Further analysis of MHD acceleration for a hypersonic wind tunnel
International Nuclear Information System (INIS)
Christiansen, M.J.; Schmidt, H.J.; Chapman, J.N.
1995-01-01
A previously completed MHD study of the use of an MHD accelerator with seeded air from a state-of-the-art arc heater, was generally hailed as showing that the system studied has some promise of meeting the most critical hypersonic testing requirements. However, some concerns existed about certain aspects of the results. This paper discusses some of these problems and presents analysis of potential solutions. Specifically the problems addressed are; reducing the amount of seed in the flow, reducing test chamber temperatures, and reducing the oxygen dissociation. Modeling techniques are used to study three design variables of the MHD accelerator. The accelerator channel inlet Mach number, the accelerator channel divergence angle, and the magnetic field strength are all studied. These variables are all optimized to meet the goals for seed, temperature, and dissociated oxygen reduction. The results of this paper are encouraging, showing that all three goals can be met. General relationships are observed as to how the design variables affect the performance of the MHD accelerator facility. This paper expands on the results presented in the UTSI report and further supports the feasibility of MHD acceleration as a means to provide hypersonic flight simulation
International Nuclear Information System (INIS)
Lee, Ying-Ming; Simmons, G.A.; Nelson, G.L.
1995-01-01
A National Aeronautics and Space Administration (NASA) funded research study to evaluate the feasibility of using magnetohydrodynamic (MHD) body force accelerators to produce true air simulation for hypersonic propulsion ground testing is discussed in this paper. Testing over the airbreathing portion of a transatmospheric vehicle (TAV) hypersonic flight regime will require high quality air simulation for actual flight conditions behind a bow shock wave (forebody, pre-inlet region) for flight velocities up to Mach 16 and perhaps beyond. Material limits and chemical dissociation at high temperature limit the simulated flight Mach numbers in conventional facilities to less than Mach 12 for continuous and semi-continuous testing and less than Mach 7 for applications requiring true air chemistry. By adding kinetic energy directly to the flow, MHD accelerators avoid the high temperatures and pressures required in the reservoir region of conventional expansion facilities, allowing MHD to produce true flight conditions in flight regimes impossible with conventional facilities. The present study is intended to resolve some of the critical technical issues related to the operation of MHD at high pressure. Funding has been provided only for the first phase of a three to four year feasibility study that would culminate in the demonstration of MHD acceleration under conditions required to produce true flight conditions behind a bow shock wave to flight Mach numbers of 16 or greater. MHD critical issues and a program plan to resolve these are discussed
On accelerated flow of MHD powell-eyring fluid via homotopy analysis method
Salah, Faisal; Viswanathan, K. K.; Aziz, Zainal Abdul
2017-09-01
The aim of this article is to obtain the approximate analytical solution for incompressible magnetohydrodynamic (MHD) flow for Powell-Eyring fluid induced by an accelerated plate. Both constant and variable accelerated cases are investigated. Approximate analytical solution in each case is obtained by using the Homotopy Analysis Method (HAM). The resulting nonlinear analysis is carried out to generate the series solution. Finally, Graphical outcomes of different values of the material constants parameters on the velocity flow field are discussed and analyzed.
Acceleration of the OpenFOAM-based MHD solver using graphics processing units
International Nuclear Information System (INIS)
He, Qingyun; Chen, Hongli; Feng, Jingchao
2015-01-01
Highlights: • A 3D PISO-MHD was implemented on Kepler-class graphics processing units (GPUs) using CUDA technology. • A consistent and conservative scheme is used in the code which was validated by three basic benchmarks in a rectangular and round ducts. • Parallelized of CPU and GPU acceleration were compared relating to single core CPU in MHD problems and non-MHD problems. • Different preconditions for solving MHD solver were compared and the results showed that AMG method is better for calculations. - Abstract: The pressure-implicit with splitting of operators (PISO) magnetohydrodynamics MHD solver of the couple of Navier–Stokes equations and Maxwell equations was implemented on Kepler-class graphics processing units (GPUs) using the CUDA technology. The solver is developed on open source code OpenFOAM based on consistent and conservative scheme which is suitable for simulating MHD flow under strong magnetic field in fusion liquid metal blanket with structured or unstructured mesh. We verified the validity of the implementation on several standard cases including the benchmark I of Shercliff and Hunt's cases, benchmark II of fully developed circular pipe MHD flow cases and benchmark III of KIT experimental case. Computational performance of the GPU implementation was examined by comparing its double precision run times with those of essentially the same algorithms and meshes. The resulted showed that a GPU (GTX 770) can outperform a server-class 4-core, 8-thread CPU (Intel Core i7-4770k) by a factor of 2 at least.
Accelerating 3D Hall MHD Magnetosphere Simulations with Graphics Processing Units
Bard, C.; Dorelli, J.
2017-12-01
The resolution required to simulate planetary magnetospheres with Hall magnetohydrodynamics result in program sizes approaching several hundred million grid cells. These would take years to run on a single computational core and require hundreds or thousands of computational cores to complete in a reasonable time. However, this requires access to the largest supercomputers. Graphics processing units (GPUs) provide a viable alternative: one GPU can do the work of roughly 100 cores, bringing Hall MHD simulations of Ganymede within reach of modest GPU clusters ( 8 GPUs). We report our progress in developing a GPU-accelerated, three-dimensional Hall magnetohydrodynamic code and present Hall MHD simulation results for both Ganymede (run on 8 GPUs) and Mercury (56 GPUs). We benchmark our Ganymede simulation with previous results for the Galileo G8 flyby, namely that adding the Hall term to ideal MHD simulations changes the global convection pattern within the magnetosphere. Additionally, we present new results for the G1 flyby as well as initial results from Hall MHD simulations of Mercury and compare them with the corresponding ideal MHD runs.
Unsteady MHD flow along exponentially accelerated vertical flat ...
African Journals Online (AJOL)
It is noticed that the flow pattern is affected significantly with plate acceleration, Hall current, radiation, porous medium and heat source. The outcomes of the study may find applications in various fields related to the solar physics dealing with the solar cycle, the sunspot development, the structure of rotating magnetic stars ...
Progress on accelerated calculation of 3D MHD equilibrium with the PIES code
Raburn, Daniel; Reiman, Allan; Monticello, Donald
2016-10-01
Continuing progress has been made in accelerating the 3D MHD equilibrium code, PIES, using an external numerical wrapper. The PIES code (Princeton Iterative Equilibrium Solver) is capable of calculating 3D MHD equilibria with islands. The numerical wrapper has been demonstrated to greatly improve the rate of convergence in numerous cases corresponding to equilibria in the TFTR device where magnetic islands are present; the numerical wrapper makes use of a Jacobian-free Newton-Krylov solver along with adaptive preconditioning and a sophisticated subspace-restricted Levenberg backtracking algorithm. The wrapper has recently been improved by automation which combines the preexisting backtracking algorithm with insights gained from the stability of the Picard algorithm traditionally used with PIES. Improved progress logging and stopping criteria have also been incorporated in to the numerical wrapper.
Investigation of physico-chemical processes in hypervelocity MHD-gas acceleration wind tunnels
International Nuclear Information System (INIS)
Alfyorov, V.I.; Dmitriev, L.M.; Yegorov, B.V.; Markachev, Yu.E.
1995-01-01
The calculation results for nonequilibrium physicochemical processes in the circuit of the hypersonic MHD-gas acceleration wind tunnel are presented. The flow in the primary nozzle is shown to be in thermodynamic equilibrium at To=3400 K, Po=(2∼3)x10 5 Pa, M=2 used in the plenum chamber. Variations in the static pressure due to oxidation reaction of Na, K are pointed out. The channels of energy transfer from the electric field to different degrees of freedom of an accelerated gas with Na, K seeds are considered. The calculation procedure for gas dynamic and kinetic processes in the MHD-channel using measured parameters is suggested. The calculated results are compared with the data obtained in a thermodynamic gas equilibrium assumption. The flow in the secondary nozzle is calculated under the same assumptions and the gas parameters at its exit are evaluated. Particular attention is given to the influence of seeds on flows over bodies. It is shown that the seeds exert a very small influence on the flow behind a normal shock wave. The seeds behind an oblique shock wave accelerate deactivation of vibrations of N 2 , but this effect is insignificant
Truck acceleration behavior study and acceleration lane length recommendations for metered on-ramps
Yang, Guangchuan; Xu, Hao; Wang, Zhongren; Tian, Zong
2016-01-01
This paper investigated the actual truck acceleration capability at metered on-ramps. Truck acceleration performance data were collected through a video-based data collection method. A piecewise constant acceleration model was employed to capture truck acceleration characteristics. It was found that the existing acceleration length will affect truck drivers’ acceleration behavior. At the taper type ramp that has limited acceleration distance, acceleration profile indicated a decreasing trend ...
3D Resistive MHD Simulations of Formation, Compression, and Acceleration of Compact Tori
Woodruff, Simon; Meyer, Thomas; Stuber, James; Romero-Talamas, Carlos; Brown, Michael; Kaur, Manjit; Schaffner, David
2017-10-01
We present results from extended resistive 3D MHD simulations (NIMROD) pertaining to a new formation method for toroidal plasmas using a reconnection region that forms in a radial implosion, and results from the acceleration of CTs along a drift tube that are accelerated by a coil and are allowed to go tilt unstable and form a helical minimum energy state. The new formation method results from a reconnection region that is generated between two magnetic compression coils that are ramped to 320kV in 2 μs. When the compressing field is aligned anti-parallel to a pre-existing CT, a current sheet and reconnection region forms that accelerates plasma radially inwards up to 500km/s which stagnates and directed energy converts to thermal, raising temperatures to 500eV. When field is aligned parallel to the pre-existing CT, the configuration can be accelerated along a drift tube. For certain ratios of magnetic field to density, the CT goes tilt-unstable forming a twisted flux rope, which can also be accelerated and stagnated on an end wall, where temperature and field increases as the plasma compresses. We compare simulation results with adiabatic scaling relations. Work supported by ARPA-E ALPHA program and DARPA.
Truck acceleration behavior study and acceleration lane length recommendations for metered on-ramps
Directory of Open Access Journals (Sweden)
Guangchuan Yang
2016-10-01
Full Text Available This paper investigated the actual truck acceleration capability at metered on-ramps. Truck acceleration performance data were collected through a video-based data collection method. A piecewise constant acceleration model was employed to capture truck acceleration characteristics. It was found that the existing acceleration length will affect truck drivers’ acceleration behavior. At the taper type ramp that has limited acceleration distance, acceleration profile indicated a decreasing trend with distance. While for the ramp with an auxiliary lane that has sufficient acceleration distance, it was found that the acceleration behavior is to have a high acceleration rate in the beginning, then acceleration rate decrease with speed increase, and high acceleration rate again as drivers approach the merging area. Field data show that the truck acceleration performance data documented in the ITE’s (Institute of Transportation Engineers “Traffic Engineering Handbook” are much lower than the field collected data. Also, based on the regression analysis of speed versus distance profiles, it was found that the AASHTO’s (American Association of State Highway and Transportation Officials Green Book acceleration length design guidance is insufficient to accommodate trucks at metered on-ramps. The required acceleration lengths for medium and heavy trucks are approximately 1.3 and 1.6 times of the Green Book design guideline, respectively.
Large Scale GPU Accelerated PPMLR-MHD Simulations for Space Weather Forecast
Guo, Xiangyu; Tang, Binbin; Tao, Jian; Huang, Zhaohui; Du, Zhihui
2016-01-01
PPMLR-MHD is a new magnetohydrodynamics (MHD) model used to simulate the interactions of the solar wind with the magnetosphere, which has been proved to be the key element of the space weather cause-and-effect chain process from the Sun to Earth. Compared to existing MHD methods, PPMLR-MHD achieves the advantage of high order spatial accuracy and low numerical dissipation. However, the accuracy comes at a cost. On one hand, this method requires more intensive computation. On the other hand, m...
Benyo, Theresa L.
2011-01-01
Flow matching has been successfully achieved for an MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment helped perform a thermodynamic cycle analysis to properly match the flows from an inlet employing a MHD energy bypass system (consisting of an MHD generator and MHD accelerator) on a supersonic turbojet engine. Working with various operating conditions (such as the applied magnetic field, MHD generator length and flow conductivity), interfacing studies were conducted between the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis. This paper further describes the analysis of a supersonic turbojet engine with an MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to a range of 0 to 7.0 Mach with specific net thrust range of 740 N-s/kg (at ambient Mach = 3.25) to 70 N-s/kg (at ambient Mach = 7). These results were achieved with an applied magnetic field of 2.5 Tesla and conductivity levels in a range from 2 mhos/m (ambient Mach = 7) to 5.5 mhos/m (ambient Mach = 3.5) for an MHD generator length of 3 m.
A 7MeV S-Band 2998MHz Variable Pulse Length Linear Accelerator System
Hernandez, Michael; Mishin, Andrey V; Saverskiy, Aleksandr J; Skowbo, Dave; Smith, Richard
2005-01-01
American Science and Engineering High Energy Systems Division (AS&E HESD) has designed and commissioned a variable pulse length 7 MeV electron accelerator system. The system is capable of delivering a 7 MeV electron beam with a pulse length of 10 nS FWHM and a peak current of 1 ampere. The system can also produce electron pulses with lengths of 20, 50, 100, 200, 400 nS and 3 uS FWHM with corresponding lower peak currents. The accelerator system consists of a gridded electron gun, focusing coil, an electrostatic deflector system, Helmholtz coils, a standing wave side coupled S-band linac, a 2.6 MW peak power magnetron, an RF circulator, a fast toroid, vacuum system and a PLC/PC control system. The system has been operated at repetition rates up to 250pps. The design, simulations and experimental results from the accelerator system are presented in this paper.
Annular MHD Physics for Turbojet Energy Bypass
Schneider, Steven J.
2011-01-01
The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).
Directory of Open Access Journals (Sweden)
M.A. Imran
2018-03-01
Full Text Available The aim of this article is to investigate the unsteady natural convection flow of Maxwell fluid with fractional derivative over an exponentially accelerated infinite vertical plate. Moreover, slip condition, radiation, MHD and Newtonian heating effects are also considered. A modern definition of fractional derivative operator recently introduced by Caputo and Fabrizio has been used to formulate the fractional model. Semi analytical solutions of the dimensionless problem are obtained by employing Stehfest’s and Tzou’s algorithms in order to find the inverse Laplace transforms for temperature and velocity fields. Temperature and rate of heat transfer for non-integer and integer order derivatives are computed and reduced to some known solutions from the literature. Finally, in order to get insight of the physical significance of the considered problem regarding velocity and Nusselt number, some graphical illustrations are made using Mathcad software. As a result, in comparison between Maxwell and viscous fluid (fractional and ordinary we found that viscous (fractional and ordinary fluids are swiftest than Maxwell (fractional and ordinary fluids. Keywords: Free convection, Slip, Maxwell fluid, Newtonian heating, Exponentially accelerated plate, Caputo-Fabrizio fractional derivatives, Stehfest’s and Tzou’s algorithms
Reduced 3d modeling on injection schemes for laser wakefield acceleration at plasma scale lengths
Helm, Anton; Vieira, Jorge; Silva, Luis; Fonseca, Ricardo
2017-10-01
Current modelling techniques for laser wakefield acceleration (LWFA) are based on particle-in-cell (PIC) codes which are computationally demanding. In PIC simulations the laser wavelength λ0, in μm-range, has to be resolved over the acceleration lengths in meter-range. A promising approach is the ponderomotive guiding center solver (PGC) by only considering the laser envelope for laser pulse propagation. Therefore only the plasma skin depth λp has to be resolved, leading to speedups of (λp /λ0) 2. This allows to perform a wide-range of parameter studies and use it for λ0 Tecnologia (FCT), Portugal, through Grant No. PTDC/FIS-PLA/2940/2014 and PD/BD/105882/2014.
Improvement on a Michelson interferometer for bunch length measurement of a femtosecond accelerator
International Nuclear Information System (INIS)
Lin Xuling; Bei Hua; Zhang Jianbing; Dai Zhimin
2009-01-01
Based on the femtosecond accelerator facility at Shanghai Institute of Applied Physics (SINAP), a conventional far-infrared Michelson interferometer was built to measure the bunch length by means of optical autocorrelation. However, according to the preliminary experiment result, the resolution of interferometer is not good enough, because the mirror-driving mechanism makes the moving mirror tend to tilt or wobble as it retards. Considering of the allowable errors, we calculate the maximum allowable titling angle of the moving mirror, and discuss the alignment plan in this paper. (authors)
Polko, P.; Meier, D.L.; Markoff, S.
2014-01-01
We present a new, semi-analytic formalism to model the acceleration and collimation of relativistic jets in a gravitational potential. The gravitational energy density includes the kinetic, thermal and electromagnetic mass contributions. The solutions are close to self-similar throughout the
Imran, M. A.; Riaz, M. B.; Shah, N. A.; Zafar, A. A.
2018-03-01
The aim of this article is to investigate the unsteady natural convection flow of Maxwell fluid with fractional derivative over an exponentially accelerated infinite vertical plate. Moreover, slip condition, radiation, MHD and Newtonian heating effects are also considered. A modern definition of fractional derivative operator recently introduced by Caputo and Fabrizio has been used to formulate the fractional model. Semi analytical solutions of the dimensionless problem are obtained by employing Stehfest's and Tzou's algorithms in order to find the inverse Laplace transforms for temperature and velocity fields. Temperature and rate of heat transfer for non-integer and integer order derivatives are computed and reduced to some known solutions from the literature. Finally, in order to get insight of the physical significance of the considered problem regarding velocity and Nusselt number, some graphical illustrations are made using Mathcad software. As a result, in comparison between Maxwell and viscous fluid (fractional and ordinary) we found that viscous (fractional and ordinary) fluids are swiftest than Maxwell (fractional and ordinary) fluids.
Kumaresan, E.; Vijaya Kumar, A. G.; Rushi Kumar, B.
2017-11-01
This article studies, an exact solution of unsteady MHD free convection boundary-layer flow of a silver nanofluid past an exponentially accelerated moving vertical plate through aporous medium in the presence of thermal radiation, transverse applied amagnetic field, radiation absorption and Heat generation or absorption with chemical reaction are investigated theoretically. We consider nanofluids contain spherical shaped nanoparticle of silverwith a nanoparticle volume concentration range smaller than or equal to 0.04. This phenomenon is modeled in the form of partial differential equations with initial boundary conditions. Some suitable dimensional variables are introduced. The corresponding dimensionless equations with boundary conditions are solved by using Laplace transform technique. The exact solutions for velocity, energy, and species are obtained, also the corresponding numerical values of nanofluid velocity, temperature and concentration profiles are represented graphically. The expressions for skin friction coefficient, the rate of heat transfer and mass transfer are derived. The present study finds applications involving heat transfer, enhancement of thermal conductivity and other applications like transportation, industrial cooling applications, heating buildings and reducing pollution, energy applications and solar absorption. The effect of heat transfer is found to be more pronounced in a silver-water nanofluid than in the other nanofluids.
Control the length of beam trajectory with a quadruple triplet for heavy ion accelerator
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhan; Wei, Shaoqing; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of); Kim, Do Gyun; Kim, Jang Youl [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)
2016-12-15
Beam trajectory is needed to be controlled in heavy ion accelerator system. Quadruple magnets are widely used in heavy ion accelerator for focusing the transporting particles. A quadruple triplet system which consists of three consecutive quadrupoles, Q1, Q2 and Q3, is used to control beam trajectory at a focused position. Q1 and Q3 have symmetry with respect to Q2. The beam trajectory in magnet system is affected by higher order fields existed in real fields. For quadrupoles, the representation simulation of beam trajectory was carried out to study the beam trajectory and to estimate an effect of higher order field in triplet system. SCALA program was used to simulate the beam trajectory in OperaTM. SCALA can analyze a large number of beam trajectories at the same time by adjusting the size of finite element of the emitter. With OperaTM and MatlabTM programs, the position of focused beam spot in quadruple triplet system can be increased or decreased using evolution strategy (ES) method, therefore the length of triplet system can be controlled. Finally, the quadruple triplet system with the appropriate length and expected beam spot range was suggested in this paper.
Advanced energy utilization MHD power generation
International Nuclear Information System (INIS)
2008-01-01
The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)
Effects of energy chirp on bunch length measurement in linear accelerator beams
Sabato, L.; Arpaia, P.; Giribono, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Vaccarezza, C.; Variola, A.
2017-08-01
The effects of assumptions about bunch properties on the accuracy of the measurement method of the bunch length based on radio frequency deflectors (RFDs) in electron linear accelerators (LINACs) are investigated. In particular, when the electron bunch at the RFD has a non-negligible energy chirp (i.e. a correlation between the longitudinal positions and energies of the particle), the measurement is affected by a deterministic intrinsic error, which is directly related to the RFD phase offset. A case study on this effect in the electron LINAC of a gamma beam source at the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) is reported. The relative error is estimated by using an electron generation and tracking (ELEGANT) code to define the reference measurements of the bunch length. The relative error is proved to increase linearly with the RFD phase offset. In particular, for an offset of {{7}\\circ} , corresponding to a vertical centroid offset at a screen of about 1 mm, the relative error is 4.5%.
Magnetohydrodynamic (MHD) power generation
International Nuclear Information System (INIS)
Chandra, Avinash
1980-01-01
The concept of MHD power generation, principles of operation of the MHD generator, its design, types, MHD generator cycles, technological problems to be overcome, the current state of the art in USA and USSR are described. Progress of India's experimental 5 Mw water-gas fired open cycle MHD power generator project is reported in brief. (M.G.B.)
Energy Technology Data Exchange (ETDEWEB)
Alfyorov, V.I.; Rudakova, A.P.; Rukavets, V.P.; Shcherbakov, G.I. [Central Aerohydrodynamic Institute (TsAGI), Zhukovsky (Russian Federation)
1995-12-31
One of the main weaknesses of available MHD gas acceleration wind tunnels which restricts their application for simulating vehicle re-entry flights and reproducing scramjet combustion chamber conditions is a relatively low static pressure in the channel (P{approximately}0.1 to 0.2 Atm). The possibility of increasing this pressure and the influence of the increased pressure on the MHD-accelerator characteristics are the subject of the present paper. It is shown that the main challenge is the necessity of increasing the total Lorentz force proportionally to the channel gas density at electrode current density not resulting in heat and electrical breakdown and the development of the side walls and interelectrode insulators designed for higher heat fluxes, q {approximately} 5 to 10 kw/cm{sup 2}. Some possible wall design versions are suggested. The influence of increased pressure is investigated using the Faraday - type MED channel at static pressures in the MHD channel from 0.2 to 1.0 Atm and total accelerating current I = 300 to 1,100 Amps when B=2.5T. Forty five electrodes are used in the MHD channel at maximum current density of 50 A/cm{sup 2}. The channel flow is calculated by applying the model of a gas in thermodynamic equilibrium. The influence of the increased pressure on electrodynamic (accelerator electrode voltages and currents, Hall voltage and current) and gasdynamic (distributions of static pressure, temperature, velocity, Mach numbers, etc., along the channel length) characteristics is evaluated. Some recommendations on the development of MHD channels for hypersonic wind tunnels designed for high pressure are suggested.
Latt, Mark D; Menz, Hylton B; Fung, Victor S; Lord, Stephen R
2008-01-01
The aim of this study was to evaluate the hypothesis that an individual's preferred or usual walking speed, step length and cadence optimize the stability of head and pelvic accelerations in vertical (V), anterior-posterior (AP) and medio-lateral (ML) planes when walking. Acceleration patterns of the head and pelvis were recorded in ten healthy young adults as they walked on a level surface in three separate experiments: (1) walking at five different speeds, ranging from very slow to very fast; (2) walking in time to a metronome set at five different cadences, ranging from 33 to 167% of subjects' usual cadence; and (3) walking at five different step lengths varying from very short to very long while keeping in time with a metronome set at cadences 67, 100 and 125% of usual cadence. The results indicated that acceleration patterns in the V and AP planes were most stable when subjects walked at their usual cadence and step length. In the ML plane, stability was suboptimal, but still adequate, with the usual cadence and step length. The findings suggest that healthy young people walk in a manner that maximizes V and AP stability while maintaining adequate, though suboptimal ML stability.
National Research Council Canada - National Science Library
Bityurin, Valentin A
2006-01-01
...) processes for advancement of flight. Among the areas of interest is the utilization of MHD as a means for enhancing the speed and range of scramjets through a concept known as MHD energy bypass. Currently...
Kantrowitz, Arthur; Rosa, Richard J.
1975-01-01
Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)
International Nuclear Information System (INIS)
Pfirsch, D.
1978-01-01
The first part of this lecture discusses the influence of current profiles and noncircular cross-sections on the maximum β obtainable in a Tokamak from the MHD equilibrium point of view. The second part treats limitations on such MHD equilibria resulting from various MHD instabilities like external and internal kinks, localized and nonlocalized modes- and axisymmetric instabilities
Combined effects of radiation and chemical reaction on MHD flow ...
African Journals Online (AJOL)
Influence of radiation and chemical reaction on MHD flow past a moving plate with Hall current is studied here. Earlier, we (2016) have studied unsteady MHD flow in porous media over exponentially accelerated plate with variable wall temperature and mass transfer along with Hall current. To study further, we are changing ...
National Research Council Canada - National Science Library
Wang, Jianyong; Karypis, George
2003-01-01
Previous study has shown that mining frequent patterns with length-decreasing support constraint is very helpful in removing some uninteresting patterns based on the observation that short patterns...
An algorithm for the design and tuning of RF accelerating structures with variable cell lengths
Lal, Shankar; Pant, K. K.
2018-05-01
An algorithm is proposed for the design of a π mode standing wave buncher structure with variable cell lengths. It employs a two-parameter, multi-step approach for the design of the structure with desired resonant frequency and field flatness. The algorithm, along with analytical scaling laws for the design of the RF power coupling slot, makes it possible to accurately design the structure employing a freely available electromagnetic code like SUPERFISH. To compensate for machining errors, a tuning method has been devised to achieve desired RF parameters for the structure, which has been qualified by the successful tuning of a 7-cell buncher to π mode frequency of 2856 MHz with field flatness variable cell lengths.
International Nuclear Information System (INIS)
Jing Shen
1993-01-01
A brief EEE view of signal QED is presented. The research has been concentrated on the virtual photon modes of ultra relativistic shock wave in a bunch-beampipe system, and real photon modes of Coherent RF Beamstrahlung CRFB. Physically, the virtual photons emitted by a bunch were treated as a travelling pseudo wave packet in a flight coaxial cavity constructed by bunch-wakefield core and beampipe. Mathematically, it is a boundary solution of shock wave excited by ultra relativistic impulse of bunch. The new modes of solution: VTA, VTEM, VTM, VLE are virtual photon packets and RTE, RTM, RTEM are real photon modes of CRFB. By these results the author measured and corrected BEPC bunch length from signals of : (1) TOF reference of BES, (2) BPM of BEPC, (3) Colliding CRFB of BEPC - BES coupling signal, as well as (4) the ordinary method of Synchrotron Radiation. All results of the measured bunch lengths are in accordance with the design length of BEPC, and were verified by the BES data of vertex reconstruction of hadron events. The author also found that CRFB is the unknown jam source of BES electronics. VLE virtual photons can accelerate particles
Leukocyte Telomere Length in Young Adults Born Preterm: Support for Accelerated Biological Ageing.
Directory of Open Access Journals (Sweden)
Carolina C J Smeets
Full Text Available Subjects born preterm have an increased risk for age-associated diseases, such as cardiovascular disease in later life, but the underlying causes are largely unknown. Shorter leukocyte telomere length (LTL, a marker of biological age, is associated with increased risk of cardiovascular disease.To compare LTL between subjects born preterm and at term and to assess if LTL is associated with other putative cardiovascular risk factors at young adult age.We measured mean LTL in 470 young adults. LTL was measured using a quantitative PCR assay and expressed as T/S ratio. We analyzed the influence of gestational age on LTL and compared LTL between subjects born preterm (n = 186 and at term (n = 284. Additionally, we analyzed the correlation between LTL and potential risk factors of cardiovascular disease.Gestational age was positively associated with LTL (r = 0.11, p = 0.02. Subjects born preterm had shorter LTL (mean (SD T/S ratio = 3.12 (0.44 than subjects born at term (mean (SD T/S ratio = 3.25 (0.46, p = 0.003. The difference remained significant after adjustment for gender and size at birth (p = 0.001. There was no association of LTL with any one of the putative risk factors analyzed.Young adults born preterm have shorter LTL than young adults born at term. Although we found no correlation between LTL and risk for CVD at this young adult age, this biological ageing indicator may contribute to CVD and other adult onset diseases at a later age in those born preterm.
International Nuclear Information System (INIS)
Goyal, Mamta; Bansal, J.L.
1993-01-01
The growth of the boundary layer in an accelerated flow of an electricity conducting fluid past a symmetrical placed body in the presence of uniform transverse magnetic field fixed relative to the body has been studied. The boundary layer equation has been solved by using a method previously developed by Pozzi, based on expressing the unknown velocity in term of an error function and on using differential and integral relations obtained from the balance equation. As examples, the impulsive flow past a circular cylinder and uniformly accelerated flow over a flat plate are considered. It is found that the effect of the magnetic field is to decelerate the fluid motion which results in an earlier boundary layer separation in the impulsive flow past a circular cylinder. The results show a good agreement with the numerical data available in the literature. (author). 30 refs., 4 figs., 2 tabs
2006-09-01
used in this analysis is based on the full 2D time-dependent Navier - Stocks equations coupled with 2D electrodynamics equation in the low magnetic...includes the treatment of chemical reacting flows on the base of full Navier - Stockes approach, chemical kinetics model, and MHD effects model...code family, PlasmAero based on full Navier -Stokes 8 equations, MHD approximation of Maxwell equations, and plasma-chemical kinetics equations is an
Directory of Open Access Journals (Sweden)
Armando Montesinos F
2015-10-01
Full Text Available An 18-year-old female patient visited a university orthodontics department with a chief complaint of an unesthetic appearance of her teeth, including a protruded upper central incisor and unsatisfactory results from previous orthodontic treatment. Pretreatment records showed a Class II skeletal and dental relation with proclined upper and lower incisors, replacement of an absent upper left central incisor with the left upper cuspid, presence of the upper left deciduous cuspid, mild crowding, and 4 mm of overbite and overjet. The panoramic radiograph showed shortened roots of multiple teeth. Accelerated Osteogenic Orthodontics™ (AOO™ was recommended as an approach to reduce the treatment time and the risk of further root shortening. Despite being more expensive and requiring a surgical procedure, this treatment option was very attractive to the patient. The overall treatment time was 14 months. Facial balance was improved, and good occlusal relationships were achieved from the functional and esthetic perspectives. In conclusion, surgically facilitated orthodontics (specifically, AOO™ is an efficient and safe therapeutic tool for treating or retreating orthodontic patients with diminished root length.
Montesinos F, Armando; Linares T, Silvana; Pérez-Gasque B, Marisol
2015-10-01
An 18-year-old female patient visited a university orthodontics department with a chief complaint of an unesthetic appearance of her teeth, including a protruded upper central incisor and unsatisfactory results from previous orthodontic treatment. Pretreatment records showed a Class II skeletal and dental relation with proclined upper and lower incisors, replacement of an absent upper left central incisor with the left upper cuspid, presence of the upper left deciduous cuspid, mild crowding, and 4 mm of overbite and overjet. The panoramic radiograph showed shortened roots of multiple teeth. Accelerated Osteogenic Orthodontics™ (AOO™) was recommended as an approach to reduce the treatment time and the risk of further root shortening. Despite being more expensive and requiring a surgical procedure, this treatment option was very attractive to the patient. The overall treatment time was 14 months. Facial balance was improved, and good occlusal relationships were achieved from the functional and esthetic perspectives. In conclusion, surgically facilitated orthodontics (specifically, AOO™) is an efficient and safe therapeutic tool for treating or retreating orthodontic patients with diminished root length.
Directory of Open Access Journals (Sweden)
Christian Mitschke
2018-01-01
Full Text Available Previous studies have used accelerometers with various operating ranges (ORs when measuring biomechanical parameters. However, it is still unclear whether ORs influence the accuracy of running parameters, and whether the different stiffnesses of footwear midsoles influence this accuracy. The purpose of the present study was to systematically investigate the influence of OR on the accuracy of stride length, running velocity, and on peak tibial acceleration. Twenty-one recreational heel strike runners ran on a 15-m indoor track at self-selected running speeds in three footwear conditions (low to high midsole stiffness. Runners were equipped with an inertial measurement unit (IMU affixed to the heel cup of the right shoe and with a uniaxial accelerometer at the right tibia. Accelerometers (at the tibia and included in the IMU with a high OR of ±70 g were used as the reference and the data were cut at ±32, ±16, and at ±8 g in post-processing, before calculating parameters. The results show that the OR influenced the outcomes of all investigated parameters, which were not influenced by tested footwear conditions. The lower ORs were associated with an underestimation error for all biomechanical parameters, which increased noticeably with a decreasing OR. It can be concluded that accelerometers with a minimum OR of ±32 g should be used to avoid inaccurate measurements.
CERN. Geneva
2001-01-01
The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.
MHD stability properties of Extrap
International Nuclear Information System (INIS)
Ring, R.
1986-01-01
Stability properties of an Extrap with N conductors are investigated. The plasma is described by the ideal MHD model, the surface current model is used and the noncircularity is assumed to be weak. The investigation is carried out to second order in a small parameter /EPSILON/ that is a measure of the noncircularity of the cross section. As expected it turns out that the degeneracy present in the circular case is removed to first order in /EPSILON/ for m=N/2 and to second order for m=N, m beeing the azimuthal mode number. For other m values the degeneracy prevails but the eigenfrequences are shifted. It is also found that the sausage modes are stabilized for wave- lengths longer than the circumference of the pinch, that some other modes are stabilized for short waves and that the non- circularity causes resonant coupling between certain modes
MHD generator performance analysis for the Advanced Power Train study
Pian, C. C. P.; Hals, F. A.
1984-01-01
Comparative analyses of different MHD power train designs for early commercial MHD power plants were performed for plant sizes of 200, 500, and 1000 MWe. The work was conducted as part of the first phase of a planned three-phase program to formulate an MHD Advanced Power Train development program. This paper presents the results of the MHD generator design and part-load analyses. All of the MHD generator designs were based on burning of coal with oxygen-enriched air preheated to 1200 F. Sensitivities of the MHD generator design performance to variations in power plant size, coal type, oxygen enrichment level, combustor heat loss, channel length, and Mach number were investigated. Basd on these sensitivity analyses, together with the overall plant performance and cost-of-electricity analyses, as well as reliability and maintenance considerations, a recommended MHD generator design was selected for each of the three power plants. The generators for the 200 MWe and 500 MWe power plant sizes are supersonic designs. A subsonic generator design was selected for the 1000 MWe plant. Off-design analyses of part-load operation of the supersonic channel selected for the 200 MWe power plant were also conductd. The results showed that a relatively high overall net plant efficiency can be maintained during part-laod operation with a supersonic generator design.
Generalized reduced MHD equations
International Nuclear Information System (INIS)
Kruger, S.E.; Hegna, C.C.; Callen, J.D.
1998-07-01
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson
Retallick, F. D.
1980-10-01
Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.
Proceedings of the workshop on nonlinear MHD and extended MHD
International Nuclear Information System (INIS)
1998-01-01
Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database
Proceedings of the workshop on nonlinear MHD and extended MHD
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-12-01
Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Energy Technology Data Exchange (ETDEWEB)
Kang, Y.W.; Bridges, J.F.; Kustom, R.L.
1993-07-01
A 9.8-MHz RF accelerating cavity is developed for the first harmonic system in the APS PAR and an aluminum unit is tested. The design goal si 40 kV at the accelerating gap, Q-factor of {approximately} 7,000 for the accelerating mode, 1.2-m diameter, 1.6-m length with good mechanical strength and stability. The design employs no dielectric or ferrite loading for tuning. The cavity is a plunger-loaded reentrant coaxial structure; the end of the inner conductor facing the wall has a piston-shaped loading structure which consists of a circular disk and a cylinder. The RF characteristic of the cavity was investigated using the URMEL-T and MAFIA programs. Compared with a coaxial structure with lumped element capacitive loading, this design gives improved RF characteristics.
International Nuclear Information System (INIS)
Falgarone, Edith; Rieutord, Michel; Richard, Denis; Zahn, Jean-Paul; Dauchot, Olivier; Daviaud, Francois; Dubrulle, Berengere; Laval, Jean-Philippe; Noullez, Alain; Bourgoin, Mickael; Odier, Philippe; Pinton, Jean-Francois; Leveque, Emmanuel; Chainais, Pierre; Abry, Patrice; Mordant, Nicolas; Michel, Olivier; Marie, Louis; Chiffaudel, Arnaud; Daviaud, Francois; Petrelis, Francois; Fauve, Stephan; Nore, C.; Brachet, M.-E.; Politano, H.; Pouquet, A.; Leorat, Jacques; Grapin, Roland; Brun, Sacha; Delour, Jean; Arneodo, Alain; Muzy, Jean-Francois; Magnaudet, Jacques; Braza, Marianna; Boree, Jacques; Maurel, S.; Ben, L.; Moreau, J.; Bazile, R.; Charnay, G.; Lewandowski, Roger; Laveder, Dimitri; Bouchet, Freddy; Sommeria, Joel; Le Gal, P.; Eloy, C.; Le Dizes, S.; Schneider, Kai; Farge, Marie; Bottausci, Frederic; Petitjeans, Philippe; Maurel, Agnes; Carlier, Johan; Anselmet, Fabien
2001-05-01
This publication gathers extended summaries of presentations proposed during two days on astrophysics and magnetohydrodynamics (MHD). The first session addressed astrophysics and MHD: The cold interstellar medium, a low ionized turbulent plasma; Turbulent convection in stars; Turbulence in differential rotation; Protoplanetary disks and washing machines; gravitational instability and large structures; MHD turbulence in the sodium von Karman flow; Numerical study of the dynamo effect in the Taylor-Green eddy geometry; Solar turbulent convection under the influence of rotation and of the magnetic field. The second session addressed the description of turbulence: Should we give up cascade models to describe the spatial complexity of the velocity field in a developed turbulence?; What do we learn with RDT about the turbulence at the vicinity of a plane surface?; Qualitative explanation of intermittency; Reduced model of Navier-Stokes equations: quickly extinguished energy cascade; Some mathematical properties of turbulent closure models. The third session addressed turbulence and coherent structures: Alfven wave filamentation and formation of coherent structures in dispersive MHD; Statistical mechanics for quasi-geo-strophic turbulence: applications to Jupiter's coherent structures; Elliptic instabilities; Physics and modelling of turbulent detached unsteady flows in aerodynamics and fluid-structure interaction; Intermittency and coherent structures in a washing machine: a wavelet analysis of joint pressure/velocity measurements; CVS filtering of 3D turbulent mixing layer using orthogonal wavelets. The last session addressed experimental methods: Lagrangian velocity measurements; Energy dissipation and instabilities within a locally stretched vortex; Study by laser imagery of the generation and breakage of a compressed eddy flow; Study of coherent structures of turbulent boundary layer at high Reynolds number
International Nuclear Information System (INIS)
Gundersen, R.M.
1983-01-01
A plane MHD shock wave of arbitrary strength meets a slender body moving at super-true-sonic speed in the opposite direction. The interaction between the given shock wave and the weak shock attached to the slender body is studied for aligned fields for axisymmetrical flow and for both aligned and transverse fields in the two-dimensional case. Formal solutions for the linearized flow in the interaction region are obtained by the use of integral transforms. (author)
Unsteady MHD flow in porous media past over exponentially ...
African Journals Online (AJOL)
In this paper we are studying unsteady MHD flow in porous media past over exponentially accelerated inclined plate having variable wall temperature as well as mass transfer along with Hall current. We have used Laplace-transform technique to find the solution of the equations in the flow model. The results obtained are ...
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
International Nuclear Information System (INIS)
Tataronis, J. A.
2004-01-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfven continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named ''accumulation continuum'' and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory
Energy Technology Data Exchange (ETDEWEB)
Retallick, F.D.
1978-04-01
This document establishes criteria to be utilized for the design of a pilot-scale (150 to 300 MW thermal) open cycle, coal-fired MHD/steam plant. Criteria for this Engineering Test Facility (ETF) are presented relative to plant siting, plant engineering and operations, MHD-ETF testing, costing and scheduling.
Directory of Open Access Journals (Sweden)
M. Schüssler
Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 10^{5} G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.
Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.
Wilson, Jacob M; Miller, Abraham L; Szymanski, David J; Duncan, Nevine M; Andersen, Jody C; Alcantara, Zane G; Morrison, Timothy J; Bergman, Christopher J
2012-09-01
It is common among competitive baseball players to swing bats while in the batter's box in an attempt to improve their batting performance. Players use bats of different weights during this time, and only a few studies have evaluated the optimal bat weight to increase performance. Previous studies have not investigated the optimal rest period after a warm-up with bats of varying weights. Therefore, we tested the peak bat velocity of 16 National Collegiate Athletic Association Division II intercollegiate baseball players at 1, 2, 4, and 8 minutes, after warming up with bats of 5 different weights. Measured variables were peak bat velocity at peak acceleration (PVPA), peak bat velocity of the swing (PV), peak bat acceleration (PA), and time to reach peak acceleration (TPA) using a chronograph, which measured the batting velocity in real time every 10 milliseconds throughout the swing. A repeated measure analysis of variance was run to assess group, time, and group by time interactions. If any main effects were found, a Tukey post hoc was employed to locate differences. There were significant (p ≤ 0.05) time effects for PVPA, PV, and PA but not for TPA. The PVPA, PV, and PA all increased over time, peaking from 4 to 8 minutes. There were no significant differences in any of the variables among the 5 bat weights used in the warm-up (p > 0.05). However, there were significant differences in PVPA, PV, and PA after 2, 4, and 8 minutes of rest compared with the preexperimental warm-up and 1-minute post-warm-up. From a practical standpoint, batters should warm up early and quickly in the batter's box to maximize the amount of recovery time before they swing at the plate. In addition, batters may want to take their time getting ready at the plate or take some pitches while at-bat in an attempt to maximize performance. Alternatively, the data imply that pitchers should throw their fastest pitch near the beginning of the at-bat to correspond with the potentially slower bat
International Nuclear Information System (INIS)
Dahl, P.; Cottingham, J.; Garber, M.
1986-10-01
Four of the initial six 17m long demonstration dipole magnets for the proposed Superconducting Super Collider have been constructed, and the first one is now being tested. This paper describes the magnet design and construction of the cold mass assembly. The magnets are cold iron (and cold bore) 1-in-1 dipoles, wound with partially keystoned current density-graded high homogeneity NbTi cable in a two-layer cos θ coil of 40 mm inner diameter. The magnetic length is 16.6 m. The coil is prestressed by 15 mm wide stainless steel collars, and mounted in a circular, split iron yoke of 267 mm outer diameter, supported by a cylindrical yoke (and helium) containment vessel of stainless steel. The magnet bore tube assembly incorporates superconducting sextupole trim coils produced by an industrial, automatic process akin to printed circuit fabrication
Magnetic levitation and MHD propulsion
International Nuclear Information System (INIS)
Tixador, P.
1994-01-01
Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.)
3D MHD simulations of pellet injection and disruptions in tokamak plasmas
International Nuclear Information System (INIS)
Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Sugiyama, L.E.
1999-01-01
Nonlinear MHD simulation results of pellet injection show that MHD forces can accelerate large pellets, injected on the high field side of a tokamak, to the plasma center. Magnetic reconnection can produce a reverse shear q profile. Ballooning instability caused by pellets is also reduced by high field side injection. Studies are also reported of the current quench phase of disruptions, which can cause 3D halo currents and runaway electrons. (author)
3D MHD simulations of pellet injection and disruptions in tokamak plasmas
International Nuclear Information System (INIS)
Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Sugiyama, L.E.
2001-01-01
Nonlinear MHD simulation results of pellet injection show that MHD forces can accelerate large pellets, injected on the high field side of a tokamak, to the plasma center. Magnetic reconnection can produce a reverse shear q profile. Ballooning instability caused by pellets is also reduced by high field side injection. Studies are also reported of the current quench phase of disruptions, which can cause 3D halo currents and runaway electrons. (author)
International Nuclear Information System (INIS)
Gisler, G.; Faehl, R.
1983-01-01
We present two-dimensional simulations in (r-z) and r-theta) cylinderical geometries of imploding-liner-driven accelerators of rings of charged particles. We address issues of azimuthal and longitudinal stability of the rings. We discuss self-trapping designs in which beam injection and extraction is aided by means of external cusp fields. Our simulations are done with the 2-1/2-D particle-in-cell plasma simulation code CLINER, which combines collisionless, electromagnetic PIC capabilities with a quasi-MHD finite element package
MHD Integrated Topping Cycle Project
Energy Technology Data Exchange (ETDEWEB)
1992-03-01
The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.
Nonadiabatic interaction between a charged particle and an MHD pulse
Directory of Open Access Journals (Sweden)
Y. Kuramitsu
2008-03-01
Full Text Available Interaction between a magnetohydrodynamic~(MHD pulse and a charged particle is discussed both numerically and theoretically. Charged particles can be accelerated efficiently in the presence of spatially correlated MHD waves, such as short large amplitude magnetic structures, by successive mirror reflection (Fermi process. In order to understand this process, we study the reflection probability of particles by the MHD pulses, focusing on the adiabaticity on the particle motion. When the particle velocity is small (adiabatic regime, the probability that the particle is reflected by the MHD pulse is essentially determined only by the pitch angle, independent from the velocity. On the other hand, in the non-adiabatic regime, the reflection probability is inversely proportional to the square root of the normalized velocity. We discuss our numerical as well as analytical results of the interaction process with various pulse amplitude, pulse shape, and the pulse winding number. The reflection probability is universally represented as a power law function independent from above pulse properties.
Linear ideal MHD stability calculations for ITER
International Nuclear Information System (INIS)
Hogan, J.T.
1988-01-01
A survey of MHD stability limits has been made to address issues arising from the MHD--poloidal field design task of the US ITER project. This is a summary report on the results obtained to date. The study evaluates the dependence of ballooning, Mercier and low-n ideal linear MHD stability on key system parameters to estimate overall MHD constraints for ITER. 17 refs., 27 figs
Directory of Open Access Journals (Sweden)
Joseph C Y Liu
Full Text Available Combination antiretroviral therapy (cART has extended the longevity of human immunodeficiency virus (HIV-infected individuals. However, this has resulted in greater awareness of age-associated diseases such as chronic obstructive pulmonary disease (COPD. Accelerated cellular senescence may be responsible, but its magnitude as measured by leukocyte telomere length is unknown and its relationship to HIV-associated COPD has not yet been established. We measured absolute telomere length (aTL in peripheral leukocytes from 231 HIV-infected adults. Comparisons were made to 691 HIV-uninfected individuals from a population-based sample. Subject quartiles of aTL were assessed for relationships with measures of HIV disease severity, airflow obstruction, and emphysema severity on computed tomographic (CT imaging. Multivariable regression models identified factors associated with shortened aTL. Compared to HIV-uninfected subjects, the mean aTL in HIV-infected patients was markedly shorter by 27 kbp/genome (p<0.001; however, the slopes of aTL vs. age were not different (p=0.469. Patients with longer known durations of HIV infection (p=0.019 and lower nadir CD4 cell counts (p=0.023 had shorter aTL. Shorter aTL were also associated with older age (p=0.026, smoking (p=0.005, reduced forced expiratory volume in one second (p=0.030, and worse CT emphysema severity score (p=0.049. HIV-infected subjects demonstrate advanced cellular aging, yet in a cART-treated cohort, the relationship between aTL and age appears no different from that of HIV-uninfected subjects.
Numerical computation of MHD equilibria
International Nuclear Information System (INIS)
Atanasiu, C.V.
1982-10-01
A numerical code for a two-dimensional MHD equilibrium computation has been carried out. The code solves the Grad-Shafranov equation in its integral form, for both formulations: the free-boundary problem and the fixed boundary one. Examples of the application of the code to tokamak design are given. (author)
Neoclassical MHD equations for tokamaks
International Nuclear Information System (INIS)
Callen, J.D.; Shaing, K.C.
1986-03-01
The moment equation approach to neoclassical-type processes is used to derive the flows, currents and resistive MHD-like equations for studying equilibria and instabilities in axisymmetric tokamak plasmas operating in the banana-plateau collisionality regime (ν* approx. 1). The resultant ''neoclassical MHD'' equations differ from the usual reduced equations of resistive MHD primarily by the addition of the important viscous relaxation effects within a magnetic flux surface. The primary effects of the parallel (poloidal) viscous relaxation are: (1) Rapid (approx. ν/sub i/) damping of the poloidal ion flow so the residual flow is only toroidal; (2) addition of the bootstrap current contribution to Ohm's laws; and (3) an enhanced (by B 2 /B/sub theta/ 2 ) polarization drift type term and consequent enhancement of the perpendicular dielectric constant due to parallel flow inertia, which causes the equations to depend only on the poloidal magnetic field B/sub theta/. Gyroviscosity (or diamagnetic vfiscosity) effects are included to properly treat the diamagnetic flow effects. The nonlinear form of the neoclassical MHD equations is derived and shown to satisfy an energy conservation equation with dissipation arising from Joule and poloidal viscous heating, and transport due to classical and neoclassical diffusion
MHD stability of tandem mirrors
International Nuclear Information System (INIS)
Poulsen, P.; Molvik, A.; Shearer, J.
1982-01-01
The TMX-Upgrade experiment was described, and the manner in which various plasma parameters could be affected was discussed. The initial analysis of the MHD stability of the tandem mirror was also discussed, with emphasis on the negative tandem configuration
Energy Technology Data Exchange (ETDEWEB)
Campione, Salvatore [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Warne, Larry K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sainath, Kamalesh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Basilio, Lorena I. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-10-01
In this report we overview the fundamental concepts for a pair of techniques which together greatly hasten computational predictions of electromagnetic pulse (EMP) excitation of finite-length dissipative conductors over a ground plane. In a time- domain, transmission line (TL) model implementation, predictions are computationally bottlenecked time-wise, either for late-time predictions (about 100ns-10000ns range) or predictions concerning EMP excitation of long TLs (order of kilometers or more ). This is because the method requires a temporal convolution to account for the losses in the ground. Addressing this to facilitate practical simulation of EMP excitation of TLs, we first apply a technique to extract an (approximate) complex exponential function basis-fit to the ground/Earth's impedance function, followed by incorporating this into a recursion-based convolution acceleration technique. Because the recursion-based method only requires the evaluation of the most recent voltage history data (versus the entire history in a "brute-force" convolution evaluation), we achieve necessary time speed- ups across a variety of TL/Earth geometry/material scenarios. Intentionally Left Blank
Magnetic levitation and MHD propulsion
Tixador, P.
1994-04-01
Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d
Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft
International Nuclear Information System (INIS)
Myrabo, L.N.; Rosa, R.J.
2004-01-01
Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant 'Mercury' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a 'tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off and landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic 'mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond 'idle' power, or virtually 'disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely 'green' and independent of Earth's limited fossil fuel reserves
Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft
Myrabo, L. N.; Rosa, R. J.
2004-03-01
Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant ``Mercury'' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a `tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off & landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic `mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond `idle' power, or virtually `disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely `green' and independent of Earth's limited fossil fuel reserves.
Recent Progress in MHD Stability Calculations of Compact Stellarators
International Nuclear Information System (INIS)
Fu, G.Y.; Ku, L.P.; Redi, M.H.; Kessel, C.; Monticello, D.A.; Reiman, A.; Cooper, W.A.; Nuehrenberg, C.; Sanchez, R.; Ware, A.; Hirshman, S.P.; Spong, D.A.
2000-01-01
A key issue for compact stellarators is the stability of beta-limiting MHD modes, such as external kink modes driven by bootstrap current and pressure gradient. We report here recent progress in MHD stability studies for low-aspect-ratio Quasi-Axisymmetric Stellarators (QAS) and Quasi-Omnigeneous Stellarators (QOS). We find that the N = 0 periodicity-preserving vertical mode is significantly more stable in stellarators than in tokamaks because of the externally generated rotational transform. It is shown that both low-n external kink modes and high-n ballooning modes can be stabilized at high beta by appropriate 3D shaping without a conducting wall. The stabilization mechanism for external kink modes in QAS appears to be an enhancement of local magnetic shear due to 3D shaping. The stabilization of ballooning mode in QOS is related to a shortening of the normal curvature connection length
International Nuclear Information System (INIS)
Yvars, M.
1979-10-01
The materials considered for the insulating walls of a M.H.D. converter are Al 2 O 3 , and the calcium or strontium zirconates. For the conducting walls electricity conducting oxides are being considered such as ZrO 2 or CrO 3 La essentially. The principle of M.H.D. systems is recalled, the materials considered are described as is their behaviour in the corrosive atmospheres of M.H.D. streams [fr
MHD code using multi graphical processing units: SMAUG+
Gyenge, N.; Griffiths, M. K.; Erdélyi, R.
2018-01-01
This paper introduces the Sheffield Magnetohydrodynamics Algorithm Using GPUs (SMAUG+), an advanced numerical code for solving magnetohydrodynamic (MHD) problems, using multi-GPU systems. Multi-GPU systems facilitate the development of accelerated codes and enable us to investigate larger model sizes and/or more detailed computational domain resolutions. This is a significant advancement over the parent single-GPU MHD code, SMAUG (Griffiths et al., 2015). Here, we demonstrate the validity of the SMAUG + code, describe the parallelisation techniques and investigate performance benchmarks. The initial configuration of the Orszag-Tang vortex simulations are distributed among 4, 16, 64 and 100 GPUs. Furthermore, different simulation box resolutions are applied: 1000 × 1000, 2044 × 2044, 4000 × 4000 and 8000 × 8000 . We also tested the code with the Brio-Wu shock tube simulations with model size of 800 employing up to 10 GPUs. Based on the test results, we observed speed ups and slow downs, depending on the granularity and the communication overhead of certain parallel tasks. The main aim of the code development is to provide massively parallel code without the memory limitation of a single GPU. By using our code, the applied model size could be significantly increased. We demonstrate that we are able to successfully compute numerically valid and large 2D MHD problems.
MHD instabilities in astrophysical plasmas: very different from MHD instabilities in tokamaks!
Goedbloed, J. P.
2018-01-01
The extensive studies of MHD instabilities in thermonuclear magnetic confinement experiments, in particular of the tokamak as the most promising candidate for a future energy producing machine, have led to an ‘intuitive’ description based on the energy principle that is very misleading for most astrophysical plasmas. The ‘intuitive’ picture almost directly singles out the dominant stabilizing field line bending energy of the Alfvén waves and, consequently, concentrates on expansion schemes that minimize that contribution. This happens when the wave vector {{k}}0 of the perturbations, on average, is perpendicular to the magnetic field {B}. Hence, all macroscopic instabilities of tokamaks (kinks, interchanges, ballooning modes, ELMs, neoclassical tearing modes, etc) are characterized by satisfying the condition {{k}}0 \\perp {B}, or nearly so. In contrast, some of the major macroscopic instabilities of astrophysical plasmas (the Parker instability and the magneto-rotational instability) occur when precisely the opposite condition is satisfied: {{k}}0 \\parallel {B}. How do those instabilities escape from the dominance of the stabilizing Alfvén wave? The answer to that question involves, foremost, the recognition that MHD spectral theory of waves and instabilities of laboratory plasmas could be developed to such great depth since those plasmas are assumed to be in static equilibrium. This assumption is invalid for astrophysical plasmas where rotational and gravitational accelerations produce equilibria that are at best stationary, and the associated spectral theory is widely, and incorrectly, believed to be non-self adjoint. These complications are addressed, and cured, in the theory of the Spectral Web, recently developed by the author. Using this method, an extensive survey of instabilities of astrophysical plasmas demonstrates how the Alfvén wave is pushed into insignificance under these conditions to give rise to a host of instabilities that do not
MHD (Magnetohydrodynamics) recovery and regeneration
Energy Technology Data Exchange (ETDEWEB)
McIlroy, R. A. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Probert, P. B. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lahoda, E. J. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Swift, W. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Jackson, D. M. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Prasad, J. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Martin, J. [Hudson Engineering (United States); Rogers, C. [Hudson Engineering (United States); Ho, K. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Senary, M. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lee, S. [Univ. of Akron, OH (United States)
1988-10-01
A two-phase program investigating MHD seed regeneration is described. In Phase I, bench scale experiments were carried out to demonstrate the technical feasibility of a proposed Seed Regeneration Process. The Phase I data has been used for the preliminary design of a Proof-of-Concept (POC) plant which will be built and tested in Phase II. The Phase I data will also be used to estimate the costs of a 300 Mw(t) demonstration plant for comparison with other processes. The Seed Regeneration Process consists of two major subprocesses; a Westinghouse Dry Reduction process and a modified Tampella (sulfur) Recovery process. The Westinghouse process reduces the recovered spent seed (i.e., potassium sulfate) to potassium polysulfide in a rotary kiln. The reduction product is dissolved in water to form green liquor, clarified to remove residual coal ash, and sent to the Tampella sulfur release system. The sulfur is released using carbon dioxide from flue gas in a two stage reaction. The sulfur is converted to elemental sulfur as a marketable by product. The potassium is crystallized from the green liquor and dried to the anhydrous form for return to the MHD unit.
Feasibility of MHD submarine propulsion
Energy Technology Data Exchange (ETDEWEB)
Doss, E.D. (ed.) (Argonne National Lab., IL (United States)); Sikes, W.C. (ed.) (Newport News Shipbuilding and Dry Dock Co., VA (United States))
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.
Laser-energized MHD generator for hypersonic electric air-turborockets
Myrabo, L. N.; Rosa, R. J.; Moder, J. P.; Blandino, J. S.; Frazier, S. R.
1987-01-01
The analysis and design of an open cycle Faraday MHD generator suitable for use in an electric air-turborocket cycle, the MHD-fanjet, is presented. The working fluid for the generators is unseeded high temperature hydrogen, generated by a standing, laser-supported combustion wave. This study also examines the performance of an advanced combined-cycle engine, powered by beamed energy, proposed for use in future SSTO aerospacecraft. This innovative engine incorporates the MHD-fanjet for the acceleration role within the hypersonic flight regime, from about Mach 11 to above Mach 25. Performance results indicate that specific impulses could fall in the range of 10,000 to 16,000 seconds. This would enable propellant mass fractions as low as 6 percent to 9 percent for such advanced shuttlecraft flying SSTO missions to low earth orbit.
Indian Academy of Sciences (India)
Admin
He was interested to know how `large' is the set of numbers x for which the series is convergent. Here large refers to its length. But his set is not in the class ♢. Here is another problem discussed by Borel. Consider .... have an infinite collection of pairs of new shoes and want to choose one shoe from each pair. We have an ...
MHD-IPS analysis of relationship among solar wind density, temperature, and flow speed
Hayashi, Keiji; Tokumaru, Munetoshi; Fujiki, Ken'ichi
2016-08-01
The solar wind properties near the Sun are a decisive factor of properties in the rest of heliosphere. As such, determining realistic plasma density and temperature near the Sun is very important in models for solar wind, specifically magnetohydrodynamics (MHD) models. We had developed a tomographic analysis to reconstruct three-dimensional solar wind structures that satisfy line-of-sight-integrated solar wind speed derived from the interplanetary scintillation (IPS) observation data and nonlinear MHD equations simultaneously. In this study, we report a new type of our IPS-MHD tomography that seeks three-dimensional MHD solution of solar wind, matching additionally near-Earth and/or Ulysses in situ measurement data for each Carrington rotation period. In this new method, parameterized relation functions of plasma density and temperature at 50 Rs are optimized through an iterative forward model minimizing discrepancy with the in situ measurements. Satisfying three constraints, the derived 50 Rs maps of plasma quantities provide realistic observation-based information on the state of solar wind near the Sun that cannot be well determined otherwise. The optimized plasma quantities exhibit long-term variations over the solar cycles 21 to 24. The differences in plasma quantities derived from the optimized and original IPS-MHD tomography exhibit correlations with the source-surface magnetic field strength, which can in future give new quantitative constrains and requirements to models of coronal heating and acceleration.
Pulse Detonation Rocket MHD Power Experiment
Litchford, Ron J.; Cook, Stephen (Technical Monitor)
2002-01-01
A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent
Cosmological AMR MHD with Enzo
Energy Technology Data Exchange (ETDEWEB)
Xu, Hao [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory; Li, Shengtai [Los Alamos National Laboratory
2009-01-01
In this work, we present EnzoMHD, the extension of the cosmological code Enzoto include magnetic fields. We use the hyperbolic solver of Li et al. (2008) for the computation of interface fluxes. We use constrained transport methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to advance the induction equation, the reconstruction technique of Balsara (2001) to extend the Adaptive Mesh Refinement of Berger & Colella (1989) already used in Enzo, though formulated in a slightly different way for ease of implementation. This combination of methods preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non cosmologjcal tests problems to demonstrate the quality of solution resulting from this combination of solvers.
MHD phenomena at ASDEX Upgrade
International Nuclear Information System (INIS)
Guenter, S.; Gude, A.; Maraschek, M.; Pinches, S.D.; Sesnic, S.; Wolf, R.C.; Yu, Q.; Zohm, M.
2001-01-01
The onset of neoclassical tearing modes leads to the most serious β limit at ASDEX Upgrade. The β p value for the onset of neoclassical tearing modes is found to be proportional to the ion gyro-radius for collisionless plasmas as proposed by the ion polarisation current model. Larger collisionalities have a stabilizing effect. Sawtooth crashes or fishbones can trigger the mode, and in a few cases it appears spontaneously. Fishbones are shown to be able to cause magnetic reconnection. The fractional energy loss due to a (3,2) mode saturates for large pressures at around 25 %. In discharges with large impurity accumulation unusual MHD phenomena such as cascades of high-n tearing modes and modes driven by positive pressure gradients have been found. (author)
MHD phenomena at ASDEX Upgrade
International Nuclear Information System (INIS)
Guenter, S.; Gude, A.; Maraschek, M.; Pinches, S.D.; Sesnic, S.; Wolf, R.C.; Yu, Q.; Zohm, H.
1999-01-01
The onset of neoclassical tearing modes leads to the most serious β limit at ASDEX Upgrade. The β p value for the onset of neoclassical tearing modes is found to be proportional to the ion gyro-radius for collisionless plasmas as proposed by the ion polarisation current model. Larger collisionalities have a stabilizing effect. Sawtooth crashes or fishbones can trigger the mode, and in a few cases it appears spontaneously. Fishbones are shown to be able to cause magnetic reconnection. The fractional energy loss due to a (3,2) mode saturates for large pressures at around 25%. In discharges with large impurity accumulation unusual MHD phenomena such as cascades of high-n tearing modes and modes driven by positive pressure gradients have been found. (author)
Liquid metal MHD generator systems
International Nuclear Information System (INIS)
Satyamurthy, P.; Dixit, N.S.; Venkataramani, N.; Rohatgi, V.K.
1985-01-01
Liquid Metal MHD (LMMHD) Generator Systems are becoming increasingly important in space and terrestrial applications due to their compactness and versatility. This report gives the current status and economic viability of LMMHD generators coupled to solar collectors, fast breeder reactors, low grade heat sources and conventional high grade heat sources. The various thermodynamic cycles in the temperatures range of 100degC-2000degC have been examined. The report also discusses the present understanding of various loss mechanisms inherent in LMMHD systems and the techniques for overcoming these losses. A small mercury-air LMMHD experimental facility being set up in Plasma Physics Division along with proposals for future development of this new technology is also presented in this report. (author)
Characteristics of laminar MHD fluid hammer in pipe
International Nuclear Information System (INIS)
Huang, Z.Y.; Liu, Y.J.
2016-01-01
As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems. - Highlights: • Characteristics of laminar MHD fluid hammer are discussed by simulation. • MHD effect has significant influence on attenuation of wave. • MHD effect strengthens line packing. • MHD effect inhibits Richardson annular effect.
Formation and Acceleration Physics on Plasma Injector 1
Howard, Stephen
2012-10-01
Plasma Injector 1 (PI-1) is a two stage coaxial Marshal gun with conical accelerator electrodes, similar in shape to the MARAUDER device, with power input of the same topology as the RACE device. The goal of PI-1 research is to produce a self-confined compact toroid with high-flux (200 mWb), high-density (3x10^16 cm-3) and moderate initial temperature (100 eV) to be used as the target plasma in a MTF reactor. PI-1 is 5 meters long and 1.9 m in diameter at the expansion region where a high aspect ratio (4.4) spheromak is formed with a minimum lambda of 9 m-1. The acceleration stage is 4 m long and tapers to an outer diameter of 40 cm. The capacitor banks store 0.5 MJ for formation and 1.13 MJ for acceleration. Power is delivered via 62 independently controlled switch modules. Several geometries for formation bias field, inner electrodes and target chamber have been tested, and trends in accelerator efficiency and target lifetime have been observed. Thomson scattering and ion Doppler spectroscopy show significant heating (>100 eV) as the CT is compressed in the conical accelerator. B-dot probes show magnetic field structure consistent with Grad-Shafranov models and MHD simulations, and CT axial length depends strongly on the lambda profile.
Oblique MHD cosmic-ray modified shocks: Two-fluid numerical simulations
Frank, Adam; Jones, T. W.; Ryu, Dongsu
1991-01-01
We present the first results of time dependent, two-fluid, cosmic-ray (CR) modified, MHD shock simulations. The calculations were carried out with a new numerical code for 1-D ideal MHD. By coupling this code with the CR energy transport equation we can simulate the time-dependent evolution of MHD shocks including the acceleration of the CR and their feedback on the shock structures. We report tests of the combined numerical method including comparisons with analytical steady state results published earlier by Webb, as well as internal consistency checks for more general MHD CR shock structures after they appear to have converged to dynamical steady states. We also present results from an initial time dependent simulation which extend the parameter space domain of previous analytical models. These new results support Webb's suggestion that equilibrium oblique shocks are less effective than parallel shocks in the acceleration of CR. However, for realistic models of anisotropic CR diffusion, oblique shocks may achieve dynamical equilibrium on shorter timescale than parallel shocks.
Experimental study of MHD effects on turbulent flow of flibe simulant fluid in a circular pipe
International Nuclear Information System (INIS)
Takeuchi, Junichi; Morley, N.B.; Abdou, M.A.; Satake, Shin-ichi; Yokomine, Takehiko
2007-01-01
Experimental studies of MHD turbulent pipe flow of Flibe simulant fluid have been conducted as a part of US-Japan JUPITER-II collaboration. Flibe is considered as a promising candidate for coolant and tritium breeder in some fusion reactor design concepts because of its low electrical conductivity compared to liquid metals. This reduces the MHD pressure drop to a negligible level; however, turbulence can be significantly suppressed by MHD effects in fusion reactor magnetic field conditions. Heat transfer in the Flibe coolant is characterized by its high Prandtl number. In order to achieve sufficient heat transfer and to prevent localized heat concentration in a high Prandtl number coolant, high turbulence is essential. Even though accurate prediction of the MHD effects on heat transfer for high Prandtl number fluids in the fusion environment is very important, reliable data is not available. In these experiments, an aqueous solution of potassium hydroxide is used as a simulant fluid for Flibe. This paper presents the experimental results obtained by flow field measurement using particle image velocimetry (PIV) technique. The PIV measurements provide 2-dimensional 2-velocity component information on the MHD flow field. The test section is a circular pipe with 89 mm inner diameter and 7.0 m in length, which is 79 times pipe diameter. This relatively large diameter pipe is selected in order to maximize the MHD effects measured by Hartmann number (Ha=BL(sigma/mu)1/2), and to allow better resolution of the flow in the near-wall region. The test section is placed under maximum 2 Tesla magnetic fields for 1.4m of the axial length. The hydrodynamic developing length under the magnetic field is expected to be 1.2 m. In order to apply PIV technique in the magnetic field condition, special optical devices and visualization sections were created. PIV measurements are performed for Re = 11600 with variable Hartmann numbers. The turbulence statistics of the MHD turbulent flow
International Nuclear Information System (INIS)
Dunn, P.F.
1978-01-01
The basic features of the two-phase liquid-metal MHD energy conversion under development at Argonne National Laboratory are presented. The results of system studies on the Rankine-cycle and the open-cycle coal-fired cycle options are discussed. The liquid-metal MHD experimental facilities are described in addition to the system's major components, the generator, mixer and nozzle-separator-diffuser
MHD stability analysis of helical system plasmas
International Nuclear Information System (INIS)
Nakamura, Yuji
2000-01-01
Several topics of the MHD stability studies in helical system plasmas are reviewed with respect to the linear and ideal modes mainly. Difference of the method of the MHD stability analysis in helical system plasmas from that in tokamak plasmas is emphasized. Lack of the cyclic (symmetric) coordinate makes an analysis more difficult. Recent topic about TAE modes in a helical system is also described briefly. (author)
Scaling, Intermittency and Decay of MHD Turbulence
International Nuclear Information System (INIS)
Lazarian, A.; Cho, Jungyeon
2005-01-01
We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field
MHD heat and seed recovery technology project
Energy Technology Data Exchange (ETDEWEB)
Petrick, M.; Johnson, T. R.
1980-08-01
The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information for the design and operation of the steam plant downstream of the MHD channel-diffuser, and of the seed regeneration process. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The work is being done in close cooperation with the Heat Recovery-Seed Recovery facility, which will be a 20-MW pilot plant of the MHD steam bottoming system. The primary effort of the HSR Technology Project is directed toward experimental investigations of critical issues, such as 1) NO/sub x/ behavior in the radiant boiler and secondary combustor; 2) radiant boiler design to meet the multiple requirements of steam generation, NO/sub x/ decomposition, and seed slag separation; 3) effects of solid or liquid seed deposits on heat transfer and gas flow in the steam and air heaters; 4) formation, growth, and deposition of seed-slag particles, 5) character of the combustion gas effluents, and 6) the corrosion and erosion of ceramic and metallic materials of construction. These investigations are performed primarily in a 2-MW test facility, Argonne MHD Process Engineering Laboratory (AMPEL). Other project activities are related to studies of the thermochemistry of the seed-slag combustion gas system, identification of ceramic and metallic materials for service in the MHD-steam plant, and evaluation of seed regeneration processes. Progress is reported.
MHD stability, operational limits and disruptions
International Nuclear Information System (INIS)
1999-01-01
The present physics understandings of magnetohydrodynamic (MHD) stability of tokamak plasmas, the threshold conditions for onset of MHD instability, and the resulting operational limits on attainable plasma pressure (beta limit) and density (density limit), and the consequences of plasma disruption and disruption related effects are reviewed and assessed in the context of their application to a future DT burning reactor prototype tokamak experiment such as ITER. The principal considerations covered within the MHD stability and beta limit assessments are (i) magnetostatic equilibrium, ideal MHD stability and the resulting ideal MHD beta limit; (ii) sawtooth oscillations and the coupling of sawtooth activity to other types of MHD instability; (iii) neoclassical island resistive tearing modes and the corresponding limits on beta and energy confinement; (iv) wall stabilization of ideal MHD instabilities and resistive wall instabilities; (v) mode locking effects of non-axisymmetric error fields; (vi) edge localized MHD instabilities (ELMs, etc.); and (vii) MHD instabilities and beta/pressure gradient limits in plasmas with actively modified current and magnetic shear profiles. The principal considerations covered within the density limit assessments are (i) empirical density limits; (ii) edge power balance/radiative density limits in ohmic and L-mode plasmas; and (iii) edge parameter related density limits in H-mode plasmas. The principal considerations covered in the disruption assessments are (i) disruption causes, frequency and MHD instability onset; (ii) disruption thermal and current quench characteristics; (iii) vertical instabilities (VDEs), both before and after disruption, and plasma and in-vessel halo currents; (iv) after disruption runaway electron formation, confinement and loss; (v) fast plasma shutdown (rapid externally initiated dissipation of plasma thermal and magnetic energies); (vi) means for disruption avoidance and disruption effect mitigation; and
MHD waveguides in space plasma
International Nuclear Information System (INIS)
Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.
2010-01-01
The waveguide properties of two characteristic formations in the Earth's magnetotail-the plasma sheet and the current (neutral) sheet-are considered. The question of how the domains of existence of different types of MHD waveguide modes (fast and slow, body and surface) in the (k, ω) plane and their dispersion properties depend on the waveguide parameters is studied. Investigation of the dispersion relation in a number of particular (limiting) cases makes it possible to obtain a fairly complete qualitative pattern of all the branches of the dispersion curve. Accounting for the finite size of perturbations across the wave propagation direction reveals new additional effects such as a change in the critical waveguide frequencies, the excitation of longitudinal current at the boundaries of the sheets, and a change in the symmetry of the fundamental mode. Knowledge of the waveguide properties of the plasma and current sheets can explain the occurrence of preferred frequencies in the low-frequency fluctuation spectra in the magnetotail. In satellite observations, the type of waveguide mode can be determined from the spectral properties, as well as from the phase relationships between plasma oscillations and magnetic field oscillations that are presented in this paper.
Letton, C; Cheung, C; Nordin, A
2013-04-01
A new integrated care pathway (ICP) proforma for gynaecological oncology patients was developed and introduced in early 2010. The ICP is a goal-defined and time-specified documentation by gynaecological oncology doctors and nurses, guided by certain parameters to be achieved in pre and postoperative days. All patients were admitted to the same unit and underwent a major abdominal/pelvic procedure for confirmed or suspected gynaecological malignancy, including hysterectomy and oophorectomy. The control group included 58 randomly selected patients from May 2008 to March 2009 and the intervention group comprised 52 patients, after the introduction of the ICP. The effectiveness was assessed with a variety of measurements: the duration of intraperitoneal drains, urethral catheters and intravenous fluids postoperatively; time taken for the patient to eat and drink; time taken to mobilisation; and the total length of stay in hospital. We also assessed whether the implementation of the care pathway was associated with an increase in adherence to prescribing guidelines for thromboprophylaxis and postoperative antibiotics and sodium docusate. The new ICP encouraged clearer documentation and regular review of fluids, drains and catheters. There was a modest reduction in the length of stay and an increase in prescribed thromboprophylaxis and sodium docusate ( Cheung et al. 2011 ).
Nonequilibrium fluctuations in micro-MHD effects on electrodeposition
International Nuclear Information System (INIS)
Aogaki, Ryoichi; Morimoto, Ryoichi; Asanuma, Miki
2010-01-01
In copper electrodeposition under a magnetic field parallel to electrode surface, different roles of two kinds of nonequilibrium fluctuations for micro-magnetohydrodynamic (MHD) effects are discussed; symmetrical fluctuations are accompanied by the suppression of three dimensional (3D) nucleation by micro-MHD flows (the 1st micro-MHD effect), whereas asymmetrical fluctuations controlling 2D nucleation yield secondary nodules by larger micro-MHD flows (the 2nd micro-MHD effect). Though the 3D nucleation with symmetrical fluctuations is always suppressed by the micro-MHD flows, due to the change in the rate-determining step from electron transfer to mass transfer, the 2D nucleation with asymmetrical fluctuations newly turns unstable, generating larger micro-MHD flows. As a result, round semi-spherical deposits, i.e., secondary nodules are yielded. Using computer simulation, the mechanism of the 2nd micro-MHD effect is validated.
Numerical study of MHD supersonic flow control
Ryakhovskiy, A. I.; Schmidt, A. A.
2017-11-01
Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.
MHD energy fluxes for late type dwarfs
Rosner, R.; Musielak, Z. E.
1987-01-01
The efficiency of MHD wave generation by turbulent motions in stratified stellar atmospheres with embedded uniform magnetic fields is calculated. In contradiction with previous results, it is shown that there is no significant increase in the efficiency of wave generation because of the presence of magnetic fields, at least within the theory's limits of applicability. It is shown that MHD energy fluxes for late-type stars are less than those obtained for acoustic waves in a magnetic-field-free atmosphere, and do not vary enough for a given spectral type in order to explain observed UV and X-ray fluxes. Thus, the results show that MHD energy fluxes obtained if stellar surface magnetic fields are uniform cannot explain the observed stellar coronal emissions.
MHD equilibrium and stability of the spheromak
Energy Technology Data Exchange (ETDEWEB)
Okabayashi, M.; Todd, A.M.M.
1979-08-01
The MHD stability of spheromak type equilibria from the classical spheromak configuration to the diffuse pinch limit are analyzed numerically. It is found that oblate configurations of ellipticity 0.5 have the optimum stability properties with regard to internal MHD modes and can be stabilized up to an engineering ..beta.. of 15% (defined with respect to the applied external field strength for equilibrium). Stability to global modes requires that a conducting shell surround the plasma. The location of the shell is dependent on geometry and the current profile, but realistic configurations that are stable to all ideal MHD modes have been found with the shell located at approx. 1.2 minor radii.
Euler potentials for the MHD Kamchatnov-Hopf soliton solution
Semenov, VS; Korovinski, DB; Biernat, HK
2002-01-01
In the MHD description of plasma phenomena the concept of magnetic helicity turns out to be very useful. We present here an example of introducing Euler potentials into a topological MHD soliton which has non-trivial helicity. The MHD soliton solution (Kamchatnov, 1982) is based on the Hopf
Closed cycle MHD power plant and retrofit optimization application
Cutting, J. C.; Owens, W. R.; Sheth, P. R.; Griswold, J.; Wehrey, M.
1980-06-01
The results of two independent studies of closed-cycle MHD power systems are presented. A combined cycle consisting of an MHD closed-cycle topping unit retrofitted to an existing steam bottoming plant is considered. Preliminary results of an ongoing parametric study of an MHD closed-cycle system utilizing an integrated pressurized coal gasifier are discussed.
Investigations of MHD activity in ASDEX discharges
International Nuclear Information System (INIS)
Stambaugh, R.; Gernhardt, J.; Klueber, O.; Wagner, F.
1984-06-01
This report makes a strong attempt to relate some specific observations of MHD activity in ADEX discharges to observations made on the Doublet III and PDX tokamaks and to theoretical work on high β MHD modes at GA and PPPL. Three topics are discussed. The first topic is the detailed analysis of the time history of MHD activity in a β discharge. The β limit discharge in ASDEX is identified as a discharge in which, during constant neutral beam power, β reaches a maximum and then decreases, often to a lower steady level if the heating pulse is long enough. During the L phase of this discharge, the MHD activity observed in the B coils is both a continuous and bursting coupled m >= 1 mode of the 'fishbone' type. When β is rising in the H phase, this mode disappears; only ELMs are present. At βsub(max), a different mode appears, the m=2, n=1 tearing mode, which grows rapidly as β decreases. The second topic is the very new observation of the fishbone-like mode in a discharge heated by combined neutral beam and ion cyclotron heating power. The mode characteristics are modulated by sawtooth oscillations in a manner consistent with the importance of q(0) in the stability of this mode. The third topic is the search for ELM precursors in discharges designed to have no other competing and complicating MHD activity. In these cases nonaxisymmetric precursors to the Hsub(α) spike were observed. Hence, it appears that an MHD mode, rather than an energy balance problem, must be the origin of the ELM. (orig./GG)
Safety and reliability in superconducting MHD magnets
International Nuclear Information System (INIS)
Laverick, C.; Powell, J.; Hsieh, S.; Reich, M.; Botts, T.; Prodell, A.
1979-07-01
This compilation adapts studies on safety and reliability in fusion magnets to similar problems in superconducting MHD magnets. MHD base load magnet requirements have been identified from recent Francis Bitter National Laboratory reports and that of other contracts. Information relevant to this subject in recent base load magnet design reports for AVCO - Everett Research Laboratories and Magnetic Corporation of America is included together with some viewpoints from a BNL workshop on structural analysis needed for superconducting coils in magnetic fusion energy. A summary of design codes used in large bubble chamber magnet design is also included
MHD power station with coal gasification
International Nuclear Information System (INIS)
Brzozowski, W.S.; Dul, J.; Pudlik, W.
1976-01-01
A description is given of the proposed operating method of a MHD-power station including a complete coal gasification into lean gas with a simultaneous partial gas production for the use of outside consumers. A comparison with coal gasification methods actually being used and full capabilities of power stations heated with coal-derived gas shows distinct advantages resulting from applying the method of coal gasification with waste heat from MHD generators working within the boundaries of the thermal-electric power station. (author)
Research into liquid metal MHD energy conversion
International Nuclear Information System (INIS)
Bayer, Z.
1973-01-01
The state of research into liquid metal MHD conversion and the problems arising from the processes taking place in the liquid metal-gas mixture are described. The possibilities are pointed out of improving multi-stage heat regeneration MHD systems. The expansion of the number of mixing stages contributes to higher energy conversion efficiency up to a certain driving energy. The relations are presented determining optimal conditions and a calculation method derived for finding the optimal energy distribution and the resulting energy conversion efficiency at any number of stages. (Oy)
Time-dependent simulation of oblique MHD cosmic-ray shocks using the two-fluid model
Frank, Adam; Jones, T. W.; Ryu, Dongsu
1995-01-01
Using a new, second-order accurate numerical method we present dynamical simulations of oblique MHD cosmic-ray (CR)-modified plane shock evolution. Most of the calculations are done with a two-fluid model for diffusive shock acceleration, but we provide also comparisons between a typical shock computed that way against calculations carried out using the more complete, momentum-dependent, diffusion-advection equation. We also illustrate a test showing that these simulations evolve to dynamical equilibria consistent with previously published steady state analytic calculations for such shocks. In order to improve understanding of the dynamical role of magnetic fields in shocks modified by CR pressure we have explored for time asymptotic states the parameter space of upstream fast mode Mach number, M(sub f), and plasma beta. We compile the results into maps of dynamical steady state CR acceleration efficiency, epsilon(sub c). We have run simulations using constant, and nonisotropic, obliquity (and hence spatially) dependent forms of the diffusion coefficient kappa. Comparison of the results shows that while the final steady states achieved are the same in each case, the history of CR-MHD shocks can be strongly modified by variations in kappa and, therefore, in the acceleration timescale. Also, the coupling of CR and MHD in low beta, oblique shocks substantially influences the transient density spike that forms in strongly CR-modified shocks. We find that inside the density spike a MHD slow mode wave can be generated that eventually steepens into a shock. A strong layer develops within the density spike, driven by MHD stresses. We conjecture that currents in the shear layer could, in nonplanar flows, results in enhanced particle accretion through drift acceleration.
Tearing mode dynamics and sawtooth oscillation in Hall-MHD
Ma, Zhiwei; Zhang, Wei; Wang, Sheng
2017-10-01
Tearing mode instability is one of the most important dynamic processes in space and laboratory plasmas. Hall effects, resulted from the decoupling of electron and ion motions, could cause the fast development and perturbation structure rotation of the tearing mode and become non-negligible. We independently developed high accuracy nonlinear MHD code (CLT) to study Hall effects on the dynamic evolution of tearing modes with Tokamak geometries. It is found that the rotation frequency of the mode in the electron diamagnetic direction is in a good agreement with analytical prediction. The linear growth rate increases with increase of the ion inertial length, which is contradictory to analytical solution in the slab geometry. We further find that the self-consistently generated rotation largely alters the dynamic behavior of the double tearing mode and the sawtooth oscillation. National Magnetic Confinement Fusion Science Program of China under Grant No. 2013GB104004 and 2013GB111004.
Studies of MHD generator performance with oxygen enriched coal combustion
Wormhoudt, J.; Yousefian, V.; Kolb, C. E.; Martinez-Sanchez, M.
1980-07-01
This paper presents calculations made using the Aerodyne PACKAGE (Plasma Analysis, Chemical Kinetics, and Generator Efficiency) computer code which bear on two questions which arise in connection with choices between oxygen enrichment and air preheating to attain the high combustion temperatures needed for open-cycle, coal-fired MHD power generation. The first question is which method produces the highest enthalpy extraction per unit channel length. The second is, in test facilities intended to study tradeoffs between oxygen enrichment and preheated air, can good generator performance be obtained from the same physical channel for different combustor compositions. The answer to the first question is found to depend on what combustor conditions are taken to be comparable. As for the second question, it is found that operation with channel input from off-design combustor conditions can cause serious problems, which can be partially alleviated by changing the channel load factors.
The SOL width and the MHD interchange instability in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Kerner, W. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Pogutse, O. [Kurchatov institute, Moscow (Russian Federation)
1994-07-01
Instabilities in the SOL plasma can strongly influence the SOL plasma behaviour and in particular the SOL width. The SOL stability analysis shows that there exists a critical ratio of the thermal energy and the magnetic energy. If the SOL beta is greater than this critical value, the magnetic field cannot prevent the plasma displacement and a strong MHD instability in the SOL occurs. In the opposite case only slower resistive instabilities can develop. A theoretical investigation of the SOL plasma stability is presented for JET single-null and double-null divertor configurations. The dependence of the stability threshold on the SOL beta and on the sheath resistance is established. Applying a simple mixing length argument gives the scaling of the SOL width. 5 refs., 2 figs.
International Nuclear Information System (INIS)
Garcia, M.
1995-01-01
An electric vortex is the circulation of electron space charge about a magnetic field line that is transported by ion momentum. In cold, or low β flow the vortex diameter is the minimum length scale of charge neutrality. The distinctive feature of the vortex is its radial electric field which manifests the interplay of electrostatics, magnetism, and motion
MHD stability of vertically asymmetric tokamak equilibria
International Nuclear Information System (INIS)
Dalhed, H.E.; Grimm, R.C.; Johnson, J.L.
1981-03-01
The ideal MHD stability properties of a special class of vertically asymmetric tokamak equilibria are examined. The calculations confirm that no major new physical effects are introduced and the modifications can be understood by conventional arguments. The results indicate that significant departures from up-down symmetry can be tolerated before the reduction in β becomes important for reactor operation
Gravitational instability in isotropic MHD plasma waves
Indian Academy of Sciences (India)
Alemayehu Mengesha Cherkos
2018-03-06
Mar 6, 2018 ... Abstract. The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for ...
A Computational Study of a Circular Interface Richtmyer-Meshkov Instability in MHD
Maxon, William; Black, Wolfgang; Denissen, Nicholas; McFarland, Jacob; Los Alamos National Laboratory Collaboration; University of Missouri Shock Tube Laboratory Team
2017-11-01
The Richtmyer-Meshkov instability (RMI) is a hydrodynamic instability that appears in several high energy density applications such as inertial confinement fusion (ICF). In ICF, as the thermonuclear fuel is being compressed it begins to mix due to fluid instabilities including the RMI. This mixing greatly decreases the energy output. The RMI occurs when two fluids of different densities are impulsively accelerated and the pressure and density gradients are misaligned. In magnetohydrodynamics (MHD), the RMI may be suppressed by introducing a magnetic field in an electrically conducting fluid, such as a plasma. This suppression has been studied as a possible mechanism for improving confinement in ICF targets. In this study,ideal MHD simulations are performed with a circular interface impulsively accelerated by a shock wave in the presence of a magnetic field. These simulations are executed with the research code FLAG, a multiphysics, arbitrary Lagrangian/Eulerian, hydrocode developed and utilized at Los Alamos National Laboratory. The simulation results will be assessed both quantitatively and qualitatively to examine the stabilization mechanism. These simulations will guide ongoing MHD experiments at the University of Missouri Shock Tube Facility.
Loop facility for LM-MHD study
International Nuclear Information System (INIS)
Pan Chuanjie; Xu Zengyu; Zhao Li; Zhang Xiujie
2007-01-01
A loop facility, namely, New Liquid Metal Experimental Loop (NLMEL), was built in 2007 in SWIP, Which can be used to carry out the experimental investigation on the liquid metal (LM) MHD effects, such as MHD effects of liquid divertor and liquid blanket. The working fluid in the loop is Ga 68 In 20 Sn 12 alloy, which the melting point is 10.7 degree C, the density 6363 kg/m 3 , the electrical resistivity 3.3074 x 10 6 Ω·m -1 , the surface tension 0.353 N·m -1 , the dynamical viscosity 4.0 x 10 -7 m 2 /s at 20 degree C, and its chemical properties is not active. The loop facility consists of two three-phase alternating current(AC) electromagnetic (EM) pumps, dump tank, pump tank, expansion tank, calibrated flowmeter tank, EM flowmeter, electromagnet, MHD test section and its auxiliary system. Two experimental loops, namely, free surface jet flow and duct flow, were designed and installed at the experimental region of the uniform magnetic field in loop facility. The MHD experiment of liquid divertor can be carried out in free surface jet flow loop, and the MHD experimental for liquid blanket, such as MHD effect experiment in rectangular duct with FCI, can be carried out in duct flow loop. The rated voltage of two EM pumps is 380 V, the work temperature less than 500 degree C, electric current 14 and 6 A, fluid flux 11 and 4.7 m 3 /h, outlet pressure less than 6 x 10 5 and 5 x 10 5 Pa, respectively. A 12-ton electromagnet can provide the transverse magnetic field from 0 to 2.0 Tesla, and the uniform magnetic field space of 700 x 140 x 80. Total resistance of electromagnet coils is 1.5 Ω at 20 degree C. High-quality Direct Current (DC) Power supply can provide 0-200 A DC, and 0-60 kW power, the stability of current less than 1%, AC ripple factor less than 1%. Auxiliary systems include: oil cooling loop for cooling electromagnet and two EM pumps, and high purity argon device for protect gas of loop, and pumping vacuum device for loop devices, and electric device
Substorm effects in MHD and test particle simulations of magnetotail dynamics
International Nuclear Information System (INIS)
Birn, J.; Hesse, M.
1998-01-01
Recent magnetohydrodynamic simulations demonstrate that a global tail instability, initiated by localized breakdown of MHD, can cause plasmoid formation and ejection as well as dipolarization and the current diversion of the substorm current wedge. The connection between the reconnection process and the current wedge signatures is provided by earthward flow from the reconnection site. Its braking and diversion in the inner magnetosphere causes dipolarization and the magnetic field distortions of the current wedge. The authors demonstrate the characteristic properties of this process and the current systems involved. The strong localized electric field associated with the flow burst and the dipolarization is also the cause of particle acceleration and energetic particle injections. Test particle simulations of orbits in the MHD fields yield results that are quite consistent with observed injection signatures
Linear Simulations of the Cylindrical Richtmyer-Meshkov Instability in Hydrodynamics and MHD
Gao, Song
2013-05-01
The Richtmyer-Meshkov instability occurs when density-stratified interfaces are impulsively accelerated, typically by a shock wave. We present a numerical method to simulate the Richtmyer-Meshkov instability in cylindrical geometry. The ideal MHD equations are linearized about a time-dependent base state to yield linear partial differential equations governing the perturbed quantities. Convergence tests demonstrate that second order accuracy is achieved for smooth flows, and the order of accuracy is between first and second order for flows with discontinuities. Numerical results are presented for cases of interfaces with positive Atwood number and purely azimuthal perturbations. In hydrodynamics, the Richtmyer-Meshkov instability growth of perturbations is followed by a Rayleigh-Taylor growth phase. In MHD, numerical results indicate that the perturbations can be suppressed for sufficiently large perturbation wavenumbers and magnetic fields.
Laboratory Plasma Source as an MHD Model for Astrophysical Jets
Mayo, Robert M.
1997-01-01
The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to
Staiger, P. J.; Penko, P. F.
1982-01-01
The conceptual design study of a potential early commercial MHD power plant (CSPEC) is described and the results are summarized. Each of two contractors did a conceptual design of an approximtely 1000 MWe open-cycle MHD/steam plant with oxygen enriched combustion air preheated to an intermediate temperatue in a metallic heat exchanger. The contractors were close in their overall plant efficiency estimates but differed in their capital cost and cost of electricity estimates, primarily because of differences in balance-of-plant material, contingency, and operating and maintenance cost estimates. One contractor concluded that its MHD plant design compared favorably in cost of electricity with conventional coal-fired steam plants. The other contractor is making such a comparison as part of a follow-on study. Each contractor did a preliminary investigation of part-load performance and plant availability. The results of NASA studies investigating the effect of plant size and oxidizer preheat temperature on the performance of CSPEC-type MHD plants are also described. The efficiency of a 1000 MWe plant is about three points higher than of a 200 MWe plant. Preheating to 1600 F gives an efficiency about one and one-half points higher than preheating to 800 F for all plant sizes. For each plant size and preheat temperature there is an oxidizer enrichment level and MHD generator length that gives the highest plant efficiency.
Test Particle Energization and the Anisotropic Effects of Dynamical MHD Turbulence
González, C. A.; Dmitruk, P.; Mininni, P. D.; Matthaeus, W. H.
2017-11-01
In this paper, we analyze the effect of dynamical three-dimensional magnetohydrodynamic (MHD) turbulence on test particle acceleration and compare how this evolving system affects particle energization by current sheet interaction, as opposed to frozen-in-time fields. To do this, we analyze the ensemble particle acceleration for static electromagnetic fields extracted from direct numerical simulations of the MHD equations, and compare it with the dynamical fields. We show that a reduction in particle acceleration in the dynamical model results from particle trapping in field lines, which forces the particles to be advected by the flow and suppresses long exposures to the strong electric field gradients that take place between structures and generate (among other effects) an efficient particle acceleration in the static case. In addition, we analyze the effect of anisotropy caused by the mean magnetic field. It is well known that for sufficiently strong external fields, the system experiences a transition toward a two-dimensional flow. This causes an increment in the size of the coherent structures, resulting in a magnetized state of the particles and a reduction in particle energization.
Fundamental length and relativistic length
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1988-01-01
It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem
Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...
Nonlinear MHD dynamo operating at equipartition
DEFF Research Database (Denmark)
Archontis, V.; Dorch, Bertil; Nordlund, Åke
2007-01-01
Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......, and that it can saturate at a level significantly higher than intermittent turbulent dynamos, namely at energy equipartition, for high values of the magnetic and fluid Reynolds numbers. The equipartition solution however does not remain time-independent during the simulation but exhibits a much more intricate...
Evolution of the MHD sheet pinch
International Nuclear Information System (INIS)
Matthaeus, W.H.; Montgomery, D.
1979-01-01
A magnetohydrodynamic (MHD) problem of recurrent interest for both astrophysical and laboratory plasmas is the evolution of the unstable sheet pinch, a current sheet across which a dc magnetic field reverses sign. The evolution of such a sheet pinch is followed with a spectral-method, incompressible, two-dimensional, MHD turbulence code. Spectral diagnostics are employed, as are contour plots of vector potential (magnetic field lines), electric current density, and velocity stream function (velocity streamlines). The nonlinear effect which seems most important is seen to be current filamentation: the concentration of the current density onto sets of small measure near a mgnetic X point. A great deal of turbulence is apparent in the current distribution, which, for high Reynolds numbers, requires large spatial grids (greater than or equal to (64) 2 ). 11 figures, 1 table
Magnetic stresses in ideal MHD plasmas
DEFF Research Database (Denmark)
Jensen, V.O.
1995-01-01
The concept of magnetic stresses in ideal MHD plasma theory is reviewed and revisited with the aim of demonstrating its advantages as a basis for calculating and understanding plasma equilibria. Expressions are derived for the various stresses that transmit forces in a magnetized plasma and it is...... and the Shafranov shift. The method had pedagogical merits as it simplifies the calculations, improves the physical understanding and facilitates an assessment of the approximations made in the calculations....
Statistical Theory of the Ideal MHD Geodynamo
Shebalin, J. V.
2012-01-01
A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the
Inductive ionospheric solver for magnetospheric MHD simulations
Directory of Open Access Journals (Sweden)
H. Vanhamäki
2011-01-01
Full Text Available We present a new scheme for solving the ionospheric boundary conditions required in magnetospheric MHD simulations. In contrast to the electrostatic ionospheric solvers currently in use, the new solver takes ionospheric induction into account by solving Faraday's law simultaneously with Ohm's law and current continuity. From the viewpoint of an MHD simulation, the new inductive solver is similar to the electrostatic solvers, as the same input data is used (field-aligned current [FAC] and ionospheric conductances and similar output is produced (ionospheric electric field. The inductive solver is tested using realistic, databased models of an omega-band and westward traveling surge. Although the tests were performed with local models and MHD simulations require a global ionospheric solution, we may nevertheless conclude that the new solution scheme is feasible also in practice. In the test cases the difference between static and electrodynamic solutions is up to ~10 V km−1 in certain locations, or up to 20-40% of the total electric field. This is in agreement with previous estimates. It should also be noted that if FAC is replaced by the ground magnetic field (or ionospheric equivalent current in the input data set, exactly the same formalism can be used to construct an inductive version of the KRM method originally developed by Kamide et al. (1981.
The CHEASE code for toroidal MHD equilibria
Energy Technology Data Exchange (ETDEWEB)
Luetjens, H. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique; Bondeson, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Inst. for Electromagnetic Field Theory and Plasma Physics; Sauter, O. [ITER-San Diego, La Jolla, CA (United States)
1996-03-01
CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function {Psi}. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs.
High brightness electron accelerator
International Nuclear Information System (INIS)
Sheffield, R.L.; Carlsten, B.E.; Young, L.M.
1994-01-01
A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of accelerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity. 5 figs
Smith, M.; Nichols, L. D.; Seikel, G. R.
1974-01-01
Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.
International Nuclear Information System (INIS)
Pradhan, T.
1975-01-01
The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)
Particle trapping and acceleration during the August 1972 event
International Nuclear Information System (INIS)
Moussas, X.
1980-01-01
Several features of the August 1972 events are studied using neutron monitor data together with solar wind streamline calculated on the basis of an approximate kinematic approach. Examination of the evolution of these streamlines shows that the streamline which passes from the Earth undergoes dramatic changes during the main phase of these events. In a few hours this streamline, which was estimated with HEOS-2 solar wind velocity data, was decreased (i.e., compressed) to a total radial extend of 0.2 AU (at the beginning of 5 August), although its initial length was 1 AU. An exact MHD time-dependent solution by Dryer et al. (1978a) gives similar results. The relative cosmic ray increase (3-7 UT, 5 August), immediately after the deep F.d., is attributed to trapping and acceleration of particles between two shock waves. Similar acceleration was found by Pomerantz and Duggal (1974) and Levy et al. (1976) for another cosmic ray increase during this event. The extremely large solar wind velocities during the main phase of the event are not only due to the large energy of the flare but also to the fact that the ambient solar wind was already almost empty because of the sweeping action of previous shock waves. (orig.)
On the Measurements of Numerical Viscosity and Resistivity in Eulerian MHD Codes
Energy Technology Data Exchange (ETDEWEB)
Rembiasz, Tomasz; Obergaulinger, Martin; Cerdá-Durán, Pablo; Aloy, Miguel-Ángel [Departamento de Astronomía y Astrofísica, Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Müller, Ewald, E-mail: tomasz.rembiasz@uv.es [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)
2017-06-01
We propose a simple ansatz for estimating the value of the numerical resistivity and the numerical viscosity of any Eulerian MHD code. We test this ansatz with the help of simulations of the propagation of (magneto)sonic waves, Alfvén waves, and the tearing mode (TM) instability using the MHD code Aenus. By comparing the simulation results with analytical solutions of the resistive-viscous MHD equations and an empirical ansatz for the growth rate of TMs, we measure the numerical viscosity and resistivity of Aenus. The comparison shows that the fast magnetosonic speed and wavelength are the characteristic velocity and length, respectively, of the aforementioned (relatively simple) systems. We also determine the dependence of the numerical viscosity and resistivity on the time integration method, the spatial reconstruction scheme and (to a lesser extent) the Riemann solver employed in the simulations. From the measured results, we infer the numerical resolution (as a function of the spatial reconstruction method) required to properly resolve the growth and saturation level of the magnetic field amplified by the magnetorotational instability in the post-collapsed core of massive stars. Our results show that it is most advantageous to resort to ultra-high-order methods (e.g., the ninth-order monotonicity-preserving method) to tackle this problem properly, in particular, in three-dimensional simulations.
NONLINEAR MHD WAVES IN A PROMINENCE FOOT
Energy Technology Data Exchange (ETDEWEB)
Ofman, L. [Catholic University of America, Washington, DC 20064 (United States); Knizhnik, K.; Kucera, T. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)
2015-11-10
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
NONLINEAR MHD WAVES IN A PROMINENCE FOOT
International Nuclear Information System (INIS)
Ofman, L.; Knizhnik, K.; Kucera, T.; Schmieder, B.
2015-01-01
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s −1 , in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure
MHD dynamo action in space plasmas
International Nuclear Information System (INIS)
Faelthammar, C.G.
1984-05-01
Electric currents are now recognized to play a major role in the physical process of the Earths magnetosphere as well as in distant astrophysical plasmas. In driving these currents MHD dynamos as well as generators of a thermoelectric nature are important. The primary source of power for the Earths magnetospheric process is the solar wind, which supplies a voltage of the order of 200 kV across the magnetosphere. The direction of the large-scale solar wind electric field varies of many different time scales. The power input to the magnetosphere is closely correlated with the direction of the large-scale solar wind electric field in such a fashion as to mimick the response of a half-wave rectifier with a down-to-dusk conduction direction. Behind this apparently simple response there are complex plasma physical processes that are still very incompletely understood. They are intimately related to auroras, magnetic storms, radiation belts and changes in magnetospheric plasma populations. Similar dynamo actions should occur at other planets having magnetospheres. Recent observations seem to indicate that part of the power input to the Earths magnetosphere comes through MHD dynamo action of a forced plasma flow inside the flanks of the magnetopause and may play a role in other parts of the magnetosphere, too. An example of a cosmical MHD connected to a solid load is the corotating plasma of Jupiters inner magnetosphere, sweeping past the plants inner satelites. In particular the electric currents thereby driven to and from the satellite Io have attracted considerable interest.(author)
Total Exhaust Containment System for MHD Power Systems
National Research Council Canada - National Science Library
Demetriades, S
1989-01-01
.... This approach makes use of state of the art U.S. materials technology and unique designs developed at STD Research Corporation to control the effects of effluents from open cycle MHD generators operating in space by bagging all the MHD exhaust...
Parameter regimes for slow, intermediate and fast MHD shocks
Delmont, P.; Keppens, R.
2011-01-01
We investigate under which parameter regimes the magnetohydrodynamic (MHD) Rankine-Hugoniot conditions, which describe discontinuous solutions to the MHD equations, allow for slow, intermediate and fast shocks. We derive limiting values for the upstream and downstream shock parameters for which
MHD phenomena and transport of energetic ions in spherical tori
International Nuclear Information System (INIS)
Kolesnichenko, Ya.I.; Lutsenko, V.V.; Marchenko, V.S.; Yakovenko, Yu.V.; White, R.B.
2003-01-01
Mechanisms of the in the influence of MHD events on the beam ions in moderate-β plasmas relevant to current experiments on NSTX are studied. Change of the neutron yield caused by particle redistribution is evaluated. Destabilizing effect of the trapped energetic ions on ideal and non-ideal MHD modes in high-β plasmas is predicted. (author)
An MHD variational principle that admits reconnection
Rilee, M. L.; Sudan, R. N.; Pfirsch, D.
1997-01-01
The variational approach of Pfirsch and Sudan's averaged magnetohydrodynamics (MHD) to the stability of a line-tied current layer is summarized. The effect of line-tying on current sheets that might arise in line-tied magnetic flux tubes by estimating the growth rates of a resistive instability using a variational method. The results show that this method provides a potentially new technique to gauge the stability of nearly ideal magnetohydrodynamic systems. The primary implication for the stability of solar coronal structures is that tearing modes are probably constant at work removing magnetic shear from the solar corona.
Coupled Michigan MHD - Rice Convection Model Results
de Zeeuw, D.; Sazykin, S.; Wolf, D.; Gombosi, T.; Powell, K.
2002-12-01
A new high performance Rice Convection Model (RCM) has been coupled to the adaptive-grid Michigan MHD model (BATSRUS). This fully coupled code allows us to self-consistently simulate the physics in the inner and middle magnetosphere. A study will be presented of the basic characteristics of the inner and middle magnetosphere in the context of a single coupled-code run for idealized storm inputs. The analysis will include region-2 currents, shielding of the inner magnetosphere, partial ring currents, pressure distribution, magnetic field inflation, and distribution of pV^gamma.
Instability of periodic MHD shear flows
International Nuclear Information System (INIS)
Zaqarashvili, T.V.; Oliver, R.; Ballester, J.L.; Belvedere, G.
2004-01-01
The stability of periodic MHD shear flows generated by an external transversal periodic force in magnetized plasma is studied. It is shown that the temporal behaviour of magnetosonic wave spatial Fourier harmonics in such flows is governed by Mathieu equation. Consequently the harmonics with the half frequency of the shear flows grow exponentially in time. Therefore the periodic shear motions are unstable to the perturbations of compressible magnetosonic waves. The motions represent the kinetic part of the transversal oscillation in magnetized plasma. Therefore due to the instability of periodic shear motions, the transversal oscillations may quickly be damped, so transferring their energy to compressible magnetosonic perturbations
MHD oxidant intermediate temperature ceramic heater study
Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.
1981-09-01
The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.
MHD squeezing flow between two infinite plates
Directory of Open Access Journals (Sweden)
Umar Khan
2014-03-01
Full Text Available Magneto hydrodynamic (MHD squeezing flow of a viscous fluid has been discussed. Conservation laws combined with similarity transformations have been used to formulate the flow mathematically that leads to a highly nonlinear ordinary differential equation. Analytical solution to the resulting differential equation is determined by employing Variation of Parameters Method (VPM. Runge–Kutta order-4 method is also used to solve the same problem for the sake of comparison. It is found that solution using VPM reduces the computational work yet maintains a very high level of accuracy. The influence of different parameters is also discussed and demonstrated graphically.
Priority pollutant analysis of MHD-derived combustion products
Parks, Katherine D.
An important factor in developing Magnetohydrodynamics (MHD) for commercial applications is environmental impact. Consequently, an effort was initiated to identify and quantify any possible undesirable minute chemical constituents in MHD waste streams, with special emphasis on the priority pollutant species. This paper discusses how priority pollutant analyses were used to accomplish the following goals at the University of Tennessee Space Institute (UTSI): comparison of the composition of solid combustion products collected from various locations along a prototypical MHD flow train during the firing of Illinois No. 6 and Montana Rosebud coals; comparison of solid waste products generated from MHD and conventional power plant technologies; and identification of a suitable disposal option for various MHD derived combustion products. Results from our ongoing research plans for gas phase sampling and analysis of priority pollutant volatiles, semi-volatiles, and metals are discussed.
Technical support for open-cycle MHD program
Energy Technology Data Exchange (ETDEWEB)
None
1978-05-01
The support program for open-cycle MHD at Argonne National Lab is developing the analytical tools needed to investigate the performance of the major components in the combined-cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and also on the integration of these analytical representations into a model of the entire power producing system. The present project activities include modeling of the combustor, MHD channel, slag separator, and the high-temperature air preheater. In addition, these models are combined into a complete system model, which is at present capable of carrying out optimizations of the entire system on either thermodynamic efficiency or with less confidence, cost of electrical power. Also, in support of the open-cycle program, considerable effort has gone into the formulation of a CDIF Test Plan and a National MHD Test Program.
MHD simulation of plasma compression experiments
Reynolds, Meritt; Barsky, Sandra; de Vietien, Peter
2017-10-01
General Fusion (GF) is working to build a magnetized target fusion (MTF) power plant based on compression of magnetically-confined plasma by liquid metal. GF is testing this compression concept by collapsing solid aluminum liners onto plasmas formed by coaxial helicity injection in a series of experiments called PCS (Plasma Compression, Small). We simulate the PCS experiments using the finite-volume MHD code VAC. The single-fluid plasma model includes temperature-dependent resistivity and anisotropic heat transport. The time-dependent curvilinear mesh for MHD simulation is derived from LS-DYNA simulations of actual field tests of liner implosion. We will discuss how 3D simulations reproduced instability observed in the PCS13 experiment and correctly predicted stabilization of PCS14 by ramping the shaft current during compression. We will also present a comparison of simulated Mirnov and x-ray diagnostics with experimental measurements indicating that PCS14 compressed well to a linear compression ratio of 2.5:1.
A civil engineering approach to ideal MHD
International Nuclear Information System (INIS)
Jensen, V.O.
1992-01-01
It is well known that a magnetic field can be conceived as a medium where an isotropic compressive stress, B 2 /2μ 0 , is superimposed on a tensile stress, B 2 /μ 0 , parallel to the lines of force. When a stationary ideal MHD plasma is present in the magnetic field, the particle pressure adds to the magnetic stresses to form a combined stress tensor. Calculations of plasma equilibria based on this concept are very similar to calculations in civil engineering of static structures based on compressive, tensile, and shear stresses. Therefore the very simple physical pictures known from civil engineering when used in plasma physics provide simple physical understanding and facilitate the physical interpretation of the results. In an earlier paper the concept was used to derive and discuss the equilibrium equations for θ-, Z-, and screw pinches and the Grad-Shafranov shift in a tokamak plasma with circular cross sections of the flux surfaces. Here the concept is used to discuss the virial theorem and to obtain a simple physical interpretation of this theorem. We also reconsider the Grad-Shafranov shift in a tokamak plasma and show that a situation where all flux surfaces have circular cross sections cannot be an exact solution to the ideal MHD equations. (author) 3 refs., 3 figs
Simulation study of MHD relaxation and reconnection processes in RFP plasma
International Nuclear Information System (INIS)
Kusano, Kanya; Kunimoto, Kaito; Suzuki, Yoshio; Tamano, Teruo; Sato, Tetsuya
1991-01-01
The authors have studied several nonlinear processes in RFP plasma through the use of 3D MHD simulations. In particular, they have shed light on: (1) dynamo and self-sustainment in reversed-field pinch (RFP), (2) phase locking process in MHD relaxation, and (3) the heating and acceleration in magnetic reconnection process. First, the contributions of the kink (m = 1) mode (linearly unstable) and of the m = 0 mode (driven by nonlinear coupling) to the dynamo are qualitatively evaluated using a high accuracy simulation. It is found that, if the free energy to drive kink instabilities is as small as that in the actual experimental plasma, the m = 0 modes, driven nonlinearly, play a more important role for the flux generation than the kink modes. Secondly, numerical simulations of the self-sustainment process in a RFP are performed. It is confirmed that the self-sustainment process is a coherent oscillating process composed of the MHD relaxation and the resistive diffusion processes. Toroidal phase locking process of kink modes is numerically observed in simulations of self-reversal and self-sustainment processes. It has characteristics similar to the slinky mode observed in the OHTE experiment. A detailed investigation reveals that nonlinear coupling between the most unstable two kink modes governs the entire dynamics in all kink modes and leads to the phase locking process. They find that reconnection can accelerate plasma over a local Alfven speed. This is a result of the fact that the magnetic field in the downstream area plays a similar role to de Laval nozzle. They also investigate the heating mechanisms in reconnection process. It is revealed that the viscous heating rate is as large as the joule heating rate in the reconnection process. This result implies that the viscous heating in the reconnection process is an important candidate for the mechanism to explain the RFP experiments where the ion temperatures is higher than the electron temperature
Radiation transport in ionizing gas flow within the quasi-steady plasma accelerator
Kozlov, A. N.; Konovalov, V. S.
2018-01-01
Investigation of the radiation transport in the ionizing gas flow in the channel of the quasi-steady plasma accelerator is presented. The model is based on the magnetohydrodynamic (MHD) equations and equation of the radiation transport. In theMHD model the approximation of the local thermodynamic equilibrium was used in the three-component medium consisting of atoms, ions and electrons. The model of the radiation transport includes the basic mechanisms of emission and absorption for different portions of spectrum.
International Nuclear Information System (INIS)
England, W.B.
1978-01-01
Uncorrelated and correlated potential energy curves and dipole moments are reported for linear KOH. The compound is found to be ionic, K + OH - . Minimum energy bond lengths are R/sub KO/=4.2913 au and R/sub OH/=1.7688 au, with an estimated accuracy of 2%. The corresponding dipole moment is 3.3 au (8.46 D) with a similar accuracy estimate. This is to our knowledge the first value ever reported for the KOH dipole moment, and the large value suggests that KOH will be an effective electron scatterer in MHD plasmas
Energy analysis of MHD-steam and MHD-gas-steam power plants integrated with coal gasification
Energy Technology Data Exchange (ETDEWEB)
Zaporowski, B.; Roszkiewicz, J.; Sroka, K. [Poznan Univ. of Technology (Poland)
1995-12-31
The paper presents energy analysis of combined two media (MHD-steam) and three media (MHD-gas-steam) power plants of high efficiency of conversion of chemical energy of fuel into electric energy integrated with coal gasification. The goal of this paper is to show the possibility of obtaining the high efficiency (about 60%) of the conversion of chemical energy of coal into electric energy in combined power plants with the open cycle MHD generators. The base of performed energy analysis are the elaborated mathematical models: of gas generator, of combustion chamber of MHD generator, of MHD channel, of high-temperature heater of oxygen, nitrogen and air, of steam generator and the cycle of steam turbine and of the cycle of gas turbine, and also the computer programmes, elaborated on the base of these models for numerical simulation of the processes of energy conversion in these elements. The elaborated mathematical model of the process of coal gasification for MHD-steam power plants allows to calculate: composition, physical properties and energy parameters of gas produced in the process of coal gasification, the consumption and temperature of gasifying medium and both the chemical and energy efficiency of coal gasification. Gas produced in the process of coal gasification is directed to combustion chamber of MHD generator after desulphurization. The mathematical model of physical, chemical and energy processes in combustion chamber of MHD generator allows to determine the temperature of oxidizer and its enrichment in oxygen necessary to obtain the plasma parameters desired for optimum process of energy conversion in MHD channel. The mathematical model of energy conversion in open cycle MHD channel was presented in paper. This model allows to perform numerical simulation of energy conversion process and to determine optimum parameters of plasma at the inlet to the channel necessary to obtain maximum efficiency of energy conversion.
A New Paradigm for Flare Particle Acceleration
Guidoni, Silvina E.; Karpen, Judith T.; DeVore, C. Richard
2017-08-01
The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission and its spectra in solar flares is not well understood. Here, we propose a first-principle-based model of particle acceleration that produces energy spectra that closely resemble those derived from hard X-ray observations. Our mechanism uses contracting magnetic islands formed during fast reconnection in solar flares to accelerate electrons, as first proposed by Drake et al. (2006) for kinetic-scale plasmoids. We apply these ideas to MHD-scale islands formed during fast reconnection in a simulated eruptive flare. A simple analytic model based on the particles’ adiabatic invariants is used to calculate the energy gain of particles orbiting field lines in our ultrahigh-resolution, 2.5D, MHD numerical simulation of a solar eruption (flare + coronal mass ejection). Then, we analytically model electrons visiting multiple contracting islands to account for the observed high-energy flare emission. Our acceleration mechanism inherently produces sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each macroscopic island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare current sheet is a promising candidate for electron acceleration in solar eruptions. This work was supported in part by the NASA LWS and H-SR programs..
Energy Technology Data Exchange (ETDEWEB)
None
1979-01-01
Progress is reported on the following tasks: characterization of coal for open-cycle MHD power generation systems; compressive creep and strength studies of MHD preheater materials; preparation of coals for utilization in direct coal-fired MHD generation; characterization of volatile matter in coal; MHD materials evaluation; operability of the Moderate Temperature Slag Flow Facility; slag-seed equilibria and separations related to the MHD system; thermionic emission of coal and electrode materials; MHD instrumentation, consolidated inversion simulator, and data acquisition; combined MHD-steam plant cycle analysis and control; and slag physical properties - electrical and thermal conductivity. (WHK)
MHD facilities. Experimental results and prospects for utilization
International Nuclear Information System (INIS)
Kirillin, V.A.; Shejndlin, A.E.
1978-01-01
The main progress and prospects of investigation into the MHD-method of energy conversion are presented. The utilization of power plant units with MHD generators will permit to increase the heat power plant efficiency up to 50-60% and lead to fuel economy by 20-35%. An MHD power plant (MHDPP) is a two-staged facility, in which an MHD generator and an ordinary steam turbine plant operate. It is shown that it is advisable to construct big power plant units with a unit power of the 1000 MW order and more. The utilization of MHDPP significantly decreases the environmental contamination in comparison with power stations. An MHDPP is characterized by a great manoeuvrability: the load can change from the rated plant power to 20%. MHD facilities of the open cycle, operating on the basis of combustion products of the fossil organic fuels in combination with an ordinary steam-power cycle are the most advisable to the inductrial introduction at present. Since 1964 the U-02 facility (the whole resource fo work is 20000 hrs) has been exploited in the Soviet Union. The pilot-industrial power station has been working since 1971, and its MHD generator continuously worked in 1975 with the rated load from 2 to 19 MW during more than 250 hrs. The conclusion is made that the MHD power station peculiarities permit to consider them as one of the most advisable types of power plants for the European part of the Soviet union in particular
MHD stability limits in the TCV Tokamak
International Nuclear Information System (INIS)
Reimerdes, H.
2001-07-01
Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation κ and triangularity δ, with high κ, and low δ leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The observed decrease
MHD retrofit of steam power plants. Feasibility study. Summary and conclusions, Part I
Energy Technology Data Exchange (ETDEWEB)
1979-07-01
The US Department of Energy Division of Magnetohydrodynamics (DOE/MHD) initiated this study to evaluate the feasibility of a retrofit option to reduce the time and cost of commercializing MHD. The MHD retrofit option will integrate a nominal 260 megawatt thermal (MWt) MHD topping cycle into an existing or scheduled private utility steam plant; this facility will test both the MHD system and the combined operation of the MHD/steam plant. The 260 MWt input level was determined to be the size which could most effectively demonstrate and verify the engineering design and operational characteristics of a coal-fired, open-cycle, MHD power plant. Details are presented. A goal of the MHD program is to have operational by the year 2003 a commercial size, fully integrated MHD plant. This would be accomplished by demonstrating commercial scale, baseload performance of a fully integrated, MHD/steam power plant. (WHK)
Dispersive MHD waves and alfvenons in charge non-neutral plasmas
Directory of Open Access Journals (Sweden)
K. Stasiewicz
2008-08-01
Full Text Available Dispersive properties of linear and nonlinear MHD waves, including shear, kinetic, electron inertial Alfvén, and slow and fast magnetosonic waves are analyzed using both analytical expansions and a novel technique of dispersion diagrams. The analysis is extended to explicitly include space charge effects in non-neutral plasmas. Nonlinear soliton solutions, here called alfvenons, are found to represent either convergent or divergent electric field structures with electric potentials and spatial dimensions similar to those observed by satellites in auroral regions. Similar solitary structures are postulated to be created in the solar corona, where fast alfvenons can provide acceleration of electrons to hundreds of keV during flares. Slow alfvenons driven by chromospheric convection produce positive potentials that can account for the acceleration of solar wind ions to 300–800 km/s. New results are discussed in the context of observations and other theoretical models for nonlinear Alfvén waves in space plasmas.
Can Accelerators Accelerate Learning?
International Nuclear Information System (INIS)
Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.
2009-01-01
The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.
The Biermann catastrophe of numerical MHD
Graziani, C.; Tzeferacos, P.; Lee, D.; Lamb, D. Q.; Weide, K.; Fatenejad, M.; Miller, J.
2016-05-01
The Biermann Battery effect is frequently invoked in cosmic magnetogenesis and studied in High-Energy Density laboratory physics experiments. Unfortunately, direct implementation of the Biermann effect in MHD codes is known to produce unphysical magnetic fields at shocks whose value does not converge with resolution. We show that this convergence breakdown is due to naive discretization, which fails to account for the fact that discretized irrotational vector fields have spurious solenoidal components that grow without bound near a discontinuity. We show that careful consideration of the kinetics of ion viscous shocks leads to a formulation of the Biermann effect that gives rise to a convergent algorithm. We note a novel physical effect a resistive magnetic precursor in which Biermann-generated field in the shock “leaks” resistively upstream. The effect appears to be potentially observable in experiments at laser facilities.
Measured MHD equilibrium in Alcator C
International Nuclear Information System (INIS)
Pribyl, P.A.
1986-03-01
A method of processing data from a set of partial Rogowski loops is developed to study the MHD equilibrium in Alcator C. Time dependent poloidal fields in the vicinity of the plasma are calculated from measured currents, with field penetration effects being accounted for. Fields from eddy currents induced by the plasma in the tokamak structure are estimated as well. Each of the set of twelve B/sub θ/ measurements can then be separated into a component from the plasma current and a component from currents external to the pickup loops. Harmonic solutions to Maxwell's equations in toroidal coordinates are fit to these measurements in order to infer the fields everywhere in the vacuum region surrounding the plasma. Using this diagnostic, plasma current, position, shape, and the Shafranov term Λ = β/sub p/ + l/sub i//2 - 1 may be computed, and systematic studies of these plasma parameters are undertaken for Alcator C plasmas
Mechanism of power generation - the MHD way
International Nuclear Information System (INIS)
Rangachari, S.; Ramash, V.R.; Subramanian, C.K.
1975-01-01
The basic physical principles of magnetohydrodynamics and the application of this principle for power generation (direct energy conversion) are explained. A magnetohydrodynamic generator (MHDG) is described both in the Faraday and Hall modes. The advantages of the Faraday mode and the Hall mode for different geometries of the generator are mentioned. The conductor used is a fluid - an ionised gas (plasma) or a liquid metal at high temperature. The difficulties in maintaining high temperature and high velocity for the gas and very low temperature at the same time side by side for superconducting magnets to produce a strong magnetic field, are pointed out. The most commonly used gas is purified air. The advantages of MHD generators and the present power crisis have compelled further research in this field in spite of the high costs involved. (A.K.)
Application of electron closures in extended MHD
Held, Eric; Adair, Brett; Taylor, Trevor
2017-10-01
Rigorous closure of the extended MHD equations in plasma fluid codes includes the effects of electron heat conduction along perturbed magnetic fields and contributions of the electron collisional friction and stress to the extended Ohms law. In this work we discuss application of a continuum numerical solution to the Chapman-Enskog-like electron drift kinetic equation using the NIMROD code. The implementation is a tightly-coupled fluid/kinetic system that carefully addresses time-centering in the advance of the fluid variables with their kinetically-computed closures. Comparisons of spatial accuracy, computational efficiency and required velocity space resolution are presented for applications involving growing magnetic islands in cylindrical and toroidal geometry. The reduction in parallel heat conduction due to particle trapping in toroidal geometry is emphasized. Work supported by DOE under Grant Nos. DE-FC02-08ER54973 and DE-FG02-04ER54746.
Two dimensional MHD flows between porous boundaries
International Nuclear Information System (INIS)
Gratton, F.T.
1994-01-01
Similarity solutions of dissipative MHD equations representing conducting fluids injected through porous walls and flowing out in both directions from the center of the channel, are studied as a function of four non dimensional parameters, Reynolds number R e , magnetic Reynolds number R m , Alfvenic Mach number, M A , and pressure gradient coefficient, C. The effluence is restrained by an external magnetic field normal to the walls. When R m m >>1, the solution may model a collision of plasmas of astrophysical interest. In this case the magnetic field lines help to drive the outflow acting jointly with the pressure gradient. The law for C as a function of the other parameters is given for several asymptotic limits. (author). 3 refs, 6 figs
MHD stability limits in the TCV Tokamak
Energy Technology Data Exchange (ETDEWEB)
Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)
2001-07-01
Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation {kappa} and triangularity {delta}, with high {kappa}, and low {delta} leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The
effect of chemical reaction on unsteady mhd free convective two ...
African Journals Online (AJOL)
Joseph et al.
coefficient of skin friction, Nusselt number and Sherwood number are also tabulated and discussed appropriately. It was observed that the increase in chemical reaction coefficient/parameter suppresses both velocity and concentration profiles. Keywords: Chemical Reaction, MHD, Convective, Immiscible,. Unsteady.
Conversion software for ANSYS APDL 2 FLUENT MHD magnetic file
International Nuclear Information System (INIS)
Ghita, G.; Ionescu, S.; Prisecaru, I.
2016-01-01
The present paper describes the improvements made to the conversion software for ANSYS APDL 2 FLUENT MHD Magnetic File which is able to extract the data from ANSYS APDL file and write down a file containing the magnetic field data in FLUENT magneto hydro dynamics (MHD) format. The MHD module has some features for the uniform and non uniform magnetic field but it is limited for sinusoidal or pulsed, square wave, having a fixed duty cycle of 50%. The present software, ANSYS APDL 2 FLUENT MHD Magnetic File, suffered major modifications in comparison with the last one. The most important improvement consists in a new graphical interface, which has 3D graphical interface for the input file but also for the output file. Another improvement has been made for processing time, the new version is two times faster comparing with the old one. (authors)
Diagnostic development and support of MHD (magnetohydrodynamics) test facilities
Energy Technology Data Exchange (ETDEWEB)
1989-07-01
Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.
Numerical Simulation of 3D Viscous MHD Flows
National Research Council Canada - National Science Library
Golovachov, Yurii P; Kurakin, Yurii A; Schmidt, Alexander A; Van Wie, David M
2003-01-01
.... Flows in hypersonic intakes are considered. Preliminary results showed that local MHD interaction in the inlet part of the intake model was the most effective for control over plasma flow field...
Electrode materials for an open-cycle MHD generator channel
International Nuclear Information System (INIS)
Telegin, G.P.; Romanov, A.I.; Akopov, F.A.; Gokhshtejn, Ya.P.; Rekov, A.I.
1983-01-01
The results of investigations, technological developments and tests of high temperature materials for MHD electrodes on the base of zirconium dioxide, stabilized with oxides of calcium, yttrium, neodymium, and dioxide of cerium, chromites, tamping masses from stabilized dioxide of zirconium, cermets are considered. It is established that binary and ternary solutions on the base of zirconium dioxide and alloyed chromites are the perspective materials for the MHD electrodes on pure fuel
Present state of research and development of MHD power generation
International Nuclear Information System (INIS)
Ikeda, Shigeru
1978-01-01
MHD power generation can obtain electric energy directly from the heat energy of high speed plasma flow, and the power generating plant of 1 million kW can be realized by this method. When the MHD power generation method is combined before conventional thermal power generation method, the thermal efficiency can be raised to about 60% as compared with 38% in thermal power generation plants. The research and development of MHD power generation are in progress in USA and USSR. The research and development in Japan are in the second stage now after the first stage project for 10 years, and the Mark 7 generator with 100 kW electric output for 200 hr continuous operation is under construction. The MHD power generation is divided into three types according to the conductive fluids used, namely combustion type for thermal power generation, unequilibrated type and liquid metal type for nuclear power generation. The principle of MHD power generation and the constitution of the plant are explained. In Japan, the Mark 2 generator generated 1,180 kW for 1 min in 1971, and the Mark 3 generator generated 1.9 kW continuously for 110 hr in 1967. The MHD generator with superconducting magnet succeeded in 1969 to generate 25 kW for 6 min. The second stage project aimes at collecting design data and obtaining operational experience for the construction of 10 MW class pilot plant, and the Mark 7 and 8 generators are planned. (Kako, I.)
Benyo, Theresa Louise
Historically, the National Aeronautics and Space Administration (NASA) has used rocket-powered vehicles as launch vehicles for access to space. A familiar example is the Space Shuttle launch system. These vehicles carry both fuel and oxidizer onboard. If an external oxidizer (such as the Earth's atmosphere) is utilized, the need to carry an onboard oxidizer is eliminated, and future launch vehicles could carry a larger payload into orbit at a fraction of the total fuel expenditure. For this reason, NASA is currently researching the use of air-breathing engines to power the first stage of two-stage-to-orbit hypersonic launch systems. Removing the need to carry an onboard oxidizer leads also to reductions in total vehicle weight at liftoff. This in turn reduces the total mass of propellant required, and thus decreases the cost of carrying a specific payload into orbit or beyond. However, achieving hypersonic flight with air-breathing jet engines has several technical challenges. These challenges, such as the mode transition from supersonic to hypersonic engine operation, are under study in NASA's Fundamental Aeronautics Program. One propulsion concept that is being explored is a magnetohydrodynamic (MHD) energy- bypass generator coupled with an off-the-shelf turbojet/turbofan. It is anticipated that this engine will be capable of operation from takeoff to Mach 7 in a single flowpath without mode transition. The MHD energy bypass consists of an MHD generator placed directly upstream of the engine, and converts a portion of the enthalpy of the inlet flow through the engine into electrical current. This reduction in flow enthalpy corresponds to a reduced Mach number at the turbojet inlet so that the engine stays within its design constraints. Furthermore, the generated electrical current may then be used to power aircraft systems or an MHD accelerator positioned downstream of the turbojet. The MHD accelerator operates in reverse of the MHD generator, re-accelerating the
Melrose, D. B.
2009-01-01
Glossary I. Background and context of the subject II. Stochastic acceleration III. Resonant scattering IV. Diffusive shock acceleration V. DSA at multiple shocks VI. Applications of DSA VII. Acceleration by parallel electric fields VIII. Other acceleration mechanisms IX. Future directions X. Appendix: Quasilinear equations XI. Bibliography
Comparing Shock geometry from MHD simulation to that from the Q/A-scaling analysis
Li, G.; Zhao, L.; Jin, M.
2017-12-01
In large SEP events, ions can be accelerated at CME-driven shocks to very high energies. Spectra of heavy ions in many large SEP events show features such as roll-overs or spectral breaks. In some events when the spectra are plotted in energy/nucleon they can be shifted relatively to each other so that the spectra align. The amount of shift is charge-to-mass ratio (Q/A) dependent and varies from event to event. In the work of Li et al. (2009), the Q/A dependences of the scaling is related to shock geometry when the CME-driven shock is close to the Sun. For events where multiple in-situ spacecraft observations exist, one may expect that different spacecraft are connected to different portions of the CME-driven shock that have different shock geometries, therefore yielding different Q/A dependence. At the same time, shock geometry can be also obtained from MHD simulations. This means we can compare shock geometry from two completely different approaches: one from MHD simulation and the other from in-situ spectral fitting. In this work, we examine this comparison for selected events.
Turbulence scaling study in an MHD wind tunnel on the Swarthmore Spheromak Experiment
Schaffner, D. A.; Brown, M. R.; Wan, A.
2013-12-01
The turbulence of colliding plasmas is explored in an MHD wind tunnel on the SSX in an effort to understand solar wind physics in a laboratory setting. Fully ionized hydrogen plasma is produced by two plasma guns on opposite sides of a 1m by 15cm copper cylinder creating plasma with L/ρi ~ 75-150, β ~ 0.1-0.2 and Lundquist number ~ 1000. Modification of B-field, Ti and β are made through stuffing flux variation of the plasma guns. Presented here are turbulent f-/k-spectra and correlation times and lengths of B-field fluctuations as measured by a 16 channel B-dot radial probe array at the chamber midplane using both FFT and wavelet analysis techniques. Power-law behavior is observed spanning about two decades of frequencies [100kHz-10MHz] and about one decade of wavelength [10cm-1cm]. Power-law fits to spectra show scaling in these regions to be robust to changes in stuffing flux; fits are on the order of f-4 and k-2 for all flux variations. Low frequency fluctuations [law behavior is seen in f-spectra for frequencies around f=fci while changes in k-spectra slopes appear around 1/k ~ 5ρi. Dissipation range fits are made with an exponentially modified power-law model [Terry et al, PoP 2012]. Fluctuation measurements in axial velocity are made using a Mach probe with edge flows reaching M ~ 0.4. Both B-field and velocity fluctuations persist on the same timescale in these experiments, though Mach velocity f-spectra show power-laws slightly shallower than those for B-field. Comparison of spectra from MHD and Hall MHD simulations of SSX performed within the HiFi modeling framework are made to the experimental results.
Energy Technology Data Exchange (ETDEWEB)
Doss, E.D. [ed.] [Argonne National Lab., IL (United States); Sikes, W.C. [ed.] [Newport News Shipbuilding and Dry Dock Co., VA (United States)
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.
Compact toroid formation, compression, and acceleration
International Nuclear Information System (INIS)
Degnan, J.H.; Bell, D.E.; Baca, G.P.; Dearborn, M.E.; Douglas, M.R.; Englert, S.E.; Englert, T.J.; Holmes, J.H.; Hussey, T.W.; Kiuttu, G.F.; Lehr, F.M.; Marklin, G.J.; Mullins, B.W.; Peterkin, R.E.; Price, D.W.; Roderick, N.F.; Ruden, E.L.; Turchi, P.J.; Coffey, S.K.; Seiler, S.W.; Bird, G.
1992-01-01
Research on the formation, compression, and acceleration of milligram Compact Toroids (CTs) will be discussed. This includes experiments with 2-stage coaxial gun discharges and calculations including 2D- MHD. The CTs are formed by 110 μf, 70 KV, 2 MA, 3 μs rise time discharges into 2 mg gas puffs in a 90 cm inner diameter, 7.6 cm gap coaxial gun with approximately 0.15 Tesla of radial-axial initial magnetic field. Reconnection at the neck of the toroidal magnetized plasma bubble extracted from the first stage gun forms the CT. Trapping, relaxation to a minimum energy Taylor state is observed with magnetic probe arrays. Low energy (few hundred KJ, 2 MA) acceleration in straight coaxial geometry, and high energy acceleration using a conical compression stage are discussed. The Phillips Laboratory 1,300 μf, 120 KV, 9.4 MJ SHIVA STAR capacitor bank is used for the acceleration discharge. The charging and triggering of the 36-module bank has been modified to permit use of any multiple of three modules. Highlights of fast photography, current, voltage, magnetic probe array, optical spectroscopy, interferometry, VUV, and higher energy radiation data and 2D-MHD calculations will be presented. Considerably more detail is presented in companion papers
Krishna, M. Veera; Swarnalathamma, B. V.
2017-07-01
We considered the transient MHD flow of a reactive second grade fluid through porous medium between two infinitely long horizontal parallel plates when one of the plate is set into uniform accelerated motion in the presence of a uniform transverse magnetic field under Arrhenius reaction rate. The governing equations are solved by Laplace transform technique. The effects of the pertinent parameters on the velocity, temperature are discussed in detail. The shear stress and Nusselt number at the plates are also obtained analytically and computationally discussed with reference to governing parameters.
A New MHD-assisted Stokes Inversion Technique
Riethmüller, T. L.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.
2017-03-01
We present a new method of Stokes inversion of spectropolarimetric data and evaluate it by taking the example of a Sunrise/IMaX observation. An archive of synthetic Stokes profiles is obtained by the spectral synthesis of state-of-the-art magnetohydrodynamics (MHD) simulations and a realistic degradation to the level of the observed data. The definition of a merit function allows the archive to be searched for the synthetic Stokes profiles that best match the observed profiles. In contrast to traditional Stokes inversion codes, which solve the Unno-Rachkovsky equations for the polarized radiative transfer numerically and fit the Stokes profiles iteratively, the new technique provides the full set of atmospheric parameters. This gives us the ability to start an MHD simulation that takes the inversion result as an initial condition. After a relaxation process of half an hour solar time we obtain physically consistent MHD data sets with a target similar to the observation. The new MHD simulation is used to repeat the method in a second iteration, which further improves the match between observation and simulation, resulting in a factor of 2.2 lower mean {χ }2 value. One advantage of the new technique is that it provides the physical parameters on a geometrical height scale. It constitutes a first step toward inversions that give results consistent with the MHD equations.
Parallel Fully-Implicit Computation of Magnetohydrodynamics Acceleration Experiments
Wan, Tian; Candler, Graham
2010-05-01
A three-dimensional MHD solver is described in the paper. The solver simulates reacting flows with nonequilibrium between translational-rotational, vibrational and electron translational modes. The conservation equations are discretized with implicit time marching and the second-order modified Steger-Warming scheme, and the resulted linear system is solved iteratively with Newton-Krylov-Schwarz method that is implemented by PETSc package. The results of convergence tests are plotted, which show good scalability and convergence around twice faster when compared with the DPLR method. Then five test runs are conducted simulating the experiments done at the NASA Ames MHD channel, and the calculated pressures, temperatures, electrical conductivity, back EMF, load factors and flow accelerations are shown to agree with the experimental data. Our computation shows that the electrical conductivity distribution is not uniform in the powered section of the MHD channel, and that it is important to include Joule heating in order to calculate the correct conductivity and the MHD acceleration.
Nonlinear growth of a single neoclassical MHD tearing mode in a tokamak
International Nuclear Information System (INIS)
Qu, W.X.; Callen, J.D.
1985-10-01
The nonlinear evolution equation for the growth of a single neoclassical MHD tearing mode is derived from the usual resistive MHD equations with neoclassical effects included. For the case Δ' > 0 where the usual resistive MHD modes are unstable, in nonlinear neoclassical MHD there is an intermediate time regime in which the island width w grows only as t/sup 1/2/. However, eventually the neoclassical MHD tearing modes are found to enter the usual resistive MHD Rutherford regime where w infinity t. Physically, the neoclassical MHD bootstrap current effects modify the linear and early nonlinear growth of tearing modes. However, eventually the magnetic islands flatten the pressure gradient within the island to remove these effects and return, at long times, to the usual quasilinear picture for the nonlinear evolution of a single resistive MHD tearing mode
le Roux, J. A.
2017-12-01
We developed previously a focused transport kinetic theory formalism with Fokker-plank coefficients (and its Parker transport limit) to model large-scale energetic particle transport and acceleration in solar wind regions with multiple contracting and merging small-scale flux ropes on MHD (inertial) scales (Zank et al. 2014; le Roux et al. 2015). The theory unifies the main acceleration mechanisms identified in particle simulations for particles temporarily trapped in such active flux rope structures, such as acceleration by the parallel electric field in reconnection regions between merging flux ropes, curvature drift acceleration in incompressible/compressible contracting and merging flux ropes, and betatron acceleration (e.g., Dahlin et al 2016). Initial analytical solutions of the Parker transport equation in the test particle limit showed that the energetic particle pressure from efficient flux-rope energization can potentially be high in turbulent solar wind regions containing active flux-rope structures. This requires taking into account the back reaction of energetic particles on flux ropes to more accurately determine the efficiency of energetic particles acceleration by small-scale flux ropes. To accomplish this goal we developed recently an extension of the kinetic theory to a kinetic-MHD level. We will present the extended theory showing the focused transport equation to be coupled to a solar wind MHD transport equation for small-scale flux-rope energy density extracted from a recently published nearly incompressible theory for solar wind MHD turbulence with a plasma beta of 1 (Zank et al. 2017). In the flux-rope transport equation appears new expressions for the damping/growth rates of flux-rope energy derived from assuming energy conservation in the interaction between energetic particles and small-scale flux ropes for all the main flux-rope acceleration mechanisms, whereas previous expressions for average particle acceleration rates have been
Modeling of prominence threads in magnetic fields: Levitation by incompressible MHD waves
Pécseli, Hans; Engvold, OddbjØrn
2000-05-01
The nature of thin, highly inclined threads observed in quiescent prominences has puzzled solar physicists for a long time. When assuming that the threads represent truly inclined magnetic fields, the supporting mechanism of prominence plasma against gravity has remained an open issue. This paper examines the levitation of prominence plasma exerted by weakly damped MHD waves in nearly vertical magnetic flux tubes. It is shown that the wave damping, and resulting `radiation pressure', caused predominantly by ion-neutral collisions in the `cold' prominence plasma, may balance the acceleration of gravity provided the oscillation frequency is ω~ 2 rad s^-1 (f~0.5 Hz). Such short wave periods may be the result of small-scale magnetic reconnections in the highly fragmentary magnetic field of quiescent prominences. In the proposed model, the wave induced levitation acts predominantly on plasma - neutral gas mixtures.
Integration of MHD load models with circuit representations the Z generator.
Energy Technology Data Exchange (ETDEWEB)
Jennings, Christopher A.; Ampleford, David J.; Jones, Brent Manley; McBride, Ryan D.; Bailey, James E.; Jones, Michael C.; Gomez, Matthew Robert.; Cuneo, Michael Edward; Nakhleh, Charles; Stygar, William A.; Savage, Mark Edward; Wagoner, Timothy C.; Moore, James K.
2013-03-01
MHD models of imploding loads fielded on the Z accelerator are typically driven by reduced or simplified circuit representations of the generator. The performance of many of the imploding loads is critically dependent on the current and power delivered to them, so may be strongly influenced by the generators response to their implosion. Current losses diagnosed in the transmission lines approaching the load are further known to limit the energy delivery, while exhibiting some load dependence. Through comparing the convolute performance of a wide variety of short pulse Z loads we parameterize a convolute loss resistance applicable between different experiments. We incorporate this, and other current loss terms into a transmission line representation of the Z vacuum section. We then apply this model to study the current delivery to a wide variety of wire array and MagLif style liner loads.
Effects of induced magnetic field on large scale pulsed MHD generator with two phase flow
International Nuclear Information System (INIS)
Ishikawa, M.; Koshiba, Y.; Matsushita, T.
2004-01-01
A large pulsed MHD generator 'SAKHALIN' was constructed in Russia (the former Soviet-Union) and operated with solid fuels. The 'SAKHALIN' with the channel length of 4.5 m could demonstrate the electric power output of 510 MW. The effects of induced magnetic field and two phase flow on the shock wave within the 'SAKHALIN' generator have been studied by time dependent, one dimensional analyses. It has been shown that the magnetic Reynolds number is about 0.58 for Run No. 1, and the induced magnetic flux density is about 20% at the entrance and exit of the MHD channel. The shock wave becomes stronger when the induced magnetic field is taken into account, when the operation voltage becomes low. The working gas plasma contains about 40% of liquid particles (Al 2 O 3 ) in weight, and the present analysis treats the liquid particles as another gas. In the case of mono-phase flow, the sharp shock wave is induced when the load voltage becomes small such as 500 V with larger Lorentz force, whereas in the case of two phase flow, the shock wave becomes less sharp because of the interaction with liquid particles
International Nuclear Information System (INIS)
Willis, W.J.
1977-01-01
A brief discussion is given on the feasibility of using lasers to accelerate particle beams. A rough theory of operation is developed, and numerical results are obtained for an example equivalent to the Fermilab Accelerator
IAE pulsed electrostatic accelerator
International Nuclear Information System (INIS)
Afanas'ev, V.P.; Ganzhelyuk, M.L.; Kozlov, L.D.; Koltypin, E.A.; Molchanov, Yu.D.; Otroshchenko, G.A.; Yan'kov, G.B.
1976-01-01
The modernized pulse electrostatic accelerator using the klystron ion grouping and the beam interruption system prior to acceleration is described. The accelerator is modernized in order to improve parameters of a current pulse and to decrease the background in the measurement room. The ion beam of needed dimensions is obtained with the help of a high-frequency source and a beam grouping and deflection system. The general view of the beam grouping and deflection system is shown. The ion beam forming process is considered in detail. The modernized electrostatic accelerator permits to obtain a pulse current with a pulse length of 1.5 ns and an amplitude of 1.5 - 2 μA. With the repetition frequency of 2 MHz, the average target current is about 6 μA
Interstellar MHD Turbulence and Star Formation
Vázquez-Semadeni, Enrique
This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior, causing it to behave approximately isobarically, in spite of spanning several orders of magnitude in density and temperature. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability (TI) in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: (1) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; (2) the nature of the clumps produced by TI, noting that, contrary to classical ideas, they in general accrete mass from their environment in spite of exhibiting sharp discontinuities at their boundaries; (3) the density-magnetic field correlation (and, at low densities, lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; (4) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; (5) the formation of cold, dense clouds aided by TI, in both the hydrodynamic (HD) and the magnetohydrodynamic (MHD) cases; (6) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, as generally believed, and (7) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and disperses
International Nuclear Information System (INIS)
Niemann, R.C.; Mataya, K.F.; Smith, R.P.; McWilliams, D.A.; Borden, R.; Streeter, M.H.; Wickson, R.; Privalov, N.P.
1978-01-01
In order to facilitate the rapid development of MHD technology for the generation of electrical energy, the U.S. and U.S.S.R. are jointly conducting research within the framework of the Program of Scientific and Technical Cooperation. The Institute for High Temperature (IVTAN) of the U.S.S.R. has designed and fabricated a special MHD facility which uses as its base much of the equipment of the existing U-25 Facility. The new MHD fow train consisting of a combustor, magnet, channel, and diffuser is named U-25B. The U.S. has provided a superconducting magnet system for the U-25B MHD Facility. As a result of these joint efforts, a unique and broad range of experimental test conditions similar to those that will exist in operation of commercial MHD generators has been created. The United States Superconducting Magnet System (U.S. SCMS) was designed, fabricated, and delivered to the U-25B Facility by the Argonne National Laboratory (ANL) under the sponsorship of the U.S. Department of Energy. The following description focuses on the cryogenic-related aspects of the magnet system commissioning and operation in the U.S.S.R
Energy Technology Data Exchange (ETDEWEB)
Niemann, R. C.; Mataya, K. F.; Smith, R. P.; McWilliams, D. A.; Borden, R.; Streeter, M. H.; Wickson, R.; Privalov, N. P.
1978-01-01
In order to facilitate the rapid development of MHD technology for the generation of electrical energy, the U.S. and U.S.S.R. are jointly conducting research within the framework of the Program of Scientific and Technical Cooperation. The Institute for High Temperature (IVTAN) of the U.S.S.R. has designed and fabricated a special MHD facility which uses as its base much of the equipment of the existing U-25 Facility. The new MHD fow train consisting of a combustor, magnet, channel, and diffuser is named U-25B. The U.S. has provided a superconducting magnet system for the U-25B MHD Facility. As a result of these joint efforts, a unique and broad range of experimental test conditions similar to those that will exist in operation of commercial MHD generators has been created. The United States Superconducting Magnet System (U.S. SCMS) was designed, fabricated, and delivered to the U-25B Facility by the Argonne National Laboratory (ANL) under the sponsorship of the U.S. Department of Energy. The following description focuses on the cryogenic-related aspects of the magnet system commissioning and operation in the U.S.S.R.
Outline of fast analyzer for MHD equilibrium 'FAME'
International Nuclear Information System (INIS)
Sakata, Shinya; Haginoya, Hirofumi; Tsuruoka, Takuya; Aoyagi, Tetsuo; Saito, Naoyuki; Harada, Hiroo; Tani, Keiji; Watanabe, Hideto.
1994-03-01
The FAME (Fast Analyzer for Magnetohydrodynamic (MHD) Equilibrium) system has been developed in order to provide more than 100 MHD equilibria in time series which are enough for the non-stationary analysis of the experimental data of JT-60 within about 20 minutes shot interval. The FAME is an MIMD type small scale parallel computer with 20 microprocessors which are connected by a multi-stage switching system. The maximum theoretical speed is 250 MFLOPS. For the software system of FAME, MHD equilibrium analysis code SELENE and its input data production code FBI are tuned up taking the parallel processing into consideration. Consequently, the computational performance of the FAME system becomes more than 7 times faster than the existing general purpose computer FACOM M780-10s. This report summarizes the outline of the FAME system including hardware, soft-ware and peripheral equipments. (author)
MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets
Beskin, Vasily S
2010-01-01
Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...
Evaluation of Venezuela's Orinoco bitumen as an MHD fuel
International Nuclear Information System (INIS)
Chapman, J.N.; Ziritt, J.L.; Jimenez, E.
1992-01-01
The Orinoco Belt in Venezuela contains huge deposits of a bitumen that is complex to handle and refine into lighter hydrocarbon fractions. These deposits are in the early commercialization stage, being marketed as an emulsion with 30% water as a boiler fuel. The fuel is similar to oil in heating value (about 18,100 BTU/lbm) and ash (less than 0.4%). It has an extremely high carbon to hydrogen ratio, a parameter that is important in MHD for electrical conductivity. In this paper, the authors evaluate the potential for this bitumen as a fuel for an MHD Steam Combined Cycle Power Plant. An experimental program to demonstrate the merit of the bitumen as an MHD fuel and validate the calculations is suggested
Technical support for open-cycle MHD program
Berry, G. F.
1981-07-01
The development of analytical tools needed for investigating the performance of the major components in the combined cycle MHD/steam power system is described. The analytical effort is centered on the primary components of the system that are unique to MHD and, also, on the integration of these analytical models into a model for the entire power producing system. The present project activities include modeling of the secondary combustor, generator, radiant boiler, and formation and decomposition of NO. The results of preliminary off design studies and of system optimization studies are presented, and analysis of the U-25B generator performance, which was done in support of the proposed test plan, is included. Refinements and improvements in the MHD systems code and executive program are considered.
Pseudo-MHD ballooning modes in tokamak plasmas
International Nuclear Information System (INIS)
Callen, J.D.; Hegna, C.C.
1996-08-01
The MHD description of a plasma is extended to allow electrons to have both fluid-like and adiabatic-regime responses within an instability eigenmode. In the resultant open-quotes pseudo-MHDclose quotes model, magnetic field line bending is reduced in the adiabatic electron regime. This makes possible a new class of ballooning-type, long parallel extent, MHD-like instabilities in tokamak plasmas for α > s 2 (2 7/3 /9) (r p /R 0 ) or-d√Β/dr > (2 1/6 /3)(s/ R 0q ), which is well below the ideal-MHD stability boundary. The marginally stable pressure profile is similar in both magnitude and shape to that observed in ohmically heated tokamak plasmas
An innovative method for ideal and resistive MHD stability analysis of tokamaks
International Nuclear Information System (INIS)
Tokuda, S.
2001-01-01
An advanced asymptotic matching method of ideal and resistive MHD stability analysis in tokamaks is reported. A solution method for the two dimensional Newcomb equation, a dispersion relation for an unstable ideal MHD mode in tokamaks and a new scheme for solving resistive MHD inner layer equations as an initial value problem are reported. (author)
An innovative method for ideal and resistive MHD stability analysis of tokamaks
International Nuclear Information System (INIS)
Tokuda, S.
2001-01-01
An advanced asymptotic matching method of ideal and resistive MHD stability analysis in tokamak is reported. The report explains a solution method of two-dimensional Newcomb equation, dispersion relation for an unstable ideal MHD mode in tokamak, and a new scheme for solving resistive MHD inner layer equations as an initial-value problem. (author)
MHD turbulent dynamo in astrophysics: Theory and numerical simulation
Chou, Hongsong
2001-10-01
This thesis treats the physics of dynamo effects through theoretical modeling of magnetohydrodynamic (MHD) systems and direct numerical simulations of MHD turbulence. After a brief introduction to astrophysical dynamo research in Chapter 1, the following issues in developing dynamic models of dynamo theory are addressed: In Chapter 2, nonlinearity that arises from the back reaction of magnetic field on velocity field is considered in a new model for the dynamo α-effect. The dependence of α-coefficient on magnetic Reynolds number, kinetic Reynolds number, magnetic Prandtl number and statistical properties of MHD turbulence is studied. In Chapter 3, the time-dependence of magnetic helicity dynamics and its influence on dynamo effects are studied with a theoretical model and 3D direct numerical simulations. The applicability of and the connection between different dynamo models are also discussed. In Chapter 4, processes of magnetic field amplification by turbulence are numerically simulated with a 3D Fourier spectral method. The initial seed magnetic field can be a large-scale field, a small-scale magnetic impulse, and a combination of these two. Other issues, such as dynamo processes due to helical Alfvénic waves and the implication and validity of the Zeldovich relation, are also addressed in Appendix B and Chapters 4 & 5, respectively. Main conclusions and future work are presented in Chapter 5. Applications of these studies are intended for astrophysical magnetic field generation through turbulent dynamo processes, especially when nonlinearity plays central role. In studying the physics of MHD turbulent dynamo processes, the following tools are developed: (1)A double Fourier transform in both space and time for the linearized MHD equations (Chapter 2 and Appendices A & B). (2)A Fourier spectral numerical method for direct simulation of 3D incompressible MHD equations (Appendix C).
Extended MHD Effects in High Energy Density Experiments
Seyler, Charles
2016-10-01
The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation
Advanced fusion MHD power conversion using the CFAR cycle concept
Energy Technology Data Exchange (ETDEWEB)
Hoffman, M.A.; Campbell, R.; Logan, B.G.
1989-03-01
The CFAR (compact fusion advanced Rankine) concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high-temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium.
Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods
Wu, S. T.
1988-01-01
Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.
High pressure MHD coal combustors investigation, phase 2
Iwata, H.; Hamberg, R.
1981-05-01
A high pressure MHD coal combustor was investigated. The purpose was to acquire basic design and support engineering data through systematic combustion experiments at the 10 and 20 thermal megawatt size and to design a 50 MW/sub t/ combustor. This combustor is to produce an electrically conductive plasma generated by the direct combustion of pulverized coal with hot oxygen enriched vitiated air that is seeded with potassium carbonate. Vitiated air and oxygen are used as the oxidizer, however, preheated air will ultimately be used as the oxidizer in coal fired MHD combustors.
Energy Technology Data Exchange (ETDEWEB)
Galkowski, A. [Institute of Atomic Energy, Otwock-Swierk (Poland)
1994-12-31
Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad`s ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs.
CEBAF Upgrade Bunch Length Measurements
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Mahmoud [Old Dominion Univ., Norfolk, VA (United States)
2016-05-01
Many accelerators use short electron bunches and measuring the bunch length is important for efficient operations. CEBAF needs a suitable bunch length because bunches that are too long will result in beam interruption to the halls due to excessive energy spread and beam loss. In this work, bunch length is measured by invasive and non-invasive techniques at different beam energies. Two new measurement techniques have been commissioned; a harmonic cavity showed good results compared to expectations from simulation, and a real time interferometer is commissioned and first checkouts were performed. Three other techniques were used for measurements and comparison purposes without modifying the old procedures. Two of them can be used when the beam is not compressed longitudinally while the other one, the synchrotron light monitor, can be used with compressed or uncompressed beam.
Experiments and models of MHD jets and their relevance to astrophysics and solar physics
Bellan, Paul
2017-10-01
MHD-driven flows exist in both space and lab plasmas because the MHD force-balance equation J × B - ∇ P = 0 can only be satisfied in situations having an unusual degree of symmetry. In the normal situation where such symmetry does not exist, an arbitrary magnetic field B and its associated current J =μ0- 1 ∇ × B provide a magnetic force F = J × B having the character of a torque, i.e., ∇ × F ≠ 0 . Because ∇ × ∇ P = 0 is a mathematical identity, no pressure gradient can balance this torque so a flow is driven. Additionally, since ideal MHD has magnetic flux frozen into the frame of the moving plasma, the flow convects frozen-in magnetic flux. If the flow slows and piles up, both the plasma and the frozen-in magnetic flux will be compressed. This magnetic flux compression amplifies both the frozen-in B and its associated J . Slowing down thus increases certain components of F , in particular the pinch force associated with the electric current in the flow direction. This increased pinching causes the flow to self-collimate if the leading edge of the flow moves slower than the trailing part so there is compression in the flow frame. The result is that the flow self-collimates and forms a narrow jet. Self-collimating jets with embedded electric current and helical magnetic field are analogous to the straight cylindrical approximation of a tokamak, but now with the length of the cylinder continuously increasing and the radius depending on axial position. The flows are directed from axial regions having small radius to axial regions having large radius. The flow velocity is proportional to the axial electric current and is a significant fraction of the Alfvén velocity. Examples of these MHD-driven flows are astrophysical jets, certain solar coronal situations, and the initial plasma produced by the coaxial magnetized plasma guns used for making spheromaks. The above picture has been developed from laboratory measurements, analytic models, and numerical
Impurity production and acceleration in CTIX
Energy Technology Data Exchange (ETDEWEB)
Buchenauer, D. [Sandia National Laboratories, MS-9161, P.O. Box 969, Livermore, CA 94550 (United States)], E-mail: dabuche@sandia.gov; Clift, W.M. [Sandia National Laboratories, MS-9161, P.O. Box 969, Livermore, CA 94550 (United States); Klauser, R.; Horton, R.D. [CTIX Group, University of California at Davis, Davis, CA 95616 (United States); Howard, S.J. [General Fusion Inc., Burnaby, BC V5A 3H4 (Canada); Brockington, S.J. [HyperV Technologies Corp., Chantilly, VA 20151 (United States); Evans, R.W.; Hwang, D.Q. [CTIX Group, University of California at Davis, Davis, CA 95616 (United States)
2009-06-15
The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probes were exposed to spheromak-like CT's exiting the accelerator. Elemental analysis by Auger Electron Spectroscopy indicated the presence of O, Al, Fe, and Cu in films up to 200 A thickness (1000 CT interactions). Using a smaller number of CT interactions (10-20), implantation of Fe and Cu was measured by Auger depth profiling. The amount of impurities was found to increase with accelerating voltage and number of CT interactions while use of a solenoidal field reduced the amount. Comparison of the implanted Fe and Cu with TRIM simulations indicated that the impurities were traveling more slowly than the hydrogen CT.
Role of drifts in diffusive shock acceleration
International Nuclear Information System (INIS)
Decker, R.B.
1988-01-01
The role played by shock-associated drifts during the diffusive acceleration of charged particles at collisionless MHD shocks is evaluated. In the rest frame of the shock, the total energy gained by a particle is shown to result from two coupled acceleration mechanisms, the usual first-order Fermi mechanism and the drift mechanism. When averaged over a distribution of particles, the ratio of the drift-associated energy gain to the total energy is found to be independent of the total energy at a given theta1 (the angle between the shock normal and the unperturbed upstream magnetic field) in agreement with theoretical predictions. No evidence is found for drift-associated deceleration, suggesting that drifts always augment acceleration. 35 references
Spectral variability in relativistic MHD winds
Thompson, Christopher
1998-05-01
Any cosmological GRB source with a rotation period of ~1 msec and the density of nuclear matter plausibly develops a very strong magnetic field B~1015 G, and disgorges ordered Poynting flux at the required rate of ~1051 erg s-1 [11,6]. This MHD wind advects outward an intense flux of thermal MeV photons which act as Compton seeds and regulate the thermodynamic state of matter. Electron-positron pairs created by photon collisions feed back strongly on the emergent spectrum, enhancing the efficiency of energy deposition in the leptonic component, and making regions of the wind with power-law high-energy spectra much brighter than regions with thermal spectra. By contrast, dissipation deep inside the electron-ion photosphere plausibly leads to quasi-thermal spectra, and may account for the soft X-ray tails seen by Ginga and soft subpulses seen by BATSE. Explicit solutions to the Kompaneets equation in an expanding wind containing isolated hotspots show that a broken power-law spectrum develops in a pair-dominated atmosphere that covers a very large range (~mp/me) in radius, and through which the integrated scattering depth significantly exceeds unity. The overall softening trend observed in many bursts may reflect gradual mixing between a high-Γ jet and surrounding lower-Γ material. We compare double Compton emission and cyclo-synchrotron radiation as sources of Compton seeds. The existence of bursts with soft high-energy cutoffs at rest frame energies much less than ~1 MeV indicates that quasi-thermal Comptonization is occuring. The γ-ray light-curve may provide interesting information about the central source if the asymptotic Lorentz factor is regulated by neutrino emission, yielding a characteristic luminosity of LP~1051 erg s-1. Off-axis material with Lorentz factor Γ∞~1-2 becomes optically thin to scattering with a delay of ~1 day(E/1052 erg)1/2, and can be a direct source of afterglow radiation.
Shielding high energy accelerators
Stevenson, Graham Roger
2001-01-01
After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).
Sovie, R. J.; Winter, J. M.; Juhasz, A. J.; Berg, R. D.
A conceptual design study of the MHD/steam plant that incorporates the use of oxygen enriched air preheated in a metallic heat exchanger as the combustor oxidant showed that this plant is the most attractive for early commercial applications. The variation of performance and cost was investigated as a function of plant size. The contractors' results for the overall efficiencies are in reasonable agreement considering the slight differences in their plant designs. NASA LeRC is reviewing cost and performance results for consistency with those of previous studies, including studies of conventional steam plants. LeRC in house efforts show that there are still many tradeoffs to be considered for these oxygen enriched plants and considerable variations can be made in channel length and level of oxygen enrichment with little change in overall plant efficiency.
Ideal MHD stability analysis of KSTAR target AT mode
International Nuclear Information System (INIS)
Yi, S.M.; Kim, J.H.; You, K.I.; Kim, J.Y.
2009-01-01
Full text: A main research objective of KSTAR (Korea Superconducting Tokamak Advanced Research) device is to demonstrate the steady-state operation capability of high-performance AT (Advanced Tokamak) mode. To meet this goal, it is critical for KSTAR to have a good MHD stability boundary, particularly against the high-beta ideal instabilities such as the external kink and the ballooning modes. To support this MHD stability KSTAR has been designed to have a strong plasma shape and a close interval between plasma and passive- plate wall. During the conceptual design phase of KSTAR, a preliminary study was performed to estimate the high beta MHD stability limit of KSTAR target AT mode using PEST and VACUUM codes and it was shown that the target AT mode can be stable up to β N ∼ 5 with a well-defined plasma pressure and current profiles. Recently, a new calculation has been performed to estimate the ideal stability limit in various KSTAR operating conditions using DCON code, and it has been observed that there is some difference between the new and old calculation results, particularly in the dependence of the maximum β N value on the toroidal mode number. Here, we thus present a more detailed analysis of the ideal MHD stability limit of KSTAR target AT mode using various codes, which include GATO as well as PEST and DCON, in the comparison of calculation results among the three codes. (author)
Unsteady MHD free convection flow and heat transfer along an ...
African Journals Online (AJOL)
Unsteady MHD free convection flow and heat transfer along an infinite vertical porous plate under Arrhenius kinetics. ... due to increase in the Hartmann number (iii) fluid velocity increases due to increase in Grashof number which agrees with natural phenomena because of the buoyancy force which assist the flow.
A high current density DC magnetohydrodynamic (MHD) micropump
Homsy, Alexandra; Koster, Sander; Hogen-Koster, S.; Eijkel, Jan C.T.; van den Berg, Albert; Lucklum, F.; Verpoorte, E.; de Rooij, Nico F.
2005-01-01
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined
A high current density DC magnetohydrodynamic (MHD) micropump
Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF
2005-01-01
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a
Heat transfer with thermal radiation on MHD particle–fluid ...
Indian Academy of Sciences (India)
2017-09-12
Sep 12, 2017 ... The influence of magnetohydrodynamics (MHD) and thermal radiation are also taken into account with the help of Ohm's law and Roseland's approximation. The governing flow problem for Casson fluid model is based on continuity, momentum and thermal energy equation for fluid phase and particle ...
Non-Radial Oscillations in an Axisymmetric MHD Incompressible Fluid
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... ... oscillations by perturbing the MHD equilibrium solution for an axisymmetric incompressible fluid. The fluid motion and the magnetic field are expressed as scalars , , and , respectively. In deriving the exact solution for the equilibrium state, we neglect the contribution due to meridional circulation.
Combined effects of radiation and chemical reaction on MHD flow ...
African Journals Online (AJOL)
Dr Uday Singh Rajput is a faculty member in the department of mathematics and astronomy, Lucknow University, India. He has more than 25 years of teaching experience at UG and PG levels and also guided students for PhD degree. He has published more than 70 research articles. His research areas include MHD flows, ...
Unsteady MHD flow in porous media past over exponentially ...
African Journals Online (AJOL)
published more than 60 research articles. His research areas include MHD flows, Graph Theory and Operations Research. . Gaurav Kumar is research student in the department of mathematics and astronomy, Lucknow University, India. Received April 2016. Accepted May 2016. Final acceptance in revised form May 2016.
Effect of chemical reaction on unsteady MHD free convective two ...
African Journals Online (AJOL)
The effect of flow parameters on the coefficient of skin friction, Nusselt number and Sherwood number are also tabulated and discussed appropriately. It was observed that the increase in chemical reaction coefficient/parameter suppresses both velocity and concentration profiles. Keywords: Chemical Reaction, MHD, ...
Superconducting dipole magnet for the UTSI MHD facility
International Nuclear Information System (INIS)
Wang, S.T.; Niemann, R.C.; Turner, L.R.
1978-01-01
The Argonne National Laboratory is designing and will build a large superconducting dipole magnet system for use in the Coal Fired Flow MHD Research Facility at the University of Tennessee Space Institute (UTSI). Presented in detail are the conceptual design of the magnet geometry, conductor design, cryostability evaluation, magnetic pressure computation, structural design, cryostat design, the cryogenics system design, and magnet instrumentations and control
Thermosolutal MHD flow and radiative heat transfer with viscous ...
African Journals Online (AJOL)
This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...
TAE modes and MHD activity in TFTR DT plasmas
International Nuclear Information System (INIS)
Fredrickson, E.; Batha, S.; Bell, M.
1995-03-01
The high power deuterium and tritium experiments on TFTR have produced fusion a parameters similar to those expected on ITER. The achieved β α /β and the R triangledown β α in TFRR D-T shots are 1/2 to 1/3 those predicted in the ITER EDA. Studies of the initial TFTR D-T plasmas find no evidence that the presence of the fast fusion α population has affected the stability of MHD, with the possible exception of Toroidal Alfven Eigenmodes (TAE's). The initial TFTR DT plasmas had MHD activity similar to that commonly seen in deuterium plasmas. Operation of TFTR at plasma currents of 2.0--2.5 MA has greatly reduced the deleterious effects of MHD commonly observed at lower currents. Even at these higher currents, the performance of TFTR is limited by β-limit disruptions. The effects of MHD on D-T fusion α's was similar to effects observed on other fusion products in D only plasmas
Modified NASA-Lewis Chemical Equilibrium Code for MHD applications
Energy Technology Data Exchange (ETDEWEB)
Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.
1979-12-01
A substantially modified version of the NASA-Lewis Chemical Equilibrium Code has recently been developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. This report describes the effect of the programming details from a user point of view, but does not describe the Code in detail.
Modified NASA-Lewis chemical equilibrium code for MHD applications
Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.
1979-01-01
A substantially modified version of the NASA-Lewis Chemical Equilibrium Code was recently developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. The effect of the programming details is described from a user point of view.
Heat transfer with thermal radiation on MHD particle–fluid
Indian Academy of Sciences (India)
... transfer on particle–fluid suspension induced by metachronal wave have been examined. The influence of magnetohydrodynamics (MHD) and thermal radiation are also taken into account with the help of Ohm's law and Roseland's approximation. The governing flow problem for Casson fluid model is based on continuity, ...
Merging of coronal and heliospheric numerical two dimensional MHD models
Czech Academy of Sciences Publication Activity Database
Odstrčil, Dušan; Linker, J. A.; Lionello, R.; Mikic, Z.; Riley, P.; Pizzo, J. V.; Luhmann, J. G.
2002-01-01
Roč. 107, A12 (2002), s. SSH14-1 - SSH14-11 ISSN 0148-0227 R&D Projects: GA AV ČR IAA3003003 Institutional research plan: CEZ:AV0Z1003909 Keywords : coronal mass ejection * interplanetary shock * numerical MHD simulation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.245, year: 2002
Numerical Simulation of 3D Viscous MHD Flows
National Research Council Canada - National Science Library
Golovachov, Yurii P; Kurakin, Yurii A; Schmidt, Alexander A; Van Wie, David M
2003-01-01
.... In such a case, 3D effects may be significant in the flow structure. The objective of the present paper is to investigate numerically the phenomena of shock wave interaction with boundary layer under the influence of the localised MHD effects.
Free convection effects and radiative heat transfer in MHD Stokes ...
Indian Academy of Sciences (India)
Abstract. The present note deals with the effects of radiative heat transfer and free convection in. MHD for a flow of an electrically conducting, incompressible, dusty viscous fluid past an impul- sively started vertical non-conducting plate, under the influence of transversely applied magnetic field. The heat due to viscous ...
High beta tokamaks. [MHD equilibrium, stability, and transport calculations
Energy Technology Data Exchange (ETDEWEB)
Dory, R.A.; Berger, D.P.; Charlton, L.A.; Hogan, J.T.; Munro, J.K.; Nelson, D.B.; Peng, Y.K.M.; Sigmar, D.J.; Strickler, D.J.
1978-01-01
MHD equilibrium, stability, and transport calculations are made to study the accessibility and behavior of ''high beta'' tokamak plasmas in the range ..beta.. approximately 5 to 15 percent. For next generation devices, beta values of at least 8 percent appear to be accessible and stable if there is a conducting surface nearby.
Unsteady MHD free convective flow past a vertical porous plate ...
African Journals Online (AJOL)
An attempt has been made to study the unsteady MHD free convective flow past a vertical porous plate immersed in a porous medium with Hall current, thermal diffusion and heat source. Analytical solution has been found depending on the physical parameters including the Hartmann number M, the Prandtl number Pr, the ...
Free convection effects and radiative heat transfer in MHD Stokes ...
Indian Academy of Sciences (India)
pp. 429–438. Free convection effects and radiative heat transfer in MHD. Stokes problem for the flow of dusty conducting fluid through porous medium. OM PRAKASH1,∗, DEVENDRA KUMAR2 and Y K DWIVEDI3. 1Department of Mathematics, Hindustan College of Science & Technology,. Farah Mathura 281 112, India.
Vigil, Ricardo
2014-01-01
Approved for public release; distribution is unlimited In 1979,W. B. Colson and S. K. Ride proposed a new kind of electron accelerator using a uniform magnetic field in combination with a circularly-polarized laser field. A key concept is to couple the oscillating electric field to the electron’s motion so that acceleration is sustained. This dissertation investigates the performance of the proposed laser accelerator using modern high powered lasers and mag-netic fields that are significan...
Sai, K.; Terada, N.; Katoh, Y.
2011-12-01
Accretion disks are common objects in universe and various phenomena in disks have been observed. They are thought to originate from MHD instabilities, especially the magneto-rotational instability (MRI) and/or the Parker instability. The MRI causes a turbulent state and amplifies the magnetic field in a disk [e.g., Balbus and Hawley, 1991; Hawley et al., 1995]. The MRI induces the angular momentum transport and dynamo effect in accretion disks and coagulation of dust grain in protoplanetary disks is also presumed. On the other hand, the Parker instability leads to gas outflow from disk surface, and is expected to play a major role in disk evolution [Suzuki et al., 2010]. Moreover, three-dimensional MHD simulation studies revealed complicated time evolution of the system, due to the interaction between the MRI and the Parker instability [e.g., Miller and Stone, 2000]. Thus, it is crucial to clarify the time evolution of MHD instabilities in disks for understanding the accretion disk physics. According to recent simulation studies, it is expected that initial magnetic field topology has a crucial effect on the time evolution of the system. For example, in an unstratified disk simulation, where density and pressure are uniform in the simulation domain, Hawley et al. [1995] showed that turbulence stress and magnetic energy in a purely poloidal filed case are two orders of magnitude greater than those of a purely azimuthal field case. Moreover, in a stratified disk model, where the poloidal component of gravitational acceleration by the central object is taken into consideration, and the density and pressure profiles have poloidal gradients to balance against the gravitational fields, Miller and Stone [2000] revealed the time evolution of the system, such as the alternation of density profile, the vertical motion of magnetic field lines, and the amplification of magnetic energy, are entirely different between purely poloidal and purely azimuthal field situations. Then
Hinterberger, F
2006-01-01
The principle of electrostatic accelerators is presented. We consider Cockcroft Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.
International Nuclear Information System (INIS)
Anon.
1975-01-01
Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)
Performance and flow characteristics of MHD seawater thruster
Energy Technology Data Exchange (ETDEWEB)
Doss, E.D.
1990-01-01
The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.
2002-01-01
The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.
Accelerating Value Creation with Accelerators
DEFF Research Database (Denmark)
Jonsson, Eythor Ivar
2015-01-01
accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also...... and developing the best business ideas and support the due diligence process. Even universities are noticing that the learning experience of the action learning approach is an effective way to develop capabilities and change cultures. Accelerators related to what has historically been associated...... have the same purpose as businesses: To create customers....
Takayama, Ken
2011-01-01
A broad class of accelerators rests on the induction principle whereby the accelerating electrical fields are generated by time-varying magnetic fluxes. Particularly suitable for the transport of bright and high-intensity beams of electrons, protons or heavy ions in any geometry (linear or circular) the research and development of induction accelerators is a thriving subfield of accelerator physics. This text is the first comprehensive account of both the fundamentals and the state of the art about the modern conceptual design and implementation of such devices. Accordingly, the first part of the book is devoted to the essential features of and key technologies used for induction accelerators at a level suitable for postgraduate students and newcomers to the field. Subsequent chapters deal with more specialized and advanced topics.
AUTHOR|(CDS)2266999
2017-01-01
CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...
Automated path length and M56 measurements at Jefferson Lab
International Nuclear Information System (INIS)
Hardy, D.; Tang, J.; Legg, R.
1997-01-01
Accurate measurement of path length and path length changes versus momentum (M 56 ) are critical for maintaining minimum beam energy spread in the CEBAF (Continuous Electron Beam Accelerator Facility) accelerator at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The relative path length for each circuit of the beam (1256m) must be equal within 1.5 degrees of 1497 MHz RF phase. A relative path length measurement is made by measuring the relative phases of RF signals from a cavity that is separately excited for each pass of a 4.2 μs pulsed beam. This method distinguishes the path length to less than 0.5 path length error. The development of a VME based automated measurement system for path length and M 56 has contributed to faster machine setup time and has the potential for use as a feedback parameter for automated control
International Nuclear Information System (INIS)
Yamamoto, Shunji; Ishii, Shozo; Kawamoto, Shigeshi; Hayashi, Izumi
1981-01-01
Experimental study on the dynamic stabilization of MHD instability with a pinch plasma generator was done, and the results were compared with the theoretical works. The previous results of theoretical analysis showed that a conducting shell worked effectively for the dynamic stabilization of MHD instability. The present experiment was carried out with a linear plasma generator which consisted of a discharge tube, a coil and a conducting shell. The macroscopic behavior of plasma was observed with an image converter camera, and the phenomena due to the instability was measured by a magnetic probe. A sine-cosine coil was employed for the observation of the growth of instability. The following results were obtained. When the frequency of RF current for dynamic stabilization was larger than the growth rate of instability, the experimental results were in agreement with the theoretical ones. The effect of a conducting shell was clearly seen. For the helical instability of short wave length, the dynamic stabilization was easily obtained even without a conducting shell. The self-reversal phenomena due to the helical instability of short wave length was suppressed by the RF current along the axis of a discharge tube. (Kato, T.)
International Nuclear Information System (INIS)
Armstrong, D.D.
1983-01-01
A 35-MeV 100-mA cw linear accelerator is being designed by Los Alamos for use in the Fusion Materials Irradiation Test (FMIT) Facility. Essential to this program is the design, construction, and evaluation of performance of the accelerator's injector, low-energy beam transport, and radio-frequency quadrupole sections before they are shipped to the facility site. The installation and testing of some of these sections have begun as well as the testing of the rf, noninterceptive beam diagnostics, computer control, dc power, and vacuum systems. An overview of the accelerator systems and the performance to date is given
Investigation of MHD instabilities and control in KSTAR preparing for high beta operation
International Nuclear Information System (INIS)
Park, Y.S.; Sabbagh, S.A.; Bialek, J.M.; Berkery, J.W.; Lee, S.G.; Ko, W.H.; Bak, J.G.; Jeon, Y.M.; Kim, J.; Hahn, S.H.; Yoon, S.W.; Lee, K.D.; You, K.-I.; Bae, Y.S.; Oh, Y.K.; Park, J.K.; Ahn, J.-W.; Choi, M.J.; Yun, G.S.; Park, H.K.
2013-01-01
Initial H-mode operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) is expanded to higher normalized beta and lower plasma internal inductance moving towards design target operation. As a key supporting device for ITER, an important goal for KSTAR is to produce physics understanding of MHD instabilities at long pulse with steady-state profiles, at high normalized beta, and over a wide range of plasma rotation profiles. An advance from initial plasma operation is a significant increase in plasma stored energy and normalized beta, with W tot = 340 kJ, β N = 1.9, which is 75% of the level required to reach the computed ideal n = 1 no-wall stability limit. The internal inductance was lowered to 0.9 at sustained H-mode duration up to 5 s. In ohmically heated plasmas, the plasma current reached 1 MA with prolonged pulse length up to 12 s. Rotating MHD modes are observed in the device with perturbations having tearing rather than ideal parity. Modes with m/n = 3/2 are triggered during the H-mode phase but are relatively weak and do not substantially reduce W tot . In contrast, 2/1 modes to date only appear when the plasma rotation profiles are lowered after H–L back-transition. Subsequent 2/1 mode locking creates a repetitive collapse of β N by more than 50%. Onset behaviour suggests the 3/2 mode is close to being neoclassically unstable. A correlation between the 2/1 mode amplitude and local rotation shear from an x-ray imaging crystal spectrometer suggests that the rotation shear at the mode rational surface is stabilizing. As a method to access the ITER-relevant low plasma rotation regime, plasma rotation alteration by n = 1, 2 applied fields and associated neoclassical toroidal viscosity (NTV) induced torque is presently investigated. The net rotation profile change measured by a charge exchange recombination diagnostic with proper compensation of plasma boundary movement shows initial evidence of non-resonant rotation damping by the n = 1, 2
Investigation of MHD instabilities and control in KSTAR preparing for high beta operation
Park, Y. S.; Sabbagh, S. A.; Bialek, J. M.; Berkery, J. W.; Lee, S. G.; Ko, W. H.; Bak, J. G.; Jeon, Y. M.; Park, J. K.; Kim, J.; Hahn, S. H.; Ahn, J.-W.; Yoon, S. W.; Lee, K. D.; Choi, M. J.; Yun, G. S.; Park, H. K.; You, K.-I.; Bae, Y. S.; Oh, Y. K.; Kim, W.-C.; Kwak, J. G.
2013-08-01
Initial H-mode operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) is expanded to higher normalized beta and lower plasma internal inductance moving towards design target operation. As a key supporting device for ITER, an important goal for KSTAR is to produce physics understanding of MHD instabilities at long pulse with steady-state profiles, at high normalized beta, and over a wide range of plasma rotation profiles. An advance from initial plasma operation is a significant increase in plasma stored energy and normalized beta, with Wtot = 340 kJ, βN = 1.9, which is 75% of the level required to reach the computed ideal n = 1 no-wall stability limit. The internal inductance was lowered to 0.9 at sustained H-mode duration up to 5 s. In ohmically heated plasmas, the plasma current reached 1 MA with prolonged pulse length up to 12 s. Rotating MHD modes are observed in the device with perturbations having tearing rather than ideal parity. Modes with m/n = 3/2 are triggered during the H-mode phase but are relatively weak and do not substantially reduce Wtot. In contrast, 2/1 modes to date only appear when the plasma rotation profiles are lowered after H-L back-transition. Subsequent 2/1 mode locking creates a repetitive collapse of βN by more than 50%. Onset behaviour suggests the 3/2 mode is close to being neoclassically unstable. A correlation between the 2/1 mode amplitude and local rotation shear from an x-ray imaging crystal spectrometer suggests that the rotation shear at the mode rational surface is stabilizing. As a method to access the ITER-relevant low plasma rotation regime, plasma rotation alteration by n = 1, 2 applied fields and associated neoclassical toroidal viscosity (NTV) induced torque is presently investigated. The net rotation profile change measured by a charge exchange recombination diagnostic with proper compensation of plasma boundary movement shows initial evidence of non-resonant rotation damping by the n = 1, 2 applied
Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...
Directory of Open Access Journals (Sweden)
Liu Li
2012-09-01
Full Text Available Abstract Background Bioimpedance analysis (BIA has been reported as helpful in identifying hypervolemia. Observation data showed that hypervolemic maintenance hemodialysis (MHD patients identified using BIA methods have higher mortality risk. However, it is not known if BIA-guided fluid management can improve MHD patients’ survival. The objectives of the BOCOMO study are to evaluate the outcome of BIA guided fluid management compared with standard care. Methods This is a multicenter, prospective, randomized, controlled trial. More than 1300 participants from 16 clinical sites will be included in the study. The enrolment period will last 6 months, and minimum length of follow-up will be 36 months. MHD patients aged between 18 years and 80 years who have been on MHD for at least 3 months and meet eligibility criteria will be invited to participate in the study. Participants will be randomized to BIA arm or control arm in a 1:1 ratio. A portable whole body bioimpedance spectroscopy device (BCM—Fresenius Medical Care D GmbH will be used for BIA measurement at baseline for both arms of the study. In the BIA arm, additional BCM measurements will be performed every 2 months. The primary intent-to-treat analysis will compare outcomes for a composite endpoint of death, acute myocardial infarction, stroke or incident peripheral arterial occlusive disease between groups. Secondary endpoints will include left ventricular wall thickness, blood pressure, medications, and incidence and length of hospitalization. Discussions Previous results regarding the benefit of strict fluid control are conflicting due to small sample sizes and unstable dry weight estimating methods. To our knowledge this is the first large-scale, multicentre, prospective, randomized controlled trial to assess whether BIS-guided volume management improves outcomes of MHD patients. The endpoints of the BOCOMO study are of utmost importance to health care providers. In order to obtain
Divergence-free MHD Simulations with the HERACLES Code
Directory of Open Access Journals (Sweden)
Vides J.
2013-12-01
Full Text Available Numerical simulations of the magnetohydrodynamics (MHD equations have played a significant role in plasma research over the years. The need of obtaining physical and stable solutions to these equations has led to the development of several schemes, all requiring to satisfy and preserve the divergence constraint of the magnetic field numerically. In this paper, we aim to show the importance of maintaining this constraint numerically. We investigate in particular the hyperbolic divergence cleaning technique applied to the ideal MHD equations on a collocated grid and compare it to the constrained transport technique that uses a staggered grid to maintain the property. The methods are implemented in the software HERACLES and several numerical tests are presented, where the robustness and accuracy of the different schemes can be directly compared.
Convective and radiative heat transfer in MHD radiant boilers
Im, K. H.; Ahluwalia, R. K.
1981-10-01
A combined convection-gas radiation, two-zone flow model is formulated for study of the heat transfer characteristics of MHD radiant boilers. The radiative contributions of carbon dioxide, water vapor, potassium atoms, and slag particles are included in the formulation, and are determined by solving the radiation transport equation using the P1 approximation. The scattering and absorption cross sections of slag particles are calculated from Mie theory. The model is used to analyze the scale-up of heat transfer in radiant boilers with refractory thickness, wall emissivity, and boiler size under conditions of a gas composition and slag particle spectrum typical of coal-fired MHD combustion. A design procedure is suggested for sizing radiant boilers so as to achieve the required heat extraction rate and to provide a flow residence time that is adequate for decomposition of NO(x) to acceptable levels.
MHD activity triggered by monster sawtooth crashes on Tore Supra
International Nuclear Information System (INIS)
Maget, P; Artaud, J-F; Eriksson, L-G; Huysmans, G; Lazaros, A; Moreau, P; Ottaviani, M; Segui, J-L; Zwingmann, W
2005-01-01
The crash of monster sawteeth in Tore Supra ion cyclotron resonance heated plasmas is observed to trigger long-lived magneto hydrodynamic (MHD) activity, dominated by a (m = 3, n = 2) magnetic perturbation at the edge. This phenomenon is reminiscent of the triggering of neoclassical tearing modes, although in Tore Supra the MHD activity decays and eventually vanishes. It can be explained by the linear destabilization of the (3, 2) mode as the current sheet developed in the non-linear stage of the internal kink relaxation gets closer to q = 3/2. However, the lifetime of the (3, 2) island is longer than the period of linear instability. We find that the neoclassical drive is essential for explaining the observed lifetime and width of the island, although the overall dynamics is controlled by the relaxation of the current profile on a resistive time scale
Ceramic component for M.H.D electrode
International Nuclear Information System (INIS)
Marchant, D.D.; Bates, J.L.
1980-01-01
A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hfsub(x)Insub(y)Asub(z)O 2 where x = 0.1 to 0.4, y = 0.3 to 0.6, z = 0.1 to 0.4 and A is a rare earth or yttrium. The rare earth may be Yb, Tb, Pr or Ce. The component is suitable for use in the fabrication of MHD electrodes or as the current lead-out portion of a composite electrode with other ceramic components. An MHD electrode comprises a cap of a known ceramic, e.g. stabilised zirconium or hafnium oxide or terbium stabilised hafnium, a current lead-out ceramic according to the invention, and a copper frame. (author)
Nonlinear MHD simulations of spherical tokamak and helical plasmas
Energy Technology Data Exchange (ETDEWEB)
Hayashi, T.; Mizuguchi, N.; Miura, H.; Kanno, R.; Nakajima, N.; Okamoto, M. [National Inst. for Fusion Science, Toki, Gifu (Japan)
2002-11-01
Nonlinear magnetohydrodynamic (MHD) simulations on relaxation phenomena in a spherical tokamak and a helical plasma, including three-dimensional (3D) equilibrium computations, are executed in full toroidal geometries. For a spherical tokamak, two-step evolution of the medium-n ballooning instabilities and a successive excitation of an internal n=1 crash has been observed. A similar process has been observed in an actual tokamak experiment of TFTR. The process is compared with a previous simulation for another MHD activity that is called the internal reconnection event (IRE). Three dimensional equilibrium code HINT is modified to extend functions, by which an n=1 island structure used for the local island diverter (LID) experiment in the LHD device is analyzed in finite pressure equilibria. Nonlinear simulations are executed for LHD plasma and pressure deformation due to evolution of m=2/n=1 pressure driven mode is observed, which has larger growth rate and saturation level than medium-n ballooning modes. (author)
Report on the MHD performance demonstration experiment
Starr, R. F.; Christensen, L. S.; Whitehead, G. L.; Garrison, G. W.; Seiber, B. L.; Lowry, R. L.
1980-10-01
Initial experimental results were obtained with the channel configured in the Faraday mode. The resistive loading was selected to give low supersonic velocities over the entire channel length. Tests were conducted at magnetic fields up to 4.1 Telsa (T) (70 percent of design). Up to 23.5 MW of power were produced to date (50 percent of design) for an enthalpy extraction of approximately 9 percent. Several electrical and hardware deterioration problems developed during operation. High voltage electrical failures, such as arcs to ground at several locations at the high voltage end of the system and in the load circuit occurred. Nozzle erosion and significant electrode cap ablation near the channel inlet were also observed.
An Unsplit Godunov Method for Ideal MHD via Constrained Transport
Gardiner, Thomas A.; Stone, James M.
2005-01-01
We describe a single step, second-order accurate Godunov scheme for ideal MHD based on combining the piecewise parabolic method (PPM) for performing spatial reconstruction, the corner transport upwind (CTU) method of Colella for multidimensional integration, and the constrained transport (CT) algorithm for preserving the divergence-free constraint on the magnetic field. We adopt the most compact form of CT, which requires the field be represented by area-averages at cell faces. We demonstrate...
Flow of MHD Carreau Fluid in a Curved Channel
Directory of Open Access Journals (Sweden)
Saima Noreen
2013-01-01
Full Text Available Analysis has been made for the curvature effects on the MHD peristaltic flow of an incompressible Carreau fluid in a channel. The flow problem is first reduced in the wave frame of reference and then solved after employing the long wavelength and low Reynolds number approximations. Expressions of stream function, pressure gradient, magnetic force function, induced magnetic field and current density are derived and then examined for various parameters of interest.
MHD seed recovery and regeneration, Phase II. Final report
Energy Technology Data Exchange (ETDEWEB)
1994-10-01
This final report summarizes the work performed by the Space and Technology Division of the TRW Space and Electronics Group for the U.S. Department of Energy, Pittsburgh Energy Technology Center for the Econoseed process. This process involves the economical recovery and regeneration of potassium seed used in the MHD channel. The contract period of performance extended from 1987 through 1994 and was divided into two phases. The Phase II test results are the subject of this Final Report. However, the Phase I test results are presented in summary form in Section 2.3 of this Final Report. The Econoseed process involves the treatment of the potassium sulfate in spent MHD seed with an aqueous calcium formate solution in a continuously stirred reactor system to solubilize, as potassium formate, the potassium content of the seed and to precipitate and recover the sulfate as calcium sulfate. The slurry product from this reaction is centrifuged to separate the calcium sulfate and insoluble seed constituents from the potassium formate solution. The dilute solids-free potassium formate solution is then concentrated in an evaporator. The concentrated potassium formate product is a liquid which can be recycled as a spray into the MHD channel. Calcium formate is the seed regenerant used in the Econoseed process. Since calcium formate is produced in the United States in relatively small quantities, a new route to the continuous production of large quantities of calcium formate needed to support an MHD power industry was investigated. This route involves the reaction of carbon monoxide gas with lime solids in an aqueous medium.
Goya - an MHD equilibrium code for toroidal plasmas
International Nuclear Information System (INIS)
Scheffel, J.
1984-09-01
A description of the GOYA free-boundary equilibrium code is given. The non-linear Grad-Shafranov equation of ideal MHD is solved in a toroidal geometry for plasmas with purely poloidal magnetic fields. The code is based on a field line-tracing procedure, making storage of a large amount of information on a grid unnecessary. Usage of the code is demonstrated by computations of equi/libria for the EXTRAP-T1 device. (Author)
Two-dimensional simulation of the MHD stability, (1)
International Nuclear Information System (INIS)
Kurita, Gen-ichi; Amano, Tsuneo.
1976-03-01
The two-dimensional computer code has been prepared to study MHD stability of an axisymmetric toroidal plasma with and without the surrounding vacuum region. It also includes the effect of magnetic surfaces with non-circular cross sections. The linearized equations of motion are solved as an initial value problem. The results by computer simulation are compared with those by the theory for the cylindrical plasma; they are in good agreement. (auth.)
MHD Sausage Waves in Compressible Magnetically Twisted Flux Tubes
Fedun, Viktor
Recent high-resolution satellites clearly prove the existence of various types of theoretically predicted MHD waves in solar atmospheric magnetic structures (loops, arcades ets). Oscillations of magnetic flux tubes are of great importance as they contain information about the geometry and fine structure of the flux tubes. In this work we study the details of the effects caused by the presence of magnetic twist in flux tubes. The propagation of surface and body linear MHD modes in a twisted magnetic flux tube embedded in a magnetically twisted plasma environment is considered. We derive and analytically solve the linear governing equations of wave propagation for sausage surface and body modes of a magnetically-twisted compressible flux tube embedded in a compressible uniformly-magnetized plasma environment in cylindrical geometry in terms of Kummer's functions. Numerical solutions for the phase velocity are obtained for a wide range of wavenumbers and for varying magnetic twist. The effect of magnetic twist on the period of oscillations of sausage surface modes for different values of the wavenumber and vertical magnetic field strength is calculated for representative photospheric and coronal conditions. These results generalize and extend previous studies of MHD waves obtained for incompressible or compressible but non-twisted flux tubes. It is found that magnetic twist may change the period of sausage surface waves by the order of a few per cent when compared to counterparts in straight non-twisted flux tubes. This information will be most relevant, when high-resolution observations are used for diagnostic exploration of MHD wave guides in analogy to solar-interior studies by means of global eigenoscillations in helioseismology. Further detailed analysis is necessary in order to find the dispersion relation for more realistic cases, where the magnetic twist diminishes with distance from the tube. Finally, observational relevances will be discussed in light of the
Computer Controlled MHD Power Consolidation and Pulse Generation System
1990-08-01
applying the PASC technology to the diagonal generator connection. 3.2.1 Modeling the PASC Process Using EMTP 15 3.2.2 Discussion of Results 15...consolidation dc diagonal mode EMTP EPRI Faraday mode GTO Hz inversion I/O MHD Mosfet Mux MWe PASC RTX RTXEB SBC snubber SPICE SRAM Tesla...shown were obtained using the Elec- tromagnetic Transients Program ( EMTP ), to integrate the circuit configuration given. 14 The results indicate that
Two-dimensional simulation of the MHD stability, (2)
International Nuclear Information System (INIS)
Kurita, Gen-ichi; Amano, Tsuneo.
1977-09-01
Growth rate and eigen-function of the MHD instability of a toroidal plasma were calculated numerically as an initial-boundary value problem. When a conducting shell is away from the plasma, toroidicity hardly influences growth rate of the external kink modes in a slender tokamak, but it stabilizes the modes in a fat tokamak. On the other hand, when the shell is near to the plasma, the unstable external modes are stabilized by both toroidicity and shell effect. (auth.)
HPC parallel programming model for gyrokinetic MHD simulation
International Nuclear Information System (INIS)
Naitou, Hiroshi; Yamada, Yusuke; Tokuda, Shinji; Ishii, Yasutomo; Yagi, Masatoshi
2011-01-01
The 3-dimensional gyrokinetic PIC (particle-in-cell) code for MHD simulation, Gpic-MHD, was installed on SR16000 (“Plasma Simulator”), which is a scalar cluster system consisting of 8,192 logical cores. The Gpic-MHD code advances particle and field quantities in time. In order to distribute calculations over large number of logical cores, the total simulation domain in cylindrical geometry was broken up into N DD-r × N DD-z (number of radial decomposition times number of axial decomposition) small domains including approximately the same number of particles. The axial direction was uniformly decomposed, while the radial direction was non-uniformly decomposed. N RP replicas (copies) of each decomposed domain were used (“particle decomposition”). The hybrid parallelization model of multi-threads and multi-processes was employed: threads were parallelized by the auto-parallelization and N DD-r × N DD-z × N RP processes were parallelized by MPI (message-passing interface). The parallelization performance of Gpic-MHD was investigated for the medium size system of N r × N θ × N z = 1025 × 128 × 128 mesh with 4.196 or 8.192 billion particles. The highest speed for the fixed number of logical cores was obtained for two threads, the maximum number of N DD-z , and optimum combination of N DD-r and N RP . The observed optimum speeds demonstrated good scaling up to 8,192 logical cores. (author)
Intermittency in MHD turbulence and coronal nanoflares modelling
Directory of Open Access Journals (Sweden)
P. Veltri
2005-01-01
Full Text Available High resolution numerical simulations, solar wind data analysis, and measurements at the edges of laboratory plasma devices have allowed for a huge progress in our understanding of MHD turbulence. The high resolution of solar wind measurements has allowed to characterize the intermittency observed at small scales. We are now able to set up a consistent and convincing view of the main properties of MHD turbulence, which in turn constitutes an extremely efficient tool in understanding the behaviour of turbulent plasmas, like those in solar corona, where in situ observations are not available. Using this knowledge a model to describe injection, due to foot-point motions, storage and dissipation of MHD turbulence in coronal loops, is built where we assume strong longitudinal magnetic field, low beta and high aspect ratio, which allows us to use the set of reduced MHD equations (RMHD. The model is based on a shell technique in the wave vector space orthogonal to the strong magnetic field, while the dependence on the longitudinal coordinate is preserved. Numerical simulations show that injected energy is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. Due to the strong longitudinal magnetic field, dissipative structures propagate along the loop, with the typical speed of the Alfvén waves. The statistical analysis on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics. Moreover the recent observations of non thermal velocity measurements during flare occurrence are well described by the numerical results of the simulation model. All these results naturally emerge from the model dynamical evolution without any need of an ad-hoc hypothesis.
The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models
Hesse, Michael; Birn, Joachim
2011-01-01
Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.
MHD magnet technology development program summary, September 1982
Energy Technology Data Exchange (ETDEWEB)
1983-11-01
The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.
Magnus: A New Resistive MHD Code with Heat Flow Terms
Navarro, Anamaría; Lora-Clavijo, F. D.; González, Guillermo A.
2017-07-01
We present a new magnetohydrodynamic (MHD) code for the simulation of wave propagation in the solar atmosphere, under the effects of electrical resistivity—but not dominant—and heat transference in a uniform 3D grid. The code is based on the finite-volume method combined with the HLLE and HLLC approximate Riemann solvers, which use different slope limiters like MINMOD, MC, and WENO5. In order to control the growth of the divergence of the magnetic field, due to numerical errors, we apply the Flux Constrained Transport method, which is described in detail to understand how the resistive terms are included in the algorithm. In our results, it is verified that this method preserves the divergence of the magnetic fields within the machine round-off error (˜ 1× {10}-12). For the validation of the accuracy and efficiency of the schemes implemented in the code, we present some numerical tests in 1D and 2D for the ideal MHD. Later, we show one test for the resistivity in a magnetic reconnection process and one for the thermal conduction, where the temperature is advected by the magnetic field lines. Moreover, we display two numerical problems associated with the MHD wave propagation. The first one corresponds to a 3D evolution of a vertical velocity pulse at the photosphere-transition-corona region, while the second one consists of a 2D simulation of a transverse velocity pulse in a coronal loop.
MHD magnet technology development program summary, September 1982
International Nuclear Information System (INIS)
1983-11-01
The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references
Relaxed MHD equilibria inside 3D shaped conducting surfaces
Hassam, A.; Tenbarge, J.; Dorland, W.; Landreman, M.; Sengupta, W.
2017-10-01
A 3D nonlinear dissipative MHD code is developed to allow relaxation to low-beta MHD equilibrium inside a shaped 3D conducting boundary with prescribed conserved axial magnetic flux and no external current. Formation of magnetic islands is allowed. Heat sources would be eventually introduced to allow possible non-stationary convection depending on the MHD stability properties. The initial development is done using UMHD (Guzdar et al., PF, 1993). A primary objective is to minimize numerical boundary noise. In particular, codes which specify the normal magnetic field B.n on bounding surfaces are prone to boundary noise generation. We shape the boundary to conform to the desired field shape so that B.n is zero on the boundary, employing curvilinear coordinates. Significant noise reduction has been achieved by this approach. Boundary noise is strongly suppressed if the boundary is modeled as a sharp ramp-down in resistivity, allowing relaxation to equilibrium but no penetration into the low resistivity region. Initial results have been verified w.r.t. analytic calculation in the weak shaping limit. A rotational transform is observed in helical shaping. Relaxed equilibria inside helically symmetric conducting boundaries will be presented.
Direct numerical simulation of MHD flow with electrically conducting wall
International Nuclear Information System (INIS)
Satake, S.; Kunugi, T.; Naito, N.; Sagara, A.
2006-01-01
The 2D vortex problem and 3D turbulent channel flow are treated numerically to assess the effect of electrically conducting walls on turbulent MHD flow. As a first approximation, the twin vortex pair is considered as a model of a turbulent eddy near the wall. As the eddy approaches and collides with the wall, a high value electrical potential is induced inside the wall. The Lorentz force, associated with the potential distribution, reduces the velocity gradient in the near-wall region. When considering a fully developed turbulent channel flow, a high electrical conductivity wall was chosen to emphasize the effect of electromagnetic coupling between the wall and the flow. The analysis was performed using DNS. The results are compared with a non-MHD flow and MHD flow in the insulated channel. The mean velocity within the logarithmic region in the case of the electrically conducting wall is slightly higher than that in the non-conducting wall case. Thus, the drag is smaller compared to that in the non-conducting wall case due to a reduction of the Reynolds stress in the near wall region through the Lorentz force. This mechanism is explained via reduction of the production term in the Reynolds shear stress budget
Coal-fired magnetohydrodynamic (MHD) electric power generation
International Nuclear Information System (INIS)
Sens, P.F.
1992-01-01
Since 1986 Directorate-General XII 'Science, Research and Development' of the Commission of the European Communities has kept a watching brief on the development of coal-fired magnetohydrodynamic (MHD) electric power generation from the 'solid fuels' section of its non-nuclear energy R and D programme. It established, in 1987, the Faraday Working Group (FWG) to assess the development status of coal-fired MHD and to evaluate its potential contribution to the future electricity production in the Community. The FWG expressed as its opinion, at the end of 1987, that in sufficient data were available to justify a final answer to the question about MHD's potential contribution to future electricity production and recommended that studies be undertaken in three areas; (i) the lifetime of the generator, (ii) cost and performance of direct air preheating, (iii) cost and efficiency of seed recovery/reprocessing. These studies were contracted and results were presented in the extended FWG meeting on 15 November 1990, for an audience of about 70 people. The present volume contains the proceedings of this meeting. The introduction describes the reasons for establishing the FWG, its activities and the content of its extended meeting followed by the summary of the discussions and the concluding remarks of this meeting. The main part of the volume consists of the text either of the oral presentations during the meeting or of the final reports resulting from the studies under contract
Igochine, Valentin
2007-01-01
A new combined method for an investigation of the MHD activities in fusion experiments has been developed. The main advantages of this approach are the simultaneous use of several diagnostics (magnetic probes, soft X-ray cameras, electron cyclotron emission and motional Stark effect diagnostics) and the possibility for a direct comparison of theory predictions with the experimental observations. This method has been implemented into the MHD Interpretation Code (MHD-IC) and allows to investiga...
A study of some recent advances in the concept and design of MHD generators
International Nuclear Information System (INIS)
Vakilian, M.
1976-02-01
Direct conversion of energy and high temperature working fluid making Magnetohydrodynamics (MHD) power plants potentially much more efficient than steam power stations. The study indicates an overall efficiency of 50% to 60%. This compares with most modern fossil-fuel plants at 40% efficiency. Advances in design and construction of experimental and commercial MHD plants developed in various countries are presented. Environmental effects and advantages of the MHD power plants over the more conventional fossil and nuclear plants are discussed
Preliminary analysis of MHD-brayton cycle applied to fusion reactor (CFAB)
Energy Technology Data Exchange (ETDEWEB)
Ishikawa, M.; Inui, Y.; Umoto, J. [Kyoto Univ. (Japan)] [and others
1994-12-31
A compact fusion advanced Rankine cycle (CFAR) has been proposed and analyzed for a radiation-enhanced {open_quotes}microwave{close_quotes} tokamak reactor with non-equilibrium MHD. Then the authors would like to show now possibility of MHD-Brayton cycle using helium applied to future fusion reactors. A disk type will be selected as an MHD generator. The basic equations used for the gas dynamical part are one-dimensional Navier Stokes, equations, of which quantities vary only along the plasma flow direction. The basic equations for the electrodynamical part are the Maxwell equations and the generalized Ohm`s law. Two kinds of electrical power system are proposed: (a) a pure MHD cycle which consists of MHD generator and compressor; (b) an MHD-gasturbine combined cycle which consists of MHD generator, gasturbine-synchronous generator and compressor. Thermal input into MHD generator is kept constant at 400 MW. It is assumed that five MHD generation systems are combined into one fusion reactor of which thermal output ranges from about 1050 MW to 1180 MW.
Pressure, Chaotic Magnetic Fields and MHD Equilibria
Energy Technology Data Exchange (ETDEWEB)
S.R. Hudson & N. Nakajima
2010-05-12
Analyzes of plasma behavior often begin with a description of the ideal magnetohydrodynamic equilibrium, this being the simplest model capable of approximating macroscopic force balance. Ideal force balance is when the pressure gradient is supported by the Lorentz force, ∇p = j x B. We discuss the implications of allowing for a chaotic magnetic field on the solutions to this equation. We argue that the solutions are pathological and not suitable for numerical calculations. If the pressure and magnetic Field are continuous, the only non-trivial solutions have an uncountable infinity of discontinuities in the pressure gradient and current. The problems arise from the arbitrarily small length scales in the structure of the field, and the consequence of ideal force balance that the pressure is constant along the Field-lines, B • ∇p = 0. A simple method to ameliorate the singularities is to include a small but Finite perpendicular diffusion. A self-consistent set of equilibrium equations is described and some algorithmic approaches aimed at solving these equations are discussed.
Improvements of characteristics of open cycle Faraday type MHD power generator
International Nuclear Information System (INIS)
Yoshida, Masaharu; Umoto, Juro; Aoki, Sigeo
1982-01-01
MHD power generators are classified into two types: Faraday type and diagonal type (including Hall type). It is considered also in Faraday type generators that the characteristics can be improved further by selecting the aspect ratio appropriately, and employing cap electrodes which approach diagonal conducting side-wall type from parallel plate electrodes. First, the three-dimensional analysis using a new equivalent circuit is introduced, in which finite electrode division and working gas boundary layer are considered using the generalized Ohm's law, Maxwell's electromagnetic equations and others. The above described improvement of characteristics is investigated numerically fully applying this analyzing method. If the wall temperature is low, the increase in the aspect ratio of a generating duct cross-section considerably improves the characteristics because plasma non-uniformity decreases. If the cap electrodes having an optimum side-wall length are used, the output increases considerably because the load current is given and received through the side-wall electrodes. Efficiency is a little lower than the case using parallel plate electrodes. Therefore, if the aspect ratio is taken sufficiently large, and the cap electrodes with optimum side-wall electrode length are used, the generator characteristics are greatly improved since the above mentioned effects are multiplied. (Wakatsuki, Y.)
Energy Technology Data Exchange (ETDEWEB)
NONE
1980-03-01
Examination was conducted in detail on an MHD generation system by coal combustion, with the results reported. Concerning a gas table calculation program in coal combustion, it was prepared assuming 100% slag removal ratio in the combustor as the primary approximation. A combustor for MHD generation needs to efficiently burn fuel using high temperature pre-heated air as the oxidant, to fully dissociate/electrolytically dissociate seed, and to supply to the generation channel a high speed combustion gas plasma having a high electrical conductivity which is required for MHD generation. This year, an examination was conducted on technological problems in burning coal in an MHD combustor. As for the NOx elimination system in an MHD generation plant, an examination was made if the method studied so far in MHD generation using heavy oil as the fuel is applicable to coal. Also investigated and reviewed were various characteristics, change in physical properties, recovery method, etc., in a mixed state of seed and slag in the case of coal combustion MHD. (NEDO)
Flare particle acceleration in the interaction of twisted coronal flux ropes
Threlfall, J.; Hood, A. W.; Browning, P. K.
2018-03-01
Aim. The aim of this work is to investigate and characterise non-thermal particle behaviour in a three-dimensional (3D) magnetohydrodynamical (MHD) model of unstable multi-threaded flaring coronal loops. Methods: We have used a numerical scheme which solves the relativistic guiding centre approximation to study the motion of electrons and protons. The scheme uses snapshots from high resolution numerical MHD simulations of coronal loops containing two threads, where a single thread becomes unstable and (in one case) destabilises and merges with an additional thread. Results: The particle responses to the reconnection and fragmentation in MHD simulations of two loop threads are examined in detail. We illustrate the role played by uniform background resistivity and distinguish this from the role of anomalous resistivity using orbits in an MHD simulation where only one thread becomes unstable without destabilising further loop threads. We examine the (scalable) orbit energy gains and final positions recovered at different stages of a second MHD simulation wherein a secondary loop thread is destabilised by (and merges with) the first thread. We compare these results with other theoretical particle acceleration models in the context of observed energetic particle populations during solar flares.
International Nuclear Information System (INIS)
Tuniz, C.
1997-01-01
Particle accelerators have been developed more than sixty years ago to investigate nuclear and atomic phenomena. A major shift toward applications of accelerators in the study of materials structure and composition in inter-disciplinary projects has been witnessed in the last two decades. The Australian Nuclear Science and Technology Organisation (ANSTO) has developed advanced research programs based on the use of particle and photon beams. Atmospheric pollution problems are investigated at the 3 MV Van de Graff accelerator using ion beam analysis techniques to detect toxic elements in aerosol particles. High temperature superconductor and semiconductor materials are characterised using the recoil of iodine and other heavy ions produced at ANTARES, the 10-MV Tandem accelerator. A heavy-ion microprobe is presently being developed at ANTARES to map elemental concentrations of specific elements with micro-size resolution. An Accelerator mass Spectrometry (AMS) system has been developed at ANSTO for the ultra-sensitive detection of Carbon-14, Iodine-129 and other long-lived radioisotopes. This AMS spectrometer is a key instrument for climate change studies and international safeguards. ANSTO is also managing the Australian Synchrotron Research program based on facilities developed at the Photon Factory (Japan) and at the Advanced Photon Source (USA). Advanced projects in biology, materials chemistry, structural condensed matter and other disciplines are being promoted by a consortium involving Australian universities and research institutions. This paper will review recent advances in the use of particle accelerators, with a particular emphasis on applications developed at ANSTO and related to problems of international concern, such as global environmental change, public health and nuclear proliferation
Electron Acceleration In Impulsive Solar Flares : extract of a thesis
Lenters, G T
1999-01-01
Impulsive solar flares generate a wide range of photon and particle emissions and hence provide an excellent backyard laboratory for studying particle acceleration processes in astrophysical plasmas. The source of the acceleration remains unidentified, but the basic observations are clear: (1) Hard X-ray and gamma-ray line emission occur simultaneously, indicating that electron and ion acceleration must occur simultaneously; (2) the electron and ion precipitation rates at the foot-points of the flare must be extremely large to account for the photon emission (∼1037 electrons s −1 and ∼1035 protons s−1, respectively), which means that replenishment of the acceleration region (which contains ≈1037 fully ionized hydrogen atoms) is a crucial issue; and (3) there are enhancements of the heavy ion abundances relative to normal coronal values. The basic model proposed assumes the generation of extremely low levels of magnetohydrodynamic (MHD) turb...
International Nuclear Information System (INIS)
Anon.
1979-01-01
Operations of the SuperHILAC, the Bevatron/Bevalac, and the 184-inch Synchrocyclotron during the period from October 1977 to September 1978 are discussed. These include ion source development, accelerator facilities, the Heavy Ion Spectrometer System, and Bevelac biomedical operations
International Nuclear Information System (INIS)
Hemmerich, J.; Kupschus, P.; Fraenkle, H.
1983-01-01
The acceleration grid is used in nuclear fusion technique as an ion beam grid. It consists of perforated plates at different potentials situated behind one another in the axial movement direction of their through holes. In order to prevent interference in the perforated hole area due to thermal expansion, the perforated plates are fixed with elastic springiness (plate fields) at their edges. (DG) [de
CERN. Geneva HR-RFA; Métral, E
2006-01-01
1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges
International Nuclear Information System (INIS)
Anon.
1980-01-01
This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right
International Nuclear Information System (INIS)
Anon.
1995-01-01
When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS
Accelerating abelian gauge dynamics
Adler, Stephen Louis
1991-01-01
In this paper, we suggest a new acceleration method for Abelian gauge theories based on linear transformations to variables which weight all length scales equally. We measure the autocorrelation time for the Polyakov loop and the plaquette at β=1.0 in the U(1) gauge theory in four dimensions, for the new method and for standard Metropolis updates. We find a dramatic improvement for the new method over the Metropolis method. Computing the critical exponent z for the new method remains an important open issue.
Buttery, Richard
2011-08-01
This annual workshop on MHD Stability Control has been held since 1996 with a focus on understanding and developing control of MHD instabilities for future fusion reactors. The workshop generally covers a wide range of stability topics: from disruptions, to tearing modes, error fields, ELMs, resistive wall modes (RWMs) and ideal MHD. It spans many device types, particularly tokamaks, stellarators and reversed field pinches, to pull out commonalities in the physics and improve understanding. In 2010 the workshop was held on 15-17 November at the University of Wisconsin in Madison and was combined with the annual US-Japan MHD Workshop. The theme was `3D Magnetic Field Effects in MHD Control', with a focus on multidisciplinary sessions exploring issues of plasma response to 3D fields, the manifestation of such fields in the plasma, and how they influence stability. This has been a topic of renewed interest, with utilisation of 3D fields for ELM control now planned in ITER, and a focus on the application of such fields for error field correction, disruption avoidance, and RWM control. Key issues included the physics of the interaction, types of coils and harmonic spectra needed to control instabilities, and subsidiary effects such as braking (or rotating) the plasma. More generally, a wider range of issues were discussed including RWM physics, tearing mode physics, disruption mitigation, ballooning stability, the snowflake divertor concept, and the line tied pinch! A novel innovation to the meeting was a panel discussion session, this year on Neoclassical Toroidal Viscosity, which ran well; more will be tried next year. In this special section of Plasma Physics and Controlled Fusion we present several of the invited and contributed papers from the 2010 workshop, which have been subject to the normal refereeing procedures of the journal. These papers give a sense of the exceptional quality of the presentations at this workshop, all of which may be found at http://fusion.gat.com/conferences/mhd
Accelerator vacuum system elements
International Nuclear Information System (INIS)
Sivokon', V.V.; Kobets, A.F.; Shvetsov, V.A.; Sivokon', L.V.
1980-01-01
Some elements of vacuum systems are investigated. Considerable attention has been given to the investigation into peculiarities in pumping out of a ionoguide for transportation of an accelerated charged particles beam the spread of which often attains a considerable length. The number of pumps over the ionoguide length is experimentally determined. It is shown that as a result of ionoguide warm-up the pumping out time is considerably reduced maximum permissible pressure is decreased by two orders and lesser rate of pump pumping out is required. The investigations have shown that when operating the ionoguide there is no necessity in setting up seals between the ionoguide and magnetodischarged pump. The causes of the phenomenon in which the pressure near the pump is greater than in the end of the ionoguide, are impurities carried in by the pump into the ionoguide volume and the pumping out capacity of the pressure converter
Chemical reaction in MHD flow past a vertical plate with mass ...
African Journals Online (AJOL)
Chemical reaction plays an important role in MHD flow. It has industrial applications, such as design of chemical processing equipments, food processing and cooling towers etc. In the present paper, chemical reaction effect on a viscous, incompressible and electrically conducting fluid with unsteady MHD flow past an ...
Design of heat-recovery and seed-recovery units in MHD power generation
Energy Technology Data Exchange (ETDEWEB)
Bergman, P.D.; Joubert, J.I.; Demski, R.J.; Bienstock, D.
1974-01-01
Crucial and limiting engineering and materials problems associated with the design of an MHD steam bottoming plant are discussed. Existing experimental and theoretical results on corrosion, fouling and deposits, potassium seed recovery and regeneration, are reviewed. The state of knowledge regarding the design of heat recovery and seed recovery units for coal-fired MHD plants is inadequate at the present time.
The optimization air separation plants for combined cycle MHD-power plant applications
Juhasz, A. J.; Springmann, H.; Greenberg, R.
1980-01-01
Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.
Numerical study of shock waves in non-ideal magnetogasdynamics (MHD
Directory of Open Access Journals (Sweden)
Addepalli Ramu
2016-01-01
Full Text Available One-dimensional unsteady adiabatic flow of strong converging shock waves in cylindrical or spherical symmetry in MHD, which is propagating into plasma, is analyzed. The plasma is assumed to be non-ideal gas whose equation of state is of Mie–Gruneisen type. Suitable transformations reduce the governing equations into ordinary differential equations of Poincare type. In the present work, McQueen and Royce equations of state (EOS have been considered with suitable material constants and the spherical and cylindrical cases are worked out in detail to investigate the behavior and the influence on the shock wave propagation by energy input and β(ρ/ρ0, the measure of shock strength. The similarity solution is valid for adiabatic flow as long as the counter pressure is neglected. The numerical technique applied in this paper provides a global solution to the implosion problem for the flow variables, the similarity exponent α for different Gruneisen parameters. It is shown that increasing β(ρ/ρ0 does not automatically decelerate the shock front but the velocity and pressure behind the shock front increases quickly in the presence of the magnetic field and decreases slowly and become constant. This becomes true whether the piston is accelerated, is moving at constant speed or is decelerated. These results are presented through the illustrative graphs and tables. The magnetic field effects on the flow variables through a medium and total energy under the influence of strong magnetic field are also presented.
Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae
Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.
2018-01-01
Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.
MHD modeling of ATLAS experiments to study transverse shear interface interactions
Faehl, R J; Keinigs, R K; Lindemuth, I R
2001-01-01
Summary form only given. The transverse shear established at the interface of two solids moving at differential velocities on the order of the sound speed is being studied in experiments on the ATLAS capacitor bank at Los Alamos, beginning in August 2001. The ATLAS bank has finished certification tests and has demonstrated peak currents of 27.5 MA with a 5 microsecond risetime into an inductive load. One- and two-dimensional MHD calculations have been performed in support of these "friction-like" ATLAS experiments. Current flowing along the outer surface of a thick aluminum liner, roughly 8 mm thick, accelerates the solid liner to velocities ~1 km/s. This cylindrically imploding liner then impacts a target assembly, composed of alternating regions of high and low density materials. The different shock speeds in the two materials leads to a differential velocity along the interface. Shock heating, elastic- plastic flow, and stress transport are included in the calculations. Material strength properties are tre...
Liquid-metal MHD for solar and coal
Energy Technology Data Exchange (ETDEWEB)
Pierson, E.S.; Cohen, D.; Grammel, S.J.
1980-01-01
The two-phase-generator, liquid-metal magnetohydrodynamic (LMMHD) energy conversion system has an inherently thermodynamic efficiency for the same heat source and sink temperatures and is better suited for cogeneration than other conversion systems. For solar applications, attractive efficiencies in comparison with alternative systems are calculated at approx. 580 K and approx. 1090 K, and cogeneration advantages are indicated. For coal applications, recent coal combustion gas-copper reaction results show that the copper can be used to control SO/sub 2/ emissions. The calculated cycle efficiencies are comparable to those for open-cycle plasma MHD at combustor temperatures of 2220 K or less.
Ideal MHD beta-limits of poloidally asymmetric equilibria
International Nuclear Information System (INIS)
Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.
1981-05-01
The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in β/sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is β/sub critical/ approx. = 6.5%
Ideal MHD beta-limits of poloidally asymmetric equilibria
Energy Technology Data Exchange (ETDEWEB)
Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.
1981-05-01
The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in ..beta../sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is ..beta../sub critical/ approx. = 6.5%.
MHD simulation of a beat frequency heated plasma
International Nuclear Information System (INIS)
Milroy, R.D.; Capjack, C.E.; James, C.R.; McMullin, J.N.
1976-01-01
The heating of a plasma in a solenoid, with a beat frequency harmonic which is excited at a frequency near to that of a Langmuir mode in a plasma, is examined. It is shown that at high temperatures the heating rate is very insensitive to changes in plasma density. The amount of energy that can be coupled to a plasma in a solenoid with this heating scheme is investigated by using a one-dimensional computer code which incorporates an exact solution of the relevant MHD equations. The absorption of energy from a high powered laser is shown to be significantly enhanced with this process. (author)
Equations of state for self-excited MHD generator studies
Energy Technology Data Exchange (ETDEWEB)
Rogers, F.J.; Ross, M.; Haggin, G.L.; Wong, L.K.
1980-02-26
We have constructed a state-of-the-art equation of state (EOS) for argon covering the temperature density range attainable by currently proposed self-excited MHD generators. The EOS for conditions in the flow channel was obtained primarily by a non-ideal plasma code (ACTEX) that is based on a many body activity expansion. For conditions in the driver chamber the EOS was primarily obtained from a fluid code (HDFP) that calculates the fluid properties from perturbation theory based on the insulator interatomic pair potential but including electronic excitations. The results are in agreement with several sets of experimental data in the 0.6 - 91 GPa pressure range.
Temperature and density profiles of an MHD switch on shock
International Nuclear Information System (INIS)
Watson-Munro, C.N.; Bighel, L.; Collins, A.R.; Cramer, N.F.; Cross, R.C.
1975-02-01
An experimental study of the structure of MHD switch-on shock waves propagating into partially ionized hydrogen and helium plasmas is described. The variation of electron and ion temperatures through the shock front was studied as a function of the level of preionization. When the shock propagates into an almost fully ionized plasma, the electron temperatures rises well above the ion temperature due to resistive heating of the electrons. At low preionization levels however, the ion temperature rises above the electron temperature. These results indicate that ion-neutral collisions can play a dominant role in the dissipation of energy in a shock wave. (author)
Coupling to fast MHD eigenmodes in a toroidal cavity
International Nuclear Information System (INIS)
Paoloni, F.J.
1975-05-01
The coupling to fast MHD waves in toroidal-like geometry is calculated when eigenmodes exist in the plasma. The torus is considered to be a resonant cavity into which energy is coupled by a half turn loop. The cavity Q is calculated for the minority heating process, for cyclotron harmonic damping, electron transit-time magnetic pumping, wall loading, and Coulomb collisional damping. The problem of sustaining the eigenmode as the plasma conditions change with time is also discussed. One method that seems to be practical is a feedback scheme that varies the plasma major radius by a small amount as the conditions change. (U.S.)
MHD stability analyses of a tokamak plasma by time-dependent codes
International Nuclear Information System (INIS)
Kurita, Gen-ichi
1982-07-01
The MHD properties of a tokamak plasma are investigated by using time evolutional codes. As for the ideal MHD modes we have analyzed the external modes including the positional instability. Linear and nonlinear ideal MHD codes have been developed. Effects of the toroidicity and conducting shell on the external kink mode are studied minutely by the linear code. A new rezoning algorithm is devised and it is successfully applied to express numerically the axisymmetric plasma perturbation in a cylindrical geometry. As for the resistive MHD modes we have developed nonlinear codes on the basis of the reduced set of the resistive MHD equations. By using the codes we have studied the major disruption processes and properties of the low n resistive modes. We have found that the effects of toroidicity and finite poloidal beta are very important. Considering the above conclusion we propose a new scenario of the initiation of the major disruption. (author)
Studies of MHD stability using data mining technique in helical plasmas
International Nuclear Information System (INIS)
Yamamoto, Satoshi; Pretty, David; Blackwell, Boyd
2010-01-01
Data mining techniques, which automatically extract useful knowledge from large datasets, are applied to multichannel magnetic probe signals of several helical plasmas in order to identify and classify MHD instabilities in helical plasmas. This method is useful to find new MHD instabilities as well as previously identified ones. Moreover, registering the results obtained from data mining in a database allows us to investigate the characteristics of MHD instabilities with parameter studies. We introduce the data mining technique consisted of pre-processing, clustering and visualizations using results from helical plasmas in H-1 and Heliotron J. We were successfully able to classify the MHD instabilities using the criterion of phase differences of each magnetic probe and identify them as energetic-ion-driven MHD instabilities using parameter study in Heliotron J plasmas. (author)
Radiation heat transfer within an open-cycle MHD generator channel
Delil, A. A. M.
1983-05-01
Radiation heat transfer in an MHD generator was modeled using the Sparrow and Cess model for radiation in an emitting, absorbing and scattering medium. The resulting general equations can be considerably reduced by introducing simplifying approximations for the channel and MHD gas properties. The simplifications lead to an engineering model, which is very useful for one-dimensional channel flow approximation. The model can estimate thermo-optical MHD gas properties, which can be substituted in the energy equation. The model considers the contribution of solid particles in the MHD gas to radiation heat transfer, considerable in coal-fired closed cycle MHD generators. The modeling is applicable also for other types of flow at elevated temperatures, where radiation heat transfer is an important quantity.
Kabin, K.; Hansen, K. C.; Gombosi, T. I.; Combi, M. R.; Linde, T. J.; DeZeeuw, D. L.; Groth, C. P. T.; Powell, K. G.; Nagy, A. F.
2000-01-01
Magnetohydrodynamics (MHD) provides an approximate description of a great variety of processes in space physics. Accurate numerical solutions of the MHD equations are still a challenge, but in the past decade a number of robust methods have appeared. Once these techniques made the direct solution of MHD equations feasible, a number of global three-dimensional models were designed and applied to many space physics objects. The range of these objects is truly astonishing, including active galactic nuclei, the heliosphere, the solar corona, and the solar wind interaction with planets, satellites, and comets. Outside the realm of space physics, MHD theory has been applied to such diverse problems as laboratory plasmas and electromagnetic casting of liquid metals. In this paper we present a broad spectrum of models of different phenomena in space science developed in the recent years at the University of Michigan. Although the physical systems addressed by these models are different, they all use the MHD equations as a unifying basis.
Technical support for open-cycle MHD program. Progress report, July--December 1978
Energy Technology Data Exchange (ETDEWEB)
Doss, E D [ed.
1979-06-01
The support program for open-cycle MHD at Argonne National Laboratory is developing the analytical tools needed to investigate the performance of the major components in the combined cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and also on the integration of these analytical representations into a model of the entire power producing system. The present project activities include modeling of the combustor, MHD channel, slag separator, and high-temperature air heater. In addition, these models are combined into a complete system model, which is at present capable of carrying out optimizations of the entire system relative to either thermodynamic efficiency or cost of electrical power. Also, in support of other aspects of the open-cycle program, test plans are developed and facility and program reviews are provided upon request in support of the needs and requirements of the DOE/MHD Division.
Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation
Energy Technology Data Exchange (ETDEWEB)
Lytle, J.M.; Marchant, D.D.
1980-11-01
The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.
Technical support for open-cycle MHD program. Progress report, April-June 1978
Energy Technology Data Exchange (ETDEWEB)
Bomkamp, D H [ed.
1979-07-01
The support program for open-cycle MHD at Argonne National Laboratory is developing the analytical tools needed to investigate the performance of the major components in the combined cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and also on the integration of these analytical representations into a model of the entire power producing system. The project activities currently include modeling of the combustor, MHD channel, slag separator and the high temperature air heater. In addition, these models are combined into a complete system model which is presently capable of carrying out optimizations of the entire system on either thermodynamic efficiency or cost of electrical power. Also, in support of other aspects of the open-cycle program, test plans are developed and facility and program reviews are provided upon request to support the needs and requirements of the DOE/MHD Division.
Barkley, H T
1985-05-01
In the first third of this century, the prevailing concept was that malignant cells had a brief period of sensitivity and radiation treatments were ideally given in overall times of 2 weeks or less. Following the Second World War, routine treatment times were extended to 5 to 8 weeks to avoid severe acute normal tissue reactions and achieve higher tumor doses. In reaction to these prolonged overall times, a series of large-fraction, shortened-overall-time clinical experiments were attempted, with disastrous normal tissue effects and poor tumor control. More recently, attempts to accelerate treatment have been accomplished by utilizing multiple fractions per day or semicontinuous irradiation. Unfortunately, the majority of these attempts have been forced by the occurrence of unacceptable normal tissue reactions to significantly reduce total dose or introduce lengthy splits in treatment. These results suggest that in our current state of knowledge accelerated schedules be reserved for use in the treatment of rapidly proliferating neoplasms or for palliation.
2014-09-01
Photocathode emitters eject electrons from the cathode by the photoelectric effect. A drive laser source shines light energy onto a metal or...synchronized so that the electrons ejected via the photoelectric effect are properly accelerated. 15 Figure 2.4: Cross-section of a triple spoke cavity, from...2.3: Available Pulsed Magnets at PFF LANL. SP = Short Pulse. MP = Mid-Pulse, after [19] Cell No. Magnet Pulse Duration (ms) Bore (mm) 1 50 T SP 25 24
International Nuclear Information System (INIS)
Smith, David M D; Onnela, Jukka-Pekka; Johnson, Neil F
2007-01-01
Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution
Energy Technology Data Exchange (ETDEWEB)
NONE
1981-03-01
'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1980 reported. This year, a detailed conceptual design was carried out on a coal fired MHD generation system, with points for the technological development concretely examined. In addition, investigation was conducted on the progress of MHD generation technology, development situation of other generation systems, state of energy resources, etc., in various foreign countries. In the conceptual design of the coal fired MHD generation plant, the system structure of a 2,000 MWt class commercial MHD generation plant was explained, as were the conceptual design of the structural elements and proposals for a 500 MWt class demonstration plant and an 100 MWt class experimental plant, for example. In the overseas trend of R and D on MHD generation, investigations were made concerning the U.S., Soviet Union, and China, with details compiled for such items as generation plants, combustors, generation channels, heat resisting materials, superconducting magnets, heat exchangers, seed slags, inverters, boilers and environments, and commercial plants. (NEDO)
Canela, Andrés; Klatt, Peter; Blasco, María A
2007-01-01
Most somatic cells of long-lived species undergo telomere shortening throughout life. Critically short telomeres trigger loss of cell viability in tissues, which has been related to alteration of tissue function and loss of regenerative capabilities in aging and aging-related diseases. Hence, telomere length is an important biomarker for aging and can be used in the prognosis of aging diseases. These facts highlight the importance of developing methods for telomere length determination that can be employed to evaluate telomere length during the human aging process. Telomere length quantification methods have improved greatly in accuracy and sensitivity since the development of the conventional telomeric Southern blot. Here, we describe the different methodologies recently developed for telomere length quantification, as well as their potential applications for human aging studies.
SCMS-1, Superconducting Magnet System for an MHD generator
International Nuclear Information System (INIS)
Zenkevich, V.B.; Kirenin, I.A.; Tovma, V.A.
1977-01-01
The research and development effort connected with the building of the superconducting magnet systems for MHD generators at the Institute for High Temperatures of the U.S.S.R. Academy of Sciences included the designing, fabrication and testing of the superconducting magnet system for an MHD generator (SCMS-1), producing a magnetic field up to 4 Tesla in a warm bore tube 300 mm in diameter and 1000 mm long (the nonuniformity of the magnetic field in the warm bore did not exceed +-5%. The superconducting magnet system is described. The design selected consisted of a dipole, saddle-form coil, wound around a tube. The cooling of the coils is of the external type with helium access to each layer of the winding. For winding of the superconducting magnet system a 49-strand cable was used consisting of 42 composition conductors, having a diameter of 0.3 mm each, containing six superconducting strands with a niobium-titanium alloy base (the superconducting strands were 70 microns in diameter), and seven copper conductors of the same diameter as the composite conductors. The cable is made monolithic with high purity indium and insulated with lavsan fiber. The cable diameter with insulation is 3.5 mm
Sunspot Modeling: From Simplified Models to Radiative MHD Simulations
Directory of Open Access Journals (Sweden)
Rolf Schlichenmaier
2011-09-01
Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.
MHD stability regimes for steady state and pulsed reactors
International Nuclear Information System (INIS)
Jardin, S.C.; Kessel, C.E.; Pomphrey, N.
1994-02-01
A tokamak reactor will operate at the maximum value of β≡2μ 0 /B 2 that is compatible with MHD stability. This value depends upon the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near one, I bs /I p ∼ 1, which constrains the product of the inverse aspect ratio and the plasma poloidal beta to be near unity, ε β p ∼ 1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during the ARIES I, II/IV, and III and the PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements on the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies is also discussed
A 3 Mw(Th) Open-Cycle MHD Installation
International Nuclear Information System (INIS)
Brzozowski, W.S.; Celiński, Z.; Dul, J.; Wicz, E. Fuksie; Kosłowski, T.; Mokwinski, A.; Rybacki, Z.; Skibicki, Z.; Wang, R.; Blattman, A.; Yérouchalmi, D.
1968-01-01
This paper describes the open-cycle MHD converter (with air preheat) under construction at Świerk, near Warsaw. The research is being carried out under a collaboration agreement between the Centre d’études nucléaires de Saclay (Applied Physics Section) France, and the Institute of Nuclear Research (Laboratory of Plasma Physics and Technology) at Świerk, Poland. The paper contains a systematic description of the installation, preliminary plans for which were outlined in a paper presented at the Salzburg Symposium in 1966. The research programme which is to be carried out with this facility includes an experimental study of a pebble-bed heat exchanger for preheating air to 1200°C; a study of a heat exchanger designed for potassium seed recovery; testing of materials, equipment and techniques under conditions of continuous operation at high temperatures and in the presence of potassium; an analysis of the measurement techniques used so far in less severe laboratory conditions; and a study of the MHD duct itself. The achievement of these objectives will require a cycle of great flexibility which can be operated continuously. The solution adopted is to use loops which can be tested independently before tests are run on the unit as a whole. (author) [fr
RFX: New tools for real-time MHD control
International Nuclear Information System (INIS)
Gnesotto, F.; Luchetta, A.; Marchiori, G.
2005-01-01
RFX has been recently modified to improve its capability of controlling different MHD phenomena by means of fast, feedback controlled amplifiers and distributed radial field inductors. The paper, after summarizing the principal results obtained in the past by means of active control of magnetic fields in RFX, describes the recent modifications to the machine and the improvements to the power supplies and to the magnetic diagnostics. The old thick shell has been replaced by a much thinner shell, whose electromagnetic time constants are much shorter than pulse duration, and a system of 192 radial field coils has been added, covering the whole torus surface. Then the paper describes the models used to design the new real-time control system of RFX and gives some preliminary results obtained, with the same techniques, on the EXTRAP-T2R device. The basic choices about the technologies adopted for the new RFX control system are discussed with reference to the general problem of real-time control of MHD instabilities in magnetic fusion devices. Finally, the paper defines the main objectives of the RFX scientific programme aimed at exploiting these new tools. (author)
A non-ideal MHD model for structure formation
Karmakar, Pralay Kumar; Sarma, Pankaj
2018-02-01
The evolutionary initiation dynamics of triggered planetary structure formation is indeed a complex process yet to be well understood. We herein develop a theoretical classical model to see the gravitational fragmentation kinetics of the viscoelastic non-ideal magneto-hydro-dynamic (MHD) fabric. The inhomogeneous planetary disk is primarily composed of heavier dust grains (strongly correlated) together with relatively lighter electrons, ions and neutrals (weakly correlated) in a mean-fluidic approximation. A normal harmonic mode analysis results in a quadratic dispersion relation of a unique shape. It is demonstrated that the growth rate of the MHD fluctuations (magnetosonic) contributing to the planet formation rate, apart from the wave vector and its projection orientation, has a pure explicit dependency on the viscoelastic parameters. The analysis specifically shows that the effective generalized viscosity (χ) , viscoelastic relaxation time (τm) , and K-orientation (θ) play as destabilizing agencies against the non-local gravitational disk collapse. The relevancy is briefly indicated in the real astronomical context of bounded planetary structure formation and evolution.
Kinetic analysis of MHD ballooning modes in tokamaks
International Nuclear Information System (INIS)
Tang, W.M.; Rewoldt, G.; Cheng, C.Z.; Chance, M.S.
1984-10-01
A comprehensive analysis of the stability properties of the appropriate kinetically generalized form of MHD ballooning modes together with the usual trapped-particle drift modes is presented. The calculations are fully electromagnetic and include the complete dynamics associated with compressional ion acoustic waves. Trapped-particle effects along with all forms of collisionless dissipation are taken into account without approximations. The influence of collisions is estimated with a model Krook operator. Results from the application of this analysis to realistic tokamak operating conditions indicate that unstable short-wavelength modes with significant growth rates can extend from β = 0 to value above the upper ideal-MHD-critical-beta associated with the so-called second stability regime. Since the strength of the relevant modes appears to vary gradually with β, these results support a soft beta limit picture involving a continuous (rather than abrupt or hard) modification of anomalous transport already present in low-β-tokamaks. However, at higher beta the increasing dominance of the electromagnetic component of the perturbations indicated by these calculations could also imply significantly different transport scaling properties
Extended MHD modeling of tearing-driven magnetic relaxation
Sauppe, J. P.; Sovinec, C. R.
2017-05-01
Discrete relaxation events in reversed-field pinch relevant configurations are investigated numerically with nonlinear extended magnetohydrodynamic (MHD) modeling, including the Hall term in Ohm's law and first-order ion finite Larmor radius effects. Results show variability among relaxation events, where the Hall dynamo effect may help or impede the MHD dynamo effect in relaxing the parallel current density profile. The competitive behavior arises from multi-helicity conditions where the dominant magnetic fluctuation is relatively small. The resulting changes in parallel current density and parallel flow are aligned in the core, consistent with experimental observations. The analysis of simulation results also confirms that the force density from fluctuation-induced Reynolds stress arises subsequent to the drive from the fluctuation-induced Lorentz force density. Transport of the momentum density is found to be dominated by the fluctuation-induced Maxwell stress over most of the cross section with viscous and gyroviscous contributions being large in the edge region. The findings resolve a discrepancy with respect to the relative orientation of current density and flow relaxation, which had not been realized or investigated in King et al. [Phys. Plasmas 19, 055905 (2012)], where only the magnitude of flow relaxation is actually consistent with experimental results.
Nonlinear dynamics of single-helicity neoclassical MHD tearing instabilities
International Nuclear Information System (INIS)
Spong, D.A.; Shaing, K.C.; Carreras, B.A.; Callen, J.D.; Garcia, L.
1988-10-01
Neoclassical magnetohydrodynamic (MHD) effects can significantly alter the nonlinear evolution of resistive tearing instabilities. This is studied numerically by using a flux-surface-averaged set of evolution equations that includes the lowest-order neoclassical MHD effects. The new terms in the equations are fluctuating bootstrap current, neoclassical modification of the resistivity, and neoclassical damping of the vorticity. Single-helicity tearing modes are studied in a cylindrical model over a range of neoclassical viscosities (μ/sub e//ν/sup e/) and values of the Δ' parameter of tearing mode theory. Increasing the neoclassical viscosity leads to increased growth rate and saturated island width as predicted analytically. The larger island width is caused by the fluctuating bootstrap current contribution in Ohm's law. The Δ' parameter no longer solely determines the island width, and finite-width saturated islands may be obtained even when Δ' is negative. The importance of the bootstrap current (/approximately/∂/rho///partial derivative/psi/) in the nonlinear dynamics leads us to examine the sensitivity of the results with respect to different models for the density evolution. 11 refs., 8 figs
Laser production and heating of plasma for MHD application
Jalufka, N. W.
1988-01-01
Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.
High Field Side MHD Activity During Local Helicity Injection
Pachicano, J. L.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Richner, N. J.
2017-10-01
MHD is an essential part of understanding the mechanism for local helicity injection (LHI) current drive. The new high field side (HFS) LHI system on the Pegasus ST permits new tests of recent NIMROD simulations. In that model, LHI current streams in the plasma edge undergo large-scale reconnection events, leading to current drive. This produces bursty n = 1 activity around 30 kHz on low field side (LFS) Mirnov coils, consistent with experiment. The simulations also feature coherent injector streams winding down the center column. Improvements to the core high-resolution poloidal Mirnov array with Cat7A Ethernet cabling and differentially driven signal processing eliminated EMI-driven switching noise, enabling detailed spectral analysis. Preliminary results from the recovered HFS poloidal Mirnov coils suggest n = 1 activity is present at the top of the vessel core, but does not persist down the centerstack. HFS LHI experiments can exhibit an operating regime where the high amplitude MHD is abruptly reduced by more than an order of magnitude on LFS Mirnov coils, leading to higher plasma current and improved particle confinement. This reduction is not observed on the HFS midplane magnetics. Instead, they show broadband turbulence-like magnetic features with near consistent amplitude in a frequency range of 90-200 kHz. Work supported by US DOE Grant DE-FG02-96ER54375.
Advanced concepts for acceleration
International Nuclear Information System (INIS)
Keefe, D.
1986-07-01
Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations
Correlation length of magnetosheath fluctuations: Cluster statistics
Directory of Open Access Journals (Sweden)
O. Gutynska
2008-09-01
Full Text Available Magnetosheath parameters are usually described by gasdynamic or magnetohydrodynamic (MHD models but these models cannot account for one of the most important sources of magnetosheath fluctuations – the foreshock. Earlier statistical processing of a large amount of magnetosheath observations has shown that the magnetosheath magnetic field and plasma flow fluctuations downstream of the quasiparallel shock are much larger than those at the opposite flank. These studies were based on the observations of a single spacecraft and thus they could not provide full information on propagation of the fluctuations through the magnetosheath. We present the results of a statistical survey of the magnetosheath magnetic field fluctuations using two years of Cluster observations. We discuss the dependence of the cross-correlation coefficients between different spacecraft pairs on the orientation of the separation vector with respect to the average magnetic field and plasma flow vectors and other parameters. We have found that the correlation length does not exceed ~1 RE in the analyzed frequency range (0.001–0.125 Hz and does not depend significantly on the magnetic field or plasma flow direction. A close connection of cross-correlation coefficients computed in the magnetosheath with the cross-correlation coefficients between a solar wind monitor and a magnetosheath spacecraft suggests that solar wind structures persist on the background of magnetosheath fluctuations.
Accelerators and the Accelerator Community
Energy Technology Data Exchange (ETDEWEB)
Malamud, Ernest; Sessler, Andrew
2008-06-01
In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.
Theory and MHD simulation of fuelling process by Compact Toroid (CT) injection
International Nuclear Information System (INIS)
Suzuki, Y.; Hayashi, T.; Kishimoto, Y.
2001-01-01
The fuelling process by a spheromak-like compact toroid (SCT) injection is investigated by using MHD numerical simulations, where the SCT is injected into a magnetized target plasma region corresponding to a fusion device. In our previous study, the theoretical model to determine the penetration depth of the SCT into the target region has been proposed based on the simulation results, in which the SCT is decelerated not only by the magnetic pressure force but also by the magnetic tension force. However, since both ends of the target magnetic field are fixed on the boundary wall in the simulation, the deceleration caused by the magnetic tension force would be overestimated. In this study, the dependence of the boundary condition of the target magnetic field on the SCT penetration process is examined. From these results, the theoretical model we have proposed is improved to include the effect that the wave length of the target magnetic field bent by the SCT penetration expands with the Alfven velocity. In addition, by carrying out the simulation with the torus domain, it is confirmed that the theoretical model is applicable to estimate the penetration depth of the SCT under such conditions. Furthermore, the dependence of the injection position (the side injection and the top/bottom injection) on the penetration process is examined. (author)
Thermo-Diffusion and Diffuso-Thermo Effects on MHD Squeezing Flow Between Parallel Disks
Khan, Sheikh Irfanullah; Mohyud-Din, Syed Tauseef; Bin-Mohsin, Bandar
In this article, Magnetohydrodynamic (MHD) squeezing flow between two parallel disks is considered. The upper disk is taken to be solid and the lower one is permeable. Soret and Dufour effects are measured to explore the thermal-diffusion and diffusion-thermo effects. Governing PDEs are converted into system of ODEs with the support of suitable similarity transforms. Homotopy analysis method (HAM) has been employed to obtain the expressions for velocity, temperature and concentration profiles. Effects of different emerging parameters such as squeezing number S, Hartman number M, Prandtl number Pr, Eckert number Ec, dimensionless length δ and Schmidt number Sc on the flow are also discussed with the help of graphs for velocity, temperature and concentration. The local Nusselt and Sherwood numbers along with convergence of the series solutions are presented with the help of graphs. From the results obtained, we observed that the physical quantities like skin friction coefficient increases with increasing value of Hartmann number M in the blowing case (A0). However, the rate of heat transfer at upper wall increases with increasing values of Dufour number Du and Soret number Sr for both the suction (A>0) and blowing flow (A0) and blowing (Amethod of order four (RK-4) to check the validity and reliability of the developed algorithm. A well agreement is found between both the solutions.
International Nuclear Information System (INIS)
Autiero, D.; Declais, Y.
2005-01-01
In the last years neutrino physics was shaken by many important experimental results bringing solid proofs in favor of neutrino oscillations. The goal of the present and future generation of experiments at accelerators is to complete the comprehension of neutrino mixing and of the pattern of neutrino masses, perform precise measurements of all these parameters and investigate CP violation in the neutrino sector. Most of these goals will be achieved with the study of ν μ → ν e oscillations, which are mainly ruled by the still unknown mixing angle Θ 13 . A multi-step experimental strategy has to be attempted, depending on the magnitude of Θ 13 . (authors)
On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.
Telomere length and depression
DEFF Research Database (Denmark)
Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Rode, Line
2017-01-01
BACKGROUND: Depression has been cross-sectionally associated with short telomeres as a measure of biological age. However, the direction and nature of the association is currently unclear. AIMS: We examined whether short telomere length is associated with depression cross-sectionally as well...... as prospectively and genetically. METHOD: Telomere length and three polymorphisms, TERT, TERC and OBFC1, were measured in 67 306 individuals aged 20-100 years from the Danish general population and associated with register-based attendance at hospital for depression and purchase of antidepressant medication....... RESULTS: Attendance at hospital for depression was associated with short telomere length cross-sectionally, but not prospectively. Further, purchase of antidepressant medication was not associated with short telomere length cross-sectionally or prospectively. Mean follow-up was 7.6 years (range 0...
Myofilament length dependent activation
Energy Technology Data Exchange (ETDEWEB)
de Tombe, Pieter P.; Mateja, Ryan D.; Tachampa, Kittipong; Mou, Younss Ait; Farman, Gerrie P.; Irving, Thomas C. (IIT); (Loyola)
2010-05-25
The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca{sup 2+} ions at a longer sarcomere length, commonly referred to as myofilament length-dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the 'Frank-Starling law of the heart' constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development.
Upper Extremity Length Equalization
DeCoster, Thomas A.; Ritterbusch, John; Crawford, Mark
1992-01-01
Significant upper extremity length inequality is uncommon but can cause major functional problems. The ability to position and use the hand may be impaired by shortness of any of the long bones of the upper extremity. In many respects upper and lower extremity length problems are similar. They most commonly occur after injury to a growing bone and the treatment modalities utilized in the lower extremity may be applied to the upper extremity. These treatment options include epiphysiodesis, sho...
Preliminary analysis of MHD-Brayton cycle applied to fusion reactors (CFAR)
Energy Technology Data Exchange (ETDEWEB)
Ishikawa, M. [Kyoto Univ. (Japan). Dept. of Electrical Engineering; Inui, Y. [Kyoto Univ. (Japan). Dept. of Electrical Engineering; Umoto, J. [Kyoto Univ. (Japan). Dept. of Electrical Engineering; Yoshikawa, K. [Institute of Atomic Energy, Kyoto University, Gokasho, Uji, Kyoto 611 (Japan)
1995-03-01
High performance non-equilibrium magnetohydrodynamic (MHD) disk generators applied to fusion reactors are designed and simplified cycle analyses are carried out which show the following. (1) Disk-type MHD generators of high performance can be designed which result in an enthalpy extraction ratio of 50%-57%. The maximum value of magnetic flux density ranges from 5.4 to 7.9T depending on the maximum temperature of the MHD working gas. (2) Two MHD-Brayton systems are proposed: (a) a simple MHD system and (b) an MHD-gas turbine combined system. The cycle efficiency of the first system ranges from 39.6% to 63.6%, while the second system yields 54.0%-67.8%. The efficiency depends strongly on the maximum temperature of the MHD working gas and on the pressure recovery ratio of the diffuser. (3) A concept of blanket design is briefly described. A detailed study of the overall fusion reactor, including neutronics calculation of the blanket, is required as future work. (orig.).
International Nuclear Information System (INIS)
Matthaeus, W.; Brown, M.
2006-01-01
This is the final technical report for a funded program to provide theoretical support to the Swarthmore Spheromak Experiment. We examined mhd relaxation, reconnecton between two spheromaks, particle acceleration by these processes, and collisonless effects, e.g., Hall effect near the reconnection zone,. Throughout the project, applications to space plasma physics and astrophysics were included. Towards the end of the project we were examining a more fully turbulent relaxation associated with unconstrained dynamics in SSX. We employed experimental, spacecraft observations, analytical and numerical methods.
Comparison of three artificial models of the MHD effect on the electrocardiogram
Oster, Julien; Llinares, Raul; Payne, Stephen; Tse, Zion Tsz Ho; Schmidt, Ehud Jeruham; Clifford, Gari D.
2013-01-01
The Electrocardiogram (ECG) is often acquired during Magnetic Resonance Imaging (MRI) for both image acquisition synchronisation with heart activity and patient monitoring to alert for life-threatening events. Accurate ECG analysis is mandatory for cutting-edge applications, such as MRI guided interventions. Nevertheless, the majority of the clinical analysis of ECG acquired inside MRI is made difficult by the superposition of a voltage called the MagnetoHydroDynamic (MHD) effect. MHD is induced by the flow of electrically charged particles in the blood perpendicular to the static magnetic field, which creates a potential of the order of magnitude of the ECG and temporally coincident with the repolatisation period. In this study, a new MHD model is proposed which is an extension of several existing models and incorporates MRI-based blood flow measurements made across the aortic arch. The model is extended to several cardiac cycles to allow the simulation of a realistic ECG acquisition during MRI examination and the quality assessment of MHD suppression techniques. A comparison of two existing models is made with our new model and with an estimate of the MHD voltage observed during a real MRI scan. Results indicate a good agreement between our proposed model and the estimated MHD for most leads, although there are clearly some descrepencies with the observed signal which are likely to be due to remaining deficiencies in the model. However, the results demonstrate that our new model provides a closer approximation to observed MHD effects and a better depiction of the complexity of the MHD effect compared to the previously published models. The source code will be made freely available under and open source license to facilitate collaboration and allow more rapid development of more accurate models of the MHD effect. PMID:24761753
International Nuclear Information System (INIS)
Zhang, Xiujie; Pan, Chuanjie; Xu, Zengyu
2013-01-01
Highlights: ► 2D MHD code based on a fully developed modeling is developed and validated by Samad analytical results. ► The results of MHD effect of liquid metal through circular pipes at high Hartmann numbers are given. ► M type velocity profile is observed for MHD circular pipe flow at high wall conductance ratio condition. ► Non-uniform wall electrical conductivity leads to high jet velocity in Robert layers. -- Abstract: Magnetohydrodynamics (MHD) laminar flows through circular pipes are studied in this paper by numerical simulation under the conditions of Hartmann numbers from 18 to 10000. The code is developed based on a fully developed modeling and validated by Samad's analytical solution and Chang's asymptotic results. After the code validation, numerical simulation is extended to high Hartmann number for MHD circular pipe flows with conducting walls, and numerical results such as velocity distribution and MHD pressure gradient are obtained. Typical M-type velocity is observed but there is not such a big velocity jet as that of MHD rectangular duct flows even under the conditions of high Hartmann numbers and big wall conductance ratio. The over speed region in Robert layers becomes smaller when Hartmann numbers increase. When Hartmann number is fixed and wall conductance ratios change, the dimensionless velocity is through one point which is in agreement with Samad's results, the locus of maximum value of velocity jet is same and effects of wall conductance ratio only on the maximum value of velocity jet. In case of Robert walls are treated as insulating and Hartmann walls as conducting for circular pipe MHD flows, there is big velocity jet like as MHD rectangular duct flows of Hunt's case 2
Characterisation of electron beams from laser-driven particle accelerators
Energy Technology Data Exchange (ETDEWEB)
Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A. [Physics Department, University of Strathclyde, Glasgow G4 0NG (United Kingdom)
2012-12-21
The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.
Global MHD Modelling of the ISM - From large towards small scale turbulence
de Avillez, M.; Breitschwerdt, D.
2005-06-01
Dealing numerically with the turbulent nature and non-linearity of the physical processes involved in the ISM requires the use of sophisticated numerical schemes coupled to HD and MHD mathematical models. SNe are the main drivers of the interstellar turbulence by transferring kinetic energy into the system. This energy is dissipated by shocks (which is more efficient) and by molecular viscosity. We carried out adaptive mesh refinement simulations (with a finest resolution of 0.625 pc) of the turbulent ISM embedded in a magnetic field with mean field components of 2 and 3 μG. The time scale of our run was 400 Myr, sufficiently long to avoid memory effects of the initial setup, and to allow for a global dynamical equilibrium to be reached in case of a constant energy input rate. It is found that the longitudinal and transverse turbulent length scales have a time averaged (over a period of 50 Myr) ratio of 0.52-0.6, almost similar to the one expected for isotropic homogeneous turbulence. The mean characteristic size of the larger eddies is found to be ˜ 75 pc in both runs. In order to check the simulations against observations, we monitored the OVI and HI column densities within a superbubble created by the explosions of 19 SNe having masses and velocities of the stars that exploded in vicinity of the Sun generating the Local Bubble. The model reproduces the FUSE absorption measurements towards 25 white dwarfs of the OVI column density as function of distance and of N(HI). In particular for lines of sight with lengths smaller than 120 pc it is found that there is no correlation between N(OVI) and N(HI).
Pulsed power sources based on MHD generators (A state-of-art review)
International Nuclear Information System (INIS)
Das, A.K.; Venkatramani, N.; Rohatgi, V.K.
1986-01-01
pulsed Power sources are finding increased applications in powering plasma experiments, CTF devices, investigations of structure of earth's crust or self-contained compact power supplies for military applications. This report reviews the development of magnetohydrodynamic (MHD) power systems for pulsed power applications. The major critical components, which are analysed in detail, include the combustor, high energy fuel development, high field magnet, high power density channel and power conditioning unit. The report concludes that the MHD research has now reached a stage, where it is possible to design and achieve requisite performance from short duration high power compact MHD generators. (author)
Pressure fluctuation caused by moderate acceleration
Tagawa, Yoshiyuki; Kurihara, Chihiro; Kiyama, Akihito
2017-11-01
Pressure fluctuation caused by acceleration of a liquid column is observed in various important technologies, e.g. water-hammer in a pipeline. The magnitude of fluctuation can be estimated by two different approaches: When the duration time of acceleration is much shorter than the propagation time for a pressure wave to travel the length of the liquid column, e.g. sudden valve closure for a long pipe, Joukowsky equation is applied. In contrast, if the acceleration duration is much longer, the liquid is modeled as a rigid column, ignoring compressibility of the fluid. However, many of practical cases exist between these two extremes. In this study we propose a model describing pressure fluctuation when the duration of acceleration is in the same order of the propagation time for a pressure wave, i.e. under moderate acceleration. The novel model considers both temporal and spatial evolutions of pressure propagation as well as gradual pressure rise during the acceleration. We conduct experiments in which we impose acceleration to a liquid with varying the length of the liquid column, acceleration duration, and properties of liquids. The ratio between the acceleration duration and the propagation time is in the range of 0.02 - 2. The model agrees well with measurement results. JSPS KAKENHI Grant Numbers 26709007 and 17H01246.
MHD stability properties of bean-shaped tokamaks
International Nuclear Information System (INIS)
Grimm, R.C.; Chance, M.S.; Todd, A.M.M.
1984-03-01
A study of the MHD stability properties of bean-shaped tokamak plasmas is presented. For ballooning modes, while increased indentation gives larger β stable configurations, the existence and accessibility of the second stable region is sensitive to the pressure and safety factor profiles. The second stable region appears at lower β values for large aspect ratio and moderately high q-values. Finite-Larmor-radius (FLR) kinetic effects can significantly improve the stability properties. For low q (< 1) operation, long wavelength (n approx. 2,3) internal pressure driven modes occur at modest β/sub p/ values and accessibility to higher β operation is unlikely. Indentation modifies the nature of the usually vertical axisymmetric instability, but the mode can be passively stabilized by placing highly conducting plates near to the tips of the plasma bean. At constant q, indentation has a stabilizing effect on tearing modes
Numerical investigation of MHD flow with Soret and Dufour effect
Directory of Open Access Journals (Sweden)
Tasawar Hayat
2018-03-01
Full Text Available This paper describes the flow due to an exponentially curved surface subject to Soret and Dufour effects. Nonlinear velocity is considered. Exponentially curved stretchable sheet induced the flow. Fluid is electrical conducting through constant applied magnetic field. The governing flow expressions are reduced to ordinary ones and then tackled by numerical technique (Built-in-Shooting. Impacts of various flow variables on the dimensionless velocity, concentration and temperature fields are graphically presented and discussed in detail. Skin friction coefficient and Sherwood and Nusselt numbers are studied through graphs. Furthermore it is observed that Soret and Dufour variables regulate heat and mass transfer rates. It is also noteworthy that velocity decays for higher magnetic variable. Skin friction magnitude decays via curvature and magnetic variables. Also mass transfer gradient or rate of mass transport enhances for higher estimations of curvature parameter and Schmidt number. Keywords: Soret and Dufour effects, MHD, Exponential curved stretching sheet, Viscous fluid
Coal-Fired MHD Combustor Development Project, Phase 3D
1985-02-01
The Coal-Fired MHD Combustor Development Project (phase 3D) is reported. The scope encompasses development work on the 50 MW/sub t/ combustor related to test support at the CDIF, fabrication and assembly of first and second stage hardware, plans for second stage design verification testing and power testing, and designs for a continuous slag rejector and low preheat inlet section. Progress includes the following: (1) operational verification testing of the first stage at the CDIF was completed; (2) assembly and checkout of the second first stage, two second stages, and PEM is 75 to 90% completed; (3) conceptual designs for a continuous slag rejector and low preheat inlet section are completed and low preheat preliminary design work is 75% completed; and (4) revision of the users' manual to include the second stage is 75% completed and a draft Test Plan for power train testing is reviewed.
MHD Stability of Free Boundary Toroidal Z Pinch
Sugisaki, Kiwamu
1990-06-01
The Magnetohydrodynamic (MHD) stability of a free boundary toroidal Z pinch plasma is investigated. Equilibrium field profiles are chosen so that μ is nearly uniform in the central region, μ and dμ/dr vanish on the boundary and Suydam’s criterion is satisfied throughout the plasma. The stability of the equilibrium is examined for the ratio b of the conducting wall radius to the plasma radius and plasma pressure. The stability of non-resonant ideal modes is determined mainly from the safty factor on the axis. Non-resonant modes are dominant for low plasma pressure, whereas resonant modes are dominant for high plasma pressure. Tearing modes are stable only for b below 1.04. The width of the magnetic islands produced from the tearing modes is evaluated. As b increases, overlap of the magnetic islands occurs over a wide area in the plasma.
Resistive MHD studies of high-β-tokamak plasmas
International Nuclear Information System (INIS)
Lynch, V.E.; Carreras, B.A.; Hicks, H.R.; Holmes, J.A.; Garcia, L.
1981-01-01
Numerical calculations have been performed to study the MHD activity in high-β tokamaks such as ISX-B. These initial value calculations built on earlier low β techniques, but the β effects create several new numerical issues. These issues are discussed and resolved. In addition to time-stepping modules, our system of computer codes includes equilibrium solvers (used to provide an initial condition) and output modules, such as a magnetic field line follower and an X-ray diagnostic code. The transition from current driven modes at low β to predominantly pressure driven modes at high β is described. The nonlinear studies yield X-ray emissivity plots which are compared with experiment
Testing and evaluation of MHD materials and substructures
1981-06-01
Stand that can simulate the environment in any of the various substructures of a coal fired baseline MHD power plant. After construction was completed, shakedown tests were performed, and the Test Stand was used in a series of tests to simulate the gas stream composition and temperature conditions in the baseline plant's radiant boiler. The tests were conducted in order to study the effect of stoichiometry and staged combustion on the generation of nitrogen oxide. A computer based monitoring and control system was developed that provides safe Test Stand operation, controls the critical parameters, and accurately measures, displays, and logs the necessary physical data. Several computer programs were developed to determine the thermal performance of the Test Stand, and several models were developed to predict the thermal performance of the Test Stand with bare walls and with slag coated walls, and to determine the gas stream properties as a function of temperature and pressure.
Characteristics of low frequency MHD fluctuations in the PRETEXT tokamak
International Nuclear Information System (INIS)
Kochanski, T.P.
1981-05-01
The temporal and spectral characteristics of low frequency (< 100KHz) MHD fluctuations, which are commonly associated with disruptions, have been investigated in the PRETEXT tokamak. There exists rigid phase coherence between the internal m = 1, and externally detected m = 2 modes indicative of strong mode coupling. A parametric study of the frequency of the mode, in the saturated state, indicates that the frequency scales with the toroidal magnetic field, and is inversely proportional to the plasma current. The frequency is observed to decrease abruptly as the mode amplitude rapidly increases prior to a plasma disruption. The burst type growth of the m = 2 mode appears to be inextricably linked to the occurrence of the disruptive instability
High pressure gas driven liquid metal MHD homopolar generator
International Nuclear Information System (INIS)
Itoh, Yasuyuki
1988-01-01
A liquid metal MHD homopolar generator is proposed to be used as a high repetition rate pulsed power supply. In the generator, the thermal energy stored in a high pressure gas (He) reservoir is rapidly converted into kinetic energy of a rotating liquid metal (NaK) cylinder which is contracted by a gas driven annular free piston. The rotational kinetic energy is converted into electrical energy by making use of the homopolar generator principle. The conversion efficiency is calculated to be 47% in generating electrical energy of 20 kJ/pulse (1.7 MW peak power) at a repetition rate of 7 Hz. From the viewpoint of energy storage, the high pressure gas reservoir with a charging pressure of 15 MPa is considered to ''electrically'' store the energy at a density of 10 MJ/m 3 . (author)
Ionization fronts in coupled MHD-gas simulations
Wilson, A. D.; Diver, D. A.
2017-09-01
Partially ionized plasmas are ubiquitous in both nature and the laboratory, and their behaviour is best described by models which take into account the interactions between the neutral and charged species. We present a new non-linear, 3-dimensional, finite difference Gas-MHD Interactions Code designed to solve simultaneously the time evolution of fluid equations of both species in the conservation form as well as collisional interactions between them via appropriate choices of source term; in particular, we present results from this code in simulating Alfvén ionization in a partially ionized plasma. In this fashion, larger changes in the ionization fraction than were addressable in the linear limit are possible. Alfvén ionization is shown to impart plasmas with an inherent resistance to rapid recombination, where the recombination itself is significant enough to drive relative motion between the ionised and neutral species at speeds in excess of the critical velocity.
Thought analysis on self-organization theories of MHD plasma
International Nuclear Information System (INIS)
Kondoh, Yoshiomi; Sato, Tetsuya.
1992-08-01
A thought analysis on the self-organization theories of dissipative MHD plasma is presented to lead to three groups of theories that lead to the same relaxed state of ∇ x B = λB, in order to find an essential physical picture embedded in the self-organization phenomena due to nonlinear and dissipative processes. The self-organized relaxed state due to the dissipation by the Ohm loss is shown to be formulated generally as the state such that yields the minimum dissipation rate of global auto-and/or cross-correlations between two quantities in j, B, and A for their own instantaneous values of the global correlations. (author)
Realistic 3D resistive MHD calculations on the CRAY-1
International Nuclear Information System (INIS)
Hicks, H.R.; Carreras, B.
1979-01-01
CPU times for nonlinear resistive MHD calculations are very strongly dependent on the input variables. Although some regions of parameter space can be studied very cheaply, the conditions that correspond to Tokamak plasmas are extremely time consuming to study. Unfortunately, it is not possible to extrapolate reliably from the easy cases to the interesting regime. In recent years we have improved the efficiency of our codes by two orders of magnitude. As a result it is now feasible for us to run some realistic Tokamak cases on a CDC 7600. An additional factor of four reduction in run time is obtained by going to the CRAY-1 where the most time consuming routines are vectorized. This last factor makes a program of systematic studies feasible
Accelerator Physics Section progress report
International Nuclear Information System (INIS)
Coote, G.E.
1986-05-01
This report summarizes the work of the Accelerator Physics Section of the Institute of Nuclear Sciences during the period January-December 1985. Applications of the EN-tandem accelerator included 13 N production for tracer experiments in plants and animals, hydrogen profiling with a 19 F beam and direct detection of heavy ions with a surface barrier detector. Preparations for accelerator mass spectrometry continued steadily, with the commissioning of the pulsed EHT supply which selects the isotope to be accelerated, routine detection of 14 C ions, and completion of a sputter ion source with an eight position target wheel. It was shown that the hydrogen content of a material could be derived from a simultaneous measurement of the transmission of neutrons and gamma rays from a neutron source or accelerator target. The 11 CO 2 produced at the 3 MV accelerator was used in two studies of translocation in a large number of plant species: the effects of small quantities of SO 2 in the air, and the effect of cooling a short length of the stem. The nuclear microprobe was applied to studies of carbon pickup during welding of stainless steel, determination of trace elements in soil and vegetation and the measurement of sodium depth profiles in obsidian - in particular the effect of rastering the incident proton beams
The substorm cycle as reproduced by global MHD models
Gordeev, E.; Sergeev, V.; Tsyganenko, N.; Kuznetsova, M.; Rastäetter, L.; Raeder, J.; Tóth, G.; Lyon, J.; Merkin, V.; Wiltberger, M.
2017-01-01
Recently, Gordeev et al. (2015) suggested a method to test global MHD models against statistical empirical data. They showed that four community-available global MHD models supported by the Community Coordinated Modeling Center (CCMC) produce a reasonable agreement with reality for those key parameters (the magnetospheric size, magnetic field, and pressure) that are directly related to the large-scale equilibria in the outer magnetosphere. Based on the same set of simulation runs, here we investigate how the models reproduce the global loading-unloading cycle. We found that in terms of global magnetic flux transport, three examined CCMC models display systematically different response to idealized 2 h north then 2 h south interplanetary magnetic field (IMF) Bz variation. The LFM model shows a depressed return convection and high loading rate during the growth phase as well as enhanced return convection and high unloading rate during the expansion phase, with the amount of loaded/unloaded magnetotail flux and the growth phase duration being the closest to their observed empirical values during isolated substorms. Two other models exhibit drastically different behavior. In the BATS-R-US model the plasma sheet convection shows a smooth transition to the steady convection regime after the IMF southward turning. In the Open GGCM a weak plasma sheet convection has comparable intensities during both the growth phase and the following slow unloading phase. We also demonstrate potential technical problem in the publicly available simulations which is related to postprocessing interpolation and could affect the accuracy of magnetic field tracing and of other related procedures.
Realistic radiative MHD simulation of a solar flare
Rempel, Matthias D.; Cheung, Mark; Chintzoglou, Georgios; Chen, Feng; Testa, Paola; Martinez-Sykora, Juan; Sainz Dalda, Alberto; DeRosa, Marc L.; Viktorovna Malanushenko, Anna; Hansteen, Viggo H.; De Pontieu, Bart; Carlsson, Mats; Gudiksen, Boris; McIntosh, Scott W.
2017-08-01
We present a recently developed version of the MURaM radiative MHD code that includes coronal physics in terms of optically thin radiative loss and field aligned heat conduction. The code employs the "Boris correction" (semi-relativistic MHD with a reduced speed of light) and a hyperbolic treatment of heat conduction, which allow for efficient simulations of the photosphere/corona system by avoiding the severe time-step constraints arising from Alfven wave propagation and heat conduction. We demonstrate that this approach can be used even in dynamic phases such as a flare. We consider a setup in which a flare is triggered by flux emergence into a pre-existing bipolar active region. After the coronal energy release, efficient transport of energy along field lines leads to the formation of flare ribbons within seconds. In the flare ribbons we find downflows for temperatures lower than ~5 MK and upflows at higher temperatures. The resulting soft X-ray emission shows a fast rise and slow decay, reaching a peak corresponding to a mid C-class flare. The post reconnection energy release in the corona leads to average particle energies reaching 50 keV (500 MK under the assumption of a thermal plasma). We show that hard X-ray emission from the corona computed under the assumption of thermal bremsstrahlung can produce a power-law spectrum due to the multi-thermal nature of the plasma. The electron energy flux into the flare ribbons (classic heat conduction with free streaming limit) is highly inhomogeneous and reaches peak values of about 3x1011 erg/cm2/s in a small fraction of the ribbons, indicating regions that could potentially produce hard X-ray footpoint sources. We demonstrate that these findings are robust by comparing simulations computed with different values of the saturation heat flux as well as the "reduced speed of light".
Relativistic Length Agony Continued
Redzic, D. V.
2014-06-01
We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.
DEFF Research Database (Denmark)
Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P
2008-01-01
Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...... telomeres predicted the death of the first co-twin better than the mTRFL did (mTRFL: 0.56, 95% confidence interval (CI): 0.49, 0.63; mTRFL(50): 0.59, 95% CI: 0.52, 0.66; mTRFL(25): 0.59, 95% CI: 0.52, 0.66; MTRFL: 0.60, 95% CI: 0.53, 0.67). The telomere-mortality association was stronger in years 3-4 than...
Acceleration effects on missile aerodynamics
CSIR Research Space (South Africa)
Gledhill, Irvy MA
2010-09-01
Full Text Available on the typical length scale L of the aerodynamic object under study: aeroelastic deflections [4][5], control surface deflections [6], dynamic wedges in wind tunnels [7], and the release of stores from aircraft [8] 2. calculation of dynamic derivatives using c... of the program required for absolute velocities were also found to be minor. Validation test cases have included a spinning plate, constant velocity airfoil, and oscillating airfoil [1]. Test case: rapidly accelerating missile We consider a simple...
Chuvatin, Alexandre S.; Rudakov, Leonid I.; Kokshenev, Vladimir A.; Aranchuk, Leonid E.; Huet, Dominique; Gasilov, Vladimir A.; Krukovskii, Alexandre Yu.; Kurmaev, Nikolai E.; Fursov, Fiodor I.
2002-12-01
This work introduces an inductive energy storage (IES) scheme which aims pulsed-power conditioning at multi- MJ energies. The key element of the scheme represents an additional plasma volume, where a magnetically accelerated wire array is used for inductive current switching. This plasma acceleration volume is connected in parallel to a microsecond capacitor bank and to a 100-ns current ruse-time useful load. Simple estimates suggest that optimized scheme parameters could be reachable even when operating at ultra-high currents. We describe first proof-of-principle experiments carried out on GIT12 generator [1] at the wire-array current level of 2 MA. The obtained confirmation of the concept consists in generation of a 200 kV voltage directly at an inductive load. This load voltage value can be already sufficient to transfer the available magnetic energy into kinetic energy of a liner at this current level. Two-dimensional modeling with the radiational MHD numerical tool Marple [2] confirms the development of inductive voltage in the system. However, the average voltage increase is accompanied by short-duration voltage drops due to interception of the current by the low-density upstream plasma. Upon our viewpoint, this instability of the current distribution represents the main physical limitation to the scheme performance.
Free-boundary ideal MHD stability of W7-X divertor equilibria
Nührenberg, C.
2016-07-01
Plasma configurations describing the stellarator experiment Wendelstein 7-X (W7-X) are computationally established taking into account the geometry of the test-divertor unit and the high-heat-flux divertor which will be installed in the vacuum chamber of the device (Gasparotto et al 2014 Fusion Eng. Des. 89 2121). These plasma equilibria are computationally studied for their global ideal magnetohydrodynamic (MHD) stability properties. Results from the ideal MHD stability code cas3d (Nührenberg 1996 Phys. Plasmas 3 2401), stability limits, spatial structures and growth rates are presented for free-boundary perturbations. The work focusses on the exploration of MHD unstable regions of the W7-X configuration space, thereby providing information for future experiments in W7-X aiming at an assessment of the role of ideal MHD in stellarator confinement.
Scramjet Inlet Control by Off-Body Energy Addition and MHD Deceleration
National Research Council Canada - National Science Library
Macheret, Sergey O; Shneider, Mikhail N; Miles, Richard B; Van Wie, David
2003-01-01
...; however, interelectrode arcing may limit the performance. The paper also analyzes MHD control of shock incidence, and air capture increase using energy addition (a "virtual cowl") in scramjet inlets...
Technical support for open-cycle MHD program. Progress report, January-June 1979
Energy Technology Data Exchange (ETDEWEB)
Bomkamp, D. H. [ed.
1980-07-01
The support program for open-cycle MHD at the Argonne National Laboratory consists of developing the analytical tools needed for investigation of the performance of the major components in the combined-cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and, also, on the integration of these analytical models into a model of the entire power-producing system. The present project activities include modeling of the combustor, generator, seed deposition, and formation and decomposition of NO. Parametric studies were performed to evaluate the performance of the U-25B generator and to support the design of the US U-25B generator. Refinements and improvements to the MHD systems code and executive program are described.
Technical support for open-cycle MHD program. Progress report, October-December 1979
Energy Technology Data Exchange (ETDEWEB)
Doss, E. D. [ed.
1980-12-01
The support program for open-cycle MHD at Argonne National Laboratory is developing the analytical tools needed to investigate the performance of the major components in the combined cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and also on the integration of these analytical representations into a model of the entire power producing system. The present project activities include modeling of the combustor, MHD channel and diffuser, slag separator, radiant boiler and high-temperature air heater. In addition, these models are combined into a complete system model, which is, at present, capable of carrying out optimizations of the entire system relative to either thermodynamic efficiency or cost of electrical power. Progress is reported in detail.
Advanced Numerical Methods for Three-Dimensional Parallel Hybrid MHD/PIC
National Research Council Canada - National Science Library
McCrory, Robert
1996-01-01
.... The main conclusion of our study is that computationally efficient and physically sound description of nonsteady plasmas typical for these applications is possible using the advanced hybrid MHD/PIC...
Decay of MHD-scale Kelvin-Helmholtz vortices mediated by parasitic electron dynamics
International Nuclear Information System (INIS)
Nakamura, T.K.M.; Hayashi, D.; Fujimoto, M.; Shinohara, I.
2004-01-01
We have simulated nonlinear development of MHD-scale Kelvin-Helmholtz (KH) vortices by a two-dimensional two-fluid system including finite electron inertial effects. In the presence of moderate density jump across a shear layer, in striking contrast to MHD results, MHD KH vortices are found to decay by the time one eddy turnover is completed. The decay is mediated by smaller vortices that appear within the parent vortex and stays effective even when the shear layer width is made larger. It is shown that the smaller vortices are basically of MHD nature while the seeding for these is achieved by the electron inertial effect. Application of the results to the magnetotail boundary layer is discussed
African Journals Online (AJOL)
Administrator
Out of the 320 male sheep examined, 87(27.2%) were infected, while 9(19.1%) of the 47 females examined were infected (Table 2). Infection varied from one abattoir to another. Age related distribution of P. cervi is shown in Table 3. Out of 356 adult sheep (>2yrs) examined, 35. Full Length Research Article. 12 ...
Vetter, A. A.; Maxwell, C. D.; Swean, T. F., Jr.; Demetriades, S. T.; Oliver, D. A.; Bangerter, C. D.
1981-01-01
Data from sufficiently well-instrumented, short-duration experiments at AEDC/HPDE, Reynolds Metal Co., and Hercules, Inc., are compared to analyses with multidimensional and time-dependent simulations with the STD/MHD computer codes. These analyses reveal detailed features of major transient events, severe loss mechanisms, and anomalous MHD behavior. In particular, these analyses predicted higher-than-design voltage drops, Hall voltage overshoots, and asymmetric voltage drops before the experimental data were available. The predictions obtained with these analyses are in excellent agreement with the experimental data and the failure predictions are consistent with the experiments. The design of large, high-interaction or advanced MHD experiments will require application of sophisticated, detailed and comprehensive computational procedures in order to account for the critical mechanisms which led to the observed behavior in these experiments.
Fromang, S.; Hennebelle, P.; Teyssier, R.
2006-01-01
In this paper, we present a new method to perform numerical simulations of astrophysical MHD flows using the Adaptive Mesh Refinement framework and Constrained Transport. The algorithm is based on a previous work in which the MUSCL--Hancock scheme was used to evolve the induction equation. In this paper, we detail the extension of this scheme to the full MHD equations and discuss its properties. Through a series of test problems, we illustrate the performances of this new code using two diffe...
Test-field method for mean-field coefficients with MHD background
Rheinhardt, M.; Brandenburg, A.
2010-01-01
Aims: The test-field method for computing turbulent transport coefficients from simulations of hydromagnetic flows is extended to the regime with a magnetohydrodynamic (MHD) background. Methods: A generalized set of test equations is derived using both the induction equation and a modified momentum equation. By employing an additional set of auxiliary equations, we obtain linear equations describing the response of the system to a set of prescribed test fields. Purely magnetic and MHD backgro...
International Nuclear Information System (INIS)
Legro, J.R.; Abi-Samra, N.C.; Crouse, J.C.; Tesche, F.M.
1985-01-01
This paper summarizes a method to evaluate the possible effects of magnetohydrodynamic-electromagnetic pulse (MHD-EMP) on power systems. This method is based on the approach adapted to study the impact of geomagnetic storms on power systems. The paper highlights the similarities and differences between the two phenomena. Also presented are areas of concern which are anticipated from MHD-EMP on the overall system operation. 12 refs., 1 fig
Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.
1981-01-01
A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.
Energy Technology Data Exchange (ETDEWEB)
D.S. Darrow; S.S. Medley; A.L. Roquemore; W.W. Heidbrink; A. Alekseyev; F.E. Cecil; J. Egedal; V.Ya. Goloborod' ko; N.N. Gorelenkov; M. Isobe; S. Kaye; M. Miah; F. Paoletti; M.H. Redi; S.N. Reznik; A. Rosenberg; R. White; D. Wyatt; V.A. Yavorskij
2002-10-15
A range of effects may make fast ion confinement in spherical tokamaks worse than in conventional aspect ratio tokamaks. Data from neutron detectors, a neutral particle analyzer, and a fast ion loss diagnostic on the National Spherical Torus Experiment (NSTX) indicate that neutral beam ion confinement is consistent with classical expectations in quiescent plasmas, within the {approx}25% errors of measurement. However, fast ion confinement in NSTX is frequently affected by magnetohydrodynamic (MHD) activity, and the effect of MHD can be quite strong.
MHD stability calculations of high-β quasi-axisymmetric stellarators
International Nuclear Information System (INIS)
Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.; Kessel, C.; Monticello, D.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.
2001-01-01
The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)
MHD Stability Calculations of High-Beta Quasi-Axisymmetric Stellarators
International Nuclear Information System (INIS)
Kessel, C.; Fu, G.Y.; Ku, L.P.; Redi, M.H.; Pomphrey, N.
1999-01-01
The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size
MHD stability calculations of high-β quasi-axisymmetric stellarators
International Nuclear Information System (INIS)
Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.H.; Kessel, C.; Monticello, D.A.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.
1999-01-01
The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)
The flux tube paradigm and its role in MHD turbulence in the solar atmosphere
Matthaeus, W. H.; Greco, A.; Servidio, S.; Wan, M.; Osman, K.; Ruffolo, D. J.
2011-12-01
Descriptions of magnetic field and plasma structures in terms of flux tubes, plasmoids and other bundles of magnetic field lines are familiar in the vocabulary of observational and theoretical space physics. "Spaghetti models" and flux ropes are well known examples. Flux tubes and families of field lines can also be defined in a medium that admits magnetic fluctuations, including strong MHD turbulence, but their behavior can become complicated. In 3D fluctuations the smooth flux tube description itself becomes in some sense unstable, as nearby field lines diverge and flux surfaces shred. This lends complexity to the structure of flux tubes, and can give rise to temporarily trapped field lines and charged test particle trajectories, with immediate implications for transport, e.g., of solar energetic particles. The properties of the turbulent magnetic field can also be strongly influenced by the dynamics of turbulence. Large scale self organizing behavior, or inverse cascade, can enhance very long wavelength structure, favoring Bohm scaling of diffusion coefficients. Meanwhile smaller scale flux tube structures are integral features of the inertial range of turbulence, giving rise to a cellularization of the plasma due to rapid dynamical relaxation processes. These drive the turbulent system locally towards low-acceleration states, including Alfvenic, Beltrami and force-free states. Cell boundaries are natural positions for formation of near discontinuous boundaries, where dynamical activity can be enhanced. A primary example is appearance of numerous discontinuities and active reconnection sites in turbulence, which appear to support a wide distribution of reconnection rates associated with coherent current structures. These discontinuities are also potential sites of enhanced heating, as expected in Kolmogorov's Refined Similarity Hypothesis. All of these features are related to self organization, cascade and intermittency of the turbulence. Examples of these
Broadband accelerator control network
International Nuclear Information System (INIS)
Skelly, J.; Clifford, T.; Frankel, R.
1983-01-01
A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AG) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating system has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel
International Nuclear Information System (INIS)
Richards, J.A.
1977-01-01
A linear particle accelerator which provides a pulsed beam of charged particles of uniform energy is described. The accelerator is in the form of an evacuated dielectric tube, inside of which a particle source is located at one end of the tube, with a target or window located at the other end of the dielectric tube. Along the length of the tube are externally located pairs of metal plates, each insulated from each other in an insulated housing. Each of the plates of a pair are connected to an electrical source of voltage of opposed polarity, with the polarity of the voltage of the plates oriented so that the plate of a pair, nearer to the particle source, is of the opposed polarity to the charge of the particle emitted by the source. Thus, a first plate about the tube located nearest the particle source, attracts a particle which as it passes through the tube past the first plate is then repelled by the reverse polarity of the second plate of the pair to continue moving towards the target
Short Rayleigh length free electron laser: Experiments and simulations
Directory of Open Access Journals (Sweden)
P. P. Crooker
2008-09-01
Full Text Available We report experiments at Jefferson National Accelerator Facility (Jlab and computer simulations performed at the Naval Postgraduate School (NPS designed to probe the small Rayleigh length regime. We compare the gain, power, and sensitivity to mirror and electron beam misalignments as a function of decreasing Rayleigh length. The agreement is quite good, with experiments and simulations showing comparable trends as the Rayleigh length is decreased. In particular, we find that the gain and power do not decrease substantially at short Rayleigh length, contrary to a common Gaussian-mode filling factor argument. Within currently achievable alignment tolerances, the gain and power are still acceptable for FEL operation.
Preliminary analysis of 500 MWt MHD power plant with oxygen enrichment
1980-04-01
An MHD Engineering Test Facility design concept is analyzed. A 500 MWt oxygen enriched MHD topping cycle integrated for combined cycle operation with a 400 MWe steam plant is evaluated. The MHD cycle uses Montana Rosebud coal and air enriched to 35 mole percent oxygen preheated to 1100 F. The steam plant is a 2535 psia/1000 F/1000 F reheat recycle that was scaled down from the Gilbert/Commonwealth Reference Fossil Plant design series. Integration is accomplished by blending the steam generated in the MHD heat recovery system with steam generated by the partial firing of the steam plant boiler to provide the total flow requirement of the turbine. The major MHD and steam plant auxiliaries are driven by steam turbines. When the MHD cycle is taken out of service, the steam plant is capable of stand-alone operation at turbine design throttle flow. This operation requires the full firing of the steam plant boiler. A preliminary feasibility assessment is given, and results on the system thermodynamics, construction scheduling, and capital costs are presented.
Conceptual design of a coal-fired MHD retrofit. Final technical report
Energy Technology Data Exchange (ETDEWEB)
NONE
1994-06-01
Coal-fired magnetohydrodynamics (MHD) technology is ready for its next level of development - an integrated demonstration at a commercial scale. The development and testing of MHD has shown its potential to be the most efficient, least costly, and cleanest way to burn coal. Test results have verified a greater than 99% removal of sulphur with a potential for greater than 60% efficiency. This development and testing, primarily funded by the U.S. Department of Energy (DOE), has progressed through the completion of its proof-of-concept (POC) phase at the 50 MWt Component Development and Integration Facility (CDIF) and 28 MWt Coal Fired Flow Facility (CFFF), thereby, providing the basis for demonstration and further commercial development and application of the technology. The conceptual design of a retrofit coal-fired MHD generating plant was originally completed by the MHD Development Corporation (MDC) under this Contract, DE-AC22-87PC79669. Thereafter, this concept was updated and changed to a stand-alone MHD demonstration facility and submitted by MDC to DOE in response to the fifth round of solicitations for Clean Coal Technology. Although not selected, that activity represents the major interest in commercialization by the developing industry and the type of demonstration that would be eventually necessary. This report updates the original executive summary of the conceptual design by incorporating the results of the POC program as well as MDC`s proposed Billings MHD Demonstration Project (BMDP) and outlines the steps necessary for commercialization.
Effects of MHD slow shocks propagating along magnetic flux tubes in a dipole magnetic field
Directory of Open Access Journals (Sweden)
N. V. Erkaev
2002-01-01
Full Text Available Variations of the plasma pressure in a magnetic flux tube can produce MHD waves evolving into shocks. In the case of a low plasma beta, plasma pressure pulses in the magnetic flux tube generate MHD slow shocks propagating along the tube. For converging magnetic field lines, such as in a dipole magnetic field, the cross section of the magnetic flux tube decreases enormously with increasing magnetic field strength. In such a case, the propagation of MHD waves along magnetic flux tubes is rather different from that in the case of uniform magnetic fields. In this paper, the propagation of MHD slow shocks is studied numerically using the ideal MHD equations in an approximation suitable for a thin magnetic flux tube with a low plasma beta. The results obtained in the numerical study show that the jumps in the plasma parameters at the MHD slow shock increase greatly while the shock is propagating in the narrowing magnetic flux tube. The results are applied to the case of the interaction between Jupiter and its satellite Io, the latter being considered as a source of plasma pressure pulses.
Gap length distributions by PEPR
International Nuclear Information System (INIS)
Warszawer, T.N.
1980-01-01
Conditions guaranteeing exponential gap length distributions are formulated and discussed. Exponential gap length distributions of bubble chamber tracks first obtained on a CRT device are presented. Distributions of resulting average gap lengths and their velocity dependence are discussed. (orig.)
Maucher, Fabian; Sutcliffe, Paul
2017-07-01
In this paper, we present extensive numerical simulations of an excitable medium to study the long-term dynamics of knotted vortex strings for all torus knots up to crossing number 11. We demonstrate that FitzHugh-Nagumo evolution preserves the knot topology for all the examples presented, thereby providing a field theory approach to the study of knots. Furthermore, the evolution yields a well-defined minimal length for each knot that is comparable to the ropelength of ideal knots. We highlight the role of the medium boundary in stabilizing the length of the knot and discuss the implications beyond torus knots. We also show that there is not a unique attractor within a given knot topology.
Pion nucleus scattering lengths
International Nuclear Information System (INIS)
Huang, W.T.; Levinson, C.A.; Banerjee, M.K.
1971-09-01
Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs
Kinetic modeling of particle acceleration in a solar null point reconnection region
DEFF Research Database (Denmark)
Baumann, Gisela; Haugbølle, Troels; Nordlund, Åke
2013-01-01
The primary focus of this paper is on the particle acceleration mechanism in solar coronal 3D reconnection null-point regions. Starting from a potential field extrapolation of a SOHO magnetogram taken on 2002 November 16, we first performed MHD simulations with horizontal motions observed by SOHO......-relativistic electron acceleration is mainly driven by a systematic electric field in the current sheet. A non-thermal population of electrons with a power-law distribution in energy forms, featuring a power-law index of about -1.75. This work provides a first step towards bridging the gap between macroscopic scales...
1979-01-01
This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X
Feasibility of accelerator driven system
International Nuclear Information System (INIS)
Lee, Tae Yeon; Lee, Hee Seok
2012-01-01
Currently, there are two challenges or threats to the Nuclear Power community. One is the anti nuclear mood after the East Japan earthquake one year ago and the subsequent nuclear disaster. We are not sure at this moment when this mood will be eased. The other threat is the recent shale gas boom (or may be called even a revolution) that began in UA and will be spread to all over the world soon. This second threat is just as serious as the first one. Nuclear power will not receive the attention it used to a few years ago. Economically, it may be ok, however, it will be a disaster to the future of mankind, because shale gas will never solve the problem of global warming. Until now, nuclear power is the only alternative to the fossil energy to save the world. That is why the nuclear power community needs a breakthrough and it is obvious what kind of breakthrough is needed. World needs a safer and cleaner nuclear power plant. A nuclear power plant that will not cause a disaster and that will produce radio toxic nuclear waste as small as possible. At the moment, the closest system is the accelerator driven system (ADS). First of all, it is safer in a disaster such as an earthquake, because the deriving accelerator stops immediately by the earthquake. It also minimizes the nuclear waste problem by reducing the amount of the toxic waste and shortening their half lifetime to only a few hundred years. Finally, it solves the Uranium reserve problem because it can use Thorium as its fuel. The Thorium reserve is much larger than that of Uranium. Although the idea of ADS was proposed long time ago, it has not been utilized yet first by technical difficulty of accelerator. The accelerator based system needs 1 GeV, 10 MW power proton beam, which is an unprecedentedly high power. The most powerful 1 GeV proton linear accelerator is the Spallation Neutron Source, USA, which operates now at the power of 1.5 MW with the length of 350 m. A conventional linear accelerator would need
EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators
Bingham, Robert
2009-02-01
by Chen et al where the driver, instead of being a laser, is a whistler wave known as the magnetowave plasma accelerator. The application to electron--positron plasmas that are found around pulsars is studied in the paper by Shukla, and to muon acceleration by Peano et al. Electron wakefield experiments are now concentrating on control and optimisation of high-quality beams that can be used as drivers for novel radiation sources. Studies by Thomas et al show that filamentation has a deleterious effect on the production of high quality mono-energetic electron beams and is caused by non-optimal choice of focusing geometry and/or electron density. It is crucial to match the focusing with the right plasma parameters and new types of plasma channels are being developed, such as the magnetically controlled plasma waveguide reported by Froula et al. The magnetic field provides a pressure profile shaping the channel to match the guiding conditions of the incident laser, resulting in predicted electron energies of 3GeV. In the forced laser-wakefield experiment Fang et al show that pump depletion reduces or inhibits the acceleration of electrons. One of the earlier laser acceleration concepts known as the beat wave may be revived due to the work by Kalmykov et al who report on all-optical control of nonlinear focusing of laser beams, allowing for stable propagation over several Rayleigh lengths with pre-injected electrons accelerated beyond 100 MeV. With the increasing number of petawatt lasers, attention is being focused on different acceleration regimes such as stochastic acceleration by counterpropagating laser pulses, the relativistic mirror, or the snow-plough effect leading to single-step acceleration reported by Mendonca. During wakefield acceleration the leading edge of the pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake while the trailing edge of the laser pulse undergoes frequency up-shift. This is commonly known
Length-weight and length-length relationships of freshwater wild ...
African Journals Online (AJOL)
Length-weight and length-length relationships of freshwater wild catfish Mystus bleekeri from Nala Daik, Sialkot, Pakistan. ... Linear regression analysis was used, first to compute the degree of relationship between length and weight and then among total (TL), standard (SL) and fork lengths (FL). LWR exhibited a highly ...
Relativistic length agony continued
Directory of Open Access Journals (Sweden)
Redžić D.V.
2014-01-01
Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028
Optimization of negative ion accelerators
International Nuclear Information System (INIS)
Pamela, J.
1991-01-01
We have started to study negative ion extraction and acceleration systems in view of designing a 1 MeV D - accelerator. This study is being made with a two-Dimensional code that has been specifically developed in our laboratory and validated by comparison to three sets of experimental data. We believe that the criteria for negative ion accelerator design optimization should be: (i) to provide the best optics; (ii) to reduce the power load on the extraction grid; (iii) to allow operation with low electric fields in order to reduce the problem of breakdowns. We show some results of optics calculations performed for two systems that will be operational in the next months: the CEA-JAERI collaboration at Cadarache and the european DRAGON experiment at Culham. Extrapolations to higher energies of 500 to 1100 keV have also been conducted. All results indicate that the overall accelerator length, whatever be the number of gaps, is constrained by space charge effects (Child-Langmuir). We have combined this constraint with high-voltage hold-off empirical laws. As a result, it appears that accelerating 10 mA/cm 2 of D - at 1 MeV with good optics, as required for NET or ITER, is close to the expected limit of high-voltage hold-off
Metabolic acceleration in Mediterranean Perciformes
Lika, Konstadia; Kooijman, Sebastiaan A. L. M.; Papandroulakis, Nikos
2014-11-01
Larval stages are considered the most critical of fish development. During a very short period of time (2 to 3 months), larvae undergo major morphoanatomical and functional changes in order to transform into juveniles while remaining functioning (developing, eating, surviving). Depending on species and environmental conditions, patterns in larval development may vary. We study the patterns of larval development for nine fish species of Perciformes reared under aquaculture conditions and compare them in terms of species-specific parameters derived from DEB theory. We extended the standard DEB model to include metabolic acceleration during the larval period, where maximum specific assimilation and energy conductance increase with length between birth and metabolic metamorphosis. Metabolic acceleration has as a consequence that larvae initially grow slower than juveniles and adults. Our results indicate that the species with higher acceleration have lower growth rates at birth and they also suggest that metabolic acceleration is related to spawning season. High metabolic acceleration of demersal species is associated with summer-autumn spawning in the Mediterranean, where temperature is high and food availability is low.
GRADSPMHD: A parallel MHD code based on the SPH formalism
Vanaverbeke, S.; Keppens, R.; Poedts, S.
2014-03-01
We present GRADSPMHD, a completely Lagrangian parallel magnetohydrodynamics code based on the SPH formalism. The implementation of the equations of SPMHD in the “GRAD-h” formalism assembles known results, including the derivation of the discretized MHD equations from a variational principle, the inclusion of time-dependent artificial viscosity, resistivity and conductivity terms, as well as the inclusion of a mixed hyperbolic/parabolic correction scheme for satisfying the ∇ṡB→ constraint on the magnetic field. The code uses a tree-based formalism for neighbor finding and can optionally use the tree code for computing the self-gravity of the plasma. The structure of the code closely follows the framework of our parallel GRADSPH FORTRAN 90 code which we added previously to the CPC program library. We demonstrate the capabilities of GRADSPMHD by running 1, 2, and 3 dimensional standard benchmark tests and we find good agreement with previous work done by other researchers. The code is also applied to the problem of simulating the magnetorotational instability in 2.5D shearing box tests as well as in global simulations of magnetized accretion disks. We find good agreement with available results on this subject in the literature. Finally, we discuss the performance of the code on a parallel supercomputer with distributed memory architecture. Catalogue identifier: AERP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 620503 No. of bytes in distributed program, including test data, etc.: 19837671 Distribution format: tar.gz Programming language: FORTRAN 90/MPI. Computer: HPC cluster. Operating system: Unix. Has the code been vectorized or parallelized?: Yes, parallelized using MPI. RAM: ˜30 MB for a
... News Physician Resources Professions Site Index A-Z Linear Accelerator A linear accelerator (LINAC) customizes high energy x-rays or ... ensured? What is this equipment used for? A linear accelerator (LINAC) is the device most commonly used ...
Association of acceleration with spatiotemporal variables in maximal sprinting.
Nagahara, R; Naito, H; Morin, J-B; Zushi, K
2014-08-01
This study clarified the association between acceleration and the rates of changes in spatiotemporal variables on a step-to-step basis during the entire acceleration phase of maximal sprinting. 21 male sprinters performed a 60-m sprint, during which step-to-step acceleration and rates of changes in step length (RSL) and step frequency (RSF) were calculated. The coefficients of correlation between acceleration and other variables were tested at each step. There were positive correlations between acceleration and the RSF up to the second step. Acceleration was positively correlated with the RSL from the 5(th) to the 19(th) step. At the third and from the 16(th) to the 22(nd) step and from the 20(th) to the 21(st) step, there was no significant correlation, but weak relationships were found between acceleration and the RSF and RSL. The results suggest that the acceleration phase can be divided into 3 sections, and for sprinting to be effective, it is important to accelerate by increasing the step frequency to the third step, increasing the step length from the 5(th) to the 15(th) step, and increasing the step length or frequency (no systematic relative importance of step length or frequency) from the 16(th) step in the entire acceleration phase. © Georg Thieme Verlag KG Stuttgart · New York.
Acceleration Modes and Transitions in Pulsed Plasma Accelerators
Polzin, Kurt A.; Greve, Christine M.
2018-01-01
Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma
Application accelerator system having bunch control
International Nuclear Information System (INIS)
Wang, D.; Krafft, G.A.
1999-01-01
An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig
Application accelerator system having bunch control
Wang, Dunxiong; Krafft, Geoffrey Arthur
1999-01-01
An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.
MHD Simulations of the Eruption of Coronal Flux Ropes under Coronal Streamers
Fan, Yuhong
2017-07-01
Using three-dimensional magnetohydrodynamic (MHD) simulations, we investigate the eruption of coronal flux ropes underlying coronal streamers and the development of a prominence eruption. We initialize a quasi-steady solution of a coronal helmet streamer, into which we impose at the lower boundary the slow emergence of a part of a twisted magnetic torus. As a result, a quasi-equilibrium flux rope is built up under the streamer. With varying streamer sizes and different lengths and total twists of the flux rope that emerges, we found different scenarios for the evolution from quasi-equilibrium to eruption. In the cases with a broad streamer, the flux rope remains well confined until there is sufficient twist such that it first develops the kink instability and evolves through a sequence of kinked, confined states with increasing height until it eventually develops a “hernia-like” ejective eruption. For significantly twisted flux ropes, prominence condensations form in the dips of the twisted field lines due to runaway radiative cooling. Once formed, the prominence-carrying field becomes significantly non-force-free due to the weight of the prominence, despite having low plasma β. As the flux rope erupts, the prominence erupts, showing substantial draining along the legs of the erupting flux rope. The prominence may not show a kinked morphology even though the flux rope becomes kinked. On the other hand, in the case with a narrow streamer, the flux rope with less than one wind of twist can erupt via the onset of the torus instability.
MHD Simulations of the Eruption of Coronal Flux Ropes under Coronal Streamers
Energy Technology Data Exchange (ETDEWEB)
Fan, Yuhong, E-mail: yfan@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green Drive, Boulder, CO 80301 (United States)
2017-07-20
Using three-dimensional magnetohydrodynamic (MHD) simulations, we investigate the eruption of coronal flux ropes underlying coronal streamers and the development of a prominence eruption. We initialize a quasi-steady solution of a coronal helmet streamer, into which we impose at the lower boundary the slow emergence of a part of a twisted magnetic torus. As a result, a quasi-equilibrium flux rope is built up under the streamer. With varying streamer sizes and different lengths and total twists of the flux rope that emerges, we found different scenarios for the evolution from quasi-equilibrium to eruption. In the cases with a broad streamer, the flux rope remains well confined until there is sufficient twist such that it first develops the kink instability and evolves through a sequence of kinked, confined states with increasing height until it eventually develops a “hernia-like” ejective eruption. For significantly twisted flux ropes, prominence condensations form in the dips of the twisted field lines due to runaway radiative cooling. Once formed, the prominence-carrying field becomes significantly non-force-free due to the weight of the prominence, despite having low plasma β . As the flux rope erupts, the prominence erupts, showing substantial draining along the legs of the erupting flux rope. The prominence may not show a kinked morphology even though the flux rope becomes kinked. On the other hand, in the case with a narrow streamer, the flux rope with less than one wind of twist can erupt via the onset of the torus instability.
Hardware Accelerated Sequence Alignment with Traceback
Directory of Open Access Journals (Sweden)
Scott Lloyd
2009-01-01
in a timely manner. Known methods to accelerate alignment on reconfigurable hardware only address sequence comparison, limit the sequence length, or exhibit memory and I/O bottlenecks. A space-efficient, global sequence alignment algorithm and architecture is presented that accelerates the forward scan and traceback in hardware without memory and I/O limitations. With 256 processing elements in FPGA technology, a performance gain over 300 times that of a desktop computer is demonstrated on sequence lengths of 16000. For greater performance, the architecture is scalable to more processing elements.
International Nuclear Information System (INIS)
Shepard, W.S.; Cook, R.L.
1985-04-01
Mississippi State University is developing diagnostic instruments for MHD power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Additionally, technical support of the diagnostic needs of the national MHD research effort is being provided
International Nuclear Information System (INIS)
Anghaie, S.; Saraph, G.
1995-01-01
A nuclear driven magnetohydrodynamic (MHD) generator system is proposed for the space nuclear applications of few hundreds of megawatts. The MHD generator is coupled to a vapor-droplet core reactor that delivers partially ionized fissioning plasma at temperatures in range of 3,000 to 4,000 K. A detailed MHD model is developed to analyze the basic electrodynamics phenomena and to perform the design analysis of the nuclear driven MHD generator. An incompressible quasi one dimensional model is also developed to perform parametric analyses
International Nuclear Information System (INIS)
Rashad, A.R.M.
1966-01-01
This paper presents a new technique for accurately measuring the scalar and tensor a. c. electrical conductivity of plasmas used in a.c. MHD generators and accelerators. The device consists of a cylindrical plasma column (region 1) moving with a regulated axial velocity. An external magnetic field structure is located outside the plasma, and separated from it by a thin annular homogeneous medium (region 2). The magnetic field system is designed to produce in the plasma a constant axial magnetic field.and a travelling wave magnetic field. The coils of the latter magnetic field system are excited so as to produce radial, azimuthal or axial magnetic field components alone or any combination of them as required. This field design permits measuring the scalar and tensor components of the plasma conductivity directly. The theory of the apparatus is presented analytically in detail. The plasma is described by an accurate set of hydrodynamic-Maxwell equations. The plasma induced magnetic field, pressure variations and velocity profiles are taken into consideration. In region 2, the Maxwell equations are solved exactly. The boundary conditions between regions 1 and 2 are described accurately, and for the boundary conditions between region 2 and the magnetic field system a Fourier synthesis of the travelling magnetic field components is done. An accurate expression for the plasma conductivity shows that o depends upon the Alfvén speed, the slip between the plasma axial speed and the phase velocity of the applied travelling wave magnetic field, the frequency, the plasma current density, the components of the applied travelling wave magnetic field system and the device's cylindrical configuration. The design features are chosen so as to simulate the actual operating conditions of travelling magnetic wave a.c. plasma accelerators and generators. It permits accurate measurements of the plasma conductivity in these specific applications and the results are compared to those of
Characteristics of a disk MHD generator with inlet swirl
Energy Technology Data Exchange (ETDEWEB)
Harada, Nob [Nagaoka University of Technology (Japan)
1999-10-01
Two kinds of experimental studies have been performed to know the effect of inlet swirl in a disk-type MHD generator. Firstly, we decreased stagnation temperature in order to simulate a poor inlet plasma condition. Inlet swirl provided relatively higher radial Hall voltage and much better performance even for lower stagnation temperatures compared with those for the simple radial flow case, mainly due to the contribution of Faraday e.m.f. U{sub {theta}}B. High enthalpy extraction level near 30% could be kept even for lower stagnation temperatures in the range of 1600-1700 K. Secondly, we decreased stagnation pressure to know generator performance under smaller pressure ratio inlet to exit. Decrease of stagnation pressure improved enthalpy extraction very much unless the increase of static pressure and decrease of Hall field became significant. Highest enthalpy extraction ratio of 38.2% was successfully achieved. From considerations of momentum balance along the radial direction, positive inlet swirl has an important effect to reduce static pressure and also to reduce the unfavorable effect of Lorentz force. This suggests that introduction of inlet swirl is an influential way to reach high isentropic efficiency. (author)
New aspects of plasma sheet dynamics - MHD and kinetic theory
Directory of Open Access Journals (Sweden)
H. Wiechen
Full Text Available Magnetic reconnection is a process of fundamental importance for the dynamics of the Earth's plasma sheet. In this context, the development of thin current sheets in the near-Earth plasma sheet is a topic of special interest because they could be a possible cause of microscopic fluctuations acting as collective non-idealness from a macroscopic point of view. Simulations of the near-Earth plasma sheet including boundary perturbations due to localized inflow through the northern (or southern plasma sheet boundary show developing thin current sheets in the near-Earth plasma sheet about 810 R_{E} tailwards of the Earth. This location is largely independent from the localization of the perturbation. The second part of the paper deals with the problem of the macroscopic non-ideal consequences of microscopic fluctuations. A new model is presented that allows the quantitative calculation of macroscopic non-idealness without considering details of microscopic instabilities or turbulence. This model is only based on the assumption of a strongly fluctuating, mixing dynamics on microscopic scales in phase space. The result of this approach is an expression for anomalous non-idealness formally similar to the Krook resistivity but now describing the macroscopic consequences of collective microscopic fluctuations, not of collisions.
Key words. Magnetospheric physics (plasma sheet · Space plasma physics (kinetic and MHD theory; magnetic reconnection
Resistive MHD modeling of Coaxial Helicity Injection (CHI) in NSTX
Hooper, E. B.; Raman, R.; Menard, J. E.; Sovinec, C. R.
2010-11-01
CHI has generated plasma with current, density, and temperature appropriate for NSTX startup [1] offering the potential of solenoid-free operation of an advanced ST. Whole-device simulations using the NIMROD MHD code [2] have been initiated to extend physics understanding of CHI in NSTX and other STs and to help guide experiments. A computational grid has been developed and boundary conditions applied for external magnetic fields including eddy currents in walls and stabilizing plates. Injection and absorber slots are modeled with current specified at the injector and ExB drift at the absorber to prevent compression of the vacuum toroidal magnetic field, as done in simulations on HIT-II. [3] Initial results will be presented and compared with experiment. Results will also be compared with simulations of the SSPX spheromak [4] to examine the different behaviors in the (q>1) ST and (qPhys. Rev. Letters 104, 095003 (2010). 2. C.R. Sovinec, et al., J. Comp. Phys 195, 355 (2004). 3. A. Bayless, C.R. Sovinec, unpublished. 4. E. B. Hooper, et al., Phys. Plasmas 15, 032502 (2008).
Insulating wall materials for MHD electric power generating channels, 1
International Nuclear Information System (INIS)
Nakamura, Kazuo; Okubo, Tsutomu; Maeda, Minoru
1984-01-01
The various kinds of ceramic specimens were soaked in molten K 2 SO 4 at 1300 0 C for 300 hrs, the changes in porosity, volume and weight before and after the tests (hereafter, referred as the amount of change) were measured and the corrosion resistance was examined from the calculated corrosion velocity. 1) MgO and MgO-Al 2 O 3 System. Reaction products were not found, the amount of change was small, and the electrical resistivity and corrosion resistance were good. 2) MgO-BN, ZrO 2 -BN and MgO-SrZrO 3 -BN System. Of all these systems, BN in the specimens disappeared, and it turned into B 2 O 3 or other boron compounds. This reaction caused the cracking and collapse of the specimens. 3) MgO-Si 3 N 4 and MgAl 2 O 4 -Si 3 N 4 System. The specimens were attacked by molten K 2 SO 4 , resulting in the large amount of change, and the reaction layer was formed on the surface. 4) Al 2 O 3 -AlN-Si 3 N 4 System. Although the specimens were attacked by molten K 2 SO 4 , the dense specimens with about 40 mol % Si 3 N 4 showed a very small amount of change, and the deterioration of electrical resistivity was small. The durability of MHD power generating operation might be improved by further controlling the production process and composition. (author)
Power take-off analysis for diagonally connected MHD channels
International Nuclear Information System (INIS)
Pan, Y.C.; Doss, E.D.
1980-01-01
The electrical loading of the power take-off region of diagonally connected MHD channels is investigated by a two-dimensional model. The study examines the loading schemes typical of those proposed for the U-25 and U-25 Bypass channels. The model is applicable for the following four cases: (1) connection with diodes only, (2) connection with diodes and equal resistors, (3) connection with diodes and variable resistances to obtain a given current distribution, and (4) connection with diodes and variable resistors under changing load. The analysis is applicable for the power take-off regions of single or multiple-output systems. The general behaviors of the current and the potential distributions in all four cases are discussed. The analytical results are in good agreement with the experimental data. It is found possible to design the electrical circuit of the channel in the take-off region so as to achieve a fairly even load current output under changing total load current
Structure of reconnection boundary layers in incompressible MHD
International Nuclear Information System (INIS)
Sonnerup, B.U.Oe.; Wang, D.J.
1987-01-01
The incompressible MHD equations with nonvanishing viscosity and resistivity are simplified by use of the boundary layer approximation to describe the flow and magnetic field in the exit flow regions of magnetic field reconnection configurations when the reconnection rate is small. The conditions are derived under which self-similar solutions exist of the resulting boundary layer equations. For the case of zero viscosity and resistivity, the equations describing such self-similar layers are then solved in terms of quadratures, and the resulting flow and field configurations are described. Symmetric solutions, relevant, for example, to reconnection in the geomagnetic tail, as well as asymmetric solutions, relevant to reconnection at the earth's magnetopause, are found to exist. The nature of the external solutions to which the boundary layer solutions should be matched is discussed briefly, but the actual matching, which is to occur at Alfven-wave characteristic curves in the boundary layer solutions, is not carried out. Finally, it is argued that the solutions obtained may also be used to describe the structure of the intense vortex layers observed to occur at magnetic separatrices in computer simulations and in certain analytical models of the reconnection process
A fluid description for Landau damping of dispersive MHD waves
Directory of Open Access Journals (Sweden)
T. Passot
2004-01-01
Full Text Available The dynamics of long oblique MHD waves in a collisionless plasma permeated by a uniform magnetic field is addressed using a Landau-fluid model that includes Hall effect and electron-pressure gradient in a generalized Ohm's law and retains ion finite Larmor radius (FLR corrections to the gyrotropic pressure (Phys. Plasmas 10, 3906, 2003. This one-fluid model, built to reproduce the weakly nonlinear dynamics of long dispersive Alfvén waves propagating along an ambient field, is shown to correctly capture the Landau damping of oblique magnetosonic waves predicted by a kinetic theory based on the Vlasov-Maxwell system. For oblique and kinetic Alfvén waves (for which second order FLR corrections are to be retained, the linear character of waves with small but finite amplitudes is established, and the dispersion relation reproduced in the regime of adiabatic protons and isothermal electrons, associated with the condition me/mp e/Tp, where β is the squared ratio of the ion-acoustic to the Alfvén speeds. It is shown that in more general regimes, the heat fluxes are, to leading order, not gyrotropic and dependent on the Hall effect to leading order.
MHD biconvective flow of Powell Eyring nanofluid over stretched surface
Naseem, Faiza; Shafiq, Anum; Zhao, Lifeng; Naseem, Anum
2017-06-01
The present work is focused on behavioral characteristics of gyrotactic microorganisms to describe their role in heat and mass transfer in the presence of magnetohydrodynamic (MHD) forces in Powell-Eyring nanofluids. Implications concerning stretching sheet with respect to velocity, temperature, nanoparticle concentration and motile microorganism density were explored to highlight influential parameters. Aim of utilizing microorganisms was primarily to stabilize the nanoparticle suspension due to bioconvection generated by the combined effects of buoyancy forces and magnetic field. Influence of Newtonian heating was also analyzed by taking into account thermophoretic mechanism and Brownian motion effects to insinuate series solutions mediated by homotopy analysis method (HAM). Mathematical model captured the boundary layer regime that explicitly involved contemporary non linear partial differential equations converted into the ordinary differential equations. To depict nanofluid flow characteristics, pertinent parameters namely bioconvection Lewis number Lb, traditional Lewis number Le, bioconvection Péclet number Pe, buoyancy ratio parameter Nr, bioconvection Rayleigh number Rb, thermophoresis parameter Nt, Hartmann number M, Grashof number Gr, and Eckert number Ec were computed and analyzed. Results revealed evidence of hydromagnetic bioconvection for microorganism which was represented by graphs and tables. Our findings further show a significant effect of Newtonian heating over a stretching plate by examining the coefficient values of skin friction, local Nusselt number and the local density number. Comparison was made between Newtonian fluid and Powell-Eyring fluid on velocity field and temperature field. Results are compared of with contemporary studies and our findings are found in excellent agreement with these studies.
Coal-fired MHD combustor development project: Phase 3D
1985-05-01
This fourth quarterly technical progress report of the Coal-Fired MHD Combustor Development Project (Phase 3D) presents the accomplishments during the period February 1 to April 30, 1985. The scope of work covered by this quarterly report encompasses development work on the 50 MW/sub t/ combustor related to test support at the CDIF, assembly and checkout of first and second stage hardware, second stage design verification testing, designs for a continuous slag rejector and low preheat inlet section, and planning for power train testing. Progress includes the following: assembly and checkout of the second first stage, two second stages, and PEM was completed and the hardware was shipped to CDIF and FETS; integration of first and second stage hardware on the FETS Cell No. 2 test stand was completed, cold flow functional tests were performed, and hot fire checkout testing was initiated; assembly of the continuous slag rejector test set-up was 70% completed; the low preheat air inlet section Preliminary Design Review was held (work on the detail design was initiated and is 85% complete); and the Users' Manual was updated to include material for the second stage and final revisions to the power train test plan were made.
Performance of MHD coatings in flowing Li at 700 deg
International Nuclear Information System (INIS)
Pint, B.; Pawel, S.J.; Howell, M.; Moser, J.L.; Garner, G.W.; Santella, M.L.; Tortorelli, P.F.; Di Stefano, J.R.
2007-01-01
Full text of publication follows: A thermal convection loop was constructed from V-4Cr-4Ti tubing and operated in vacuum at a maximum Li temperature of 700 deg. C for ∼1000 h.. Due to slow Li flow (∼1 cm/s) in the loop, the temperature gradient was ∼340 deg. C. Specimens in the hot and cold legs of the loop included V-4Cr-4Ti spacers, tensile specimens (SS-3 type) and coupons coated by physical vapor deposition with yttria and over coated with unalloyed vanadium. Based on prior work, the multi-layer electrically-insulating coatings were developed to reduce the magneto hydrodynamic (MHD) force expected in the first wall of a lithium cooled blanket in a magnetic confinement fusion reactor. Characterization of the specimens after exposure will include: (1) mass change and chemistry change as a function of location in the temperature gradient, (2) the effect of Li exposure on the tensile properties of V-4Cr-4Ti and (3) characterization of the properties and microstructure of the coatings after exposure. Of particular interest will be the coating resistivity after exposure and any degradation of the thin (∼10 μm) vanadium overlayer. Chemistry of the Li before and after the experiment will be compared in order to assess any mass transfer effects. (authors)
MHD simulation study of compact toroid injection into magnetized plasmas
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Yoshio; Kishimoto, Yasuaki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hayashi, Takaya [National Inst. for Fusion Science, Toki, Gifu (Japan)
2000-06-01
To understand the fuelling process in a fusion device by a compact toroid (CT) plasmoid injection method, we have carried out MHD numerical simulations where a spheromak-like CT (SCT) is injected into a magnetized target plasma region. So far, we revealed that the penetration depth of the SCT plasma becomes shorter than that estimated from the conducting sphere (CS) model, because in the simulation the Lorentz force of the target magnetic field sequentially decelerates the injected SCT while in the CS model only the magnetic pressure force acts as the deceleration mechanism. In this study, we represent the new theoretical model where the injected SCT is decelerated by both the magnetic pressure force and the magnetic tension force (we call it the non-slipping sphere (NS) model) and investigate in detail the deceleration mechanism of the SCT by comparison with simulation results. As a result, it is found that the decrease of the SCT kinetic energy in the simulation coincides with that in the NS model more than in the CS model. It means that not only the magnetic pressure force but also the magnetic tension force acts as the deceleration mechanism of the SCT. Furthermore, it is revealed that magnetic reconnection between the SCT magnetic field and the target magnetic field plays a role to relax the SCT deceleration. (author)
Ionospheric conductance distribution and MHD wave structure: observation and model
Directory of Open Access Journals (Sweden)
F. Budnik
Full Text Available The ionosphere influences magnetohydrodynamic waves in the magnetosphere by damping because of Joule heating and by varying the wave structure itself. There are different eigenvalues and eigensolutions of the three dimensional toroidal wave equation if the height integrated Pedersen conductivity exceeds a critical value, namely the wave conductance of the magnetosphere. As a result a jump in frequency can be observed in ULF pulsation records. This effect mainly occurs in regions with gradients in the Pedersen conductances, as in the auroral oval or the dawn and dusk areas. A pulsation event recorded by the geostationary GOES-6 satellite is presented. We explain the observed change in frequency as a change in the wave structure while crossing the terminator. Furthermore, selected results of numerical simulations in a dipole magnetosphere with realistic ionospheric conditions are discussed. These are in good agreement with the observational data.
Key words. Ionosphere · (Ionosphere · magnetosphere interactions · Magnetospheric physics · Magnetosphere · ionosphere interactions · MHD waves and instabilities.
Ionospheric conductance distribution and MHD wave structure: observation and model
Directory of Open Access Journals (Sweden)
F. Budnik
1998-02-01
Full Text Available The ionosphere influences magnetohydrodynamic waves in the magnetosphere by damping because of Joule heating and by varying the wave structure itself. There are different eigenvalues and eigensolutions of the three dimensional toroidal wave equation if the height integrated Pedersen conductivity exceeds a critical value, namely the wave conductance of the magnetosphere. As a result a jump in frequency can be observed in ULF pulsation records. This effect mainly occurs in regions with gradients in the Pedersen conductances, as in the auroral oval or the dawn and dusk areas. A pulsation event recorded by the geostationary GOES-6 satellite is presented. We explain the observed change in frequency as a change in the wave structure while crossing the terminator. Furthermore, selected results of numerical simulations in a dipole magnetosphere with realistic ionospheric conditions are discussed. These are in good agreement with the observational data.Key words. Ionosphere · (Ionosphere · magnetosphere interactions · Magnetospheric physics · Magnetosphere · ionosphere interactions · MHD waves and instabilities.
Short cervical length dilemma.
Suhag, Anju; Berghella, Vincenzo
2015-06-01
Preterm birth (PTB) is a leading cause of neonatal morbidity and mortality. With research efforts, the rate of PTB decreased to 11.4% in 2013. Transvaginal ultrasound (TVU) cervical length (CL) screening predicts PTB. In asymptomatic singletons without prior spontaneous PTB (sPTB), TVU CL screening should be done. If the cervix is 20 mm or less, vaginal progesterone is indicated. In asymptomatic singletons with prior sPTB, serial CL screening is indicated. In multiple gestations, routine cervical screening is not indicated. In symptomatic women with preterm labor, TVU CL screening and fetal fibronectin testing is recommended. Copyright © 2015 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
P. R. Parthasarathy
2001-01-01
Full Text Available The transient solution is obtained analytically using continued fractions for a state-dependent birth-death queue in which potential customers are discouraged by the queue length. This queueing system is then compared with the well-known infinite server queueing system which has the same steady state solution as the model under consideration, whereas their transient solutions are different. A natural measure of speed of convergence of the mean number in the system to its stationarity is also computed.
Primary length standard adjustment
Ševčík, Robert; Guttenová, Jana
2007-04-01
This paper deals with problems and techniques connected with primary length standard adjusting, which includes disassembling of the device and by use of the secondary laser with collimated beam and diffraction laws successively reassembling of the laser. In the reassembling process the device was enhanced with substituting the thermal grease cooling of cold finger by copper socket cooler. This improved external cooling system enables more effective cooling of molecular iodine in the cell, which allows better pressure stability of iodine vapor and easier readjustment of the system.
Advanced Accelerator Test Facility (AATF) upgrade plan
International Nuclear Information System (INIS)
Gai, W.; Ho, C.; Konecny, R.
1989-01-01
We have successfully demonstrated the principles of wake-field acceleration using structures (cavity, dielectric) and plasmas as wake-field devices using the AATF at Argonne National Laboratory. Due to the limited driver electron pulse intensity and relative long pulse length, only modest accelerating gradients were observed. In order to study the wake field effects in much greater detail and demonstrate the feasibility of wake-field accelerator for high energy physics, we are considering construction of a laser photocathode injector on the existing 20 MeV Chem-Linac to produce very intense and short electron pulses. 10 refs., 5 figs
Study of Electron Acceleration and Multiple Dipolarization Fronts in 3D kinetic models
Lapenta, Giovanni; Ashour-Abdalla, Maha; Walker, Raymond; El-Alaoui, Mostafa
2014-05-01
The THEMIS mission encountered a depolarization front (DF) during a magnetotail crossing in the interval 035600 - 035900 UT on February 15, 2008 [1]. We present the results of an innovative investigative approach: we combine a global MHD model of the full Earth environment with a local PIC simulation. The global MHD view is provided on the UCLA model applied to the conditions for the interval of interest on Feb 15, 2008. At the specific time of 034800UT, a reconnection site first appear at about x=-15RE, y=4RE. We then use this specific MHD state as the initial setup for a fully kinetic PIC simulation, performed with the iPic3D code [2]. We consider a one way coupling where the MHD state is used as initial state and boundary conditions for the kinetic study [3]. In the present case, the time span of the kinetic simulation is short form the perspective of the global MHD simulation and does not require a full coupling where the MHD then process the information received back from the kinetic run [4]. The fields and particles are advanced self-consistently from the MHD state using a completely kinetic treatment. Many features missed by the MHD model emerge. Most notably a fast reconnection pattern develops and an unsteady reconnection process develops. The typical signatures of fast kinetic reconnection (Hall field) are observed and particle acceleration is obtained self consistently in the fields generated by the PIC simulation. The focus of the presentation will be the mechanisms of unsteady reconnection leading to multiple DFs. We observe intense wave activity propagating off the separatrices. We conduct a spectral analysis to isolate the different wave components in the lower hybrid and whistler regime. The unsteady reconnection and multiple DFs are also analysed in their impact on the energy transfer. We track the conversion of magnetic energy to particle energy and Poynting flux. The processes observed in the simulation are then compared with in situ THEMIS data
International Nuclear Information System (INIS)
Popp, Antonia
2011-01-01
The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of ∼50 pC total charge were accelerated to energies up to 450 MeV with a divergence of ∼2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10 18 cm -3 the maximum electric field strength in the plasma wave was determined to be ∼160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length, was found to be 4.9 mm
Energy Technology Data Exchange (ETDEWEB)
Popp, Antonia
2011-12-16
The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of {approx}50 pC total charge were accelerated to energies up to 450 MeV with a divergence of {approx}2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10{sup 18} cm{sup -3} the maximum electric field strength in the plasma wave was determined to be {approx}160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length
Sauer, K.; Dubinin, E.; Baumgärtel, K.
1998-09-01
The characteristic scale of the Martian magnetosheath is less than the pick-up gyroradius of oxygen ions. This leads to admissible differential motion of protons and heavies and a strong coupling between both ion fluids. 2D bi-ion MHD simulations reveal many new interesting features in such Large Larmour Radius systems. The formation of an ion-composition boundary, which separates both plasmas, and structuring of the transition from proton dominated plasma of the solar wind origin to massive planetary plasma are the main features of the interaction. A comprehensive multi-instrument study of Martian plasma environment and the comparison with theoretical modelling initiated in the framework of the Visiting Science Programme of the International Space Science Institute (ISSI) in Bern (Switzerland) gives confirmation that Mars interacts with the solar wind like a comet which has a outgassing rate near to that of Grigg-Skjellerup. The results may also be relevant for small bodies which are surrounded by a neutral gas atmosphere (icy moons, asteroids, Mercury).
The Delta x B = 0 Constraint Versus Minimization of Numerical Errors in MHD Simulations
Yee, H. C.; Sjoegreen, Bjoern; Mansour, Nagi (Technical Monitor)
2002-01-01
The MHD equations are a system of non-strictly hyperbolic conservation laws. The non-convexity of the inviscid flux vector resulted in corresponding Jacobian matrices with undesirable properties. It has previously been shown by Powell et al. (1995) that an 'almost' equivalent MHD system in non-conservative form can be derived. This non-conservative system has a better conditioned eigensystem. Aside from Powell et al., the MHD equations can be derived from basic principles in either conservative or non-conservative form. The Delta x B = 0 constraint of the MHD equations is only an initial condition constraint, it is very different from the incompressible Navier-Stokes equations in which the divergence condition is needed to close the system (i.e., to have the same number of equations and the same number of unknown). In the MHD formulations, if Delta x B = 0 initially, all one needs is to construct appropriate numerical schemes that preserve this constraint at later time evolutions. In other words, one does not need the Delta x B condition to close the MHD system. We formulate our new scheme together with the Cargo & Gallice (1997) form of the MHD approximate Riemann solver in curvilinear grids for both versions of the MHD equations. A novel feature of our new method is that the well-conditioned eigen-decomposition of the non-conservative MHD equations is used to solve the conservative equations. This new feature of the method provides well-conditioned eigenvectors for the conservative formulation, so that correct wave speeds for discontinuities are assured. The justification for using the non-conservative eigen-decomposition to solve the conservative equations is that our scheme has a better control of the numerical error associated with the divergence of the magnetic condition. Consequently, computing both forms of the equations with the same eigen-decomposition is almost equivalent. It will be shown that this approach, using the non-conservative eigensystem when
Analytic MHD Theory for Earth's Bow Shock at Low Mach Numbers
Grabbe, Crockett L.; Cairns, Iver H.
1995-01-01
A previous MHD theory for the density jump at the Earth's bow shock, which assumed the Alfven M(A) and sonic M(s) Mach numbers are both much greater than 1, is reanalyzed and generalized. It is shown that the MHD jump equation can be analytically solved much more directly using perturbation theory, with the ordering determined by M(A) and M(s), and that the first-order perturbation solution is identical to the solution found in the earlier theory. The second-order perturbation solution is calculated, whereas the earlier approach cannot be used to obtain it. The second-order terms generally are important over most of the range of M(A) and M(s) in the solar wind when the angle theta between the normal to the bow shock and magnetic field is not close to 0 deg or 180 deg (the solutions are symmetric about 90 deg). This new perturbation solution is generally accurate under most solar wind conditions at 1 AU, with the exception of low Mach numbers when theta is close to 90 deg. In this exceptional case the new solution does not improve on the first-order solutions obtained earlier, and the predicted density ratio can vary by 10-20% from the exact numerical MHD solutions. For theta approx. = 90 deg another perturbation solution is derived that predicts the density ratio much more accurately. This second solution is typically accurate for quasi-perpendicular conditions. Taken together, these two analytical solutions are generally accurate for the Earth's bow shock, except in the rare circumstance that M(A) is less than or = 2. MHD and gasdynamic simulations have produced empirical models in which the shock's standoff distance a(s) is linearly related to the density jump ratio X at the subsolar point. Using an empirical relationship between a(s) and X obtained from MHD simulations, a(s) values predicted using the MHD solutions for X are compared with the predictions of phenomenological models commonly used for modeling observational data, and with the predictions of a
International Nuclear Information System (INIS)
Sessler, A.M.
1986-05-01
A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes
Evaluation of MHD materials for use in high-temperature fuel cells
Energy Technology Data Exchange (ETDEWEB)
Guidotti, R.
1978-06-15
The MHD and high-temperature fuel cell literature was surveyed for data pertaining to materials properties in order to identify materials used in MHD power generation which also might be suitable for component use in high-temperature fuel cells. Classes of MHD-electrode materials evaluated include carbides, nitrides, silicides, borides, composites, and oxides. Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/ used as a reference point to evaluate materials for use in the solid-oxide fuel cell. Physical and chemical properties such as electrical resistivity, coefficient of thermal expansion, and thermodynamic stability toward oxidation were used to screen candidate materials. A number of the non-oxide ceramic MHD-electrode materials appear promising for use in the solid-electrolyte and molten-carbonate fuel cell as anodes or anode constituents. The MHD-insulator materials appear suitable candidates for electrolyte-support tiles in the molten-carbonate fuel cells. The merits and possible problem areas for these applications are discussed and additional needed areas of research are delineated.
MHD activity in the ISX-B tokamak: experimental results and theoretical interpretation
Energy Technology Data Exchange (ETDEWEB)
Carreras, B.A.; Dunlap, J.L.; Bell, J.D.; Charlton, L.A.; Cooper, W.A.; Dory, R.A.; Hender, T.C.; Hicks, H.R.; Holmes, J.A.; Lynch, V.E.
1982-01-01
The observed spectrum of MHD fluctuations in the ISX-B tokamak is clearly dominated by the n=1 mode when the q=1 surface is in the plasma. This fact agrees well with theoretical predictions based on 3-D resistive MHD calculations. They show that the (m=1; n=1) mode is then the dominant instability. It drives other n=1 modes through toroidal coupling and n>1 modes through nonlinear couplings. These theoretically predicted mode structures have been compared in detail with the experimentally measured wave forms (using arrays of soft x-ray detectors). The agreement is excellent. More detailed comparisons between theory and experiment have required careful reconstructions of the ISX-B equilibria. The equilibria so constructed have permitted a precise evaluation of the ideal MHD stability properties of ISX-B. The present results indicate that the high ..beta.. ISX-B equilibria are marginally stable to finite eta ideal MHD modes. The resistive MHD calculations also show that at finite ..beta.. there are unstable resistive pressure driven modes.
Energy Technology Data Exchange (ETDEWEB)
1992-03-01
The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990`s, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.
An analysis of plasma ion toroidal rotation during large amplitude MHD activity in JET
International Nuclear Information System (INIS)
Snipes, J.A.; Esch, H.P.L. de; Lazzaro, E.; Stork, D.; Hellermann, M. von; Galvao, R.; Hender, T.C.; Zasche, D.
1989-01-01
A detailed study of plasma ion toroidal rotation in JET during large amplitude MHD activity has revealed a strong viscous force that couples plasma ions to MHD modes. Depending on the MHD modes present, this force can couple across all of the plasma cross section, across only the central region, roughly within the q=1 surface, or across only the outer region outside the q=1.5 surface. The force acts to flatten the ion toroidal rotation frequency profile, measured by the JET active charge exchange spectroscopy diagnostic, across the coupled region of plasma. The frequency of rotation in this region agrees with the MHD oscillation frequency measured by magnetic pick-up coils at the wall. The strength of the force between the ions and modes becomes evident during high power NBI when the mode locks and drags the ion toroidal rotation frequency to zero, within the errors of the measurements. The present theories of plasma rotation either ignore MHD effects entirely, consider only moderate n toroidal field ripple, or low n ripple effects. (author) 7 refs., 3 figs
Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations
Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.
2013-12-01
There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.
MHD instabilities and their effects on plasma confinement in the large helical device plasmas
International Nuclear Information System (INIS)
Toi, K.
2002-01-01
MHD stability of NBI heated plasmas and impacts of MHD modes on plasma confinement are intensively studied in the Large Helical Device (LHD). Three characteristic MHD instabilities were observed, that is, (1) pressure driven modes excited in the plasma edge, (2) pressure driven mode in the plasma core, and (3) Alfven eigenmodes (AEs) driven by energetic ions. MHD mode excited in the edge region accompanies multiple satellites, and is called Edge Harmonic Modes (EHMs). EHM sometimes has a bursting character. The bursting EHM transiently decreases the stored energy by about 15 percent. In the plasma core region, m=2/n=1 pressure driven mode is typically destabilized. The mode often induces internal collapse in the higher beta regime more than 1 percent. The internal collapse appreciably affects the global confinement. Energetic ion driven AEs are often detected in NBI-heated LHD plasmas. Particular AE with the frequency 8-10 times larger than TAE-frequency was detected in high beta plasmas more than 2 percent. The AE may be related to helicity-induced AE. Excitation of these three types of MHD instabilities and their impacts on plasma confinement are discussed. (author)
A simplified MHD model of capillary Z-Pinch compared with experiments
Energy Technology Data Exchange (ETDEWEB)
Shapolov, A.A.; Kiss, M.; Kukhlevsky, S.V. [Institute of Physics, University of Pecs (Hungary)
2016-11-15
The most accurate models of the capillary Z-pinches used for excitation of soft X-ray lasers and photolithography XUV sources currently are based on the magnetohydrodynamics theory (MHD). The output of MHD-based models greatly depends on details in the mathematical description, such as initial and boundary conditions, approximations of plasma parameters, etc. Small experimental groups who develop soft X-ray/XUV sources often use the simplest Z-pinch models for analysis of their experimental results, despite of these models are inconsistent with the MHD equations. In the present study, keeping only the essential terms in the MHD equations, we obtained a simplified MHD model of cylindrically symmetric capillary Z-pinch. The model gives accurate results compared to experiments with argon plasmas, and provides simple analysis of temporal evolution of main plasma parameters. The results clarify the influence of viscosity, heat flux and approximations of plasma conductivity on the dynamics of capillary Z-pinch plasmas. The model can be useful for researchers, especially experimentalists, who develop the soft X-ray/XUV sources. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Directory of Open Access Journals (Sweden)
C. Nabert
2017-05-01
Full Text Available The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field from in situ spacecraft data using a magnetohydrodynamic (MHD simulation approach. The method is developed with respect to the upcoming BepiColombo mission to planet Mercury aimed at determining the planet's magnetic field and its interior electrical conductivity distribution. In contrast to the widely used empirical models, global MHD simulations allow the calculation of the strongly time-dependent interaction process of the solar wind with the planet. As a first approach, we use a simple MHD simulation code that includes time-dependent solar wind and magnetic field parameters. The planetary parameters are estimated by minimizing the misfit of spacecraft data and simulation results with a gradient-based optimization. As the calculation of gradients with respect to many parameters is usually very time-consuming, we investigate the application of an adjoint MHD model. This adjoint MHD model is generated by an automatic differentiation tool to compute the gradients efficiently. The computational cost for determining the gradient with an adjoint approach is nearly independent of the number of parameters. Our method is validated by application to THEMIS (Time History of Events and Macroscale Interactions during Substorms magnetosheath data to estimate Earth's dipole moment.
MHD heat and seed recovery technology project. Eighth quarterly report, October-December 1979
Energy Technology Data Exchange (ETDEWEB)
Petrick, M.; Johnson, T. R.
1980-08-01
The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information for the design and operation of the steam plant downstream of the MHD channel-diffuser, and of the seed regeneration process. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The work is being done in close cooperation with the Heat Recovery-Seed Recovery facilities, which will be 20-MW prototypes of the MHD steam bottoming system. The primary effort of the HSR Technology Project is directed toward experimental investigations of critical issues, such as (1) NO/sub x/ behavior in the radiant boiler and secondary combustor; (2) radiant boiler design to meet the multiple requirements of steam generation, NO/sub x/ decomposition, and seed-slag separation; (3) effects of solid or liquid seed deposits on heat transfer and gas flow in the steam and air heaters; (4) formation, growth, and deposition of the seed-slag particles; (5) character of the combustion gas effluents; and (6) the corrosion and erosion of ceramic and metallic materials of construction. These investigations are performed primarily in a 2-MW test facility, Argonne MHD Process Engineering Laboratory (AMPEL). Other project activities are related to studies of the thermochemistry of the seed-slag combustion gas system. Activities are reported.
Harmonic ratcheting for fast acceleration
Directory of Open Access Journals (Sweden)
N. Cook
2014-04-01
Full Text Available A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6 is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the “Q-loss” and “f-dot” loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a “harmonic ratcheting” acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details
Piezoelectric particle accelerator
Kemp, Mark A.; Jongewaard, Erik N.; Haase, Andrew A.; Franzi, Matthew
2017-08-29
A particle accelerator is provided that includes a piezoelectric accelerator element, where the piezoelectric accelerator element includes a hollow cylindrical shape, and an input transducer, where the input transducer is disposed to provide an input signal to the piezoelectric accelerator element, where the input signal induces a mechanical excitation of the piezoelectric accelerator element, where the mechanical excitation is capable of generating a piezoelectric electric field proximal to an axis of the cylindrical shape, where the piezoelectric accelerator is configured to accelerate a charged particle longitudinally along the axis of the cylindrical shape according to the piezoelectric electric field.
International Nuclear Information System (INIS)
Likhachev, A P; Medin, S A
2010-01-01
The simultaneous development of the MHD instabilities of Raylegh-Taylor and Kelvin-Helmholtz types at the interface between high-conducting plasmoid and surrounding non- or low-conducting gas is considered. The linear stage of the RTI development is studied analytically for incompressible and compressible fluids. The nonlinear stage of the individual development of the RTI and the coupled development of both instabilities has been investigated numerically. The time-dependent two-dimensional numerical model based on the solution of the Euler gasdynamic equations with body momentum and energy sources of MHD origin has been developed and used in calculations. A disturbance introducing in the background flow has been periodic with varied assignment type and wave length. Fundamental difference between the results of linear and nonlinear analysis has been revealed. In particular, the increment of the RTI development at nonlinear stage is one-two order of magnitude less than that predicted by linear theory and rather weakly depends on initial disturbance mode. In linear analysis the coupled development of the RTI and the KHI is determined by simple summing of the two effects in the expression of wave increment, whereas in nonlinear case the mutual influence of the instabilities leads to essential alterations in their development, main of which is the intensive 'layer-by-layer' destruction of the plasmoid surface.
PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS
Energy Technology Data Exchange (ETDEWEB)
Dahlburg, R. B.; Obenschain, K. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Laming, J. M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Taylor, B. D. [AFRL Eglin AFB, Pensacola, FL 32542 (United States)
2016-11-10
Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.
MHD-Stabilization of Axisymmetric Mirror Systems Using Pulsed ECRH
International Nuclear Information System (INIS)
Post, R.F.
2010-01-01
This paper, part of a continuing study of means for the stabilization of MHD interchange modes in axisymmertric mirror-based plasma confinement systems, is aimed at a preliminary look at a technique that would employ a train of plasma pressure pulses produced by ECRH to accomplish the stabilization. The purpose of using sequentially pulsed ECRH rather than continuous-wave ECRH is to facilitate the localization of the heated-electron plasma pulses in regions of the magnetic field with a strong positive field-line curvature, e. g. in the 'expander' region of the mirror magnetic field, outside the outermost mirror, or in other regions of the field with positive field-line curvature. The technique proposed, of the class known as 'dynamic stabilization,' relies on the time-averaged effect of plasma pressure pulses generated in regions of positive field-line curvature to overcome the destabilizing effect of plasma pressure in regions of negative field-line curvature within the confinement region. As will also be discussed in the paper, the plasma pulses, when produced in regions of the confining having a negative gradient, create transient electric potentials of ambipolar origin, an effect that was studied in 1964 in The PLEIDE experiment in France. These electric fields preserve the localization of the hot-electron plasma pulses for a time determined by ion inertia. It is suggested that it may be possible to use this result of pulsed ECRH not only to help to stabilize the plasma but also to help plug mirror losses in a manner similar to that employed in the Tandem Mirror.
Dispersive MHD Shock Properties and Interactions with Alfven Solitons
Hamilton, R.; Toll, K.; Ellis, C.
2017-12-01
The weakly nonlinear, weakly dispersive limit of Hall MHD with resistivity for 1D waves travelling nearly parallel to the ambient magnetic field reduces to the derivative nonlinear Schrödinger-Burgers (DNLSB) equation. This model equation describes the coupling between the Alfvenic and magnetosonic modes for a low b plasma. Without dissipation this model equation reduces to the DNLS which can be solved as an initial value problem using the Inverse Scattering Transformation through which the nonlinear component of the magnetic field profile can be represented as a combination of one-parameter bright and dark solitons as well as two-parameter solitons. The one-parameter solitons are constrained to travel at speeds ranging between the Alfvenic and magnetosonic characteristic speeds of the ambient field. We have found that these one-parameter solitons are effectively bound to a 1-2 Fast Shock and will pass back and forth across the shock until they are damped away with no apparent effect on the Fast Shock. A similar mechanism is expected for a sufficiently compressive Intermediate Shock as it arises simply from two effects: damping of a one-parameter soliton causes it to speed up and, if it does not damp away, it will eventually overtake the shock; passing forwards through a compressive shock the decrease of the field strength leads to a slowing of the soliton. We also discuss an extension of results [C. F. Kennel, R. D. Blandford, C. C. Wu, Phys. Fluids B 2(2), 1990] related to the time dependence of Intermediate Shocks in the presence of dispersion.
Preliminary analysis of the dynamic heliosphere by MHD simulations
International Nuclear Information System (INIS)
Washimi, H.; Zank, G. P.; Tanaka, T.
2006-01-01
A preliminary analysis of the dynamic heliosphere to estimate the termination shock (TS) distance from the sun around the time when Voyager 1 passed the termination shock at December 16, 2004 is performed by using MHD simulations. For input to this simulation, we use the Voyager 2 solar-wind data. We first find a stationary solution of the 3-D outer heliosphere by assigning a set of LISM parameters as our outer boundary conditions and then the dynamical analysis is performed. The model TS crossing is within 6 months of the observed date. The TS is pushed outward every time a high ram-pressure solar wind pulse arrives. After the end of the high ram-pressure wind, the TS shock shrinks inward. When the last Halloween event passed through the TS at DOY 250, 2004, the TS began to shrink inward very quickly and the TS crossed V1. The highest inward speed of the TS is over 400 km/s. The high ram-pressure solar wind transmitted through the TS becomes a high thermal-pressure plasma in the heliosheath, acting to push the TS inward. This suggests that the position of the TS is determined not only by the steady-state pressure balance condition between the solar wind ram-pressure and the LISM pressure, but by the dynamical ram pressure too. The period when the high ram-pressure solar wind arrives at the TS shock seems to correspond to the period of the TS particle event (Stone et al, 2005, Decker et al., 2005). The TS crossing date will be revised in future simulations using a more appropriate set of parameters for the LISM. This will enable us to undertake a detailed comparison of the simulation results with the TS particle events
Elementary principles of linear accelerators
International Nuclear Information System (INIS)
Loew, G.A.; Talman, R.
1983-09-01
These lectures come in five sections. The first is this introduction. The second is a short chronology of what are viewed as important milestones in the field. The third covers proton linacs. It introduces elementary concepts such as transit time, shunt impedance, and Q. Critical issues such as phase stability and transverse forces are discussed. The fourth section contains an elementary discussion of waveguide accelerating structures. It can be regarded as an introduction to some of the more advanced treatments of the subject. The final section is devoted to electron accelerators. Taking SLAC as an example, various topics are discussed such as structure design, choice of parameters, frequency optimization, beam current, emittance, bunch length and beam loading. Recent developments and future challenges are mentioned briefly. 41 figures, 4 tables
Elementary principles of linear accelerators
Energy Technology Data Exchange (ETDEWEB)
Loew, G.A.; Talman, R.
1983-09-01
These lectures come in five sections. The first is this introduction. The second is a short chronology of what are viewed as important milestones in the field. The third covers proton linacs. It introduces elementary concepts such as transit time, shunt impedance, and Q. Critical issues such as phase stability and transverse forces are discussed. The fourth section contains an elementary discussion of waveguide accelerating structures. It can be regarded as an introduction to some of the more advanced treatments of the subject. The final section is devoted to electron accelerators. Taking SLAC as an example, various topics are discussed such as structure design, choice of parameters, frequency optimization, beam current, emittance, bunch length and beam loading. Recent developments and future challenges are mentioned briefly. 41 figures, 4 tables.
Separated-orbit bisected energy-recovered linear accelerator
Douglas, David R.
2015-09-01
A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.
Leukocyte Telomere Length and Late-Life Depression
Schaakxs, Roxanne; Verhoeven, Josine E.; Oude Voshaar, Richard; Comijs, Hannie C.; Penninx, Brenda W. J. H.
OBJECTIVE: Depressive disorders have been associated with increased risk for aging-related diseases, possibly as a consequence of accelerated cellular aging. Cellular aging, indexed by telomere length (TL) shortening, has been linked to depression in adults younger than 60 years; however, it remains
Leukocyte telomere length and late-life depression
Schaakxs, R.; Verhoeven, J.E.; Oude Voshaar, R.C.; Comijs, H.C.; Penninx, B.W.
2015-01-01
Objective Depressive disorders have been associated with increased risk for aging-related diseases, possibly as a consequence of accelerated cellular aging. Cellular aging, indexed by telomere length (TL) shortening, has been linked to depression in adults younger than 60 years; however, it remains
Leukocyte telomere length and late-life depression
Schaakxs, R.; Verhoeven, J.E.; Oude Voshaar, R.C.; Comijs, H.C.; Penninx, B.W.
2015-01-01
OBJECTIVE: Depressive disorders have been associated with increased risk for aging-related diseases, possibly as a consequence of accelerated cellular aging. Cellular aging, indexed by telomere length (TL) shortening, has been linked to depression in adults younger than 60 years; however, it remains
Smith Purcell Radiation Bunch-Length Measurement
Korbly, Stephen; Marsh, Roark A; Temkin, Richard J
2005-01-01
Measurements of Coherent Smith-Purcell Radiation (SPR) were performed at the 17 GHz high-gradient accelerator built by Haimson Research Corporation at the MIT Plasma Science and Fusion Center. SPR is a promising radiation source because the radiation intensity is enhanced by the number of grating periods. The radiation produced obeys the SP resonance condition correlating the radiation frequency at each observation angle, allowing SPR to be exploited as a bunch-length measurement. For a 15 MeV 150 mA 125 ns beam in short and long pulse modes, bunch-lengths of 0.6 ps and 1 ps were measured with this method, respectively, with an error of ± 0.1 ps. Frequency measurements were also performed using a double Heterodyne system. Heterodyne measurements revealed frequency-locking, which gave a power level enhancement of 1000 at integer multiples of the Accelerator RF frequency. Frequencies up to 514 GHz were measured with a bandwidth of 25 MHz.
Bunch Length Measurements using Coherent Radiation
Ischebeck, Rasmus; Barnes, Christopher; Blumenfeld, Ian; Clayton, Chris; Decker, Franz Josef; Deng, Suzhi; Hogan, Mark; Huang Cheng Kun; Iverson, Richard; Johnson, Devon K; Krejcik, Patrick; Lu, Wei; Marsh, Kenneth; Oz, Erdem; Siemann, Robert; Walz, Dieter
2005-01-01
The accelerating field that can be obtained in a beam-driven plasma wakefield accelerator depends on the current of the electron beam that excites the wake. In the E-167 experiment, a peak current above 10kA will be delivered at a particle energy of 28GeV. The bunch has a length of a few ten micrometers and several methods are used to measure its longitudinal profile. Among these, autocorrelation of coherent transition radiation (CTR) is employed. The beam passes a thin metallic foil, where it emits transition radiation. For wavelengths greater than the bunch length, this transition radiation is emitted coherently. This amplifies the long-wavelength part of the spectrum. A scanning Michelson interferometer is used to autocorrelate the CTR. However, this method requires the contribution of many bunches to build an autocorrelation trace. The measurement is influenced by the transmission characteristics of the vacuum window and beam splitter. We present here an analysis of materials, as well as possible layouts ...
Simulation of the MHD stabilities of the experiment on HL-2A tokamak by GATO code
International Nuclear Information System (INIS)
Pan Wei; Chen Liaoyuan; Dong Jiaqi; Shen Yong; Zhang Jinhua
2009-01-01
The ideal two-dimensional MHD stabilities code, GATO, has been successfully immigrated to the high-performance computing system of HL-2A and used to the simulation study of the ideal MHD stabilities of the plasmas produced by one of the pellets injection experiments on HL-2A tokamak. The EFIT code was used to reconstruct the equilibrium configures firstly and the GATO was used to compute their MHD stabilities secondly whose source data were obtained by the NO.4050 discharge of the experiments on HL-2A, and finally by analyzing these results the preliminary conclusion was devised that the confinement performance of the plasma was improved because of the stabilization effect of the anti-sheared configures created by the pellets injection. (authors)
Benyo, Theresa L.
2010-01-01
This paper describes the preliminary results of a thermodynamic cycle analysis of a supersonic turbojet engine with a magnetohydrodynamic (MHD) energy bypass system that explores a wide range of MHD enthalpy extraction parameters. Through the analysis described here, it is shown that applying a magnetic field to a flow path in the Mach 2.0 to 3.5 range can increase the specific thrust of the turbojet engine up to as much as 420 N/(kg/s) provided that the magnitude of the magnetic field is in the range of 1 to 5 Tesla. The MHD energy bypass can also increase the operating Mach number range for a supersonic turbojet engine into the hypersonic flight regime. In this case, the Mach number range is shown to be extended to Mach 7.0.
Modeling of Low Frequency MHD Induced Beam Ion Transport In NSTX
International Nuclear Information System (INIS)
Gorelenkov, N.N.; Medley, S.S.
2004-01-01
Beam ion transport in the presence of low frequency MHD activity in National Spherical Tokamak Experiment (NSTX) plasma is modeled numerically and analyzed theoretically in order to understand basic underlying physical mechanisms responsible for the observed fast ion redistribution and losses. Numerical modeling of the beam ions flux into the NPA in NSTX shows that after the onset of low frequency MHD activity high energy part of beam ion distribution, E b > 40keV, is redistributed radially due to stochastic diffusion. Such diffusion is caused by high order harmonics of the transit frequency resonance overlap in the phase space. Large drift orbit radial width induces such high order resonances. Characteristic confinement time is deduced from the measured NPA energy spectrum and is typically ∼ 4msec. Considered MHD activity may induce losses on the order of 10% at the internal magnetic field perturbation (delta)B/B = Ο (10 -3 ), which is comparable to the prompt orbit losses
MHD and heat transfer benchmark problems for liquid metal flow in rectangular ducts. Final paper
International Nuclear Information System (INIS)
Sidorenkov, S.I.; Hua, T.Q.; Araseki, Hideo
1994-07-01
Liquid metal cooling systems of a self-cooled blanket in a tokamak reactor will likely include channels of rectangular cross section where liquid metal is circulated in the presence of strong magnetic fields. MHD pressure drop, velocity distribution and heat transfer characteristics are important issues in the engineering design considerations. Computer codes for the reliable solution of three-dimensional MHD flow problems are needed for fusion relevant conditions. This paper describes four benchmark problems to validate magnetohydrodynamic (MHD) and heat transfer computer codes. The problems include rectangular duct geometry with uniform and nonuniform magnetic fields, with and without surface heat flux, and various rectangular cross sections. Two of the problems are based on experiments. Participants in this benchmarking activity come from three countries: The Russian Federation, The United States, and Japan. The solution methods to the problems are described. Results from the different computer codes are presented and compared
MHD activity and energy loss during beta saturation and collapse at high beta poloidal in PBX
International Nuclear Information System (INIS)
Kugel, H.W.; Sesnic, S.; Bol, K.
1987-10-01
High-β experiments, in medium to high-q tokamak plasmas, exhibit a temporal β saturation and collapse. This behavior has been attributed to ballooning, ideal kink, or tearing modes. In PBX, a unique diagnostic capability allowed studies of the relation between MHD and energy loss for neutral-beam-heated (<6 MW), mildly indented (10 to 15%), nearly steady I/sub p/ discharges that approached the Troyon-Gruber limit. Under these conditions, correlations between MHD activity and energy losses have shown that the latter can be almost fully accounted for by various long wavelength MHD instabilities and that there is no need to invoke high-n ballooning modes in PBX. 6 refs., 4 figs
MHD Heat and Seed Recovery Technology Project. Sixth quarterly report, April-June 1979
Energy Technology Data Exchange (ETDEWEB)
Petrick, M.; Tempelmeyer, K. E.; Johnson, T. R.
1979-01-01
The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information for the design and operation of the heat and seed recovery systems downstream of the MHD channel-diffuser and the seed regeneration process. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The work is being done in cooperation with other DOE contractors working in this general area. The present project activities include: (1) studies of the thermochemistry of seed-slag systems, (2) investigations of ceramic and metallic materials for service in the downstream gas systems, (3) small-scale engineering studies of seed-slag deposition, (4) operation of a 2-MW experimental facility for investigations pertaining to the downstream gas system, and (5) evaluation of seed regeneration processes.
MHD heat and seed recovery technology project. Fifth quarterly report, January--March 1979
Energy Technology Data Exchange (ETDEWEB)
Petrick, M.; Tempelmeyer, K. E.; Johnson, T. R.
1979-05-01
The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information pertinent to the design and operation of the heat and seed recovery systems downstream of the channel-diffuser and to the seed regeneration processes. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The present project activities include: (1) assistance to and cooperation with other MHD programs including the Heat Recovery-Seed Recovery facility; (2) studies of the thermochemistry of seed-slag systems; (3) investigations of ceramic and metallic materials for service in the downstream gas systems; (4) small-scale engineering studies of seed-slag deposition; (5) operation of a 2-MW experimental facility for investigations pertaining to the downstream gas system; and (6) evaluation of seed regeneration processes.
Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario
International Nuclear Information System (INIS)
Chen Junjie; Li Guoqiang; Qian Jinping; Liu Zixi
2012-01-01
The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta β N limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power P t increases as the toroidal magnetic field B T or the normalized beta β N is increased. (magnetically confined plasma)
Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results
Hals, F. A.
1981-03-01
The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.
Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario
Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi
2012-11-01
The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.
Maxwell's equations in divergence form for general media with applications to MHD
International Nuclear Information System (INIS)
Van Putten, M.H.P.M.
1991-01-01
Maxwell's equations in media with general constitutive relations are reformulated in covariant form as a system of divergence equations without constraints. Our reformulation enables us to express general electro-magneto-fluid problems as hyperbolic systems in divergence form. We illustrate this method on the MHD problem. In the absence of constraints, a general representation is derived for the characteristic form for first-order systems of quasi-linear partial differential equations in vector fields and scalars. Using this covariant formulation of characteristics, we find that the principle of covariance imposes a very rigid structure on the infinitesimally small amplitude waves in MHD. To demonstrate the power of the reformulation, we study numerically ultra-relativistic wave breaking using the divergence formulation of MHD. (orig.)
Bai, Yu; Jiang, Yuehua; Liu, Fawang; Zhang, Yan
2017-12-01
This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.
Directory of Open Access Journals (Sweden)
Yu Bai
2017-12-01
Full Text Available This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.
Electromagnetic radiation from a laser wakefield accelerator
Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.
2008-01-01
Coherent and incoherent electromagnetic radiation emitted from a laser wakefield accelerator is calculated based on Lienard-Wiechert potentials. It is found that at wavelengths longer than the bunch length, the radiation is coherent. The coherent radiation, which typically lies in the infrared
Parametric approach to linear induction accelerator design
International Nuclear Information System (INIS)
Bresie, D.A.; Andrews, J.A.; Ingram, S.W.
1991-01-01
Past work on the design of linear induction accelerators has centered on the development of computer codes to analyze accelerator designs, using the current filament method. While these filament models are a very valuable tool for evaluating the performance of an induction launcher design, they provide little insight into the selection of dimensions, materials, and operation points for accelerators with interesting performance. Described in this paper is a parametric approach to defining effective accelerator designs. This method uses a computer optimization routine to iteratively seek out effective designs. The optimization routine is forced to search within a parameter space restricted to interesting and realistic parameters such as size, weight, voltage, and temperature rises. A filament model is used as the filter for the optimizer. Several linear induction accelerators have been designed using this method. The accelerators designed all used a switched capacitor power supply. While the run time of this code on The University of Texas' CRAY XMP-24 computer is moderately long, the resulting designs have good predicted performance. With realistic power supplies and materials, accelerator efficiencies in the 20 to 40% range were easily obtained. This paper describes the effect of armature diameter, length-to-diameter ratio, and weight, as well as other parameters, on the optimum accelerator design
The Delta(dot) B = O Constraint vs. Minimization of Numerical Errors in MHD Simulations
Yee, H. C.; Sjoegreen, Bjoern; Yee, H. C.
2002-01-01
The MHD equations are a system of non-strictly hyperbolic conservation laws. The non-convexity of the inviscid flux vector resulted in corresponding Jacobian matrices with undesirable properties. On the other hand, the MHD equations can be derived from basic principles in either conservative or non-conservative form. The non-conservative system has a better conditioned eigensystem. The Delta(dot)B = 0 constraint of the A4HD equations is only an initial condition constraint. One does not need the Delta(dot)B condition to close the MHD system. We formulate our new low dissipative high order scheme together with the Cargo & Gallice (1997) form of the MHD approximate Riemann solver in curvilinear grids for both versions of the MHD equations. A novel feature of our new method is that the well-conditioned eigen-decomposition of the non-conservative MHD equations is used to solve the conservative equations. This new feature of the method provides well-conditioned eigenvectors for the conservative formulation, so that correct wave speeds for discontinuities are assured. The justification for using the non-conservative eigen-decomposition to solve the conservative equations is that our scheme has a better control of the numerical error associated with the Delta(dot)B condition. Consequently, computing both forms of the equations with the same eigen-decomposition is almost equivalent. It will be shown that this approach, using the non-conservative eigensystem when solving the conservative equations, also works well in the context of standard shock-capturing schemes.
Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas
Piovesan, P.; Bonfiglio, D.; Cianciosa, M.; Luce, T. C.; Taylor, N. Z.; Terranova, D.; Turco, F.; Wilcox, R. S.; Wingen, A.; Cappello, S.; Chrystal, C.; Escande, D. F.; Holcomb, C. T.; Marrelli, L.; Paz-Soldan, C.; Piron, L.; Predebon, I.; Zaniol, B.; DIII-D, The; RFX-Mod Teams
2017-07-01
Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. In this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8-1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.
EMAPS: An Efficient Multiscale Approach to Plasma Systems with Non-MHD Scale Effects
Energy Technology Data Exchange (ETDEWEB)
Omelchenko, Yuri A. [Trinum Research, Inc., San Diego, CA (United States)
2016-08-08
, mirrors, etc) lie at the core of many space and laboratory plasma phenomena ranging from magnetoshells and solar wind interactions with planetary magnetospheres to compact fusion plasmas. HYPERS simulations are compared with data from the MSX experiment (LANL) that focuses on the physics of magnetized collisionless shocks through the acceleration and subsequent stagnation of FRC plasmoids against a strong magnetic mirrors and flux-conserving boundaries. 3. Exploding magnetoplasmas Results from hybrid simulations of two experiments at the LAPD and Nevada Terawatt Facility are discussed where short-pulse lasers are used to ablate solid targets to produce plasmas that expand across external magnetic fields. The first simulation recreates flutelike density striations observed at the leading edge of a carbon plasma and predicts an early destruction of the magnetic cavity in agreement with experimental evidence. In the second simulation a polyethylene target is ablated into a mixture of protons and carbon ions. A mechanism is demonstrated that allows protons to penetrate the magnetic field in the form of a collimated flow. The results are compared to experimental data and single-fluid MHD simulations. The EMAPS framework has the potential for wide application in many other engineering and scientific fields, such as climate models, biological systems, electronic devices, seismic events, oil reservation simulators that all involve advancing solutions of partial differential equations in time where the rate of activity can be adapted widely over the spatial domain depending on locally space/time phenomena (“events”).
Advance of accelerator technology
Energy Technology Data Exchange (ETDEWEB)
Kamitubo, Hiromichi
1987-08-01
At first, accelerators were developed for the research on atomic nuclei, but as the research on the components of natural world advanced, they were made larger so as to reach higher energy, and developed so that diverse particles can be accelerated. The energy attainable with accelerators has increased to ten times in six years. To the advance of accelerators, the development of acceleration principle due to new idea or the development of the technology related to accelerators accompanied without exception. In particular, as accelerators became large scale, and their construction requires large amount of money, attention is paid to the technical development required for the construction of new accelerators as the extending effect which brings forth the technical innovation in the society. In this paper, the technical advance which is common to accelerators is outlined. As the components indispensable to accelerators, there are charged particle generators, accelerating electric field generators, vaccumizing facilities, control system, diagnostic system and so on. As to new accelerating principles, the materialization of collision type rings and beam cooling is worthy of special mention. The research on computer-aided accelerators and the techniques of accelerating electric field generation, vaccumizing, electromagnets, ion sources and others are reported. (Kako, I.).
Correlation lengths of electrostatic turbulence
International Nuclear Information System (INIS)
Guiziou, L.; Garbet, X.
1995-01-01
This document deals with correlation length of electrostatic turbulence. First, the model of drift waves turbulence is presented. Then, the radial correlation length is determined analytically with toroidal coupling and non linear coupling. (TEC). 5 refs
Akramov, Tohir; Baty, Hubert
2017-08-01
The nonlinear evolution of double tearing modes (DTMs) is investigated within the framework of resistive magnetohydrodynamic (MHD) simulations in a two-dimensional Cartesian geometry. We have explored the explosive reconnection phase associated with the growth of the secondary structure-driven instability for a range of resistivity values. The time scale of the explosive phase (that is of order of a few Alfvénic time scales) is shown to be quasi-independent of the resistivity, even when fast growing plasmoids develop for the highest enough Lundquist number cases. Test particle accelerations are performed using the MHD explosive simulations as input parameters. Our results show that reconnection DTM dynamics is able to provide an efficient process for accelerating charged particles far beyond characteristic thermal velocities within the reconnection layers. The main acceleration mechanism is attributed to the strong inductive electric field generated by the island structure-driven instability, with an additional smaller contribution due to the presence of plasmoids. Finally, our results are used to discuss some features of the accelerated particle spectra during flaring activity in the solar corona.
Subramaniam, Vivek; Underwood, Thomas C.; Raja, Laxminarayan L.; Cappelli, Mark A.
2018-02-01
We present a magnetohydrodynamic (MHD) numerical simulation to study the physical mechanisms underlying plasma acceleration in a coaxial plasma gun. Coaxial plasma accelerators are known to exhibit two distinct modes of operation depending on the delay between gas loading and capacitor discharging. Shorter delays lead to a high velocity plasma deflagration jet and longer delays produce detonation shocks. During a single operational cycle that typically consists of two discharge events, the plasma acceleration exhibits a behavior characterized by a mode transition from deflagration to detonation. The first of the discharge events, a deflagration that occurs when the discharge expands into an initially evacuated domain, requires a modification of the standard MHD algorithm to account for rarefied regions of the simulation domain. The conventional approach of using a low background density gas to mimic the vacuum background results in the formation of an artificial shock, inconsistent with the physics of free expansion. To this end, we present a plasma-vacuum interface tracking framework with the objective of predicting a physically consistent free expansion, devoid of the spurious shock obtained with the low background density approach. The interface tracking formulation is integrated within the MHD framework to simulate the plasma deflagration and the second discharge event, a plasma detonation, formed due to its initiation in a background prefilled with gas remnant from the deflagration. The mode transition behavior obtained in the simulations is qualitatively compared to that observed in the experiments using high framing rate Schlieren videography. The deflagration mode is further investigated to understand the jet formation process and the axial velocities obtained are compared against experimentally obtained deflagration plasma front velocities. The simulations are also used to provide insight into the conditions responsible for the generation and sustenance of
High Order Filter Methods for the Non-ideal Compressible MHD Equations
Yee, H. C.; Sjoegreen, Bjoern
2003-01-01
The generalization of a class of low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous gas dynamic flows to compressible MHD equations for structured curvilinear grids has been achieved. The new scheme is shown to provide a natural and efficient way for the minimization of the divergence of the magnetic field numerical error. Standard divergence cleaning is not required by the present filter approach. For certain non-ideal MHD test cases, divergence free preservation of the magnetic fields has been achieved.
Divergence Free High Order Filter Methods for the Compressible MHD Equations
Yea, H. C.; Sjoegreen, Bjoern
2003-01-01
The generalization of a class of low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous gas dynamic flows to compressible MHD equations for structured curvilinear grids has been achieved. The new scheme is shown to provide a natural and efficient way for the minimization of the divergence of the magnetic field numerical error. Standard diver- gence cleaning is not required by the present filter approach. For certain MHD test cases, divergence free preservation of the magnetic fields has been achieved.
A Numerical Approach to Solving the Hall MHD Equations Including Diamagnetic Drift (Preprint)
2008-02-19
great detail in general terms in the textbook by Hesthaven andWarburton (12). James Wiley of University of Texas at Austin also investigated DG method...properly determine time step restrictions. The following can be said about Hall MHD, The Hall MHD model produces the whistler wave in the case where the...n0mi µ0 is the Alfven wave speed and Vw = ωc id 2 i = B0 q n0 µ0 is the whistler coefficient. The whistler wave becomes, ω = ωc i d 2 i k 2 (11) for
Flow aerodynamics modeling of an MHD swirl combustor - calculations and experimental verification
International Nuclear Information System (INIS)
Gupta, A.K.; Beer, J.M.; Louis, J.F.; Busnaina, A.A.; Lilley, D.G.
1981-01-01
This paper describes a computer code for calculating the flow dynamics of constant density flow in the second stage trumpet shaped nozzle section of a two stage MHD swirl combustor for application to a disk generator. The primitive pressure-velocity variable, finite difference computer code has been developed to allow the computation of inert nonreacting turbulent swirling flows in an axisymmetric MHD model swirl combustor. The method and program involve a staggered grid system for axial and radial velocities, and a line relaxation technique for efficient solution of the equations. Tue produces as output the flow field map of the non-dimensional stream function, axial and swirl velocity. 19 refs
Energy Technology Data Exchange (ETDEWEB)
1978-01-01
The purpose of this document is to develop an environmental, health and safety (EH and S) assessment and begin a site - specific assessment of these and socio - economic impacts for the magnetohydrodynamics program of the United States Department of Energy. This assessment includes detailed scientific and technical information on the specific EH and S issues mentioned in the MHD Environmental Development Plan. A review of current literature on impact-related subjects is also included. This document addresses the coal-fired, open-cycle MHD technology and reviews and assesses potential EH and S impacts resulting from operation of commercially-installed technology.
A flexible code based on a scalar representation of toroidal MHD
International Nuclear Information System (INIS)
Denton, R.E.; Maschke, E.K.; Urquijo, G.
1994-01-01
An exact representation of magneto-hydrodynamics in terms of stream functions and potentials allows to write systems of reduced MHD equations of various complexity, depending on the problem to be investigated. Using this feature of the scalar representation, we develop a code for the nonlinear evolution of solutions of arbitrary reduced systems or of the complete MHD equations. The equations are written in general toroidal flux coordinates r, θ, C. In the present phase of development the code solves three evolutions equations for the vorticity density w, the flux Ψ and the pressure p in toroidal or cylindrical geometry. First results on tearing modes will be presented. (authors). 8 refs., 2 figs
The on-line data acquisition system for the MHD facility of Frascati
International Nuclear Information System (INIS)
Di Bartolomeo, M.; Papalia, B.; Gay, P.; Panaccione, L.
1975-01-01
An on-line data acquisition system for the MHD facility of the Laboratorio Conversione Diretta at Frascati is described. After a brief description of the MHD facility and of the measurement requirements, the criteria a,d the configuration of the minicomputer-based data acquisition system chosen are presented. Then the general philosophy and the flow-charts of the software implemented are shown, with particular emphasis to the real-time requirements of the measurement system. At last it is illustrated an off-line program, running on a large computer, that elaborates the output data of the data acquisition system
Electromagnetic interactions between the U-25 superconducting magnet and the U-25 B MHD flow train
International Nuclear Information System (INIS)
Smith, R.P.; Niemann, R.C.; Kraimer, M.R.; Zinneman, T.E.
1978-01-01
Fluctuating voltage signals on the potential taps of the Argonne National Laboratory (ANL) 5.0 Tesla MHD Superconducting Dipole Magnet have been observed during MHD power generation at the U-25 B Facility at the High Temperature Institute (IVAN), Moscow, U.S.S.R. The voltage fluctuations are analyzed with special emphasis on magnet stability. Various other thermodynamic and electrical parameters of the U-25 B flow train have been recorded and statistical correlations between these signals and the signals observed at the magnet terminals are described
Observation of voltage fluctuations in a superconducting magnet during MHD power generation
International Nuclear Information System (INIS)
Smith, R.P.; Niemann, R.C.; Kraimer, M.R.; Zinneman, T.E.
1978-01-01
Fluctuating voltage signals on the potential taps of the ANL 5.0 T MHD Superconducting Dipole Magnet have been observed during MHD power generation at the U-25B Facility at the High Temperature Institute (IVTAN) Moscow, USSR. Various other thermodynamic and electrical parameters of the U-25B flow train have been recorded, and statistical analysis concerning correlations between the phenomena with a view of discerning causal interdependence is in progress. Voltage fluctuations observed at the magnet terminals are analyzed with special emphasis on magnet stability
A study of runaway electron confinement and theory of neoclassical MHD turbulence
International Nuclear Information System (INIS)
Kwon, Oh Jin
1989-07-01
This thesis consists of two major studies: a study of runaway electron confinement and a theory of neoclassical MHD turbulence. The aim of the former is to study the structure of internal magnetic turbulence in tokamaks, which is thought by many to be responsible for the heat transport. The aim of the latter is to extend existing theories of MHD turbulence in tokamaks into experimentally relevant low-collisionality regimes. This section contains a theory of neoclassical pressure-gradient-driven turbulence and a theory of neoclassical resistivity-gradient-driven turbulence
Correlation lengths of electrostatic turbulence
International Nuclear Information System (INIS)
Guiziou, L.; Garbet, X.
1995-01-01
In this paper, the radial correlation length of an electrostatic drift wave turbulence is analytically determined in various regimes. The analysis relies on the calculation of a range of mode non linear interaction, which is an instantaneous correlation length. The link with the usual correlation length has not been investigated yet. (TEC). 5 refs
Wijsen, N.; Poedts, S.; Pomoell, J.
2017-12-01
Solar energetic particles (SEPs) are high energy particles originating from solar eruptive events. These particles can be energised at solar flare sites during magnetic reconnection events, or in shock waves propagating in front of coronal mass ejections (CMEs). These CME-driven shocks are in particular believed to act as powerful accelerators of charged particles throughout their propagation in the solar corona. After escaping from their acceleration site, SEPs propagate through the heliosphere and may eventually reach our planet where they can disrupt the microelectronics on satellites in orbit and endanger astronauts among other effects. Therefore it is of vital importance to understand and thereby build models capable of predicting the characteristics of SEP events. The propagation of SEPs in the heliosphere can be described by the time-dependent focused transport equation. This five-dimensional parabolic partial differential equation can be solved using e.g., a finite difference method or by integrating a set of corresponding first order stochastic differential equations. In this work we take the latter approach to model SEP events under different solar wind and scattering conditions. The background solar wind in which the energetic particles propagate is computed using a magnetohydrodynamic model. This allows us to study the influence of different realistic heliospheric configurations on SEP transport. In particular, in this study we focus on exploring the influence of high speed solar wind streams originating from coronal holes that are located close to the eruption source region on the resulting particle characteristics at Earth. Finally, we discuss our upcoming efforts towards integrating our particle propagation model with time-dependent heliospheric MHD space weather modelling.
Real-time single-shot electron bunch length measurements
Wilke, I; Gillespie, W A; Berden, G; Knippels, G M H; Meer, A F G
2002-01-01
Linear accelerators employed as drivers for X-ray free electron lasers (FELs) require relativistic electron bunch with sub-picosecond bunch length. Precise bunch length measurements are important for the tuning and operation of the FELs. Previously, we have demonstrated that electro-optic detection is a powerful technique for sub-picosecond electron bunch length measurements. In those experiments, the measured bunch length was the average of all electron bunches within a macropulse. Here, for the first time, we present the measurement of the length of individual electron bunches using a development of our previous technique. In this experiment, the longitudinal electron bunch shape is encoded electro-optically on to the frequency spectrum of a chirped laser pulse. Subsequently, the laser pulse is dispersed by a grating and the spectrum is imaged with a CCD camera. Single bunch measurements are achieved by using a nanosecond gated camera, and synchronizing the gate with both the electron bunch and the laser pu...
2014 CERN Accelerator Schools: Plasma Wake Acceleration
2014-01-01
A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014. This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/
Directory of Open Access Journals (Sweden)
Farhad Ali
2013-01-01
Full Text Available The focus of this paper is to analyze the influence of thermal radiation on some unsteady magnetohydrodynamic (MHD free convection flows of an incompressible Brinkman type fluid past a vertical flat plate embedded in a porous medium with the Newtonian heating boundary condition. The fluid is considered as a gray absorbing-emitting but nonscattering medium and the Rosseland approximation in the energy equations is used to describe the radiative heat flux for optically thick fluid. For a detailed analysis of the problem, four important situations of flow due to (i impulsive motion of the plate (ii uniform acceleration of the plate (iii nonuniform acceleration of the plate, and (iv highly nonuniform acceleration of the plate are considered. The governing equations are first transformed into a system of dimensionless equations and then solved analytically using the Laplace transform technique. Numerical results for temperature and velocity are shown graphically, while skin friction and Nusselt number are computed in tables. The results show that temperature and velocity increase on increasing radiation and Newtonian heating parameters. However, the results of magnetic and porosity parameters on velocity are found quite opposite.
Energy Technology Data Exchange (ETDEWEB)
Fierros Palacios, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)
2001-02-01
In this work the complete set of differential field equations which describes the dynamic state of a continuos conducting media which flow in presence of a perturbed magnetic field is obtained. Then, the thermic equation of state, the wave equation and the conservation law of energy for the Alfven MHD waves are obtained. [Spanish] Es este trabajo se obtiene el conjunto completo de ecuaciones diferenciales de campo que describen el estado dinamico de un medio continuo conductor que se mueve en presencia de un campo magnetico externo perturbado. Asi, se obtiene la ecuacion termica de estado, la ecuacion de onda y la ley de la conservacion de la energia para las ondas de Alfven de la MHD.
Ideal MHD stability of high poloidal beta equilibria in TFTR
International Nuclear Information System (INIS)
Sabbagh, S.A.; Mauel, M.E.; Navratil, G.A.; Bell, M.G.; Budny, R.V.; Chance, M.S.; Fredrickson, E.D.; Jardin, S.C.; Manickam, J.; McCune, D.C.; McGuire, K.M.; Wieland, R.M.; Zarnstorff, M.C.; Phillips, M.W.; Hughes, M.H.; Kesner, J.
1991-01-01
Recent experiments in TFTR have expanded the operating space of the device to include plasmas with values of var-epsilon β p dia ≡ 2μ 0 var-epsilon perpendicular >/ p >> 2 as large as 1.6, and Troyon normalized diamagnetic beta β N dia ≡ β t perpendicular aB t /10 -8 I p as large as 4.7. At values of var-epsilon β p dia ≥ 1.3, a separatrix was observed to enter the vacuum vessel, producing a naturally diverted discharge. Plasmas with large values of var-epsilon β p dia were created with both the plasma current, I p , held constant and with I p decreased, or ramped down, before the start of neutral beam injection. A convenient characterization of the change in I p using experimental parameters can be defined by the ratio of I p before the ramp down, to I p during the neutral beam heating phase, F I p . The ideal MHD stability of these equilibria is investigated to determine their location in stability space, and to study the role of plasma current and pressure profile modification in the creation of these high var-epsilon β p and β N plasmas. The evolution of these plasmas is modelled from experimental data using the TRANSP code. Two-dimensional equilibria are computed from the TRANSP results and used as input to both high and low-n stability codes including PEST. The high var-epsilon β p equilibria, which generally have an oblate cross-sectional shape, are in the first stability region to high-n ballooning modes. At constant I p , these equilibria generally have maximum pressure gradients near the magnetic axis and are stable to n=1 modes without a stabilizing conducting wall. The effect of the current profile shape on the stability of low-n kink/ballooning modes and the requirements for these plasmas to access the second stability region are examined. 6 refs
International Nuclear Information System (INIS)
Ivanov, I.N.; Sarantsev, V.P.
1976-01-01
The most perspective methods of the collective acceleration of particles are considered, namely, acceleration of ions in direct electron beams and electron rings. Several models of particle acceleration by means of electron beams are described. Experimental data on the acceleration of differently charged ions show that the ion energy increases with the charge. Time-of-flight measurements show that during acceleration the ion bunch is located behind the beam front. The injection of electrons into an electron-ring accelerator and the electron acceleration are considered in detail. The most dangerous effects are described, which restrict the number of particles captured in the electron-ring accelerator. Several mechanisms are considered for retaining the cross-sectional dimensions of the moving ring
San Francisco Accelerator Conference
International Nuclear Information System (INIS)
Southworth, Brian
1991-01-01
'Where are today's challenges in accelerator physics?' was the theme of the open session at the San Francisco meeting, the largest ever gathering of accelerator physicists and engineers
Angular Accelerating White Light
CSIR Research Space (South Africa)
Dudley, Angela L
2015-08-01
Full Text Available angular acceleration during propagation which is achieved by superpositions of Bessel beams with non-canonical phase functions. They demonstrate these angular accelerating fields by modulating the phase and amplitude of a supercontinuum source with the use...
Cheng, D. Y.
1971-01-01
Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.
International Nuclear Information System (INIS)
Malitsky, Nikolay; Talman, Richard
1997-01-01
A 'Universal Accelerator Libraries' (UAL) environment is described. Its purpose is to facilitate program modularity and inter-program and inter-process communication among heterogeneous programs. The goal ultimately is to facilitate model-based control of accelerators
Depression of Nonlinearity in Decaying Isotropic MHD Turbulence
International Nuclear Information System (INIS)
Servidio, S.; Matthaeus, W. H.; Dmitruk, P.
2008-01-01
Spectral method simulations show that undriven magnetohydrodynamic turbulence spontaneously generates coherent spatial correlations of several types, associated with local Beltrami fields, directional alignment of velocity and magnetic fields, and antialignment of magnetic and fluid acceleration components. These correlations suppress nonlinearity to levels lower than what is obtained from Gaussian fields, and occur in spatial patches. We suggest that this rapid relaxation leads to non-Gaussian statistics and spatial intermittency
Electron Heating and Acceleration in a Reconnecting Magnetotail
El-Alaoui, M.; Zhou, M.; Lapenta, G.; Berchem, J.; Richard, R. L.; Schriver, D.; Walker, R. J.
2017-12-01
Electron heating and acceleration in the magnetotail have been investigated intensively. A major site for this process is the reconnection region. However, where and how the electrons are accelerated in a realistic three-dimensional X-line geometry is not fully understood. In this study, we employed a three-dimensional implicit particle-in-cell (iPIC3D) simulation and large-scale kinetic (LSK) simulation to address these problems. We modeled a magnetotail reconnection event observed by THEMIS in an iPIC3D simulation with initial and boundary conditions given by a global magnetohydrodynamic (MHD) simulation of Earth's magnetosphere. The iPIC3D simulation system includes the region of fast outflow emanating from the reconnection site that drives dipolarization fronts. We found that current sheet electrons exhibit elongated (cigar-shaped) velocity distributions with a higher parallel temperature. Using LSK we then followed millions of test electrons using the electromagnetic fields from iPIC3D. We found that magnetotail reconnection can generate power law spectra around the near-Earth X-line. A significant number of electrons with energies higher than 50 keV are produced. We identified several acceleration mechanisms at different locations that were responsible for energizing these electrons: non-adiabatic cross-tail drift, betatron and Fermi acceleration. Relative contributions to the energy gain of these high energy electrons from the different mechanisms will be discussed.
Flux Rope Acceleration and Enhanced Magnetic Reconnection Rate
International Nuclear Information System (INIS)
C.Z. Cheng; Y. Ren; G.S. Choe; Y.-J. Moon
2003-01-01
A physical mechanism of flares, in particular for the flare rise phase, has emerged from our 2-1/2-dimensional resistive MHD simulations. The dynamical evolution of current-sheet formation and magnetic reconnection and flux-rope acceleration subject to continuous, slow increase of magnetic shear in the arcade are studied by employing a non-uniform anomalous resistivity in the reconnecting current sheet under gravity. The simulation results directly relate the flux rope's accelerated rising motion with an enhanced magnetic reconnection rate and thus an enhanced reconnection electric field in the current sheet during the flare rise phase. The simulation results provide good quantitative agreements with observations of the acceleration of flux rope, which manifests in the form of SXR ejecta or erupting filament or CMEs, in the low corona. Moreover, for the X-class flare events studied in this paper the peak reconnection electric field is about O(10 2 V/m) or larger, enough to accelerate p articles to over 100 keV in a field-aligned distance of 10 km. Nonthermal electrons thus generated can produce hard X-rays, consistent with impulsive HXR emission observed during the flare rise phase