction (XRD), have been combined to study the phase-transformation process in LiFePO4 at two distinct length scales, namely, particle-level scale (∼1 μm) and macroscopic scale (∼several cm). In situ Raman studies revealed a discrete mode of phase transformation at the particle level. Besides, the preferred electrochemical transport network, particularly the carbon content, was found to govern the sequence of phase transformation among particles. In contrast, at the macroscopic level, studies conducted at four different discharge rates showed a continuous but delayed phase transformation. These findings uncovered the intricate phase transformation in LiFePO4 and potentially offer valuable insights into optimizing the length-scale-dependent properties of battery materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Does length or neighborhood size cause the word length effect?

    Science.gov (United States)

    Jalbert, Annie; Neath, Ian; Surprenant, Aimée M

    2011-10-01

    Jalbert, Neath, Bireta, and Surprenant (2011) suggested that past demonstrations of the word length effect, the finding that words with fewer syllables are recalled better than words with more syllables, included a confound: The short words had more orthographic neighbors than the long words. The experiments reported here test two predictions that would follow if neighborhood size is a more important factor than word length. In Experiment 1, we found that concurrent articulation removed the effect of neighborhood size, just as it removes the effect of word length. Experiment 2 demonstrated that this pattern is also found with nonwords. For Experiment 3, we factorially manipulated length and neighborhood size, and found only effects of the latter. These results are problematic for any theory of memory that includes decay offset by rehearsal, but they are consistent with accounts that include a redintegrative stage that is susceptible to disruption by noise. The results also confirm the importance of lexical and linguistic factors on memory tasks thought to tap short-term memory.

  11. Brief communication: Possible explanation of the values of Hack's drainage basin, river length scaling exponent

    Science.gov (United States)

    Hunt, Allen G.

    2016-04-01

    Percolation theory can be used to find water flow paths of least resistance. Application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law may allow interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  12. Influence of hydration and experimental length scale on themechanical response of human skin in vivo, using optical coherence tomography

    NARCIS (Netherlands)

    Hendriks, F.M.; Brokken, D.; Oomens, C.W.J.; Baaijens, F.P.T.

    2004-01-01

    Human skin is a complex tissue consisting of different layers. To gain better insight into the mechanical behaviour of different skin layers, the mechanical response was studied with experiments of various length scales. Also, the influence of (superficial) hydration on the mechanical response is

  13. PIV measurements of the turbulence integral length scale on cold combustion flow field of tangential firing boiler

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wen-fei; Xie, Jing-xing; Gong, Zhi-jun; Li, Bao-wei [Inner Mongolia Univ. of Science and Technology, Baotou (China). Inner Mongolia Key Lab. for Utilization of Bayan Obo Multi-Metallic Resources: Elected State Key Lab.

    2013-07-01

    The process of the pulverized coal combustion in tangential firing boiler has prominent significance on improving boiler operation efficiency and reducing NO{sub X} emission. This paper aims at researching complex turbulent vortex coherent structure formed by the four corners jets in the burner zone, a cold experimental model of tangential firing boiler has been built. And by employing spatial correlation analysis method and PIV (Particle Image Velocimetry) technique, the law of Vortex scale distribution on the three typical horizontal layers of the model based on the turbulent Integral Length Scale (ILS) has been researched. According to the correlation analysis of ILS and the temporal average velocity, it can be seen that the turbulent vortex scale distribution in the burner zone of the model is affected by both jet velocity and the position of wind layers, and is not linear with the variation of jet velocity. The vortex scale distribution of the upper primary air is significantly different from the others. Therefore, studying the ILS of turbulent vortex integral scale is instructive to high efficiency cleaning combustion of pulverized coal in theory.

  14. A scale invariance criterion for LES parametrizations

    Directory of Open Access Journals (Sweden)

    Urs Schaefer-Rolffs

    2015-01-01

    Full Text Available Turbulent kinetic energy cascades in fluid dynamical systems are usually characterized by scale invariance. However, representations of subgrid scales in large eddy simulations do not necessarily fulfill this constraint. So far, scale invariance has been considered in the context of isotropic, incompressible, and three-dimensional turbulence. In the present paper, the theory is extended to compressible flows that obey the hydrostatic approximation, as well as to corresponding subgrid-scale parametrizations. A criterion is presented to check if the symmetries of the governing equations are correctly translated into the equations used in numerical models. By applying scaling transformations to the model equations, relations between the scaling factors are obtained by demanding that the mathematical structure of the equations does not change.The criterion is validated by recovering the breakdown of scale invariance in the classical Smagorinsky model and confirming scale invariance for the Dynamic Smagorinsky Model. The criterion also shows that the compressible continuity equation is intrinsically scale-invariant. The criterion also proves that a scale-invariant turbulent kinetic energy equation or a scale-invariant equation of motion for a passive tracer is obtained only with a dynamic mixing length. For large-scale atmospheric flows governed by the hydrostatic balance the energy cascade is due to horizontal advection and the vertical length scale exhibits a scaling behaviour that is different from that derived for horizontal length scales.

  15. Modified forest rotation lengths: Long-term effects on landscape-scale habitat availability for specialized species.

    Science.gov (United States)

    Roberge, Jean-Michel; Öhman, Karin; Lämås, Tomas; Felton, Adam; Ranius, Thomas; Lundmark, Tomas; Nordin, Annika

    2018-03-15

    We evaluated the long-term implications from modifying rotation lengths in production forests for four forest-reliant species with different habitat requirements. By combining simulations of forest development with habitat models, and accounting both for stand and landscape scale influences, we projected habitat availability over 150 years in a large Swedish landscape, using rotation lengths which are longer (+22% and +50%) and shorter (-22%) compared to current practices. In terms of mean habitat availability through time, species requiring older forest were affected positively by extended rotations, and negatively by shortened rotations. For example, the mean habitat area for the treecreeper Certhia familiaris (a bird preferring forest with larger trees) increased by 31% when rotations were increased by 22%, at a 5% cost to net present value (NPV) and a 7% decrease in harvested volume. Extending rotation lengths by 50% provided more habitat for this species compared to a 22% extension, but at a much higher marginal cost. In contrast, the beetle Hadreule elongatula, which is dependent on sun-exposed dead wood, benefited from shortened rather than prolonged rotations. Due to an uneven distribution of stand-ages within the landscape, the relative amounts of habitat provided by different rotation length scenarios for a given species were not always consistent through time during the simulation period. If implemented as a conservation measure, prolonging rotations will require long-term strategic planning to avoid future bottlenecks in habitat availability, and will need to be accompanied by complementary measures accounting for the diversity of habitats necessary for the conservation of forest biodiversity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Scale factor measure method without turntable for angular rate gyroscope

    Science.gov (United States)

    Qi, Fangyi; Han, Xuefei; Yao, Yanqing; Xiong, Yuting; Huang, Yuqiong; Wang, Hua

    2018-03-01

    In this paper, a scale factor test method without turntable is originally designed for the angular rate gyroscope. A test system which consists of test device, data acquisition circuit and data processing software based on Labview platform is designed. Taking advantage of gyroscope's sensitivity of angular rate, a gyroscope with known scale factor, serves as a standard gyroscope. The standard gyroscope is installed on the test device together with a measured gyroscope. By shaking the test device around its edge which is parallel to the input axis of gyroscope, the scale factor of the measured gyroscope can be obtained in real time by the data processing software. This test method is fast. It helps test system miniaturized, easy to carry or move. Measure quarts MEMS gyroscope's scale factor multi-times by this method, the difference is less than 0.2%. Compare with testing by turntable, the scale factor difference is less than 1%. The accuracy and repeatability of the test system seems good.

  17. Early life adversity and telomere length: a meta-analysis.

    Science.gov (United States)

    Ridout, K K; Levandowski, M; Ridout, S J; Gantz, L; Goonan, K; Palermo, D; Price, L H; Tyrka, A R

    2018-04-01

    Early adversity, in the form of abuse, neglect, socioeconomic status and other adverse experiences, is associated with poor physical and mental health outcomes. To understand the biologic mechanisms underlying these associations, studies have evaluated the relationship between early adversity and telomere length, a marker of cellular senescence. Such results have varied in regard to the size and significance of this relationship. Using meta-analytic techniques, we aimed to clarify the relationship between early adversity and telomere length while exploring factors affecting the association, including adversity type, timing and study design. A comprehensive search in July 2016 of PubMed/MEDLINE, PsycINFO and Web of Science identified 2462 studies. Multiple reviewers appraised studies for inclusion or exclusion using a priori criteria; 3.9% met inclusion criteria. Data were extracted into a structured form; the Newcastle-Ottawa Scale assessed study quality, validity and bias. Forty-one studies (N=30 773) met inclusion criteria. Early adversity and telomere length were significantly associated (Cohen's d effect size=-0.35; 95% CI, -0.46 to -0.24; P<0.0001). Sensitivity analyses revealed no outlier effects. Adversity type and timing significantly impacted the association with telomere length (P<0.0001 and P=0.0025, respectively). Subgroup and meta-regression analyses revealed that medication use, medical or psychiatric conditions, case-control vs longitudinal study design, methodological factors, age and smoking significantly affected the relationship. Comprehensive evaluations of adversity demonstrated more extensive telomere length changes. These results suggest that early adversity may have long-lasting physiological consequences contributing to disease risk and biological aging.

  18. Morphological observation and length-weight relationship of critically endangered riverine catfish Rita rita (Hamilton).

    Science.gov (United States)

    Amin, M R; Mollah, M F A; Taslima, K; Muhammadullah

    2014-01-15

    The experiment was conducted to investigate the morphological status of the critically endangered riverine catfish Rita rita using morphometric and meristic traits. About 158 species of Rita were collected from the old Brahmaputra river in Mymensingh district and were studied in the laboratory of the Fisheries Biology and Genetics Department, Bangladesh Agricultural University. Measurement of length and weight of Rita were recorded by using measuring scale and electric balance respectively. Significant curvilinear relationship existed between total length and other morphometric characters and between head length and other characters of the head. Relationships between total length and various body measurements of the fish were highly significant (p < 0.01) except the relationship between total length and pelvic fin length of male fish (p < 0.05). In case of meristic characters-dorsal fin rays, pelvic fin rays, pectoral fin rays, anal fin rays, caudal fin rays, number of vertebrae and branchiostegal rays were found to be more or less similar except slight differences. The values of condition factors (k) in the total length body-weight relationships for female and male were found to be 0.41 and 0.38, respectively. The mean values of relative condition factors (kn) were 1.0 and 1.005 for female and male, respectively.

  19. Race, Ethnicity, Psychosocial Factors, and Telomere Length in a Multicenter Setting.

    Directory of Open Access Journals (Sweden)

    Shannon M Lynch

    Full Text Available Leukocyte telomere length(LTL has been associated with age, self-reported race/ethnicity, gender, education, and psychosocial factors, including perceived stress, and depression. However, inconsistencies in associations of LTL with disease and other phenotypes exist across studies. Population characteristics, including race/ethnicity, laboratory methods, and statistical approaches in LTL have not been comprehensively studied and could explain inconsistent LTL associations.LTL was measured using Southern Blot in 1510 participants from a multi-ethnic, multi-center study combining data from 3 centers with different population characteristics and laboratory processing methods. Main associations between LTL and psychosocial factors and LTL and race/ethnicity were evaluated and then compared across generalized estimating equations(GEE and linear regression models. Statistical models were adjusted for factors typically associated with LTL(age, gender, cancer status and also accounted for factors related to center differences, including laboratory methods(i.e., DNA extraction. Associations between LTL and psychosocial factors were also evaluated within race/ethnicity subgroups (Non-hispanic Whites, African Americans, and Hispanics.Beyond adjustment for age, gender, and cancer status, additional adjustments for DNA extraction and clustering by center were needed given their effects on LTL measurements. In adjusted GEE models, longer LTL was associated with African American race (Beta(β(standard error(SE = 0.09(0.04, p-value = 0.04 and Hispanic ethnicity (β(SE = 0.06(0.01, p-value = 0.02 compared to Non-Hispanic Whites. Longer LTL was also associated with less than a high school education compared to having greater than a high school education (β(SE = 0.06(0.02, p-value = 0.04. LTL was inversely related to perceived stress (β(SE = -0.02(0.003, p<0.001. In subgroup analyses, there was a negative association with LTL in African Americans with a high

  20. Stability and dewetting of metal nanoparticle filled thin polymer films: control of instability length scale and dynamics.

    Science.gov (United States)

    Mukherjee, Rabibrata; Das, Soma; Das, Anindya; Sharma, Satinder K; Raychaudhuri, Arup K; Sharma, Ashutosh

    2010-07-27

    We investigate the influence of gold nanoparticle addition on the stability, dewetting, and pattern formation in ultrathin polymer-nanoparticle (NP) composite films by examining the length and time scales of instability, morphology, and dynamics of dewetting. For these 10-50 nm thick (h) polystyrene (PS) thin films containing uncapped gold nanoparticles (diameter approximately 3-4 nm), transitions from complete dewetting to arrested dewetting to absolute stability were observed depending on the concentration of the particles. Experiments show the existence of three distinct stability regimes: regime 1, complete dewetting leading to droplet formation for nanoparticle concentration of 2% (w/w) or below; regime 2, partial dewetting leading to formation of arrested holes for NP concentrations in the range of 3-6%; and regime 3, complete inhibition of dewetting for NP concentrations of 7% and above. Major results are (a) length scale of instability, where lambdaH approximately hn remains unchanged with NP concentration in regime 1 (n approximately 2) but increases in regime 2 with a change in the scaling relation (n approximately 3-3.5); (b) dynamics of instability and dewetting becomes progressively sluggish with an increase in the NP concentration; (c) there are distinct regimes of dewetting velocity at low NP concentrations; (d) force modulation AFM, as well as micro-Raman analysis, shows phase separation and aggregation of the gold nanoparticles within each dewetted polymer droplet leading to the formation of a metal core-polymer shell morphology. The polymer shell could be removed by washing in a selective solvent, thus exposing an array of bare gold nanoparticle aggregates.

  1. Zen meditation, Length of Telomeres, and the Role of Experiential Avoidance and Compassion.

    Science.gov (United States)

    Alda, Marta; Puebla-Guedea, Marta; Rodero, Baltasar; Demarzo, Marcelo; Montero-Marin, Jesus; Roca, Miquel; Garcia-Campayo, Javier

    Mindfulness refers to an awareness that emerges by intentionally focusing on the present experience in a nonjudgmental or evaluative manner. Evidence regarding its efficacy has been increasing exponentially, and recent research suggests that the practice of meditation is associated with longer leukocyte telomere length. However, the psychological mechanisms underlying this potential relationship are unknown. We examined the telomere lengths of a group of 20 Zen meditation experts and another 20 healthy matched comparison participants who had not previously meditated. We also measured multiple psychological variables related to meditation practice. Genomic DNA was extracted for telomere measurement using a Life Length proprietary program. High-throughput quantitative fluorescence in situ hybridization (HT-Q-FISH) was used to measure the telomere length distribution and the median telomere length (MTL). The meditators group had a longer MTL ( p  = 0.005) and a lower percentage of short telomeres in individual cells ( p  = 0.007) than those in the comparison group. To determine which of the psychological variables contributed more to telomere maintenance, two regression analyses were conducted. In the first model, which applied to the MTL, the following three factors were significant: age, absence of experiential avoidance, and Common Humanity subscale of the Self Compassion Scale. Similarly, in the model that examined the percentage of short telomeres, the same factors were significant: age, absence of experiential avoidance, and Common Humanity subscale of the Self Compassion Scale. Although limited by a small sample size, these results suggest that the absence of experiential avoidance of negative emotions and thoughts is integral to the connection between meditation and telomeres.

  2. Zebrafish brain mapping--standardized spaces, length scales, and the power of N and n.

    Science.gov (United States)

    Hunter, Paul R; Hendry, Aenea C; Lowe, Andrew S

    2015-06-01

    Mapping anatomical and functional parameters of the zebrafish brain is moving apace. Research communities undertaking such studies are becoming ever larger and more diverse. The unique features, tools, and technologies associated with zebrafish are propelling them as the 21st century model organism for brain mapping. Uniquely positioned as a vertebrate model system, the zebrafish enables imaging of anatomy and function at different length scales from intraneuronal compartments to sparsely distributed whole brain patterns. With a variety of diverse and established statistical modeling and analytic methods available from the wider brain mapping communities, the richness of zebrafish neuroimaging data is being realized. The statistical power of population observations (N) within and across many samples (n) projected onto a standardized space will provide vast databases for data-driven biological approaches. This article reviews key brain mapping initiatives at different levels of scale that highlight the potential of zebrafish brain mapping. By way of introduction to the next wave of brain mappers, an accessible introduction to the key concepts and caveats associated with neuroimaging are outlined and discussed. © 2014 Wiley Periodicals, Inc.

  3. Zero-point length from string fluctuations

    International Nuclear Information System (INIS)

    Fontanini, Michele; Spallucci, Euro; Padmanabhan, T.

    2006-01-01

    One of the leading candidates for quantum gravity, viz. string theory, has the following features incorporated in it. (i) The full spacetime is higher-dimensional, with (possibly) compact extra-dimensions; (ii) there is a natural minimal length below which the concept of continuum spacetime needs to be modified by some deeper concept. On the other hand, the existence of a minimal length (zero-point length) in four-dimensional spacetime, with obvious implications as UV regulator, has been often conjectured as a natural aftermath of any correct quantum theory of gravity. We show that one can incorporate the apparently unrelated pieces of information-zero-point length, extra-dimensions, string T-duality-in a consistent framework. This is done in terms of a modified Kaluza-Klein theory that interpolates between (high-energy) string theory and (low-energy) quantum field theory. In this model, the zero-point length in four dimensions is a 'virtual memory' of the length scale of compact extra-dimensions. Such a scale turns out to be determined by T-duality inherited from the underlying fundamental string theory. From a low energy perspective short distance infinities are cutoff by a minimal length which is proportional to the square root of the string slope, i.e., α ' . Thus, we bridge the gap between the string theory domain and the low energy arena of point-particle quantum field theory

  4. Development of a scanning tunneling potentiometry system for measurement of electronic transport at short length scales

    Science.gov (United States)

    Rozler, Michael

    It is clear that complete understanding of macroscopic properties of materials is impossible without a thorough knowledge of behavior at the smallest length scales. While the past 25 years have witnessed major advances in a variety of techniques that probe the nanoscale properties of matter, electrical transport measurements -- the heart of condensed matter research -- have lagged behind, never progressing beyond bulk measurements. This thesis describes a scanning tunneling potentiometry (STP) system developed to simultaneously map the transport-related electrochemical potential distribution of a biased sample along with its surface topography, extending electronic transport measurements to the nanoscale. Combining a novel sample biasing technique with a continuous current-nulling feedback scheme pushes the noise performance of the measurement to its fundamental limit - the Johnson noise of the STM tunnel junction. The resulting 130 nV voltage sensitivity allows us to spatially resolve local potentials at scales down to 2 nm, while maintaining atomic scale STM imaging, all at scan sizes of up to 15 microns. A mm-range two-dimensional coarse positioning stage and the ability to operate from liquid helium to room temperature with a fast turn-around time greatly expand the versatility of the instrument. Use of carefully selected model materials, combined with excellent topographic and voltage resolution has allowed us to distinguish measurement artifacts caused by surface roughness from true potentiometric features, a major problem in previous STP measurements. The measurements demonstrate that STP can produce physically meaningful results for homogeneous transport as well as non-uniform conduction dominated by material microstructures. Measurements of several physically interesting materials systems are presented as well, revealing new behaviors at the smallest length sales. The results establish scanning tunneling potentiometry as a useful tool for physics and

  5. Scaling Effects on Materials Tribology: From Macro to Micro Scale.

    Science.gov (United States)

    Stoyanov, Pantcho; Chromik, Richard R

    2017-05-18

    The tribological study of materials inherently involves the interaction of surface asperities at the micro to nanoscopic length scales. This is the case for large scale engineering applications with sliding contacts, where the real area of contact is made up of small contacting asperities that make up only a fraction of the apparent area of contact. This is why researchers have sought to create idealized experiments of single asperity contacts in the field of nanotribology. At the same time, small scale engineering structures known as micro- and nano-electromechanical systems (MEMS and NEMS) have been developed, where the apparent area of contact approaches the length scale of the asperities, meaning the real area of contact for these devices may be only a few asperities. This is essentially the field of microtribology, where the contact size and/or forces involved have pushed the nature of the interaction between two surfaces towards the regime where the scale of the interaction approaches that of the natural length scale of the features on the surface. This paper provides a review of microtribology with the purpose to understand how tribological processes are different at the smaller length scales compared to macrotribology. Studies of the interfacial phenomena at the macroscopic length scales (e.g., using in situ tribometry) will be discussed and correlated with new findings and methodologies at the micro-length scale.

  6. Physics on the smallest scales: an introduction to minimal length phenomenology

    International Nuclear Information System (INIS)

    Sprenger, Martin; Nicolini, Piero; Bleicher, Marcus

    2012-01-01

    Many modern theories which try to unify gravity with the Standard Model of particle physics, such as e.g. string theory, propose two key modifications to the commonly known physical theories: the existence of additional space dimensions; the existence of a minimal length distance or maximal resolution. While extra dimensions have received a wide coverage in publications over the last ten years (especially due to the prediction of micro black hole production at the Large Hadron Collider), the phenomenology of models with a minimal length is still less investigated. In a summer study project for bachelor students in 2010, we have explored some phenomenological implications of the potential existence of a minimal length. In this paper, we review the idea and formalism of a quantum gravity-induced minimal length in the generalized uncertainty principle framework as well as in the coherent state approach to non-commutative geometry. These approaches are effective models which can make model-independent predictions for experiments and are ideally suited for phenomenological studies. Pedagogical examples are provided to grasp the effects of a quantum gravity-induced minimal length. This paper is intended for graduate students and non-specialists interested in quantum gravity. (paper)

  7. A Confirmatory Factor Analysis of Reilly's Role Overload Scale

    Science.gov (United States)

    Thiagarajan, Palaniappan; Chakrabarty, Subhra; Taylor, Ronald D.

    2006-01-01

    In 1982, Reilly developed a 13-item scale to measure role overload. This scale has been widely used, but most studies did not assess the unidimensionality of the scale. Given the significance of unidimensionality in scale development, the current study reports a confirmatory factor analysis of the 13-item scale in two samples. Based on the…

  8. INVESTIGATING THE FACTOR STRUCTURE OF THE BLOG ATTITUDE SCALE

    Directory of Open Access Journals (Sweden)

    Zahra SHAHSAVAR

    2010-10-01

    Full Text Available Due to the wide application of advanced technology in education, many attitude scales have been developed to evaluate learners’ attitudes toward educational tools. However, with the rapid development of emerging technologies, using blogs as one of the Web 2.0 tools is still in its infancy and few blog attitude scales have been developed yet. In view of this need, a lot of researchers like to design a new scale based on their conceptual and theoretical framework of their own study rather than using available scales. The present study reports the design and development of a blog attitude scale (BAS. The researchers developed a pool of items to capture the complexity of the blog attitude trait, selected 29 items in the content analysis, and assigned the scale comprising 29 items to 216 undergraduate students to explore the underlying structure of the BAS. In exploratory factor analysis, three factors were discovered: blog anxiety, blog desirability, and blog self-efficacy; 14 items were excluded. The extracted items were subjected to a confirmatory factor analysis which lent further support to the BAS underpinning structure.

  9. Factor Structure of the Exercise Self-Efficacy Scale

    Science.gov (United States)

    Cornick, Jessica E.

    2015-01-01

    The current study utilized exercise self-efficacy ratings from undergraduate students to assess the factor structure of the Self-Efficacy to Regulate Exercise Scale (Bandura, 1997, 2006). An exploratory factor analysis (n = 759) indicated a two-factor model solution and three separate confirmatory factor analyses (n = 1,798) supported this…

  10. Multi-length-scale Material Model for SiC/SiC Ceramic-Matrix Composites (CMCs): Inclusion of In-Service Environmental Effects

    Science.gov (United States)

    Grujicic, M.; Galgalikar, R.; Snipes, J. S.; Ramaswami, S.

    2016-01-01

    In our recent work, a multi-length-scale room-temperature material model for SiC/SiC ceramic-matrix composites (CMCs) was derived and parameterized. The model was subsequently linked with a finite-element solver so that it could be used in a general room-temperature, structural/damage analysis of gas-turbine engine CMC components. Due to its multi-length-scale character, the material model enabled inclusion of the effects of fiber/tow (e.g., the volume fraction, size, and properties of the fibers; fiber-coating material/thickness; decohesion properties of the coating/matrix interfaces; etc.) and ply/lamina (e.g., the 0°/90° cross-ply versus plain-weave architectures, the extent of tow crimping in the case of the plain-weave plies, cohesive properties of the inter-ply boundaries, etc.) length-scale microstructural/architectural parameters on the mechanical response of the CMCs. One of the major limitations of the model is that it applies to the CMCs in their as-fabricated conditions (i.e., the effect of prolonged in-service environmental exposure and the associated material aging-degradation is not accounted for). In the present work, the model is upgraded to include such in-service environmental-exposure effects. To demonstrate the utility of the upgraded material model, it is used within a finite-element structural/failure analysis involving impact of a toboggan-shaped turbine shroud segment by a foreign object. The results obtained clearly revealed the effects that different aspects of the in-service environmental exposure have on the material degradation and the extent of damage suffered by the impacted CMC toboggan-shaped shroud segment.

  11. Turbulent boundary layer over roughness transition with variation in spanwise roughness length scale

    Science.gov (United States)

    Westerweel, Jerry; Tomas, Jasper; Eisma, Jerke; Pourquie, Mathieu; Elsinga, Gerrit; Jonker, Harm

    2016-11-01

    Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic PIV and LIF were done to investigate pollutant dispersion in a region where the surface changes from rural to urban roughness. This consists of rectangular obstacles where we vary the spanwise aspect ratio of the obstacles. A line source of passive tracer was placed upstream of the roughness transition. The objectives of the study are: (i) to determine the influence of the aspect ratio on the roughness-transition flow, and (ii) to determine the dominant mechanisms of pollutant removal from street canyons in the transition region. It is found that for a spanwise aspect ratio of 2 the drag induced by the roughness is largest of all considered cases, which is caused by a large-scale secondary flow. In the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identied that is responsible for exchange of the fluid between the roughness obstacles and the outer part of the boundary layer. Furthermore, it is found that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the roughness region.

  12. Gradient plasticity for thermo-mechanical processes in metals with length and time scales

    Science.gov (United States)

    Voyiadjis, George Z.; Faghihi, Danial

    2013-03-01

    A thermodynamically consistent framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. In this regard, an enhanced gradient plasticity theory is coupled with the application of a micromorphic approach to the temperature variable. A physically based yield function based on the concept of thermal activation energy and the dislocation interaction mechanisms including nonlinear hardening is taken into consideration in the derivation. The effect of the material microstructural interface between two materials is also incorporated in the formulation with both temperature and rate effects. In order to accurately address the strengthening and hardening mechanisms, the theory is developed based on the decomposition of the mechanical state variables into energetic and dissipative counterparts which endowed the constitutive equations to have both energetic and dissipative gradient length scales for the bulk material and the interface. Moreover, the microstructural interaction effect in the fast transient process is addressed by incorporating two time scales into the microscopic heat equation. The numerical example of thin film on elastic substrate or a single phase bicrystal under uniform tension is addressed here. The effects of individual counterparts of the framework on the thermal and mechanical responses are investigated. The model is also compared with experimental results.

  13. Morphological quantification of hierarchical geomaterials by X-ray nano-CT bridges the gap from nano to micro length scales

    KAUST Repository

    Brisard, S.

    2012-01-30

    Morphological quantification of the complex structure of hierarchical geomaterials is of great relevance for Earth science and environmental engineering, among others. To date, methods that quantify the 3D morphology on length scales ranging from a few tens of nanometers to several hun-dred nanometers have had limited success. We demonstrate, for the first time, that it is possible to go beyond visualization and to extract quantitative morphological information from X-ray images in the aforementioned length scales. As examples, two different hierarchical geomaterials exhibiting complex porous structures ranging from nanometer to macroscopic scale are studied: a flocculated clay water suspension and two hydrated cement pastes. We show that from a single projection image it is possible to perform a direct computation of the ultra-small angle-scattering spectra. The predictions matched very well the experimental data obtained by the best ultra-small angle-scattering experimental setups as observed for the cement paste. In this context, we demonstrate that the structure of flocculated clay suspension exhibit two well-distinct regimes of aggregation, a dense mass fractal aggregation at short distance and a more open structure at large distance, which can be generated by a 3D reaction limited cluster-cluster aggregation process. For the first time, a high-resolution 3D image of fibrillar cement paste cluster was obtained from limited angle nanotomography.

  14. Using the Karolinska Scales of Personality on male juvenile delinquents: relationships between scales and factor structure.

    Science.gov (United States)

    Dåderman, Anna M; Hellström, Ake; Wennberg, Peter; Törestad, Bertil

    2005-01-01

    The aim of the present study was to investigate relationships between scales from the Karolinska Scales of Personality (KSP) and the factor structure of the KSP in a sample of male juvenile delinquents. The KSP was administered to a group of male juvenile delinquents (n=55, mean age 17 years; standard deviation=1.2) from four Swedish national correctional institutions for serious offenders. As expected, the KSP showed appropriate correlations between the scales. Factor analysis (maximum likelihood) arrived at a four-factor solution in this sample, which is in line with previous research performed in a non-clinical sample of Swedish males. More research is needed in a somewhat larger sample of juvenile delinquents in order to confirm the present results regarding the factor solution.

  15. New Approaches in the Engineering and Characterization of Macromolecular Interfaces Across the Length Scales: Applications to Hydrophobic and Stimulus Responsive Polymers

    NARCIS (Netherlands)

    Song, Jing

    2007-01-01

    The aim of the present Thesis is to enhance characterization and surface engineering approaches to test and control physico-chemical changes on modified hydrophobic (LDPE and PDMS) and stimulus-responsive (PFS) polymers across different length scales. [Here LDPE denotes low density polyethylene,

  16. Interplay between multiple length and time scales in complex ...

    Indian Academy of Sciences (India)

    Administrator

    Processes in complex chemical systems, such as macromolecules, electrolytes, interfaces, ... by processes operating on a multiplicity of length .... real time. The design and interpretation of femto- second experiments has required considerable ...

  17. Bunch Length Measurements in SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, W.J.; Fisher, A.; Huang, X.; Safranek, J.; Sebek, J.; /SLAC; Lumpkin, A.; /Argonne; Sannibale, F.; /LBL, Berkeley; Mok, W.; /Unlisted

    2007-11-28

    A series of bunch length measurements were made in SPEAR3 for two different machine optics. In the achromatic optics the bunch length increases from the low-current value of 16.6ps rms to about 30ps at 25ma/bunch yielding an inductive impedance of -0.17{Omega}. Reducing the momentum compaction factor by a factor of {approx}60 [1] yields a low-current bunch length of {approx}4ps rms. In this paper we review the experimental setup and results.

  18. Zero-point length, extra-dimensions and string T-duality

    OpenAIRE

    Spallucci, Euro; Fontanini, Michele

    2005-01-01

    In this paper, we are going to put in a single consistent framework apparently unrelated pieces of information, i.e. zero-point length, extra-dimensions, string T-duality. More in details we are going to introduce a modified Kaluza-Klein theory interpolating between (high-energy) string theory and (low-energy) quantum field theory. In our model zero-point length is a four dimensional ``virtual memory'' of compact extra-dimensions length scale. Such a scale turns out to be determined by T-dual...

  19. Confirmatory Factor Analysis of the Procrastination Assessment Scale for Students

    Directory of Open Access Journals (Sweden)

    Ronald D. Yockey

    2015-10-01

    Full Text Available The relative fit of one- and two-factor models of the Procrastination Assessment Scale for Students (PASS was investigated using confirmatory factor analysis on an ethnically diverse sample of 345 participants. The results indicated that although the two-factor model provided better fit to the data than the one-factor model, neither model provided optimal fit. However, a two-factor model which accounted for common item theme pairs used by Solomon and Rothblum in the creation of the scale provided good fit to the data. In addition, a significant difference by ethnicity was also found on the fear of failure subscale of the PASS, with Whites having significantly lower scores than Asian Americans or Latino/as. Implications of the results are discussed and recommendations made for future work with the scale.

  20. Factor solutions of the Social Phobia Scale (SPS) and the Social Interaction Anxiety Scale (SIAS) in a Swedish population.

    Science.gov (United States)

    Mörtberg, Ewa; Reuterskiöld, Lena; Tillfors, Maria; Furmark, Tomas; Öst, Lars-Göran

    2017-06-01

    Culturally validated rating scales for social anxiety disorder (SAD) are of significant importance when screening for the disorder, as well as for evaluating treatment efficacy. This study examined construct validity and additional psychometric properties of two commonly used scales, the Social Phobia Scale and the Social Interaction Anxiety Scale, in a clinical SAD population (n = 180) and in a normal population (n = 614) in Sweden. Confirmatory factor analyses of previously reported factor solutions were tested but did not reveal acceptable fit. Exploratory factor analyses (EFA) of the joint structure of the scales in the total population yielded a two-factor model (performance anxiety and social interaction anxiety), whereas EFA in the clinical sample revealed a three-factor solution, a social interaction anxiety factor and two performance anxiety factors. The SPS and SIAS showed good to excellent internal consistency, and discriminated well between patients with SAD and a normal population sample. Both scales showed good convergent validity with an established measure of SAD, whereas the discriminant validity of symptoms of social anxiety and depression could not be confirmed. The optimal cut-off score for SPS and SIAS were 18 and 22 points, respectively. It is concluded that the factor structure and the additional psychometric properties of SPS and SIAS support the use of the scales for assessment in a Swedish population.

  1. Perioperative risk factors for mortality and length of hospitalization in mares with dystocia undergoing general anesthesia: A retrospective study

    Science.gov (United States)

    Rioja, Eva; Cernicchiaro, Natalia; Costa, Maria Carolina; Valverde, Alexander

    2012-01-01

    This study investigated associations between perioperative factors and probability of death and length of hospitalization of mares with dystocia that survived following general anesthesia. Demographics and perioperative characteristics from 65 mares were reviewed retrospectively and used in a risk factor analysis. Mortality rate was 21.5% during the first 24 h post-anesthesia. The mean ± standard deviation number of days of hospitalization of surviving mares was 6.3 ± 5.4 d. Several factors were found in the univariable analysis to be significantly associated (P dystocia, intraoperative hypotension, and drugs used during recovery. Type of delivery and day of the week the surgery was performed were significantly associated with length of hospitalization in the multivariable mixed effects model. The study identified some risk factors that may allow clinicians to better estimate the probability of mortality and morbidity in these mares. PMID:23115362

  2. Laboratory scale electroplating and processing of long lengths of an in situ Cu-Nb3Sn superconductors

    International Nuclear Information System (INIS)

    LeHuy, H.; Germain, L.; Roberge, R.; Foner, S.; Massachusetts Inst. of Tech., Cambridge

    1984-01-01

    A laboratory scale continuous tin electroplating system is described and used to evaluate the effect of various parameters of the alkaline and acid baths plating process. Tin electroplating is shown to be simple and reliable. With an 8 m immersion length production speeds of the order of 1 m min -1 are possible in an alkaline bath at 80degC. An acid bath gives satisfactory tinning deposits with a production speed of up to 3 m min -1 at room temperature. (author)

  3. Internal and external quasicrystal inflation center and their scaling factors

    International Nuclear Information System (INIS)

    Masakova, Z.; Patera, J.; Pelantova, E.

    1998-01-01

    The properties of quasicrystals of the cut and project type - namely, self-similarities or so-called inflation properties - are studied. A complete description is given for centers of the scaling symmetry of a quasicrystal, and the relevant scaling factors are determined for each 'inflation center'. If the center is a quasicrystal point, it is called an 'internal inflation center'; otherwise, it is an 'external' one. It turns out that, for any quasicrystal point u, the set of appropriate scaling factors is a u-dependent one-dimensional quasicrystal. There are infinitely many scaling factors common to all internal inflation centers. The description of external inflation centers, which are plentiful in any quasicrystal, is a slight modification of a similar description for the interval ones

  4. Fall risk assessment: retrospective analysis of Morse Fall Scale scores in Portuguese hospitalized adult patients.

    Science.gov (United States)

    Sardo, Pedro Miguel Garcez; Simões, Cláudia Sofia Oliveira; Alvarelhão, José Joaquim Marques; Simões, João Filipe Fernandes Lindo; Melo, Elsa Maria de Oliveira Pinheiro de

    2016-08-01

    The Morse Fall Scale is used in several care settings for fall risk assessment and supports the implementation of preventive nursing interventions. Our work aims to analyze the Morse Fall Scale scores of Portuguese hospitalized adult patients in association with their characteristics, diagnoses and length of stay. Retrospective cohort analysis of Morse Fall Scale scores of 8356 patients hospitalized during 2012. Data were associated to age, gender, type of admission, specialty units, length of stay, patient discharge, and ICD-9 diagnosis. Elderly patients, female, with emergency service admission, at medical units and/or with longer length of stays were more frequently included in the risk group for falls. ICD-9 diagnosis may also be an important risk factor. More than a half of hospitalized patients had "medium" to "high" risk of falling during the length of stay, which determines the implementation and maintenance of protocoled preventive nursing interventions throughout hospitalization. There are several fall risk factors not assessed by Morse Fall Scale. There were no statistical differences in Morse Fall Scale score between the first and the last assessment. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Short Is Beautiful: Dimensionality and Measurement Invariance in Two Length of the Basic Psychological Need Satisfaction at Work Scale

    Directory of Open Access Journals (Sweden)

    Mårten Eriksson

    2018-06-01

    Full Text Available Self-determination theory proposes that all humans have three intrinsic psychological needs: the needs for Autonomy, Competence, and Relatedness. These needs take different forms in different areas of life. The present study examines the psychometric properties of a Swedish version of the Basic Psychological Need Satisfaction at Work (BPNS-W scale. The fit of 10-factor structures previously suggested for related versions of the scale were compared. Cross-sectional data from 1,200 participants were examined in a confirmatory factor analysis framework. Both the original 21-item version and a reduced 12-item version of the BPNS-W were examined. The General Health Questionnaire was used for validation. The results supported a three-factor solution with correlated error variances for the reversed items. Invariance testing of the long and short scales gave best support to the short scale, for which partial scalar invariance was achieved. The external validity of the short scale was supported by a hierarchical regression analysis in which each need made a unique contribution in predicting psychological well-being. In conclusion, the results corroborate a three-factor structure of BPNS-W. Although not perfect the short scale should, it is argued, be preferred over the long version. Directions for the future development of the scale are discussed.

  6. Scaling of permeabilities and friction factors of homogeneously expanding gas-solids fluidized beds: Geldart’s A powders and magnetically stabilized beds

    Directory of Open Access Journals (Sweden)

    Hristov Jordan Y.

    2006-01-01

    Full Text Available The concept of a variable friction factor of fluid-driven de form able powder beds undergoing fluidization is discussed. The special problem discussed addresses the friction factor and bed permeability relationships of Geldart’s A powders and magnetically stabilized beds in axial fields. Governing equations and scaling relation ships are developed through three approaches (1 Minimization of the pressure drop with respect to the fluid velocity employing the Darcy-Forchheimer equation together with the Richardson-Zaki scaling law, (2 Minimization of the pres sure drop across an equivalent-channel replacing the actual packed beds by a straight pipe with bed-equivalent obstacle of a simple geometry, and (3 Entropy minimization method applied in cases of the Darcy-Forchheimer equation and the equivalent-channel model. Bed-to-surface heat transfer coefficients are commented in the context of the porosity/length scale relationships developed. Both the pressure drop curves developments and phase diagram de signs are illustrated by applications of the intersection of asymptotes technique to beds exhibiting certain degree of cohesion.

  7. Identification of the underlying factor structure of the Derriford Appearance Scale 24

    Directory of Open Access Journals (Sweden)

    Timothy P. Moss

    2015-07-01

    Full Text Available Background. The Derriford Appearance Scale24 (DAS24 is a widely used measure of distress and dysfunction in relation to self-consciousness of appearance. It has been used in clinical and research settings, and translated into numerous European and Asian languages. Hitherto, no study has conducted an analysis to determine the underlying factor structure of the scale.Methods. A large (n = 1,265 sample of community and hospital patients with a visible difference were recruited face to face or by post, and completed the DAS24.Results. A two factor solution was generated. An evaluation of the congruence of the factor solutions on each of the the hospital and the community samples using Tucker’s Coefficient of Congruence (rc = .979 and confirmatory factor analysis, which demonstrated a consistent factor structure. A main factor, general self consciousness (GSC, was represented by 18 items. Six items comprised a second factor, sexual and body self-consciousness (SBSC. The SBSC scale demonstrated greater sensitivity and specificity in identifying distress for sexually significant areas of the body.Discussion. The factor structure of the DAS24 facilitates a more nuanced interpretation of scores using this scale. Two conceptually and statistically coherent sub-scales were identified. The SBSC sub-scale offers a means of identifying distress and dysfunction around sexually significant areas of the body not previously possible with this scale.

  8. Length scale dependence of the dynamic properties of hyaluronic acid solutions in the presence of salt.

    Science.gov (United States)

    Horkay, Ferenc; Falus, Peter; Hecht, Anne-Marie; Geissler, Erik

    2010-12-02

    In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D(NSE) measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D(DLS). This behavior contrasts with neutral polymer solutions. With increasing salt content, D(DLS) approaches D(NSE), which is independent of ionic strength. Contrary to theoretical expectation, the ion-polymer coupling, which dominates the low q dynamics of polyelectrolyte solutions, already breaks down at distance scales greater than the Debye-Hückel length.

  9. FACTOR STRUCTURE OF THE BRIEF NEGATIVE SYMPTOM SCALE

    OpenAIRE

    Strauss, Gregory P.; Hong, L. Elliot; Gold, James M.; Buchanan, Robert W.; McMahon, Robert P.; Keller, William R.; Fischer, Bernard A.; Catalano, Lauren T.; Culbreth, Adam J.; Carpenter, William T.; Kirkpatrick, Brian

    2012-01-01

    The current study examined the factor structure of the Brief Negative Symptom Scale (BNSS), a next-generation negative symptom rating instrument developed in response to the NIMH-sponsored Consensus Development Conference on Negative Symptoms. Participants included 146 individuals with a DSM-IV diagnosis of schizophrenia or schizoaffective disorder. Principal axis factoring indicated two distinct factors explaining 68.7% of the variance. Similar to previous findings, the factors reflected mot...

  10. Length Scales in Bayesian Automatic Adaptive Quadrature

    Directory of Open Access Journals (Sweden)

    Adam Gh.

    2016-01-01

    Full Text Available Two conceptual developments in the Bayesian automatic adaptive quadrature approach to the numerical solution of one-dimensional Riemann integrals [Gh. Adam, S. Adam, Springer LNCS 7125, 1–16 (2012] are reported. First, it is shown that the numerical quadrature which avoids the overcomputing and minimizes the hidden floating point loss of precision asks for the consideration of three classes of integration domain lengths endowed with specific quadrature sums: microscopic (trapezoidal rule, mesoscopic (Simpson rule, and macroscopic (quadrature sums of high algebraic degrees of precision. Second, sensitive diagnostic tools for the Bayesian inference on macroscopic ranges, coming from the use of Clenshaw-Curtis quadrature, are derived.

  11. Large-scale parent–child comparison confirms a strong paternal influence on telomere length

    OpenAIRE

    Nordfjäll, Katarina; Svenson, Ulrika; Norrback, Karl-Fredrik; Adolfsson, Rolf; Roos, Göran

    2009-01-01

    Telomere length is documented to have a hereditary component, and both paternal and X-linked inheritance have been proposed. We investigated blood cell telomere length in 962 individuals with an age range between 0 and 102 years. Telomere length correlations were analyzed between parent–child pairs in different age groups and between grandparent–grandchild pairs. A highly significant correlation between the father's and the child's telomere length was observed (r=0.454, P

  12. Extending the length and time scales of Gram–Schmidt Lyapunov vector computations

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Anthony B., E-mail: acosta@northwestern.edu [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Green, Jason R., E-mail: jason.green@umb.edu [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125 (United States)

    2013-08-01

    Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram–Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N{sup 2} (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram–Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard–Jones fluids from N=100 to 1300 between Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram–Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra.

  13. Extending the length and time scales of Gram–Schmidt Lyapunov vector computations

    International Nuclear Information System (INIS)

    Costa, Anthony B.; Green, Jason R.

    2013-01-01

    Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram–Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N 2 (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram–Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard–Jones fluids from N=100 to 1300 between Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram–Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra

  14. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering

    Science.gov (United States)

    Kelley, Shana O.; Mirkin, Chad A.; Walt, David R.; Ismagilov, Rustem F.; Toner, Mehmet; Sargent, Edward H.

    2014-12-01

    Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices.

  15. Information, polarization and term length in democracy

    DEFF Research Database (Denmark)

    Schultz, Christian

    2008-01-01

    This paper considers term lengths in a representative democracy where the political issue divides the population on the left-right scale. Parties are ideologically different and better informed about the consequences of policies than voters are. A short term length makes the government more...... accountable, but the re-election incentive leads to policy-distortion as the government seeks to manipulate swing voters' beliefs to make its ideology more popular. This creates a trade-off: A short term length improves accountability but gives distortions. A short term length is best for swing voters when...

  16. Dimensions of assertiveness: factors underlying the college self-expression scale.

    Science.gov (United States)

    Kipper, D A; Jaffe, Y

    1978-02-01

    A total of 447 Israeli students, both males and females, from four educational institutions were administered the College Self-expression Scale, a measure of assertiveness. The obtained responses were factor analyzed using the principal axis solution and the varimax rotation method. The results showed four main factors which included 43 of the 50 items of the original scale. These factors were identified as the willingness to take risks in interpersonal interactions, the ability to communicate feelings, setting rules and rectifying injustices, and the presence or absence of a tendency to invoke a self-punitive attitude. The findings were interpreted as adding support to the validity of the scale as a measure of assertiveness.

  17. Comparative validity of brief to medium-length Big Five and Big Six Personality Questionnaires.

    Science.gov (United States)

    Thalmayer, Amber Gayle; Saucier, Gerard; Eigenhuis, Annemarie

    2011-12-01

    A general consensus on the Big Five model of personality attributes has been highly generative for the field of personality psychology. Many important psychological and life outcome correlates with Big Five trait dimensions have been established. But researchers must choose between multiple Big Five inventories when conducting a study and are faced with a variety of options as to inventory length. Furthermore, a 6-factor model has been proposed to extend and update the Big Five model, in part by adding a dimension of Honesty/Humility or Honesty/Propriety. In this study, 3 popular brief to medium-length Big Five measures (NEO Five Factor Inventory, Big Five Inventory [BFI], and International Personality Item Pool), and 3 six-factor measures (HEXACO Personality Inventory, Questionnaire Big Six Scales, and a 6-factor version of the BFI) were placed in competition to best predict important student life outcomes. The effect of test length was investigated by comparing brief versions of most measures (subsets of items) with original versions. Personality questionnaires were administered to undergraduate students (N = 227). Participants' college transcripts and student conduct records were obtained 6-9 months after data was collected. Six-factor inventories demonstrated better predictive ability for life outcomes than did some Big Five inventories. Additional behavioral observations made on participants, including their Facebook profiles and cell-phone text usage, were predicted similarly by Big Five and 6-factor measures. A brief version of the BFI performed surprisingly well; across inventory platforms, increasing test length had little effect on predictive validity. Comparative validity of the models and measures in terms of outcome prediction and parsimony is discussed.

  18. Factors Associated with Length of Hospital Stay among HIV Positive and HIV Negative Patients with Tuberculosis in Brazil

    Science.gov (United States)

    Gonçalves, Maria Jacirema Ferreira; Ferreira, Alaidistania A.

    2013-01-01

    Objective Identify and analyze the factors associated to length of hospital stay among HIV positive and HIV negative patients with tuberculosis in Manaus city, state of Amazonas, Brazil, in 2010. Methods Epidemiological study with primary data obtained from monitoring of hospitalized patients with tuberculosis in Manaus. Data were collected by interviewing patients and analyzing medical records, according to the following study variables age, sex, co-morbidities, education, race, income, lifestyle, history of previous treatment or hospitalization due to tuberculosis, treatment regimen, adverse reactions, smear test, clinical form, type of discharge, and length of hospital stay. The associated factors were identified through chi-square or t-Student test at a 5% significance level. Results Income from 1 to 3 minimum wages (P = 0.028), pulmonary tuberculosis form (P = 0.011), negative smear test or no information in this regard (P = 0.014), initial 6-month treatment scheme (P = 0.029), and adverse drug reactions (P = 0.021) were associated to prolonged hospital stay in HIV positive patients. Conclusion We found out that although there were no significant differences in the length of hospital stay in HIV positive patients, all factors significantly associated to prolonged hospital stay occurred in this group of patients. This finding corroborates other studies indicating the severity of tuberculosis in HIV patients, which may also contribute to lengthen their hospital stay. PMID:23593227

  19. Bifurcation and phase diagram of turbulence constituted from three different scale-length modes

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, S.-I.; Kitazawa, A.; Yagi, M. [Kyushu Univ., Research Inst. for Applied Mechanics, Kasuga, Fukuoka (Japan); Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2002-04-01

    Cases where three kinds of fluctuations having the different typical scale-lengths coexist are analyzed, and the statistical theory of strong turbulence in inhomogeneous plasmas is developed. Statistical nonlinear interactions between fluctuations are kept in the analysis as the renormalized drag, statistical noise and the averaged drive. The nonlinear interplay through them induces a quenching or suppressing effect, even if all the modes are unstable when they are analyzed independently. Variety in mode appearance takes place: one mode quenches the other two modes, or one mode is quenched by the other two modes, etc. The bifurcation of turbulence is analyzed and a phase diagram is drawn. Phase diagrams with cusp type catastrophe and butterfly type catastrophe are obtained. The subcritical bifurcation is possible to occur through the nonlinear interplay, even though each one is supercritical turbulence when analyzed independently. Analysis reveals that the nonlinear stability boundary (marginal point) and the amplitude of each mode may substantially shift from the conventional results of independent analyses. (author)

  20. An improved method for calculating slope length (λ) and the LS parameters of the Revised Universal Soil Loss Equation for large watersheds

    NARCIS (Netherlands)

    Zhang, Hongming; Wei, Jicheng; Yang, Qinke; Baartman, Jantiene E.M.; Gai, Lingtong; Yang, Xiaomei; Li, Shu Qin; Yu, Jiantao; Ritsema, Coen J.; Geissen, Violette

    2017-01-01

    The Universal Soil Loss Equation (USLE) and its revised version (RUSLE) are often used to estimate soil erosion at regional landscape scales. USLE/RUSLE contain parameters for slope length factor (L) and slope steepness factor (S), usually combined as LS. However a major limitation is the difficulty

  1. Global Mechanical Response and Its Relation to Deformation and Failure Modes at Various Length Scales Under Shock Impact in Alumina AD995 Armor Ceramic

    National Research Council Canada - National Science Library

    Dandekar, D. P; McCauley, J. W; Green, W. H; Bourne, N. K; Chen, M. W

    2008-01-01

    ... maps relating the experimentally measured global mechanical response of a material through matured shock wave diagnostics to the nature of concurrent deformation and damage generated at varying length scales under shock wave loading.

  2. Dynamic Arrest in Charged Colloidal Systems Exhibiting Large-Scale Structural Heterogeneities

    International Nuclear Information System (INIS)

    Haro-Perez, C.; Callejas-Fernandez, J.; Hidalgo-Alvarez, R.; Rojas-Ochoa, L. F.; Castaneda-Priego, R.; Quesada-Perez, M.; Trappe, V.

    2009-01-01

    Suspensions of charged liposomes are found to exhibit typical features of strongly repulsive fluid systems at short length scales, while exhibiting structural heterogeneities at larger length scales that are characteristic of attractive systems. We model the static structure factor of these systems using effective pair interaction potentials composed of a long-range attraction and a shorter range repulsion. Our modeling of the static structure yields conditions for dynamically arrested states at larger volume fractions, which we find to agree with the experimentally observed dynamics

  3. Multivariate Analysis of Factors Influencing Length of Hospital Stay after Coronary Artery Bypass Surgery in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Amin Torabipour

    2016-03-01

    Full Text Available Length of hospital stay (LOS is a key indicator for hospital management. Reducing hospital stay is a priority for all health systems. We aimed to determine the length of hospital stay following Coronary Artery Bypass Surgery (CABG based on its clinical and non-clinical factors. A cross-sectional study of 649 consecutive patients who underwent coronary artery bypass graft surgery was conducted in Imam Khomeini and Shariati university hospitals, Tehran, Iran. Data was analyzed by using non-parametric univariate tests and multiple linier regression models. Thirty seven independent variables including pre-operative, intra-operative and post-operative variables were analyzed. Finally, an appropriate model was constructed based on the associated factors. The results showed that 70.3% of the patients were male, and the mean age of the patients was 59.3 ± 10.4 years. The Mean (±SD and median of the LOS were 11.7 ± 7.1 and 9 days, respectively. Of 37 investigated variables, 24 qualitative and quantitative variables were significantly associated with length of stay (p<0.05. Multiple linear regression analysis showed that independent variables including age, medical insurance type, body mass index, and prior myocardial infarction; admission day, admission season, Cross-clamp time, pump usage, admission type, the number of laboratory tests and the number of specialty consultation had more effect on the hospital stay. We concluded that some significant factors influencing hospital stay after CABG were predictable and modifiable by hospital managers and decision makers to manage hospital beds.

  4. The length of the glaciers in the world

    DEFF Research Database (Denmark)

    Machguth, Horst; Huss, M.; Huss, M.

    2014-01-01

    a fully automated method based on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for the same area as well as for Alaska, and eventually applied to all ∼ 200000 glaciers around the globe. The evaluation...... highlights accurately calculated glacier length where DEM quality is good (East 10 Greenland) and limited precision on low quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers...... are longer than 10km with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on model output we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier...

  5. Beyond factor analysis: Multidimensionality and the Parkinson's Disease Sleep Scale-Revised.

    Directory of Open Access Journals (Sweden)

    Maria E Pushpanathan

    Full Text Available Many studies have sought to describe the relationship between sleep disturbance and cognition in Parkinson's disease (PD. The Parkinson's Disease Sleep Scale (PDSS and its variants (the Parkinson's disease Sleep Scale-Revised; PDSS-R, and the Parkinson's Disease Sleep Scale-2; PDSS-2 quantify a range of symptoms impacting sleep in only 15 items. However, data from these scales may be problematic as included items have considerable conceptual breadth, and there may be overlap in the constructs assessed. Multidimensional measurement models, accounting for the tendency for items to measure multiple constructs, may be useful more accurately to model variance than traditional confirmatory factor analysis. In the present study, we tested the hypothesis that a multidimensional model (a bifactor model is more appropriate than traditional factor analysis for data generated by these types of scales, using data collected using the PDSS-R as an exemplar. 166 participants diagnosed with idiopathic PD participated in this study. Using PDSS-R data, we compared three models: a unidimensional model; a 3-factor model consisting of sub-factors measuring insomnia, motor symptoms and obstructive sleep apnoea (OSA and REM sleep behaviour disorder (RBD symptoms; and, a confirmatory bifactor model with both a general factor and the same three sub-factors. Only the confirmatory bifactor model achieved satisfactory model fit, suggesting that PDSS-R data are multidimensional. There were differential associations between factor scores and patient characteristics, suggesting that some PDSS-R items, but not others, are influenced by mood and personality in addition to sleep symptoms. Multidimensional measurement models may also be a helpful tool in the PDSS and the PDSS-2 scales and may improve the sensitivity of these instruments.

  6. Phase Behavior of Blends of Linear and Branched Polyethylenes on Micron-Length Scales via Ultra-Small-Angle Neutron Scattering (USANS)

    International Nuclear Information System (INIS)

    Agamalian, M.M.; Alamo, R.G.; Londono, J.D.; Mandelkern, L.; Wignall, G.D.

    1999-01-01

    SANS experiments on blends of linear, high density (HD) and long chain branched, low density (LD) polyethylenes indicate that these systems form a one-phase mixture in the melt. However, the maximum spatial resolution of pinhole cameras is approximately equal to 10 3 and it has therefore been suggested that data might also be interpreted as arising from a bi-phasic melt with large a particle size ( 1 m), because most of the scattering from the different phases would not be resolved. We have addressed this hypothesis by means of USANS experiments, which confirm that HDPEILDPE blends are homogenous in the melt on length scales up to 20 m. We have also studied blends of HDPE and short-chain branched linear low density polyethylenes (LLDPEs), which phase separate when the branch content is sufficiently high. LLDPEs prepared with Ziegler-Natta catalysts exhibit a wide distribution of compositions, and may therefore be thought of as a blend of different species. When the composition distribution is broad enough, a fraction of highly branched chains may phase separate on m-length scales, and USANS has also been used to quantify this phenomenon

  7. Confinement and the Glass Transition Temperature in Supported Polymer Films: Molecular Weight, Repeat Unit Modification, and Cooperativity Length Scale Investigations

    Science.gov (United States)

    Mundra, Manish K.

    2005-03-01

    It is well known that the glass transition temperatures, Tgs, of supported polystyrene (PS) films decrease dramatically with decreasing film thickness below 60-80 nm. However, a detailed understanding of the cause of this effect is lacking. We have investigated the impact of several parameters, including polymer molecular weight (MW), repeat unit structure, and the length scale of cooperatively rearranging regions in bulk. There is no significant effect of PS MW on the Tg-confinement effect over a range of 5,000 to 3,000,000 g/mol. In contrast, the strength of the Tg reduction and the onset of the confinement effect increase dramatically upon changing the polymer from PS to poly(4-tert-butylstyrene) (PTBS), with PTBS exhibiting a Tg reduction relative to bulk at a thickness of 300-400 nm. PTBS also shows a Tg reduction relative to bulk of 47 K in a 21-nm-thick film, more than twice that observed in a PS film of identical thickness. Characterization of the length scale of cooperatively rearranging regions has been done by differential scanning calorimetry but reveals at best a limited correlation with the confinement effect.

  8. Predicting the cosmological constant with the scale-factor cutoff measure

    International Nuclear Information System (INIS)

    De Simone, Andrea; Guth, Alan H.; Salem, Michael P.; Vilenkin, Alexander

    2008-01-01

    It is well known that anthropic selection from a landscape with a flat prior distribution of cosmological constant Λ gives a reasonable fit to observation. However, a realistic model of the multiverse has a physical volume that diverges with time, and the predicted distribution of Λ depends on how the spacetime volume is regulated. A very promising method of regulation uses a scale-factor cutoff, which avoids a number of serious problems that arise in other approaches. In particular, the scale-factor cutoff avoids the 'youngness problem' (high probability of living in a much younger universe) and the 'Q and G catastrophes' (high probability for the primordial density contrast Q and gravitational constant G to have extremely large or small values). We apply the scale-factor cutoff measure to the probability distribution of Λ, considering both positive and negative values. The results are in good agreement with observation. In particular, the scale-factor cutoff strongly suppresses the probability for values of Λ that are more than about 10 times the observed value. We also discuss qualitatively the prediction for the density parameter Ω, indicating that with this measure there is a possibility of detectable negative curvature.

  9. Disentangling Wording and Substantive Factors in the Spiritual Well-Being Scale.

    Science.gov (United States)

    Murray, Aja L; Johnson, Wendy; Gow, Alan J; Deary, Ian J

    2015-05-01

    We evaluated the extent to which the Spiritual Well-Being Scale (SWBS) may help to meet the need for multidimensional, psychometrically sophisticated measures of spiritual and religious traits. Although the various forms of validity of the scale have, for the most part, been supported by psychometric studies, conflicting evidence surrounding its dimensionality has called into question its structural validity. Specifically, numerous authors have suggested that a more appropriate factor structure for the SWBS includes further substantive factors in addition to the 2 factors that the scale was originally intended to measure. In the current study, we attempted to resolve these debates using a combination of exploratory and confirmatory factor analysis based investigations in the Lothian Birth Cohort, 1921 study. Our analyses suggested that the additional factors suggested in previous studies may not have reflected substantive constructs; but rather, common variance due to methodological factors.

  10. Drug delivery across length scales.

    Science.gov (United States)

    Delcassian, Derfogail; Patel, Asha K; Cortinas, Abel B; Langer, Robert

    2018-02-20

    Over the last century, there has been a dramatic change in the nature of therapeutic, biologically active molecules available to treat disease. Therapies have evolved from extracted natural products towards rationally designed biomolecules, including small molecules, engineered proteins and nucleic acids. The use of potent drugs which target specific organs, cells or biochemical pathways, necessitates new tools which can enable controlled delivery and dosing of these therapeutics to their biological targets. Here, we review the miniaturisation of drug delivery systems from the macro to nano-scale, focussing on controlled dosing and controlled targeting as two key parameters in drug delivery device design. We describe how the miniaturisation of these devices enables the move from repeated, systemic dosing, to on-demand, targeted delivery of therapeutic drugs and highlight areas of focus for the future.

  11. Race, Ethnicity, Psychosocial Factors, and Telomere Length in a Multicenter Setting.

    Science.gov (United States)

    Lynch, Shannon M; Peek, M K; Mitra, Nandita; Ravichandran, Krithika; Branas, Charles; Spangler, Elaine; Zhou, Wenting; Paskett, Electra D; Gehlert, Sarah; DeGraffinreid, Cecilia; Rebbeck, Timothy R; Riethman, Harold

    2016-01-01

    Leukocyte telomere length(LTL) has been associated with age, self-reported race/ethnicity, gender, education, and psychosocial factors, including perceived stress, and depression. However, inconsistencies in associations of LTL with disease and other phenotypes exist across studies. Population characteristics, including race/ethnicity, laboratory methods, and statistical approaches in LTL have not been comprehensively studied and could explain inconsistent LTL associations. LTL was measured using Southern Blot in 1510 participants from a multi-ethnic, multi-center study combining data from 3 centers with different population characteristics and laboratory processing methods. Main associations between LTL and psychosocial factors and LTL and race/ethnicity were evaluated and then compared across generalized estimating equations(GEE) and linear regression models. Statistical models were adjusted for factors typically associated with LTL(age, gender, cancer status) and also accounted for factors related to center differences, including laboratory methods(i.e., DNA extraction). Associations between LTL and psychosocial factors were also evaluated within race/ethnicity subgroups (Non-hispanic Whites, African Americans, and Hispanics). Beyond adjustment for age, gender, and cancer status, additional adjustments for DNA extraction and clustering by center were needed given their effects on LTL measurements. In adjusted GEE models, longer LTL was associated with African American race (Beta(β)(standard error(SE)) = 0.09(0.04), p-value = 0.04) and Hispanic ethnicity (β(SE) = 0.06(0.01), p-value = 0.02) compared to Non-Hispanic Whites. Longer LTL was also associated with less than a high school education compared to having greater than a high school education (β(SE) = 0.06(0.02), p-value = 0.04). LTL was inversely related to perceived stress (β(SE) = -0.02(0.003), pethnic circumstances and could impact future health disparity studies.

  12. Software development for estimating the conversion factor (k-factor) at suitable scan areas, relating the dose length product to the effective dose

    International Nuclear Information System (INIS)

    Kobayashi, Masanao; Asada, Yasuki; Suzuki, Syouichi; Kato, Ryouichi; Matsubara, Kosuke; Koshida, Kichiro; Matsunaga, Yuta; Kawaguchi, Ai; Haba, Tomonobu; Toyama, Hiroshi

    2017-01-01

    We developed a k-factor-creator software (kFC) that provides the k-factor for CT examination in an arbitrary scan area. It provides the k-factor from the effective dose and dose-length product by Imaging Performance Assessment of CT scanners and CT-EXPO. To assess the reliability, we compared the kFC-evaluated k-factors with those of the International Commission on Radiological Protection (ICRP) publication 102. To confirm the utility, the effective dose determined by coronary computed tomographic angiography (CCTA) was evaluated by a phantom study and k-factor studies. In the CCTA, the effective doses were 5.28 mSv in the phantom study, 2.57 mSv (51%) in the k-factor of ICRP, and 5.26 mSv (1%) in the k-factor of the kFC. Effective doses can be determined from the kFC-evaluated k-factors in suitable scan areas. Therefore, we speculate that the flexible k-factor is useful in clinical practice, because CT examinations are performed in various scan regions. (authors)

  13. Breed, Coat Color, and Hair Length as Risk Factors for Hyperthyroidism in Cats.

    Science.gov (United States)

    Crossley, V J; Debnath, A; Chang, Y M; Fowkes, R C; Elliott, J; Syme, H M

    2017-07-01

    Hyperthyroidism is very common in older cats, but the etiopathogenesis is poorly understood. Decreased risk of hyperthyroidism has been reported in certain colorpoint breeds, and this observation previously has been hypothesized to result from relatively greater tyrosine availability for thyroid hormone production because of limited ability to convert tyrosine to melanin pigment. However, studies investigating a potential link between coat pigmentation and risk of hyperthyroidism are limited. To identify associations between coat phenotype and hyperthyroidism by investigation of breed, coat color, and hair length as risk factors for the disease. Data were used from 4,705 cats aged ≥10 years, referred to a single veterinary teaching hospital (2006-2014) in the United Kingdom. Retrospective, epidemiological, cross-sectional study using Bayesian multivariable logistic regression to assess risk factors for hyperthyroidism. Burmese (odds ratio [OR], 0.01; 0.00-0.23; P = .004), Tonkinese (OR, 0.05; 0.00-0.95; P = .046), Persian (OR, 0.21; 0.10-0.44; P hyperthyroidism compared to domestic shorthairs. Longhaired, nonpurebred cats (OR, 1.30; 1.03-1.64; P = .028) were at increased risk of hyperthyroidism. Coat color/pattern was not associated with hyperthyroidism in nonpurebred cats. We identified decreased risk of hyperthyroidism in the Tonkinese, Abyssinian, and British shorthair breeds, identified an association between risk of hyperthyroidism and hair length, and confirmed decreased risk in Burmese, Siamese, and Persian breeds. Additional studies are warranted to further investigate these findings. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  14. Scaling Factor Estimation Using an Optimized Mass Change Strategy, Part 1: Theory

    DEFF Research Database (Denmark)

    Aenlle, Manuel López; Fernández, Pelayo Fernández; Brincker, Rune

    2007-01-01

    In natural input modal analysis, only un-scaled mode shapes can be obtained. The mass change method is, in many cases, the simplest way to estimate the scaling factors, which involves repeated modal testing after changing the mass in different points of the structure where the mode shapes are known....... The scaling factors are determined using the natural frequencies and mode shapes of both the modified and the unmodified structure. However, the uncertainty on the scaling factor estimation depends on the modal analysis and the mass change strategy (number, magnitude and location of the masses) used to modify...

  15. Magneto-Induced ac Electrical Permittivity of Metal-Dielectric Composites with a Two Characteristic Length Scales Periodic Microstructure

    International Nuclear Information System (INIS)

    Strelniker, Y.M.; Bergman, D.J.

    1998-01-01

    A new effect was recently predicted in conducting composites that have a periodic microstructure: an induced strongly anisotropic dc magneto-resistance. This phenomenon is already verified on high mobility n-GaAs films. Here we discuss the possibility of observing analogous behavior in the ac electric permittivity of a metal-dielectric composite with a periodic microstructure in the presence of a strong magnetic field. We developed new analytical and numerical methods to treat the low-frequency magneto-optical properties in composite media with both disordered and periodic conducting micro-structures. Those methods allow us to study composites with inclusions of arbitrary shape (and arbitrary volume fraction) at arbitrarily strong magnetic field. This is exploited in order to calculate an effective dielectric tensor for this system as a function of applied magnetic field and ac frequency. We show that in a non-dilute metal-dielectric composite medium the magneto-plasma resonance and the cyclotron resonance depend upon both the applied magnetic field as well as on the geometric shape of the inclusion. Near such a resonance, it is possible to achieve large values for the ratio of the off-diagonal-to-diagonal electric permittivity tensor components, ε xy /ε xx , (since ε xx →0, while ε xy ≠0), which is analogous to similar ratio of the resistivity tensor components, ρ xy /ρ xx , in the case of dc magneto-transport problem. Motivated by this observation and by results of previous studies of dc magneto-transport in composite conductors, we then performed a numerical study of the ac magneto-electric properties of a particular metal-dielectric composite film with a periodic columnar microstructure which has a two characteristic length scales. The unit cell of such composite is prepared as follows: We placed the conducting square (in cross section) rods (first characteristic length scale) along the perimeter of the unit cell in order to create a dielectric host

  16. FACTOR ANALYSIS OF A SOCIAL SKILLS SCALE FOR HIGH SCHOOL STUDENTS.

    Science.gov (United States)

    Wang, H-Y; Lin, C-K

    2015-10-01

    The objective of this study was to develop a social skills scale for high school students in Taiwan. This study adopted stratified random sampling. A total of 1,729 high school students were included. The students ranged in age from 16 to 18 years. A Social Skills Scale was developed for this study and was designed for classroom teachers to fill out. The test-retest reliability of this scale was tested by Pearson's correlation coefficient. Exploratory factor analysis was used to determine construct validity. The Social Skills Scale had good overall test-retest reliability of .92, and the internal consistency of the five subscales was above .90. The results of the factor analysis showed that the Social Skills Scale covered the five domains of classroom learning skills, communication skills, individual initiative skills, interaction skills, and job-related social skills, and the five factors explained 68.34% of the variance. Thus, the Social Skills Scale had good reliability and validity and would be applicable to and could be promoted for use in schools.

  17. Sizing Up the Milky Way: A Bayesian Mixture Model Meta-analysis of Photometric Scale Length Measurements

    Science.gov (United States)

    Licquia, Timothy C.; Newman, Jeffrey A.

    2016-11-01

    The exponential scale length (L d ) of the Milky Way’s (MW’s) disk is a critical parameter for describing the global physical size of our Galaxy, important both for interpreting other Galactic measurements and helping us to understand how our Galaxy fits into extragalactic contexts. Unfortunately, current estimates span a wide range of values and are often statistically incompatible with one another. Here, we perform a Bayesian meta-analysis to determine an improved, aggregate estimate for L d , utilizing a mixture-model approach to account for the possibility that any one measurement has not properly accounted for all statistical or systematic errors. Within this machinery, we explore a variety of ways of modeling the nature of problematic measurements, and then employ a Bayesian model averaging technique to derive net posterior distributions that incorporate any model-selection uncertainty. Our meta-analysis combines 29 different (15 visible and 14 infrared) photometric measurements of L d available in the literature; these involve a broad assortment of observational data sets, MW models and assumptions, and methodologies, all tabulated herein. Analyzing the visible and infrared measurements separately yields estimates for L d of {2.71}-0.20+0.22 kpc and {2.51}-0.13+0.15 kpc, respectively, whereas considering them all combined yields 2.64 ± 0.13 kpc. The ratio between the visible and infrared scale lengths determined here is very similar to that measured in external spiral galaxies. We use these results to update the model of the Galactic disk from our previous work, constraining its stellar mass to be {4.8}-1.1+1.5× {10}10 M ⊙, and the MW’s total stellar mass to be {5.7}-1.1+1.5× {10}10 M ⊙.

  18. Decomposing the queue length distribution of processor-sharing models into queue lengths of permanent customer queues

    NARCIS (Netherlands)

    Cheung, S.K.; van den Berg, Hans Leo; Boucherie, Richardus J.

    2005-01-01

    We obtain a decomposition result for the steady state queue length distribution in egalitarian processor-sharing (PS) models. In particular, for an egalitarian PS queue with $K$ customer classes, we show that the marginal queue length distribution for class $k$ factorizes over the number of other

  19. The Contributing Factors to Injury’s Length of Stay in Hospital Among Productive Age Workers in Indonesia

    Directory of Open Access Journals (Sweden)

    Lusianawaty Tana

    2016-06-01

    Full Text Available Background: Injury is one of the factors that contribute to health problems and disabilities. In Indonesia, the data oninjury and its impact are still limited and only focus on formal workers. Methods: This research aimed to describe thecharacteristics of injury by occupation and to identify factors contributed to severity (length of stay in hospital amongproductive age workers in Indonesia, using the data of National Health Research (Riskesdas in 2013. Results: We analyzed30.455 data using complex samples at 95% confi dence level. People worked as farmer, fi sherman, labor, entrepreneur,and others had more injuries in 12 months than employee (p = 0.0001. Non traffi c accident as cause of injury was alsohigher in those group of occupations than employee (p = 0.0001. The contributing factors of length of stay in hospital werethe injury with concussion (OR 23.1; 95% CI 9.2–58.1 p = 0.0001, fractures (OR 6.3; 95%CI 4.6–8.6 p = 0.0001, eyeinjury (OR 3.0; 95% CI 1.2–7.3 p = 0.0001, followed by road traffi c accident (OR 2.1; 95% CI 1.5–2.9 p = 0.0001, andinjury occurred in the business/industry/construction/farm area (OR 1.7; 95% CI 1.2–2.4 p = 0.006. Conclusion: Factorsthat contributed to the length of stay in hospital of the injury were the type of injury, cause of injury, and the area of injury.Recommendation: Efforts to overcome the injury need to be improved, especially for traffi c accidents and injury in thebusiness/industry/construction/farm area.

  20. Development of scaling factor prediction method for radionuclide composition in low-level radioactive waste

    International Nuclear Information System (INIS)

    Park, Jin Beak

    1995-02-01

    Low-level radioactive waste management require the knowledge of the natures and quantities of radionuclides in the immobilized or packaged waste. U. S. NRC rules require programs that measure the concentrations of all relevant nuclides either directly or indirectly by relating difficult-to-measure radionuclides to other easy-to-measure radionuclides with application of scaling factors. Scaling factors previously developed through statistical approach can give only generic ones and have many difficult problem about sampling procedures. Generic scaling factors can not take into account for plant operation history. In this study, a method to predict plant-specific and operational history dependent scaling factors is developed. Realistic and detailed approach are taken to find scaling factors at reactor coolant. This approach begin with fission product release mechanisms and fundamental release properties of fuel-source nuclide such as fission product and transuranic nuclide. Scaling factors at various waste streams are derived from the predicted reactor coolant scaling factors with the aid of radionuclide retention and build up model. This model make use of radioactive material balance within the radioactive waste processing systems. Scaling factors at reactor coolant and waste streams which can include the effects of plant operation history have been developed according to input parameters of plant operation history

  1. Association of Leukocyte Telomere Length with Fatigue in Nondisabled Older Adults

    DEFF Research Database (Denmark)

    Bendix, Laila; Thinggaard, Mikael; Kimura, Masayuki

    2014-01-01

    Introduction. Fatigue is often present in older adults with no identified underlying cause. The accruing burden of oxidative stress and inflammation might be underlying factors of fatigue. We therefore hypothesized that leukocyte telomere length (LTL) is relatively short in older adults who...... experience fatigue. Materials and Methods. We assessed 439 older nondisabled Danish twins. LTL was measured using Southern blots of terminal restriction fragments. Fatigue was measured by the Mob-T Scale based on questions on whether the respondents felt fatigued after performing six mobility items. Results...

  2. Confirmatory factor analysis of the Drive for Muscularity Scale-S (DMS-S) and Male Body Attitudes Scale-S (MBAS-S) among male university students in Buenos Aires.

    Science.gov (United States)

    Compte, Emilio J; Sepúlveda, Ana R; de Pellegrin, Yolanda; Blanco, Miriam

    2015-06-01

    Several studies have demonstrated that men express body dissatisfaction differently than women. Although specific instruments that address body dissatisfaction in men have been developed, only a few have been validated in Latin-American male populations. The aim of this study was to reassess the factor structure of the Spanish versions of the Drive for Muscularity Scale (DMS-S) and the Male Body Attitudes Scale (MBAS-S) in an Argentinian sample. A cross-sectional study was conducted among 423 male students to examine: the factorial structure (confirmatory factor analysis), the internal consistency reliability, and the concurrent, convergent and discriminant validity of both scales. Results replicated the two factor structures for the DMS-S and MBAS-S. Both scales showed excellent levels of internal consistency, and various measures of construct validity indicated that the DMS-S and MBAS-S were acceptable and valid instruments to assess body dissatisfaction in Argentinian males. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Species composition, length-weight relationship and condition factor ...

    African Journals Online (AJOL)

    Information on length-weight relationship and condition of landed fish catch at Elechi Creek is inadequate despite different human activities taking place there. Fish specimens were procured twice monthly between April and September 2012 from artisanal fishers and middlemen at three landing sites (stations) in study area.

  4. Organizational factors affecting length of stay in the emergency department: initial observational study.

    Science.gov (United States)

    Bashkin, Osnat; Caspi, Sigalit; Haligoa, Rachel; Mizrahi, Sari; Stalnikowicz, Ruth

    2015-01-01

    Length of stay (LOS) is considered a key measure of emergency department throughput, and from the perspective of the patient, it is perceived as a measure of healthcare service quality. Prolonged LOS can be caused by various internal and external factors. This study examined LOS in the emergency department and explored the main factors that influence LOS and cause delay in patient care. Observations of 105 patients were performed over a 3-month period at the emergency room of a community urban hospital. Observers monitored patients from the moment of entrance to the department until discharge or admission to another hospital ward. Analysis revealed a general average total emergency department LOS of 438 min. Significant differences in average LOS were found between admitted patients (Mean = 544 min, SD = 323 min) and discharged patients (Mean = 291 min, SD = 286 min). In addition, nurse and physician change of shifts and admissions to hospital wards were found to be significant factors associated with LOS. Using an Ishikawa causal diagram, we explored various latent organizational factors that may prolong this time. The study identified several factors that are associated with high average emergency department LOS. High LOS may lead to increases in expenditures and may have implications for patient safety, whereas certain organizational changes, communication improvement, and time management may have a positive effect on it. Interdisciplinary methods can be used to explore factors causing prolonged emergency department LOS and contribute to a better understanding of them.

  5. Factor structure of the Brief Negative Symptom Scale.

    Science.gov (United States)

    Strauss, Gregory P; Hong, L Elliot; Gold, James M; Buchanan, Robert W; McMahon, Robert P; Keller, William R; Fischer, Bernard A; Catalano, Lauren T; Culbreth, Adam J; Carpenter, William T; Kirkpatrick, Brian

    2012-12-01

    The current study examined the factor structure of the Brief Negative Symptom Scale (BNSS), a next-generation negative symptom rating instrument developed in response to the NIMH-sponsored Consensus Development Conference on Negative Symptoms. Participants included 146 individuals with a DSM-IV diagnosis of schizophrenia or schizoaffective disorder. Principal axis factoring indicated two distinct factors explaining 68.7% of the variance. Similar to previous findings, the factors reflected motivation and pleasure and emotional expressivity. These findings provide further support for the construct validity of the BNSS, and for the existence of these two negative symptom factors. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. N2O emission hotspots at different spatial scales and governing factors for small scale hotspots

    International Nuclear Information System (INIS)

    Heuvel, R.N. van den; Hefting, M.M.; Tan, N.C.G.; Jetten, M.S.M.; Verhoeven, J.T.A.

    2009-01-01

    Chronically nitrate-loaded riparian buffer zones show high N 2 O emissions. Often, a large part of the N 2 O is emitted from small surface areas, resulting in high spatial variability in these buffer zones. These small surface areas with high N 2 O emissions (hotspots) need to be investigated to generate knowledge on the factors governing N 2 O emissions. In this study the N 2 O emission variability was investigated at different spatial scales. Therefore N 2 O emissions from three 32 m 2 grids were determined in summer and winter. Spatial variation and total emission were determined on three different scales (0.3 m 2 , 0.018 m 2 and 0.0013 m 2 ) at plots with different levels of N 2 O emissions. Spatial variation was high at all scales determined and highest at the smallest scale. To test possible factors inducing small scale hotspots, soil samples were collected for slurry incubation to determine responses to increased electron donor/acceptor availability. Acetate addition did increase N 2 O production, but nitrate addition failed to increase total denitrification or net N 2 O production. N 2 O production was similar in all soil slurries, independent of their origin from high or low emission soils, indicating that environmental conditions (including physical factors like gas diffusion) rather than microbial community composition governed N 2 O emission rates

  7. Factor structure of the Body Appreciation Scale among Malaysian women.

    Science.gov (United States)

    Swami, Viren; Chamorro-Premuzic, Tomas

    2008-12-01

    The present study examined the factor structure of a Malay version of the Body Appreciation Scale (BAS), a recently developed scale for the assessment of positive body image that has been shown to have a unidimensional structure in Western settings. Results of exploratory and confirmatory factor analyses based on data from community sample of 591 women in Kuala Lumpur, Malaysia, failed to support a unidimensional structure for the Malay BAS. Results of a confirmatory factor analysis suggested two stable factors, which were labelled 'General Body Appreciation' and 'Body Image Investment'. Multi-group analysis showed that the two-factor structure was invariant for both Malaysian Malay and Chinese women, and that there were no significant ethnic differences on either factor. Results also showed that General Body Appreciation was significant negatively correlated with participants' body mass index. These results are discussed in relation to possible cross-cultural differences in positive body image.

  8. Software Development for Estimating the Conversion Factor (K-Factor) at Suitable Scan Areas, Relating the Dose Length Product to the Effective Dose.

    Science.gov (United States)

    Kobayashi, Masanao; Asada, Yasuki; Matsubara, Kosuke; Suzuki, Syouichi; Koshida, Kichiro; Matsunaga, Yuta; Kawaguchi, Ai; Haba, Tomonobu; Toyama, Hiroshi; Kato, Ryouichi

    2017-05-01

    We developed a k-factor-creator software (kFC) that provides the k-factor for CT examination in an arbitrary scan area. It provides the k-factor from the effective dose and dose-length product by Imaging Performance Assessment of CT scanners and CT-EXPO. To assess the reliability, we compared the kFC-evaluated k-factors with those of the International Commission on Radiological Protection (ICRP) publication 102. To confirm the utility, the effective dose determined by coronary computed tomographic angiography (CCTA) was evaluated by a phantom study and k-factor studies. In the CCTA, the effective doses were 5.28 mSv in the phantom study, 2.57 mSv (51%) in the k-factor of ICRP, and 5.26 mSv (1%) in the k-factor of the kFC. Effective doses can be determined from the kFC-evaluated k-factors in suitable scan areas. Therefore, we speculate that the flexible k-factor is useful in clinical practice, because CT examinations are performed in various scan regions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. The Euler anomaly and scale factors in Liouville/Toda CFTs

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, Aswin [Theory Group, Department of Physics, University of Texas at Austin,2515 Speedway Stop C1608, Austin, TX 78712-1197 (United States)

    2014-04-22

    The role played by the Euler anomaly in the dictionary relating sphere partition functions of four dimensional theories of class S and two dimensional non rational CFTs is clarified. On the two dimensional side, this involves a careful treatment of scale factors in Liouville/Toda correlators. Using ideas from tinkertoy constructions for Gaiotto duality, a framework is proposed for evaluating these scale factors. The representation theory of Weyl groups plays a critical role in this framework.

  10. A Factor Analytic Study of the Internet Usage Scale

    Science.gov (United States)

    Monetti, David M.; Whatley, Mark A.; Hinkle, Kerry T.; Cunningham, Kerry T.; Breneiser, Jennifer E.; Kisling, Rhea

    2011-01-01

    This study developed an Internet Usage Scale (IUS) for use with adolescent populations. The IUS is a 26-item scale that measures participants' beliefs about how their Internet usage impacts their behavior. The sample for this study consisted of 947 middle school students. An exploratory factor analysis with varimax rotation was conducted on the…

  11. Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel.

    Science.gov (United States)

    Bechtle, Sabine; Fett, Theo; Rizzi, Gabriele; Habelitz, Stefan; Schneider, Gerold A

    2010-05-01

    Fracture toughness resistance curves describe a material's resistance against crack propagation. These curves are often used to characterize biomaterials like bone, nacre or dentin as these materials commonly exhibit a pronounced increase in fracture toughness with crack extension due to co-acting mechanisms such as crack bridging, crack deflection and microcracking. The knowledge of appropriate stress intensity factors which depend on the sample and crack geometry is essential for determining these curves. For the dental biomaterials enamel and dentin it was observed that, under bending and tensile loading, crack propagation occurs under certain constant angles to the initial notch direction during testing procedures used for fracture resistance curve determination. For this special crack geometry (a kink crack of finite length in a finite body) appropriate geometric function solutions are missing. Hence, we present in this study new mixed-mode stress intensity factors for kink cracks with finite kink length within samples of finite dimensions for two loading cases (tension and bending) which were derived from a combination of mixed-mode stress intensity factors of kink cracks with infinitely small kinks and of slant cracks. These results were further applied to determine the fracture resistance curves of enamel and dentin by testing single edge notched bending (SENB) specimens. It was found that kink cracks with finite kink length exhibit identical stress fields to slant cracks as soon as the kink length exceeds 0.15 times the initial straight crack or notch length. The use of stress intensity factor solutions for infinitely small kink cracks for the determination of dentin fracture resistance curves (as was done by other researchers) leads to an overestimation of dentin's fracture resistance of up to 30%. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Application of soft x-ray laser interferometry to study large-scale-length, high-density plasmas

    International Nuclear Information System (INIS)

    Wan, A.S.; Barbee, T.W., Jr.; Cauble, R.

    1996-01-01

    We have employed a Mach-Zehnder interferometer, using a Ne-like Y x- ray laser at 155 Angstrom as the probe source, to study large-scale- length, high-density colliding plasmas and exploding foils. The measured density profile of counter-streaming high-density colliding plasmas falls in between the calculated profiles using collisionless and fluid approximations with the radiation hydrodynamic code LASNEX. We have also performed simultaneous measured the local gain and electron density of Y x-ray laser amplifier. Measured gains in the amplifier were found to be between 10 and 20 cm -1 , similar to predictions and indicating that refraction is the major cause of signal loss in long line focus lasers. Images showed that high gain was produced in spots with dimensions of ∼ 10 μm, which we believe is caused by intensity variations in the optical drive laser. Measured density variations were smooth on the 10-μm scale so that temperature variations were likely the cause of the localized gain regions. We are now using the interferometry technique as a mechanism to validate and benchmark our numerical codes used for the design and analysis of high-energy-density physics experiments. 11 refs., 6 figs

  13. Comparison of relativity theories with observer-independent scales of both velocity and length/mass

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Benedetti, Dario; D'Andrea, Francesco; Procaccini, Andrea

    2003-01-01

    We consider the two most studied proposals of relativity theories with observer-independent scales of both velocity and length/mass: the one discussed by Amelino-Camelia as an illustrative example for the original proposal (Preprint gr-qc/0012051) of theories with two relativistic invariants, and an alternative more recently proposed by Magueijo and Smolin (Preprint hep-th/0112090). We show that these two relativistic theories are much more closely connected than it would appear on the basis of a naive analysis of their original formulations. In particular, in spite of adopting a rather different formal description of the deformed boost generators, they end up assigning the same dependence of momentum on rapidity, which can be described as the core feature of these relativistic theories. We show that this observation can be used to clarify the concepts of particle mass, particle velocity and energy-momentum conservation rules in these theories with two relativistic invariants

  14. Engineering polyelectrolyte multilayer structure at the nanometer length scale by tuning polymer solution conformation.

    Science.gov (United States)

    Boddohi, Soheil; Killingsworth, Christopher; Kipper, Matt

    2008-03-01

    Chitosan (a weak polycation) and heparin (a strong polyanion) are used to make polyelectrolyte multilayers (PEM). PEM thickness and composition are determined as a function of solution pH (4.6 to 5.8) and ionic strength (0.1 to 0.5 M). Over this range, increasing pH increases the PEM thickness; however, the sensitivity to changes in pH is a strong function of ionic strength. The PEM thickness data are correlated to the polymer conformation in solution. Polyelectrolyte conformation in solution is characterized by gel permeation chromatography (GPC). The highest sensitivity of PEM structure to pH is obtained at intermediate ionic strength. Different interactions govern the conformation and adsorption phenomena at low and high ionic strength, leading to reduced sensitivity to solution pH at extreme ionic strengths. The correspondence between PEM thickness and polymer solution conformation offers opportunities to tune polymer thin film structure at the nanometer length scale by controlling simple, reproducible processing conditions.

  15. Growing season length as a key factor of cumulative net ecosystem exchange over the pine forest ecosystems in Europe

    Czech Academy of Sciences Publication Activity Database

    Danielewska, A.; Urbaniak, M.; Olejnik, Janusz

    2015-01-01

    Roč. 29, č. 2 (2015), s. 129-135 ISSN 0236-8722 Institutional support: RVO:67179843 Keywords : forest * carbon dioxide * eddy covariance * growing season length Subject RIV: EH - Ecology, Behaviour Impact factor: 1.067, year: 2015

  16. Gravo-Aeroelastic Scaling for Extreme-Scale Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fingersh, Lee J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Loth, Eric [University of Virginia; Kaminski, Meghan [University of Virginia; Qin, Chao [University of Virginia; Griffith, D. Todd [Sandia National Laboratories

    2017-06-09

    A scaling methodology is described in the present paper for extreme-scale wind turbines (rated at 10 MW or more) that allow their sub-scale turbines to capture their key blade dynamics and aeroelastic deflections. For extreme-scale turbines, such deflections and dynamics can be substantial and are primarily driven by centrifugal, thrust and gravity forces as well as the net torque. Each of these are in turn a function of various wind conditions, including turbulence levels that cause shear, veer, and gust loads. The 13.2 MW rated SNL100-03 rotor design, having a blade length of 100-meters, is herein scaled to the CART3 wind turbine at NREL using 25% geometric scaling and blade mass and wind speed scaled by gravo-aeroelastic constraints. In order to mimic the ultralight structure on the advanced concept extreme-scale design the scaling results indicate that the gravo-aeroelastically scaled blades for the CART3 are be three times lighter and 25% longer than the current CART3 blades. A benefit of this scaling approach is that the scaled wind speeds needed for testing are reduced (in this case by a factor of two), allowing testing under extreme gust conditions to be much more easily achieved. Most importantly, this scaling approach can investigate extreme-scale concepts including dynamic behaviors and aeroelastic deflections (including flutter) at an extremely small fraction of the full-scale cost.

  17. Excess entropy scaling for the segmental and global dynamics of polyethylene melts.

    Science.gov (United States)

    Voyiatzis, Evangelos; Müller-Plathe, Florian; Böhm, Michael C

    2014-11-28

    The range of validity of the Rosenfeld and Dzugutov excess entropy scaling laws is analyzed for unentangled linear polyethylene chains. We consider two segmental dynamical quantities, i.e. the bond and the torsional relaxation times, and two global ones, i.e. the chain diffusion coefficient and the viscosity. The excess entropy is approximated by either a series expansion of the entropy in terms of the pair correlation function or by an equation of state for polymers developed in the context of the self associating fluid theory. For the whole range of temperatures and chain lengths considered, the two estimates of the excess entropy are linearly correlated. The scaled bond and torsional relaxation times fall into a master curve irrespective of the chain length and the employed scaling scheme. Both quantities depend non-linearly on the excess entropy. For a fixed chain length, the reduced diffusion coefficient and viscosity scale linearly with the excess entropy. An empirical reduction to a chain length-independent master curve is accessible for both dynamic quantities. The Dzugutov scheme predicts an increased value of the scaled diffusion coefficient with increasing chain length which contrasts physical expectations. The origin of this trend can be traced back to the density dependence of the scaling factors. This finding has not been observed previously for Lennard-Jones chain systems (Macromolecules, 2013, 46, 8710-8723). Thus, it limits the applicability of the Dzugutov approach to polymers. In connection with diffusion coefficients and viscosities, the Rosenfeld scaling law appears to be of higher quality than the Dzugutov approach. An empirical excess entropy scaling is also proposed which leads to a chain length-independent correlation. It is expected to be valid for polymers in the Rouse regime.

  18. Cardiac-Specific Conversion Factors to Estimate Radiation Effective Dose From Dose-Length Product in Computed Tomography.

    Science.gov (United States)

    Trattner, Sigal; Halliburton, Sandra; Thompson, Carla M; Xu, Yanping; Chelliah, Anjali; Jambawalikar, Sachin R; Peng, Boyu; Peters, M Robert; Jacobs, Jill E; Ghesani, Munir; Jang, James J; Al-Khalidi, Hussein; Einstein, Andrew J

    2018-01-01

    This study sought to determine updated conversion factors (k-factors) that would enable accurate estimation of radiation effective dose (ED) for coronary computed tomography angiography (CTA) and calcium scoring performed on 12 contemporary scanner models and current clinical cardiac protocols and to compare these methods to the standard chest k-factor of 0.014 mSv·mGy -1 cm -1 . Accurate estimation of ED from cardiac CT scans is essential to meaningfully compare the benefits and risks of different cardiac imaging strategies and optimize test and protocol selection. Presently, ED from cardiac CT is generally estimated by multiplying a scanner-reported parameter, the dose-length product, by a k-factor which was determined for noncardiac chest CT, using single-slice scanners and a superseded definition of ED. Metal-oxide-semiconductor field-effect transistor radiation detectors were positioned in organs of anthropomorphic phantoms, which were scanned using all cardiac protocols, 120 clinical protocols in total, on 12 CT scanners representing the spectrum of scanners from 5 manufacturers (GE, Hitachi, Philips, Siemens, Toshiba). Organ doses were determined for each protocol, and ED was calculated as defined in International Commission on Radiological Protection Publication 103. Effective doses and scanner-reported dose-length products were used to determine k-factors for each scanner model and protocol. k-Factors averaged 0.026 mSv·mGy -1 cm -1 (95% confidence interval: 0.0258 to 0.0266) and ranged between 0.020 and 0.035 mSv·mGy -1 cm -1 . The standard chest k-factor underestimates ED by an average of 46%, ranging from 30% to 60%, depending on scanner, mode, and tube potential. Factors were higher for prospective axial versus retrospective helical scan modes, calcium scoring versus coronary CTA, and higher (100 to 120 kV) versus lower (80 kV) tube potential and varied among scanner models (range of average k-factors: 0.0229 to 0.0277 mSv·mGy -1 cm -1 ). Cardiac k-factors

  19. Feelings about culture scales: development, factor structure, reliability, and validity.

    Science.gov (United States)

    Maffini, Cara S; Wong, Y Joel

    2015-04-01

    Although measures of cultural identity, values, and behavior exist in the multicultural psychological literature, there is currently no measure that explicitly assesses ethnic minority individuals' positive and negative affect toward culture. Therefore, we developed 2 new measures called the Feelings About Culture Scale--Ethnic Culture and Feelings About Culture Scale--Mainstream American Culture and tested their psychometric properties. In 6 studies, we piloted the measures, conducted factor analyses to clarify their factor structure, and examined reliability and validity. The factor structure revealed 2 dimensions reflecting positive and negative affect for each measure. Results provided evidence for convergent, discriminant, criterion-related, and incremental validity as well as the reliability of the scales. The Feelings About Culture Scales are the first known measures to examine both positive and negative affect toward an individual's ethnic culture and mainstream American culture. The focus on affect captures dimensions of psychological experiences that differ from cognitive and behavioral constructs often used to measure cultural orientation. These measures can serve as a valuable contribution to both research and counseling by providing insight into the nuanced affective experiences ethnic minority individuals have toward culture. (c) 2015 APA, all rights reserved).

  20. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  1. Success Factors of Large Scale ERP Implementation in Thailand

    OpenAIRE

    Rotchanakitumnuai; Siriluck

    2010-01-01

    The objectives of the study are to examine the determinants of ERP implementation success factors of ERP implementation. The result indicates that large scale ERP implementation success consist of eight factors: project management competence, knowledge sharing, ERP system quality , understanding, user involvement, business process re-engineering, top management support, organization readiness.

  2. Scale factor duality for conformal cyclic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Silva, University Camara da; Lima, A.L. Alves; Sotkov, G.M. [Departamento de Física - CCE,Universidade Federal de Espirito Santo, 29075-900, Vitoria ES (Brazil)

    2016-11-16

    The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose’s Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.

  3. Scale factor duality for conformal cyclic cosmologies

    International Nuclear Information System (INIS)

    Silva, University Camara da; Lima, A.L. Alves; Sotkov, G.M.

    2016-01-01

    The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose’s Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.

  4. Relativistic distances, sizes, lengths

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs

  5. Scale for positive aspects of caregiving experience: development, reliability, and factor structure.

    Science.gov (United States)

    Kate, N; Grover, S; Kulhara, P; Nehra, R

    2012-06-01

    OBJECTIVE. To develop an instrument (Scale for Positive Aspects of Caregiving Experience [SPACE]) that evaluates positive caregiving experience and assess its psychometric properties. METHODS. Available scales which assess some aspects of positive caregiving experience were reviewed and a 50-item questionnaire with a 5-point rating was constructed. In all, 203 primary caregivers of patients with severe mental disorders were asked to complete the questionnaire. Internal consistency, test-retest reliability, cross-language reliability, split-half reliability, and face validity were evaluated. Principal component factor analysis was run to assess the factorial validity of the scale. RESULTS. The scale developed as part of the study was found to have good internal consistency, test-retest reliability, cross-language reliability, split-half reliability, and face validity. Principal component factor analysis yielded a 4-factor structure, which also had good test-retest reliability and cross-language reliability. There was a strong correlation between the 4 factors obtained. CONCLUSION. The SPACE developed as part of this study has good psychometric properties.

  6. Factor analysis of Wechsler Adult Intelligence Scale-Revised in developmentally disabled persons.

    Science.gov (United States)

    Di Nuovo, Santo F; Buono, Serafino

    2006-12-01

    The results of previous studies on the factorial structure of Wechsler Intelligence Scales are somewhat inconsistent across normal and pathological samples. To study specific clinical groups, such as developmentally disabled persons, it is useful to examine the factor structure in appropriate samples. A factor analysis was carried out using the principal component method and the Varimax orthogonal rotation on the Wechsler Adult Intelligence Scale (WAIS-R) in a sample of 203 developmentally disabled persons, with a mean age of 25 years 4 months. Developmental disability ranged from mild to moderate. Partially contrasting with previous studies on normal samples, results found a two-factor solution. Wechsler's traditional Verbal and Performance scales seems to be more appropriate for this sample than the alternative three-factor solution.

  7. Double tube heat exchanger with novel enhancement: Part I - flow development length and adiabatic friction factor

    Energy Technology Data Exchange (ETDEWEB)

    Tiruselvam, R.; Raghavan, Vijay R. [Universiti Teknologi PETRONAS, Faculty of Mechanical Engineering, Tronoh (Malaysia)

    2012-04-15

    The study is conducted to evaluate the flow characteristics in a double tube heat exchanger using two new and versatile enhancement configurations. The novelty is that they are usable in single phase forced convection, evaporation and condensation. Correlations are proposed for flow development length and friction factor for use in predicting fluid pumping power in thermal equipment as well as in subsequent heat transfer characterization of the surface. (orig.)

  8. Factor validation of the portuguese version of the social skills scale of the Preschool and Kindergarten Behavior Scales

    Directory of Open Access Journals (Sweden)

    Maria João Seabra-Santos

    2014-05-01

    Full Text Available The assessment of preschoolers’ social skills represents a topic of growing importance in research recently developed in the field. The purpose of this article is to present confirmatory factor analyses studies for the Social Skills scale of the Preschool and Kindergarten Behavior Scales – Second Edition (PKBS-2, a behavior rating scale that evaluates social skills and problem behaviors, adapted and validated for Portuguese preschool children. The 34 items of the Social Skills scale, distributed on three subscales (Social Cooperation/Adjustment, Social Interaction/Empathy and Social Independence/Assertiveness, were grouped into item-parcels. Model adjustment was analyzed for the total sample (N = 2000 and the analyses were replicated for the subsamples collected in the home (n = 1000 and school settings (n = 1000. The factor structure was very stable for the three samples, with high internal consistency levels and correlations between parcels/scales. The results highlight the utility/validity of the Social Skills scale of the PKBS-2 (Portuguese version.

  9. Factor Analysis of the Brazilian Version of UPPS Impulsive Behavior Scale

    Science.gov (United States)

    Sediyama, Cristina Y. N.; Moura, Ricardo; Garcia, Marina S.; da Silva, Antonio G.; Soraggi, Carolina; Neves, Fernando S.; Albuquerque, Maicon R.; Whiteside, Setephen P.; Malloy-Diniz, Leandro F.

    2017-01-01

    Objective: To examine the internal consistency and factor structure of the Brazilian adaptation of the UPPS Impulsive Behavior Scale. Methods: UPPS is a self-report scale composed by 40 items assessing four factors of impulsivity: (a) urgency, (b) lack of premeditation; (c) lack of perseverance; (d) sensation seeking. In the present study 384 participants (278 women and 106 men), who were recruited from schools, universities, leisure centers and workplaces fulfilled the UPPS scale. An exploratory factor analysis was performed by using Varimax factor rotation and Kaiser Normalization, and we also conducted two confirmatory analyses to test the independency of the UPPS components found in previous analysis. Results: Results showed a decrease in mean UPPS total scores with age and this analysis showed that the youngest participants (below 30 years) scored significantly higher than the other groups over 30 years. No difference in gender was found. Cronbach’s alpha, results indicated satisfactory values for all subscales, with similar high values for the subscales and confirmatory factor analysis indexes also indicated a poor model fit. The results of two exploratory factor analysis were satisfactory. Conclusion: Our results showed that the Portuguese version has the same four-factor structure of the original and previous translations of the UPPS. PMID:28484414

  10. Factor Analysis of the Brazilian Version of UPPS Impulsive Behavior Scale

    Directory of Open Access Journals (Sweden)

    Leandro F. Malloy-Diniz

    2017-04-01

    Full Text Available Objective: To examine the internal consistency and factor structure of the Brazilian adaptation of the UPPS Impulsive Behavior Scale.Methods: UPPS is a self-report scale composed by 40 items assessing four factors of impulsivity: (a urgency, (b lack of premeditation; (c lack of perseverance; (d sensation seeking. In the present study 384 participants (278 women and 106 men, who were recruited from schools, universities, leisure centers and workplaces fulfilled the UPPS scale. An exploratory factor analysis was performed by using Varimax factor rotation and Kaiser Normalization, and we also conducted two confirmatory analyses to test the independency of the UPPS components found in previous analysis.Results: Results showed a decrease in mean UPPS total scores with age and this analysis showed that the youngest participants (below 30 years scored significantly higher than the other groups over 30 years. No difference in gender was found. Cronbach’s alpha, results indicated satisfactory values for all subscales, with similar high values for the subscales and confirmatory factor analysis indexes also indicated a poor model fit. The results of two exploratory factor analysis were satisfactory.Conclusion: Our results showed that the Portuguese version has the same four-factor structure of the original and previous translations of the UPPS.

  11. Factor Analysis of the Brazilian Version of UPPS Impulsive Behavior Scale.

    Science.gov (United States)

    Sediyama, Cristina Y N; Moura, Ricardo; Garcia, Marina S; da Silva, Antonio G; Soraggi, Carolina; Neves, Fernando S; Albuquerque, Maicon R; Whiteside, Setephen P; Malloy-Diniz, Leandro F

    2017-01-01

    Objective: To examine the internal consistency and factor structure of the Brazilian adaptation of the UPPS Impulsive Behavior Scale. Methods: UPPS is a self-report scale composed by 40 items assessing four factors of impulsivity: (a) urgency, (b) lack of premeditation; (c) lack of perseverance; (d) sensation seeking. In the present study 384 participants (278 women and 106 men), who were recruited from schools, universities, leisure centers and workplaces fulfilled the UPPS scale. An exploratory factor analysis was performed by using Varimax factor rotation and Kaiser Normalization, and we also conducted two confirmatory analyses to test the independency of the UPPS components found in previous analysis. Results: Results showed a decrease in mean UPPS total scores with age and this analysis showed that the youngest participants (below 30 years) scored significantly higher than the other groups over 30 years. No difference in gender was found. Cronbach's alpha, results indicated satisfactory values for all subscales, with similar high values for the subscales and confirmatory factor analysis indexes also indicated a poor model fit. The results of two exploratory factor analysis were satisfactory. Conclusion: Our results showed that the Portuguese version has the same four-factor structure of the original and previous translations of the UPPS.

  12. Self-Compassion Scale: IRT Psychometric Analysis, Validation, and Factor Structure – Slovak Translation

    Directory of Open Access Journals (Sweden)

    Júlia Halamová

    2018-01-01

    Full Text Available The present study verifies the psychometric properties of the Slovak version of the Self-Compassion Scale through item response theory, factor-analysis, validity analyses and norm development. The surveyed sample consisted of 1,181 participants (34% men and 66% women with a mean age of 30.30 years (SD = 12.40. Two general factors (Self-compassionate responding and Self-uncompassionate responding were identified, whereas there was no support for a single general factor of the scale and six subscales. The results of the factor analysis were supported by an independent sample of 676 participants. Therefore, the use of total score for the whole scale would be inappropriate. In Slovak language the Self-Compassion Scale should be used in the form of two general subscales (Self-compassionate responding and Self-uncompassionate responding. In line with our theoretical assumptions, we obtained relatively high Spearman’s correlation coefficients between the Self-Compassion Scale and related external variables, demonstrating construct validity for the scale. To sum up, the Slovak translation of The Self-Compassion Scale is a reliable and valid instrument that measures Self-compassionate responding and Self-uncompassionate responding.

  13. Cross-Sectional Association between Length of Incarceration and Selected Risk Factors for Non-Communicable Chronic Diseases in Two Male Prisons of Mexico City.

    Science.gov (United States)

    Silverman-Retana, Omar; Lopez-Ridaura, Ruy; Servan-Mori, Edson; Bautista-Arredondo, Sergio; Bertozzi, Stefano M

    2015-01-01

    Mexico City prisons are characterized by overcrowded facilities and poor living conditions for housed prisoners. Chronic disease profile is characterized by low prevalence of self reported hypertension (2.5%) and diabetes (1.8%) compared to general population; 9.5% of male inmates were obese. There is limited evidence regarding on the exposure to prison environment over prisoner's health status; particularly, on cardiovascular disease risk factors. The objective of this study is to assess the relationship between length of incarceration and selected risk factors for non-communicable chronic diseases (NCDs). We performed a cross-sectional analysis using data from two large male prisons in Mexico City (n = 14,086). Using quantile regression models we assessed the relationship between length of incarceration and selected risk factors for NCDs; stratified analysis by age at admission to prison was performed. We found a significant negative trend in BMI and WC across incarceration length quintiles. BP had a significant positive trend with a percentage change increase around 5% mmHg. The greatest increase in systolic blood pressure was observed in the older age at admission group. This analysis provides insight into the relationship between length of incarceration and four selected risk factors for NCDs; screening for high blood pressure should be guarantee in order to identify at risk individuals and linked to the prison's health facility. It is important to assess prison environment features to approach potential risk for developing NCDs in this context.

  14. Cross-Sectional Association between Length of Incarceration and Selected Risk Factors for Non-Communicable Chronic Diseases in Two Male Prisons of Mexico City.

    Directory of Open Access Journals (Sweden)

    Omar Silverman-Retana

    Full Text Available Mexico City prisons are characterized by overcrowded facilities and poor living conditions for housed prisoners. Chronic disease profile is characterized by low prevalence of self reported hypertension (2.5% and diabetes (1.8% compared to general population; 9.5% of male inmates were obese. There is limited evidence regarding on the exposure to prison environment over prisoner's health status; particularly, on cardiovascular disease risk factors. The objective of this study is to assess the relationship between length of incarceration and selected risk factors for non-communicable chronic diseases (NCDs.We performed a cross-sectional analysis using data from two large male prisons in Mexico City (n = 14,086. Using quantile regression models we assessed the relationship between length of incarceration and selected risk factors for NCDs; stratified analysis by age at admission to prison was performed. We found a significant negative trend in BMI and WC across incarceration length quintiles. BP had a significant positive trend with a percentage change increase around 5% mmHg. The greatest increase in systolic blood pressure was observed in the older age at admission group.This analysis provides insight into the relationship between length of incarceration and four selected risk factors for NCDs; screening for high blood pressure should be guarantee in order to identify at risk individuals and linked to the prison's health facility. It is important to assess prison environment features to approach potential risk for developing NCDs in this context.

  15. Length Scales of the Neutral Wind Profile over Homogeneous Terrain

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Mann, Jakob

    2010-01-01

    The wind speed profile for the neutral boundary layer is derived for a number of mixing-length parameterizations, which account for the height of the boundary layer. The wind speed profiles show good agreement with the reanalysis of the Leipzig wind profile (950 m high) and with combined cup–soni...

  16. Validity and factor structure of the bodybuilding dependence scale.

    Science.gov (United States)

    Smith, D; Hale, B

    2004-04-01

    To investigate the factor structure, validity, and reliability of the bodybuilding dependence scale and to investigate differences in bodybuilding dependence between men and women and competitive and non-competitive bodybuilders. Seventy two male competitive bodybuilders, 63 female competitive bodybuilders, 87 male non-competitive bodybuilders, and 63 non-competitive female bodybuilders completed the bodybuilding dependence scale (BDS), the exercise dependence questionnaire (EDQ), and the muscle dysmorphia inventory (MDI). Confirmatory factor analysis of the BDS supported a three factor model of bodybuilding dependence, consisting of social dependence, training dependence, and mastery dependence (Q = 3.16, CFI = 0.98, SRMR = 0.04). Internal reliability of all three subscales was high (Cronbach's alpha = 0.92, 0.92, and 0.93 respectively). Significant (pbodybuilders scored significantly (pbodybuilders. However, there were no significant sex differences on any of the BDS subscales (p>0.05). The three factor BDS appears to be a reliable and valid measure of bodybuilding dependence. Symptoms of bodybuilding dependence are more prevalent in competitive bodybuilders than non-competitive ones, but there are no significant sex differences in bodybuilding dependence.

  17. Newton's constant from a minimal length: additional models

    International Nuclear Information System (INIS)

    Sahlmann, Hanno

    2011-01-01

    We follow arguments of Verlinde (2010 arXiv:1001.0785 [hep-th]) and Klinkhamer (2010 arXiv:1006.2094 [hep-th]), and construct two models of the microscopic theory of a holographic screen that allow for the thermodynamical derivation of Newton's law, with Newton's constant expressed in terms of a minimal length scale l contained in the area spectrum of the microscopic theory. One of the models is loosely related to the quantum structure of surfaces and isolated horizons in loop quantum gravity. Our investigation shows that the conclusions reached by Klinkhamer regarding the new length scale l seem to be generic in all their qualitative aspects.

  18. Relative strength of second harmonic and 3/2 omega emissions from long-scale-length laser produced plasmas

    International Nuclear Information System (INIS)

    Sinha, B.K.; Kumbhare, S.R.

    1988-01-01

    Experiments were conducted on the planar slab targets of carbon, aluminum, and copper, using a 1.0641 μm laser, at laser intensities varying from 2 x 10/sup 12/ to 1 x 10/sup 14/ W/cm/sup 2/. The laser had a fluorescent linewidth of 4.5 A. Spectral profiles of parametrically modulated second harmonic as well as 3/2/ω/sub 0/ emissions have been measured for the long-scale-length plasmas so generated. Relative strengths of three emissions with respect to peak signal intensity and spectral energy content as a function of laser intensity are graphically reported. Results are discussed on the basis of two plasmon and parametric decay instabilities

  19. The Length of Residence is Associated with Cardiovascular Disease Risk Factors among Foreign-English Teachers in Korea

    Directory of Open Access Journals (Sweden)

    Brice Wilfried Obiang-Obounou

    2017-12-01

    Full Text Available Cardiovascular disease (CVD is a group of disorders that involve the heart and blood vessels. Acculturation is associated with CVD risk factors among immigrants in Western countries. In this study, the association between acculturation and CVD risk factors was examined among English teachers from Europe and the USA living in Korea. English teachers were defined as those who reported their profession as “English Teacher”. Only English teachers from Europe (UK, and Ireland, n = 81 and North America (Canada and USA, n = 304 were selected. The length of residence and eating Korean ethnic food were used as proxy indicators for acculturation. Gender was associated with hypertension: 17.6% of males self-reported to have the cardiovascular risk factor when compared to females (7.4%. The length of residence in Korea was associated with hypertension (p = 0.045, BMI (p = 0.028, and physical inactivity (p = 0.046. English teachers who had been residing in Korea for more than five years were more likely to report hypertension (OR = 2.16; p = 0.011, smoking (OR = 1.51; p = 0.080, and overweight/obesity (OR = 1.49; p = 0.009 than participants who had been living in Korea for less than five years. This study found evidence of the healthy immigrant effect and less favorable cardiovascular risk profiles among English teachers who have lived in Korea for over five years.

  20. Structure of Rosenberg’s Self-Esteem Scale: Three-factor solution

    Czech Academy of Sciences Publication Activity Database

    Blatný, Marek; Urbánek, Tomáš; Osecká, Terezie

    2006-01-01

    Roč. 48, č. 4 (2006), s. 371-378 ISSN 0039-3320 Institutional research plan: CEZ:AV0Z70250504 Keywords : Rosenberg Self - Esteem Scale * confirmatory factor analysis * adolescents Subject RIV: AN - Psychology Impact factor: 0.410, year: 2006

  1. Inflation of the screening length induced by Bjerrum pairs.

    Science.gov (United States)

    Zwanikken, Jos; van Roij, René

    2009-10-21

    Within a modified Poisson-Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale [Formula: see text] over which electric fields are screened in electrolyte solutions, taking into account a simple association-dissociation equilibrium between free ions and Bjerrum pairs. At low densities of Bjerrum pairs, this length scale is well approximated by the Debye length [Formula: see text], with ρ(s) the free-ion density. At high densities of Bjerrum pairs, however, we find [Formula: see text], which is significantly larger than 1/κ due to the enhanced effective permittivity of the electrolyte, caused by the polarization of Bjerrum pairs. We argue that this mechanism may explain the recently observed anomalously large colloid-free zones between an oil-dispersed colloidal crystal and a colloidal monolayer at the oil-water interface.

  2. Effects of magnetic order on the superconducting length scales and critical fields in single crystal ErNi2B2C

    DEFF Research Database (Denmark)

    Gammel, P.L.; Barber, B.P.; Ramirez, A.P.

    1999-01-01

    The flux line form factor in small angle neutron scattering and transport data determines the superconducting length scares and critical fields in single crystal ErNi2B2C. For H parallel to c, the coherence length xi increases and the penetration depth lambda decreases when crossing T-N = 6.0 K......, the Neel transition. The critical fields show corresponding anomalies near T-N. For H perpendicular to c, the fourfold modulation of the upper critical field H-c2 is strongly temperature dependent, changing sign near T-N, and can be modeled using the anisotropy of the sublattice magnetization....

  3. The screening length of interatomic potential in atomic collisions

    International Nuclear Information System (INIS)

    Yamamura, Y.; Takeuchi, W.; Kawamura, T.

    1998-03-01

    In computer studies on the interaction of charged particle with solids, many authors treat the nuclear collision by the Thomas-Fermi screened Coulomb potential. For better agreement with experiment, the screening length is modified sometimes. We investigate the theoretical background for the correction factor of the screening length in the interatomic potential which can be deduced from two steps. The first step is to select the correction factor of an isolated atom so as to match the average radius of the Thomas-Fermi electron distribution with that of the Hartree-Fock electron distribution, where we use the Clementi and Roetti's table. The second step is to determine the correction factor of the screening length of the interatomic potential by using a combination rule. The correction factors obtained for the screening length are in good agreement with those determined by the computer analysis of the Impact Collision Ion Scattering Spectroscopy (ICISS) data. (author)

  4. Psychological Profiles in the Prediction of Leukocyte Telomere Length in Healthy Individuals.

    Directory of Open Access Journals (Sweden)

    Louisia Starnino

    Full Text Available Shorter telomere length (TL may signal premature cellular aging and increased risk for disease. While depression and psychosocial stress have been associated with shorter telomeres, other psychological risk factors for cardiovascular disease have received less attention.To evaluate the association between TL and psychological risk factors (symptoms of anxiety and depression, hostility and defensiveness traits for heart disease, and to examine whether chronological age and sex moderate the associations observed.132 healthy men and women (Mage = 45.34 years completed the Marlowe-Crowne Social Desirability Scale, the Beck Depression Inventory II, The Beck Anxiety Inventory and the Cook-Medley Hostility Scale. Relative TL was measured by quantitative polymerase chain reaction (PCR of total genomic DNA samples. A series of hierarchical linear regressions were performed controlling for pertinent covariates.Shorter TL was observed among individuals high in defensiveness (β = -.221 and depressive symptoms (β = -.213, as well as in those with less hostility (β =.256 and anxiety (β =.220(all Ps<.05. Psychological variables explained 19% of the variance over and above that explained by covariates (age, sex, exercise, alcohol consumption, systemic inflammation, and 24-hr mean arterial pressure. Age moderated the relation between TL and defensiveness (β =.179, p =.03. Sex did not influence any of the relations.Telomere length is associated with psychological burden though the direction of effect differs depending on the psychological variables under study. Further research is needed to determine the reasons for and implications of these seemingly contradictory findings.

  5. From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering.

    Science.gov (United States)

    Santo, Vítor E; Gomes, Manuela E; Mano, João F; Reis, Rui L

    2012-07-01

    The field of biomaterials has advanced towards the molecular and nanoscale design of bioactive systems for tissue engineering, regenerative medicine and drug delivery. Spatial cues are displayed in the 3D extracellular matrix and can include signaling gradients, such as those observed during chemotaxis. Architectures range from the nanometer to the centimeter length scales as exemplified by extracellular matrix fibers, cells and macroscopic shapes. The main focus of this review is the application of a biomimetic approach by the combination of architectural cues, obtained through the application of micro- and nanofabrication techniques, with the ability to sequester and release growth factors and other bioactive agents in a spatiotemporal controlled manner for bone and cartilage engineering.

  6. Sonographic fetal weight estimation using femoral length: Honarvar Equation

    International Nuclear Information System (INIS)

    Firoozabadi, Raziah Dehghani; Ghasemi, N.; Firoozabadi, Mehdi Dehghani

    2007-01-01

    Fetal growth is the result of interactions between various factors and can be estimated by ultrasonic measurements. Fetal femur length is a scale for estimating the fetal weight in individual races because fetal growth patterns differ among different races. This was a prospective study involving 500 pregnant women at 36 weeks of gestational age. Real-time sonography was done to measure the femoral length and the weight of the fetus was estimated by the Honarvar 2 equation. The correlation between estimated fetal weight (EFW) and real weight was tested by Pearson correlation coefficient and relationships with the age and BMI of mother, the sex of the neonate and parity were tested by multiple regression. EFW by the Honarvar 2 equation correlated significantly with actual birthweight. Therefore, this equation is valid for fetal weight estimation. It also does not depend on the age and BMI of the mother, sex of the neonate, parity. Ethnicity potentially plays an important role in the fetal weight estimation. The Honarvar formula produced the best estimate of the actual birthweight for Iranian fetuses, and its use is recommended. (author)

  7. An inter-battery factor analysis of the comrey personality scales and the 16 personality factor questionnaire

    OpenAIRE

    Gideon P. de Bruin

    2000-01-01

    The scores of 700 Afrikaans-speaking university students on the Comrey Personality Scales and the 16 Personality Factor Questionnaire were subjected to an inter-battery factor analysis. This technique uses only the correlations between two sets of variables and reveals only the factors that they have in common. Three of the Big Five personality factors were revealed, namely Extroversion, Neuroticism and Conscientiousness. However, the Conscientiousness factor contained a relatively strong uns...

  8. The factor structure of the self-directed learning readiness scale | de ...

    African Journals Online (AJOL)

    The factor structure of the Self-Directed Learning Readiness Scale (SDLRS) was investigated for Afrikaans and English-speaking first-year university students. Five factors were extracted and rotated to oblique simple structure for both groups. Four of the five factors were satisfactorily replicated. The fifth factor appeared to ...

  9. The length of teeth : A statistical analysis of the differences in length of human teeth for radiologic purposes

    NARCIS (Netherlands)

    Verhoeven, J.W.; Aken, J. van; Weerdt, G.P. van der

    Intraoral radiograms can be made according to the long tube paralleling technique utilizing aiming devices. An important factor in the design of these instruments is the length of the teeth to be radiographed. Reliable data regarding the length of the teeth in the different regions of the mouth are

  10. Periodic Verification of the Scaling Factor for Radwastes in Korean NPPs - 13294

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Joon; Ahn, Hong Joo; Song, Byoung Chul; Song, Kyuseok [Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon, 305-330 (Korea, Republic of)

    2013-07-01

    According to the acceptance criteria for a low and intermediate level radioactive waste (LILW) listed in Notice No. 2012-53 of the Nuclear Safety and Security Commission (NSSC), specific concentrations of radionuclides inside a drum has to be identified and quantified. In 5 years of effort, scaling factors were derived through destructive radiochemical analysis, and the dry active waste, spent resin, concentration bottom, spent filter, and sludge drums generated during 2004 ∼ 2008 were evaluated to identify radionuclide inventories. Eventually, only dry active waste among LILWs generated from Korean NPPs were first shipped to a permanent disposal facility on December 2010. For the LILWs generated after 2009, the radionuclides are being radiochemically quantified because the Notice clarifies that the certifications of the scaling factors should be verified biennially. During the operation of NPP, the radionuclides designated in the Notice are formed by neutron activation of primary coolant, reactor structural materials, corrosion products, and fission products released into primary coolant through defects or failures in fuel cladding. Eventually, since the radionuclides released into primary coolant are transported into the numerous auxiliary and support systems connected to primary system, the LILWs can be contaminated, and the radionuclides can have various concentration distributions. Thus, radioactive wastes, such as spent resin and dry active waste generated at various Korean NPP sites, were sampled at each site, and the activities of the regulated radionuclides present in the sample were determined using radiochemical methods. The scaling factors were driven on the basis of the activity ratios between a or β-emitting nuclides and γ-emitting nuclides. The resulting concentrations were directly compared with the established scaling factors' data using statistical methods. In conclusions, the established scaling factors were verified with a reliability

  11. Surface-immobilized hydrogel patterns on length scales from micrometer to nanometer

    Science.gov (United States)

    Zeira, Assaf

    The present work concentrates on the study of pattern generation and transfer processes of monolayer covered surfaces, deriving from the basic working concept of Constructive Lithography. As an advancement of constructive lithography, we developed a direct, one-step printing (contact electrochemical printing, CEP) and replication (contact electrochemical replication, CER) of hydrophilic organic monolayer patterns surrounded by a hydrophobic monolayer background. In addition, we present a process of transfer of metal between two contacting solid surfaces to predefined monolayer template pattern sites (contact electrochemical transfer, CET). This thesis shows that CEP, CER, and CET may be implemented under a variety of different experimental conditions, regardless of whether the initial "master" pattern was created by a parallel (fast) or serial (slow) patterning process. CEP and CER also posses the unique attractive property that each replica may equally function as master stamp in the fabrication of additional replicas. Moreover, due to a mechanism of selfcorrection patterned surfaces produced these process are often free of defects that the initial "master" stamp may had. We finally show that the electrochemical patterning of OTS monolayers on silicon can be further extended to flexible polymeric substrate materials as well as to a variety of chemical manipulations, allowing the fabrication of tridimensional (3D) composite structures made on the basis of readily available OTS compound. The results obtained suggest that such contact electrochemical processes could be used to rapidly generate multiple copies of surface patterns spanning variable length scales, this basic approach being applicable to rigid as well as flexible substrate materials.

  12. The Role of Chain Length in Nonergodicity Factor and Fragility of Polymers

    DEFF Research Database (Denmark)

    Dalle-Ferrie, Cecile; Niss, Kristine; Sokolov, Alexei

    2010-01-01

    The mechanism that leads to different fragility values upon approaching the glass transition remains a topic of active discussion. Many researchers are trying to find an answer in the properties of the frozen glassy state. Following this approach, we focus here on a previously proposed relationship...... between the fragility of glass-formers and their nonergodicity factor, determined by inelastic X-ray scattering (IXS) in the glass. We extend this molecular liquid study to two model polymers— polystyrene (PS) and polyisobutylene (PIB)—for which we change the molecular weight. Polymers offer...... the opportunity to change the fragility without altering the chemical structure, just by changing the chain length. Thus, we specifically chose PS and PIB because they exhibit opposite dependences of fragility with molecular weight. Our analysis for these two polymers reveals no unique correlation between...

  13. Comparison of friction and wear of articular cartilage on different length scales.

    Science.gov (United States)

    Kienle, Sandra; Boettcher, Kathrin; Wiegleb, Lorenz; Urban, Joanna; Burgkart, Rainer; Lieleg, Oliver; Hugel, Thorsten

    2015-09-18

    The exceptional tribological properties of articular cartilage are still far from being fully understood. Articular cartilage is able to withstand high loads and provide exceptionally low friction. Although the regeneration abilities of the tissue are very limited, it can last for many decades. These biomechanical properties are realized by an interplay of different lubrication and wear protection mechanisms. The deterioration of cartilage due to aging or injury leads to the development of osteoarthritis. A current treatment strategy focuses on supplementing the intra-articular fluid with a saline solution containing hyaluronic acid. In the work presented here, we investigated how changing the lubricating fluid affects friction and wear of articular cartilage, focusing on the boundary and mixed lubrication as well as interstitial fluid pressurization mechanisms. Different length and time scales were probed by atomic force microscopy, tribology and profilometry. We compared aqueous solutions with different NaCl concentrations to a viscosupplement containing hyaluronic acid (HA). In particular, we found that the presence of ions changes the frictional behavior and the wear resistance. In contrast, hyaluronic acid showed no significant impact on the friction coefficient, but considerably reduced wear. This study confirms the previous notion that friction and wear are not necessarily correlated in articular cartilage tribology and that the main role of HA might be to provide wear protection for the articular surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Low frequency energy scavenging using sub-wave length scale acousto-elastic metamaterial

    Directory of Open Access Journals (Sweden)

    Riaz U. Ahmed

    2014-11-01

    Full Text Available This letter presents the possibility of energy scavenging (ES utilizing the physics of acousto-elastic metamaterial (AEMM at low frequencies (<∼3KHz. It is proposed to use the AEMM in a dual mode (Acoustic Filter and Energy Harvester, simultaneously. AEMM’s are typically reported for filtering acoustic waves by trapping or guiding the acoustic energy, whereas this letter shows that the dynamic energy trapped inside the soft constituent (matrix of metamaterials can be significantly harvested by strategically embedding piezoelectric wafers in the matrix. With unit cell AEMM model, we experimentally asserted that at lower acoustic frequencies (< ∼3 KHz, maximum power in the micro Watts (∼35µW range can be generated, whereas, recently reported phononic crystal based metamaterials harvested only nano Watt (∼30nW power against 10KΩ resistive load. Efficient energy scavengers at low acoustic frequencies are almost absent due to large required size relevant to the acoustic wavelength. Here we report sub wave length scale energy scavengers utilizing the coupled physics of local, structural and matrix resonances. Upon validation of the argument through analytical, numerical and experimental studies, a multi-frequency energy scavenger (ES with multi-cell model is designed with varying geometrical properties capable of scavenging energy (power output from ∼10µW – ∼90µW between 0.2 KHz and 1.5 KHz acoustic frequencies.

  15. A multi scale model for small scale plasticity

    International Nuclear Information System (INIS)

    Zbib, Hussein M.

    2002-01-01

    Full text.A framework for investigating size-dependent small-scale plasticity phenomena and related material instabilities at various length scales ranging from the nano-microscale to the mesoscale is presented. The model is based on fundamental physical laws that govern dislocation motion and their interaction with various defects and interfaces. Particularly, a multi-scale model is developed merging two scales, the nano-microscale where plasticity is determined by explicit three-dimensional dislocation dynamics analysis providing the material length-scale, and the continuum scale where energy transport is based on basic continuum mechanics laws. The result is a hybrid simulation model coupling discrete dislocation dynamics with finite element analyses. With this hybrid approach, one can address complex size-dependent problems, including dislocation boundaries, dislocations in heterogeneous structures, dislocation interaction with interfaces and associated shape changes and lattice rotations, as well as deformation in nano-structured materials, localized deformation and shear band

  16. Mini Screening of Kinase Inhibitors Affecting Period-length of Mammalian Cellular Circadian Clock

    International Nuclear Information System (INIS)

    Yagita, Kazuhiro; Yamanaka, Iori; Koinuma, Satoshi; Shigeyoshi, Yasufumi; Uchiyama, Yasuo

    2009-01-01

    In mammalian circadian rhythms, the transcriptional-translational feedback loop (TTFL) consisting of a set of clock genes is believed to elicit the circadian clock oscillation. The TTFL model explains that the accumulation and degradation of mPER and mCRY proteins control the period-length (tau) of the circadian clock. Although recent studies revealed that the Casein Kinase Iεδ (CKIεδ) regurates the phosphorylation of mPER proteins and the circadian period-length, other kinases are also likely to contribute the phosphorylation of mPER. Here, we performed small scale screening using 84 chemical compounds known as kinase inhibitors to identify candidates possibly affecting the circadian period-length in mammalian cells. Screening by this high-throughput real-time bioluminescence monitoring system revealed that the several chemical compounds apparently lengthened the cellular circadian clock oscillation. These compounds are known as inhibitors against kinases such as Casein Kinase II (CKII), PI3-kinase (PI3K) and c-Jun N-terminal Kinase (JNK) in addition to CKIεδ. Although these kinase inhibitors may have some non-specific effects on other factors, our mini screening identified new candidates contributing to period-length control in mammalian cells

  17. Multi-Scale Factor Analysis of High-Dimensional Brain Signals

    KAUST Repository

    Ting, Chee-Ming

    2017-05-18

    In this paper, we develop an approach to modeling high-dimensional networks with a large number of nodes arranged in a hierarchical and modular structure. We propose a novel multi-scale factor analysis (MSFA) model which partitions the massive spatio-temporal data defined over the complex networks into a finite set of regional clusters. To achieve further dimension reduction, we represent the signals in each cluster by a small number of latent factors. The correlation matrix for all nodes in the network are approximated by lower-dimensional sub-structures derived from the cluster-specific factors. To estimate regional connectivity between numerous nodes (within each cluster), we apply principal components analysis (PCA) to produce factors which are derived as the optimal reconstruction of the observed signals under the squared loss. Then, we estimate global connectivity (between clusters or sub-networks) based on the factors across regions using the RV-coefficient as the cross-dependence measure. This gives a reliable and computationally efficient multi-scale analysis of both regional and global dependencies of the large networks. The proposed novel approach is applied to estimate brain connectivity networks using functional magnetic resonance imaging (fMRI) data. Results on resting-state fMRI reveal interesting modular and hierarchical organization of human brain networks during rest.

  18. Validity and factor structure of the bodybuilding dependence scale

    OpenAIRE

    Smith, D; Hale, B

    2004-01-01

    Objectives: To investigate the factor structure, validity, and reliability of the bodybuilding dependence scale and to investigate differences in bodybuilding dependence between men and women and competitive and non-competitive bodybuilders.

  19. Maternal telomere length inheritance in the king penguin.

    Science.gov (United States)

    Reichert, S; Rojas, E R; Zahn, S; Robin, J-P; Criscuolo, F; Massemin, S

    2015-01-01

    Telomeres are emerging as a biomarker for ageing and survival, and are likely important in shaping life-history trade-offs. In particular, telomere length with which one starts in life has been linked to lifelong survival, suggesting that early telomere dynamics are somehow related to life-history trajectories. This result highlights the importance of determining the extent to which telomere length is inherited, as a crucial factor determining early life telomere length. Given the scarcity of species for which telomere length inheritance has been studied, it is pressing to assess the generality of telomere length inheritance patterns. Further, information on how this pattern changes over the course of growth in individuals living under natural conditions should provide some insight on the extent to which environmental constraints also shape telomere dynamics. To fill this gap partly, we followed telomere inheritance in a population of king penguins (Aptenodytes patagonicus). We tested for paternal and maternal influence on chick initial telomere length (10 days old after hatching), and how these relationships changed with chick age (at 70, 200 and 300 days old). Based on a correlative approach, offspring telomere length was positively associated with maternal telomere length early in life (at 10 days old). However, this relationship was not significant at older ages. These data suggest that telomere length in birds is maternally inherited. Nonetheless, the influence of environmental conditions during growth remained an important factor shaping telomere length, as the maternal link disappeared with chicks' age.

  20. Radionuclide analysis and scaling factors verification for LLRW of Taipower Reactor

    International Nuclear Information System (INIS)

    King, J.-Y.; Liu, K.-T.; Chen, S.-C.; Chang, T.-M.; Pung, T.-C.; Men, L.-C.; Wang, S.-J.

    2004-01-01

    The Atomic Energy Council of the Republic of China (CAEC) final disposal policy for Low Level Radwaste (LLRW) will be carried on in 1996. Institute of Nuclear Energy Research has the contract to develop the Radionuclide analysis method and to establish the scaling factors for LLRW of Taipower reactors. The radionuclides analyzed including: Co-60, Cs-137, Ce-144, γ-nuclides; H-3, C-14, Fe-55, Ni-59, Ni-63, Sr-90, Nb-94, Tc-99, I-129, Pu-238, Pu-239/240, Pu-241, Am-241, Cm-242, Cm-244 α, β and low energy γ nuclides. 120 samples taken from 21 waste streams were analyzed and the database was collected within 2 years. The scaling factors for different kind of waste streams were computed with weighted log-mean average method. In 1993, the scaling factors for each waste stream has been verified through actual station samples. (author)

  1. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development.

    Science.gov (United States)

    Lorite, Gabriela S; Janissen, Richard; Clerici, João H; Rodrigues, Carolina M; Tomaz, Juarez P; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A; Cotta, Mônica A

    2013-01-01

    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.

  2. Microcomputer system for controlling fuel rod length

    International Nuclear Information System (INIS)

    Meyer, E.R.; Bouldin, D.W.; Bolfing, B.J.

    1979-01-01

    A system is being developed at the Oak Ridge National Laboratory (ORNL) to automatically measure and control the length of fuel rods for use in a high temperature gas-cooled reactor (HTGR). The system utilizes an LSI-11 microcomputer for monitoring fuel rod length and for adjusting the primary factor affecting length. Preliminary results indicate that the automated system can maintain fuel rod length within the specified limits of 1.940 +- 0.040 in. This system provides quality control documentation and eliminates the dependence of the current fuel rod molding process on manual length control. In addition, the microcomputer system is compatible with planned efforts to extend control to fuel rod fissile and fertile material contents

  3. Factor analysis of the Hamilton Depression Rating Scale in Parkinson's disease.

    Science.gov (United States)

    Broen, M P G; Moonen, A J H; Kuijf, M L; Dujardin, K; Marsh, L; Richard, I H; Starkstein, S E; Martinez-Martin, P; Leentjens, A F G

    2015-02-01

    Several studies have validated the Hamilton Depression Rating Scale (HAMD) in patients with Parkinson's disease (PD), and reported adequate reliability and construct validity. However, the factorial validity of the HAMD has not yet been investigated. The aim of our analysis was to explore the factor structure of the HAMD in a large sample of PD patients. A principal component analysis of the 17-item HAMD was performed on data of 341 PD patients, available from a previous cross sectional study on anxiety. An eigenvalue ≥1 was used to determine the number of factors. Factor loadings ≥0.4 in combination with oblique rotations were used to identify which variables made up the factors. Kaiser-Meyer-Olkin measure (KMO), Cronbach's alpha, Bartlett's test, communality, percentage of non-redundant residuals and the component correlation matrix were computed to assess factor validity. KMO verified the sample's adequacy for factor analysis and Cronbach's alpha indicated a good internal consistency of the total scale. Six factors had eigenvalues ≥1 and together explained 59.19% of the variance. The number of items per factor varied from 1 to 6. Inter-item correlations within each component were low. There was a high percentage of non-redundant residuals and low communality. This analysis demonstrates that the factorial validity of the HAMD in PD is unsatisfactory. This implies that the scale is not appropriate for studying specific symptom domains of depression based on factorial structure in a PD population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Continuous correction of differential path length factor in near-infrared spectroscopy.

    Science.gov (United States)

    Talukdar, Tanveer; Moore, Jason H; Diamond, Solomon G

    2013-05-01

    In continuous-wave near-infrared spectroscopy (CW-NIRS), changes in the concentration of oxyhemoglobin and deoxyhemoglobin can be calculated by solving a set of linear equations from the modified Beer-Lambert Law. Cross-talk error in the calculated hemodynamics can arise from inaccurate knowledge of the wavelength-dependent differential path length factor (DPF). We apply the extended Kalman filter (EKF) with a dynamical systems model to calculate relative concentration changes in oxy- and deoxyhemoglobin while simultaneously estimating relative changes in DPF. Results from simulated and experimental CW-NIRS data are compared with results from a weighted least squares (WLSQ) method. The EKF method was found to effectively correct for artificially introduced errors in DPF and to reduce the cross-talk error in simulation. With experimental CW-NIRS data, the hemodynamic estimates from EKF differ significantly from the WLSQ (p EKF method compared to WLSQ in three physiologically relevant spectral bands 0.04 to 0.15 Hz, 0.15 to 0.4 Hz and 0.4 to 2.0 Hz (p EKF method.

  5. A 100,000 Scale Factor Radar Range.

    Science.gov (United States)

    Blanche, Pierre-Alexandre; Neifeld, Mark; Peyghambarian, Nasser

    2017-12-19

    The radar cross section of an object is an important electromagnetic property that is often measured in anechoic chambers. However, for very large and complex structures such as ships or sea and land clutters, this common approach is not practical. The use of computer simulations is also not viable since it would take many years of computational time to model and predict the radar characteristics of such large objects. We have now devised a new scaling technique to overcome these difficulties, and make accurate measurements of the radar cross section of large items. In this article we demonstrate that by reducing the scale of the model by a factor 100,000, and using near infrared wavelength, the radar cross section can be determined in a tabletop setup. The accuracy of the method is compared to simulations, and an example of measurement is provided on a 1 mm highly detailed model of a ship. The advantages of this scaling approach is its versatility, and the possibility to perform fast, convenient, and inexpensive measurements.

  6. Length-scales of Slab-induced Asthenospheric Deformation from Geodynamic Modeling, Mantle Deformation Fabric, and Synthetic Shear Wave Splitting

    Science.gov (United States)

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2017-12-01

    The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear

  7. A Second-Order Confirmatory Factor Analysis of the Moral Distress Scale-Revised for Nurses.

    Science.gov (United States)

    Sharif Nia, Hamid; Shafipour, Vida; Allen, Kelly-Ann; Heidari, Mohammad Reza; Yazdani-Charati, Jamshid; Zareiyan, Armin

    2017-01-01

    Moral distress is a growing problem for healthcare professionals that may lead to dissatisfaction, resignation, or occupational burnout if left unattended, and nurses experience different levels of this phenomenon. This study aims to investigate the factor structure of the Persian version of the Moral Distress Scale-Revised in intensive care and general nurses. This methodological research was conducted with 771 nurses from eight hospitals in the Mazandaran Province of Iran in 2017. Participants completed the Moral Distress Scale-Revised, data collected, and factor structure assessed using the construct, convergent, and divergent validity methods. The reliability of the scale was assessed using internal consistency (Cronbach's alpha, Theta, and McDonald's omega coefficients) and construct reliability. Ethical considerations: This study was approved by the Ethics Committee of Mazandaran University of Medical Sciences. The exploratory factor analysis ( N = 380) showed that the Moral Distress Scale-Revised has five factors: lack of professional competence at work, ignoring ethical issues and patient conditions, futile care, carrying out the physician's orders without question and unsafe care, and providing care under personal and organizational pressures, which explained 56.62% of the overall variance. The confirmatory factor analysis ( N = 391) supported the five-factor solution and the second-order latent factor model. The first-order model did not show a favorable convergent and divergent validity. Ultimately, the Moral Distress Scale-Revised was found to have a favorable internal consistency and construct reliability. The Moral Distress Scale-Revised was found to be a multidimensional construct. The data obtained confirmed the hypothesis of the factor structure model with a latent second-order variable. Since the convergent and divergent validity of the scale were not confirmed in this study, further assessment is necessary in future studies.

  8. Factor Structure of the Social Appearance Anxiety Scale in Turkish Early Adolescents

    Science.gov (United States)

    Sahin, Ertugrul; Topkaya, Nursel

    2015-01-01

    Although the Social Appearance Anxiety Scale (SAAS) is most often validated with the use of confirmatory factor analysis (CFA) on undergraduate students, exploratory factor analysis and multiple factor retention decision criteria necessitate the analysis of underlying factor structure to prevent over and under factoring as well as to reveal…

  9. Modeling insertional mutagenesis using gene length and expression in murine embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Alex S Nord

    2007-07-01

    Full Text Available High-throughput mutagenesis of the mammalian genome is a powerful means to facilitate analysis of gene function. Gene trapping in embryonic stem cells (ESCs is the most widely used form of insertional mutagenesis in mammals. However, the rules governing its efficiency are not fully understood, and the effects of vector design on the likelihood of gene-trapping events have not been tested on a genome-wide scale.In this study, we used public gene-trap data to model gene-trap likelihood. Using the association of gene length and gene expression with gene-trap likelihood, we constructed spline-based regression models that characterize which genes are susceptible and which genes are resistant to gene-trapping techniques. We report results for three classes of gene-trap vectors, showing that both length and expression are significant determinants of trap likelihood for all vectors. Using our models, we also quantitatively identified hotspots of gene-trap activity, which represent loci where the high likelihood of vector insertion is controlled by factors other than length and expression. These formalized statistical models describe a high proportion of the variance in the likelihood of a gene being trapped by expression-dependent vectors and a lower, but still significant, proportion of the variance for vectors that are predicted to be independent of endogenous gene expression.The findings of significant expression and length effects reported here further the understanding of the determinants of vector insertion. Results from this analysis can be applied to help identify other important determinants of this important biological phenomenon and could assist planning of large-scale mutagenesis efforts.

  10. Cold Ischemia Time is an Important Risk Factor for Post-Liver Transplant Prolonged Length of Stay.

    Science.gov (United States)

    Pan, Evelyn T; Yoeli, Dor; Galvan, N Thao N; Kueht, Michael L; Cotton, Ronald T; O'Mahony, Christine A; Goss, John A; Rana, Abbas

    2018-02-24

    Risk analysis of cold ischemia time (CIT) in liver transplantation has largely focused on patient and graft survival. Post-transplant length of stay is a sensitive marker of morbidity and cost. We hypothesize that CIT is a risk factor for post-transplant prolonged length of stay (PLOS) and aim to conduct an hour-by-hour analysis of CIT and PLOS. We retrospectively reviewed all adult, first-time liver transplants between March 2002 and September 2016 in the United Network for Organ Sharing database. 67,426 recipients were categorized by hourly CIT increments. Multivariable logistic regression of PLOS (defined as > 30 days), CIT groups, and an extensive list of confounding variables was performed. Linear regression between length of stay and CIT as continuous variables was also performed. CIT 1-6 hours was protective against PLOS, while CIT greater than 7 hours was associated with increased odds for PLOS. The lowest odds for PLOS were observed with 1-2 (odds ratio (OR) = 0.65, 95% confidence interval (CI) 0.45-0.92) and 2-3 hours (OR = 0.65, 95% CI 0.55-0.78) of CIT. OR for PLOS steadily increased with increasing CIT, reaching the greatest odds for PLOS with 13-14 hours (OR = 2.05, 95% CI 1.57-2.67) and 15-16 hours (OR = 2.06, 95% CI 1.27-3.33) of CIT. Linear regression revealed a positive correlation between length of stay and cold ischemia time with a correlation coefficient of +0.35 (p < 0.001). Post-liver transplant length of stay is sensitive to CIT, with substantial increase in the odds of PLOS observed with nearly every additional hour of cold ischemia. We conclude that CIT should be minimized to protect against the morbidity and cost associated with post-transplant PLOS. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  11. Nature vs nurture: interplay between the genetic control of telomere length and environmental factors.

    Science.gov (United States)

    Harari, Yaniv; Romano, Gal-Hagit; Ungar, Lior; Kupiec, Martin

    2013-11-15

    Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes, thus protecting their stability and integrity. They play important roles in DNA replication and repair and are central to our understanding of aging and cancer development. In rapidly dividing cells, telomere length is maintained by the activity of telomerase. About 400 TLM (telomere length maintenance) genes have been identified in yeast, as participants of an intricate homeostasis network that keeps telomere length constant. Two papers have recently shown that despite this extremely complex control, telomere length can be manipulated by external stimuli. These results have profound implications for our understanding of cellular homeostatic systems in general and of telomere length maintenance in particular. In addition, they point to the possibility of developing aging and cancer therapies based on telomere length manipulation.

  12. Modelling of rate effects at multiple scales

    DEFF Research Database (Denmark)

    Pedersen, R.R.; Simone, A.; Sluys, L. J.

    2008-01-01

    , the length scale in the meso-model and the macro-model can be coupled. In this fashion, a bridging of length scales can be established. A computational analysis of  a Split Hopkinson bar test at medium and high impact load is carried out at macro-scale and meso-scale including information from  the micro-scale.......At the macro- and meso-scales a rate dependent constitutive model is used in which visco-elasticity is coupled to visco-plasticity and damage. A viscous length scale effect is introduced to control the size of the fracture process zone. By comparison of the widths of the fracture process zone...

  13. Macroecological factors shape local-scale spatial patterns in agriculturalist settlements.

    Science.gov (United States)

    Tao, Tingting; Abades, Sebastián; Teng, Shuqing; Huang, Zheng Y X; Reino, Luís; Chen, Bin J W; Zhang, Yong; Xu, Chi; Svenning, Jens-Christian

    2017-11-15

    Macro-scale patterns of human systems ranging from population distribution to linguistic diversity have attracted recent attention, giving rise to the suggestion that macroecological rules shape the assembly of human societies. However, in which aspects the geography of our own species is shaped by macroecological factors remains poorly understood. Here, we provide a first demonstration that macroecological factors shape strong local-scale spatial patterns in human settlement systems, through an analysis of spatial patterns in agriculturalist settlements in eastern mainland China based on high-resolution Google Earth images. We used spatial point pattern analysis to show that settlement spatial patterns are characterized by over-dispersion at fine spatial scales (0.05-1.4 km), consistent with territory segregation, and clumping at coarser spatial scales beyond the over-dispersion signals, indicating territorial clustering. Statistical modelling shows that, at macroscales, potential evapotranspiration and topographic heterogeneity have negative effects on territory size, but positive effects on territorial clustering. These relationships are in line with predictions from territory theory for hunter-gatherers as well as for many animal species. Our results help to disentangle the complex interactions between intrinsic spatial processes in agriculturalist societies and external forcing by macroecological factors. While one may speculate that humans can escape ecological constraints because of unique abilities for environmental modification and globalized resource transportation, our work highlights that universal macroecological principles still shape the geography of current human agricultural societies. © 2017 The Author(s).

  14. Macroecological factors explain large-scale spatial population patterns of ancient agriculturalists

    NARCIS (Netherlands)

    Xu, C.; Chen, B.; Abades, S.; Reino, L.; Teng, S.; Ljungqvist, F.C.; Huang, Z.Y.X.; Liu, X.

    2015-01-01

    Aim: It has been well demonstrated that the large-scale distribution patterns of numerous species are driven by similar macroecological factors. However, understanding of this topic remains limited when applied to our own species. Here we take a large-scale look at ancient agriculturalist

  15. Modified stress intensity factor as a crack growth parameter applicable under large scale yielding conditions

    International Nuclear Information System (INIS)

    Yasuoka, Tetsuo; Mizutani, Yoshihiro; Todoroki, Akira

    2014-01-01

    High-temperature water stress corrosion cracking has high tensile stress sensitivity, and its growth rate has been evaluated using the stress intensity factor, which is a linear fracture mechanics parameter. Stress corrosion cracking mainly occurs and propagates around welded metals or heat-affected zones. These regions have complex residual stress distributions and yield strength distributions because of input heat effects. The authors previously reported that the stress intensity factor becomes inapplicable when steep residual stress distributions or yield strength distributions occur along the crack propagation path, because small-scale yielding conditions deviate around those distributions. Here, when the stress intensity factor is modified by considering these distributions, the modified stress intensity factor may be used for crack growth evaluation for large-scale yielding. The authors previously proposed a modified stress intensity factor incorporating the stress distribution or yield strength distribution in front of the crack using the rate of change of stress intensity factor and yield strength. However, the applicable range of modified stress intensity factor for large-scale yielding was not clarified. In this study, the range was analytically investigated by comparison with the J-integral solution. A three-point bending specimen with parallel surface crack was adopted as the analytical model and the stress intensity factor, modified stress intensity factor and equivalent stress intensity factor derived from the J-integral were calculated and compared under large-scale yielding conditions. The modified stress intensity was closer to the equivalent stress intensity factor when compared with the stress intensity factor. If deviation from the J-integral solution is acceptable up to 2%, the modified stress intensity factor is applicable up to 30% of the J-integral limit, while the stress intensity factor is applicable up to 10%. These results showed that

  16. L-mode SOL width scaling in the MAST spherical tokamak

    International Nuclear Information System (INIS)

    Ahn, J-W; Counsell, G F; Kirk, A

    2006-01-01

    A new data-set of outboard mid-plane scrape-off layer (SOL) heat flux widths, Δ h , has been constructed for L-mode plasmas in the MAST spherical tokamak (ST). The scaling with key plasma parameters such as density, toroidal magnetic field, parallel connection length in the SOL and surface heat flux at the separatrix is investigated. An empirical scaling is developed for the Δ h data-set, which exhibits a strong positive dependence on both the connection length (or edge safety factor) and density and weak or moderate inverse dependences on the surface heat flux and magnetic field, respectively. The empirical scaling is compared with earlier results for a range of tokamaks with conventional geometry, which show weaker dependence on the density and edge safety factor. Importantly, however, the weak negative dependence on the surface heat flux (and thus heating power) is common in both conventional and ST geometries. The experimental data are also used to test a number of dimensionally correct Δ h scalings developed from theoretical models for perpendicular transport in the SOL coupled with classical transport parallel to the magnetic field. A scaling based on perpendicular transport driven by resistive MHD interchange provides the best fit, although several models are close. A subset of the better fitting theoretical scalings are used to extrapolate for Δ h in one design for a future burning ST machine and finally to predict the peak heat loading on the outboard divertor target plate

  17. SQUID magnetometry from nanometer to centimeter length scales

    International Nuclear Information System (INIS)

    Hatridge, Michael J.

    2010-01-01

    The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.

  18. SQUID magnetometry from nanometer to centimeter length scales

    Energy Technology Data Exchange (ETDEWEB)

    Hatridge, Michael J. [Univ. of California, Berkeley, CA (United States)

    2010-06-01

    The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.

  19. Scale Effect of Premixed Methane-Air Combustion in Confined Space Using LES Model

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2015-12-01

    Full Text Available Gas explosion is the most hazardous incident occurring in underground airways. Computational Fluid Dynamics (CFD techniques are sophisticated in simulating explosions in confined spaces; specifically, when testing large-scale gaseous explosions, such as methane explosions in underground mines. The dimensions of a confined space where explosions could occur vary significantly. Thus, the scale effect on explosion parameters is worth investigating. In this paper, the impact of scaling on explosion overpressures is investigated by employing two scaling factors: The Gas-fill Length Scaling Factor (FLSF and the Hydraulic Diameter Scaling Factor (HDSF. The combinations of eight FLSFs and five HDSFs will cover a wide range of space dimensions where flammable gas could accumulate. Experiments were also conducted to evaluate the selected numerical models. The Large Eddy Simulation turbulence model was selected because it shows accuracy compared to the widely used Reynolds’ averaged models for the scenarios investigated in the experiments. Three major conclusions can be drawn: (1 The overpressure increases with both FLSF and HDSF within the deflagration regime; (2 In an explosion duct with a length to diameter ratio greater than 54, detonation is more likely to be triggered for a stoichiometric methane/air mixture; (3 Overpressure increases as an increment hydraulic diameter of a geometry within deflagration regime. A relative error of 7% is found when predicting blast peak overpressure for the base case compared to the experiment; a good agreement for the wave arrival time is also achieved.

  20. Causal inference between bioavailability of heavy metals and environmental factors in a large-scale region

    International Nuclear Information System (INIS)

    Liu, Yuqiong; Du, Qingyun; Wang, Qi; Yu, Huanyun; Liu, Jianfeng; Tian, Yu; Chang, Chunying; Lei, Jing

    2017-01-01

    The causation between bioavailability of heavy metals and environmental factors are generally obtained from field experiments at local scales at present, and lack sufficient evidence from large scales. However, inferring causation between bioavailability of heavy metals and environmental factors across large-scale regions is challenging. Because the conventional correlation-based approaches used for causation assessments across large-scale regions, at the expense of actual causation, can result in spurious insights. In this study, a general approach framework, Intervention calculus when the directed acyclic graph (DAG) is absent (IDA) combined with the backdoor criterion (BC), was introduced to identify causation between the bioavailability of heavy metals and the potential environmental factors across large-scale regions. We take the Pearl River Delta (PRD) in China as a case study. The causal structures and effects were identified based on the concentrations of heavy metals (Zn, As, Cu, Hg, Pb, Cr, Ni and Cd) in soil (0–20 cm depth) and vegetable (lettuce) and 40 environmental factors (soil properties, extractable heavy metals and weathering indices) in 94 samples across the PRD. Results show that the bioavailability of heavy metals (Cd, Zn, Cr, Ni and As) was causally influenced by soil properties and soil weathering factors, whereas no causal factor impacted the bioavailability of Cu, Hg and Pb. No latent factor was found between the bioavailability of heavy metals and environmental factors. The causation between the bioavailability of heavy metals and environmental factors at field experiments is consistent with that on a large scale. The IDA combined with the BC provides a powerful tool to identify causation between the bioavailability of heavy metals and environmental factors across large-scale regions. Causal inference in a large system with the dynamic changes has great implications for system-based risk management. - Causation between the

  1. Diffusion effects on volume-selective NMR at small length scales; Diffusionseffekte in volumenselektiver NMR auf kleinen Laengenskalen

    Energy Technology Data Exchange (ETDEWEB)

    Gaedke, Achim

    2009-01-21

    In this thesis, the interplay between diffusion and relaxation effects in spatially selective NMR experiments at short length scales is explored. This is especially relevant in the context of both conventional and mechanically detected MRI at (sub)micron resolution in biological specimens. Recent results on selectively excited very thin slices showed an in-slice-magnetization recovery orders of magnitude faster than the longitudinal relaxation time T1. However, those experiments were run on fully relaxed samples while MRI and especially mechanically detected NMR experiments are typically run in a periodic fashion with repetition times far below T1. The main purpose of this work therefore was to extend the study of the interplay between diffusion and longitudinal relaxation to periodic excitations. In some way, this is inverse phenomenon to the DESIRE (Diffusive Enhancement of SIgnal and REsolution) approach, proposed 1992 by Lauterbur. Experiments on periodically excited thin slices were carried out at a dedicated static field gradient cryomagnet with magnetic field gradients up to 180 T/m. In order to obtain plane slices, an appropriate isosurface of the gradient magnet had to be identified. It was found at a field of 3.8 T with a gradient of 73 T/m. In this field, slices down to a thickness of 3.2 {mu}m could be excited. The detection of the NMR signal was done using FIDs instead of echoes as the excitation bandwidth of those thin slices is sufficiently small to observe FIDs which are usually considered to be elusive to detection in such strong static field gradients. A simulation toolbox based on the full Bloch-Torrey-equation was developed to describe the excitation and the formation of NMR signals under those unusual conditions as well as the interplay of diffusion and magnetization recovery. Both the experiments and the simulations indicate that diffusion effects lead to a strongly enhanced magnetization modulation signal also under periodic excitation

  2. Multi-Scale Factor Analysis of High-Dimensional Brain Signals

    KAUST Repository

    Ting, Chee-Ming; Ombao, Hernando; Salleh, Sh-Hussain

    2017-01-01

    In this paper, we develop an approach to modeling high-dimensional networks with a large number of nodes arranged in a hierarchical and modular structure. We propose a novel multi-scale factor analysis (MSFA) model which partitions the massive

  3. Confirmatory Factor Analysis of the Combined Social Phobia Scale and Social Interaction Anxiety Scale: Support for a Bifactor Model

    OpenAIRE

    Gomez, Rapson; Watson, Shaun D.

    2017-01-01

    For the Social Phobia Scale (SPS) and the Social Interaction Anxiety Scale (SIAS) together, this study examined support for a bifactor model, and also the internal consistency reliability and external validity of the factors in this model. Participants (N = 526) were adults from the general community who completed the SPS and SIAS. Confirmatory factor analysis (CFA) of their ratings indicated good support for the bifactor model. For this model, the loadings for all but six items were higher o...

  4. Causal inference between bioavailability of heavy metals and environmental factors in a large-scale region.

    Science.gov (United States)

    Liu, Yuqiong; Du, Qingyun; Wang, Qi; Yu, Huanyun; Liu, Jianfeng; Tian, Yu; Chang, Chunying; Lei, Jing

    2017-07-01

    The causation between bioavailability of heavy metals and environmental factors are generally obtained from field experiments at local scales at present, and lack sufficient evidence from large scales. However, inferring causation between bioavailability of heavy metals and environmental factors across large-scale regions is challenging. Because the conventional correlation-based approaches used for causation assessments across large-scale regions, at the expense of actual causation, can result in spurious insights. In this study, a general approach framework, Intervention calculus when the directed acyclic graph (DAG) is absent (IDA) combined with the backdoor criterion (BC), was introduced to identify causation between the bioavailability of heavy metals and the potential environmental factors across large-scale regions. We take the Pearl River Delta (PRD) in China as a case study. The causal structures and effects were identified based on the concentrations of heavy metals (Zn, As, Cu, Hg, Pb, Cr, Ni and Cd) in soil (0-20 cm depth) and vegetable (lettuce) and 40 environmental factors (soil properties, extractable heavy metals and weathering indices) in 94 samples across the PRD. Results show that the bioavailability of heavy metals (Cd, Zn, Cr, Ni and As) was causally influenced by soil properties and soil weathering factors, whereas no causal factor impacted the bioavailability of Cu, Hg and Pb. No latent factor was found between the bioavailability of heavy metals and environmental factors. The causation between the bioavailability of heavy metals and environmental factors at field experiments is consistent with that on a large scale. The IDA combined with the BC provides a powerful tool to identify causation between the bioavailability of heavy metals and environmental factors across large-scale regions. Causal inference in a large system with the dynamic changes has great implications for system-based risk management. Copyright © 2017 Elsevier Ltd. All

  5. Scaling of nuclear modification factors for hadrons and light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C.S. [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); University of Chinese Academy of Sciences, Beijing (China); Ma, Y.G. [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); ShanghaiTech University, Shanghai (China); Zhang, S. [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China)

    2016-12-15

    The number of constituent quarks (NCQ) scaling for hadrons and the number of constituent nucleons (NCN) scaling for light nuclei are proposed for nuclear modification factors (R{sub cp}) of hadrons and light nuclei, respectively, according to the experimental investigations in relativistic heavy-ion collisions. Based on the coalescence mechanism the scalings are performed for pions and protons at the quark level, and for light nuclei d(anti d) and {sup 3}He at the nucleonic level, respectively, formed in Au+Au and Pb+Pb collisions, and a nice scaling behaviour emerges. The NCQ or NCN scaling law of R{sub cp} can be, respectively, taken as a probe for the quark or nucleon coalescence mechanism for the formation of hadron or light nuclei in relativistic heavy-ion collisions. (orig.)

  6. Economic issues of broiler production length

    Directory of Open Access Journals (Sweden)

    Szőllősi László

    2014-01-01

    Full Text Available The length of broiler production cycle is also an important factor when profitability is measured. This paper is to determine the effects of different market ages and down-time period, overall broiler production cycle length on performance and economic parameters based on Hungarian production and financial circumstances. A deterministic model was constructed to manage the function-like correlations of age-related daily weight gain, daily feed intake and daily mortality data. The results show that broiler production cycle length has a significant effect on production and economic performance. Cycle length is determined by the length of down-time and grow-out periods. If down-time period is reduced by one day, an average net income of EUR 0.55 per m2 is realizable. However, the production period is not directly proportional either with emerging costs or obtainable revenues. Profit maximization is attainable if the production period is 41-42 days.

  7. Predicting permeability of regular tissue engineering scaffolds: scaling analysis of pore architecture, scaffold length, and fluid flow rate effects.

    Science.gov (United States)

    Rahbari, A; Montazerian, H; Davoodi, E; Homayoonfar, S

    2017-02-01

    The main aim of this research is to numerically obtain the permeability coefficient in the cylindrical scaffolds. For this purpose, a mathematical analysis was performed to derive an equation for desired porosity in terms of morphological parameters. Then, the considered cylindrical geometries were modeled and the permeability coefficient was calculated according to the velocity and pressure drop values based on the Darcy's law. In order to validate the accuracy of the present numerical solution, the obtained permeability coefficient was compared with the published experimental data. It was observed that this model can predict permeability with the utmost accuracy. Then, the effect of geometrical parameters including porosity, scaffold pore structure, unit cell size, and length of the scaffolds as well as entrance mass flow rate on the permeability of porous structures was studied. Furthermore, a parametric study with scaling laws analysis of sample length and mass flow rate effects on the permeability showed good fit to the obtained data. It can be concluded that the sensitivity of permeability is more noticeable at higher porosities. The present approach can be used to characterize and optimize the scaffold microstructure due to the necessity of cell growth and transferring considerations.

  8. Length and time scales of atmospheric moisture recycling

    NARCIS (Netherlands)

    Van der Ent, R.J.; Savenije, H.H.G.

    2011-01-01

    It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling) due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to

  9. Confirmatory Factor Analysis of the Combined Social Phobia Scale and Social Interaction Anxiety Scale: Support for a Bifactor Model

    Science.gov (United States)

    Gomez, Rapson; Watson, Shaun D.

    2017-01-01

    For the Social Phobia Scale (SPS) and the Social Interaction Anxiety Scale (SIAS) together, this study examined support for a bifactor model, and also the internal consistency reliability and external validity of the factors in this model. Participants (N = 526) were adults from the general community who completed the SPS and SIAS. Confirmatory factor analysis (CFA) of their ratings indicated good support for the bifactor model. For this model, the loadings for all but six items were higher on the general factor than the specific factors. The three positively worded items had negligible loadings on the general factor. The general factor explained most of the common variance in the SPS and SIAS, and demonstrated good model-based internal consistency reliability (omega hierarchical) and a strong association with fear of negative evaluation and extraversion. The practical implications of the findings for the utilization of the SPS and SIAS, and the theoretical and clinical implications for social anxiety are discussed. PMID:28210232

  10. Confirmatory Factor Analysis of the Combined Social Phobia Scale and Social Interaction Anxiety Scale: Support for a Bifactor Model.

    Science.gov (United States)

    Gomez, Rapson; Watson, Shaun D

    2017-01-01

    For the Social Phobia Scale (SPS) and the Social Interaction Anxiety Scale (SIAS) together, this study examined support for a bifactor model, and also the internal consistency reliability and external validity of the factors in this model. Participants ( N = 526) were adults from the general community who completed the SPS and SIAS. Confirmatory factor analysis (CFA) of their ratings indicated good support for the bifactor model. For this model, the loadings for all but six items were higher on the general factor than the specific factors. The three positively worded items had negligible loadings on the general factor. The general factor explained most of the common variance in the SPS and SIAS, and demonstrated good model-based internal consistency reliability (omega hierarchical) and a strong association with fear of negative evaluation and extraversion. The practical implications of the findings for the utilization of the SPS and SIAS, and the theoretical and clinical implications for social anxiety are discussed.

  11. Comparing short forms of the Social Interaction Anxiety Scale and the Social Phobia Scale.

    Science.gov (United States)

    Carleton, R Nicholas; Thibodeau, Michel A; Weeks, Justin W; Teale Sapach, Michelle J N; McEvoy, Peter M; Horswill, Samantha C; Heimberg, Richard G

    2014-12-01

    The Social Interaction Anxiety Scale (SIAS) and the Social Phobia Scale (SPS; Mattick & Clarke, 1998) are companion scales developed to measure anxiety in social interaction and performance situations, respectively. The measures have strong discriminant and convergent validity; however, their factor structures remain debated, and furthermore, the combined administration length (i.e., 39 items) can be prohibitive for some settings. There have been 4 attempts to assess the factor structures of the scales and reduce the item content: the 14-item Social Interaction Phobia Scale (SIPS; Carleton et al., 2009), the 12-item SIAS-6/SPS-6 (Peters, Sunderland, Andrews, Rapee, & Mattick, 2012), the 21-item abbreviated SIAS/SPS (ASIAS/ASPS; Kupper & Denollet, 2012), and the 12-item Readability SIAS and SPS (RSIAS/RSPS; Fergus, Valentiner, McGrath, Gier-Lonsway, & Kim, 2012). The current study compared the short forms on (a) factor structure, (b) ability to distinguish between clinical and non-clinical populations, (c) sensitivity to change following therapy, and (d) convergent validity with related measures. Participants included 3,607 undergraduate students (55% women) and 283 patients with social anxiety disorder (43% women). Results of confirmatory factor analyses, sensitivity analyses, and correlation analyses support the robust utility of items in the SIPS and the SPS-6 and SIAS-6 relative to the other short forms; furthermore, the SIPS and the SPS-6 and SIAS-6 were also supported by convergent validity analyses within the undergraduate sample. The RSIAS/RSPS and the ASIAS/ASPS were least supported, based on the current results and the principle of parsimony. Accordingly, researchers and clinicians should consider carefully which of the short forms will best suit their needs. (c) 2014 APA, all rights reserved.

  12. A Confirmatory Factor Analysis on the Attitude Scale of Constructivist Approach for Science Teachers

    Directory of Open Access Journals (Sweden)

    E. Evrekli

    2010-11-01

    Full Text Available Underlining the importance of teachers for the constructivist approach, the present study attempts to develop “Attitude Scale of Construc¬tivist Approach for Science Teachers (ASCAST”. The pre-applications of the scale were administered to a total of 210 science teachers; however, the data obtained from 5 teachers were excluded from the analysis. As a result of the analysis of the data obtained from the pre-applications, it was found that the scale could have a single factor structure, which was tested using the confir¬matory factor analysis. As a result of the initial confirmatory factor analysis, the values of fit were examined and found to be low. Subsequently, by exam¬ining the modification indices, error covariance was added between items 23 and 24 and the model was tested once again. The added error covariance led to a significant improvement in the model, producing values of fit suitable for limit values. Thus, it was concluded that the scale could be employed with a single factor. The explained variance value for the scale developed with a sin¬gle factor structure was calculated to be 50.43% and its reliability was found to be .93. The results obtained suggest that the scale possesses reliable-valid characteristics and could be used in further studies.

  13. Iranian Version of the Mini-Mental Adjustment to Cancer Scale: Factor Structure and Psychometric Properties.

    Science.gov (United States)

    Patoo, Mozhgan; Allahyari, Abbas Ali; Moradi, Ali Reza; Payandeh, Mehrdad

    2015-01-01

    Mental adjustment to cancer is known as a psychological, physical, and psychological health variable among cancer patients. The present study examines the factor structure and psychometric properties of the Mini-Mental Adjustment to Cancer scale (Mini-MAC) in a sample of Iranian adults who suffer from cancer. The sample consists of 320 cancer patients selected through non-random convenient sampling procedure from the hospitals and clinics in the cities of Kermanshah and Shiraz in Iran, using the Mini-MAC scale. One hundred of these patients also completed the Hospital Anxiety and Depression scale. Statistical methods used to analyze the data included confirmatory and exploratory factor analysis, discriminate validity, and Cronbach alpha coefficients for internal consistency. Factor analysis confirms five factors in the Mini-MAC. The values of fit indices are within the acceptable range. Significant correlations between the Mini-MAC and other measures also show that this scale has discriminate validity. Alpha coefficients for the subscales are Helplessness/Hopelessness,.94; Cognitive Avoidance.76; Anxious Preoccupation,.90; Fatalism,.77; Fighting Spirit.80; and total scale.84, respectively. The results confirm the five-factor structure of the Persian Mini-MAC scale and also prove that it is a reliable and valid scale. They show that this scale has sufficient power to measure different aspects of mental adjustment in patients with cancer.

  14. Examining the Effect of Reverse Worded Items on the Factor Structure of the Need for Cognition Scale.

    Directory of Open Access Journals (Sweden)

    Xijuan Zhang

    Full Text Available Reverse worded (RW items are often used to reduce or eliminate acquiescence bias, but there is a rising concern about their harmful effects on the covariance structure of the scale. Therefore, results obtained via traditional covariance analyses may be distorted. This study examined the effect of the RW items on the factor structure of the abbreviated 18-item Need for Cognition (NFC scale using confirmatory factor analysis. We modified the scale to create three revised versions, varying from no RW items to all RW items. We also manipulated the type of the RW items (polar opposite vs. negated. To each of the four scales, we fit four previously developed models. The four models included a 1-factor model, a 2-factor model distinguishing between positively worded (PW items and RW items, and two 2-factor models, each with one substantive factor and one method factor. Results showed that the number and type of the RW items affected the factor structure of the NFC scale. Consistent with previous research findings, for the original NFC scale, which contains both PW and RW items, the 1-factor model did not have good fit. In contrast, for the revised scales that had no RW items or all RW items, the 1-factor model had reasonably good fit. In addition, for the scale with polar opposite and negated RW items, the factor model with a method factor among the polar opposite items had considerably better fit than the 1-factor model.

  15. Scale effects and morphological diversification in hindlimb segment mass proportions in neognath birds.

    Science.gov (United States)

    Kilbourne, Brandon M

    2014-01-01

    In spite of considerable work on the linear proportions of limbs in amniotes, it remains unknown whether differences in scale effects between proximal and distal limb segments has the potential to influence locomotor costs in amniote lineages and how changes in the mass proportions of limbs have factored into amniote diversification. To broaden our understanding of how the mass proportions of limbs vary within amniote lineages, I collected data on hindlimb segment masses - thigh, shank, pes, tarsometatarsal segment, and digits - from 38 species of neognath birds, one of the most speciose amniote clades. I scaled each of these traits against measures of body size (body mass) and hindlimb size (hindlimb length) to test for departures from isometry. Additionally, I applied two parameters of trait evolution (Pagel's λ and δ) to understand patterns of diversification in hindlimb segment mass in neognaths. All segment masses are positively allometric with body mass. Segment masses are isometric with hindlimb length. When examining scale effects in the neognath subclade Land Birds, segment masses were again positively allometric with body mass; however, shank, pedal, and tarsometatarsal segment masses were also positively allometric with hindlimb length. Methods of branch length scaling to detect phylogenetic signal (i.e., Pagel's λ) and increasing or decreasing rates of trait change over time (i.e., Pagel's δ) suffer from wide confidence intervals, likely due to small sample size and deep divergence times. The scaling of segment masses appears to be more strongly related to the scaling of limb bone mass as opposed to length, and the scaling of hindlimb mass distribution is more a function of scale effects in limb posture than proximo-distal differences in the scaling of limb segment mass. Though negative allometry of segment masses appears to be precluded by the need for mechanically sound limbs, the positive allometry of segment masses relative to body mass may

  16. Length-weight relationship and condition factor of white shrimp Penaeus merguiensis captured in ecosystem mangrove of Bagan Asahan, Tanjungbalai, Asahan, North Sumatra, Indonesia

    Science.gov (United States)

    Suryanti, A.; Riza, N.; Raza'i, T. S.

    2018-02-01

    White Shrimp Penaeus merguiensis was commonly found in Mangrove Ecosystem of Bagan Asahan Village. The purpose of this research are to determine length-weight relationship and condition factor of white shrimp Penaeus merguiensis around ecosystem mangrove waters in Bagan Asahan Village. This research was conducted for 3 month in Maret until Mei 2017 with determination of research station used purposive sampling method. The shrimp samples were taken by shrimp trawl. The result showed that 98 shrimp which consists of 58 males and 40 female. The carapace length of female shrimp between 6,05 - 22,125 mm and total weight ranged from 0,12 - 6,95 g. Male shrimp had carapace length between 7.125 - 18.25 mm and total weigth ranged from 0.14 - 3.82 g. Female and male white shrimp had different growth pattern. Female shrimp had b = 2.984 included in negaive allometric and male shrimps with b = 3.187 included in positive allometric. The value of correlation coefficients was more than 90% for both male and female showed very strong relation between length carapace and body weight. The value of shrimp condition factor ranged from 0.570 - 1.773 and included to flat (thin) body shrimp.

  17. Testing the Scale Dependence of the Scale Factor $\\sigma_{eff}$ in Double Dijet Production at the LHC

    CERN Document Server

    Domdey, Svend; Wiedemann, Urs Achim

    2010-01-01

    The scale factor σ eff is the effective cross section used to characterize the measured rate of inclusive double dijet production in high energy hadron collisions. It is sensitive to the two-parton distributions in the hadronic projectile. In principle, the scale factor depends on the center of mass energy and on the minimal transverse energy of the jets contributing to the double dijet cross section. Here, we point out that proton-proton collisions at the LHC will provide for the first time experimental access to these scale dependences in a logarithmically wide, nominally perturbative kinematic range of minimal transverse energy between 10 GeV and 100 GeV. This constrains the dependence of two-parton distribution functions on parton momentum fractions and parton localization in impact parameter space. Novel information is to be expected about the transverse growth of hadronic distribution functions in the range of semi-hard Bjorken x (0.001 < x < 0.1) and high resolution Q^2. We discuss to what exten...

  18. Quantifying Interfacial pH Variation at Molecular Length Scales Using a Concurrent Non-Faradaic Reaction.

    Science.gov (United States)

    Ryu, Jaeyune; Wuttig, Anna; Surendranath, Yogesh

    2018-05-15

    We quantify changes in the interfacial pH local to the electrochemical double layer during electrocatalysis, using a concurrent non-faradaic probe reaction. In the absence of electrocatalysis, nanostructured Pt/C surfaces mediate the reaction of H2 with cis-2-butene-1,4-diol to form a mixture of 1,4-butanediol and n-butanol with a selectivity that is linearly dependent on the bulk solution pH. We show that kinetic branching occurs from a common surface-bound intermediate, ensuring that this probe reaction is uniquely sensitive to the interfacial pH within molecular length scales of the surface. We use the pH-dependent selectivity of this reaction to track changes in interfacial pH during concurrent hydrogen oxidation electrocatalysis and find that the local pH can vary dramatically, > 3 units, relative to the bulk value even at modest current densities in well-buffered electrolytes. This work highlights the key role that interfacial pH variation plays in modulating inner-sphere electrocatalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Healthy lifestyle and leukocyte telomere length in U.S. women.

    Directory of Open Access Journals (Sweden)

    Qi Sun

    Full Text Available Whether a healthy lifestyle may be associated with longer telomere length is largely unknown.To examine healthy lifestyle practices, which are primary prevention measures against major age-related chronic diseases, in relation to leukocyte telomere length.Cross-sectional analysis in the Nurses' Health Study (NHS.The population consisted of 5,862 women who participated in multiple prospective case-control studies within the NHS cohort. Z scores of leukocyte telomere length were derived within each case-control study. Based on prior work, we defined low-risk or healthy categories for five major modifiable factors assessed in 1988 or 1990: non-current smoking, maintaining a healthy body weight (body mass index in 18.5-24.9 kg/m(2, engaging in regular moderate or vigorous physical activities (≥150 minutes/week, drinking alcohol in moderation (1 drink/week to <2 drinks/day, and eating a healthy diet (Alternate Healthy Eating Index score in top 50%. We calculated difference (% of the z scores contrasting low-risk groups with reference groups to evaluate the association of interest.Although none of the individual low-risk factors was significantly associated with larger leukocyte telomere length z scores, we observed a significant, positive relationship between the number of low-risk factors and the z scores. In comparison with women who had zero low-risk factors (1.9% of the total population and were, therefore, considered the least healthy group, the leukocyte telomere length z scores were 16.4%, 22.1%, 28.7%, 22.6%, and 31.2% (P for trend = 0.015 higher for women who had 1 to 5 low-risk factors, respectively.Adherence to a healthy lifestyle, defined by major modifiable risk factors, was associated with longer telomere length in leukocytes.

  20. GENDER DIFFERENTIALS IN FACTORS AFFECTING PERFORMANCE OF SMALL-SCALE ENTERPRISES IN LAGOS STATE – NIGERIA

    Directory of Open Access Journals (Sweden)

    Yusuff Olabisi Sherifat

    2013-05-01

    Full Text Available There is a lack of empirical data segregation on factors affecting gender as the variable of interest. However, previous research had indicated several factors that affect business performances among small-scale enterprise owners. Using feminist theory and a descriptive survey research design, data were collected from fifty (50 small-scale enterprise owners that were purposively chosen across the study area. The findings show that the factors that were significant for female were significantly different from male. For female small scale enterprise owners, marital status (64% Age of Children (68%, Role Model/ advisors (58% were significant factors that affect their business performance. For male small-scale enterprise owners, Friends (70%, a lack of Government support (80%, inability to display innovativeness (78% and Risk-Taking (84% were significant for male. Lack of availability of capital and finances were significant for the two. Other factors that affect performance include friends, inadequate training and business location. Adequate knowledge of factors that affect gender enterprise performance will go a long way in alleviating these problems. Small-scale enterprises should be supported for poverty alleviation, especially among women and for the nation’s economic development

  1. Confirmatory Factor Analysis of the Delirium Rating Scale Revised-98 (DRS-R98).

    Science.gov (United States)

    Thurber, Steven; Kishi, Yasuhiro; Trzepacz, Paula T; Franco, Jose G; Meagher, David J; Lee, Yanghyun; Kim, Jeong-Lan; Furlanetto, Leticia M; Negreiros, Daniel; Huang, Ming-Chyi; Chen, Chun-Hsin; Kean, Jacob; Leonard, Maeve

    2015-01-01

    Principal components analysis applied to the Delirium Rating Scale-Revised-98 contributes to understanding the delirium construct. Using a multisite pooled international delirium database, the authors applied confirmatory factor analysis to Delirium Rating Scale-Revised-98 scores from 859 adult patients evaluated by delirium experts (delirium, N=516; nondelirium, N=343). Confirmatory factor analysis found all diagnostic features and core symptoms (cognitive, language, thought process, sleep-wake cycle, motor retardation), except motor agitation, loaded onto factor 1. Motor agitation loaded onto factor 2 with noncore symptoms (delusions, affective lability, and perceptual disturbances). Factor 1 loading supports delirium as a single construct, but when accompanied by psychosis, motor agitation's role may not be solely as a circadian activity indicator.

  2. Factor structure of the Japanese Interpersonal Competence Scale.

    Science.gov (United States)

    Matsudaira, Tomomi; Fukuhara, Taihei; Kitamura, Toshinori

    2008-04-01

    Assessing social competence is important for clinical and preventive interventions of depression. The aim of the present paper was to examine the factor structure of the Japanese Interpersonal Competence Scale (JICS). Exploratory and confirmatory factor analysis was performed on the survey responses of 730 participants. Simultaneous multigroup analyses were conducted to confirm factor stability across psychological health status and sex differences. Two factors, which represent Perceptive Ability and Self-Restraint, were confirmed to show a moderate correlation. Perceptive Ability involves a more cognitive aspect of social competence, while Self-Restraint involves a more behavioral aspect, both of which are considered to reflect the emotion-based relating style specific to the Japanese people: indulgent dependence (amae) and harmony (wa). In addition, Self-Restraint may be linked to social functioning. Both constructs may confound a respondent's perceived confidence. Despite its shortcomings, the JICS is a unique measure of social competence in the Japanese cultural context.

  3. A Confirmatory Factor Analysis of the Structure of Abbreviated Math Anxiety Scale

    Directory of Open Access Journals (Sweden)

    Farahman Farrokhi

    2011-06-01

    Full Text Available "nObjective: The aim of this study is to explore the confirmatory factor analysis results of the Persian adaptation of Abbreviated Math Anxiety Scale (AMAS, proposed by Hopko, Mahadevan, Bare & Hunt. "nMethod: The validity and reliability assessments of the scale were performed on 298 college students chosen randomly from Tabriz University in Iran. The confirmatory factor analysis (CFA was carried out to determine the factor structures of the Persian version of AMAS. "nResults: As expected, the two-factor solution provided a better fit to the data than a single factor. Moreover, multi-group analyses showed that this two-factor structure was invariant across sex. Hence, AMAS provides an equally valid measure for use among college students. "nConclusions:  Brief AMAS demonstrates adequate reliability and validity. The AMAS scores can be used to compare symptoms of math anxiety between male and female students. The study both expands and adds support to the existing body of math anxiety literature.

  4. Strategic Factor Markets Scale Free Resources and Economic Performance

    DEFF Research Database (Denmark)

    Geisler Asmussen, Christian

    2015-01-01

    This paper analyzes how scale free resources, which can be acquired by multiple firms simultaneously and deployed against one another in product market competition, will be priced in strategic factor markets, and what the consequences are for the acquiring firms' performance. Based on a game-theo...

  5. A confirmatory factor analysis of the Utrecht Work Engagement Scale for Students in a Chinese sample.

    Science.gov (United States)

    Meng, Lina; Jin, Yi

    2017-02-01

    Educational institutions play an important role in encouraging students' engagement with course work. Educators are finding instruments to measure students' engagement in order to develop strategies to improve it. Little is known about the factor structure of the Utrecht Work Engagement Scale for Students among Chinese nursing students. The aim of this research was to examine the factor structure of the Utrecht Work Engagement Scale for Students via confirmatory factor analysis. The study used a cross-sectional design. A sample of 480 students from a nursing school in one Chinese university completed the Utrecht Work Engagement Scale for Students. Factor analysis was used to analyze the resulting data. The overall results of internal consistency reliability and confirmatory factor analysis provided evidence supporting the reliability and three-factor structure of the Utrecht Work Engagement Scale for Students. The total internal consistency reliability coefficients were 0.91. Model comparison tests indicated that an oblique factors model that permitted correlations between pairs of error terms fitted the data better than other first-order models. In addition, due to the three strongly intercorrelated factors, a second-order model was found to fit the data well, providing support for the factorial structure of the Utrecht Work Engagement Scale for Students. The findings of confirmatory factor analysis provided evidence supporting the reliability and three-factor structure of the Utrecht Work Engagement Scale for Students when evaluated with a Chinese nursing student sample in this study. Thus, it is appropriate to use The Utrecht Work Engagement Scale for Students in for assessing the engagement among Chinese nursing students. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Length expectation values in quantum Regge calculus

    International Nuclear Information System (INIS)

    Khatsymovsky, V.M.

    2004-01-01

    Regge calculus configuration superspace can be embedded into a more general superspace where the length of any edge is defined ambiguously depending on the 4-tetrahedron containing the edge. Moreover, the latter superspace can be extended further so that even edge lengths in each the 4-tetrahedron are not defined, only area tensors of the 2-faces in it are. We make use of our previous result concerning quantization of the area tensor Regge calculus which gives finite expectation values for areas. Also our result is used showing that quantum measure in the Regge calculus can be uniquely fixed once we know quantum measure on (the space of the functionals on) the superspace of the theory with ambiguously defined edge lengths. We find that in this framework quantization of the usual Regge calculus is defined up to a parameter. The theory may possess nonzero (of the order of Planck scale) or zero length expectation values depending on whether this parameter is larger or smaller than a certain value. Vanishing length expectation values means that the theory is becoming continuous, here dynamically in the originally discrete framework

  7. Identification of the key ecological factors influencing vegetation degradation in semi-arid agro-pastoral ecotone considering spatial scales

    Science.gov (United States)

    Peng, Yu; Wang, Qinghui; Fan, Min

    2017-11-01

    When assessing re-vegetation project performance and optimizing land management, identification of the key ecological factors inducing vegetation degradation has crucial implications. Rainfall, temperature, elevation, slope, aspect, land use type, and human disturbance are ecological factors affecting the status of vegetation index. However, at different spatial scales, the key factors may vary. Using Helin County, Inner-Mongolia, China as the study site and combining remote sensing image interpretation, field surveying, and mathematical methods, this study assesses key ecological factors affecting vegetation degradation under different spatial scales in a semi-arid agro-pastoral ecotone. It indicates that the key factors are different at various spatial scales. Elevation, rainfall, and temperature are identified as crucial for all spatial extents. Elevation, rainfall and human disturbance are key factors for small-scale quadrats of 300 m × 300 m and 600 m × 600 m, temperature and land use type are key factors for a medium-scale quadrat of 1 km × 1 km, and rainfall, temperature, and land use are key factors for large-scale quadrats of 2 km × 2 km and 5 km × 5 km. For this region, human disturbance is not the key factor for vegetation degradation across spatial scales. It is necessary to consider spatial scale for the identification of key factors determining vegetation characteristics. The eco-restoration programs at various spatial scales should identify key influencing factors according their scales so as to take effective measurements. The new understanding obtained in this study may help to explore the forces which driving vegetation degradation in the degraded regions in the world.

  8. Overview of bunch length measurements

    International Nuclear Information System (INIS)

    Lumpkin, A. H.

    1999-01-01

    An overview of particle and photon beam bunch length measurements is presented in the context of free-electron laser (FEL) challenges. Particle-beam peak current is a critical factor in obtaining adequate FEL gain for both oscillators and self-amplified spontaneous emission (SASE) devices. Since measurement of charge is a standard measurement, the bunch length becomes the key issue for ultrashort bunches. Both time-domain and frequency-domain techniques are presented in the context of using electromagnetic radiation over eight orders of magnitude in wavelength. In addition, the measurement of microbunching in a micropulse is addressed

  9. CEPF Western Ghats Special Series: Length-weight and length-length relationship of three species of snakehead fish, Channa diplogramma, C. marulius and C. striata from the riverine reaches of Lake Vembanad, Kerala, India.

    Directory of Open Access Journals (Sweden)

    A. Ali

    2013-09-01

    Full Text Available The length-weight relationship (LWR and length-length relationships (LLR of three snakehead fishes, Channa diplogramma, C. marulius and C. striata, exploited by small-scale fishers in the riverine reaches of Lake Vembanad, Kerala were studied using the allometric growth equation Y = aXb. Our analysis shows that the LWR of C. diplogramma and C. marulius is nonisometric with exponents much smaller than the cubic value (b = 3, while that of C. striata is isometric. Channa marulius showed a definite change in LWR with size, with smaller fish growing with positive allometric exponents (b greater than 3 and larger individuals having negative allometric relationship (b less than 3, indicating a possible age-related change in growth pattern. In the case of LLR, all three snakehead species showed non-isometric growth patterns. The caudal fin did not grow substantially with increasing fish length.

  10. Memory for tonal pitches: a music-length effect hypothesis.

    Science.gov (United States)

    Akiva-Kabiri, Lilach; Vecchi, Tomaso; Granot, Roni; Basso, Demis; Schön, Daniele

    2009-07-01

    One of the most studied effects of verbal working memory (WM) is the influence of the length of the words that compose the list to be remembered. This work aims to investigate the nature of musical WM by replicating the word length effect in the musical domain. Length and rate of presentation were manipulated in a recognition task of tone sequences. Results showed significant effects for both factors (length and presentation rate) as well as their interaction, suggesting the existence of different strategies (e.g., chunking and rehearsal) for the immediate memory of musical information, depending upon the length of the sequences.

  11. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  12. Personality Assessment Inventory scale characteristics and factor structure in the assessment of alcohol dependency.

    Science.gov (United States)

    Schinka, J A

    1995-02-01

    Individual scale characteristics and the inventory structure of the Personality Assessment Inventory (PAI; Morey, 1991) were examined by conducting internal consistency and factor analyses of item and scale score data from a large group (N = 301) of alcohol-dependent patients. Alpha coefficients, mean inter-item correlations, and corrected item-total scale correlations for the sample paralleled values reported by Morey for a large clinical sample. Minor differences in the scale factor structure of the inventory from Morey's clinical sample were found. Overall, the findings support the use of the PAI in the assessment of personality and psychopathology of alcohol-dependent patients.

  13. Factor analysis and Mokken scaling of the Organizational Commitment Questionnaire in nurses.

    Science.gov (United States)

    Al-Yami, M; Galdas, P; Watson, R

    2018-03-22

    To generate an Arabic version of the Organizational Commitment Questionnaire that would be easily understood by Arabic speakers and would be sensitive to Arabic culture. The nursing workforce in Saudi Arabia is undergoing a process of Saudization but there is a need to understand the factors that will help to retain this workforce. No organizational commitment tools exist in Arabic that are specifically designed for health organizations. An Arabic version of the organizational commitment tool could aid Arabic speaking employers to understand their employees' perceptions of their organizations. Translation and back-translation followed by factor analysis (principal components analysis and confirmatory factor analysis) to test the factorial validity and item response theory (Mokken scaling). A two-factor structure was obtained for the Organizational Commitment Questionnaire comprising Factor 1: Value commitment; and Factor 2: Commitment to stay with acceptable reliability measured by internal consistency. A Mokken scale was obtained including items from both factors showing a hierarchy of items running from commitment to the organization and commitment to self. This study shows that the Arabic version of the OCQ retained the established two-factor structure of the original English-language version. Although the two factors - 'value commitment' and 'commitment to stay' - repudiate the original developers' single factor claim. A useful insight into the structure of the Organizational Commitment Questionnaire has been obtained with the novel addition of a hierarchical scale. The Organizational Commitment Questionnaire is now ready to be used with nurses in the Arab speaking world and could be used a tool to measure the contemporary commitment of nursing employees and in future interventions aimed at increasing commitment and retention of valuable nursing staff. © 2018 International Council of Nurses.

  14. The role of reactant unmixedness, strain rate, and length scale on premixed combustor performance

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsen, S.; LaRue, J.; Vilayanur, S. [Univ. of California, Irvine, CA (United States)] [and others

    1995-10-01

    Lean premixed combustion provides a means to reduce pollutant formation and increase combustion efficiency. However, fuel-air mixing is rarely uniform in space and time. This nonuniformity in concentration will lead to relative increases in pollutant formation and decreases in combustion efficiency. The nonuniformity of the concentration at the exit of the premixer has been defined by Lyons (1981) as the {open_quotes}unmixedness.{close_quotes} Although turbulence properties such as length scales and strain rate are known to effect unmixedness, the exact relationship is unknown. Evaluating this relationship and the effect of unmixedness in premixed combustion on pollutant formation and combustion efficiency are an important part of the overall goal of US Department of Energy`s Advanced Turbine Systems (ATS) program and are among the goals of the program described herein. The information obtained from ATS is intended to help to develop and commercialize gas turbines which have (1) a wide range of operation/stability, (2) a minimal amount of pollutant formation, and (3) high combustion efficiency. Specifically, with regard to pollutants, the goals are to reduce the NO{sub x} emissions by at least 10%, obtain less than 20 PPM of both CO and UHC, and increase the combustion efficiency by 5%.

  15. Biophysics of filament length regulation by molecular motors

    International Nuclear Information System (INIS)

    Kuan, Hui-Shun; Betterton, M D

    2013-01-01

    Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells. (paper)

  16. Analysis of Multi-Scale Changes in Arable Land and Scale Effects of the Driving Factors in the Loess Areas in Northern Shaanxi, China

    Directory of Open Access Journals (Sweden)

    Lina Zhong

    2014-04-01

    Full Text Available In this study, statistical data on the national economic and social development, including the year-end actual area of arable land, the crop yield per unit area and 10 factors, were obtained for the period between 1980 and 2010 and used to analyze the factors driving changes in the arable land of the Loess Plateau in northern Shaanxi, China. The following areas of arable land, which represent different spatial scales, were investigated: the Baota District, the city of Yan’an, and the Northern Shaanxi region. The scale effects of the factors driving the changes to the arable land were analyzed using a canonical correlation analysis and a principal component analysis. Because it was difficult to quantify the impact of the national government policies on the arable land changes, the contributions of the national government policies to the changes in arable land were analyzed qualitatively. The primary conclusions of the study were as follows: between 1980 and 2010, the arable land area decreased. The trends of the year-end actual arable land proportion of the total area in the northern Shaanxi region and Yan’an City were broadly consistent, whereas the proportion in the Baota District had no obvious similarity with the northern Shaanxi region and Yan’an City. Remarkably different factors were shown to influence the changes in the arable land at different scales. Environmental factors exerted a greater effect for smaller scale arable land areas (the Baota District. The effect of socio-economic development was a major driving factor for the changes in the arable land area at the city and regional scales. At smaller scales, population change, urbanization and socio-economic development affected the crop yield per unit area either directly or indirectly. Socio-economic development and the modernization of agricultural technology had a greater effect on the crop yield per unit area at the large-scales. Furthermore, the qualitative analysis

  17. The Effect of Map Scale on the Determination of the Coastline Length and the Area of Islands in the Adriatic Sea - the Example of the Island of Rab

    Directory of Open Access Journals (Sweden)

    Nada Vučetić

    2006-12-01

    Full Text Available The procedure to determine the coastline length and the area of the island of Rab from the maps at the scales 1:25 000, 1:50 000, 1:100 000, 1:200 000, 1:300 000, 1:500 000, 1:1 000 000 and 1:2 000 000 is described. The map sheets at the scales 1:25 000, 1:100 000 and 1:200 000 were obtained already in a georeferenced raster format, and the others were scanned and georeferenced. This was followed by a manual vectorization of the coastline and a transformation of all coordinates into the 5th zone of the Gauss-Krüger projection. The length of the coastline and the area of the island were calculated in the Gauss-Krüger projection taking into account the deformations of the projection. The results are given in tables and represented graphically.

  18. Predictors of length of stay in a ward for demented elderly: gender differences.

    Science.gov (United States)

    Ono, Toshiyuki; Tamai, Akira; Takeuchi, Daisuke; Tamai, Yuzuru; Iseki, Hidenori; Fukushima, Hiromi; Kasahara, Sumie

    2010-09-01

    In our previous studies, we found both gender differences among care recipients and predictors that influenced outcomes after discharge from a ward for demented elderly. Here, we investigate predictors that influence the length of stay for each sex. We studied the data of 390 patients with dementia who were hospitalized in a ward for demented elderly between 1 April 2000 and 31 March 2008, and treated until 31 March 2009. The patients were divided into groups classified by gender. We analyzed the gender differences of characteristics and evaluated the predictors that influenced the length of stay in the ward for demented elderly using Cox's proportional hazards model. A model using the initial scores of the Revised Hasegawa Dementia Scale (HDS-R), Assessment Scale for Symptoms of Dementia (ASSD) and Nishimura's activity of daily living scale (N-ADL), which were examined on admission, was named Model 1. In Model 1, we checked the effect of each patient's characteristics, except for complications and destinations, on their length of stay. Model 2 used the final scores of HDS-R, ASSD and N-ADL including complications and destinations. There was a clear gender difference in the length of stay. The length of stay of women was longer than that of men. It was difficult to predict the length of stay in Model 1. Age was the only predictor in women and no predictor was identified in men. In Model 2, complications and the final HDS-R and N-ADL scores were predictors of the length of stay in men. Age, complications and destinations were predictors of the length of stay in women. It was observed that there were gender differences among predictors of the length of stay. However, it was difficult to predict the length of stay on admission. Retrospectively, the length of stay was determined by physical and psychological conditions, not by the social variables in men. In women, it was supposed that the caregiver's wish to give care at home reduced the length of stay. Besides

  19. Rosenberg's Self-Esteem Scale: Two Factors or Method Effects.

    Science.gov (United States)

    Tomas, Jose M.; Oliver, Amparo

    1999-01-01

    Results of a study with 640 Spanish high school students suggest the existence of a global self-esteem factor underlying responses to Rosenberg's (M. Rosenberg, 1965) Self-Esteem Scale, although the inclusion of method effects is needed to achieve a good model fit. Method effects are associated with item wording. (SLD)

  20. Work related injuries and associated factors among small scale ...

    African Journals Online (AJOL)

    Objective: This study aims to assess the magnitude of work related injury and associated factors among small scale industrial workers in Mizan-Aman town, Bench Maji Zone, Southwest Ethiopia. Method: A cross-sectional study design was conducted from February to May, 2016. Data was collected using a structured face to ...

  1. Deviations from uniform power law scaling in nonstationary time series

    Science.gov (United States)

    Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.

    1997-01-01

    A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.

  2. πK-scattering lengths

    International Nuclear Information System (INIS)

    Volkov, M.K.; Osipov, A.A.

    1983-01-01

    The msub(π)asub(0)sup(1/2)=0.1, msub(π)asub(0)sup(3/2)=-0.1, msub(π)asub(0)sup((-))=0.07, msub(π)sup(3)asub(1)sup(1/2)=0.018, msub(π)sup(3)asub(1)aup(3/2)=0.002, msub(π)sup(3)asub(1)sup((-))=0.0044, msub(π)sup(5)asub(2)sup(1/2)=2.4x10sup(-4) and msub(π)sup(5)asub(2)sup(3/2)=-1.2x10sup(-4) scattering lengths are calculated in the framework of the composite meson model which is based on four-quark interaction. The decay form factors of (rho, epsilon, S*) → 2π, (K tilde, K*) → Kπ are used. The q 2 -terms of the quark box diagrams are taken into account. It is shown that the q 2 -terms of the box diagrams give the main contribution to the s-wave scattering lengths. The diagrams with the intermediate vector mesons begin to play the essential role at calculation of the p- and d-wave scattering lengths

  3. [Length of stay in patients admitted for acute heart failure].

    Science.gov (United States)

    Martín-Sánchez, Francisco Javier; Carbajosa, Virginia; Llorens, Pere; Herrero, Pablo; Jacob, Javier; Miró, Òscar; Fernández, Cristina; Bueno, Héctor; Calvo, Elpidio; Ribera Casado, José Manuel

    2016-01-01

    To identify the factors associated with prolonged length of hospital stay in patients admitted for acute heart failure. Multipurpose observational cohort study including patients from the EAHFE registry admitted for acute heart failure in 25 Spanish hospitals. Data were collected on demographic and clinical variables and on the day and place of admission. The primary outcome was length of hospital stay longer than the median. We included 2,400 patients with a mean age of 79.5 (9.9) years; of these, 1,334 (55.6%) were women. Five hundred and ninety (24.6%) were admitted to the short stay unit (SSU), 606 (25.2%) to cardiology, and 1,204 (50.2%) to internal medicine or gerontology. The mean length of hospital stay was 7.0 (RIC 4-11) days. Fifty-eight (2.4%) patients died and 562 (23.9%) were readmitted within 30 days after discharge. The factors associated with prolonged length of hospital stay were chronic pulmonary disease; being a device carrier; having an unknown or uncommon triggering factor; the presence of renal insufficiency, hyponatremia and anaemia in the emergency department; not being admitted to an SSU or the lack of this facility in the hospital; and being admitted on Monday, Tuesday or Wednesday. The factors associated with length of hospital stay≤7days were hypertension, having a hypertensive episode, or a lack of treatment adherence. The area under the curve of the mixed model adjusted to the center was 0.78 (95% CI: 0.76-0.80; p<0.001). A series of factors is associated with prolonged length of hospital stay and should be taken into account in the management of acute heart failure. Copyright © 2016 SESPAS. Published by Elsevier Espana. All rights reserved.

  4. The scaling of urban surface water abundance and impairment with city size

    Science.gov (United States)

    Steele, M. K.

    2018-03-01

    Urbanization alters surface water compared to nonurban landscapes, yet little is known regarding how basic aquatic ecosystem characteristics, such as the abundance and impairment of surface water, differ with population size or regional context. This study examined the abundance, scaling, and impairment of surface water by quantifying the stream length, water body area, and impaired stream length for 3520 cities in the United States with populations from 2500 to 18 million. Stream length, water body area, and impaired stream length were quantified using the National Hydrography Dataset and the EPA's 303(d) list. These metrics were scaled with population and city area using single and piecewise power-law models and related to biophysical factors (precipitation, topography) and land cover. Results show that abundance of stream length and water body area in cities actually increases with city area; however, the per person abundance decreases with population size. Relative to population, impaired stream length did not increase until city populations were > 25,000 people, then scaled linearly with population. Some variation in abundance and impairment was explained by biophysical context and land cover. Development intensity correlated with stream density and impairment; however, those relationships depended on the orientation of the land covers. When high intensity development occupied the local elevation highs (+ 15 m) and undeveloped land the elevation lows, the percentage of impaired streams was less than the opposite land cover orientation (- 15 m) or very flat land. These results show that surface water abundance and impairment across contiguous US cities are influenced by city size and by biophysical setting interacting with land cover intensity.

  5. Vibrational frequency scaling factors for correlation consistent basis sets and the methods CC2 and MP2 and their spin-scaled SCS and SOS variants

    Energy Technology Data Exchange (ETDEWEB)

    Friese, Daniel H., E-mail: daniel.h.friese@uit.no [Centre for Theoretical and Computational Chemistry CTCC, Department of Chemistry, University of Tromsø, N-9037 Tromsø (Norway); Törk, Lisa; Hättig, Christof, E-mail: christof.haettig@rub.de [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44801 Bochum (Germany)

    2014-11-21

    We present scaling factors for vibrational frequencies calculated within the harmonic approximation and the correlated wave-function methods coupled cluster singles and doubles model (CC2) and Møller-Plesset perturbation theory (MP2) with and without a spin-component scaling (SCS or spin-opposite scaling (SOS)). Frequency scaling factors and the remaining deviations from the reference data are evaluated for several non-augmented basis sets of the cc-pVXZ family of generally contracted correlation-consistent basis sets as well as for the segmented contracted TZVPP basis. We find that the SCS and SOS variants of CC2 and MP2 lead to a slightly better accuracy for the scaled vibrational frequencies. The determined frequency scaling factors can also be used for vibrational frequencies calculated for excited states through response theory with CC2 and the algebraic diagrammatic construction through second order and their spin-component scaled variants.

  6. Does neighborhood size really cause the word length effect?

    Science.gov (United States)

    Guitard, Dominic; Saint-Aubin, Jean; Tehan, Gerald; Tolan, Anne

    2018-02-01

    In short-term serial recall, it is well-known that short words are remembered better than long words. This word length effect has been the cornerstone of the working memory model and a benchmark effect that all models of immediate memory should account for. Currently, there is no consensus as to what determines the word length effect. Jalbert and colleagues (Jalbert, Neath, Bireta, & Surprenant, 2011a; Jalbert, Neath, & Surprenant, 2011b) suggested that neighborhood size is one causal factor. In six experiments we systematically examined their suggestion. In Experiment 1, with an immediate serial recall task, multiple word lengths, and a large pool of words controlled for neighborhood size, the typical word length effect was present. In Experiments 2 and 3, with an order reconstruction task and words with either many or few neighbors, we observed the typical word length effect. In Experiment 4 we tested the hypothesis that the previous abolition of the word length effect when neighborhood size was controlled was due to a confounded factor: frequency of orthographic structure. As predicted, we reversed the word length effect when using short words with less frequent orthographic structures than the long words, as was done in both of Jalbert et al.'s studies. In Experiments 5 and 6, we again observed the typical word length effect, even if we controlled for neighborhood size and frequency of orthographic structure. Overall, the results were not consistent with the predictions of Jalbert et al. and clearly showed a large and reliable word length effect after controlling for neighborhood size.

  7. Allometry of sexual size dimorphism in turtles: a comparison of mass and length data.

    Science.gov (United States)

    Regis, Koy W; Meik, Jesse M

    2017-01-01

    The macroevolutionary pattern of Rensch's Rule (positive allometry of sexual size dimorphism) has had mixed support in turtles. Using the largest carapace length dataset and only large-scale body mass dataset assembled for this group, we determine (a) whether turtles conform to Rensch's Rule at the order, suborder, and family levels, and (b) whether inferences regarding allometry of sexual size dimorphism differ based on choice of body size metric used for analyses. We compiled databases of mean body mass and carapace length for males and females for as many populations and species of turtles as possible. We then determined scaling relationships between males and females for average body mass and straight carapace length using traditional and phylogenetic comparative methods. We also used regression analyses to evalutate sex-specific differences in the variance explained by carapace length on body mass. Using traditional (non-phylogenetic) analyses, body mass supports Rensch's Rule, whereas straight carapace length supports isometry. Using phylogenetic independent contrasts, both body mass and straight carapace length support Rensch's Rule with strong congruence between metrics. At the family level, support for Rensch's Rule is more frequent when mass is used and in phylogenetic comparative analyses. Turtles do not differ in slopes of sex-specific mass-to-length regressions and more variance in body size within each sex is explained by mass than by carapace length. Turtles display Rensch's Rule overall and within families of Cryptodires, but not within Pleurodire families. Mass and length are strongly congruent with respect to Rensch's Rule across turtles, and discrepancies are observed mostly at the family level (the level where Rensch's Rule is most often evaluated). At macroevolutionary scales, the purported advantages of length measurements over weight are not supported in turtles.

  8. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.C.; Mani, V.; Mohanty, K.K. [Univ. of Houston, TX (United States)

    1997-08-01

    Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

  9. Effects of device scaling and geometry on MOS radiation hardness assurance

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Fleetwood, D.M.; Winokur, P.S.; Schwank, J.R.; Meisenheimer, T.L.

    1993-01-01

    In this work the authors investigate the effects of transistor scaling and geometry on radiation hardness. The total dose response is shown to depend strongly on transistor channel length. Specifically, transistors with shorter gate lengths tend to show more negative threshold-voltage shifts during irradiation than transistors with longer gate lengths. Similarly, transistors with longer gate lengths tend to show more positive threshold-voltage shifts during post-irradiation annealing than transistors with shorter gate lengths. These differences in radiation response, caused by differences in transistor size and geometry, will be important to factor into test-structure-to-IC correlations necessary to support cost-effective Qualified Manufacturers List (QML) hardness assurance. Transistors with minimum gate length (more negative ΔV th ) will have a larger effect on standby power supply current for an IC at high dose rates, such as in a weapon environment, where worst-case response is associated with negative threshold-voltage shifts during irradiation. On the other hand, transistors with maximum gate length (more positive ΔV th ) will have a larger effect on the timing parameters of an IC at low dose rates, such as in a space environment, where worst-case response is represented by positive threshold-voltage shifts after postirradiation anneal. The channel size and geometry effects they observe cannot be predicted from simple scaling models, but occur because of real differences in oxide-, interface-, and border-trap charge densities among devices of different sizes

  10. Factor Structure and Psychometric Properties of the Injection Phobia Scale-Anxiety

    Science.gov (United States)

    Olatunji, Bunmi O.; Sawchuk, Craig N.; Moretz, Melanie W.; David, Bieke; Armstrong, Thomas; Ciesielski, Bethany G.

    2010-01-01

    The present investigation examined the factor structure and psychometric properties of the Injection Phobia Scale-Anxiety (IPS-Anx). Principal components analysis of IPS-Anx items in Study 1 (n = 498) revealed a 2-factor structure consisting of Distal Fear and Contact Fear. However, CFA results in Study 2 (n = 567) suggest that a 1-factor…

  11. Individualized adjustments to reference phantom internal organ dosimetry—scaling factors given knowledge of patient external anatomy

    Science.gov (United States)

    Wayson, Michael B.; Bolch, Wesley E.

    2018-04-01

    Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10 year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting

  12. Individualized adjustments to reference phantom internal organ dosimetry-scaling factors given knowledge of patient external anatomy.

    Science.gov (United States)

    Wayson, Michael B; Bolch, Wesley E

    2018-04-13

    Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10 year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting

  13. The Scales of Time, Length, Mass, Energy, and Other Fundamental Physical Quantities in the Atomic World and the Use of Atomic Units in Quantum Mechanical Calculations

    Science.gov (United States)

    Teo, Boon K.; Li, Wai-Kee

    2011-01-01

    This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…

  14. Overview of lower length scale model development for accident tolerant fuels regarding U3Si2 fuel and FeCrAl cladding

    International Nuclear Information System (INIS)

    Zhang, Yongfeng

    2016-01-01

    U3Si2 and FeCrAl have been proposed as fuel and cladding concepts, respectively, for accident tolerance fuels with higher tolerance to accident scenarios compared to UO2. However, a lot of key physics and material properties regarding their in-pile performance are yet to be explored. To accelerate the understanding and reduce the cost of experimental studies, multiscale modeling and simulation are used to develop physics-based materials models to assist engineering scale fuel performance modeling. In this report, the lower-length-scale efforts in method and material model development supported by the Accident Tolerance Fuel (ATF) high-impact-problem (HIP) under the NEAMS program are summarized. Significant progresses have been made regarding interatomic potential, phase field models for phase decomposition and gas bubble formation, and thermal conductivity for U3Si2 fuel, and precipitation in FeCrAl cladding. The accomplishments are very useful by providing atomistic and mesoscale tools, improving the current understanding, and delivering engineering scale models for these two ATF concepts.

  15. Overview of lower length scale model development for accident tolerant fuels regarding U3Si2 fuel and FeCrAl cladding

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Laboratory

    2016-09-01

    U3Si2 and FeCrAl have been proposed as fuel and cladding concepts, respectively, for accident tolerance fuels with higher tolerance to accident scenarios compared to UO2. However, a lot of key physics and material properties regarding their in-pile performance are yet to be explored. To accelerate the understanding and reduce the cost of experimental studies, multiscale modeling and simulation are used to develop physics-based materials models to assist engineering scale fuel performance modeling. In this report, the lower-length-scale efforts in method and material model development supported by the Accident Tolerance Fuel (ATF) high-impact-problem (HIP) under the NEAMS program are summarized. Significant progresses have been made regarding interatomic potential, phase field models for phase decomposition and gas bubble formation, and thermal conductivity for U3Si2 fuel, and precipitation in FeCrAl cladding. The accomplishments are very useful by providing atomistic and mesoscale tools, improving the current understanding, and delivering engineering scale models for these two ATF concepts.

  16. The Columbia Impairment Scale: Factor Analysis Using a Community Mental Health Sample

    Science.gov (United States)

    Singer, Jonathan B.; Eack, Shaun M.; Greeno, Catherine M.

    2011-01-01

    Objective: The objective of this study was to test the factor structure of the parent version of the Columbia Impairment Scale (CIS) in a sample of mothers who brought their children for community mental health (CMH) services (n = 280). Method: Confirmatory factor analysis (CFA) was used to test the fit of the hypothesized four-factor structure…

  17. Biotic and Abiotic factors governing nestling-period length in the ovenbird (Seiurus aurocapilla)

    Science.gov (United States)

    Eric Stodola; David Buehler; Daniel Kim; Kathleen Franzreb; Daniel Linder

    2010-01-01

    In many songbirds, the nesting period for a breeding attempt is extremely short, often lasting only a few weeks. Breeding adults can shorten this period by decreasing the number of eggs laid or reducing the length of the nestling period. Nestling-period length has received little attention in the literature but could have profound effects on annual fecundity, because...

  18. A New Scale Factor Adjustment Method for Magnetic Force Feedback Accelerometer

    Directory of Open Access Journals (Sweden)

    Xiangqing Huang

    2017-10-01

    Full Text Available A new and simple method to adjust the scale factor of a magnetic force feedback accelerometer is presented, which could be used in developing a rotating accelerometer gravity gradient instrument (GGI. Adjusting and matching the acceleration-to-current transfer function of the four accelerometers automatically is one of the basic and necessary technologies for rejecting the common mode accelerations in the development of GGI. In order to adjust the scale factor of the magnetic force rebalance accelerometer, an external current is injected and combined with the normal feedback current; they are then applied together to the torque coil of the magnetic actuator. The injected current could be varied proportionally according to the external adjustment needs, and the change in the acceleration-to-current transfer function then realized dynamically. The new adjustment method has the advantages of no extra assembly and ease of operation. Changes in the scale factors range from 33% smaller to 100% larger are verified experimentally by adjusting the different external coefficients. The static noise of the used accelerometer is compared under conditions with and without the injecting current, and the experimental results find no change at the current noise level, which further confirms the validity of the presented method.

  19. A New Scale Factor Adjustment Method for Magnetic Force Feedback Accelerometer.

    Science.gov (United States)

    Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Li, Zhu; Fan, Ji; Tu, Liangcheng

    2017-10-27

    A new and simple method to adjust the scale factor of a magnetic force feedback accelerometer is presented, which could be used in developing a rotating accelerometer gravity gradient instrument (GGI). Adjusting and matching the acceleration-to-current transfer function of the four accelerometers automatically is one of the basic and necessary technologies for rejecting the common mode accelerations in the development of GGI. In order to adjust the scale factor of the magnetic force rebalance accelerometer, an external current is injected and combined with the normal feedback current; they are then applied together to the torque coil of the magnetic actuator. The injected current could be varied proportionally according to the external adjustment needs, and the change in the acceleration-to-current transfer function then realized dynamically. The new adjustment method has the advantages of no extra assembly and ease of operation. Changes in the scale factors range from 33% smaller to 100% larger are verified experimentally by adjusting the different external coefficients. The static noise of the used accelerometer is compared under conditions with and without the injecting current, and the experimental results find no change at the current noise level, which further confirms the validity of the presented method.

  20. Non-perturbative gravity at different length scales

    International Nuclear Information System (INIS)

    Folkerts, Sarah

    2013-01-01

    In this thesis, we investigate different aspects of gravity as an effective field theory. Building on the arguments of self-completeness of Einstein gravity, we argue that any sensible theory, which does not propagate negative-norm states and reduces to General Relativity in the low energy limit is self-complete. Due to black hole formation in high energy scattering experiments, distances smaller than the Planck scale are shielded from any accessibility. Degrees of freedom with masses larger than the Planck mass are mapped to large classical black holes which are described by the already existing infrared theory. Since high energy (UV) modifications of gravity which are ghost-free can only produce stronger gravitational interactions than Einstein gravity, the black hole shielding is even more efficient in such theories. In this light, we argue that conventional attempts of a Wilsonian UV completion are severely constrained. Furthermore, we investigate the quantum picture for black holes which emerges in the low energy description put forward by Dvali and Gomez in which black holes are described as Bose-Einstein condensates of many weakly coupled gravitons. Specifically, we investigate a non-relativistic toy model which mimics certain aspects of the graviton condensate picture. This toy model describes the collapse of a condensate of attractive bosons which emits particles due to incoherent scattering. We show that it is possible that the evolution of the condensate follows the critical point which is accompanied by the appearance of a light mode. Another aspect of gravitational interactions concerns the question whether quantum gravity breaks global symmetries. Arguments relying on the no hair theorem and wormhole solutions suggest that global symmetries can be violated. In this thesis, we parametrize such effects in terms of an effective field theory description of three-form fields. We investigate the possible implications for the axion solution of the strong CP

  1. Factors affecting the duration of nestling period and fledging order in Tengmalm's owl (Aegolius funereus: effect of wing length and hatching sequence.

    Directory of Open Access Journals (Sweden)

    Marek Kouba

    Full Text Available In altricial birds, the nestling period is an important part of the breeding phase because the juveniles may spend quite a long time in the nest, with associated high energy costs for the parents. The length of the nestling period can be variable and its duration may be influenced by both biotic and abiotic factors; however, studies of this have mostly been undertaken on passerine birds. We studied individual duration of nestling period of 98 Tengmalm's owl chicks (Aegolius funereus at 27 nests during five breeding seasons using a camera and chip system and radio-telemetry. We found the nestlings stayed in the nest box for 27 - 38 days from hatching (mean ± SD, 32.4 ± 2.2 days. The individual duration of nestling period was negatively related to wing length, but no formally significant effect was found for body weight, sex, prey availability and/or weather conditions. The fledging sequence of individual nestlings was primarily related to hatching order; no relationship with wing length and/or other factors was found in this case. We suggest the length of wing is the most important measure of body condition and individual quality in Tengmalm's owl young determining the duration of the nestling period. Other differences from passerines (e.g., the lack of effect of weather or prey availability on nestling period are considered likely to be due to different life-history traits, in particular different food habits and nesting sites and greater risk of nest predation among passerines.

  2. Spatial correlation length of normalized cone data in sand

    DEFF Research Database (Denmark)

    Firouzianbandpey, Sarah; Griffiths, D. V.; Ibsen, Lars Bo

    2014-01-01

    The main topic of this study is to assess the anisotropic spatial correlation lengths of a sand layer deposit based on cone penetration testing with pore pressure measurement (CPTu) data. Spatial correlation length can be an important factor in reliability analysis of geotechnical systems, yet it...

  3. Length of Stay After Childbirth in 92 Countries and Associated Factors in 30 Low- and Middle-Income Countries: Compilation of Reported Data and a Cross-sectional Analysis from Nationally Representative Surveys.

    Directory of Open Access Journals (Sweden)

    Oona M R Campbell

    2016-03-01

    Full Text Available Following childbirth, women need to stay sufficiently long in health facilities to receive adequate care. Little is known about length of stay following childbirth in low- and middle-income countries or its determinants.We described length of stay after facility delivery in 92 countries. We then created a conceptual framework of the main drivers of length of stay, and explored factors associated with length of stay in 30 countries using multivariable linear regression. Finally, we used multivariable logistic regression to examine the factors associated with stays that were "too short" (<24 h for vaginal deliveries and <72 h for cesarean-section deliveries. Across countries, the mean length of stay ranged from 1.3 to 6.6 d: 0.5 to 6.2 d for singleton vaginal deliveries and 2.5 to 9.3 d for cesarean-section deliveries. The percentage of women staying too short ranged from 0.2% to 83% for vaginal deliveries and from 1% to 75% for cesarean-section deliveries. Our conceptual framework identified three broad categories of factors that influenced length of stay: need-related determinants that required an indicated extension of stay, and health-system and woman/family dimensions that were drivers of inappropriately short or long stays. The factors identified as independently important in our regression analyses included cesarean-section delivery, birthweight, multiple birth, and infant survival status. Older women and women whose infants were delivered by doctors had extended lengths of stay, as did poorer women. Reliance on factors captured in secondary data that were self-reported by women up to 5 y after a live birth was the main limitation.Length of stay after childbirth is very variable between countries. Substantial proportions of women stay too short to receive adequate postnatal care. We need to ensure that facilities have skilled birth attendants and effective elements of care, but also that women stay long enough to benefit from these. The

  4. SWEET CORN FARMING: THE EFFECT OF PRODUCTION FACTOR, EFFICIENCY AND RETURN TO SCALE

    Directory of Open Access Journals (Sweden)

    Dwijatenaya I.B.M.A.

    2017-10-01

    Full Text Available This research aims to determine the effect of production factors on the sweet corn production, the efficiency of sweet corn farming, and the return to scale of sweet corn production. The sampling technique was taken by proportionate stratified random sampling method with the sample number of 57 people while the analyzer used was the program of Frointer 4.1c. The results show that the production factors of the land farm, seed, and fertilizer have a positive and significant effect on sweet corn production. On the other hand, labor production factors have a positive but not significant effect on sweet corn production. It also found that technical efficiency, price efficiency, and economic efficiency of sweet corn farming in Muara Wis Sub-district of Kutai Kartanegara Regency are not efficient yet. The return to scale of sweet corn yield has an increasing return to scale condition.

  5. Projective synchronization of time-varying delayed neural network with adaptive scaling factors

    International Nuclear Information System (INIS)

    Ghosh, Dibakar; Banerjee, Santo

    2013-01-01

    Highlights: • Projective synchronization in coupled delayed neural chaotic systems with modulated delay time is introduced. • An adaptive rule for the scaling factors is introduced. • This scheme is highly applicable in secure communication. -- Abstract: In this work, the projective synchronization between two continuous time delayed neural systems with time varying delay is investigated. A sufficient condition for synchronization for the coupled systems with modulated delay is presented analytically with the help of the Krasovskii–Lyapunov approach. The effect of adaptive scaling factors on synchronization are also studied in details. Numerical simulations verify the effectiveness of the analytic results

  6. Experimental determination of probe-length requirements for studies of the turbulent wake behind a cylinder

    International Nuclear Information System (INIS)

    Sheih, C.M.; Finnigan, J.J.; Bradley, E.F.; Mulhearn, P.J.

    1979-01-01

    The attenuation of turbulence and mean velocity signals due to the line averaging imposed by hot wires when used in the wake of an isolated circular cylinder has been investigated in a wind tunnel by measurements using several choices of hot-wire length, cylinder diameter, and freestream mean velocity. The results are presented graphically in order to provide a practical method for determining attenuation of the turbulence and mean velocity signals obtained in a wake. The length scale of the wake can be defined as L=0.6[(x-x/sub o/) d]/sup 1/2/, where x is the downstream distance from the cylinder, d is the cylinder diameter, and x/sub o/=25d. For all the wires tested, the attenuation of the measured turbulence signal is limited to within 5% only if the wire length is smaller than 0.1 L. For a wire normal to the cylinder and cross wind, the attenuation of the signal of the mean velocity-defect factor, expressed as (1-u/u/sub infinity/), where u and u/sub infinity/ are local and free-stream velocities, respectively, is less than 5% only if the wire is less than 0.5 L in length

  7. The Factor Structure of the Spiritual Well-Being Scale in Veterans Experienced Chemical Weapon Exposure.

    Science.gov (United States)

    Sharif Nia, Hamid; Pahlevan Sharif, Saeed; Boyle, Christopher; Yaghoobzadeh, Ameneh; Tahmasbi, Bahram; Rassool, G Hussein; Taebei, Mozhgan; Soleimani, Mohammad Ali

    2018-04-01

    This study aimed to determine the factor structure of the spiritual well-being among a sample of the Iranian veterans. In this methodological research, 211 male veterans of Iran-Iraq warfare completed the Paloutzian and Ellison spiritual well-being scale. Maximum likelihood (ML) with oblique rotation was used to assess domain structure of the spiritual well-being. The construct validity of the scale was assessed using confirmatory factor analysis (CFA), convergent validity, and discriminant validity. Reliability was evaluated with Cronbach's alpha, Theta (θ), and McDonald Omega (Ω) coefficients, intra-class correlation coefficient (ICC), and construct reliability (CR). Results of ML and CFA suggested three factors which were labeled "relationship with God," "belief in fate and destiny," and "life optimism." The ICC, coefficients of the internal consistency, and CR were >.7 for the factors of the scale. Convergent validity and discriminant validity did not fulfill the requirements. The Persian version of spiritual well-being scale demonstrated suitable validity and reliability among the veterans of Iran-Iraq warfare.

  8. Nanometer scale materials - characterization and fabrication

    International Nuclear Information System (INIS)

    Murday, J.S.; Colton, R.J.; Rath, B.B.

    1993-01-01

    Materials and solid state scientists have made excellent progress in understanding material behavior in length scales from microns to meters. Below a micron, the lack of analytical prowess has been a deterrent. At the atomic scale, chemistry and atomic/molecular physics have also contributed significant understanding of matter. The maturity of these three communities, materials, solid state physics, atomic/molecular physics/chemistry, coupled with the development of analytical capability for nanometer-sized structures, promises to broaden our grasp of materials behavior into the last realm of unexplored size scales-nanometer. The motivation for this effort is driven both by the expectation of novel properties as well as by the potential solution to long standing technological issues. Critical scale lengths for many material properties fall in the nanometer range, examples include superconductor coherence lengths, electron inelastic mean free paths, electron wavelengths in solids, critical lengths for dislocation generation. Structures of nanometer size will undoubtedly show behavior unexpected from experience at the larger and smaller scales. Many technological problems such as adhesion, friction, corrosion, elasticity and fracture are believed to depend critically on nanometer scale phenomena. The millennia-old efforts to improve materials behavior have undoubtedly been slowed by our inability to 'observe' in this size range. (orig.)

  9. Large scale Tesla coil guided discharges initiated by femtosecond laser filamentation in air

    Science.gov (United States)

    Arantchouk, L.; Point, G.; Brelet, Y.; Prade, B.; Carbonnel, J.; André, Y.-B.; Mysyrowicz, A.; Houard, A.

    2014-07-01

    The guiding of meter scale electric discharges produced in air by a Tesla coil is realized in laboratory using a focused terawatt laser pulse undergoing filamentation. The influence of the focus position, the laser arrival time, or the gap length is studied to determine the best conditions for efficient laser guiding. Discharge parameters such as delay, jitter, and resistance are characterized. An increase of the discharge length by a factor 5 has been achieved with the laser filaments, corresponding to a mean breakdown field of 2 kV/cm for a 1.8 m gap length. Consecutive guided discharges at a repetition rate of 10 Hz are also reported.

  10. Modelling length of hospital stay in motor victims

    Directory of Open Access Journals (Sweden)

    Mercedes Ayuso-Gutiérrez

    2015-03-01

    Full Text Available Objective. To analyze which socio-demographic and other factors related to motor injuries affect the length of hospital recovery stay. Materials and methods. In the study a sample of 17 932 motor accidents was used. All the crashes occurred in Spain between 2000 and 2007. Different regression models were fitted to data to identify and measure the impact of a set of explanatory regressors. Results. Time of hospital stay for men is on average 41% larger than for women. When the victim has a fracture as a consequence of the accident, the mean time of hospital stay is multiplied by five. Injuries located in lower extremities, the head and abdomen are associated with greater hospitalization lengths. Conclusions. Gender, age and type of victim, as well as the location and nature of injuries, are found to be factors that have significant impact on the expected length of hospital stay.

  11. Asymptotic energy scale factors for pseudoscalar meson scattering and charmed meson couplings

    International Nuclear Information System (INIS)

    Thews, R.L.

    1977-01-01

    Energy scale factors ν 0 for PP → PP scattering amplitudes are related via absence of exotic resonances of ratios of tensor to vector coupling strengths. These same ratios are extracted from FESR's for non-exotic reactions. The scale factors obtained are all of the order of 1.0 GeV 2 or less, indepedent of quantum numbers. This contradicts the expectations of dual amplitudes in which ν 0 =1/α', and trajectory slopes are smaller for charmed mesons. Decay widths for tensor mesons are predicted. An observed SU(3) violation for the ratio A 2 → KantiK/K** → Kπ is shown to be consistent with the FESR results. Charmed meson decays are predicted to be factors of 2 to 3 larger than those predicted by SU(4). (author)

  12. Chord length distribution for a compound capsule

    International Nuclear Information System (INIS)

    Pitřík, Pavel

    2017-01-01

    Chord length distribution is a factor important in the calculation of ionisation chamber responses. This article describes Monte Carlo calculations of the chord length distribution for a non-convex compound capsule. A Monte Carlo code was set up for generation of random chords and calculation of their lengths based on the input number of generations and cavity dimensions. The code was written in JavaScript and can be executed in the majority of HTML viewers. The plot of occurrence of cords of different lengths has 3 peaks. It was found that the compound capsule cavity cannot be simply replaced with a spherical cavity of a triangular design. Furthermore, the compound capsule cavity is directionally dependent, which must be taken into account in calculations involving non-isotropic fields of primary particles in the beam, unless equilibrium of the secondary charged particles is attained. (orig.)

  13. A Study on the Estimation of the Scale Factor for Precise Point Positioning

    Science.gov (United States)

    Erdogan, Bahattin; Kayacik, Orhan

    2017-04-01

    Precise Point Positioning (PPP) technique is one of the most important subject in Geomatic Engineering. PPP technique needs only one GNSS receiver and users have preferred it instead of traditional relative positioning technique for several applications. Scientific software has been used for PPP solutions and the software may underestimate the formal errors of the estimated coordinates. The formal errors have major effects on statistical interpretation. Variance-Covariance (VCV) matrix derived from GNSS processing software plays important role for deformation analysis and scientists sometimes need to scale VCV matrix. In this study, 10 continuously operating reference stations have been considered for 11 days dated 2014. All points have been analyzed by Gipsy-OASIS v6.4 scientific software. The solutions were derived for different session durations as 2, 4, 6, 8, 12 and 24 hours to obtain repeatability of the coordinates and analyses were carried out in order to estimate scale factor for Gipsy-OASIS v6.4 PPP results. According to the first results scale factors slightly increase depending on the raises in respect of session duration. Keywords: Precise Point Positioning, Gipsy-OASIS v6.4, Variance-Covariance Matrix, Scale Factor

  14. Passion: Does one scale fit all? Construct validity of two-factor passion scale and psychometric invariance over different activities and languages.

    Science.gov (United States)

    Marsh, Herbert W; Vallerand, Robert J; Lafrenière, Marc-André K; Parker, Philip; Morin, Alexandre J S; Carbonneau, Noémie; Jowett, Sophia; Bureau, Julien S; Fernet, Claude; Guay, Frédéric; Salah Abduljabbar, Adel; Paquet, Yvan

    2013-09-01

    The passion scale, based on the dualistic model of passion, measures 2 distinct types of passion: Harmonious and obsessive passions are predictive of adaptive and less adaptive outcomes, respectively. In a substantive-methodological synergy, we evaluate the construct validity (factor structure, reliability, convergent and discriminant validity) of Passion Scale responses (N = 3,571). The exploratory structural equation model fit to the data was substantially better than the confirmatory factor analysis solution, and resulted in better differentiated (less correlated) factors. Results from a 13-model taxonomy of measurement invariance supported complete invariance (factor loadings, factor correlations, item uniquenesses, item intercepts, and latent means) over language (French vs. English; the instrument was originally devised in French, then translated into English) and gender. Strong measurement partial invariance over 5 passion activity groups (leisure, sport, social, work, education) indicates that the same set of items is appropriate for assessing passion across a wide variety of activities--a previously untested, implicit assumption that greatly enhances practical utility. Support was found for the convergent and discriminant validity of the harmonious and obsessive passion scales, based on a set of validity correlates: life satisfaction, rumination, conflict, time investment, activity liking and valuation, and perceiving the activity as a passion.

  15. Factor structure of Bech's version of the Brief Psychiatric Rating Scale in Brazilian patients

    Directory of Open Access Journals (Sweden)

    J.A.S. Crippa

    2002-10-01

    Full Text Available The objective of the present study was to evaluate the factor structure of Bech's version of the Brief Psychiatric Rating Scale (BPRS, translated into Portuguese. The BPRS was administered to a heterogeneous group of psychiatric inpatients (N = 98 and outpatients (N = 62 in a University Hospital. Each patient was evaluated from one to eight times. The interval between consecutive interviews was one week for the inpatients and one month for the outpatients. The results were submitted to factorial analysis. The internal consistency of the total scale and of each factor was also estimated. Factorial analysis followed by normalized orthogonal rotation (Varimax yielded four factors: Withdrawal-Retardation, Thinking Disorder, Anxious-Depression and Activation. Internal consistency measured by Cronbach's alpha coefficient ranged from 0.766 to 0.879. The data show that the factor structure of the present instrument is similar to that of the American version of the BPRS which contains 18 items, except for the absence of the fifth factor of the latter scale, Hostile-Suspiciousness.

  16. Reynolds number scaling of straining motions in turbulence

    Science.gov (United States)

    Elsinga, Gerrit; Ishihara, T.; Goudar, M. V.; da Silva, C. B.; Hunt, J. C. R.

    2017-11-01

    Strain is an important fluid motion in turbulence as it is associated with the kinetic energy dissipation rate, vorticity stretching, and the dispersion of passive scalars. The present study investigates the scaling of the turbulent straining motions by evaluating the flow in the eigenframe of the local strain-rate tensor. The analysis is based on DNS of homogeneous isotropic turbulence covering a Reynolds number range Reλ = 34.6 - 1131. The resulting flow pattern reveals a shear layer containing tube-like vortices and a dissipation sheet, which both scale on the Kolmogorov length scale, η. The vorticity stretching motions scale on the Taylor length scale, while the flow outside the shear layer scales on the integral length scale. These scaling results are consistent with those in wall-bounded flow, which suggests a quantitative universality between the different flows. The overall coherence length of the vorticity is 120 η in all directions, which is considerably larger than the typical size of individual vortices, and reflects the importance of spatial organization at the small scales. Transitions in flow structure are identified at Reλ 45 and 250. Below these respective Reynolds numbers, the small-scale motions and the vorticity stretching motions appear underdeveloped.

  17. Calibration sets and the accuracy of vibrational scaling factors: A case study with the X3LYP hybrid functional

    Science.gov (United States)

    Teixeira, Filipe; Melo, André; Cordeiro, M. Natália D. S.

    2010-09-01

    A linear least-squares methodology was used to determine the vibrational scaling factors for the X3LYP density functional. Uncertainties for these scaling factors were calculated according to the method devised by Irikura et al. [J. Phys. Chem. A 109, 8430 (2005)]. The calibration set was systematically partitioned according to several of its descriptors and the scaling factors for X3LYP were recalculated for each subset. The results show that the scaling factors are only significant up to the second digit, irrespective of the calibration set used. Furthermore, multivariate statistical analysis allowed us to conclude that the scaling factors and the associated uncertainties are independent of the size of the calibration set and strongly suggest the practical impossibility of obtaining vibrational scaling factors with more than two significant digits.

  18. Coarsening of stripe patterns: variations with quench depth and scaling.

    Science.gov (United States)

    Tripathi, Ashwani K; Kumar, Deepak

    2015-02-01

    The coarsening of stripe patterns when the system is evolved from random initial states is studied by varying the quench depth ε, which is a measure of distance from the transition point of the stripe phase. The dynamics of the growth of stripe order, which is characterized by two length scales, depends on the quench depth. The growth exponents of the two length scales vary continuously with ε. The decay exponents for free energy, stripe curvature, and densities of defects like grain boundaries and dislocations also show similar variation. This implies a breakdown of the standard picture of nonequilibrium dynamical scaling. In order to understand the variations with ε we propose an additional scaling with a length scale dependent on ε. The main contribution to this length scale comes from the "pinning potential," which is unique to systems where the order parameter is spatially periodic. The periodic order parameter gives rise to an ε-dependent potential, which can pin defects like grain boundaries, dislocations, etc. This additional scaling provides a compact description of variations of growth exponents with quench depth in terms of just one exponent for each of the length scales. The relaxation of free energy, stripe curvature, and the defect densities have also been related to these length scales. The study is done at zero temperature using Swift-Hohenberg equation in two dimensions.

  19. Gate length scaling effect on high-electron mobility transistors devices using AlGaN/GaN and AlInN/AlN/GaN heterostructures.

    Science.gov (United States)

    Liao, S Y; Lu, C C; Chang, T; Huang, C F; Cheng, C H; Chang, L B

    2014-08-01

    Compared to AlGaN/GaN HEMT with 0.15 μm T-gate length, the AlInN/AlN/GaN one exhibits much higher current density and transconductance of 1558 mA/mm at Vd = 2 V and 330 mS/mm, respectively. The high extrinsic ft and fmax of 82 GHz and 70 GHz are extracted from AlInN/AlN/GaN HEMT. Besides, we find that the transconductance roll-off is significant in AlGaN/GaN, but largely improved in AlInN/AlN/GaN HEMT, suggesting that the high carrier density and lattice-matched epitaxial heterostructure is important to reach both large RF output power and high operation frequency, especially for an aggressively gate length scaling.

  20. Zooming in and out: Scale dependence of extrinsic and intrinsic factors affecting salt marsh erosion

    Science.gov (United States)

    Wang, Heng; van der Wal, Daphne; Li, Xiangyu; van Belzen, Jim; Herman, Peter M. J.; Hu, Zhan; Ge, Zhenming; Zhang, Liquan; Bouma, Tjeerd J.

    2017-07-01

    Salt marshes are valuable ecosystems that provide important ecosystem services. Given the global scale of marsh loss due to climate change and coastal squeeze, there is a pressing need to identify the critical extrinsic (wind exposure and foreshore morphology) and intrinsic factors (soil and vegetation properties) affecting the erosion of salt marsh edges. In this study, we quantified rates of cliff lateral retreat (i.e., the eroding edge of a salt marsh plateau) using a time series of aerial photographs taken over four salt marsh sites in the Westerschelde estuary, the Netherlands. In addition, we experimentally quantified the erodibility of sediment cores collected from the marsh edge of these four marshes using wave tanks. Our results revealed the following: (i) at the large scale, wind exposure and the presence of pioneer vegetation in front of the cliff were the key factors governing cliff retreat rates; (ii) at the intermediate scale, foreshore morphology was partially related to cliff retreat; (iii) at the local scale, the erodibility of the sediment itself at the marsh edge played a large role in determining the cliff retreat rate; and (iv) at the mesocosm scale, cliff erodibility was determined by soil properties and belowground root biomass. Thus, both extrinsic and intrinsic factors determined the fate of the salt marsh but at different scales. Our study highlights the importance of understanding the scale dependence of the factors driving the evolution of salt marsh landscapes.

  1. Effect of Air Pollution on Menstrual Cycle Length-A Prognostic Factor of Women's Reproductive Health.

    Science.gov (United States)

    Merklinger-Gruchala, Anna; Jasienska, Grazyna; Kapiszewska, Maria

    2017-07-20

    Air pollution can influence women's reproductive health, specifically menstrual cycle characteristics, oocyte quality, and risk of miscarriage. The aim of the study was to assess whether air pollution can affect the length of the overall menstrual cycle and the length of its phases (follicular and luteal). Municipal ecological monitoring data was used to assess the air pollution exposure during the monitored menstrual cycle of each of 133 woman of reproductive age. Principal component analyses were used to group pollutants (PM 10 , SO₂, CO, and NO x ) to represent a source-related mixture. PM 10 and SO₂ assessed separately negatively affected the length of the luteal phase after standardization (b = -0.02; p = 0.03; b = -0.06; p = 0.02, respectively). Representing a fossil fuel combustion emission, they were also associated with luteal phase shortening (b = -0.32; p = 0.02). These pollutants did not affect the follicular phase length and overall cycle length, neither in single- nor in multi-pollutant models. CO and NO x assessed either separately or together as a traffic emission were not associated with overall cycle length or the length of cycle phases. Luteal phase shortening, a possible manifestation of luteal phase deficiency, can result from fossil fuel combustion. This suggests that air pollution may contribute to fertility problems in women.

  2. Risk factors for prolonged length of stay after colorectal surgery

    Directory of Open Access Journals (Sweden)

    Luiz Felipe de Campos Lobato

    2013-01-01

    Full Text Available Objective: Colorectal surgeons often struggle to explain to administrators/payers reasons for prolonged length of stay (LOS. This study aim was to identify factors associated with increased LOS after colorectal surgery. Design: The study population included patients from the 2007 American-College-of-Sur- geons-National-Surgical-Quality-Improvement-Program (ACS-NSQIP database undergoing ileocolic resection, segmental colectomy, or anterior resection. The study population was divided into normal (below 75th percentile and prolonged LOS (above the 75th percentile. A multivariate analysis was performed using prolonged LOS as dependent variable and ACS- NSQIP variables as predictive variables. P-value < 0.01 was considered significant. Results: 12,269 patients with a median LOS of 6 (inter-quartile range 4-9 days were includ- ed. There were 2,617 (21.3% patients with prolonged LOS (median 15 days, inter-quartile range 13-22. 1,308 (50% were female, and the median age was 69 (inter-quartile range 57-79 years. Risk factors for prolonged LOS were male gender, congestive heart failure, weight loss, Crohn's disease, preoperative albumin < 3.5 g/dL and hematocrit < 47%, base- line sepsis, ASA class ≥ 3, open surgery, surgical time ≥ 190 min, postoperative pneumonia, failure to wean from mechanical ventilation, deep venous thrombosis, urinary-tract in- fection, systemic sepsis, surgical site infection and reoperation within 30-days from the primary surgery. Conclusion: Multiple factors are associated with increased LOS after colorectal surgery. Our results are useful for surgeons to explain prolonged LOS to administrators/payers who are critical of this metric. Resumo: Objetivo: Os cirurgiões proctologistas muitas vezes enfrentam dificuldades para explicar aos administradores/contribuintes as razões para o prolongamento do tempo de interna- ção hospitalar (TIH. O objetivo deste estudo foi identificar os fatores associados ao aumen- to do TIH ap

  3. Validation of the Social Appearance Anxiety Scale: Factor, Convergent, and Divergent Validity

    Science.gov (United States)

    Levinson, Cheri A.; Rodebaugh, Thomas L.

    2011-01-01

    The Social Appearance Anxiety Scale (SAAS) was created to assess fear of overall appearance evaluation. Initial psychometric work indicated that the measure had a single-factor structure and exhibited excellent internal consistency, test-retest reliability, and convergent validity. In the current study, the authors further examined the factor,…

  4. Development of radionuclide inventory estimation method using scaling factor for the Korean NPPs: scope and status

    International Nuclear Information System (INIS)

    Hwang, Ki Ha; Lee, Sang Chul; Kang, Sang Hee; Lee, Kun Jai; Jeong, Chan Woo; Ahn, Sang Myeon; Kim, Tae Wook; Kim, Kyoung Doek; Herr, Y. H.

    2003-01-01

    Regulations and guidelines for radionuclide waste disposal require detailed information about the characteristics of radioactive waste drums prior to the transport to the disposal sites. Therefore, it is important to know the accurate radionuclide inventory of radioactive waste. However, estimation of radionuclide concentrations on drummed radioactive waste is difficult and unreliable. In order to overcome these difficulties, scaling factors have been used to assess the activities of radionuclides which could not be directly analyzed. A radionuclides assay system has been operated at Korean nuclear power plant (KORI site) since 1996 and consolidated scaling factor concept has played a dominant role in determination of radionuclides concentrations. For corrosion product radionuclides, generic scaling factors were used due to the similar trend and better-characterized properties of Korean analyzed data compared to the worldwide database. It is not easy to use the generic scaling factors for fission product and TRU radionuclides. Thus simple model reflecting the history of the operation of power plant and nuclear fuel condition is applied. However, some problems are still remained. For examples, disparity between the actual and ideal correlation pairs, inaccuracy of analyzed sample values, uncertainty in representative of derived scaling factor values and so on. As a result, the correlation ratios are somewhat dispersive. So it is planned to establish an assay system using more improved scaling factors. In this study, the scope of research is expanded and planned such as following. 1) Considering more assay target nuclides, 2) Considering more target NPPs, 3) More reliable sampling and measurement techniques, 4) Improvement of accuracy and representativeness of derived scaling factor values and 5) Conformation of correlation pairs based on Korean analyzed data. As this study progresses, it is possible to get more accurate and reliable prediction for the information of

  5. Flux scaling: Ultimate regime

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Flux scaling: Ultimate regime. With the Nusselt number and the mixing length scales, we get the Nusselt number and Reynolds number (w'd/ν) scalings: and or. and. scaling expected to occur at extremely high Ra Rayleigh-Benard convection. Get the ultimate regime ...

  6. Factor Structure and Psychometric Properties of the Work-Family Balance Scale in an Urban Chinese Sample

    Science.gov (United States)

    Zhang, Huiping; Yip, Paul S. F.; Chi, Peilian; Chan, Kinsun; Cheung, Yee Tak; Zhang, Xiulan

    2012-01-01

    The purpose of this study was to explore the factor structure of the Work-Family Balance Scale (WFBS) and examine its reliability and validity in use in the urban Chinese population. The scale was validated using a sample of 605 urban Chinese residents from 7 cities. Exploratory factor analysis identified two factors: work-family conflict and…

  7. A Confirmatory Factor Analysis of the Academic Motivation Scale with Black College Students

    Science.gov (United States)

    Cokley, Kevin

    2015-01-01

    The factor structure of the Academic Motivation Scale (AMS) was examined with a sample of 578 Black college students. A confirmatory factor analysis of the AMS was conducted. Results indicated that the hypothesized seven-factor model did not fit the data. Implications for future research with the AMS are discussed.

  8. Factor Structure of the Conflict Tactics Scale 1

    Directory of Open Access Journals (Sweden)

    Kaori Baba

    2017-07-01

    Full Text Available Background: The Conflict Tactics Scale 1 (CTS1 is a widely used self-report measure of abusive attitudes of parents towards children. The factor structure of the CTS1 still remains to be clarified. The aim of this study was to examine the factor structure of the Japanese version of the CTS1 for postpartum women in community settings. Method: The data in this study came from the Okayama and Kumamoto’s study. These were part of a larger survey using longitudinal questionnaire studies conducted in Japan from 2001 to 2002 and in 2011, respectively. In both study sites, the participant mothers were asked to fill in the CTS1 one month after delivery when they attended for check-up at the out-patient clinic. Results: A total of 1,150 questionnaires were collected, excluding the participants with missing values in the CTS1. Finally, 1,078 were included in the statistical analyses. Data of 1,078 women were divided into two parts. In the first halved sample (n=578, an exploratory factor analysis was conducted for the CTS1 items after exluding nine items with extremely low prevalence. It revealed 2-factor or 3-factor models. Then, we conducted a model comparison with the second halved sample (n=500, using confirmatory factor analysis. In terms of goodness-of-fit indeces, the 2-factor model was superior. Its subscales were Reasoning and Psycholosical Aggression. Conclusion: The 2-factor model of the CTS1 consisting of Reasoning and Psychological Aggression was superior to the 3-factor model. This is not inconsistent with the original authors’ theoretical model.

  9. Modified Bose-Einstein and Fermi-Dirac statistics if excitations are localized on an intermediate length scale: applications to non-Debye specific heat.

    Science.gov (United States)

    Chamberlin, Ralph V; Davis, Bryce F

    2013-10-01

    Disordered systems show deviations from the standard Debye theory of specific heat at low temperatures. These deviations are often attributed to two-level systems of uncertain origin. We find that a source of excess specific heat comes from correlations between quanta of energy if excitations are localized on an intermediate length scale. We use simulations of a simplified Creutz model for a system of Ising-like spins coupled to a thermal bath of Einstein-like oscillators. One feature of this model is that energy is quantized in both the system and its bath, ensuring conservation of energy at every step. Another feature is that the exact entropies of both the system and its bath are known at every step, so that their temperatures can be determined independently. We find that there is a mismatch in canonical temperature between the system and its bath. In addition to the usual finite-size effects in the Bose-Einstein and Fermi-Dirac distributions, if excitations in the heat bath are localized on an intermediate length scale, this mismatch is independent of system size up to at least 10(6) particles. We use a model for correlations between quanta of energy to adjust the statistical distributions and yield a thermodynamically consistent temperature. The model includes a chemical potential for units of energy, as is often used for other types of particles that are quantized and conserved. Experimental evidence for this model comes from its ability to characterize the excess specific heat of imperfect crystals at low temperatures.

  10. Asthma length of stay in hospitals in London 2001-2006: demographic, diagnostic and temporal factors.

    Directory of Open Access Journals (Sweden)

    Ireneous N Soyiri

    Full Text Available Asthma is a condition of significant public health concern associated with morbidity, mortality and healthcare utilisation. This study identifies key determinants of length of stay (LOS associated with asthma-related hospital admissions in London, and further explores their effects on individuals. Subjects were primarily diagnosed and admitted for asthma in London between 1(st January 2001 and 31(st December 2006. All repeated admissions were treated uniquely as independent cases. Negative binomial regression was used to model the effect(s of demographic, temporal and diagnostic factors on the LOS, taking into account the cluster effect of each patient's hospital attendance in London. The median and mean asthma LOS over the period of study were 2 and 3 days respectively. Admissions increased over the years from 8,308 (2001 to 10,554 (2006, but LOS consistently declined within the same period. Younger individuals were more likely to be admitted than the elderly, but the latter significantly had higher LOS (p<0.001. Respiratory related secondary diagnoses, age, and gender of the patient as well as day of the week and year of admission were important predictors of LOS. Asthma LOS can be predicted by socio-demographic factors, temporal and clinical factors using count models on hospital admission data. The procedure can be a useful tool for planning and resource allocation in health service provision.

  11. Asthma length of stay in hospitals in London 2001-2006: demographic, diagnostic and temporal factors.

    Science.gov (United States)

    Soyiri, Ireneous N; Reidpath, Daniel D; Sarran, Christophe

    2011-01-01

    Asthma is a condition of significant public health concern associated with morbidity, mortality and healthcare utilisation. This study identifies key determinants of length of stay (LOS) associated with asthma-related hospital admissions in London, and further explores their effects on individuals. Subjects were primarily diagnosed and admitted for asthma in London between 1(st) January 2001 and 31(st) December 2006. All repeated admissions were treated uniquely as independent cases. Negative binomial regression was used to model the effect(s) of demographic, temporal and diagnostic factors on the LOS, taking into account the cluster effect of each patient's hospital attendance in London. The median and mean asthma LOS over the period of study were 2 and 3 days respectively. Admissions increased over the years from 8,308 (2001) to 10,554 (2006), but LOS consistently declined within the same period. Younger individuals were more likely to be admitted than the elderly, but the latter significantly had higher LOS (p<0.001). Respiratory related secondary diagnoses, age, and gender of the patient as well as day of the week and year of admission were important predictors of LOS. Asthma LOS can be predicted by socio-demographic factors, temporal and clinical factors using count models on hospital admission data. The procedure can be a useful tool for planning and resource allocation in health service provision.

  12. Biomass estimates of freshwater zooplankton from length-carbon regression equations

    Directory of Open Access Journals (Sweden)

    Patrizia COMOLI

    2000-02-01

    Full Text Available We present length/carbon regression equations of zooplankton species collected from Lake Maggiore (N. Italy during 1992. The results are discussed in terms of the environmental factors, e.g. food availability, predation, controlling biomass production of particle- feeders and predators in the pelagic system of lakes. The marked seasonality in the length-standardized carbon content of Daphnia, and its time-specific trend suggest that from spring onward food availability for Daphnia population may be regarded as a simple decay function. Seasonality does not affect the carbon content/unit length of the two predator Cladocera Leptodora kindtii and Bythotrephes longimanus. Predation is probably the most important regulating factor for the seasonal dynamics of their carbon biomass. The existence of a constant factor to convert the diameter of Conochilus colonies into carbon seems reasonable for an organism whose population comes on quickly and just as quickly disappears.

  13. An Assessment of the Length and Variability of Mercury's Magnetotail

    Science.gov (United States)

    Milan, S. E.; Slavin, J. A.

    2011-01-01

    We employ Mariner 10 measurements of the interplanetary magnetic field in the vicinity of Mercury to estimate the rate of magnetic reconnection between the interplanetary magnetic field and the Hermean magnetosphere. We derive a time-series of the open magnetic flux in Mercury's magnetosphere. from which we can deduce the length of the magnetotail The length of the magnetotail is shown to be highly variable. with open field lines stretching between 15R(sub H) and 8S0R(sub H) downstream of the planet (median 150R(sub H)). Scaling laws allow the tail length at perihelion to be deduced from the aphelion Mariner 10 observations.

  14. Copy number variants and VNTR length polymorphisms of the carboxyl-ester lipase (CEL) gene as risk factors in pancreatic cancer.

    Science.gov (United States)

    Dalva, Monica; El Jellas, Khadija; Steine, Solrun J; Johansson, Bente B; Ringdal, Monika; Torsvik, Janniche; Immervoll, Heike; Hoem, Dag; Laemmerhirt, Felix; Simon, Peter; Lerch, Markus M; Johansson, Stefan; Njølstad, Pål R; Weiss, Frank U; Fjeld, Karianne; Molven, Anders

    We have recently described copy number variants (CNVs) of the human carboxyl-ester lipase (CEL) gene, including a recombined deletion allele (CEL-HYB) that is a genetic risk factor for chronic pancreatitis. Associations with pancreatic disease have also been reported for the variable number of tandem repeat (VNTR) region located in CEL exon 11. Here, we examined if CEL CNVs and VNTR length polymorphisms affect the risk for developing pancreatic cancer. CEL CNVs and VNTR were genotyped in a German family with non-alcoholic chronic pancreatitis and pancreatic cancer, in 265 German and 197 Norwegian patients diagnosed with pancreatic adenocarcinoma, and in 882 controls. CNV screening was performed using PCR assays followed by agarose gel electrophoresis whereas VNTR lengths were determined by DNA fragment analysis. The investigated family was CEL-HYB-positive. However, an association of CEL-HYB or a duplication CEL allele with pancreatic cancer was not seen in our two patient cohorts. The frequency of the 23-repeat VNTR allele was borderline significant in Norwegian cases compared to controls (1.2% vs. 0.3%; P = 0.05). For all other VNTR lengths, no statistically significant difference in frequency was observed. Moreover, no association with pancreatic cancer was detected when CEL VNTR lengths were pooled into groups of short, normal or long alleles. We could not demonstrate an association between CEL CNVs and pancreatic cancer. An association is also unlikely for CEL VNTR lengths, although analyses in larger materials are necessary to completely exclude an effect of rare VNTR alleles. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  15. A route to explosive large-scale magnetic reconnection in a super-ion-scale current sheet

    Directory of Open Access Journals (Sweden)

    K. G. Tanaka

    2009-01-01

    Full Text Available How to trigger magnetic reconnection is one of the most interesting and important problems in space plasma physics. Recently, electron temperature anisotropy (αeo=Te⊥/Te|| at the center of a current sheet and non-local effect of the lower-hybrid drift instability (LHDI that develops at the current sheet edges have attracted attention in this context. In addition to these effects, here we also study the effects of ion temperature anisotropy (αio=Ti⊥/Ti||. Electron anisotropy effects are known to be helpless in a current sheet whose thickness is of ion-scale. In this range of current sheet thickness, the LHDI effects are shown to weaken substantially with a small increase in thickness and the obtained saturation level is too low for a large-scale reconnection to be achieved. Then we investigate whether introduction of electron and ion temperature anisotropies in the initial stage would couple with the LHDI effects to revive quick triggering of large-scale reconnection in a super-ion-scale current sheet. The results are as follows. (1 The initial electron temperature anisotropy is consumed very quickly when a number of minuscule magnetic islands (each lateral length is 1.5~3 times the ion inertial length form. These minuscule islands do not coalesce into a large-scale island to enable large-scale reconnection. (2 The subsequent LHDI effects disturb the current sheet filled with the small islands. This makes the triggering time scale to be accelerated substantially but does not enhance the saturation level of reconnected flux. (3 When the ion temperature anisotropy is added, it survives through the small island formation stage and makes even quicker triggering to happen when the LHDI effects set-in. Furthermore the saturation level is seen to be elevated by a factor of ~2 and large-scale reconnection is achieved only in this case. Comparison with two-dimensional simulations that exclude the LHDI effects confirms that the saturation level

  16. Factors associated with mortality and length of stay in the Oporto burn unit (2006-2009).

    Science.gov (United States)

    Bartosch, Isabel; Bartosch, Carla; Egipto, Paula; Silva, Alvaro

    2013-05-01

    Retrospective studies are essential to evaluate and improve the efficiency of care of burned patients. This study analyses the work done in the burn unit of Hospital de S. João in the north of Portugal. A retrospective review was performed in patients admitted from 2006 to 2009. The study population was characterised regarding patient demographics, admissions profile, burn aetiology, burn site, extension and treatment. Multiple linear and logistic regression models were done in order to elucidate which of these factors influenced the mortality and length of stay. The characteristics before and after the creation of the burn unit, as well as the similarities and differences with the published data of other national and international burn units, are analysed. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  17. A laboratory scale fundamental time?

    International Nuclear Information System (INIS)

    Mendes, R.V.

    2012-01-01

    The existence of a fundamental time (or fundamental length) has been conjectured in many contexts. However, the ''stability of physical theories principle'' seems to be the one that provides, through the tools of algebraic deformation theory, an unambiguous derivation of the stable structures that Nature might have chosen for its algebraic framework. It is well-known that c and ℎ are the deformation parameters that stabilize the Galilean and the Poisson algebra. When the stability principle is applied to the Poincare-Heisenberg algebra, two deformation parameters emerge which define two time (or length) scales. In addition there are, for each of them, a plus or minus sign possibility in the relevant commutators. One of the deformation length scales, related to non-commutativity of momenta, is probably related to the Planck length scale but the other might be much larger and already detectable in laboratory experiments. In this paper, this is used as a working hypothesis to look for physical effects that might settle this question. Phase-space modifications, resonances, interference, electron spin resonance and non-commutative QED are considered. (orig.)

  18. Item-level factor analysis of the Self-Efficacy Scale.

    Science.gov (United States)

    Bunketorp Käll, Lina

    2014-03-01

    This study explores the internal structure of the Self-Efficacy Scale (SES) using item response analysis. The SES was previously translated into Swedish and modified to encompass all types of pain, not exclusively back pain. Data on perceived self-efficacy in 47 patients with subacute whiplash-associated disorders were derived from a previously conducted randomized-controlled trial. The item-level factor analysis was carried out using a six-step procedure. To further study the item inter-relationships and to determine the underlying structure empirically, the 20 items of the SES were also subjected to principal component analysis with varimax rotation. The analyses showed two underlying factors, named 'social activities' and 'physical activities', with seven items loading on each factor. The remaining six items of the SES appeared to measure somewhat different constructs and need to be analysed further.

  19. The benefits of longer fuel cycle lengths

    International Nuclear Information System (INIS)

    Kesler, D.C.

    1986-01-01

    Longer fuel cycle lengths have been found to increase generation and improve outage management. A study at Duke Power Company has shown that longer fuel cycles offer both increased scheduling flexibility and increased capacity factors

  20. Cross-Cultural Validation of the Modified Practice Attitudes Scale: Initial Factor Analysis and a New Factor Model.

    Science.gov (United States)

    Park, Heehoon; Ebesutani, Chad K; Chung, Kyong-Mee; Stanick, Cameo

    2018-01-01

    The objective of this study was to create the Korean version of the Modified Practice Attitudes Scale (K-MPAS) to measure clinicians' attitudes toward evidence-based treatments (EBTs) in the Korean mental health system. Using 189 U.S. therapists and 283 members from the Korean mental health system, we examined the reliability and validity of the MPAS scores. We also conducted the first exploratory and confirmatory factor analysis on the MPAS and compared EBT attitudes across U.S. and Korean therapists. Results revealed that the inclusion of both "reversed-worded" and "non-reversed-worded" items introduced significant method effects that compromised the integrity of the one-factor MPAS model. Problems with the one-factor structure were resolved by eliminating the "non-reversed-worded" items. Reliability and validity were adequate among both Korean and U.S. therapists. Korean therapists also reported significantly more negative attitudes toward EBTs on the MPAS than U.S. therapists. The K-MPAS is the first questionnaire designed to measure Korean service providers' attitudes toward EBTs to help advance the dissemination of EBTs in Korea. The current study also demonstrated the negative impacts that can be introduced by incorporating oppositely worded items into a scale, particularly with respect to factor structure and detecting significant group differences.

  1. Examination of factor structure for the consumers' responses to the Value Consciousness Scale.

    Science.gov (United States)

    Conrad, C A; Williams, J R

    2000-12-01

    The psychometric properties of the Value Consciousness Scale developed by Lichtenstein, Netemeyer, and Burton in 1990 were examined in a retail grocery study (N = 497). Original assessment of scale properties was undertaken using two convenience samples in a nonretail setting and additional scale performance has been documented by the scale authors. This study furthers previous research by (1) examining performance on the items in the retail grocery setting and (2) utilizing an appropriately rigorous sampling procedure. A confirmatory factor analysis indicated that the Value Consciousness Scale does not exhibit unidimensional properties, and one must be cautious if this scale is used in applications of market segmentation until further clarification can be provided.

  2. Influence of gap length on the field increase factor β of an electrode projection (whisker)

    International Nuclear Information System (INIS)

    Miller, H.C.

    1984-01-01

    β, the increase of the macroscopic electric field at the tip of a projection, varies with the gap length. The sign and magnitude of this variation depends upon how the gap length is defined. If gap length is defined as x, the distance from the projection tip to the opposing electrode, then β is a strong function of x and may be approximated by β(x) = β/sub infinity/x/(x+h) [h = projection height] in the region where x/h>10/β/sub infinity/. If gap length is defined as d, the interelectrode distance ignoring the projection, then β is a weak function of d and may be set equal to β/sub infinity/ in the region d/h>2

  3. Characteristic length of the knotting probability revisited

    International Nuclear Information System (INIS)

    Uehara, Erica; Deguchi, Tetsuo

    2015-01-01

    We present a self-avoiding polygon (SAP) model for circular DNA in which the radius of impermeable cylindrical segments corresponds to the screening length of double-stranded DNA surrounded by counter ions. For the model we evaluate the probability for a generated SAP with N segments having a given knot K through simulation. We call it the knotting probability of a knot K with N segments for the SAP model. We show that when N is large the most significant factor in the knotting probability is given by the exponentially decaying part exp(−N/N K ), where the estimates of parameter N K are consistent with the same value for all the different knots we investigated. We thus call it the characteristic length of the knotting probability. We give formulae expressing the characteristic length as a function of the cylindrical radius r ex , i.e. the screening length of double-stranded DNA. (paper)

  4. Effect of the length of inflation on angular TT and TE power spectra in power-law inflation

    International Nuclear Information System (INIS)

    Hirai, Shiro; Takami, Tomoyuki

    2006-01-01

    The effect of the length of inflation on the power spectra of scalar and tensor perturbations is estimated using the power-law inflation model with a scale factor of a(η) = (-η) p = t q . Considering various pre-inflation models with radiation-dominated or scalar matter-dominated periods before inflation in combination with two matching conditions, the temperature angular power spectrum (TT) and temperature-polarization cross-power spectrum (TE) are calculated and a likelihood analysis is performed. It is shown that the discrepancies between the Wilkinson microwave anisotropy probe (WMAP) data and the ΛCDM model, such as suppression of the spectrum at l = 2, 3 and oscillatory behaviour, may be explained by the finite length of inflation model if the length of inflation is near 60 e-folds and q ≥ 300. The proposed models retain similar values of χ 2 to that achieved by the ΛCDM model with respect to fit to the WMAP data, but display different characteristics of the angular TE power spectra at l ≤ 20

  5. Agri-Environmental Resource Management by Large-Scale Collective Action: Determining KEY Success Factors

    Science.gov (United States)

    Uetake, Tetsuya

    2015-01-01

    Purpose: Large-scale collective action is necessary when managing agricultural natural resources such as biodiversity and water quality. This paper determines the key factors to the success of such action. Design/Methodology/Approach: This paper analyses four large-scale collective actions used to manage agri-environmental resources in Canada and…

  6. Length Contraction Should not be Independent of Time

    Science.gov (United States)

    Smarandache, Florentin

    2013-10-01

    In Special Theory of Relativity it looks that the length contraction along the direction of the motion is independent of time, i.e. if a rocket flies one second, or the rocket flies one year the rocket's along-the-motion length contraction is the same, since the contraction factor C (v) =√{ 1 -v2/c2 } depends on the rocket's relativistic speed (v) and on the light speed in vacuum (c) only. We find this as unrealistic, incomplete. It is logical that flying more and more it should increase the length contraction. What about the cosmic bodies that continuously travel, do they contract only once or are they continuously contracting?

  7. A simulation study provided sample size guidance for differential item functioning (DIF) studies using short scales

    DEFF Research Database (Denmark)

    Scott, Neil W.; Fayers, Peter M.; Bottomley, Andrew

    2009-01-01

    Differential item functioning (DIF) analyses are increasingly used to evaluate health-related quality of life (HRQoL) instruments, which often include relatively short subscales. Computer simulations were used to explore how various factors including scale length affect analysis of DIF by ordinal...... logistic regression....

  8. Finite length thermal equilibria of a pure electron plasma column

    International Nuclear Information System (INIS)

    Prasad, S.A.; O'Neil, T.M.

    1979-01-01

    The electrons of a pure electron plasma may be in thermal equilibrium with each other and still be confined by static magnetic and electric fields. Since the electrons make a significant contribution to the electric field, only certain density profiles are consistent with Poisson's equation. The class of such distributions for a finite length cylindrical column is investigated. In the limit where the Debye length is small compared with the dimensions of the column, the density is essentially constant out to some surface of revolution and then falls off abruptly. The falloff in density is a universal function when measured along the local normal to the surface of revolution and scaled in terms of the Debye length. The solution for the shape of the surface of revolution is simplified by passage to the limit of zero Debye length

  9. Hydrogen atom in momentum space with a minimal length

    International Nuclear Information System (INIS)

    Bouaziz, Djamil; Ferkous, Nourredine

    2010-01-01

    A momentum representation treatment of the hydrogen atom problem with a generalized uncertainty relation, which leads to a minimal length ΔX imin =(ℎ/2π)√(3β+β ' ), is presented. We show that the distance squared operator can be factorized in the case β ' =2β. We analytically solve the s-wave bound-state equation. The leading correction to the energy spectrum caused by the minimal length depends on √(β). An upper bound for the minimal length is found to be about 10 -9 fm.

  10. Dynamic critical behaviour and scaling

    International Nuclear Information System (INIS)

    Oezoguz, B.E.

    2001-01-01

    Traditionally the scaling is the property of dynamical systems at thermal equilibrium. In second order phase transitions scaling behaviour is due to the infinite correlation length around the critical point. In first order phase transitions however, the correlation length remains finite and a different type of scaling can be observed. For first order phase transitions all singularities are governed by the volume of the system. Recently, a different type of scaling, namely dynamic scaling has attracted attention in second order phase transitions. In dynamic scaling, when a system prepared at high temperature is quenched to the critical temperature, it exhibits scaling behaviour. Dynamic scaling has been applied to various spin systems and the validity of the arguments are shown. Firstly, in this thesis project the dynamic scaling is applied to 4-dimensional using spin system which exhibits second order phase transition with mean-field critical indices. Secondly, it is shown that although the dynamic is quite different, first order phase transitions also has a different type of dynamic scaling

  11. Telomere length in alcohol dependence: A role for impulsive choice and childhood maltreatment.

    Science.gov (United States)

    Kang, Jee In; Hwang, Syung Shick; Choi, Jong Rak; Lee, Seung-Tae; Kim, Jieun; Hwang, In Sik; Kim, Hae Won; Kim, Chan-Hyung; Kim, Se Joo

    2017-09-01

    Telomere shortening, a marker of cellular aging, has been considered to be linked with psychosocial stress as well as with chronic alcohol consumption, possibly mediated by oxidative stress and inflammatory response. Recent findings suggested that early life adversity on telomere dynamics may be related to impulsive choice. To further our understanding of the association of impulsive choice and childhood trauma on telomere length, we examined whether delayed discounting and childhood trauma or their interaction is related to leukocyte telomere length, while controlling for multiple potential confounding variables, in patients with alcohol dependence who are considered to have higher impulsive choice and shorter telomere length. We recruited 253 male patients with chronic alcohol dependence. All participants performed the delay discounting task, and the area under curve was used as a measure of delay discounting. Steeper delay discounting represents more impulsive choices. The modified Parent-Child Conflict Tactics Scale was used to measure childhood maltreatment. In addition, confounding factors, including socio-demographic characteristics, the Alcohol Use Disorders Identification Test, the Buss-Perry Aggression Questionnaire, the Resilience Quotient, the Beck Depression Inventory, and the Beck Anxiety Inventory, were also assessed. Hierarchical regression analyses showed a significant main effect of delay discounting (β=0.161, t=2.640, p=0.009), and an interaction effect between delay discounting and childhood maltreatment on leukocyte telomere length (β=0.173, t=2.138, p=0.034). In subsequent analyses stratified by childhood maltreatment, patients with alcohol dependence and high childhood trauma showed a significant relationship between delay discounting and leukocyte telomere length (β=0.279, t=3.183, p=0.002), while those with low trauma showed no association between them. Our findings suggest that higher impulsive choice is associated with shorter telomere

  12. Use of 1–4 interaction scaling factors to control the conformational equilibrium between α-helix and β-strand

    International Nuclear Information System (INIS)

    Pang, Yuan-Ping

    2015-01-01

    Highlights: • 1–4 interaction scaling factors are used to adjust conformational energy. • This article reports the effects of these factors on protein conformations. • Reducing these factors changes a helix to a strand in molecular dynamics simulation. • Increasing these factors causes the reverse conformational change. • These factors control the conformational equilibrium between helix and strand. - Abstract: 1–4 interaction scaling factors are used in AMBER forcefields to reduce the exaggeration of short-range repulsion caused by the 6–12 Lennard-Jones potential and a nonpolarizable charge model and to obtain better agreements of small-molecule conformational energies with experimental data. However, the effects of these scaling factors on protein secondary structure conformations have not been investigated until now. This article reports the finding that the 1–4 interactions among the protein backbone atoms separated by three consecutive covalent bonds are more repulsive in the α-helix conformation than in two β-strand conformations. Therefore, the 1–4 interaction scaling factors of protein backbone torsions ϕ and ψ control the conformational equilibrium between α-helix and β-strand. Molecular dynamics simulations confirm that reducing the ϕ and ψ scaling factors readily converts the α-helix conformation of AcO-(AAQAA) 3 -NH 2 to a β-strand conformation, and the reverse occurs when these scaling factors are increased. These results suggest that the ϕ and ψ scaling factors can be used to generate the α-helix or β-strand conformation in situ and to control the propensities of a forcefield for adopting secondary structure elements

  13. Factor analysis of the hospital anxiety and depression scale among a Huntington's disease population

    DEFF Research Database (Denmark)

    Dale, Maria; Maltby, John; Martucci, Rossana

    2015-01-01

    INTRODUCTION: Depression and anxiety are common in Huntington's disease, a genetic neurodegenerative disorder. There is a need for measurement tools of mood to be validated within a Huntington's disease population. The current study aimed to analyze the factor structure of the Hospital Anxiety...... and Depression Scale in Huntington's disease. METHODS: Data from the European Huntington's Disease Network study REGISTRY 3 were used to undertake a factor analysis of the scale among a sample of 492 Huntington's disease mutation carriers. The sample was randomly divided into two equal subsamples...... support for an eight-item version of the scale to be used as a measure of general distress within Huntington's disease populations. © 2015 International Parkinson and Movement Disorder Society....

  14. DETERMINATION OF FACTORS AFFECTING LENGTH OF STAY WITH MULTINOMIAL LOGISTIC REGRESSION IN TURKEY

    Directory of Open Access Journals (Sweden)

    Öğr. Gör. Rukiye NUMAN TEKİN

    2016-08-01

    Full Text Available Length of stay (LOS has important implications in various aspects of health services, can vary according to a wide range of factors. It is noticed that LOS has been neglected mostly in both theoratical studies and practice of health care management in Turkey. The main purpose of this study is to identify factors related to LOS in Turkey. A retrospective analysis of 2.255.836 patients hospitalized to private, university, foundation university and other (municipality, association and foreigners/minority hospitals hospitals which have an agreement with Social Security Institution (SSI in Turkey, from January 1, 2010, until the December 31, 2010, was examined. Patient’s data were taken from MEDULA (National Electronic Invoice System and SPSS 18.0 was used to perform statistical analysis. In this study t-test, one way anova and multinomial logistic regression are used to determine variables that may affect to LOS. The average LOS of patients was 3,93 days (SD = 5,882. LOS showed a statistically significant difference according to all independent variables used in the study (age, gender, disease class, type of hospitalization, presence of comorbidity, type and number of surgery, season of hospitalization, hospital ownership/bed capacity/ geographical region/residential area/type of service. According to the results of the multinomial lojistic regression analysis, LOS was negatively affected in terms of gender, presence of comorbidity, geographical region of hospital and was positively affected in terms of age, season of hospitalization, hospital bed capacity/ ownership/type of service/residential area.

  15. Factors associated with metabolic syndrome and related medical costs by the scale of enterprise in Korea.

    Science.gov (United States)

    Kong, Hyung-Sik; Lee, Kang-Sook; Yim, Eun-Shil; Lee, Seon-Young; Cho, Hyun-Young; Lee, Bin Na; Park, Jee Young

    2013-10-21

    The purpose of this study was to identify the risk factors of metabolic syndrome (MS) and to analyze the relationship between the risk factors of MS and medical cost of major diseases related to MS in Korean workers, according to the scale of the enterprise. Data was obtained from annual physical examinations, health insurance qualification and premiums, and health insurance benefits of 4,094,217 male and female workers who underwent medical examinations provided by the National Health Insurance Corporation in 2009. Logistic regression analyses were used to the identify risk factors of MS and multiple regression was used to find factors associated with medical expenditures due to major diseases related to MS. The study found that low-income workers were more likely to work in small-scale enterprises. The prevalence rate of MS in males and females, respectively, was 17.2% and 9.4% in small-scale enterprises, 15.9% and 8.9% in medium-scale enterprises, and 15.9% and 5.5% in large-scale enterprises. The risks of MS increased with age, lower income status, and smoking in small-scale enterprise workers. The medical costs increased in workers with old age and past smoking history. There was also a gender difference in the pattern of medical expenditures related to MS. Health promotion programs to manage metabolic syndrome should be developed to focus on workers who smoke, drink, and do little exercise in small scale enterprises.

  16. Word-Length Correlations and Memory in Large Texts: A Visibility Network Analysis

    Directory of Open Access Journals (Sweden)

    Lev Guzmán-Vargas

    2015-11-01

    Full Text Available We study the correlation properties of word lengths in large texts from 30 ebooks in the English language from the Gutenberg Project (www.gutenberg.org using the natural visibility graph method (NVG. NVG converts a time series into a graph and then analyzes its graph properties. First, the original sequence of words is transformed into a sequence of values containing the length of each word, and then, it is integrated. Next, we apply the NVG to the integrated word-length series and construct the network. We show that the degree distribution of that network follows a power law, P ( k ∼ k - γ , with two regimes, which are characterized by the exponents γ s ≈ 1 . 7 (at short degree scales and γ l ≈ 1 . 3 (at large degree scales. This suggests that word lengths are much more strongly correlated at large distances between words than at short distances between words. That finding is also supported by the detrended fluctuation analysis (DFA and recurrence time distribution. These results provide new information about the universal characteristics of the structure of written texts beyond that given by word frequencies.

  17. Factor structure and concurrent validity of the world assumptions scale.

    Science.gov (United States)

    Elklit, Ask; Shevlin, Mark; Solomon, Zahava; Dekel, Rachel

    2007-06-01

    The factor structure of the World Assumptions Scale (WAS) was assessed by means of confirmatory factor analysis. The sample was comprised of 1,710 participants who had been exposed to trauma that resulted in whiplash. Four alternative models were specified and estimated using LISREL 8.72. A correlated 8-factor solution was the best explanation of the sample data. The estimates of reliability of eight subscales of the WAS ranged from .48 to .82. Scores from five subscales correlated significantly with trauma severity as measured by the Harvard Trauma Questionnaire, although the magnitude of the correlations was low to modest, ranging from .08 to -.43. It is suggested that the WAS has adequate psychometric properties for use in both clinical and research settings.

  18. Inflation of the screening length induced by Bjerrum pairs

    NARCIS (Netherlands)

    Zwanikken, J.W.; van Roij, R.H.H.G.

    2009-01-01

    Within a modified Poisson–Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale 1/¯κ over which electric fields are screened in electrolyte solutions, taking into account a simple association–dissociation equilibrium between free ions and Bjerrum pairs. At low densities

  19. Changes in root lengths of maxillary incisors during orthodontic retention period

    Directory of Open Access Journals (Sweden)

    Ravanmehr H

    2006-01-01

    Full Text Available Background and Aim: External apical root resorption is a common iatrogenic consequence of orthodontic treatment. Much controversy exists in the literature about changes in root lengths at post treatment periods. Although many practitioners believe that resorption becomes stable after active treatment, quantitative data are scarce. The purpose of this study was to determine quantitative changes in root lengths of maxillary incisors during fixed orthodontic post treatment period, and to assess if it is influenced by gender and factors related to active treatment. Materials and Methods: This was a case cross over study, performed on 80 patients (52 females and 28 males aged between 13 and 22 years. At debonding stage and beginning of retention phase of fixed orthodontic treatment, Hawley type retainer was fabricated for maxillary arch. Periapical radiographs of maxillary incisors using standard parallel technique were obtained immediately after debonding, and 3 and 7 months later. Crown and root lengths of maxillary incisors were measured using computer program. Changes in root lengths were calculated considering correction factors. Also associations between some factors and the change in root lengths during post treatment periods were assessed. These included gender, type of treatment plan (non extraction/extraction, technique (standard edgewise/straight-wire edgewise and duration of active treatment (less than 2 years/2 years and more. T-test and 4-way ANOVA were used for statistical analysis with P0.05 as the limit of significance. Results: No significant relation was found between apical root resorption of maxillary central incisors and time elapsed after treatment. Significant relation was observed between apical root resorption of maxillary lateral incisors and the length of post treatment period. No significant relation was found between root length changes of maxillary incisors during post treatment period and gender, type of treatment

  20. Optimization of fracture length in gas/condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, J.; Sharma, M.M.; Pope, G.A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas Univ., Austin, TX (United States)

    2006-07-01

    A common practice that improves the productivity of gas-condensate reservoirs is hydraulic fracturing. Two important variables that determine the effectiveness of hydraulic fractures are fracture length and fracture conductivity. Although there are no simple guidelines for the optimization of fracture length and the factors that affect it, it is preferable to have an optimum fracture length for a given proppant volume in order to maximize productivity. An optimization study was presented in which fracture length was estimated at wells where productivity was maximized. An analytical expression that takes into account non-Darcy flow and condensate banking was derived. This paper also reviewed the hydraulic fracturing process and discussed previous simulation studies that investigated the effects of well spacing and fracture length on well productivity in low permeability gas reservoirs. The compositional simulation study and results and discussion were also presented. The analytical expression for optimum fracture length, analytical expression with condensate dropout, and equations for the optimum fracture length with non-Darcy flow in the fracture were included in an appendix. The Computer Modeling Group's GEM simulator, an equation-of-state compositional simulator, was used in this study. It was concluded that for cases with non-Darcy flow, the optimum fracture lengths are lower than those obtained with Darcy flow. 18 refs., 5 tabs., 22 figs., 1 appendix.

  1. A new subgrid characteristic length for turbulence simulations on anisotropic grids

    Science.gov (United States)

    Trias, F. X.; Gorobets, A.; Silvis, M. H.; Verstappen, R. W. C. P.; Oliva, A.

    2017-11-01

    Direct numerical simulations of the incompressible Navier-Stokes equations are not feasible yet for most practical turbulent flows. Therefore, dynamically less complex mathematical formulations are necessary for coarse-grained simulations. In this regard, eddy-viscosity models for Large-Eddy Simulation (LES) are probably the most popular example thereof. This type of models requires the calculation of a subgrid characteristic length which is usually associated with the local grid size. For isotropic grids, this is equal to the mesh step. However, for anisotropic or unstructured grids, such as the pancake-like meshes that are often used to resolve near-wall turbulence or shear layers, a consensus on defining the subgrid characteristic length has not been reached yet despite the fact that it can strongly affect the performance of LES models. In this context, a new definition of the subgrid characteristic length is presented in this work. This flow-dependent length scale is based on the turbulent, or subgrid stress, tensor and its representations on different grids. The simplicity and mathematical properties suggest that it can be a robust definition that minimizes the effects of mesh anisotropies on simulation results. The performance of the proposed subgrid characteristic length is successfully tested for decaying isotropic turbulence and a turbulent channel flow using artificially refined grids. Finally, a simple extension of the method for unstructured meshes is proposed and tested for a turbulent flow around a square cylinder. Comparisons with existing subgrid characteristic length scales show that the proposed definition is much more robust with respect to mesh anisotropies and has a great potential to be used in complex geometries where highly skewed (unstructured) meshes are present.

  2. Scaling of the atmosphere of self-avoiding walks

    Energy Technology Data Exchange (ETDEWEB)

    Owczarek, A L [Department of Mathematics and Statistics, The University of Melbourne, Victoria 3010 (Australia); Prellberg, T [School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)], E-mail: a.owczarek@ms.unimelb.edu.au, E-mail: t.prellberg@qmul.ac.uk

    2008-09-19

    The number of free sites next to the end of a self-avoiding walk is known as the atmosphere of the walk. The average atmosphere can be related to the number of configurations. Here we study the distribution of atmospheres as a function of length and how the number of walks of fixed atmosphere scale. Certain bounds on these numbers can be proved. We use Monte Carlo estimates to verify our conjectures in two dimensions. Of particular interest are walks that have zero atmosphere, which are known as trapped. We demonstrate that these walks scale in the same way as the full set of self-avoiding walks, barring an overall constant factor.

  3. Lienard--Wiechert's potentials and the relativistic length conception

    Energy Technology Data Exchange (ETDEWEB)

    Strel' tsov, V N

    1974-12-31

    ABS>The concept of the distance (used in electrodynamics, based on the Lignard--Wiechert's potentials) which gives evidence for the conception of the relativistic length (as a space part of half difference of two 4-vectors describing the light signal distribution along some scale in the forward and backward direction) different from the conventional conception is outlined. (auth)

  4. Use of 1–4 interaction scaling factors to control the conformational equilibrium between α-helix and β-strand

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Yuan-Ping, E-mail: pang@mayo.edu

    2015-02-06

    Highlights: • 1–4 interaction scaling factors are used to adjust conformational energy. • This article reports the effects of these factors on protein conformations. • Reducing these factors changes a helix to a strand in molecular dynamics simulation. • Increasing these factors causes the reverse conformational change. • These factors control the conformational equilibrium between helix and strand. - Abstract: 1–4 interaction scaling factors are used in AMBER forcefields to reduce the exaggeration of short-range repulsion caused by the 6–12 Lennard-Jones potential and a nonpolarizable charge model and to obtain better agreements of small-molecule conformational energies with experimental data. However, the effects of these scaling factors on protein secondary structure conformations have not been investigated until now. This article reports the finding that the 1–4 interactions among the protein backbone atoms separated by three consecutive covalent bonds are more repulsive in the α-helix conformation than in two β-strand conformations. Therefore, the 1–4 interaction scaling factors of protein backbone torsions ϕ and ψ control the conformational equilibrium between α-helix and β-strand. Molecular dynamics simulations confirm that reducing the ϕ and ψ scaling factors readily converts the α-helix conformation of AcO-(AAQAA){sub 3}-NH{sub 2} to a β-strand conformation, and the reverse occurs when these scaling factors are increased. These results suggest that the ϕ and ψ scaling factors can be used to generate the α-helix or β-strand conformation in situ and to control the propensities of a forcefield for adopting secondary structure elements.

  5. Scale covariant physics: a 'quantum deformation' of classical electrodynamics

    International Nuclear Information System (INIS)

    Knoll, Yehonatan; Yavneh, Irad

    2010-01-01

    We present a deformation of classical electrodynamics, continuously depending on a 'quantum parameter', featuring manifest gauge, Poincare and scale covariance. The theory, dubbed extended charge dynamics (ECD), associates a certain length scale with each charge which, due to scale covariance, is an attribute of a solution, not a parameter of the theory. When the EM field experienced by an ECD charge is slowly varying over that length scale, the dynamics of the charge reduces to classical dynamics, its emitted radiation reduces to the familiar Lienard-Wiechert potential and the above length scale is identified as the charge's Compton length. It is conjectured that quantum mechanics describes statistical aspects of ensembles of ECD solutions, much like classical thermodynamics describes statistical aspects of ensembles of classical solutions. A unique 'remote sensing' feature of ECD, supporting that conjecture, is presented, along with an explanation for the illusion of a photon within a classical treatment of the EM field. Finally, a novel conservation law associated with the scale covariance of ECD is derived, indicating that the scale of a solution may 'drift' with time at a constant rate, much like translation covariance implies a uniform drift of the (average) position.

  6. Stimulus-dependent modulation of spike burst length in cat striate cortical cells.

    Science.gov (United States)

    DeBusk, B C; DeBruyn, E J; Snider, R K; Kabara, J F; Bonds, A B

    1997-07-01

    Burst activity, defined by groups of two or more spikes with intervals of cats. Bursting varied broadly across a population of 507 simple and complex cells. Half of this population had > or = 42% of their spikes contained in bursts. The fraction of spikes in bursts did not vary as a function of average firing rate and was stationary over time. Peaks in the interspike interval histograms were found at both 3-5 ms and 10-30 ms. In many cells the locations of these peaks were independent of firing rate, indicating a quantized control of firing behavior at two different time scales. The activity at the shorter time scale most likely results from intrinsic properties of the cell membrane, and that at the longer scale from recurrent network excitation. Burst frequency (bursts per s) and burst length (spikes per burst) both depended on firing rate. Burst frequency was essentially linear with firing rate, whereas burst length was a nonlinear function of firing rate and was also governed by stimulus orientation. At a given firing rate, burst length was greater for optimal orientations than for nonoptimal orientations. No organized orientation dependence was seen in bursts from lateral geniculate nucleus cells. Activation of cortical contrast gain control at low response amplitudes resulted in no burst length modulation, but burst shortening at optimal orientations was found in responses characterized by supersaturation. At a given firing rate, cortical burst length was shortened by microinjection of gamma-aminobutyric acid (GABA), and bursts became longer in the presence of N-methyl-bicuculline, a GABA(A) receptor blocker. These results are consistent with a model in which responses are reduced at nonoptimal orientations, at least in part, by burst shortening that is mediated by GABA. A similar mechanism contributes to response supersaturation at high contrasts via recruitment of inhibitory responses that are tuned to adjacent orientations. Burst length modulation can serve

  7. Confirming the Three-Factor Structure of the Disgust Scale-Revised in Eight Countries

    NARCIS (Netherlands)

    Olatunji, Bunmi O.; Moretz, Melanie W.; Mckay, Dean; Bjorklund, Fredrik; de Jong, Peter J.; Haidt, Jonathan; Hursti, Timo J.; Imada, Sumio; Koller, Silvia; Mancini, Francesco; Page, Andrew C.; Schienle, Anne

    The current study evaluates the factor structure of the Disgust Scale-Revised (DS-R) in eight countries: Australia, Brazil, Germany, Italy, Japan, the Netherlands, Sweden, and the United States (N = 2,606). Confirmatory factor analysis is used to compare two different models of the DS-R and to

  8. Determination of vibration amplitudes and neutron-mechanical scale factors in the PWR nuclear power plant

    International Nuclear Information System (INIS)

    Kostic, Lj.; Heidemann, P.; Runkel, J.

    1997-01-01

    Displacements of vibrating reactor components which can not be measured by other means during normal reactor operation can be determined through the scale factors from the neutron spectra of signals measured by the standard in-core neutron instrumentation. Neutron-mechanical scale factors are determined for the vibrations of fuel assemblies and reactor pressure vessel/core barrel system using the signals of in-core neutron detectors and accelerometers. (author)

  9. Seizure Self-Efficacy Scale for Children with Epilepsy: Confirmatory and Exploratory Factor Analysis

    Directory of Open Access Journals (Sweden)

    Şerife Tutar Güven

    2017-12-01

    Full Text Available Aim: In the past few years, the concept of self-efficacy in children with epilepsy has become increasingly important. This study aimed to analyze the psychometric aspects of the Turkish version of the Seizure Self-Efficacy Scale for Children. Materials and Methods: This is a cross-sectional survey. The study data were collected using the Seizure Self-Efficacy Scale for Children and Child Introduction Form. The study sample included 166 children who were between 9 and 17 years of age. The authors assessed the reliability and construct validity of the study data using exploratory and confirmatory factor analyses (CFA. Results: The original model was not confirmed by the CFA. The analysis tool included 15 items in two factors. Reliability analysis showed that the two factors were acceptable and valid. The tool was valid and reliable for measuring the self-efficacy of epileptic children. The factor structure was derived from and confirmed by the original tool. It was found that the Turkish version of the modified Seizure Self-Efficacy Scale for Children had excellent satisfactory psychometric aspects for a Turkish population. Conclusion: Health professionals can present a more effective drug process and nursing care by identifying and assessing seizure self-efficacy levels in children with epilepsy, and they can make a positive contribution to disease management and the way the child deals with the disease.

  10. Stress Concentration Factor and Stress Intensity Factor with U-notch and Crack in the Beam

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Bo Seong; Lee, Kwang Ho [Kyungpook National Univ., Daegu (Korea, Republic of)

    2016-05-15

    The stress concentration factors and stress intensity factors for a simple beam and a cantilever are analyzed by using finite element method and photoelasticity. Using the analyzed results, the estimated graphs on stress concentration factors and stress intensity factors are obtained. To analyze stress concentration factors of notch, the dimensionless notch length H(height of specimen)/h=1.1-2 and dimensionless gap space r(radius at the notch tip)/h=0.1~0.5 are used, where h=H-c and c is the notch length. As the notch gap length increases and the gap decreases, the stress concentration factors increase. Stress concentration factors of a simple beam are greater than those of a cantilever beam. However, actually, the maximum stress values under a load, a notch length and a gap occur more greatly in the cantilever beam than in the simple beam. To analyze stress intensity factors, the normalized crack length α(crack length)/H=0.2~0.5 is used. As the length of the crack increases, the normalized stress intensity factors increase. The stress intensity factors under a constant load and a crack length occur more greatly in the cantilever beam than in the simple beam.

  11. NcoI restriction fragment length polymorphism (RFLP) of the tumour necrosis factor (TNF alpha) region in primary biliary cirrhosis and in healthy Danes

    DEFF Research Database (Denmark)

    Fugger, L; Morling, N; Ryder, L P

    1989-01-01

    The restriction fragment length polymorphism of the human tumour necrosis factor (TNF alpha) region was investigated by means of 20 different restriction enzymes and a human TNF alpha cDNA probe. Only one of the enzymes, NcoI, revealed a polymorphic pattern consisting of fragments of 10.5 and 5.5...

  12. Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos

    International Nuclear Information System (INIS)

    Zhang Fang-Fang; Liu Shu-Tang; Yu Wei-Yong

    2013-01-01

    To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes. (general)

  13. Analysis on the restriction factors of the green building scale promotion based on DEMATEL

    Science.gov (United States)

    Wenxia, Hong; Zhenyao, Jiang; Zhao, Yang

    2017-03-01

    In order to promote the large-scale development of the green building in our country, DEMATEL method was used to classify influence factors of green building development into three parts, including green building market, green technology and macro economy. Through the DEMATEL model, the interaction mechanism of each part was analyzed. The mutual influence degree of each barrier factor that affects the green building promotion was quantitatively analysed and key factors for the development of green building in China were also finally determined. In addition, some implementation strategies of promoting green building scale development in our country were put forward. This research will show important reference value and practical value for making policies of the green building promotion.

  14. Telomeric repeat factor 1 protein levels correlates with telomere length in colorectal cancer Los niveles proteicos del factor de repetición telomérico 1 se correlacionan con la longitud del telómero en el cáncer colorrectal

    Directory of Open Access Journals (Sweden)

    Cristina Valls-Bautista

    2012-11-01

    Full Text Available Background: colorectal cancer is the third cancer cause of death in Spain. It is important to investigate new tumoral markers for early diagnosis, disease monitoring and prevention strategies. Telomeres protect the chromosome from degradation by nucleases and end-to-end fusion. The progressive loss of the telomeric ends of chromosomes is an important mechanism in the timing of human cellular aging. Telomeric Repeat Factor 1 (TRF1 is a protein that binds at telomere ends. Purpose: to measure the concentrations of TRF1 and the relationships among telomere length, telomerase activity, and TRF1 levels in tumor and normal colorectal mucosa. Method: from normal and tumoral samples of 83 patients who underwent surgery for colorectal cancer we analyzed TRF1 protein concentration by Western Blot, telomerase activity, by the fluorescent-telomeric repeat amplification protocol assay and telomere length by Southern Blot. Results: high levels of TRF1 were observed in 68.7% of tumor samples, while the majority of normal samples (59% showed negative or weak TRF1 concentrations. Among the tumor samples, telomere length was significantly associated with TRF1 protein levels (p = 0.023. Conclusions: a relationship was found between telomere length and TRF1 abundance protein in tumor samples, which means that TRF1 is an important factor in the tumor progression and maybe a diagnostic factor.

  15. Length of Service versus Employee Retention Factors: Hotels in Cape Town, South Africa

    Directory of Open Access Journals (Sweden)

    Ikechukwu O. Ezeuduji

    2017-04-01

    Full Text Available Employee retention can be measured quite accurately by the actual number of years that employees have worked in an organisation. This study investigates relationships between hotel employees’ length of service and responses to individual variables explaining employee retention factors. A structured questionnaire survey of 217 hotel employees in Cape Town, South Africa was used to obtain information that were subjected to bivariate and multivariate analyses. Key results show that the employees who have worked longer in the hotel have particular characteristics: they perceive that working hours in the hotel do not infringe on their personal quality time with friends; they perceive it will be difficult for them to leave the hotel; they want to remain in the hotel for a long time; and quite interestingly, they perceive they do not receive continuous training in the hotel. Further costs of hiring and developing new employees can be reduced if loyal and talented employees are retained for longer periods through continuous career development. This study is of particular interest to the hotel sector management, as it is focussed on retaining those staff who really want to build a career in the hospitality industry.

  16. Enabling and challenging factors in institutional reform: The case of SCALE-UP

    Science.gov (United States)

    Foote, Kathleen; Knaub, Alexis; Henderson, Charles; Dancy, Melissa; Beichner, Robert J.

    2016-06-01

    While many innovative teaching strategies exist, integration into undergraduate science teaching has been frustratingly slow. This study aims to understand the low uptake of research-based instructional innovations by studying 21 successful implementations of the Student Centered Active Learning with Upside-down Pedagogies (SCALE-UP) instructional reform. SCALE-UP significantly restructures the classroom environment and pedagogy to promote highly active and interactive instruction. Although originally designed for university introductory physics courses, SCALE-UP has spread to many other disciplines at hundreds of departments around the world. This study reports findings from in-depth, open-ended interviews with 21 key contact people involved with successful secondary implementations of SCALE-UP throughout the United States. We defined successful implementations as those who restructured their pedagogy and classroom and sustained and/or spread the change. Interviews were coded to identify the most common enabling and challenging factors during reform implementation and compared to the theoretical framework of Kotter's 8-step Change Model. The most common enabling influences that emerged are documenting and leveraging evidence of local success, administrative support, interaction with outside SCALE-UP user(s), and funding. Many challenges are linked to the lack of these enabling factors including difficulty finding funding, space, and administrative and/or faculty support for reform. Our focus on successful secondary implementations meant that most interviewees were able to overcome challenges. Presentation of results is illuminated with case studies, quotes, and examples that can help secondary implementers with SCALE-UP reform efforts specifically. We also discuss the implications for policy makers, researchers, and the higher education community concerned with initiating structural change.

  17. Factor Structure and Measurement Invariance of the Need-Supportive Teaching Style Scale for Physical Education.

    Science.gov (United States)

    Liu, Jing-Dong; Chung, Pak-Kwong

    2017-08-01

    The purpose of the current study was to examine the factor structure and measurement invariance of a scale measuring students' perceptions of need-supportive teaching (Need-Supportive Teaching Style Scale in Physical Education; NSTSSPE). We sampled 615 secondary school students in Hong Kong, 200 of whom also completed a follow-up assessment two months later. Factor structure of the scale was examined through exploratory structural equation modeling (ESEM). Further, nomological validity of the NSTSSPE was evaluated by examining the relationships between need-supportive teaching style and student satisfaction of psychological needs. Finally, four measurement models-configural, metric invariance, scalar invariance, and item uniqueness invariance-were assessed using multiple group ESEM to test the measurement invariance of the scale across gender, grade, and time. ESEM results suggested a three-factor structure of the NSTSSPE. Nomological validity was supported, and weak, strong, and strict measurement invariance of the NSTSSPE was evidenced across gender, grade, and time. The current study provides initial psychometric support for the NSTSSPE to assess student perceptions of teachers' need-supportive teaching style in physical education classes.

  18. Scale-Free Relationships between Social and Landscape Factors in Urban Systems

    Directory of Open Access Journals (Sweden)

    Chunzhu Wei

    2017-01-01

    anthropogenic and natural factors. Moreover, this scale-free behavior of landscape–social relationships challenges the traditional modifiable area unit problem, and provides mechanistic insight into the conflicts and compatibilities between human activities and human-induced land use change.

  19. Factor structure, reliability, and validity of the Levenson's Locus of Control Scale in Iranian infertile people.

    Science.gov (United States)

    Maroufizadeh, Saman; Omani Samani, Reza; Amini, Payam; Navid, Behnaz

    2016-09-01

    This study examined psychometric properties of the Levenson's Locus of Control Scale among Iranian infertile patients. In all, 312 infertile patients completed the Levenson's Locus of Control Scale and Hospital Anxiety and Depression Scale. The confirmatory factor analysis indicated that the original three-factor model of Levenson's Locus of Control Scale was adequate ( χ 2 / df = 2.139; goodness-of-fit index = 0.88; root mean square error of approximation = 0.061; and standardized root mean square residual = 0.076). The Cronbach's alpha of the subscales ranged from 0.56 to 0.67. The Levenson's Locus of Control Scale subscales significantly correlated with anxiety and depression, showing an acceptable convergent validity. In conclusion, the Levenson's Locus of Control Scale has adequate reliability and validity and can be used to measure locus of control orientation in Iranian infertile patients.

  20. The factor structure of the Hospital Anxiety and Depression Scale in individuals with traumatic brain injury.

    Science.gov (United States)

    Schönberger, Michael; Ponsford, Jennie

    2010-10-30

    There is a lack of validated scales for screening for anxiety and depression in individuals with traumatic brain injury (TBI). The purpose of this study was to examine the factor structure of the Hospital Anxiety and Depression Scale (HADS) in individuals with TBI. A total of 294 individuals with TBI (72.1% male; mean age 37.1 years, S.D. 17.5, median post-traumatic amnesia (PTA) duration 17 days) completed the HADS 1 year post-injury. A series of confirmatory factor analyses was conducted to examine the fit of a one-, two- and three-factor solution, with and without controlling for item wording effects (Multi-Trait Multi-Method approach). The one-, two- or three-factor model fit the data only when controlling for negative item wording. The results are in support of the validity of the original anxiety and depression subscales of the HADS and demonstrate the importance of evaluating item wording effects when examining the factor structure of a questionnaire. The results would also justify the use of the HADS as a single scale of emotional distress. However, even though the three-factor solution fit the data, alternative scales should be used if the purpose of the assessment is to measure stress symptoms separately from anxiety and depression. Copyright © 2009 Elsevier Ltd. All rights reserved.

  1. Multi-scale modeling of dispersed gas-liquid two-phase flow

    NARCIS (Netherlands)

    Deen, N.G.; Sint Annaland, van M.; Kuipers, J.A.M.

    2004-01-01

    In this work the concept of multi-scale modeling is demonstrated. The idea of this approach is to use different levels of modeling, each developed to study phenomena at a certain length scale. Information obtained at the level of small length scales can be used to provide closure information at the

  2. Signatures of non-universal large scales in conditional structure functions from various turbulent flows

    International Nuclear Information System (INIS)

    Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K

    2011-01-01

    We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)

  3. Why the Length of a Quantum String Cannot Be Lorentz Contracted

    Directory of Open Access Journals (Sweden)

    Antonio Aurilia

    2013-01-01

    Full Text Available We propose a quantum gravity-extended form of the classical length contraction law obtained in special relativity. More specifically, the framework of our discussion is the UV self-complete theory of quantum gravity. We show how our results are consistent with (i the generalized form of the uncertainty principle (GUP, (ii the so-called hoop-conjecture, and (iii the intriguing notion of “classicalization” of trans-Planckian physics. We argue that there is a physical limit to the Lorentz contraction rule in the form of some minimal universal length determined by quantum gravity, say the Planck Length, or any of its current embodiments such as the string length, or the TeV quantum gravity length scale. In the latter case, we determine the critical boost that separates the ordinary “particle phase,” characterized by the Compton wavelength, from the “black hole phase,” characterized by the effective Schwarzschild radius of the colliding system.

  4. Micro-scale Spatial Clustering of Cholera Risk Factors in Urban Bangladesh.

    Science.gov (United States)

    Bi, Qifang; Azman, Andrew S; Satter, Syed Moinuddin; Khan, Azharul Islam; Ahmed, Dilruba; Riaj, Altaf Ahmed; Gurley, Emily S; Lessler, Justin

    2016-02-01

    Close interpersonal contact likely drives spatial clustering of cases of cholera and diarrhea, but spatial clustering of risk factors may also drive this pattern. Few studies have focused specifically on how exposures for disease cluster at small spatial scales. Improving our understanding of the micro-scale clustering of risk factors for cholera may help to target interventions and power studies with cluster designs. We selected sets of spatially matched households (matched-sets) near cholera case households between April and October 2013 in a cholera endemic urban neighborhood of Tongi Township in Bangladesh. We collected data on exposures to suspected cholera risk factors at the household and individual level. We used intra-class correlation coefficients (ICCs) to characterize clustering of exposures within matched-sets and households, and assessed if clustering depended on the geographical extent of the matched-sets. Clustering over larger spatial scales was explored by assessing the relationship between matched-sets. We also explored whether different exposures tended to appear together in individuals, households, and matched-sets. Household level exposures, including: drinking municipal supplied water (ICC = 0.97, 95%CI = 0.96, 0.98), type of latrine (ICC = 0.88, 95%CI = 0.71, 1.00), and intermittent access to drinking water (ICC = 0.96, 95%CI = 0.87, 1.00) exhibited strong clustering within matched-sets. As the geographic extent of matched-sets increased, the concordance of exposures within matched-sets decreased. Concordance between matched-sets of exposures related to water supply was elevated at distances of up to approximately 400 meters. Household level hygiene practices were correlated with infrastructure shown to increase cholera risk. Co-occurrence of different individual level exposures appeared to mostly reflect the differing domestic roles of study participants. Strong spatial clustering of exposures at a small spatial scale in a cholera endemic

  5. Micro-scale Spatial Clustering of Cholera Risk Factors in Urban Bangladesh.

    Directory of Open Access Journals (Sweden)

    Qifang Bi

    2016-02-01

    Full Text Available Close interpersonal contact likely drives spatial clustering of cases of cholera and diarrhea, but spatial clustering of risk factors may also drive this pattern. Few studies have focused specifically on how exposures for disease cluster at small spatial scales. Improving our understanding of the micro-scale clustering of risk factors for cholera may help to target interventions and power studies with cluster designs. We selected sets of spatially matched households (matched-sets near cholera case households between April and October 2013 in a cholera endemic urban neighborhood of Tongi Township in Bangladesh. We collected data on exposures to suspected cholera risk factors at the household and individual level. We used intra-class correlation coefficients (ICCs to characterize clustering of exposures within matched-sets and households, and assessed if clustering depended on the geographical extent of the matched-sets. Clustering over larger spatial scales was explored by assessing the relationship between matched-sets. We also explored whether different exposures tended to appear together in individuals, households, and matched-sets. Household level exposures, including: drinking municipal supplied water (ICC = 0.97, 95%CI = 0.96, 0.98, type of latrine (ICC = 0.88, 95%CI = 0.71, 1.00, and intermittent access to drinking water (ICC = 0.96, 95%CI = 0.87, 1.00 exhibited strong clustering within matched-sets. As the geographic extent of matched-sets increased, the concordance of exposures within matched-sets decreased. Concordance between matched-sets of exposures related to water supply was elevated at distances of up to approximately 400 meters. Household level hygiene practices were correlated with infrastructure shown to increase cholera risk. Co-occurrence of different individual level exposures appeared to mostly reflect the differing domestic roles of study participants. Strong spatial clustering of exposures at a small spatial scale in a

  6. Acculturation Predicts Negative Affect and Shortened Telomere Length.

    Science.gov (United States)

    Ruiz, R Jeanne; Trzeciakowski, Jerome; Moore, Tiffany; Ayers, Kimberly S; Pickler, Rita H

    2016-10-12

    Chronic stress may accelerate cellular aging. Telomeres, protective "caps" at the end of chromosomes, modulate cellular aging and may be good biomarkers for the effects of chronic stress, including that associated with acculturation. The purpose of this analysis was to examine telomere length (TL) in acculturating Hispanic Mexican American women and to determine the associations among TL, acculturation, and psychological factors. As part of a larger cross-sectional study of 516 pregnant Hispanic Mexican American women, we analyzed DNA in blood samples (N = 56) collected at 22-24 weeks gestation for TL as an exploratory measure using monochrome multiplex quantitative telomere polymerase chain reaction (PCR). We measured acculturation with the Acculturation Rating Scale for Mexican Americans, depression with the Beck Depression Inventory, discrimination with the Experiences of Discrimination Scale, and stress with the Perceived Stress Scale. TL was negatively moderately correlated with two variables of acculturation: Anglo orientation and greater acculturation-level scores. We combined these scores for a latent variable, acculturation, and we combined depression, stress, and discrimination scores in another latent variable, "negative affectivity." Acculturation and negative affectivity were bidirectionally correlated. Acculturation significantly negatively predicted TL. Using structural equation modeling, we found the model had an excellent fit with the root mean square error of approximation estimate = .0001, comparative fit index = 1.0, Tucker-Lewis index = 1.0, and standardized root mean square residual = .05. The negative effects of acculturation on the health of Hispanic women have been previously demonstrated. Findings from this analysis suggest a link between acculturation and TL, which may indicate accelerated cellular aging associated with overall poor health outcomes. © The Author(s) 2016.

  7. Landslide scaling and magnitude-frequency distribution (Invited)

    Science.gov (United States)

    Stark, C. P.; Guzzetti, F.

    2009-12-01

    Landslide-driven erosion is controlled by the scale and frequency of slope failures and by the consequent fluxes of debris off the hillslopes. Here I focus on the magnitude-frequency part of the process and develop a theory of initial slope failure and debris mobilization that reproduces the heavy-tailed distributions (PDFs) observed for landslide source areas and volumes. Landslide rupture propagation is treated as a quasi-static, non-inertial process of simplified elastoplastic deformation with strain weakening; debris runout is not considered. The model tracks the stochastically evolving imbalance of frictional, cohesive, and body forces across a failing slope, and uses safety-factor concepts to convert the evolving imbalance into a series of incremental rupture growth or arrest probabilities. A single rupture is simulated with a sequence of weighted ``coin tosses'' with weights set by the growth probabilities. Slope failure treated in this stochastic way is a survival process that generates asymptotically power-law-tail PDFs of area and volume for rock and debris slides; predicted scaling exponents are consistent with analyses of landslide inventories. The primary control on the shape of the model PDFs is the relative importance of cohesion over friction in setting slope stability: the scaling of smaller, shallower failures, and the size of the most common landslide volumes, are the result of the low cohesion of soil and regolith, whereas the negative power-law tail scaling for larger failures is tied to the greater cohesion of bedrock. The debris budget may be dominated by small or large landslides depending on the scaling of both the PDF and of the depth-length relation. I will present new model results that confirm the hypothesis that depth-length scaling is linear. Model PDF of landslide volumes.

  8. Factors of honeybee colony performances on sunflower at apiary scale

    Directory of Open Access Journals (Sweden)

    Kretzschmar André

    2017-11-01

    Full Text Available An observatory of honeybee colonies (Apis mellifera, consisting of at least 200 colonies, divided into 10 apiaries of 20 colonies, was monitored for three years on sunflower honeyflow (2015–2017. The purpose of this observatory is to understand which factors control colony performance during sunflower honeyflow in south-western France. From the temporal dynamics of weight gain, statistical analysis reveals a hierarchy of factors. First, variability in apiary scale performance is an image of the effect of resource variability. But, in addition to this primordial factor, two other factors contribute very significantly to performance. On the one hand, the amount of capped brood and the number of bees at the time of the installation of the apiary: these two elements testify to the vitality of the colony. The second remarkable factor is the Varroa load, which strongly penalizes performance beyond a certain threshold. The negative effect of the Varroa load on the colony performance is minimized in case of abondant sunflower honey flow.

  9. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales.

    Science.gov (United States)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A L David; Belcher, Warwick J; Dastoor, Paul C

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  10. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Science.gov (United States)

    Burke, Kerry B.; Stapleton, Andrew J.; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A. L. David; Belcher, Warwick J.; Dastoor, Paul C.

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  11. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    International Nuclear Information System (INIS)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C; Kilcoyne, A L David

    2011-01-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N ' -(4-butylphenyl)-bis-N, N ' -phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  12. Micro- and meso-scale effects of forested terrain

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Sogachev, Andrey

    2011-01-01

    scales are the height of the planetary boundary layer and the Monin-Obukhov length, which both are related to the energy balance of the surface. Examples of important micro- and meso-scale effects of forested terrain are shown using data and model results from recent and ongoing experiments. For micro......The height and rotor diameter of modern wind turbines are so extensive, that the wind conditions they encounter often are well above the surface layer, where traditionally it is assumed that wind direction and turbulent fluxes are constant with respect to height, if the surface is homogenous....... Deviations from the requirement of homogeneity are often the focus of micro-scale studies in forested areas. Yet, to explain the wind climate in the relevant height range for turbines, it is necessary to also account for the length scales that are important parameters for the meso-scale flow. These length...

  13. Impact of continuing scaling on the device performance of 3D cylindrical junction-less charge trapping memory

    International Nuclear Information System (INIS)

    Li Xinkai; Huo Zongliang; Jin Lei; Jiang Dandan; Hong Peizhen; Xu Qiang; Tang Zhaoyun; Li Chunlong; Ye Tianchun

    2015-01-01

    This work presents a comprehensive analysis of 3D cylindrical junction-less charge trapping memory device performance regarding continuous scaling of the structure dimensions. The key device performance, such as program/erase speed, vertical charge loss, and lateral charge migration under high temperature are intensively studied using the Sentaurus 3D device simulator. Although scaling of channel radius is beneficial for operation speed improvement, it leads to a retention challenge due to vertical leakage, especially enhanced charge loss through TPO. Scaling of gate length not only decreases the program/erase speed but also leads to worse lateral charge migration. Scaling of spacer length is critical for the interference of adjacent cells and should be carefully optimized according to specific cell operation conditions. The gate stack shape is also found to be an important factor affecting the lateral charge migration. Our results provide guidance for high density and high reliability 3D CTM integration. (paper)

  14. Taylor-plasticity-based analysis of length scale effects in void growth

    KAUST Repository

    Liu, Junxian

    2014-09-25

    We have studied the void growth problem by employing the Taylor-based strain gradient plasticity theories, from which we have chosen the following three, namely, the mechanism-based strain gradient (MSG) plasticity (Gao et al 1999 J. Mech. Phys. Solids 47 1239, Huang et al 2000 J. Mech. Phys. Solids 48 99-128), the Taylor-based nonlocal theory (TNT; 2001 Gao and Huang 2001 Int. J. Solids Struct. 38 2615) and the conventional theory of MSG (CMSG; Huang et al 2004 Int. J. Plast. 20 753). We have addressed the following three issues which occur when plastic deformation at the void surface is unconstrained. (1) Effects of elastic deformation. Elasticity is essential for cavitation instability. It is therefore important to guarantee that the gradient term entering the Taylor model is the effective plastic strain gradient instead of the total strain gradient. We propose a simple elastic-plastic decomposition method. When the void size approaches the minimum allowable initial void size related to the maximum allowable geometrically necessary dislocation density, overestimation of the flow stress due to the negligence of the elastic strain gradient is on the order of lεY/R0 near the void surface, where l, εY and R0 are, respectively, the intrinsic material length scale, the yield strain and the initial void radius. (2) MSG intrinsic inconsistency, which was initially mentioned in Gao et al (1999 J. Mech. Phys. Solids 47 1239) but has not been the topic of follow-up studies. We realize that MSG higher-order stress arises due to the linear-strain-field approximation within the mesoscale cell with a nonzero size, lε. Simple analysis shows that within an MSG mesoscale cell near the void surface, the difference between microscale and mesoscale strains is on the order of (lε/R0)2, indicating that when lε/R0 ∼ 1.0, the higher-order stress effect can make the MSG result considerably different from the TNT or CMSG results. (3) Critical condition for cavitation instability

  15. Turbulence closure for mixing length theories

    Science.gov (United States)

    Jermyn, Adam S.; Lesaffre, Pierre; Tout, Christopher A.; Chitre, Shashikumar M.

    2018-05-01

    We present an approach to turbulence closure based on mixing length theory with three-dimensional fluctuations against a two-dimensional background. This model is intended to be rapidly computable for implementation in stellar evolution software and to capture a wide range of relevant phenomena with just a single free parameter, namely the mixing length. We incorporate magnetic, rotational, baroclinic, and buoyancy effects exactly within the formalism of linear growth theories with non-linear decay. We treat differential rotation effects perturbatively in the corotating frame using a novel controlled approximation, which matches the time evolution of the reference frame to arbitrary order. We then implement this model in an efficient open source code and discuss the resulting turbulent stresses and transport coefficients. We demonstrate that this model exhibits convective, baroclinic, and shear instabilities as well as the magnetorotational instability. It also exhibits non-linear saturation behaviour, and we use this to extract the asymptotic scaling of various transport coefficients in physically interesting limits.

  16. Lengths and Positions of the Vermiform Appendix among Sudanese Cadavers

    Directory of Open Access Journals (Sweden)

    Ehab I. El-Amin

    2015-08-01

    Full Text Available Background/objective: The anatomy of vermiform appendix displays great variations in length and position between different populations. The reports relating these variations to a specific etiological factor are few. This study aims to describe the positions and lengths of vermiform appendix among Sudanese cadavers. Methods: This descriptive study was carried out in Omdurman Teaching Hospital Morgue and Omdurman Islamic University-Sudan. Sixty Sudanese cadavers (30 male and 30 female, were dissected in the period from June 2013 to June 2014. The positions and the lengths of vermiform appendix were measured in millimeters. The data was analyzed by SPSS version 20. Results: The cadavers’ age ranged between 20 to 80 years according to their medico-legal reports. Retrocaecal position was mainly observed in 60%, pelvic in 35%, post-ileal in 3.3%, and pre-ileal in 1.7%. The lengths of the appendix was found < 69 mm in 23.3%, 70-110 mm in 60%, and > 110 mm in 16.7%, also the study showed insignificant difference between the lengths and ages (p < 0.08, and between males and females (p = 0.23. Age was the influencing factor for the positions of vermiform appendixes (p = 0.04. Conclusion: The study showed that the commonest lengths of the appendix were 70-110 mm while the common position was retrocaecal regardless to age or gender. This data should be considered in surgical removal of the inflamed appendix.

  17. Minimal length uncertainty relation and ultraviolet regularization

    Science.gov (United States)

    Kempf, Achim; Mangano, Gianpiero

    1997-06-01

    Studies in string theory and quantum gravity suggest the existence of a finite lower limit Δx0 to the possible resolution of distances, at the latest on the scale of the Planck length of 10-35 m. Within the framework of the Euclidean path integral we explicitly show ultraviolet regularization in field theory through this short distance structure. Both rotation and translation invariance can be preserved. An example is studied in detail.

  18. Detection of different-time-scale signals in the length of day variation based on EEMD analysis technique

    Directory of Open Access Journals (Sweden)

    Wenbin Shen

    2016-05-01

    Full Text Available Scientists pay great attention to different-time-scale signals in the length of day (LOD variations ΔLOD, which provide signatures of the Earth's interior structure, couplings among different layers, and potential excitations of ocean and atmosphere. In this study, based on the ensemble empirical mode decomposition (EEMD, we analyzed the latest time series of ΔLOD data spanning from January 1962 to March 2015. We observed the signals with periods and amplitudes of about 0.5 month and 0.19 ms, 1.0 month and 0.19 ms, 0.5 yr and 0.22 ms, 1.0 yr and 0.18 ms, 2.28 yr and 0.03 ms, 5.48 yr and 0.05 ms, respectively, in coincidence with the results of predecessors. In addition, some signals that were previously not definitely observed by predecessors were detected in this study, with periods and amplitudes of 9.13 d and 0.12 ms, 13.69 yr and 0.10 ms, respectively. The mechanisms of the LOD fluctuations of these two signals are still open.

  19. Spontaneous Emission Enhancement at Finite-length Metal

    DEFF Research Database (Denmark)

    Filonenko, K.; Willatzen, Morten; Bordo, V.

    2013-01-01

    We study spontaneous emission enhancement of a two-level atomic emitter placed in a dielectric medium near a finite-length cylindrical metal nanowire. We calculate the dependence of the Purcell factor and the normalized decay rate to a continuous spectrum on the nanowire radius for several emitter...

  20. Development and analysis of the factor structure of parents' internalized stigma of neurodevelopmental disorder in child scale

    Directory of Open Access Journals (Sweden)

    Ananya Mahapatra

    2017-01-01

    Full Text Available Background: Parents of children suffering from neurodevelopmental disorders, frequently face public stigma which is often internalized and leads to psychological burden. However, there is a lack of data on the perceptions of internalized stigma among parents of children with neurodevelopmental disorders, especially from lower-middle-income countries like India. Aims: This study aims to develop an adapted version of the Internalized Stigma of Mental Illness (ISMI scale for use in parents of children suffering from neurodevelopmental disorders and to explore the factor structure of this instrument through exploratory factor analysis (EFA. Settings and Design: A cross-sectional study was conducted in an outpatient setting in a tertiary care hospital in India. Materials and Methods: A total of 105 parents of children suffering from neurodevelopmental disorders (according to the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition were recruited for the study after screening for psychiatric disorder using Mini International Neuropsychiatric Interview version 6.0. A modified 16-item scale was constructed Parents' Internalized Stigma of Neurodevelopmental Disorder in Child (PISNC scale and applied on 105 parents of children suffering from neurodevelopmental disorders, after translation to Hindi and back-translation, in keeping with the World Health Organization's translation-back-translation methodology. Statistical Analysis: EFA was carried out using principal component analysis with orthogonal (varimax rotation. Internal consistency of the Hindi version of the scale was estimated in the form of Cronbach's alpha. Spearman–Brown coefficient and Guttman split-half coefficient were calculated to evaluate the split-half reliability. Results: The initial factor analysis yielded three-factor models with an eigenvalue of >1 and the total variance explained by these factors was 62.017%. The internal consistency of the 16-item scale was 0

  1. The length-weight and length-length relationships of bluefish, Pomatomus saltatrix (Linnaeus, 1766 from Samsun, middle Black Sea region

    Directory of Open Access Journals (Sweden)

    Melek Özpiçak

    2017-10-01

    Full Text Available In this study, length-weight relationship (LWR and length-length relationship (LLR of bluefish, Pomatomus saltatrix were determined. A total of 125 specimens were sampled from Samsun, the middle Black Sea in 2014 fishing season. Bluefish specimens were monthly collected from commercial fishing boats from October to December 2014. All captured individuals (N=125 were measured to the nearest 0.1 cm for total, fork and standard lengths. The weight of each fish (W was recorded to the nearest 0.01 g. According to results of analyses, there were no statistically significant differences between sexes in term of length and weight (P˃0.05. The minimum and maximum total, fork and standard lengths of bluefish ranged between 13.5-23.6 cm, 12.50-21.80 cm and 10.60-20.10 cm, respectively. The equation of length-weight relationship were calculated as W=0.008TL3.12 (r2>0.962. Positive allometric growth was observed for bluefish (b>3. Length-length relationship was also highly significant (P<0.001 with coefficient of determination (r2 ranging from 0.916 to 0.988.

  2. WDM networking on a European Scale

    DEFF Research Database (Denmark)

    Parnis, Noel; Limal, Emmanuel; Hjelme, Dag R.

    1998-01-01

    Four different topological approaches to designing a pan-European optical network are discussed. For such an ultra-high capacity large-scale network, it is necessary to overcome physical path length limitations and to limit Optical Cross-Connect (OXC) complexity.......Four different topological approaches to designing a pan-European optical network are discussed. For such an ultra-high capacity large-scale network, it is necessary to overcome physical path length limitations and to limit Optical Cross-Connect (OXC) complexity....

  3. Displacement-length scaling of brittle faults in ductile shear.

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  4. Displacement–length scaling of brittle faults in ductile shear

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  5. Factor Structure and Validity of the Body Parts Satisfaction Scale: Results from the 1972 Psychology Today Survey

    Directory of Open Access Journals (Sweden)

    David Frederick

    2014-07-01

    Full Text Available In 1972, the first major national study on body image was conducted under the auspices of Psychology Today. Body image was assessed with the Body Parts Satisfaction Scale, which examined the dissatisfaction people experienced with 24 aspects of their bodies. Despite the continued reliance on this scale and reference to the study, data on the factor structure of this measure in a sample of adults have never been published, and citations of the original scale have relied on an unpublished manuscript (Bohrnstedt, 1977. An exploratory factor analysis conducted on 2,013 adults revealed factors for men (Face, Sex Organ, Height, Lower Body, Mid Torso, Upper Torso, Height and women (Face, Sex Organ, Height, Lower Torso, Mid Torso, Extremities, Breast. The factors were weakly to moderately intercorrelated, suggesting the scale can be analyzed by items, by subscales, or by total score. People who reported more dissatisfaction with their body also tended to report lower self-esteem and less comfort interacting with members of the other sex. The analyses provide a useful comparison point for researchers looking to examine gender differences in dissatisfaction with specific aspects of the body, as well as the factor structures linking these items.

  6. Scaling of graphene integrated circuits.

    Science.gov (United States)

    Bianchi, Massimiliano; Guerriero, Erica; Fiocco, Marco; Alberti, Ruggero; Polloni, Laura; Behnam, Ashkan; Carrion, Enrique A; Pop, Eric; Sordan, Roman

    2015-05-07

    The influence of transistor size reduction (scaling) on the speed of realistic multi-stage integrated circuits (ICs) represents the main performance metric of a given transistor technology. Despite extensive interest in graphene electronics, scaling efforts have so far focused on individual transistors rather than multi-stage ICs. Here we study the scaling of graphene ICs based on transistors from 3.3 to 0.5 μm gate lengths and with different channel widths, access lengths, and lead thicknesses. The shortest gate delay of 31 ps per stage was obtained in sub-micron graphene ROs oscillating at 4.3 GHz, which is the highest oscillation frequency obtained in any strictly low-dimensional material to date. We also derived the fundamental Johnson limit, showing that scaled graphene ICs could be used at high frequencies in applications with small voltage swing.

  7. The study on length and diameter ratio of nail as preliminary design for slope stabilization

    Science.gov (United States)

    Gunawan, Indra; Silmi Surjandari, Niken; Muslih Purwana, Yusep

    2017-11-01

    Soil nailing technology has been widely applied in practice for reinforced slope. The number of studies for the effective design of nail-reinforced slopes has also increased. However, most of the previous study was focused on a safety factor of the slope; the ratio of length and diameter itself has likely never been studied before. The aim of this study is to relate the length and diameter ratio of the nail with the safety factor of the 20 m height of sand slope in the various angle of friction and steepness of the slope. Simplified Bishop method was utilized to analyze the safety factor of the slope. This study is using data simulation to calculate the safety factor of the slope with soil nailing reinforcement. The results indicate that safety factor of slope stability increases with the increase of length and diameter ratio of the nail. At any angle of friction and steepness of the slope, certain effective length and diameter ratio was obtain. These results may be considered as a preliminary design for slope stabilization.

  8. The Rosenberg Self-Esteem Scale: a bifactor answer to a two-factor question?

    Science.gov (United States)

    McKay, Michael T; Boduszek, Daniel; Harvey, Séamus A

    2014-01-01

    Despite its long-standing and widespread use, disagreement remains regarding the structure of the Rosenberg Self-Esteem Scale (RSES). In particular, concern remains regarding the degree to which the scale assesses self-esteem as a unidimensional or multidimensional (positive and negative self-esteem) construct. Using a sample of 3,862 high school students in the United Kingdom, 4 models were tested: (a) a unidimensional model, (b) a correlated 2-factor model in which the 2 latent variables are represented by positive and negative self-esteem, (c) a hierarchical model, and (d) a bifactor model. The totality of results including item loadings, goodness-of-fit indexes, reliability estimates, and correlations with self-efficacy measures all supported the bifactor model, suggesting that the 2 hypothesized factors are better understood as "grouping" factors rather than as representative of latent constructs. Accordingly, this study supports the unidimensionality of the RSES and the scoring of all 10 items to produce a global self-esteem score.

  9. Matrix continued-fraction calculation of localization length in disordered systems

    International Nuclear Information System (INIS)

    Pastawski, H.M.; Weisz, J.F.

    1983-01-01

    A Matrix Continued-Fraction method is used to study the localization length of the states at the band center of a two dimensional crystals with disorder given by the Anderson model. It is found that exponentially localized states which scale according to the work of Mac Kinnon and Kramer, becomes weakly localized as the disorder becomes weaker, and there is some critical disorder for which the localization length does not saturate with the width of the strips, this confirms the resuts found by Pichard and Sarma. Weakly localized states are also found in one dimension for w/v [pt

  10. Matrix continued-fraction calculation of localization length in disordered systems

    International Nuclear Information System (INIS)

    Pastawski, H.M.; Weisz, J.F.

    1983-01-01

    A Matrix Continued-Fraction method is used to study the localization length of the states at the band center of a two dimensional crystal with disorder given by the Anderson model. It is found that exponentially localized states, which scale according to the work of Mac Kinnon and Kramer, becomes weakly localized as the disorder becomes weaker, and there is some critical disorder for which the localization length does not saturate with the width of the strips, this confirms the results found by Pichard and Sarma. Weakly localized states are also found in one dimension for w/v [pt

  11. Theory-based scaling of the SOL width in circular limited tokamak plasmas

    International Nuclear Information System (INIS)

    Halpern, F.D.; Ricci, P.; Labit, B.; Furno, I.; Jolliet, S.; Loizu, J.; Mosetto, A.; Arnoux, G.; Silva, C.; Gunn, J.P.; Horacek, J.; Kočan, M.; LaBombard, B.

    2013-01-01

    A theory-based scaling for the characteristic length of a circular, limited tokamak scrape-off layer (SOL) is obtained by considering the balance between parallel losses and non-linearly saturated resistive ballooning mode turbulence driving anomalous perpendicular transport. The SOL size increases with plasma size, resistivity, and safety factor q. The scaling is verified against flux-driven non-linear turbulence simulations, which reveal good agreement within a wide range of dimensionless parameters, including parameters closely matching the TCV tokamak. An initial comparison of the theory against experimental data from several tokamaks also yields good agreement. (letter)

  12. Mechanical properties of fiber reinforced restorative composite with two distinguished fiber length distribution.

    Science.gov (United States)

    Lassila, Lippo; Garoushi, Sufyan; Vallittu, Pekka K; Säilynoja, Eija

    2016-07-01

    The purpose of this study was to investigate the reinforcing effect of discontinuous glass fiber fillers with different length scales on fracture toughness and flexural properties of dental composite. Experimental fiber reinforced composite (Exp-FRC) was prepared by mixing 27wt% of discontinuous E-glass fibers having two different length scales (micrometer and millimeter) with various weight ratios (1:1, 2:1, 1:0 respectively) to the 23wt% of dimethacrylate based resin matrix and then 50wt% of silane treated silica filler were added gradually using high speed mixing machine. As control, commercial FRC and conventional posterior composites were used (everX Posterior, Alert, and Filtek Superme). Fracture toughness, work of fracture, flexural strength, and flexural modulus were determined for each composite material following ISO standards. The specimens (n=6) were dry stored (37°C for 2 days) before they were tested. Scanning electron microscopy was used to evaluate the microstructure of the experimental FRC composites. The results were statistically analyzed using ANOVA followed by post-hoc Tukey׳s test. Level of significance was set at 0.05. ANOVA revealed that experimental composites reinforced with different fiber length scales (hybrid Exp-FRC) had statistically significantly higher mechanical performance of fracture toughness (4.7MPam(1/2)) and flexural strength (155MPa) (plength scales of discontinues fiber fillers (hybrid) with polymer matrix yielded improved mechanical performance compared to commercial FRC and conventional posterior composites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter

    International Nuclear Information System (INIS)

    Sorel, Sophie; Lyons, Philip E; De, Sukanta; Coleman, Jonathan N; Dickerson, Janet C

    2012-01-01

    We have characterized the optoelectrical properties of networks of silver nanowires as a function of nanowire dimension by measuring transmittance (T) and sheet resistance (R s ) for a large number of networks of different thicknesses fabricated from wires of different diameters (D) and lengths (L). We have analysed these data using both bulk-like and percolative models. We find the network DC conductivity to scale linearly with wire length while the optical conductivity is approximately invariant with nanowire length. The ratio of DC to optical conductivity, often taken as a figure of merit for transparent conductors, scales approximately as L/D. Interestingly, the percolative exponent, n, scales empirically as D 2 , while the percolative figure of merit, Π, displays large values at low D. As high T and low R s are associated with low n and high Π, these data are consistent with improved optoelectrical performance for networks of low-D wires. We predict that networks of wires with D = 25 nm could give sheet resistance as low as 25 Ω/□ for T = 90%. (paper)

  14. Length of Residence in the United States is Associated With a Higher Prevalence of Cardiometabolic Risk Factors in Immigrants: A Contemporary Analysis of the National Health Interview Survey.

    Science.gov (United States)

    Commodore-Mensah, Yvonne; Ukonu, Nwakaego; Obisesan, Olawunmi; Aboagye, Jonathan Kumi; Agyemang, Charles; Reilly, Carolyn M; Dunbar, Sandra B; Okosun, Ike S

    2016-11-04

    Cardiometabolic risk (CMR) factors including hypertension, overweight/obesity, diabetes mellitus, and hyperlipidemia are high among United States ethnic minorities, and the immigrant population continues to burgeon. Hypothesizing that acculturation (length of residence) would be associated with a higher prevalence of CMR factors, the authors analyzed data on 54, 984 US immigrants in the 2010-2014 National Health Interview Surveys. The main predictor was length of residence. The outcomes were hypertension, overweight/obesity, diabetes mellitus, and hyperlipidemia. The authors used multivariable logistic regression to examine the association between length of US residence and these CMR factors.The mean (SE) age of the patients was 43 (0.12) years and half were women. Participants residing in the United States for ≥10 years were more likely to have health insurance than those with income ratio, age, and sex, immigrants residing in the United States for ≥10 years were more likely to be overweight/obese (odds ratio [OR], 1.19; 95% CI, 1.10-1.29), diabetic (OR, 1.43; 95% CI, 1.17-1.73), and hypertensive (OR, 1.18; 95% CI, 1.05-1.32) than those residing in the United States for <10 years. In an ethnically diverse sample of US immigrants, acculturation was associated with CMR factors. Culturally tailored public health strategies should be developed in US immigrant populations to reduce CMR. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  15. Burnout among physiotherapists and length of service

    Directory of Open Access Journals (Sweden)

    Zbigniew Śliwiński

    2014-04-01

    Full Text Available Objectives: The aim of this study was to identify factors that contribute to the development of burnout among physiotherapists with different length of service in physiotherapy. Material and Methods: The following research tools were used to study burnout: the Life Satisfaction Questionnaire (LSQ, based on FLZ (Fragebogen zur Lebenszufriedenheit by Frahrenberg, Myrtek, Schumacher, and Brähler; the Burnout Scale Inventory (BSI by Steuden and Okła; and an ad hoc questionnaire to collect socio-demographic data. The survey was anonymous and voluntary and involved a group of 200 active physiotherapists working in Poland. Results: A statistical analysis revealed significant differences in overall life satisfaction between length-of-service groups (p = 0.03. Physiotherapists with more than 15 years of service reported greater satisfaction than those with less than 5 years and between 5 and 15 years of service. The results suggest that burnout in those with 5-15 years of service is higher in physiotherapists working in health care centers and increases with age and greater financial satisfaction, while it decreases with greater satisfaction with friend and family relations and greater satisfaction with one's work and profession. In those with more than 15 years of service, burnout increases in the case of working in a setting other than a health care or educational center and decreases with greater satisfaction with one's work and profession. Conclusions: Job satisfaction and a satisfying family life prevent burnout among physiotherapists with 5-15 years of service in the profession. Financial satisfaction, age and being employed in health care may cause burnout among physiotherapists with 5-15 years of service. Physiotherapists with more than 15 years of service experience more burnout if they work in a setting other than a health care or educational center and less burnout if they are satisfied with their profession.

  16. Deriving Scaling Factors Using a Global Hydrological Model to Restore GRACE Total Water Storage Changes for China's Yangtze River Basin

    Science.gov (United States)

    Long, Di; Yang, Yuting; Yoshihide, Wada; Hong, Yang; Liang, Wei; Chen, Yaning; Yong, Bin; Hou, Aizhong; Wei, Jiangfeng; Chen, Lu

    2015-01-01

    This study used a global hydrological model (GHM), PCR-GLOBWB, which simulates surface water storage changes, natural and human induced groundwater storage changes, and the interactions between surface water and subsurface water, to generate scaling factors by mimicking low-pass filtering of GRACE signals. Signal losses in GRACE data were subsequently restored by the scaling factors from PCR-GLOBWB. Results indicate greater spatial heterogeneity in scaling factor from PCR-GLOBWB and CLM4.0 than that from GLDAS-1 Noah due to comprehensive simulation of surface and subsurface water storage changes for PCR-GLOBWB and CLM4.0. Filtered GRACE total water storage (TWS) changes applied with PCR-GLOBWB scaling factors show closer agreement with water budget estimates of TWS changes than those with scaling factors from other land surface models (LSMs) in China's Yangtze River basin. Results of this study develop a further understanding of the behavior of scaling factors from different LSMs or GHMs over hydrologically complex basins, and could be valuable in providing more accurate TWS changes for hydrological applications (e.g., monitoring drought and groundwater storage depletion) over regions where human-induced interactions between surface water and subsurface water are intensive.

  17. The prospects of transition metal dichalcogenides for ultimately scaled CMOS

    Science.gov (United States)

    Thiele, S.; Kinberger, W.; Granzner, R.; Fiori, G.; Schwierz, F.

    2018-05-01

    MOSFET gate length scaling has been a main source of progress in digital electronics for decades. Today, researchers still spend considerable efforts on reducing the gate length and on developing ultimately scaled MOSFETs, thereby exploring both new device architectures and alternative channel materials beyond Silicon such as two-dimensional TMDs (transition metal dichalcogenide). On the other hand, the envisaged scaling scenario for the next 15 years has undergone a significant change recently. While the 2013 ITRS edition required a continuation of aggressive gate length scaling for at least another 15 years, the 2015 edition of the ITRS suggests a deceleration and eventually a levelling off of gate length scaling and puts more emphasis on alternative options such as pitch scaling to keep Moore's Law alive. In the present paper, future CMOS scaling is discussed in the light of emerging two-dimensional MOSFET channel, in particular two-dimensional TMDs. To this end, the scaling scenarios of the 2013 and 2015 ITRS editions are considered and the scaling potential of TMD MOSFETs is investigated by means of quantum-mechanical device simulations. It is shown that for ultimately scaled MOSFETs as required in the 2013 ITRS, the heavy carrier effective masses of the Mo- and W-based TMDs are beneficial for the suppression of direct source-drain tunneling, while to meet the significantly relaxed scaling targets of the 2016 ITRS heavy-effective-mass channels are not needed.

  18. Dorsal Phalloplasty to Preserve Penis Length after Penile Prosthesis Implantation

    Directory of Open Access Journals (Sweden)

    Osama Shaeer

    2017-03-01

    Full Text Available Objectives: Following penile prosthesis implantation (PPI, patients may complain of a decrease in visible penis length. A dorsal phalloplasty defines the penopubic junction by tacking pubic skin to the pubis, revealing the base of the penis. This study aimed to evaluate the efficacy of a dorsal phalloplasty in increasing the visible penis length following PPI. Methods: An inflatable penile prosthesis was implanted in 13 patients with severe erectile dysfunction (ED at the Kamal Shaeer Hospital, Cairo, Egypt, from January 2013 to May 2014. During the surgery, nonabsorbable tacking sutures were used to pin the pubic skin to the pubis through the same penoscrotal incision. Intraoperative penis length was measured before and after the dorsal phalloplasty. Overall patient satisfaction was measured on a 5-point rating scale and patients were requested to subjectively compare their postoperative penis length with memories of their penis length before the onset of ED. Results: Intraoperatively, the dorsal phalloplasty increased the visible length of the erect penis by an average of 25.6%. The average length before and after tacking was 10.2 ± 2.9 cm and 13.7 ± 2.8 cm, respectively (P <0.002. Postoperatively, seven patients (53.8% reported a longer penis, five patients (38.5% reported no change in length and one patient (7.7% reported a slightly shorter penis. The mean overall patient satisfaction score was 4.9 ± 0.3. None of the patients developed postoperative complications. Conclusion: A dorsal phalloplasty during PPI is an effective method of increasing visible penis length, therefore minimising the impression of a shorter penis after implantation.

  19. Screening length and quantum capacitance in graphene by scanning probe microscopy.

    Science.gov (United States)

    Giannazzo, F; Sonde, S; Raineri, V; Rimini, E

    2009-01-01

    A nanoscale investigation on the capacitive behavior of graphene deposited on a SiO2/n(+) Si substrate (with SiO2 thickness of 300 or 100 nm) was carried out by scanning capacitance spectroscopy (SCS). A bias V(g) composed by an AC signal and a slow DC voltage ramp was applied to the macroscopic n(+) Si backgate of the graphene/SiO(2)/Si capacitor, while a nanoscale contact was obtained on graphene by the atomic force microscope tip. This study revealed that the capacitor effective area (A(eff)) responding to the AC bias is much smaller than the geometrical area of the graphene sheet. This area is related to the length scale on which the externally applied potential decays in graphene, that is, the screening length of the graphene 2DEG. The nonstationary charges (electrons/holes) induced by the AC potential spread within this area around the contact. A(eff) increases linearly with the bias and in a symmetric way for bias inversion. For each bias V(g), the value of A(eff) is related to the minimum area necessary to accommodate the not stationary charges, according to the graphene density of states (DOS) at V(g). Interestingly, by decreasing the SiO(2) thickness from 300 to 100 nm, the slope of the A(eff) versus bias curve strongly increases (by a factor of approximately 50). The local quantum capacitance C(q) in the contacted graphene region was calculated starting from the screening length, and the distribution of the values of C(q) for different tip positions was obtained. Finally the lateral variations of the DOS in graphene was determined.

  20. Vortex matter beyond SANS. Neutron studies of vortex structures covering a length scale of 0.01 ti 10 μm

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Tommy

    2017-01-09

    This thesis is concerned with different generic types of vortex matter arising in the intermediate state of the type-I superconductor lead, the intermediate mixed state of the type-II superconductor niobium, and the helimagnetic phase of the compound manganese silicide. It is demonstrated and explained how a combination of i) the radiographic techniques neutron grating interferometry and neutron diffractive imaging with ii) scattering methods such as small-angle-neutron scattering and ultra-small-angle neutron scattering can provide novel insight into the bulk behavior of these vortex systems. By means of the used scattering methods, detailed information on the morphology of the vortex phases covering a length scale of 0.01 to 10 μm are obtained, while the radiographic approaches additionally map the spatial distribution of vortices within the sample. In particular, this thesis focuses on the strong influences of demagnetization, geometric barriers and pinning on the vortex configuration.