WorldWideScience

Sample records for length fatty acids

  1. Fatty acid biosynthesis VII. Substrate control of chain-length of products synthesised by rat liver fatty acid synthetase

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1970-01-01

    - 1. Gas-liquid and paper chromatography have been used to determine the chain-lengths of fatty acids synthesised by purified rat liver fatty acid synthetase from [1-14C]acetyl-CoA, [1,3-14C2]malonyl-CoA and from [1-14C]acetyl-CoA plus partially purified rat liver acetyl-CoA carboxylase. - 2....... A wide range (C4:0–C18:0) of fatty acids was synthesised and the proportions were modified by substrate concentrations in the same manner as for purified rabbit mammary gland fatty acid synthetase. - 3. The relative amount of radioactivity incorporated from added acetyl-CoA and malonyl-CoA depended...... of long-chain fatty acids was synthesised from carboxylated acetyl-CoA than from added malonyl-CoA. - 5. It is suggested that acetyl-CoA carboxylase may carboxylate acetate bound to fatty acid synthetase....

  2. n-3 Fatty Acid Supplementation and Leukocyte Telomere Length in Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Anne Barden

    2016-03-01

    Full Text Available DNA telomere shortening associates with the age-related increase cardiovascular disease (CVD risk. Reducing oxidative stress, could modify telomere erosion during cell replication, and CVD risk in patients with chronic kidney disease (CKD. The effect of n-3 fatty acids and coenzyme Q10 (CoQ on telomere length was studied in a double-blind placebo-controlled trial in CKD. Eighty-five CKD patients were randomized to: n-3 fatty acids (4 g; CoQ (200 mg; both supplements; or control (4 g olive oil, daily for 8 weeks. Telomere length was measured in neutrophils and peripheral blood mononuclear cells (PBMC at baseline and 8 weeks, with and without correction for cell counts. Main and interactive effects of n-3 fatty acids and CoQ on telomere length were assessed adjusting for baseline values. F2-isoprostanes were measured as markers of oxidative stress. There was no effect of n-3 fatty acids or CoQ on neutrophil or PBMC telomere length. However, telomere length corrected for neutrophil count was increased after n-3 fatty acids (p = 0.015. Post-intervention plasma F2-isoprostanes were negative predictors of post-intervention telomere length corrected for neutrophil count (p = 0.025.The effect of n-3 fatty acids to increased telomere length corrected for neutrophil count may relate to reduced oxidative stress and increased clearance of neutrophils with shorter telomeres from the circulation. This may be a novel mechanism of modifying CVD risk in CKD patients.

  3. Influence of the chain length on the biological behaviour of 131I fatty acids

    International Nuclear Information System (INIS)

    Riche, F.; Mathieu, J.P.; Comet, M.; Vidal, M.; Pernin, C.; Marti-Batlle, D.; Busquet, G.; Bardy, A.

    1983-01-01

    Saturated and acetylenic fatty acids labeled with 131 I in ω position, differing by their chain length (C8 to C20) and the number odd or even of their carbon atoms are injected in mice. The evolution of the activity in myocardium, blood, liver and kidney is measured until 10 minutes after injection. The myocardial activity increases with chain length from C8 to C16 then decreases for C18 and C20. The odd or even number of carbon atoms does not influence myocardial activity but in the liver, activity is inferior with the odd fatty acids. The presence of a triple bond accelerates the output of activity from the myocardium and these fatty acids are not well suited for the study of myocardial metabolism [fr

  4. Influence of the chain length on the biological behaviour of /sup 131/I fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Riche, F.; Mathieu, J.P.; Comet, M.; Vidal, M.; Pernin, C.; Marti-Batlle, D.; Busquet, G. (Universite de Grenoble, 38 (France)); Bardy, A. (C.E.A.-ORIS, 91 - Gif-sur-Yvette (France))

    1983-01-01

    Saturated and acetylenic fatty acids labeled with /sup 131/I in ..omega.. position, differing by their chain length (C8 to C20) and the number odd or even of their carbon atoms are injected in mice. The evolution of the activity in myocardium, blood, liver and kidney is measured until 10 minutes after injection. The myocardial activity increases with chain length from C8 to C16 then decreases for C18 and C20. The odd or even number of carbon atoms does not influence myocardial activity but in the liver, activity is inferior with the odd fatty acids. The presence of a triple bond accelerates the output of activity from the myocardium and these fatty acids are not well suited for the study of myocardial metabolism.

  5. Effect of hydrocarbon radical length of fatty acid collectors on flotation separation process of thorium ions

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Perlova, O.V.; Sazonova, V.F.

    1991-01-01

    It is shown experimentally that the degree of flotation separation of thorium ions collected by their means increases firstly (potassium laurate), then decreases (potassium tridecanate) and after that increases again (potassium palminate) when increasing the length of the hydrocarbon radical of potassium soaps of saturated fatty acids. The first increase of the collector efficiency is due to the decrease of solubility of thorium-containing sublates, and drop and further increase is due to the change in colloidchemical properties of sublates

  6. Enterococcus faecalis Responds to Individual Exogenous Fatty Acids Independently of Their Degree of Saturation or Chain Length.

    Science.gov (United States)

    Saito, Holly E; Harp, John R; Fozo, Elizabeth M

    2018-01-01

    Enterococcus faecalis is a commensal of the human gastrointestinal tract that can persist in the external environment and is a leading cause of hospital-acquired infections. Given its diverse habitats, the organism has developed numerous strategies to survive a multitude of environmental conditions. Previous studies have demonstrated that E. faecalis will incorporate fatty acids from bile and serum into its membrane, resulting in an induced tolerance to membrane-damaging agents. To discern whether all fatty acids induce membrane stress protection, we examined how E. faecalis responded to individually supplied fatty acids. E. faecalis readily incorporated fatty acids 14 to 18 carbons in length into its membrane but poorly incorporated fatty acids shorter or longer than this length. Supplementation with saturated fatty acids tended to increase generation time and lead to altered cellular morphology in most cases. Further, exogenously supplied saturated fatty acids did not induce tolerance to the membrane-damaging antibiotic daptomycin. Supplementation with unsaturated fatty acids produced variable growth effects, with some impacting generation time and morphology. Exogenously supplied unsaturated fatty acids that are normally produced by E. faecalis and those that are found in bile or serum could restore growth in the presence of a fatty acid biosynthetic inhibitor. However, only the eukaryote-derived fatty acids oleic acid and linoleic acid provided protection from daptomycin. Thus, exogenous fatty acids do not lead to a common physiological effect on E. faecalis The organism responds uniquely to each, and only host-derived fatty acids induce membrane protection. IMPORTANCE Enterococcus faecalis is a commonly acquired hospital infectious agent with resistance to many antibiotics, including those that target its cellular membrane. We previously demonstrated that E. faecalis will incorporate fatty acids found in human fluids, like serum, into its cellular membrane

  7. Modulation of saturation and chain length of fatty acids in Saccharomyces cerevisiae for production of cocoa butter-like lipids

    DEFF Research Database (Denmark)

    Bergenholm, David; Gossing, Michael; Wei, Yongjun

    2018-01-01

    Chain length and degree of saturation plays an important role for the characteristics of various products derived from fatty acids, such as fuels, cosmetics, and food additives. The seeds of Theobroma cacao are the source of cocoa butter, a natural lipid of high interest for the food and cosmetics...... as the saturated fatty acid stearic acid is typically found only in low abundance. Demand for cocoa butter is increasing, yet T. cacao can only be cultivated in some parts of the tropics. Alternative means of production of cocoa butter lipids (CBLs) are, therefore, sought after. Yeasts also store fatty acids...... industry. Cocoa butter is rich in saturated fatty acids that are stored in the form of triacylglycerides (TAGs). One of the major TAG species of cocoa butter, consisting of two stearic acid molecules and one oleic acid molecule (stearic acid-oleic acid-stearic acid, sn-SOS), is particularly rare in nature...

  8. Modulation of saturation and chain length of fatty acids in Saccharomyces cerevisiae for production of cocoa butter-like lipids.

    Science.gov (United States)

    Bergenholm, David; Gossing, Michael; Wei, Yongjun; Siewers, Verena; Nielsen, Jens

    2018-04-01

    Chain length and degree of saturation plays an important role for the characteristics of various products derived from fatty acids, such as fuels, cosmetics, and food additives. The seeds of Theobroma cacao are the source of cocoa butter, a natural lipid of high interest for the food and cosmetics industry. Cocoa butter is rich in saturated fatty acids that are stored in the form of triacylglycerides (TAGs). One of the major TAG species of cocoa butter, consisting of two stearic acid molecules and one oleic acid molecule (stearic acid-oleic acid-stearic acid, sn-SOS), is particularly rare in nature as the saturated fatty acid stearic acid is typically found only in low abundance. Demand for cocoa butter is increasing, yet T. cacao can only be cultivated in some parts of the tropics. Alternative means of production of cocoa butter lipids (CBLs) are, therefore, sought after. Yeasts also store fatty acids in the form of TAGs, but these are typically not rich in saturated fatty acids. To make yeast an attractive host for microbial production of CBLs, its fatty acid composition needs to be optimized. We engineered Saccharomyces cerevisiae yeast strains toward a modified fatty acid synthesis. Analysis of the fatty acid profile of the modified strains showed that the fatty acid content as well as the titers of saturated fatty acids and the titers of TAGs were increased. The relative content of potential CBLs in the TAG pool reached up to 22% in our engineered strains, which is a 5.8-fold increase over the wild-type. SOS content reached a level of 9.8% in our engineered strains, which is a 48-fold increase over the wild type. © 2018 Wiley Periodicals, Inc.

  9. On optimal length of hydrocarbon chain of fatty-acid collectors of rare earth ions

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Sazonova, V.F.; Markina, Eh.L.

    1978-01-01

    The mechanism of the effect of the length of alkyl chain in fatty-acid collectors on the efficiency of flotation separation of the ions of rare earth elements (REE) collected by them has been investigated. REE flotation separation was studied on gadolinium chloride. Aqueous solutions of potassium caprinata, indecanate, laurate, tridecanate, myristate, pentadecanate and palmitate were used as collectors of Gd ions. The interaction of Gd ions with these compounds proceeds rapidly and is accompanied by stable colloidal solutions of Gd soaps being formed. Infrared spectra and radiograms of the sublates have been studied. It has been found that, with the number of carbon atoms in the collector molecule increasing from 10 to 16, the rate of flotation separation of Gd ions from solutions with pH 6 and 8 at first practically does not change (for potassium caprinate, undecanate and laurate), then drops sharply (potassium tridecanate and myristate), after which is again increases sharply (potassium pentadecanata and palmitate). The separation rate of Gd ions does not rise in solutions with pH 10. The nature of the sublate is shown to be determined by the solubility of the corresponing fatty acids and gadolinium soaps

  10. Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil.

    Science.gov (United States)

    Uncu, Ali Tevfik; Uncu, Ayse Ozgur; Frary, Anne; Doganlar, Sami

    2017-04-15

    The aim of this study was to compare the performance of a DNA-barcode assay with fatty acid profile analysis to authenticate the botanical origin of olive oil. To achieve this aim, we performed a PCR-capillary electrophoresis (PCR-CE) approach on olive oil: seed oil blends using the plastid trnL (UAA) intron barcode. In parallel to genomic analysis, we subjected the samples to gas chromatography analysis of fatty acid composition. While the PCR-CE assay proved equally efficient as gas chromatography analysis in detecting adulteration with soybean, palm, rapeseed, sunflower, sesame, cottonseed and peanut oils, it was superior to the widely utilized analytical chemistry approach in revealing the adulterant species and detecting small quantities of corn and safflower oils in olive oil. Moreover, the DNA-based test correctly identified all tested olive oil: hazelnut oil blends whereas it was not feasible to detect hazelnut oil adulteration through fatty acid profile analysis. Thus, the present research has shown the feasibility of a PCR-CE barcode assay to detect adulteration in olive oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effects of Chain Length and Degree of Unsaturation of Fatty Acids on Structure and in Vitro Digestibility of Starch-Protein-Fatty Acid Complexes.

    Science.gov (United States)

    Zheng, Mengge; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun

    2018-02-28

    The effects of chain length and degree of unsaturation of fatty acids (FAs) on structure and in vitro digestibility of starch-protein-FA complexes were investigated in model systems. Studies with the rapid visco analyzer (RVA) showed that the formation of ternary complex resulted in higher viscosities than those of binary complex during the cooling and holding stages. The results of differential scanning calorimetry (DSC), Raman, and X-ray diffraction (XRD) showed that the structural differences for ternary complexes were much less than those for binary complexes. Starch-protein-FA complexes presented lower in vitro enzymatic digestibility compared with starch-FAs complexes. We conclude that shorter chain and lower unsaturation FAs favor the formation of ternary complexes but decrease the thermal stability of these complexes. FAs had a smaller effect on the ordered structures of ternary complexes than on those of binary complexes and little effect on enzymatic digestibility of both binary and ternary complexes.

  12. Inhibition of nuclear T3 binding by fatty acids: dependence on chain length, unsaturated bonds, cis-trans configuration and esterification

    NARCIS (Netherlands)

    Wiersinga, W. M.; Platvoet-ter Schiphorst, M.

    1990-01-01

    1. Fatty acids have the capacity for inhibition of nuclear T3 binding (INB). The present studies were undertaken to describe the INB-activity of fatty acids as a function of chain length, unsaturated bonds, cis-trans configuration, and esterification. 2. Isolated rat liver nuclei were incubated with

  13. Esterification of fatty acids using nylon-immobilized lipase in n-hexane: kinetic parameters and chain-length effects.

    Science.gov (United States)

    Zaidi, A; Gainer, J L; Carta, G; Mrani, A; Kadiri, T; Belarbi, Y; Mir, A

    2002-02-28

    The esterification of long-chain fatty acids in n-hexane catalyzed by nylon-immobilized lipase from Candida rugosa has been investigated. Butyl oleate (22 carbon atoms), oleyl butyrate (22 carbon atoms) and oleyl oleate (36 carbon atoms) were produced at maximum reaction rates of approximately equal to 60 mmol h(-1) g(-1) immobilized enzyme when the substrates were present in equimolar proportions at an initial concentration of 0.6 mol l(-1). The observed kinetic behavior of all the esterification reactions is found to follow a ping-pong bi-bi mechanism with competitive inhibition by both substrates. The effect of the chain-length of the fatty acids and the alcohols could be correlated to some mechanistic models, in accordance with the calculated kinetic parameters.

  14. Effect of Difference in Fatty Acid Chain Lengths of Medium- Chain Lipids on Lipid/Surfactant/Water Phase Diagrams and Drug Solubility

    Directory of Open Access Journals (Sweden)

    Hetal N. Prajapati

    2011-09-01

    Full Text Available Lipids consisting of medium chain fatty acids are commonly used in the development of lipid-based selfemulsifying and self-microemulsifying drug delivery systems. However, no systematic approach to selecting one lipid over another has been reported in the literature. In this study, propylene glycol (PG monoester (PG monocaprylate, Capmul PG-8® and PG diester (PG dicaprylocaprate, Captex 200P® of C8-fatty acids were compared with PG monoester (PG monolaurate, Capmul PG-12® and PG diester (PG dilaurate, Capmul PG-2L® of C12-fatty acids with respect to their phase diagrams, and especially for their ability to form microemulsions in the presence of a common surfactant, Cremophor EL®, and water. The solubility of two model drugs, danazol and probucol, in the lipids and lipid/surfactant mixtures were also compared. The effect of the chain length of medium-chain fatty acids (C8 versus C12 on the phase diagrams of the lipids was minimal. Both shorter and longer chain lipids formed essentially similar microemulsion and emulsion regions in the presence of Cremophor EL® and water, although the C12-fatty acid esters formed larger gel regions in the phase diagrams than the C8-fatty acid esters. When monoesters were mixed with their respective diesters at 1:1 ratios, larger microemulsion regions with lower lipid particle sizes were observed compared to those obtained with individual lipids alone. While the solubility of both danazol and probucol increased greatly in all lipids studied, compared to their aqueous solubility, the solubility in C12-fatty acid esters was found to be lower than in C8-fatty acid esters when the lipids were used alone. This difference in solubility due to the difference in fatty acid chain length, practically disappeared when the lipids were combined with the surfactant.

  15. The effect of the chain length distribution of free fatty acids on the mixing properties of stratum corneum model membranes.

    Science.gov (United States)

    Oguri, Masashi; Gooris, Gert S; Bito, Kotatsu; Bouwstra, Joke A

    2014-07-01

    The stratum corneum (SC) plays a fundamental role in the barrier function of the skin. The SC consists of corneocytes embedded in a lipid matrix. The main lipid classes in the lipid matrix are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The aim of this study was to examine the effect of the chain length of FFAs on the thermotropic phase behavior and mixing properties of SC lipids. Fourier transform infrared spectroscopy and Raman imaging spectroscopy were used to study the mixing properties using either protonated or deuterated FFAs. We selected SC model lipid mixtures containing only a single CER, CHOL and either a single FFA or a mixture of FFAs mimicking the FFA SC composition. The single CER consists of a sphingoid base with 18 carbon atoms and an acyl chain with a chain length of 24 carbon atoms. When using lignoceric acid (24 carbon atoms) or a mixture of FFAs, the CER and FFAs participated in mixed crystals, but hydration of the mixtures induced a slight phase separation between CER and FFA. The mixed crystalline structures did not phase separate during storage even up to a time period of 3months. When using palmitic acid (16 carbon atoms), a slight phase separation was observed between FFA and CER. This phase separation was clearly enhanced during hydration and storage. In conclusion, the thermotropic phase behavior and the mixing properties of the SC lipid mixtures were shown to strongly depend on the chain length and chain length distribution of FFAs, while hydration enhanced the phase separation. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Cryochromatography: a method for the separation of phosphoglycerides according to the number and length of saturated fatty acid components

    International Nuclear Information System (INIS)

    Henderson, R.F.; Clayton, M.H.

    1974-01-01

    A thin layer chromatographic method utilizing ultracold temperatures has been developed to separate phosphoglycerides containing only long-chain saturated fatty acids from phosphoglycerides containing fatty acids with any degree of unsaturation. The method is direct, nondiluting, and nondestructive. Since the surfactant lipids found in lung contain only long-chain, saturated fatty acids, the method should be particularly useful to those in lung lipid research. Studies on the uptake of labeled precursors into the lung surfactant lipids as well as work on quantitation of surfactant lecithins in the lung can be facilitated by this method. (U.S.)

  17. Effects of Chain Length and Saturability of Fatty Acids on Phospholipids and Proteins in Plasma Membranes of Bovine Mammary Gland.

    Science.gov (United States)

    Yan, Qiongxian; Tang, Shaoxun; Han, Xuefeng; Bamikole, Musibau Adungbe; Zhou, Chuanshe; Kang, Jinhe; Wang, Min; Tan, Zhiliang

    2016-12-01

    Free fatty acids (FFAs) in plasma are essential substrates for de novo synthesis of milk fat, or directly import into mammary cells. The physico-chemical properties of mammary cells membrane composition affected by FFAs with different chain lengths and saturability are unclear yet. Employing GC, FTIR and fluorescence spectroscopy, the adsorption capacity, phospholipids content, membrane proteins conformation, lipid peroxidation product, and free sulfhydryl of plasma membranes (PMs) interacted with different FFAs were determined. The mammary cells PMs at 38 and 39.5 °C showed different adsorption capacities: acetic acid (Ac) > stearic acid (SA) > β-hydroxybutyric acid (BHBA) > trans10, cis12 CLA. In the FTIR spectrum, the major adsorption peaks appeared at 2920 and 2850 cm -1 for phospholipids, and at 1628 and 1560 cm -1 for membrane proteins. The intensities of PMs-FFAs complexes were varied with the FFAs species and their initial concentrations. The β-sheet and turn structures of membrane proteins were transferred into random coil and α-helix after BHBA, SA and trans10, cis12 CLA treatments compared with Ac treatment. The quenching effects on the fluorescence of endogenous membrane protein, 1, 8-ANS, NBD-PE, and DHPE entrapped in PMs by LCFA were different from those of short chain FFAs. These results indicate that the adsorption of FFAs could change membrane protein conformation and polarity of head group in phospholipids. This variation of the mammary cells PMs was regulated by carbon chain length and saturability of FFAs.

  18. Omega-6 Fatty Acids

    Science.gov (United States)

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant seed, borage seed, ...

  19. Immunoglobulin and fatty acids

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising 0.1-10 w/w % immunoglobulin (Ig), 4-14 w/w % saturated fatty acids, 4-14 w/w % mono-unsaturated fatty acids and 0-5 w/w % poly-unsaturated fatty acids, wherein the weight percentages are based on the content of dry matter in the composition...

  20. Study the influence of reacted aliphatic amine series length on its kinetic reaction with dimeric fatty acid C36 and properties of resulted polyamide

    International Nuclear Information System (INIS)

    Al-Mohammad, H.; Falah, A.; Al-Hammoy, M.

    2013-01-01

    Kinetic studies were carried out on the reaction between dimeric fatty acid C 3 6 with 1.3 Diamino propane and 1.4 Diamino butane and 1.6 Diamino hexane and 1.8 Diamino octane in molten phase. The reaction was performed at 145 o C. The polyamidation reaction was found to be on the overall a second order up to 83% conversion for reaction dimeric fatty acid C-36 with 1.3 Diamino propane and 86% conversion for reaction dimeric fatty acid C 3 6 with 1.4 Diamino butane and 87% conversion for reaction dimeric fatty acid C 3 6 with 1.6 Diamino hexane and 1.8 Diamino octane then the reaction order changes to the third order above last conversion. The degree of polymerization,number average molecular weight and weight average molecular weight have been calculated during different times. Their relationships with the times are linear until last conversion. The melting point and thermodynamic constants for melting are determined by use of differential scanning calorimetry DSC. The melting point and thermodynamic constants increase by increasing the length of reacted amine series. (author)

  1. Lipid membrane partitioning of lysolipids and fatty acids: Effects of membrane phase structure and detergent chain length

    DEFF Research Database (Denmark)

    Høyrup, Lise Pernille Kristine; Davidsen, Jesper; Jørgensen, Kent

    2001-01-01

    gel phase and at high temperatures in the disordered fluid phase of the phospholipid membrane vesicles. The long saturated acyl chains of the lysolipids and fatty acids varied from 10 to 16 carbon atoms and all titrations were performed below the critical micellar concentrations (cmc...... of magnitude higher when the saturated acyl chain of the detergents increases by two carbon atoms. The obtained partition coefficients are of importance in relation to a deeper understanding of the interplay between global aqueous and local membrane concentrations of the detergents and the functional influence...

  2. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Wesén, Clas; Sundin, Peter

    1997-01-01

    Chlorinated fatty acids have been found to be major contributors to organohalogen compounds in fish, bivalves, jellyfish, and lobster, and they have been indicated to contribute considerably to organohalogens in marine mammals. Brominated fatty acids have been found in marine sponges. Also...

  3. Omega-3 Fatty Acids

    Science.gov (United States)

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat- ... in people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  4. Fatty Acid Biosynthesis IX

    DEFF Research Database (Denmark)

    Carey, E. M.; Hansen, Heinz Johs. Max; Dils, R.

    1972-01-01

    # 1. I. [I-14C]Acetate was covalently bound to rabbit mammary gland fatty acid synthetase by enzymic transacylation from [I-14C]acetyl-CoA. Per mole of enzyme 2 moles of acetate were bound to thiol groups and up to I mole of acetate was bound to non-thiol groups. # 2. 2. The acetyl-fatty acid...... synthetase complex was isolated free from acetyl-CoA. It was rapidly hydrolysed at 30°C, but hydrolysis was greatly diminished at o°C and triacetic lactone synthesis occurred. In the presence of malonyl-CoA and NADPH, all the acetate bound to fatty acid synthetase was incorporated into long-chain fatty acids....... Hydrolysis of bound acetate and incorporation of bound acetate into fatty acids were inhibited to the same extent by guanidine hydrochloride. # 3. 3. Acetate was also covalently bound to fatty acid synthetase by chemical acetylation with [I-14C]acetic anhydride in the absence of CoASH. A total of 60 moles...

  5. Fatty Acid-Based Monomers as Styrene Replacements for Liquid Molding Resins

    Science.gov (United States)

    2005-05-01

    fatty acid length and unsaturation level on resin and polymer properties. Fig. 2. The addition of fatty acids ( oleic acid ) to glycidyl methacylate to...the synthetic route used to form the methacrylated fatty acids (MFA). The carboxylic acid of fatty acids undergoes a simple addition reaction with... form methacrylated fatty acid monomer

  6. Influence of chain length of pyrene fatty acids on their uptake and metabolism by Epstein-Barr-virus-transformed lymphoid cell lines from a patient with multisystemic lipid storage myopathy and from control subjects.

    OpenAIRE

    Radom, J; Salvayre, R; Levade, T; Douste-Blazy, L

    1990-01-01

    The uptake and intracellular metabolism of 4-(1-pyrene)butanoic acid (P4), 10-(1-pyrene)decanoic acid (P10) and 12-(1-pyrene)dodecanoic acid (P12) were investigated in cultured lymphoid cell lines from normal individuals and from a patient with multisystemic lipid storage myopathy (MLSM). The cellular uptake was shown to be dependent on the fatty-acid chain length, but no significant difference in the uptake of pyrene fatty acids was observed between MLSM and control lymphoid cells. After inc...

  7. Omega-3 fatty acids (image)

    Science.gov (United States)

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  8. Origin of fatty acids

    International Nuclear Information System (INIS)

    Prieur, B.E.

    1995-01-01

    The appearance of fatty acids and membranes is one of the most important events of the prebiotic world because genesis of life required the compartmentalization of molecules. Membranes allowed cells to become enriched with molecules relevant for their evolution and gave rise to gradients convertible into energy. By virtue of their hydrophobic/hydrophilic interface, membranes developed certain enzymatic activities impossible in the aqueous phase. A prebiotic cell is an energy unit but it is also an information unit. It has a past, a present and a future. The biochemistry of fatty acids involves acetylCoA, malonylCoA and an enzyme, acyl synthetase, which joins both molecules. After substitution of the acetyl group in place of the carboxyl group of malonyl derivatives, the chain is reduced and dehydrated to crotonyl derivatives. These molecules can again react with malonylCoA to form unsaturated chain; they can also undergo a new reduction step to form butyryl derivatives which can react with malonylCoA to form a longer aliphatic chain. The formation of malonylCoA consumes ATP. The reduction step needs NADPH and proton. Dehydration requires structural information because the reduction product is chiral (D configuration). It is unlikely that these steps were possible in a prebiotic environment. Thus we have to understand how fatty acids could appear in the prebiotic era. This hypothesis about the origin of fatty acids is based on the chemistry of sulfonium ylides and sulfonium salts. The most well-known among these molecules are S-melthyl-methionine and S-adenosyl methionine. The simplest sulfonium cation is the trimethylsulfonium cation. Chemists have evidence that these products can produce olefin when they are heated or flashed with UV light in some conditions. I suggest that these volatile products can allow the formation of fatty acids chains in atmospheric phase with UV and temperature using methanol as starting material. Different synthetic pathways will be

  9. (Radioiodinated free fatty acids)

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Jr., F. F.

    1987-12-11

    The traveler participated in the Second International Workshop on Radioiodinated Free Fatty Acids in Amsterdam, The Netherlands where he presented an invited paper describing the pioneering work at the Oak Ridge National Laboratory (ORNL) involving the design, development and testing of new radioiodinated methyl-branched fatty acids for evaluation of heart disease. He also chaired a technical session on the testing of new agents in various in vitro and in vivo systems. He also visited the Institute for Clinical and Experimental Nuclear Medicine in Bonn, West Germany, to review, discuss, plan and coordinate collaborative investigations with that institution. In addition, he visited the Cyclotron Research Center in Liege, Belgium, to discuss continuing collaborative studies with the Osmium-191/Iridium-191m radionuclide generator system, and to complete manuscripts and plan future studies.

  10. Equivalent chain lengths of all C4-C23 saturated monomethyl branched fatty acid methyl esters on methylsilicone OV-1 stationary phase.

    Science.gov (United States)

    Kubinec, Róbert; Blaško, Jaroslav; Górová, Renáta; Addová, Gabriela; Ostrovský, Ivan; Amann, Anton; Soják, Ladislav

    2011-04-01

    Isomer mixtures of monomethyl branched saturated C7-C23 fatty acid methyl esters (FAME) were prepared by performing a methylene insertion reaction to the straight chain FAME and this study model was completed by using commercially available standards of C4-C7 FAME. The equivalent chain lengths (ECL) of all 220 C4-C23 monomethyl branched FAME on OV-1 stationary phase were measured, achieving an average repeatability of ±0.0004 ECL units. The monomethyl branched FAME was identified by GC on the basis of regularity of the fractional chain lengths (FCL) dependence on the number of carbon atoms (C(z)) of individual homologous series of methyl 2-, 3-, …, 21-FAME. The prediction of retention of the first homologues, having the new position of methyl group beginning at higher carbon atoms number, and analogously for the second, third, fourth, and other members of the homologous series, allowed the dependence FCL=f(C(z)) for the first and subsequent members of beginning homologous of monomethyl derivatives of FAME. The identification was confirmed by mass spectrometry. All of the methyl isomers of FAME, which could not be completely separated by gas chromatography due to having a methyl group in surroundings of the middle of the carbon chain, were resolved by mass spectrometry using deconvolution in a SIM-mode. Measured gas chromatographic and mass spectrometric data were applied for identification of the monomethyl branched saturated FAME in tongue coating. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Sundin, Peter; Wesén, Clas

    1997-01-01

    Halogenated fatty acids are the major contributors to organohalogen compounds in lipids of marine mammals, fish, and bivalves. For the initial characterization of these recently noticed compounds, a determination of the halogen concentration has usually been combined with some lipid isolation......), atomic emission spectrometry, and mass spectrometry. For most environmental samples, chlorinated FAMEs must be enriched prior to GC. ELCD is a useful detection method for indicating halogenated FAMEs in the chromatograms, and tentative identification of the halogenated species can be obtained...

  12. Influence of chain length of pyrene fatty acids on their uptake and metabolism by Epstein-Barr-virus-transformed lymphoid cell lines from a patient with multisystemic lipid storage myopathy and from control subjects.

    Science.gov (United States)

    Radom, J; Salvayre, R; Levade, T; Douste-Blazy, L

    1990-01-01

    The uptake and intracellular metabolism of 4-(1-pyrene)butanoic acid (P4), 10-(1-pyrene)decanoic acid (P10) and 12-(1-pyrene)dodecanoic acid (P12) were investigated in cultured lymphoid cell lines from normal individuals and from a patient with multisystemic lipid storage myopathy (MLSM). The cellular uptake was shown to be dependent on the fatty-acid chain length, but no significant difference in the uptake of pyrene fatty acids was observed between MLSM and control lymphoid cells. After incubation for 1 h the distribution of fluorescent fatty acids taken up by the lymphoid cell lines also differed with the chain length, most of the fluorescence being associated with phospholipid and triacylglycerols. In contrast with P10 and P12, P4 was not incorporated into neutral lipids. When the cells were incubated for 24 h with the pyrene fatty acids, the amount of fluorescent lipids synthesized by the cells was proportional to the fatty acid concentration in the culture medium. After a 24 h incubation in the presence of P10 or P12, at any concentration, the fluorescent triacylglycerol content of MLSM cells was 2-5-fold higher than that of control cells. Concentrations of pyrene fatty acids higher than 40 microM seemed to be more toxic for mutant cells than for control cells. This cytotoxicity was dependent on the fluorescent-fatty-acid chain length (P12 greater than P10 greater than P4). Pulse-chase experiments permitted one to demonstrate the defect in the degradation of endogenously biosynthesized triacylglycerols in MLSM cells (residual activity was around 10-25% of controls on the basis of half-lives and initial rates of P10- or P12-labelled-triacylglycerol catabolism); MLSM lymphoid cells exhibited a mild phenotypic expression of the lipid storage (less severe than that observed in fibroblasts). P4 was not utilized in the synthesis of triacylglycerols, and thus did not accumulate in MLSM cells: this suggests that natural short-chain fatty acids might induce a lesser

  13. [Fatty acids in confectionery products].

    Science.gov (United States)

    Daniewski, M; Mielniczuk, E; Jacórzyński, B; Pawlicka, M; Balas, J; Filipek, A; Górnicka, M

    2000-01-01

    The content of fat and fatty acids in 144 different confectionery products purchased on the market in Warsaw region during 1997-1999 have been investigated. In examined confectionery products considerable variability of both fat and fatty acids content have been found. The content of fat varied from 6.6% (coconut cookies) up to 40% (chocolate wafers). Saturated fatty acids were present in both cis and trans form. Especially trans fatty acids reach (above 50%) were fats extracted from nut wafers, coconuts wafers.

  14. Introduction to fatty acids and lipids.

    Science.gov (United States)

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects. © 2015 S. Karger AG, Basel.

  15. Fatty acid-producing hosts

    Science.gov (United States)

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  16. Chain-modified radioiodinated fatty acids

    International Nuclear Information System (INIS)

    Otto, C.A.

    1987-01-01

    Several carbon chain manipulations have been studied in terms of their effects on myocardial activity levels and residence time. The manipulations examined included: chain length, chain branching, chain unsaturation, and carbon-iodine bond stabilization. It was found that chain length affects myocardial activity levels for both straight-chain alkyl acids and branched chain alkyl and aryl acids. Similar results have been reported for the straight-chain aryl acids. Generally, the longer chain lengths correlated with higher myocardial activity levels and longer residence times. This behavior is attributed to storage as triglycerides. Branched chain acids are designed to be anti-metabolites but only the aryl β-methyl acids possessed the expected time course of constant or very slowly decreasing activity levels. The alkyl β-methyl acids underwent rapid deiodination - a process apparently independent of β-oxidation. Inhibition of β-oxidation by incorporation of carbon-carbon double and triple bonds was studied. Deiodination of ω-iodo alkyl fatty acids prevented an assessment of suicide inhibition using an unsaturated alkynoic acid. Stabilization of the carbon-iodine bond by attachment of iodine to a vinylic or aryl carbon was studied. The low myocardial values and high blood values observed for an eleven carbon ω-iodo vinylic fatty acid were not encouraging but ω-iodo aryl fatty acids appear to avoid the problems of rapid deiodination. (Auth.)

  17. Treatment of Fatty Acid Oxidation Disorders

    Science.gov (United States)

    ... Treatment of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... this page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  18. N-terminal fatty acylated His-dPhe-Arg-Trp-NH(2) tetrapeptides: influence of fatty acid chain length on potency and selectivity at the mouse melanocortin receptors and human melanocytes.

    Science.gov (United States)

    Todorovic, Aleksandar; Holder, Jerry Ryan; Bauzo, Rayna M; Scott, Joseph Walker; Kavanagh, Renny; Abdel-Malek, Zalfa; Haskell-Luevano, Carrie

    2005-05-05

    The melanocortin system is involved in the regulation of a diverse number of physiologically important pathways including pigmentation, feeding behavior, weight and energy homeostasis, inflammation, and sexual function. All the endogenous melanocortin agonist ligands possess the conserved His-Phe-Arg-Trp tetrapeptide sequence that is postulated to be important for melanocortin receptor molecular recognition and stimulation. Previous studies by our laboratory resulted in the discovery that increasing alkyl chain length at the N-terminal "capping" region of the His-dPhe-Arg-Trp-NH(2) tetrapeptide resulted in a 100-fold increased melanocortin receptor agonist potency. This study was undertaken to systematically evaluate the pharmacological effects of increasing N-capping alkyl chain length of the CH(3)(CH(2))(n)CO-His-dPhe-Arg-Trp-NH(2) (n = 6-16) tetrapeptide template. Twelve analogues were synthesized and pharmacologically characterized at the mouse melanocortin receptors MC1R and MC3R-MC5R and human melanocytes known to express the MC1R. These peptides demonstrated melanocortin receptor selectivity profiles different from those of previously published tetrapeptides. The most notable results of enhanced ligand potency (20- to 200-fold) and receptor selectivity were observed at the MC1R. Tetrapeptides that possessed greater than nine alkyl groups were superior to alpha-MSH in terms of the stimulation of human melanocyte tyrosinase activity. Additionally, the n-pentadecanoyl derivative had a residual effect on tyrosinase activity that existed for at least 4 days after the peptide was removed from the human melanocyte culture medium. These data demonstrate the utility, potency, and residual effect of melanocortin tetrapeptides by adding N-terminal fatty acid moieties.

  19. 21 CFR 172.860 - Fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fatty acids. 172.860 Section 172.860 Food and Drugs... Multipurpose Additives § 172.860 Fatty acids. The food additive fatty acids may be safely used in food and in... and their associated fatty acids manufactured from fats and oils derived from edible sources: Capric...

  20. Deoxyribonucleic acid telomere length shortening can predict the incidence of non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Ping, Fan; Li, Zeng-Yi; Lv, Ke; Zhou, Mei-Cen; Dong, Ya-Xiu; Sun, Qi; Li, Yu-Xiu

    2017-03-01

    To investigate the effect of telomere shortening and other predictive factors of non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes mellitus patients in a 6-year prospective cohort study. A total of 70 type 2 diabetes mellitus (mean age 57.8 ± 6.7 years) patients without NAFLD were included in the study, and 64 of them were successfully followed up 6 years later, excluding four cases with significant alcohol consumption. NAFLD was diagnosed by the hepatorenal ratio obtained by a quantitative ultrasound method using NIH image analysis software. The 39 individuals that developed NAFLD were allocated to group A, and the 21 individuals that did not develop NAFLD were allocated to group B. Fluorescent real-time quantitative polymerase chain reaction was used to measure telomere length. There was no significant difference between the two groups in baseline telomere length; however, at the end of the 6th year, telomere length had become shorter in group A compared with group B. There were significant differences between these two groups in baseline body mass index, waistline, systolic blood pressure, glycated hemoglobin and fasting C-peptide level. In addition, the estimated indices of baseline insulin resistance increased in group A. Fasting insulin level, body mass index, systolic blood pressure at baseline and the shortening of telomere length were independent risk factors of NAFLD in type 2 diabetes mellitus patients. Telomere length became shorter in type 2 diabetes mellitus patients who developed NAFLD over the course of 6 years. Type 2 diabetes mellitus patients who developed NAFLD had more serious insulin resistance compared with those who did not develop NAFLD a long time ago. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  1. Fatty acid and triacylglycerol composition of the subcutaneous fat from iberian pigs fattened on the traditional feed: “Montanera”. effect of anatomical location and length of feeding

    Directory of Open Access Journals (Sweden)

    Narváez-Rivas, Mónica

    2009-07-01

    Full Text Available Fatty acid and triacylglycerol compositions of 200 samples of subcutaneous fat from two different anatomical locations (rump and adipose tissue covering the Biceps femoris muscle of Iberian purebred pigs reared on “Montanera” were determined. Significant differences were found for the majority fatty acids and for some triacylglycerol species (PPS, PLPo + MLO, PLO, PLL + PoLO, SOS, SOL, OLL among the two anatomical locations, being the rump location less saturated. The activity level of the key enzyme involved in lipogenesis differed (p Biceps femoris, increases faster than that of the subcutaneous fat covering a muscle with low oxidative metabolism, as Longissimus dorsi.Se ha determinado la composición de ácidos grasos y de triglicéridos en 200 muestras de grasa subcutánea procedentes de dos localizaciones anatómicas (rabadilla y tejido adiposo que recubre el músculo Biceps femoris de cerdos ibéricos puros alimentados en “Montanera”. Se encontraron diferencias significativas para la mayoría de ácidos grasos y para algunos triglicéridos PPS, PLPo + MLO, PLO, PLL + PoLO, SOS, SOL, OLL entre las dos localizaciones anatómicas, siendo la rabadilla la menos saturada. El nivel de actividad de la enzima involucrada en la lipogénesis defirió significativamente (p B. femoris, aumenta más rápidamente que la de la grasa subcutánea que recubre un músculo con bajo metabolismo oxidativo, como el Longissimus dorsi.

  2. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    Science.gov (United States)

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Novel phytoceramides containing fatty acids of diverse chain lengths are better than a single C18-ceramide N-stearoyl phytosphingosine to improve the physiological properties of human stratum corneum

    Directory of Open Access Journals (Sweden)

    Oh MJ

    2017-09-01

    Full Text Available Myoung Jin Oh,1 Young Hoon Cho,1 So Yoon Cha,1 Eun Ok Lee,2 Jin Wook Kim,2 Sun Ki Kim,2 Chang Seo Park1 1Department of Chemical and Biochemical Engineering, Dongguk University, Chung-gu, Seoul, 2LCS Biotech, Gwonseon-gu, Suwon-si, Gyeonggi-do, Republic of Korea Abstract: Ceramides in the human stratum corneum (SC are a mixture of diverse N-acylated fatty acids (FAs with different chain lengths. C24 is the major class of FAs of ceramides. However, there are also other classes of ceramides with diverse chain lengths of FAs, and these lengths generally range from C16 to C26. This study aimed to prepare several types of phytoceramide containing diverse chain lengths of N-acylated FAs and compare them with C18-ceramide N-stearoyl phytosphingosine (NP in terms of their effects on the physiological properties of the SC. We chose natural oils, such as horse fat oil, shea butter, sunflower oil, and a mixture of macadamia nut, shea butter, moringa, and meadowfoam seed oil, as sources of FAs and phytosphingosine as a sphingoid backbone to synthesize diverse phytoceramides. Each phytoceramide exhibited a distinctive formation of the lamellar structure, and their FA profiles were similar to those of their respective natural oil. The skin barrier properties, as analyzed in human skin, clearly demonstrated that all the phytoceramides improved the recovery rate of the damaged SC and enhanced hydration better than C18-ceramide NP did. In conclusion, natural oil-derived phytoceramides could represent a novel class of ceramides for cosmetic applications in the development of an ideal skin barrier moisturizer. Keywords: fatty acid, chain length, phytoceramide, skin barrier, natural oil

  4. Conjugated Fatty Acid Synthesis

    Science.gov (United States)

    Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John

    2012-01-01

    Conjugated linolenic acids (CLNs), 18:3 Δ9,11,13, lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ9,12,15). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ9cis,11trans,13cis) or α-eleostearic acid (18:3 Δ9cis,11trans,13trans). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation. PMID:22451660

  5. Omega-3 fatty acids upregulate adult neurogenesis

    OpenAIRE

    Beltz, Barbara S.; Tlusty, Michael F.; Benton, Jeannie L.; Sandeman, David C.

    2007-01-01

    Omega-3 fatty acids play crucial roles in the development and function of the central nervous system. These components, which must be obtained from dietary sources, have been implicated in a variety of neurodevelopmental and psychiatric disorders. Furthermore, the presence of omega-6 fatty acids may interfere with omega-3 fatty acid metabolism. The present study investigated whether changes in dietary ratios of omega-3:omega-6 fatty acids influence neurogenesis in the lobster (Homarus america...

  6. Acylation of cellular proteins with endogenously synthesized fatty acids

    International Nuclear Information System (INIS)

    Towler, D.; Glaser, L.

    1986-01-01

    A number of cellular proteins contain covalently bound fatty acids. Previous studies have identified myristic acid and palmitic acid covalently linked to protein, the former usually attached to proteins by an amide linkage and the latter by ester or thio ester linkages. While in a few instances specific proteins have been isolated from cells and their fatty acid composition has been determined, the most frequent approach to the identification of protein-linked fatty acids is to biosynthetically label proteins with fatty acids added to intact cells. This procedure introduces possible bias in that only a selected fraction of proteins may be labeled, and it is not known whether the radioactive fatty acid linked to the protein is identical with that which is attached to the protein when the fatty acid is derived from endogenous sources. We have examined the distribution of protein-bound fatty acid following labeling with [ 3 H]acetate, a general precursor of all fatty acids, using BC 3 H1 cells (a mouse muscle cell line) and A431 cells (a human epidermoid carcinoma). Myristate, palmitate, and stearate account for essentially all of the fatty acids linked to protein following labeling with [ 3 H]acetate, but at least 30% of the protein-bound palmitate in these cells was present in amide linkage. In BC3H1 cells, exogenous palmitate becomes covalently bound to protein such that less than 10% of the fatty acid is present in amide linkage. These data are compatible with multiple protein acylating activities specific for acceptor protein fatty acid chain length and linkage

  7. FACTS ABOUT TRANS FATTY ACIDS

    Directory of Open Access Journals (Sweden)

    Sedighe Asgary

    2010-12-01

    Full Text Available Introduction Fatty acids constitute the main class of lipids in the human diet, being found in nature mainly as glycerol esters that originate triacylglycerols. In the vegetal and animal kingdoms, fatty acids generally have cis unsaturations. In this form, the hydrogens bound to the double bond carbons are on the same side. In another possible configuration, called trans, the hydrogens are bound to un saturations, carbons on opposing sides. Fatty acids with one or more un saturations in the trans configuration are called trans fatty acids (TFAs.1-4      There are two major sources of TFA, those that come from ruminant animals and those that are industrially produced.      The majority of TFAs are found in partially hydrogenated vegetable oils, which contain 10–40% as TFA.5 Hydrogenation is based on the reaction of unsaturated fatty acids of either vegetable or marine oil in the presence of a catalyst, in general nickel. The objective is to increase the oxidative stability of oils by reduction of the concentration of more unsaturated fatty acids and changing their physical properties, thus extending their application. Hydrogenation depends mainly on oil temperature, hydrogen pressure, stirring speed, reaction time, and the catalyst type and concentration. According to the process conditions, hydrogenation is classified as either partial or total and either selective or nonselective.6 It has been estimated that dietary TFAs from partially hydrogenated oils may be responsible for between 30,000 and 100,000 premature coronary deaths per year in the United States.7      The concentration of TFA in meat and milk from ruminants (i.e., cattle, sheep, goats, etc. contain 3 to 8% of total fat.5 It is hypothesized that ruminant TFAs, or certain TFA isomers from ruminant sources, may confer some health benefits; however, since TFA from animal sources accompany saturated fatty acids (SFA, an increase in a single ruminant TFA in the diet is not

  8. New radiohalogenated alkenyl tellurium fatty acids

    International Nuclear Information System (INIS)

    Srivastava, P.C.; Knapp, F.F. Jr.; Kabalka, G.W.

    1987-01-01

    Radiolabeled long-chain fatty acids have diagnostic value as radiopharmaceutical tools in myocardial imaging. Some applications of these fatty acids are limited due to their natural metabolic degradation in vivo with subsequent washout of the radioactivity from the myocardium. The identification of structural features that will increase the myocardial residence time without decreasing the heart uptake of long-chain fatty acids is of interest. Fatty acids containing the tellurium heteroatom were the first modified fatty acids developed that show unique prolonged myocardial retention and low blood levels. Our detailed studies with radioiodinated vinyliodide substituted tellurium fatty acids demonstrate that heart uptake is a function of the tellurium position. New techniques of tellurium and organoborane chemistry have been developed for the synthesis of a variety of radioiodinated iodoalkenyl tellurium fatty acids. 9 refs., 3 figs., 2 tabs

  9. Aspirin increases mitochondrial fatty acid oxidation

    International Nuclear Information System (INIS)

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.; Bharathi, Sivakama S.; Zhang, Yuxun; Stolz, Donna B.; Goetzman, Eric S.

    2017-01-01

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. - Highlights: • Aspirin increases mitochondrial—but inhibits peroxisomal—fatty acid oxidation. • Aspirin acetylates mitochondrial proteins including fatty acid oxidation enzymes. • SIRT3 does not influence the effect of aspirin on fatty acid oxidation. • Increased fatty acid oxidation is likely due to altered mitochondrial morphology and respiration.

  10. Fatty acid uptake in normal human myocardium

    International Nuclear Information System (INIS)

    Vyska, K.; Meyer, W.; Stremmel, W.; Notohamiprodjo, G.; Minami, K.; Machulla, H.J.; Gleichmann, U.; Meyer, H.; Koerfer, R.

    1991-01-01

    Fatty acid binding protein has been found in rat aortic endothelial cell membrane. It has been identified to be a 40-kDa protein that corresponds to a 40-kDa fatty acid binding protein with high affinity for a variety of long chain fatty acids isolated from rat heart myocytes. It is proposed that this endothelial membrane fatty acid binding protein might mediate the myocardial uptake of fatty acids. For evaluation of this hypothesis in vivo, influx kinetics of tracer-labeled fatty acids was examined in 15 normal subjects by scintigraphic techniques. Variation of the plasma fatty acid concentration and plasma perfusion rate has been achieved by modulation of nutrition state and exercise conditions. The clinical results suggest that the myocardial fatty acid influx rate is saturable by increasing fatty acid plasma concentration as well as by increasing plasma flow. For analysis of these data, functional relations describing fatty acid transport from plasma into myocardial tissue in the presence and absence of an unstirred layer were developed. The fitting of these relations to experimental data indicate that the free fatty acid influx into myocardial tissue reveals the criteria of a reaction on a capillary surface in the vicinity of flowing plasma but not of a reaction in extravascular space or in an unstirred layer and that the fatty acid influx into normal myocardium is a saturable process that is characterized by the quantity corresponding to the Michaelis-Menten constant, Km, and the maximal velocity, Vmax, 0.24 ± 0.024 mumol/g and 0.37 ± 0.013 mumol/g(g.min), respectively. These data are compatible with a nondiffusional uptake process mediated by the initial interaction of fatty acids with the 40-kDa membrane fatty acid binding protein of cardiac endothelial cells

  11. Do fatty acids affect fetal programming?

    Science.gov (United States)

    Kabaran, Seray; Besler, H Tanju

    2015-08-13

    In this study discussed the primary and regulatory roles of fatty acids, and investigated the affects of fatty acids on metabolic programming. Review of the literature was carried out on three electronic databases to assess the roles of fatty acids in metabolic programming. All abstracts and full-text articles were examined, and the most relevant articles were selected for screening and inclusion in this review. The mother's nutritional environment during fetal period has important effects on long term health. Fatty acids play a primary role in growth and development. Alterations in fatty acid intake in the fetal period may increase the risk of obesity and metabolic disorders in later life. Maternal fatty acid intakes during pregnancy and lactation are passed to the fetus and the newborn via the placenta and breast milk, respectively. Imbalances in fatty acid intake during the fetal period change the fatty acid composition of membrane phospholipids, which can cause structural and functional problems in cells. Additionally, the metabolic and neuroendocrine environments of the fetus and the newborn play key roles in the regulation of energy balance. Imbalances in fatty acid intake during pregnancy and lactation may result in permanent changes in appetite control, neuroendocrine function and energy metabolism in the fetus, leading to metabolic programming. Further studies are needed to determine the role of fatty acid intake in metabolic programming.

  12. Antioxidant and cyclooxygenase activities of fatty acids found in food.

    Science.gov (United States)

    Henry, Geneive E; Momin, Rafikali A; Nair, Muraleedharan G; Dewitt, David L

    2002-04-10

    Several commercially available C-8 to C-24 saturated and unsaturated fatty acids (1-29) were assayed for cyclooxygenase-I (COX-I) and cyclooxygenase-II (COX-II) inhibitory and antioxidant activities. Among the saturated fatty acids tested at 60 microg mL(-1), there was an increase in antioxidant activity with increasing chain length from octanoic acid to myristic acid (C-8-C-14) and a decrease thereafter. All unsaturated fatty acids tested at 60 microg mL(-1) showed good antioxidant activity except for undecylenic acid (12), cis-5-dodecenoic acid (13), and nervonic acid (29). The highest inhibitory activities among the saturated fatty acids tested on cyclooxygenase enzymes COX-I and COX-II were observed for decanoic acid to lauric acid (3-5) at 100 microg mL(-1). Similarly, among the unsaturated fatty acids tested, the highest activities were observed for cis-8,11,14-eicosatrienoic acid (25) and cis-13,16-docosadienoic acid (27) at 100 microg mL(-1).

  13. NMR-based metabolomics reveals that conjugated double bond content and lipid storage efficiency in HepG2 cells are affected by fatty acid cis/trans configuration and chain length

    DEFF Research Database (Denmark)

    Najbjerg, Heidi; Young, Jette F; Bertram, Hanne Christine S.

    2011-01-01

    from conjugated double bonds (5.65, 5.94, and 6.28 ppm) in cells exposed to vaccenic acid, revealing that vaccenic acid upon uptake by the HepG2 cells is converted into a conjugated fatty acid. Upon exposure of the HepG2 cells to either butyric acid (C4:0), caproic acid (C6:0), lauric acid (C12...

  14. Biooxidation of fatty acid distillates to dibasic acids by a mutant of Candida tropicalis.

    Science.gov (United States)

    Gangopadhyay, Sarbani; Nandi, Sumit; Ghosh, Santinath

    2006-01-01

    Fatty acid distillates (FADs) produced during physical refining of vegetable oil contains large amount of free fatty acid. A mutant of Candida tropicalis (M20) obtained after several stages of UV mutation are utilized to produce dicarboxylic acids (DCAs) from the fatty acid distillates of rice bran, soybean, coconut, palm kernel and palm oil. Initially, fermentation study was carried out in shake flasks for 144 h. Products were isolated and identified by GLC analysis. Finally, fermentation was carried out in a 2 L jar fermenter, which yielded 62 g/L and 48 g/L of total dibasic acids from rice bran oil fatty acid distillate and coconut oil fatty acid distillate respectively. FADs can be effectively utilized to produce DCAs of various chain lengths by biooxidation process.

  15. Fatty acid synthesis by spinach chloroplasts, 2

    International Nuclear Information System (INIS)

    Yamada, Mitsuhiro; Nakamura, Yasunori

    1975-01-01

    By incorporation of 3 H 2 O into the fatty acid chain in the presence of unlabelled precursor, we showed that fatty acids are synthesized from PGA, PEP and pyruvate by intact spinach chloroplasts in the light. 13 C-tracer experiments confirmed that 1-C of pyruvate is decarboxylated and 2-C is incorporated into fatty acids by the chloroplasts. The patterns of fatty acids synthesized from PGA and pyruvate were the same as that from acetate. The highest rate of fatty acid synthesis was reached at the physiological concentration of PGA (3 mM) and pyruvate (1 mM). These results indicate the operation of the following path in the chloroplasts in light: PGA→PEP→pyruvate→acetylCoA→fatty acids. Since citrate and OAA were much less active and malate and glyoxylate were inert as precursors for fatty acid synthesis, PEP or pyruvate carboxylation, citrate lyase reaction and malate synthetase reaction are not involved in the formation of acetylCoA and fatty acids. Since pyruvate was much more effective as a substrate for fatty acid synthesis than lactate, acetaldehyde or acetate, direct decarboxylation path is considered to be the primary path from pyruvate to acetylCoA. The insignificant effect of chloroplast-washing on fatty acid synthesis from PGA and pyruvate indicates that the glycolytic path from PGA to pyruvate is associated with the chloroplasts. Since pyruvate was more effectively incorporated into fatty acids than acetylCoA, it is unlikely that pyruvate decarboxylation to acetylCoA is due to mitochondria contaminating the chloroplast preparation. On the basis of measurements of 3 H 2 O incorporation in the light and dark, the activity of fatty acid synthesis in spincah leaves appears to be shared by the activities in chloroplasts (87%) and other organelles (13%). (author)

  16. Exogenous fatty acid metabolism in bacteria.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2017-10-01

    Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  17. Fatty acid metabolism: target for metabolic syndrome

    OpenAIRE

    Wakil, Salih J.; Abu-Elheiga, Lutfi A.

    2009-01-01

    Fatty acids are a major energy source and important constituents of membrane lipids, and they serve as cellular signaling molecules that play an important role in the etiology of the metabolic syndrome. Acetyl-CoA carboxylases 1 and 2 (ACC1 and ACC2) catalyze the synthesis of malonyl-CoA, the substrate for fatty acid synthesis and the regulator of fatty acid oxidation. They are highly regulated and play important roles in the energy metabolism of fatty acids in animals, including humans. They...

  18. Fatty acids and Pb-210 geochronology of a sediment core from Buzzards Bay, Massachusetts

    International Nuclear Information System (INIS)

    Farrington, J.W.; Henrichs, S.M.; Anderson, R.

    1977-01-01

    Four sections of a Pb-210 dated core of 62 cm length from Buzzards Bay, Massachusetts, were analyzed for fatty acids. A comparison of fatty acids extracted by Soxhlet extraction (unbound fatty acids) with fatty acids extracted by subsequent saponification extraction of the same sample (bound fatty acids) showed that the former did not undergo diagenetic loss any faster than the latter. However, compositional differences between bound and unbound fatty acids were apparent in the top section of 1 to 2 cm and were less apparent in the 54 to 58 cm section. At least 14% of the bound fatty acids are esterified to non-solvent extractable material. The net conversion of fatty acids to other compounds is 32 μg/g dry weight sediment over the first 30 yr after deposition. (author)

  19. Intake of fatty acids in Western Europe with emphasis on trans fatty acids: The TRANSFAIR study

    NARCIS (Netherlands)

    Hulshof, K.F.A.M; Erp van - Baart, M.A.; Anttolainen, M.; Becker, W.; Church, S.M.; Couet, C.; Hermann-Kunz, E.; Kesteloot, H.; Leth, T.; Martins, I.; Moreiras, O.; Moschandreas, J.; Pizzoferrato, L.; Rimestad, A.H.; Thorgeirsdottir, H.; Amelsvoort, J.M.M. van; Aro, A.; Kafatos, A.G.; Lanzmann-Petithory, D.; Poppel, G. van

    1999-01-01

    Objective: To assess the intake of trans fatty acids (TFA) and other fatty acids in 14 Western European countries. Design and subjects: A maximum of 100 foods per country were sampled and centrally analysed. Each country calculated the intake of individual trans and other fatty acids, clusters of

  20. Intake of fatty acids in Western Europe with emphasis on trans fatty acids: The TRANSFAIR study

    DEFF Research Database (Denmark)

    Hulshof, K. F. A. M.; Erp-Baart, M. A. van; Anttolainen, M.

    1999-01-01

    Objective: To assess the intake of trans fatty acids (TFA) and other fatty acids in 14 Western European countries. Design and subjects: A maximum of 100 foods per country were sampled and centrally analysed. Each country calculated the intake of individual trans and other fatty acids, clusters of...

  1. Importance of medium chain fatty acids in animal nutrition

    Science.gov (United States)

    Baltić, B.; Starčević, M.; Đorđević, J.; Mrdović, B.; Marković, R.

    2017-09-01

    Fats in animal and human nutrition are a common subject of research. These studies most often pay attention to particular fat groups (saturated, unsaturated, polyunsaturated fats or fats grouped by the length of their fatty acid chains into short, medium or long chain fatty acids). Medium chain fatty acids (MCFAs) have two main sources: milk and coconut oil. To date, research has shown these acids have positive effects on health, production, feed digestibility and lower body and muscle fats in broilers and swine. MCFAs possess antibacterial, anticoccidial and antiviral effects. Also, it has been proven that these acids act synergistically if they are used together with organic acids, essential oils, or probiotics. Nowadays, commercial MCFA products are available for use in animal nutrition as feed additives.

  2. Maternal long chain polyunsaturated fatty acid supplementation in infancy increases length- and weight-for-age but not BMI to 6 years when controlling for effects of maternal smoking

    Science.gov (United States)

    Currie, L.M.; Tolley, E.A.; Thodosoff, J.M.; Kerling, E.H.; Sullivan, D.K.; Colombo, J.; Carlson, S.E.

    2015-01-01

    Summary Long chain polyunsaturated fatty acids (LCPUFA) are added to infant formula but their effect on long-term growth of children is under studied. We evaluated the effects of feeding LCPUFA-supplemented formula (n=54) compared to control formula (n=15) throughout infancy on growth from birth-6 years. Growth was described using separate models developed with the MIXED procedure of SAS® that included maternal smoking history and gender. Compared to children fed control formula, children who consumed LCPUFA supplemented formula had higher length-/stature-/and weight-for-age percentiles but not body mass index (BMI) percentile from birth to 6 years. Maternal smoking predicted lower stature (2-6 years), higher weight-for-length (birth-18 months) and BMI percentile (2-6 years) independent of LCPUFA effects. Gender interacted with the effect of LCPUFA on stature, and the relationship between smoking and BMI, with a larger effect for boys. Energy intake did not explain growth differences. A relatively small control sample is a limitation. PMID:25936840

  3. Analysis of Fatty Acid and Growth Profiles in Ten Shewanella spp. to Associate Phylogenetic Relationships

    Science.gov (United States)

    2015-10-25

    microorganisms from the same genus using physiological responses. To understand these changes, a shift in fatty acid length distributions and growth of...phylogenetically dissimilar microorganisms from the same genus using physiological responses. To understand these changes, a shift in fatty acid length...region contaminated with metals: relation with ecological characteristics and soil respiration. J. Biorem. Biodegrad . 6, 1000274/1000271-1000274

  4. Production of Medium Chain Fatty Acids by Yarrowia lipolytica: Combining Molecular Design and TALEN to Engineer the Fatty Acid Synthase.

    Science.gov (United States)

    Rigouin, Coraline; Gueroult, Marc; Croux, Christian; Dubois, Gwendoline; Borsenberger, Vinciane; Barbe, Sophie; Marty, Alain; Daboussi, Fayza; André, Isabelle; Bordes, Florence

    2017-10-20

    Yarrowia lipolytica is a promising organism for the production of lipids of biotechnological interest and particularly for biofuel. In this study, we engineered the key enzyme involved in lipid biosynthesis, the giant multifunctional fatty acid synthase (FAS), to shorten chain length of the synthesized fatty acids. Taking as starting point that the ketoacyl synthase (KS) domain of Yarrowia lipolytica FAS is directly involved in chain length specificity, we used molecular modeling to investigate molecular recognition of palmitic acid (C16 fatty acid) by the KS. This enabled to point out the key role of an isoleucine residue, I1220, from the fatty acid binding site, which could be targeted by mutagenesis. To address this challenge, TALEN (transcription activator-like effector nucleases)-based genome editing technology was applied for the first time to Yarrowia lipolytica and proved to be very efficient for inducing targeted genome modifications. Among the generated FAS mutants, those having a bulky aromatic amino acid residue in place of the native isoleucine at position 1220 led to a significant increase of myristic acid (C14) production compared to parental wild-type KS. Particularly, the best performing mutant, I1220W, accumulates C14 at a level of 11.6% total fatty acids. Overall, this work illustrates how a combination of molecular modeling and genome-editing technology can offer novel opportunities to rationally engineer complex systems for synthetic biology.

  5. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  6. Phylogenomic reconstruction of archaeal fatty acid metabolism

    Science.gov (United States)

    Dibrova, Daria V.; Galperin, Michael Y.; Mulkidjanian, Armen Y.

    2014-01-01

    While certain archaea appear to synthesize and/or metabolize fatty acids, the respective pathways still remain obscure. By analyzing the genomic distribution of the key lipid-related enzymes, we were able to identify the likely components of the archaeal pathway of fatty acid metabolism, namely, a combination of the enzymes of bacterial-type β-oxidation of fatty acids (acyl-CoA-dehydrogenase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase) with paralogs of the archaeal acetyl-CoA C-acetyltransferase, an enzyme of the mevalonate biosynthesis pathway. These three β-oxidation enzymes working in the reverse direction could potentially catalyze biosynthesis of fatty acids, with paralogs of acetyl-CoA C-acetyltransferase performing addition of C2 fragments. The presence in archaea of the genes for energy-transducing membrane enzyme complexes, such as cytochrome bc complex, cytochrome c oxidase, and diverse rhodopsins, was found to correlate with the presence of the proposed system of fatty acid biosynthesis. We speculate that because these membrane complexes functionally depend on fatty acid chains, their genes could have been acquired via lateral gene transfer from bacteria only by those archaea that already possessed a system of fatty acid biosynthesis. The proposed pathway of archaeal fatty acid metabolism operates in extreme conditions and therefore might be of interest in the context of biofuel production and other industrial applications. PMID:24818264

  7. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylic esters of fatty acids. 172.848 Section 172... CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids... prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid...

  8. Engineering microbial fatty acid metabolism for biofuels and biochemicals

    DEFF Research Database (Denmark)

    Marella, Eko Roy; Holkenbrink, Carina; Siewers, Verena

    2017-01-01

    microbial catalysis. This review summarizes the recent advances in the engineering of microbial metabolism for production of fatty acid-derived products. We highlight the efforts in engineering the central carbon metabolism, redox metabolism, controlling the chain length of the products, and obtaining...

  9. Radioiodinated fatty acids for cardiological diagnosis

    International Nuclear Information System (INIS)

    Machulla, H.-J.; Knust, E.J.

    1986-01-01

    The development of fatty acids labelled with iodine-123 is reviewed. The variety of methods for producing 123 I and introducing radioiodine into the molecule is discussed and the important points of the biochemical background are recalled with the aim of finding a broad application for 123 I-labelled fatty acids. The results of the pharmacokinetic studies and biochemical analysis are presented as they prove that both 17- 123 I-heptadecanoic acid (IHA) and 15-(rho- 123 I-phenyl)pentadecanoic acid (IPPA) exhibit analogous behaviour to that of the naturally occurring fatty acids. Clinical applications demonstrated two fields of importance: (i) applications solely for imaging the heart and (ii) assessment of myocardial turnover rates of fatty acids for functional diagnosis. Moreover, very recent studies show that the provision of information about prognosis of myocardial diseases and the applied cardiological therapy appear to be possible. (author)

  10. Fatty Acid Binding Proteins in Prostate Cancer

    National Research Council Canada - National Science Library

    Jett, Marti

    2000-01-01

    We have shown that there is a distinct pattern of fatty acid binding protein (FAEP) expression in prostate cancer vs normal cells and that finding has be confirmed in patient samples of biopsy specimens...

  11. Fatty acid synthesis by spinach chloroplasts, 2. The path from PGA to fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Mitsuhiro; Nakamura, Yasunori [Tokyo Univ. (Japan). Coll. of General Education

    1975-02-01

    By incorporation of /sup 3/H/sub 2/O into the fatty acid chain in the presence of unlabelled precursor, we showed that fatty acids are synthesized from PGA, PEP and pyruvate by intact spinach chloroplasts in the light. /sup 13/C-tracer experiments confirmed that 1-C of pyruvate is decarboxylated and 2-C is incorporated into fatty acids by the chloroplasts. The patterns of fatty acids synthesized from PGA and pyruvate were the same as that from acetate. The highest rate of fatty acid synthesis was reached at the physiological concentration of PGA (3 mM) and pyruvate (1 mM). These results indicate the operation of the following path in the chloroplasts in light: PGA..-->..PEP..-->..pyruvate..-->..acetylCoA..-->..fatty acids. Since citrate and OAA were much less active and malate and glyoxylate were inert as precursors for fatty acid synthesis, PEP or pyruvate carboxylation, citrate lyase reaction and malate synthetase reaction are not involved in the formation of acetylCoA and fatty acids. Since pyruvate was much more effective as a substrate for fatty acid synthesis than lactate, acetaldehyde or acetate, direct decarboxylation path is considered to be the primary path from pyruvate to acetylCoA. The insignificant effect of chloroplast-washing on fatty acid synthesis from PGA and pyruvate indicates that the glycolytic path from PGA to pyruvate is associated with the chloroplasts. Since pyruvate was more effectively incorporated into fatty acids than acetylCoA, it is unlikely that pyruvate decarboxylation to acetylCoA is due to mitochondria contaminating the chloroplast preparation. On the basis of measurements of /sup 3/H/sub 2/O incorporation in the light and dark, the activity of fatty acid synthesis in spincah leaves appears to be shared by the activities in chloroplasts (87%) and other organelles (13%).

  12. Tailored fatty acid synthesis via dynamic control of fatty acid elongation

    Energy Technology Data Exchange (ETDEWEB)

    Torella, JP; Ford, TJ; Kim, SN; Chen, AM; Way, JC; Silver, PA

    2013-07-09

    Medium-chain fatty acids (MCFAs, 4-12 carbons) are valuable as precursors to industrial chemicals and biofuels, but are not canonical products of microbial fatty acid synthesis. We engineered microbial production of the full range of even-and odd-chain-length MCFAs and found that MCFA production is limited by rapid, irreversible elongation of their acyl-ACP precursors. To address this limitation, we programmed an essential ketoacyl synthase to degrade in response to a chemical inducer, thereby slowing acyl-ACP elongation and redirecting flux from phospholipid synthesis to MCFA production. Our results show that induced protein degradation can be used to dynamically alter metabolic flux, and thereby increase the yield of a desired compound. The strategy reported herein should be widely useful in a range of metabolic engineering applications in which essential enzymes divert flux away from a desired product, as well as in the production of polyketides, bioplastics, and other recursively synthesized hydrocarbons for which chain-length control is desired.

  13. Tailored fatty acid synthesis via dynamic control of fatty acid elongation

    Science.gov (United States)

    Torella, Joseph P.; Ford, Tyler J.; Kim, Scott N.; Chen, Amanda M.; Way, Jeffrey C.; Silver, Pamela A.

    2013-01-01

    Medium-chain fatty acids (MCFAs, 4–12 carbons) are valuable as precursors to industrial chemicals and biofuels, but are not canonical products of microbial fatty acid synthesis. We engineered microbial production of the full range of even- and odd-chain–length MCFAs and found that MCFA production is limited by rapid, irreversible elongation of their acyl-ACP precursors. To address this limitation, we programmed an essential ketoacyl synthase to degrade in response to a chemical inducer, thereby slowing acyl-ACP elongation and redirecting flux from phospholipid synthesis to MCFA production. Our results show that induced protein degradation can be used to dynamically alter metabolic flux, and thereby increase the yield of a desired compound. The strategy reported herein should be widely useful in a range of metabolic engineering applications in which essential enzymes divert flux away from a desired product, as well as in the production of polyketides, bioplastics, and other recursively synthesized hydrocarbons for which chain-length control is desired. PMID:23798438

  14. Synthesis of new fatty acids amides from aminolysis of fatty acid methyl esters (FAMEs)

    International Nuclear Information System (INIS)

    Lopes, Carolina R.; Montes D'Oca, Caroline da Ros; Duarte, Rodrigo da C.; Kurz, Marcia H.S.; Primel, Ednei G.; Clementin, Rosilene M.; Villarreyes, Joaquin Ariel M.; Montes D'Oca, Marcelo G.

    2010-01-01

    Recent biochemical and pharmacological studies have led to the characterization of different fatty acid amides as a new family of biologically active lipids. Here, we describe the synthesis of new amides from C16:0, 18:0, 18:1 and 18:1, OH fatty acids (FFA) families with cyclic and acyclic amines and demonstrate for the first time that these compounds produce cytotoxic effects. Application of this method to the synthesis of fatty acid amides was performed using the esters aminolysis as a key step and various carboxylic amides were prepared in good yield from fatty acid methyl esters (FAMEs). (author)

  15. Fatty Acid Composition of Meat from Ruminants, with Special Emphasis on trans Fatty Acids

    DEFF Research Database (Denmark)

    Leth, Torben; Ovesen, L.; Hansen, K.

    1998-01-01

    The fatty acid composition was determined in 39 samples of beef, 20 samples of veal, and 34 samples of lamb, representative of the supply of ruminant meat in Denmark. Five cuts of beef and veal and three cuts of lamb with increasing fat content were selected, and analysis of the fatty acid methyl...... esters was performed by gas-liquid chromatography (GLC) on a polar 50-m capillary column CP Sil 88 with flame-ionization detection. Lamb had the highest content of saturated fatty acids (52.8 +/- 1.8 g/100 g fatty acids), higher than beef and veal (45.3 +/- 3.1 and 45.4 +/- 0.8 g/100 g fatty acids......, respectively). Cis monounsaturated fatty acids were 49.2 +/- 3.1, 44.9 +/- 1.8, and 37.7 +/- 1.7, and polyunsaturated fatty acids were 3.3 +/- 0.7, 5.8 +/- 2.0, and 5.0 +/- 0.1 g/100 g fatty acids in beef, veal, and lamb, respectively. Beef contained 2.1 +/- 0.8 g trans C-18:1 per 100 g fatty acids, about half...

  16. Fatty acid oxidation and ketogenesis in astrocytes

    International Nuclear Information System (INIS)

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO 2 in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO 2 and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and ω-terminal carbons, indicating that fatty acids were oxidized by β-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the ω-terminal 4-carbon unit of the fatty acids bypassed the β-ketothiolase step of the β-oxidation pathway. The [ 14 C]acetoacetate formed from the [1- 14 C]labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the [ 14 C]acetoacetate formed from the (ω-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1

  17. Determination of the seasonal changes on total fatty acid ...

    African Journals Online (AJOL)

    Total fatty acid compositions and seasonal variations of Oncorhynchus mykiss in Ivriz Dam Lake, Turkey were investigated using gas chromatographic method. A total of 38 different fatty acids were determined in the fatty acid composition of rainbow trout. Polyunsaturated fatty acids (PUFAs) were found to be higher than ...

  18. 2-Alkynoic fatty acids inhibit topoisomerase IB from Leishmania donovani.

    Science.gov (United States)

    Carballeira, Néstor M; Cartagena, Michelle; Sanabria, David; Tasdemir, Deniz; Prada, Christopher F; Reguera, Rosa M; Balaña-Fouce, Rafael

    2012-10-01

    2-Alkynoic fatty acids display antimycobacterial, antifungal, and pesticidal activities but their antiprotozoal activity has received little attention. In this work we synthesized the 2-octadecynoic acid (2-ODA), 2-hexadecynoic acid (2-HDA), and 2-tetradecynoic acid (2-TDA) and show that 2-ODA is the best inhibitor of the Leishmania donovani DNA topoisomerase IB enzyme (LdTopIB) with an EC(50)=5.3±0.7μM. The potency of LdTopIB inhibition follows the trend 2-ODA>2-HDA>2-TDA, indicating that the effectiveness of inhibition depends on the fatty acid carbon chain length. All of the studied 2-alkynoic fatty acids were less potent inhibitors of the human topoisomerase IB enzyme (hTopIB) as compared to LdTopIB. 2-ODA also displayed in vitro activity against Leishmania donovani (IC(50)=11.0μM), but it was less effective against other protozoa, Trypanosoma cruzi (IC(50)=48.1μM) and Trypanosoma brucei rhodesiense (IC(50)=64.5μM). The antiprotozoal activity of the 2-alkynoic fatty acids, in general, followed the trend 2-ODA>2-HDA>2-TDA. The experimental information gathered so far indicates that 2-ODA is a promising antileishmanial compound. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Mutant fatty acid desaturase and methods for directed mutagenesis

    Science.gov (United States)

    Shanklin, John [Shoreham, NY; Whittle, Edward J [Greenport, NY

    2008-01-29

    The present invention relates to methods for producing fatty acid desaturase mutants having a substantially increased activity towards substrates with fewer than 18 carbon atom chains relative to an unmutagenized precursor desaturase having an 18 carbon chain length specificity, the sequences encoding the desaturases and to the desaturases that are produced by the methods. The present invention further relates to a method for altering a function of a protein, including a fatty acid desaturase, through directed mutagenesis involving identifying candidate amino acid residues, producing a library of mutants of the protein by simultaneously randomizing all amino acid candidates, and selecting for mutants which exhibit the desired alteration of function. Candidate amino acids are identified by a combination of methods. Enzymatic, binding, structural and other functions of proteins can be altered by the method.

  20. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.

    Science.gov (United States)

    Guo, Chang; Ma, Jingfan; Zhong, Qionghong; Zhao, Mengyuan; Hu, Tianxing; Chen, Tong; Qiu, Longxin; Wen, Longping

    2017-08-01

    Alcoholic fatty liver is a threat to human health. It has been long known that abstinence from alcohol is the most effective therapy, other effective therapies are not available for the treatment in humans. Curcumin has a great potential for anti-oxidation and anti-inflammation, but the effect on metabolic reconstruction remains little known. Here we performed metabolomic analysis by gas chromatography/mass spectrometry and explored ethanol pathogenic insight as well as curcumin action pattern. We identified seventy-one metabolites in mouse liver. Carbohydrates and lipids were characteristic categories. Pathway analysis results revealed that ethanol-induced pathways including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis and pentose and glucuronate interconversions were suppressed by curcumin. Additionally, ethanol enhanced galactose metabolism and pentose phosphate pathway. Glyoxylate and dicarboxylate metabolism and pyruvate metabolism were inhibited in mice fed ethanol diet plus curcumin. Stearic acid, oleic acid and linoleic acid were disease biomarkers and therapical biomarkers. These results reflect the landscape of hepatic metabolism regulation. Our findings illustrate ethanol pathological pathway and metabolic mechanism of curcumin therapy. Copyright © 2017. Published by Elsevier Inc.

  1. Scintigraphy with radioiodinated free fatty acids

    International Nuclear Information System (INIS)

    Visser, F.C.

    1985-01-01

    In this thesis several clinical and animal experimental studies of free fatty acids labeled with radioiodine are discussed. These radiolabeled fatty acids are used for cardiac imaging. Besides, the elimination rate of the radioactivity from the myocardium, as observed during a scintigraphic study, is correlated with fatty acid metabolism. Uptake and distribution of I-heptadecanoic acid (I-HDA) and I-phenylpentadecanoic acid (I-PPA) are compared with those of thallium-201 (Tl-201) in the normal and ischemic canine myocardium. For determination of the elimination rate (expressed in terms of halftime values) of the radioactivity from the myocardium, regions of interest have to be drawn over a scintigram. A method is described resulting in more reliable demarcation of normal and abnormal regions within the scintigram. (Auth.)

  2. Control of bovine hepatic fatty acid oxidation

    International Nuclear Information System (INIS)

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-01-01

    Fatty acid oxidation by bovine liver slices and mitochondria was examined to determine potential regulatory sites of fatty acid oxidation. Conversion of 1-[ 14 C]palmitate to 14 CO 2 and total [ 14 C]acid-soluble metabolites was used to measure fatty acid oxidation. Oxidation of palmitate (1 mM) was linear in both liver slice weight and incubation time. Carnitine stimulated palmitate oxidation; 2 mM dl-carnitine produced maximal stimulation of palmitate oxidation to both CO 2 and acid-soluble metabolites. Propionate (10 mM) inhibited palmitate oxidation by bovine liver slices. Propionate (.5 to 10 mM) had no effect on palmitate oxidation by mitochondria, but malonyl Coenzyme A, the first committed intermediate of fatty acid synthesis, inhibited mitochondrial palmitate oxidation (inhibition constant = .3 μM). Liver mitochonndrial carnitine palmitoyltransferase exhibited Michaelis constants for palmitoyl Coenzyme A and l-carnitine of 11.5 μM and .59 mM, respectively. Long-chain fatty acid oxidation in bovine liver is regulated by mechanisms similar to those in rats but adapted to the unique digestive physiology of the bovine

  3. Dietary fatty acids and membrane protein function.

    Science.gov (United States)

    Murphy, M G

    1990-02-01

    In recent years, there has been growing public awareness of the potential health benefits of dietary fatty acids, and of the distinction between the effects of the omega6 and omega3 polyunsaturated fatty acids that are concentrated in vegetable and fish oils, respectively. A part of the biologic effectiveness of the two families of polyunsaturated fatty acids resides in their relative roles as precursors of the eicosanoids. However, we are also beginning to appreciate that as the major components of the hydrophobic core of the membrane bilayer, they can interact with and directly influence the functioning of select integral membrane proteins. Among the most important of these are the enzymes, receptors, and ion channels that are situated in the plasma membrane of the cell, since they carry out the communication and homeostatic processes that are necessary for normal cell function. This review examines current information regarding the effects of diet-induced changes in plasma membrane fatty acid composition on several specific enzymes (adenylate cyclase, 5'-nucleotidase, Na(+)/K(+)-ATPase) and cell-surface receptors (opiate, adrenergic, insulin). Dietary manipulation studies have demonstrated a sensitivity of each to a fatty acid environment that is variably dependent on the nature of the fatty acid(s) and/or source of the membrane. The molecular mechanisms appear to involve fatty acid-dependent effects on protein conformation, on the "fluidity" and/or thickness of the membrane, or on protein synthesis. Together, the results of these studies reinforce the concept that dietary fats have the potential to regulate physiologic function and to further our understanding of how this occurs at a membrane level.

  4. Effects of varying levels of n-6:n-3 fatty acid ratio on plasma fatty acid ...

    African Journals Online (AJOL)

    This study investigated the effects of varying dietary levels of n-6:n-3 fatty acid ratio on plasma fatty acid composition and prostanoid synthesis in pregnant rats. Four groups consisting of seven rats per group of non pregnant rats were fed diets with either a very low n-6:n-3 ratio of 50% soybean oil (SBO): 50% cod liver oil ...

  5. Modular Regiospecific Synthesis of Nitrated Fatty Acids

    DEFF Research Database (Denmark)

    Hock, Katharina J.; Grimmer, Jennifer; Göbel, Dominik

    2016-01-01

    Endogenous nitrated fatty acids are an important class of signaling molecules. Herein a modular route for the efficient and regiospecific preparation of nitrooleic acids as well as various analogues is described. The approach is based on a simple set of alkyl halides as common building blocks...

  6. Imaging with 123I labelled fatty acids

    International Nuclear Information System (INIS)

    Dudczak, R.

    1985-01-01

    This report describes the clinical results obtained with radioiodinated aromatic and aliphatic fatty acids. The radiopharmaceuticals were 123 I labelled p-phenylpentadecanoic (p-IPPA) and 123 I labelled heptadecanoic acid (HDA). The possibility to evaluate the myocardial metabolic function in man noninvasively add a complementary diagnostic tool in the clinical follow-up of patients with heart disease. (Auth.)

  7. Molar extinction coefficients of some fatty acids

    DEFF Research Database (Denmark)

    Sandhu, G.K.; Singh, K.; Lark, B.S.

    2002-01-01

    ) and stearic acid (C18H36O2), has been measured at the photon energies 81, 356, 511, 662, 1173 and 1332 keV. Experimental values for the molar extinction coefficient, the effective atomic number and the electron density have been derived and compared with theoretical calculations. There is good agreement......The attenuation of gamma rays in some fatty acids, viz. formic acid (CH2O2), acetic acid (C2H4O2), propionic acid (C3H6O2), butyric acid (C4H8O2), n-hexanoic acid (C6H12O2), n-caprylic acid (C8H16O2), lauric acid (C12H24O2), myristic acid (C14H28O2), palmitic acid (C16H32O2), oleic acid (C18H34O2...

  8. Fatty acid oxidation in skeletal and cardiac muscle

    International Nuclear Information System (INIS)

    Glatz, J.F.C.

    1983-01-01

    The biochemical investigations described in this thesis deal with two aspects of fatty acid oxidation in muscle: a comparison of the use of cell-free and cellular systems for oxidation measurements, and studies on the assay and the role of the fatty acid binding protein in fatty acid metabolism. The fatty acid oxidation rates are determined radiochemically by the sum of 14 CO 2 and 14 C-labeled acid-soluble products formed during oxidation of [ 14 C]-fatty acids. A radiochemical procedure for the assay of fatty acid binding by proteins is described. (Auth.)

  9. Unusual fatty acid substitution in lipids and lipopolysaccharides of Helicobacter pylori.

    OpenAIRE

    Geis, G; Leying, H; Suerbaum, S; Opferkuch, W

    1990-01-01

    Cellular fatty acids, phospholipid fatty acids, and lipopolysaccharide fatty acids of four strains of Helicobacter pylori were analyzed by gas-liquid chromatography. The presence of myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, 19-carbon cyclopropane fatty acid, beta-hydroxypalmitic acid, and beta-hydroxystearic acid was confirmed. In phospholipids, myristic acid and 19-carbon cyclopropane fatty acid were the major fatty acids. Hydroxy fatty acids and unsaturated fatt...

  10. Barrier properties of lipid bilayers composed of lecithins with odd chain fatty acids

    NARCIS (Netherlands)

    Salvati, S.; Serlupi-Crescenzi, G.; Gier, J. de

    Lecithins with fatty acid chain length of 17 carbon atoms and different degrees of unsaturation were synthesized. The thermotropic behaviour and barrier function of derived liposomal bilayers were studied.

  11. Features of fatty acid synthesis in higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, M [Tokyo Univ. (Japan). Coll. of General Education; Nakamura, Y

    1975-07-01

    In the biosynthesis of fatty acid in the presence of /sup 3/H/sub 2/O, /sup 3/H is incorporated into the hydrocarbon chain of the fatty acid. The features in the fatty acid synthesis of higher plants were investigated by applying /sup 3/H/sub 2/O method to the measurement of the ability of spinach leaves synthesizing fatty acid. Sucrose, acetate, pyruvate, PGA, PEP, OAA, citrate, etc. were employed as the substrates of fatty acid synthesis to trace the process of synthesis of each fatty acid. The demand of various cofactors related to the ability of spinach chloroplast fatty acid synthesizing was also examined. Light dependence of the fatty acid synthesis of chloroplast as well as the influences of N,N'-dicyclohexyl carbodiimide, carbonylcyanide-4-trifluoromethoxy phenyl hydrazone and NH/sub 4/Cl were discussed. The results were compared with the reports on the fatty acid synthesis of avocado pear, castor bean, etc.

  12. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    Science.gov (United States)

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  13. Fatty Acid Compositions of Six Wild Edible Mushroom Species

    Science.gov (United States)

    Günç Ergönül, Pelin; Akata, Ilgaz; Kalyoncu, Fatih; Ergönül, Bülent

    2013-01-01

    The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina) collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2). Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids. PMID:23844377

  14. Fatty Acid Compositions of Six Wild Edible Mushroom Species

    Directory of Open Access Journals (Sweden)

    Pelin Günç Ergönül

    2013-01-01

    Full Text Available The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2. Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids.

  15. Lipids and fatty acids in roasted chickens.

    Science.gov (United States)

    Souza, S A; Visentainer, J V; Matsushita, M; Souza, N E

    1999-09-01

    Total lipids from meat portions of breast, thigh, wing, side and back with and without skin from 10 roasted chickens were extracted with chloroform and methanol and gravimetrically determined, and their fatty acids were analysed as methyl esters by gaseous chromatography, using a flame ionization detector and capillary column. The main fatty acids found were: C16:0, C18:1 omega 9, and C18:2 omega 6. The average ratio observed between PUFA/SFA was of 0.98, mainly due to the great concentration of the C18:2 omega 6 fatty acid, with an average of 26.75%. Regarding to the lipids content, the skinless breast showed the lowest content, 0.78 g/100 g, while the back with skin was the one with the highest content, 12.13 g/100 g except for the pure skin, with 26.54 grams of lipids by 100 grams.

  16. Improving surface functional properties of tofu whey-derived peptides by chemical modification with fatty acids.

    Science.gov (United States)

    Matemu, Athanasia Oswald; Katayama, Shigeru; Kayahara, Hisataka; Murasawa, Hisashi; Nakamura, Soichiro

    2012-04-01

    Effect of acylation with saturated fatty acids on surface functional properties of tofu whey-derived peptides was investigated. Tofu whey (TW) and soy proteins (7S, 11S, and acid-precipitated soy protein [APP]) were hydrolyzed by Protease M 'Amano' G, and resulting peptide mixtures were acylated with esterified fatty acids of different chain length (6C to 18C) to form a covalent linkage between the carboxyl group of fatty acid and the free amino groups of peptide. Acylation significantly (P properties of 7S, 11S, and APP peptides independent of fatty acid chain length. Acylation decreased water binding capacity although oil binding capacity of acylated tofu whey ultra filtered fraction (UFTW acids had shown significant higher surface hydrophobicity as in contrast with acylated UFTW acids can further affect functional properties of soy proteins. © 2012 Institute of Food Technologists®

  17. The Danish trans-fatty acids ban

    DEFF Research Database (Denmark)

    Vallgårda, Signild

    2017-01-01

    In 2003 an executive order was issued banning industrially produced trans-fatty acids above a low level in food items in Denmark. To date, only a few other countries have followed Denmark’s example. The way health consequences of trans fats were translated by the different actors enabled the crea......In 2003 an executive order was issued banning industrially produced trans-fatty acids above a low level in food items in Denmark. To date, only a few other countries have followed Denmark’s example. The way health consequences of trans fats were translated by the different actors enabled...

  18. Fatty acids in an estuarine mangrove ecosystem

    Directory of Open Access Journals (Sweden)

    Nabeel M Alikunhi

    2010-06-01

    Full Text Available Los ácidos grasos se han utilizado con éxito para estudiar la transferencia de materia orgánica en las redes alimentarias costeras y estuarinas. Para delinear las interacciones tróficas en las redes, se analizaron perfiles de ácidos grasos en las especies de microbios (Azotobacter vinelandii y Lactobacillus xylosus, camarones (Metapenaeus monoceros y Macrobrachium rosenbergii y peces (Mugil cephalus, que están asociadas con la descomposición de las hojas de dos especies de mangle, Rhizophora apiculata y Avicennia marina. Los ácidos grasos, con excepción de los de cadena larga, exhiben cambios durante la descomposición de las hojas de mangle, con una reducción de los ácidos grasos saturados y un aumento de los monoinsaturados. Los ácidos grasos ramificados están ausentes en las hojas de mangle sin descomponer, pero presentes de manera significativa en las hojas descompuestas, en camarones y peces, representando una fuente importante para ellos. Esto revela que los microbios son productores dominantes que contribuyen significativamente con los peces y camarones en el ecosistema de manglar. Este trabajo demuestra que los marcadores biológicos de los ácidos grasos son una herramienta eficaz para la identificación de las interacciones tróficas entre los productores dominantes y consumidores en este manglar.Fatty acids have been successfully used to trace the transfer of organic matter in coastal and estuarine food webs. To delineate these web connections, fatty acid profiles were analyzed in species of microbes (Azotobacter vinelandii, and Lactobacillus xylosus, prawns (Metapenaeus monoceros and Macrobrachium rosenbergii and finfish (Mugil cephalus, that are associated with decomposing leaves of two mangrove species, Rhizophora apiculata and Avicennia marina. The fatty acids, except long chain fatty acids, exhibit changes during decomposition of mangrove leaves with a reduction of saturated fatty acids and an increase of

  19. Ruminant and industrially produced trans fatty acids

    DEFF Research Database (Denmark)

    Stender, Steen; Astrup, Arne; Dyerberg, Jørn

    2008-01-01

    % of the fatty acids in trans form compared to the content in ruminant fat which generally does not exceed 6%. In Western Europe, including Scandinavia, the average daily intake of IP-TFA has decreased during the recent decade due to societal pressure and a legislative ban, whereas the intake of RP-TFA has......Fatty acids of trans configuration in our food come from two different sources - industrially produced partially hydrogenated fat (IP-TFA) used in frying oils, margarines, spreads, and in bakery products, and ruminant fat in dairy and meat products (RP-TFA). The first source may contain up to 60...

  20. Prevalent mutations in fatty acid oxidation disorders

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Bross, P

    2000-01-01

    UNLABELLED: The mutational spectrum in a given disease-associated gene is often comprised of a large number of different mutations, of which a single or a few are present in a large proportion of diseased individuals. Such prevalent mutations are known in four genes of the fatty acid oxidation...... of the disease in question and determination of the carrier frequency in the general population may help in elucidating the penetrance of the genotype. This is exemplified in disorders of mitochondrial fatty acid oxidation....

  1. Fatty acid composition of forage herb species

    DEFF Research Database (Denmark)

    Warner, D.; Jensen, Søren Krogh; Cone, J.W.

    2010-01-01

    The use of alternative forage species in grasslands for intensive livestock production is receiving renewed attention. Data on fatty acid composition of herbs are scarce, so four herbs (Plantago lanceolata, Achillea millefolium, Cichorium intybus, Pastinaca sativa) and one grass species (timothy......, Phleum pratense) were sown in a cutting trial. The chemical composition and concentration of fatty acids (FA) of individual species were determined during the growing season. Concentrations of crude protein and FA were generally higher in the herbs than in timothy. C. intybus had the highest nutritive...

  2. Biological study of some labeled C16 fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Riche, F.; Mathieu, J.P.; Busquet, G.; Vidal, M.; Comet, M.; Pernin, C. (C.H.R.U. de Grenoble, 38 - La Tronche (France)); Godart, J.; Benabed, A. (Institut des Sciences Nucleaires, 38 - Grenoble (France)); Bardy, A. (C.E.A.-ORIS, 91 - Gif-sur-Yvette (France))

    1983-01-01

    The evolution of myocardial, blood, liver and kidney activity is studied in mice after I.V. injection of some labelled C16 fatty acids. With ..omega.. iodo fatty acids, the presence or absence of a double bond and the character Z or E have no influence on the tissue activity. The presence of a triple bond decreases the fixation, modifies the intramyocardial metabolism of the fatty acid and accelerates the rate of decrease of myocardial activity. ..omega.. bromo fatty acid have the same maximal fixation as ..omega.. iodo fatty acid but a more rapid decrease of myocardial activity. ..cap alpha.. iodo fatty acid has a very low myocardial fixation.

  3. Biological study of some labeled C16 fatty acids

    International Nuclear Information System (INIS)

    Riche, F.; Mathieu, J.P.; Busquet, G.; Vidal, M.; Comet, M.; Pernin, C.; Godart, J.; Benabed, A.; Bardy, A.

    1983-01-01

    The evolution of myocardial, blood, liver and kidney activity is studied in mice after I.V. injection of some labelled C16 fatty acids. With ω iodo fatty acids, the presence or absence of a double bond and the character Z or E have no influence on the tissue activity. The presence of a triple bond decreases the fixation, modifies the intramyocardial metabolism of the fatty acid and accelerates the rate of decrease of myocardial activity. ω bromo fatty acid have the same maximal fixation as ω iodo fatty acid but a more rapid decrease of myocardial activity. α iodo fatty acid has a very low myocardial fixation [fr

  4. Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.

    Science.gov (United States)

    Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene

    2015-05-15

    Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Frictional response of fatty acids on steel.

    Science.gov (United States)

    Sahoo, Rashmi R; Biswas, S K

    2009-05-15

    Self-assembled monolayers of fatty acids were formed on stainless steel by room-temperature solution deposition. The acids are covalently bound to the surface as carboxylate in a bidentate manner. To explore the effect of saturation in the carbon backbone on friction in sliding tribology, we study the response of saturated stearic acid (SA) and unsaturated linoleic acid (LA) as self-assembled monolayers using lateral force microscopy and nanotribometry and when the molecules are dispersed in hexadecane, using pin-on-disc tribometry. Over a very wide range (10 MPa-2.5 GPa) of contact pressures it is consistently demonstrated that the unsaturated linoleic acid molecules yield friction which is significantly lower than that of the saturated stearic acid. It is argued, using density functional theory predictions and XPS of slid track, that when the molecular backbone of unsaturated fatty acids are tilted and pressed strongly by a probe, in tribological contact, the high charge density of the double bond region of the backbone allows coupling with the steel substrate. The interaction yields a low friction carboxylate soap film on the substrate. The saturated fatty acid does not show this effect.

  6. 21 CFR 172.863 - Salts of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic acid...

  7. Dietary Fatty Acids and Predementia Syndromes

    Directory of Open Access Journals (Sweden)

    Vincenzo Solfrizzi

    2009-01-01

    Full Text Available An increasing body of epidemiological evidence suggests that elevated saturated fatty acids (SFA could have negative effects on age-related cognitive decline (ARCD. Furthermore, a reduction of risk for cognitive decline and mild cognitive impairment (MCI has been found in population samples with elevated fish consumption, and high intake of monounsaturated fatty acids (MUFA and polyunsaturated fatty acids (PUFA, particularly n-3 PUFA. However, recent findings from clinical trials with n-3 PUFA supplementation showed efficacy on depressive symptoms in non–Vapolipoprotein E (APOE ε4 carriers, and on cognitive symptoms only in very mild Alzheimer's disease (AD subgroups, MCI patients, and cognitively unimpaired non-APOE ε4 carriers. These data, together with epidemiological evidence, support the idea that n-3 PUFA may play a role in maintaining adequate cognitive functioning in predementia syndromes, but not when the AD process has already taken over. Therefore, at present, no definitive dietary recommendations on fish and unsaturated fatty acids consumption, or lower intake of saturated fat, in relation to the risk for dementia and cognitive decline are possible.

  8. Fatty acid biosynthesis in pea root plastids

    International Nuclear Information System (INIS)

    Stahl, R.J.; Sparace, S.A.

    1989-01-01

    Fatty acid biosynthesis from [1- 14 C]acetate was optimized in plastids isolated from primary root tips of 7-day-old germinating pea seeds. Fatty acid synthesis was maximum at approximately 80 nmoles/hr/mg protein in the presence of 200 μM acetate, 0.5 mM each of NADH, NADPH and CoA, 6 mM each of ATP and MgCl 2 , 1 mM each of the MnCl 2 and glycerol-3-phosphate, 15 mM KHCO 3 , and 0.1M Bis-tris-propane, pH 8.0 incubated at 35C. At the standard incubation temperature of 25C, fatty acid synthesis was linear from up to 6 hours with 80 to 100 μg/mL plastid protein. ATP and CoA were absolute requirements, whereas KHCO 3 , divalent cations and reduced nucleotides all improved activity by 80 to 85%. Mg 2+ and NADH were the preferred cation and nucleotide, respectively. Dithiothreitol and detergents were generally inhibitory. The radioactive products of fatty acid biosynthesis were approximately 33% 16:0, 10% 18:0 and 56% 18:1 and generally did not vary with increasing concentrations of each cofactor

  9. Fatty Acid Content of Indonesian Aquatic Microalgae

    Directory of Open Access Journals (Sweden)

    TRI PRARTONO

    2010-12-01

    Full Text Available High utilization of fossil fuel increases the level of carbon dioxide in the atmosphere and results in global warming phenomenon. These things establish the world's thought to look for the other alternative energy that can reduce the use of fossil fuel even to be replaced by the substitute. Recently, Indonesia has been doing the research of microalgae as a feedstock of an alternative biofuel. Fatty acid content that microalgae have is also high to produce biofuel. The steps used in this research is a 7 days cultivation, harvesting, extraction using hexane, and fatty acid identification using Gas Chromatography of microalgae species. Fatty acid component in some species such as Chlorella sp., Scenedesmus sp., Nannochloropsis sp., and Isochrysis sp. is between 0.21-29.5%; 0.11-25.16%; 0.30-42.32%; 2.06-37.63%, respectively, based on dry weight calculation. The high content of fatty acid in some species of microalgae showed the potential to be the feedstock of producing biofuel in overcoming the limited utilization from petroleum (fossil fuel presently.

  10. Complex Pharmacology of Free Fatty Acid Receptors

    DEFF Research Database (Denmark)

    Milligan, Graeme; Shimpukade, Bharat; Ulven, Trond

    2017-01-01

    pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets...

  11. Determination of Fatty Acid in Asparagus by Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Zehra HAJRULAI-MUSLIU

    2016-05-01

    Full Text Available Asparagus contain a lot of macronutrients and micronutrients including folate, dietary fibre (soluble and insoluble and phenolic compounds. Also asparagus is a good source of unsaturated linoleic and linolenic fatty acids which are precursors for Eicosapentanoic acid (EPA and Docosahexanoic acid (DHA. Unsaturated fatty acids have important biological effects and they have important role in human health. The objective of this study was to analyze fatty acid composition of asparagus as a potential source of linoleic and linolenic acid - a precursor for EPA and DHA. For this reason we analyzed fifty seven samples of asparagus collected from the local market. We used AOAC 996.06 method and analyses were performed with gas chromatograph with flame-ionization detector (GC-FID. The highest concentration of fatty acid in the asparagus was linoleic acid (C18:2n6 which content in asparagus is 25.620±1.0%. Also, asparagus is good source of -linolenic fatty acid (C18:3n3 and content of this fatty acid in asparagus is 8.840±0.3%. The omega-6 to omega-3 (n6/n3 ratio in asparagus was 3.19. Polyunsaturated fatty acids (PUFAs were higher than monounsaturated fatty acids (MUFAs, and from saturated fatty acids, palmitic acid was most frequent with 24.324±1.0%. From our study we can conclude that asparagus is very good source of unsaturated fatty acids, especially linoleic and linolenic fatty acids.

  12. Volatile fatty acids production in ruminants and the role of ...

    African Journals Online (AJOL)

    Yomi

    organic volatile fatty acids (VFAs) and microbial protein then become available to the host. .... BE, Drewes LR (2003). Molecular features, regulation and ... Dynamics of ruminal volatile fatty acids in black and white bulls before and after feeding ...

  13. Biocatalytic acylation of carbohydrates with fatty acids from palm fatty acid distillates.

    Science.gov (United States)

    Chaiyaso, Thanongsak; H-Kittikun, Aran; Zimmermann, Wolfgang

    2006-05-01

    Palm fatty acid distillates (PFAD) are by-products of the palm oil refining process. Their use as the source of fatty acids, mainly palmitate, for the biocatalytic synthesis of carbohydrate fatty acid esters was investigated. Esters could be prepared in high yields from unmodified acyl donors and non-activated free fatty acids obtained from PFAD with an immobilized Candida antarctica lipase preparation. Acetone was found as a compatible non-toxic solvent, which gave the highest conversion yields in a heterogeneous reaction system without the complete solubilization of the sugars. Glucose, fructose, and other acyl acceptors could be employed for an ester synthesis with PFAD. The synthesis of glucose palmitate was optimized with regard to the water activity of the reaction mixture, the reaction temperature, and the enzyme concentration. The ester was obtained with 76% yield from glucose and PFAD after reaction for 74 h with 150 U ml(-1) immobilized lipase at 40 degrees C in acetone.

  14. Fatty acid composition of human milk and infant formulas

    Directory of Open Access Journals (Sweden)

    Ivančica Delaš

    2005-04-01

    Full Text Available The appropriate fatty acid composition of membrane lipids is necessary for structure and function of the developing nervous system. Rapid synthesis of brain tissue occurs during the last trimester of pregnancy and the early postnatal weeks. This synthesis of brain structure involves the formation of complex lipids, many of which contain significant quantities of essential fatty acids and their higher homologs. This study was undertaken to elucidate how fatty acid compositions of available diets for infants meet the requirements for essential fatty acids. Samples of infant formulas, present on the market, as well as milk samples obtained from breast feeding mothers, were extracted by chloroform : methanol mixtures in order to obtain total lipids. Fatty acid methyl esters were prepared and fatty acid composition was revealed by gas chromatography. Special interest was directed to the content of long chain polyunsaturated fatty acids. The results have shown that infant formulas, designed to substitute mothers’ breast milk, contain medium chain fatty acids (C 10:0, C 12:0, along with the other saturated fatty acids, in the amounts acceptable for infants’ energy consumption. Although linoleic acid (C18:2, n-6 was present at the level expected to cover needs for essential fatty acids, most of the tested products did not contain sufficient amounts of long chain polyunsaturated fatty acids, despite the fact that these fatty acids are necessary for undisturbed brain development, ignoring the strong recommendations that they should be used as a supplement in infants’ food.

  15. Unsaturated fatty acids in the diet of inpatients

    OpenAIRE

    KONHEFROVÁ, Veronika

    2015-01-01

    The thesis with the name "Unsaturated fatty acids in the diet of inpatients" is divided into a theoretical and a research parts. The theoretical part is focused on sorting out lipids and the recommended daily dosing. Next there are described the chemical structure of fatty acids and basic differences between saturated (SFA) and unsaturated (trans and cis) fatty acids. The biggest part of the theory is formed by the unsaturated fatty acids, their characteristics, food source and their effect o...

  16. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyglycerol esters of fatty acids. 172.854 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including the decaglycerol esters, may be safely used in food in...

  17. Effect of altitude on fatty acid composition in Turkish hazelnut ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate the change of fatty acid composition in Delisava, Yomra, Sivri and Karayaglı Turkish hazelnut varieties with altitude. Fatty acid composition were determined by gas chromatography (GC) equiped with flame ionisation detector (FID) after obtained fatty acid methyl esters from crude ...

  18. 21 CFR 573.914 - Salts of volatile fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a... contains ammonium or calcium salts of volatile fatty acids and shall conform to the following...

  19. [CONTENT OF TRANS FATTY ACIDS IN FOOD PRODUCTS IN SPAIN].

    Science.gov (United States)

    Robledo de Dios, Teresa; Dal Re Saavedra, M Ángeles; Villar Villalba, Carmen; Pérez-Farinós, Napoleón

    2015-09-01

    trans fatty acids are associated to several health disorders, as ischemic heart disease or diabetes mellitus. to assess the content of trans fatty acids in products in Spain, and the percentage of trans fatty acids respecting total fatty acids. 443 food products were acquired in Spain, and they were classified into groups. The content in fatty acids was analyzed using gas chromatography. Estimates of central tendency and variability of the content of trans fatty acids in each food group were computed (in g of trans fatty acids/100 g of product). The percentage of trans fatty acids respecting total fatty acids was calculated in each group. 443 products were grouped into 42 groups. Median of trans fatty acids was less than 0.55 g / 100 g of product in all groups except one. 83 % of groups had less than 2 % of trans fatty acids, and 71 % of groups had less than 1 %. the content of trans fatty acids in Spain is low, and it currently doesn't play a public health problem. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  20. Adipose tissue fatty acid patterns and changes in anthropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre

    2011-01-01

    Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns in adipose tissu...

  1. Erythrocyte membrane fatty acids in multiple sclerosis patients and ...

    African Journals Online (AJOL)

    The risk of developing multiple sclerosis (MS) is associated with increased dietary intake of saturated fatty acids. For many years it has been suspected that this disease might be associated with an imbalance between unsaturated and saturated fatty acids. We determined erythrocyte membrane fatty acids levels in Hot ...

  2. G-protein-coupled receptors for free fatty acids

    DEFF Research Database (Denmark)

    Milligan, Graeme; Ulven, Trond; Murdoch, Hannah

    2014-01-01

    of these receptors. However, ongoing clinical trials of agonists of free fatty acid receptor 1 suggest that this receptor and other receptors for free fatty acids may provide a successful strategy for controlling hyperglycaemia and providing novel approaches to treat diabetes. Receptors responsive to free fatty acid...

  3. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for the...

  4. Changes over time in muscle fatty acid composition of Malaysian ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... Key words: Fatty acid, lipid, muscle, Malaysian mahseer, Tor tambroides. INTRODUCTION. The content of long chain n-3 polyunsaturated fatty acids. (n-3 PUFAs) differentiates fish from the other food products. These fatty acids are important beneficial nutrients for the prevention of human coronary disease,.

  5. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...

  6. A Review of the Metabolic Origins of Milk Fatty Acids

    Directory of Open Access Journals (Sweden)

    Anamaria COZMA

    2013-08-01

    Full Text Available Milk fat and its fatty acid profile are important determinants of the technological, sensorial, and nutritional properties of milk and dairy products. The two major processes contributing to the presence of fatty acids in ruminant milk are the mammary lipogenesis and the lipid metabolism in the rumen. Among fatty acids, 4:0 to 12:0, almost all 14:0 and about a half of 16:0 in milk fat derive from de novo synthesis within the mammary gland. De novo synthesis utilizes as precursors acetate and butyrate produced through carbohydrates ruminal fermentation and involves acetyl-CoA carboxylase and fatty acid synthetase as key enzymes. The rest of 16:0 and all of the long-chain fatty acids derive from mammary uptake of circulating lipoproteins and nonesterified fatty acids that originate from digestive absorption of lipids and body fat mobilization. Further, long-chain fatty acids as well as medium-chain fatty acids entering the mammary gland can be desaturated via Δ-9 desaturase, an enzyme that acts by adding a cis-9-double bond on the fatty acid chain. Moreover, ruminal biohydrogenation of dietary unsaturated fatty acids results in the formation of numerous fatty acids available for incorporation into milk fat. Ruminal biohydrogenation is performed by rumen microbial population as a means of protection against the toxic effects of polyunsaturated fatty acids. Within the rumen microorganisms, bacteria are principally responsible for ruminal biohydrogenation when compared to protozoa and anaerobic fungi.

  7. Polyunsaturated fatty acids and prostate cancer risk

    DEFF Research Database (Denmark)

    Khankari, Nikhil K; Murff, Harvey J; Zeng, Chenjie

    2016-01-01

    BACKGROUND: Prostate cancer is a common cancer worldwide with no established modifiable lifestyle factors to guide prevention. The associations between polyunsaturated fatty acids (PUFAs) and prostate cancer risk have been inconsistent. Using Mendelian randomisation, we evaluated associations...... and prostate cancer risk. However, risk reductions were observed for short-chain PUFAs, linoleic (ORLA=0.95, 95%CI=0.92, 0.98) and α-linolenic acids (ORALA=0.96, 95%CI=0.93, 0.98), among men ...-chain PUFAs (i.e., arachidonic, eicosapentaenoic, and docosapentaenoic acids), increased risks were observed among men

  8. Dietary effects on fatty acid metabolism of common carp.

    Science.gov (United States)

    Csengeri, I

    1996-01-01

    The paper summarises experimental data demonstrating effects of various dietary factors exerting changes in the fatty acid composition and fatty acid metabolism of the common carp (Cyprinus carpio L.). Among the dietary factors (1) supplementary feeding in fish ponds, (2) absence of essential fatty acids (EFA) in the diet, (3) starvation, and (4) ration level were studied. It was concluded that supplementary feeding in carp rearing ponds is frequently excessive in the Hungarian carp culture practice, inducing slight EFA-deficiency and enhancing de novo fatty acid synthesis. This latter caused enlarged fat depots with high oleic acid contents in the fish organs and tissues. EFA-deficient diets enhanced the synthesis of oleic acid except when high rate of de novo fatty acid synthesis was suppressed by dietary fatty acids. Feeding EFA-deficient diets caused gradual decrease in the levels of polyunsaturated fatty acids and gradual increase in that of Mead's acid: 20:3(n-9), an indicator of the EFA-deficiency. At prolonged starvation, polyunsaturated fatty acids of the structural lipids were somehow protected and mainly oleic acid was utilised for energy production. At high ration levels, excessive exogenous polyunsaturates were decomposed, and probably converted to oleic acid or energy. Starvation subsequent to the feeding the fish at various ration levels, reflected adaptive changes in the fatty acid metabolism: Below and above the ration level required for the most efficient feed utilisation for growth, decomposition processes of the fatty acid metabolism were accelerated.

  9. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    Science.gov (United States)

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %.

  10. Identification of fatty acids and fatty acid amides in human meibomian gland secretions.

    Science.gov (United States)

    Nichols, Kelly K; Ham, Bryan M; Nichols, Jason J; Ziegler, Corrie; Green-Church, Kari B

    2007-01-01

    The complex superficial lipid layer of the tear film functions to prevent evaporation and maintain tear stability. Although classes of lipids found in the tear film have been reported, individual lipid species are currently being studied with more sophisticated. The purpose of this work was to show the identification of fatty acids and the fatty acid amides in human meibomian gland secretions by using electrospray mass spectrometry. methods. Human meibomian gland secretions (meibum) were analyzed by electrospray quadrupole time-of-flight mass spectrometry (positive- and negative-ion mode). Accurate mass determination and collision-induced dissociation of meibum, and lipid standards were used to identify lipid species. Mass analysis of meibum in an acidic chloroform-methanol solution in positive-ion mode revealed a mass peak of m/z 282.3, which was identified as the protonated molecule of oleamide [C(18)H(35)NO+H](+). The high-resolution mass analysis of the m/z 282.2788 peak (oleamide) demonstrated a mass accuracy of 3.2 parts per million (ppm). Collision-induced dissociation of this species from meibum, compared with an oleamide standard, confirmed its identification. Myristic, palmitic, stearic, and oleic free fatty acids were identified in a similar manner, as were the other fatty acid amides (myristamide, palmitamide, stearamide, and erucamide). The findings indicate that oleamide (cis-9-octadecenamide), an endogenous fatty acid primary amide, is a predominant component of meibum when examined by electrospray mass spectrometry. The novel finding of oleamide and other members of the fatty acid amide family in the tear film could lead to additional insights into the role of fatty acid amide activity in human biological systems and may indicate a new function for this lipid class of molecules in ocular surface signaling and/or in the maintenance of the complex tear film.

  11. In vivo incorporation of labeled fatty acids in rat liver lipids after oral administration

    International Nuclear Information System (INIS)

    Leyton, J.; Drury, P.J.; Crawford, M.A.

    1987-01-01

    Striking differences were found in the compartmentalization of fatty acids into liver lipid fractions. The saturated fatty acids--lauric, myristic, palmitic and stearic--were incorporated into phosphoglycerides at faster rates with increasing chain lengths, while triglyceride incorporation was almost uniform. The degree of incorporation of the unsaturated fatty acids into phosphoglycerides (structural) compared to triglyceride (storage and energy) was the converse of their oxidation rates. The incorporation of oleic, linoleic and alpha-linolenic acids was mainly into triglyceride, whereas dihomo-gamma-linolenic acid and arachidonic acid were preferentially incorporated into phosphoglycerides. The data suggest that distribution of each fatty acid is different depending on its destination for structural or energy function

  12. Investigation of the effects of the fatty acid profile on fuel properties using a multi-criteria decision analysis

    International Nuclear Information System (INIS)

    Islam, Muhammad Aminul; Brown, Richard J.; Brooks, P.R.; Jahirul, M.I.; Bockhorn, H.; Heimann, Kirsten

    2015-01-01

    Highlights: • Long chain mono-unsaturated fatty acids (C16:1, C18:1) have positive impact on CN. • Very long chain unsaturated fatty acids (C20:5, C22:5, C22:6) increase the fuel density and decrease the cetane number. • Calculated CN overestimated the impact of very long chain unsaturated fatty acids. - Abstract: The structural features of fatty acids in biodiesel, including degree of unsaturation, percentage of saturated fatty acids and average chain length, influence important fuel properties such as cetane number, iodine value, density, kinematic viscosity, higher heating value and oxidation stability. The composition of fatty acid esters within the fuel should therefore be in the correct ratio to ensure fuel properties are within international biodiesel standards such as ASTM 6751 or EN 14214. This study scrutinises the influence of fatty acid composition and individual fatty acids on fuel properties. Fuel properties were estimated based on published equations, and measured according to standard procedure ASTM D6751 and EN 14214 to confirm the influences of the fatty acid profile. Based on fatty acid profile-derived calculations, the cetane number of the microalgal biodiesel was estimated to be 11.6, but measured 46.5, which emphasises the uncertainty of the method used for cetane number calculation. Multi-criteria decision analysis (MCDA), PROMETHEE–GAIA, was used to determine the influence of individual fatty acids on fuel properties in the GAIA plane. Polyunsaturated fatty acids increased the iodine value and had a negative influence on cetane number. Kinematic viscosity was negatively influenced by some long chain polyunsaturated fatty acids such as C20:5 and C22:6 and some of the more common saturated fatty acids C14:0 and C18:0. The positive impact of average chain length on higher heating value was also confirmed in the GAIA plane

  13. Fatty acid composition of ostrich (Struthio camelus abdominal adipose tissue

    Directory of Open Access Journals (Sweden)

    Daniela Belichovska

    2015-03-01

    Full Text Available Fatty acid composition of foods has a great impact on nutrition and health. Therefore, thе determination and knowledge of the fatty acid composition of food is very important for nutrition. Due to the high nutritional characteristics of ostrich meat and its products, the research determining their quality is of topical interest. The aim of the present investigation was the determination of fatty acid composition of ostrich adipose tissue. The content of fatty acids was determined according to AOAC Official Methods of Analysis and determination was performed using a gas chromatograph with a flame-ionization detector (GC-FID. The results are expressed as a percentage of the total content of fatty acids. The method was validated and whereupon the following parameters were determined: linearity, precision, recovery, limit of detection and limit of quantification. The repeatability was within of 0.99 to 2.15%, reproducibility from 2.01 to 4.57%, while recovery ranged from 94.89 to 101.03%. According to these results, this method is accurate and precise and can be used for analysis of fatty acids in foods. It was concluded that the content of saturated fatty acids (SFA accounted 34.75%, of monounsaturated fatty acids (MUFA 38.37%, of polyunsaturated fatty acids (PUFA 26.88%, of total unsaturated fatty acids (UFA 65.25% and of desirable fatty acids (DFA (total unsaturated + stearic acid 70.37% of the analysed samples. The ratio polyunsaturated/saturated fatty acids accounted 0.77. The most present fatty acid is the oleic (C18:1n9c with 28.31%, followed by palmitic (C16:0 with 27.12% and linoleic (C18:2n6c acid with 25.08%. Other fatty acids are contained in significantly lower quantities.

  14. Detailed dimethylacetal and fatty acid composition of rumen content from lambs fed lucerne or concentrate supplemented with soybean oil.

    Science.gov (United States)

    Alves, Susana P; Santos-Silva, José; Cabrita, Ana R J; Fonseca, António J M; Bessa, Rui J B

    2013-01-01

    Lipid metabolism in the rumen is responsible for the complex fatty acid profile of rumen outflow compared with the dietary fatty acid composition, contributing to the lipid profile of ruminant products. A method for the detailed dimethylacetal and fatty acid analysis of rumen contents was developed and applied to rumen content collected from lambs fed lucerne or concentrate based diets supplemented with soybean oil. The methodological approach developed consisted on a basic/acid direct transesterification followed by thin-layer chromatography to isolate fatty acid methyl esters from dimethylacetal, oxo- fatty acid and fatty acid dimethylesters. The dimethylacetal composition was quite similar to the fatty acid composition, presenting even-, odd- and branched-chain structures. Total and individual odd- and branched-chain dimethylacetals were mostly affected by basal diet. The presence of 18:1 dimethylacetals indicates that biohydrogenation intermediates might be incorporated in structural microbial lipids. Moreover, medium-chain fatty acid dimethylesters were identified for the first time in the rumen content despite their concentration being relatively low. The fatty acids containing 18 carbon-chain lengths comprise the majority of the fatty acids present in the rumen content, most of them being biohydrogenation intermediates of 18:2n-6 and 18:3n-3. Additionally, three oxo- fatty acids were identified in rumen samples, and 16-O-18:0 might be produced during biohydrogenation of the 18:3n-3.

  15. Fatty acids composition of 10 microalgal species

    Directory of Open Access Journals (Sweden)

    Thidarat Noiraksar

    2005-11-01

    Full Text Available Fatty acids composition of 10 species of microalgae was determined at the exponential phase and the stationary phase. The microalgae consist of two species of diatoms, Bacillariophyceae, (Nitzschia cf. ovalis, Thalassiosira sp. five species of green microalgae, Prasinophyceae (Tetraselmis sp. and Chlorophyceae, (Dictyosphaerium pulchellum, Stichococcus sp., Chlorella sp., Scenedesmus falcatus and three species of blue green microalgae, Cyanophyceae (Anacystis sp., Synechococcus sp., Synechocystis sp..Medium for culture diatoms and green microalgae was F/2, and BG-11 media was used for Cyanophyceae. The microalgae were cultured beneath light intensity 143 μEm-2s-1, light: dark illustration 12:12 hrs., temperature 28ºC, and salinities 8-30 psu. The microalgae were harvested for analyzing fatty acid by centrivugal machine at 3500 rpm. for 5 min. at temperature 20ºC and stored at -80ºC prior to analysis.Fatty acids composition of microalgae differed from species to species. The majority fatty acids composition of diatoms at the exponential phase and the stationary phase were C16:1n-7 (17.12-31.47% and 28.22-42.02%, C16:0 (13.25-19.61% and 18.83-20.67%, C20:5 n-3 (16.65-26.67% and 11.32-23.68% respectively. The principle fatty acids composition of green microalgae, Prasinophyceae, Tetraselmis sp. were C18:3n-3 (16.17-16.67%, C16:0 (15.33-17.45%, C18:1n-9 (12.25-15.43%, C18:2n-6 (9.66-19.97%. The fatty acids composition of green microalgae, Chlorophyceae, were C18:3 n-3 (20.02-26.49% and 15.35- 30.63%, C16:0 (5.76-17.61% and 11.41-20.03%, C18:2n-6 (4.67-17.54% and 7.48-20.61% respectively. The major amounts of fatty acids content of blue green microalgae were C16:1n-7 (9.28-34.91% and 34.48- 35.04%, C14:0 (13.34-25.96% and 26.69-28.24%, C16:0 (5.89-29.15% and 5.70-16.81% except for Anacystis sp.which had a high amount of C18:3 n-3 (23.18-27.98% but low amount of C14:0 (3.66-4.98%.Bacillariophyceae contained the highest amount of highly unsaturated

  16. Laser signals' nonlinear change in fatty acids

    CERN Document Server

    Ghelmez-Dumitru, M; Piscureanu, M; Sterian, A

    2003-01-01

    Previous works showed that thin layers of fatty acids and fatty acid-cholesterol mixtures behaved as optical liquid crystals, even at low incident laser power. The paper presents an experimental and computer study of laser signals, emergent from such samples, in presence of fluctuations. The optical emergent laser beams' features at different incident parameters were experimentally determined for different type (c.w. and pulsed) lasers, as for example helium-neon and Nd sup 3 sup + glass lasers. The results were correlated with the amount of cholesterol in mixtures and with their response in external electric field. These measurements are in all cases affected by fluctuations. We developed some computer-based procedures, by using the TableCurve3D from Jandel Scientific software and equations Runge-Kutta in MATLAB for taking into account these fluctuations.

  17. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  18. Succinct synthesis of saturated hydroxy fatty acids and

    DEFF Research Database (Denmark)

    Kaspersen, Mads Holmgaard; Jenkins, Laura; Dunlop, Julia

    2017-01-01

    Saturated hydroxy fatty acids make up a class of underexplored lipids with potentially interesting biological activities. We report a succinct and general synthetic route to saturated hydroxy fatty acids hydroxylated at position 6 or higher, and exemplify this with the synthesis of hydroxylauric ...... acids. All regioisomers of hydroxylauric acids were tested on free fatty acid receptors FFA1, FFA4 and GPR84. The results show that the introduction of a hydroxy group and its position have a high impact on receptor activity....

  19. Essential fatty acids and lipid mediators. Endocannabinoids

    Directory of Open Access Journals (Sweden)

    G. Caramia

    2012-03-01

    Full Text Available In 1929 Burr and Burr discovered the essential fatty acids omega-6 and omega-3. Since then, researchers have shown a growing interest in polyunsaturated fatty acids (PUFA as precursors of “lipid mediator” molecules, often with opposing effects, prostaglandins, prostacyclins, thromboxanes, leukotrienes, lipossines, resolvines, protectines, maresins that regulate immunity, platelet aggregation, inflammation, etc. They showed that the balance between omega-3 and omega-6 acids has a profound influence on all the body’s inflammatory responses and a raised level of PUFA omega-3 in tissue correlate with a reduced incidence of degenerative cardiovascular disease, some mental illnesses such as depression, and neuro-degenerative diseases such as Alzheimer’s. The CYP-catalyzed epoxidation and hydroxylation of arachidonic acid (AA were established recently as the so-called third branch of AGE cascade. Cytochrome P450 (CYP epoxygenases convert AA to four epoxyeicosatrienoic acid (EET regioisomers, that produce vascular relaxation anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are accessible to CYP enzymes in the same way as AA. Metabolites derived from EPA include epoxyeicosatetraenoic acids (EETR and hydroxyeicosapentaenoic acids (19- and 20-HEPE, whereas DHA include epoxydocosapentaenoic acids (EDPs hydroxydocosahexaenoic acids (21- and 22-HDoHE. For many of the CYP isoforms, the n-3 PUFAs are the preferred substrates and the available data suggest that some of the vasculo- and cardioprotective effects attributed to dietary n-3 PUFAs may be mediated by CYP-dependent metabolites of EPA and DHA. From AA derives also endocannabinoids like anandamide (N-arachidonoylethanolamine and 2-arachidonoylglycerol, capable of mimicking the pharmacological actions of the active principle of Cannabis sativa preparations such as

  20. Adipose tissue Fatty Acid patterns and changes in antrhropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre

    2011-01-01

    Introduction Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns...... in adipose tissue fatty acids and changes in anthropometry. Methods 34 fatty acid species from adipose tissue biopsies were determined in a random sample of 1100 men and women from a Danish cohort study. We used sex-specific principal component analysis and multiple linear regression to investigate...... the associations of adipose tissue fatty acid patterns with changes in weight, waist circumference (WC), and WC controlled for changes in body mass index (WCBMI), adjusting for confounders. Results 7 principal components were extracted for each sex, explaining 77.6% and 78.3% of fatty acid variation in men...

  1. Fatty acid effects on fibroblast cholesterol synthesis

    International Nuclear Information System (INIS)

    Shireman, R.B.; Muth, J.; Lopez, C.

    1987-01-01

    Two cell lines of normal (CRL 1475, GM5565) and of familial hypercholesterolemia (FH) (CM 486,488) fibroblasts were preincubated with medium containing the growth factor ITS, 2.5 mg/ml fatty acid-free BSA, or 35.2 μmol/ml of these fatty acids complexed with 2.5 mg BSA/ml: stearic (18:0), caprylic (8:0), oleic (18:1;9), linoleic (18:2;9,12), linolenic (18:3;9,12,15), docosahexaenoic (22:6;4,7,10,13,16,19)(DHA) or eicosapentaenoic (20:5;5,8,11,14,17)(EPA). After 20 h, cells were incubated for 2 h with 0.2 μCi [ 14 C]acetate/ml. Cells were hydrolyzed; an aliquot was quantitated for radioactivity and protein. After saponification and extraction with hexane, radioactivity in the aqueous and organic phases was determined. The FH cells always incorporated 30-90% more acetate/mg protein than normal cells but the pattern of the fatty acid effects was similar in both types. When the values were normalized to 1 for the BSA-only group, cells with ITS had the greatest [ 14 C]acetate incorporation (1.45) followed by the caprylic group (1.14). Cells incubated with 18:3, 20:6 or 22:6 incorporated about the same amount as BSA-only. Those preincubated with 18:2, 18:1, 18:0 showed the least acetate incorporation (0.87, 0.59 and 0.52, respectively). The percentage of total 14 C counts which extracted into hexane was much greater in FH cells; however, these values varied with the fatty acid, e.g., 1.31(18:0) and 0.84(8:0) relative to 1

  2. Essential fatty acid deficiency in surgical patients.

    Science.gov (United States)

    O'Neill, J A; Caldwell, M D; Meng, H C

    1977-01-01

    Parenteral nutrition may protect patients unable to eat from malnutrition almost indefinitely. If fat is not also given EFAD will occur. This outlines a prospective study of 28 surgical patients on total intravenous fat-free nutrition to determine the developmental course of EFAD and the response to therapy. Twenty-eight patients ranging from newborn to 66 years receiving parenteral nutrition without fat had regular determinations of the composition of total plasma fatty acids and the triene/tetraene ratio using gas liquid chromatography. Physical signs of EFAD were looked for also. Patients found to have evidence of EFAD were treated with 10% Intralipid. Topical safflower oil was used in three infants. Total plasma fatty acid composition was restudied following therapy. In general, infants on fat-free intravenous nutrition developed biochemical EFAD within two weeks, but dermatitis took longer to become evident. Older individuals took over four weeks to develop a diagnostic triene/tetraene ratio (greater than 0.4; range 0.4 to 3.75). Therapeutic correction of biochemical EFAD took 7 to 10 days but dermatitis took longer to correct. Cutaneous application of safflower oil alleviated the cutaneous manifestations but did not correct the triene/tetraene ratio of total plasma fatty acids. These studies indicate that surgical patients who are unable to eat for two to four weeks, depending upon age and expected fat stores, should receive fat as a part of their intravenous regimen. Images Fig. 7. PMID:404973

  3. ω-3 Fatty acids reverse lipotoxity through induction of autophagy in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Chen, Yi; Xu, Chengfu; Yan, Tianlian; Yu, Chaohui; Li, Youming

    2015-01-01

    The aim of this study was to evaluate the effect of ω-3 fatty acids on nonalcoholic fatty liver disease concerning hepatocyte lipid accumulation as well as apoptosis induced by free fatty acids (FFAs) and to explore the underlying mechanism involving autophagy. Hepatocytes were incubated with a mixture of free fatty acids (FFAs) to mimic in vitro lipotoxicity in the pathogenesis of nonalcoholic fatty liver disease, presented by lipid accumulation and cellular apoptosis. Chemical inhibitor or inducer of autophagy and genetic deficit cells, as well as ω-3 fatty acids were used as intervention. The autophagic role of ω-3 fatty acids was investigated using Western blot and immunofluorescence. The underlying mechanism of ω-3 fatty acids involving autophagy was preliminarily explored by quantitative real-time polymerase chain reaction and Western blot. FFAs induce lipid accumulation and apoptosis in hepatocytes. Inhibition or genetic defect of autophagy increases lipid accumulation induced by FFA, whereas induction acts inversely. ω-3 Fatty acids reduced lipid accumulation and inhibited apoptosis induced by FFA. ω-3 Fatty acids induced autophagy by downregulating stearoyl-CoA desaturase 1 expression in hepatocytes. ω-3 Fatty acids exert protective effects on hepatocytes against lipotoxicity through induction of autophagy, as demonstrated by inhibition of lipid accumulation and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Fatty acid profiles of some Fabaceae seed oils

    Science.gov (United States)

    The fatty acid profiles of six seed oils of the Fabaceae (Leguminosae) family are reported and discussed. These are the seed oils of Centrosema pubescens, Clitoria ternatea, Crotalaria mucronata, Macroptilium lathyroides, Pachyrhizus erosus, and Senna alata. The most common fatty acid in the fatty a...

  5. 40 CFR 721.3629 - Triethanolamine salts of fatty acids.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Triethanolamine salts of fatty acids... Substances § 721.3629 Triethanolamine salts of fatty acids. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as triethanolamine salts of fatty...

  6. Effect of cottonseed and canola seed on unsaturated fatty acid ...

    African Journals Online (AJOL)

    student

    biohydrogenation in the rumen and showed that the type of dietary fat has a marked impact on lipid ... Keywords: Extruded oil seed, fatty acid, lamb plasma, liver, Mehraban lambs ..... Effects of diets low in fat or essential fatty acids on the fatty ... Review: Erythrocyte membrane: structure, function, and pathophysiology. Vet.

  7. What health professionals should know about omega-3 fatty acid ...

    African Journals Online (AJOL)

    Western diets are often deficient in n-3 fatty acids because of an insufficient intake of cold water oily fish. The main n-3 fatty acids in fatty fish are ... To date, no formally accepted dietary reference intakes for EPA and DHA exist, while international intake recommendations differ widely. Supplementation is an easy and ...

  8. Metabolism of Very Long-Chain Fatty Acids: Genes and Pathophysiology

    OpenAIRE

    Sassa, Takayuki; Kihara, Akio

    2014-01-01

    Fatty acids (FAs) are highly diverse in terms of carbon (C) chain-length and number of double bonds. FAs with C>20 are called very long-chain fatty acids (VLCFAs). VLCFAs are found not only as constituents of cellular lipids such as sphingolipids and glycerophospholipids but also as precursors of lipid mediators. Our understanding on the function of VLCFAs is growing in parallel with the identification of enzymes involved in VLCFA synthesis or degradation. A variety of inherited diseases, suc...

  9. Technetium and rhenium complexes with modified fatty acid ligands 4. Evaluation of two new classes of 99mTc-labelled fatty acids as potential tracers for myocardial metabolism imaging

    International Nuclear Information System (INIS)

    Heintz, A.; Kropp, J.; Deussen, A.; Jung, C.M.; Spies, H.

    2002-01-01

    99m Tc-labelled fatty acids were synthesized according to the '3+1' mixed-ligand approach and investigated as potential tracers for myocardial SPECT diagnostics on the model of the isolated guinea pig heart. The results indicate a low but specific myocardial uptake of the 99m Tc fatty acid derivatives subject to chain length and structure. (orig.)

  10. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Teixeira, Paulo Goncalves; Ferreira, Raphael; Zhou, Yongjin J.

    2017-01-01

    Background: In vivo production of fatty acid-derived chemicals in Saccharomyces cerevisiae requires strategies to increase the intracellular supply of either acyl-CoA or free fatty acids (FFAs), since their cytosolic concentrations are quite low in a natural state for this organism. Deletion...... of the fatty acyl-CoA synthetase genes FAA1 and FAA4 is an effective and straightforward way to disable re-activation of fatty acids and drastically increase FFA levels. However, this strategy causes FFA over-accumulation and consequential release to the extracellular medium, which results in a significant...... faa4 Delta strain constitutively expressing a carboxylic acid reductase from Mycobacterium marinum (MmCAR) and an endogenous alcohol dehydrogenase (Adh5) for in vivo production of fatty alcohols from FFAs. We observed production of fatty acids and fatty alcohols with different rates leading to high...

  11. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    NARCIS (Netherlands)

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid

  12. Expression and Association of SCD Gene Polymorphisms and Fatty Acid Compositions in Chicken Cross

    Directory of Open Access Journals (Sweden)

    A. Furqon

    2017-12-01

    Full Text Available Stearoyl-CoA desaturase (SCD is an integral membrane protein of endoplasmic reticulum (ER that catalyzes the rate limiting step in the monounsaturated fatty acids from saturated fatty acids. Selection for fatty acids traits based on molecular marker assisted selection is needed to increase a value of chicken meat. This study was designed to analyze expression and associations of SCD gene polymorphisms with fatty acid traits in F2 kampung-broiler chicken cross. A total of 62 F2 kampung-broiler chicken cross (29 males and 33 females were used in this study. Fatty acid traits were measured at 26 weeks of age. Samples were divided into two groups based on fatty acid traits (the highest and the lowest. Primers in exon 2 region were designed from the genomic chicken sequence. The SNP g.37284A>G was detected and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP method was then used to genotype. The expression of SCD gene was analyzed using quantitative real time PCR (qRT-PCR. The result showed that there were three genotypes (AA, AG, and GG found in this study. The SCD|AciI polymorphism was significantly associated with palmitoleic acid (C16:1, fatty acids total and saturated fatty acid in 26 weeks old of F2 kampung-broiler chicken cross (P<0.05. The SCD gene was expressed for polyunsaturated fatty acids in liver tissue in two groups of chickens. In conclusion, the SCD gene could be a candidate gene that affects fatty acids traits in F2 kampung-broiler chicken cross.

  13. Caveolar fatty acids and acylation of caveolin-1.

    Directory of Open Access Journals (Sweden)

    Qian Cai

    Full Text Available Caveolae are cholesterol and sphingolipids rich subcellular domains on plasma membrane. Caveolae contain a variety of signaling proteins which provide platforms for signaling transduction. In addition to enriched with cholesterol and sphingolipids, caveolae also contain a variety of fatty acids. It has been well-established that acylation of protein plays a pivotal role in subcellular location including targeting to caveolae. However, the fatty acid compositions of caveolae and the type of acylation of caveolar proteins remain largely unknown. In this study, we investigated the fatty acids in caveolae and caveolin-1 bound fatty acids.Caveolae were isolated from Chinese hamster ovary (CHO cells. The caveolar fatty acids were extracted with Folch reagent, methyl esterificated with BF3, and analyzed by gas chromatograph-mass spectrometer (GC/MS. The caveolin-1 bound fatty acids were immunoprecipitated by anti-caveolin-1 IgG and analyzed with GC/MS.In contrast to the whole CHO cell lysate which contained a variety of fatty acids, caveolae mainly contained three types of fatty acids, 0.48 µg palmitic acid, 0.61 µg stearic acid and 0.83 µg oleic acid/caveolae preparation/5 × 10(7 cells. Unexpectedly, GC/MS analysis indicated that caveolin-1 was not acylated by myristic acid; instead, it was acylated by palmitic acid and stearic acid.Caveolae contained a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 was acylated by palmitic acid and stearic acid. The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae.

  14. Fatty acid composition and amino acid profile of two freshwater ...

    African Journals Online (AJOL)

    The proximate, fatty and amino acids composition of two commercially important freshwater fish species Clarias gariepinus and Tilapia zillii. purchased from local fishermen in two landing sites in Lagos State, Nigeria were determined. Live specimens of C. gariepinus were purchased while samples of T. zillii were stored in ...

  15. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...

  16. Thermal and mechanical properties of fatty acid starch esters.

    Science.gov (United States)

    Winkler, H; Vorwerg, W; Rihm, R

    2014-02-15

    The current study examined thermal and mechanical properties of fatty acid starch esters (FASEs). All highly soluble esters were obtained by the sustainable, homogeneous transesterification of fatty acid vinyl esters in dimethylsulfoxide (DMSO). Casted films of products with a degree of substitution (DS) of 1.40-1.73 were compared with highly substituted ones (DS 2.20-2.63). All films were free of any plasticizer additives. Hydrophobic surfaces were characterized by contact angle measurements. Dynamic scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) revealed thermal transitions (T(g), T(m)) which were influenced by the internal plasticizing effect of the ester groups. Thermal gravimetric analysis (TGA) measurements showed the increased thermal stability toward native starch. Tensile tests revealed the decreasing strength and stiffness of the products with increasing ester-group chain length while the elongation increased up to the ester group laurate and after that decreased. Esters of the longest fatty acids, palmitate and stearate turned out to be brittle materials due to super molecular structures of the ester chains such as confirmed by X-ray. Summarized products with a DS 1.40-1.73 featured more "starch-like" properties with tensile strength up to outstanding 43 MPa, while products with a DS >2 behaved more "oil-like". Both classes of esters should be tested as a serious alternative to commercial starch blends and petrol-based plastics. The term Cnumber is attributed to the number of total C-Atoms of the fatty acid (e.g. C6=Hexanoate). Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Systems metabolic engineering design: fatty acid production as an emerging case study.

    Science.gov (United States)

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-05-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. © 2014 Wiley Periodicals, Inc.

  18. Omega-3 fatty acids and dementia

    Science.gov (United States)

    Cole, Greg M.; Ma, Qiu-Lan; Frautschy, Sally A.

    2014-01-01

    More than a dozen epidemiological studies have reported that reduced levels or intake of omega-3 fatty acids or fish consumption is associated with increased risk for age-related cognitive decline or dementia such as Alzheimer's disease (AD). Increased dietary consumption or blood levels of docosahexaenoic acid (DHA) appear protective for AD and other dementia in multiple epidemiological studies; however, three studies suggest that the ApoE4 genotype limits protection. DHA is broadly neuroprotective via multiple mechanisms that include neuroprotective DHA metabolites, reduced arachidonic acid metabolites, and increased trophic factors or downstream trophic signal transduction. DHA is also protective against several risk factors for dementia including head trauma, diabetes, and cardiovascular disease. DHA is specifically protective against AD via additional mechanisms: It limits the production and accumulation of the amyloid β peptide toxin that is widely believed to drive the disease; and it also suppresses several signal transduction pathways induced by Aβ, including two major kinases that phosphorylate the microtubule associated protein tau and promote neurofibrillary tangle pathology. Based on the epidemiological and basic research data, expert panels have recommended the need for clinical trials with omega-3 fatty acids, notably DHA, for the prevention or treatment of age-related cognitive decline—with a focus on the most prevalent cause, AD. Clinical trials are underway to prevent and treat AD. Results to-date suggest that DHA may be more effective if it is begun early or used in conjunction with antioxidants. PMID:19523795

  19. Radiolytic products of irradiated authentic fatty acids and triacylglycerides

    International Nuclear Information System (INIS)

    Kim, K.-S.; Lee, Jeong-Min; Seo, Hye-Young; Kim, Jun-Hyoung; Song, Hyun-Pa; Byun, Myung-Woo; Kwon, Joong-Ho

    2004-01-01

    Radiolytic products of authentic fatty acids (palmitic, stearic, oleic, linoleic and linolenic acids) and triacylglycerides (tripalmitin, tristearin, triolein, trilinolein and trilinolenin) were determined. Concentrations of hydrocarbons from the saturated fatty acids were higher than the unsaturated fatty acids. Authentic fatty acids were mainly decomposed in the α-carbon position and C n-1 hydrocarbons occurred in higher than C n-2 hydrocarbons. Concentrations of 2-alkylcyclobutanones from the saturated fatty acids were lower than the unsaturated fatty acids. Concentrations of hydrocarbons from tripalmitin and tristearin were not a significant change compared with triolein, trilinolein and trilinolenin. For all triacylglycerides except triolein, C n-1 hydrocarbons were higher than C n-2 hydrocarbons. Radioproduction rates of 2-alkylcyclobutanones from tripalmitin and tristearin were higher than triolein, trilinolein and trilinolenin

  20. Cellular fatty acids and aldehydes of oral Eubacterium.

    Science.gov (United States)

    Itoh, U; Sato, M; Tsuchiya, H; Namikawa, I

    1995-02-01

    The cellular fatty acids and aldehydes of oral Eubacterium species were determined by gas chromatography-mass spectrometry. E. brachy and E. lentum contained mainly branched-chain fatty acids, whereas the others contained straight-chain acids. E. brachy, E. lentum, E. yurii ssp. yurii, E. yurii spp. margaretiae, E. limosum, E. plauti and E. aerofaciens also contained aldehydes with even carbon numbers. In addition to species-specific components, the compositional ratios of fatty acids and aldehydes characterized each individual species. The 10 species tested were divided into 5 groups by the principal component analysis. Cellular fatty acids and aldehydes would be chemical markers for interspecies differentiation of oral Eubacterium.

  1. Metabolomics of dietary fatty acid restriction in patients with phenylketonuria.

    Directory of Open Access Journals (Sweden)

    Ulrike Mütze

    Full Text Available BACKGROUND: Patients with phenylketonuria (PKU have to follow a lifelong phenylalanine restricted diet. This type of diet markedly reduces the intake of saturated and unsaturated fatty acids especially long chain polyunsaturated fatty acids (LC-PUFA. Long-chain saturated fatty acids are substrates of mitochondrial fatty acid oxidation for acetyl-CoA production. LC-PUFA are discussed to affect inflammatory and haemostaseological processes in health and disease. The influence of the long term PKU diet on fatty acid metabolism with a special focus on platelet eicosanoid metabolism has been investigated in the study presented here. METHODOLOGY/PRINCIPAL FINDINGS: 12 children with PKU under good metabolic control and 8 healthy controls were included. Activated fatty acids (acylcarnitines C6-C18 in dried blood and the cholesterol metabolism in serum were analyzed by liquid chromatographic tandem mass spectrometry (LC-MS/MS. Fatty acid composition of plasma glycerophospholipids was determined by gas chromatography. LC-PUFA metabolites were analyzed in supernatants by LC-MS/MS before and after platelet activation and aggregation using a standardized protocol. Patients with PKU had significantly lower free carnitine and lower activated fatty acids in dried blood compared to controls. Phytosterols as marker of cholesterol (re- absorption were not influenced by the dietary fatty acid restriction. Fatty acid composition in glycerophospholipids was comparable to that of healthy controls. However, patients with PKU showed significantly increased concentrations of y-linolenic acid (C18:3n-6 a precursor of arachidonic acid. In the PKU patients significantly higher platelet counts were observed. After activation with collagen platelet aggregation and thromboxane B(2 and thromboxane B(3 release did not differ from that of healthy controls. CONCLUSION/SIGNIFICANCE: Long-term dietary fatty acid restriction influenced the intermediates of mitochondrial beta

  2. Metabolomics of Dietary Fatty Acid Restriction in Patients with Phenylketonuria

    Science.gov (United States)

    Mütze, Ulrike; Beblo, Skadi; Kortz, Linda; Matthies, Claudia; Koletzko, Berthold; Bruegel, Mathias; Rohde, Carmen; Thiery, Joachim; Kiess, Wieland; Ceglarek, Uta

    2012-01-01

    Background Patients with phenylketonuria (PKU) have to follow a lifelong phenylalanine restricted diet. This type of diet markedly reduces the intake of saturated and unsaturated fatty acids especially long chain polyunsaturated fatty acids (LC-PUFA). Long-chain saturated fatty acids are substrates of mitochondrial fatty acid oxidation for acetyl-CoA production. LC-PUFA are discussed to affect inflammatory and haemostaseological processes in health and disease. The influence of the long term PKU diet on fatty acid metabolism with a special focus on platelet eicosanoid metabolism has been investigated in the study presented here. Methodology/Principal Findings 12 children with PKU under good metabolic control and 8 healthy controls were included. Activated fatty acids (acylcarnitines C6–C18) in dried blood and the cholesterol metabolism in serum were analyzed by liquid chromatographic tandem mass spectrometry (LC-MS/MS). Fatty acid composition of plasma glycerophospholipids was determined by gas chromatography. LC-PUFA metabolites were analyzed in supernatants by LC-MS/MS before and after platelet activation and aggregation using a standardized protocol. Patients with PKU had significantly lower free carnitine and lower activated fatty acids in dried blood compared to controls. Phytosterols as marker of cholesterol (re-) absorption were not influenced by the dietary fatty acid restriction. Fatty acid composition in glycerophospholipids was comparable to that of healthy controls. However, patients with PKU showed significantly increased concentrations of y-linolenic acid (C18:3n-6) a precursor of arachidonic acid. In the PKU patients significantly higher platelet counts were observed. After activation with collagen platelet aggregation and thromboxane B2 and thromboxane B3 release did not differ from that of healthy controls. Conclusion/Significance Long-term dietary fatty acid restriction influenced the intermediates of mitochondrial beta-oxidation. No functional

  3. Optimization of reaction parameters for enzymatic glyceride synthesis from fish oil: Ethyl esters versus free fatty acids

    DEFF Research Database (Denmark)

    Ravn, Helle Christine; Damstrup, Marianne L.; Meyer, Anne S.

    2012-01-01

    Enzymatic conversion of fish oil free fatty acids (FFA) or fatty acid ethyl esters (FAE) into glycerides via esterification or transesterification was examined. The reactions catalyzed by Lipozyme™ 435, a Candida antarctica lipase, were optimized. Influence on conversion yields of fatty acid chain...... length, saturation degree, temperature, enzyme dosage, molar ratio glycerol:fatty acids, acyl source composition (w/w ratio FFA:FAE), and reaction time was evaluated collectively by multiple linear regression. All reaction variables influenced the conversion into glycerides. Transesterification of FAE...

  4. Encapsulating fatty acid esters of bioactive compounds in starch

    Science.gov (United States)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  5. Inhibition of telomerase by linear-chain fatty acids: a structural analysis.

    Science.gov (United States)

    Oda, Masako; Ueno, Takamasa; Kasai, Nobuyuki; Takahashi, Hirotada; Yoshida, Hiromi; Sugawara, Fumio; Sakaguchi, Kengo; Hayashi, Hideya; Mizushina, Yoshiyuki

    2002-01-01

    In the present study, we have found that mono-unsaturated linear-chain fatty acids in the cis configuration with C(18) hydrocarbon chains (i.e. oleic acid) strongly inhibited the activity of human telomerase in a cell-free enzymic assay, with an IC(50) value of 8.6 microM. Interestingly, fatty acids with hydrocarbon chain lengths below 16 or above 20 carbons substantially decreased the potency of inhibition of telomerase. Moreover, the cis-mono-unsaturated C(18) linear-chain fatty acid oleic acid was the strongest inhibitor of all the fatty acids tested. A kinetic study revealed that oleic acid competitively inhibited the activity of telomerase ( K (i)=3.06 microM) with respect to the telomerase substrate primer. The energy-minimized three-dimensional structure of the linear-chain fatty acid was calculated and modelled. A molecule width of 11.53-14.26 A (where 1 A=0.1 nm) in the C(16) to C(20) fatty acid structure was suggested to be important for telomerase inhibition. The three-dimensional structure of the telomerase active site (i.e. the substrate primer-binding site) appears to have a pocket that could bind oleic acid, with the pocket being 8.50 A long and 12.80 A wide. PMID:12121150

  6. Dietary fatty acid metabolism in prediabetes.

    Science.gov (United States)

    Noll, Christophe; Carpentier, André C

    2017-02-01

    Experimental evidences are strong for a role of long-chain saturated fatty acids in the development of insulin resistance and type 2 diabetes. Ectopic accretion of triglycerides in lean organs is a characteristic of prediabetes and type 2 diabetes and has been linked to end-organ complications. The contribution of disordered dietary fatty acid (DFA) metabolism to lean organ overexposure and lipotoxicity is still unclear, however. DFA metabolism is very complex and very difficult to study in vivo in humans. We have recently developed a novel imaging method using PET with oral administration of 14-R,S-F-fluoro-6-thia-heptadecanoic acid (FTHA) to quantify organ-specific DFA partitioning. Our studies thus far confirmed impaired storage of DFA per volume of fat mass in abdominal adipose tissues of individuals with prediabetes. They also highlighted the increased channeling of DFA toward the heart, associated with subclinical reduction in cardiac systolic and diastolic function in individuals with prediabetes. In the present review, we summarize previous work on DFA metabolism in healthy and prediabetic states and discuss these in the light of our novel findings using PET imaging of DFA metabolism. We herein provide an integrated view of abnormal organ-specific DFA partitioning in prediabetes in humans.

  7. Identification of characteristic fatty acids to quantify triacylglycerols in microalgae

    Directory of Open Access Journals (Sweden)

    Peili eShen

    2016-02-01

    Full Text Available The fatty acid profiles of lipids from microalgae are unique. Polyunsaturated fatty acids are generally enriched in polar lipids, whereas saturated and monounsaturated fatty acids constitute the majority of fatty acids in triacylglycerols (TAG. Each species has characteristic fatty acids, and their content is positively or negatively correlated with TAGs. The marine oleaginous diatom Phaeodactylum tricornutum was used as the paradigm to determine the quantitative relationship between TAG and characteristic fatty acid content. Fatty acid profiles and TAG content of Phaeodactylum tricornutum were determined in a time course. C16:0/C16:1 and eicosapentaenoic acid (EPA, C20:5n3 were identified as characteristic fatty acids in TAGs and polar lipids, respectively. The percentage of those characteristic fatty acids in total fatty acids had a significant linear relationship with TAG content and thus the correlation coefficient presenting r2 were 0.96, 0.94 and 0.97 respectively. The fatty acid-based method for TAG quantification could also be applied to other microalgae such as Nannochloropsis oceanica in which the r2 of C16:0, EPA were 0.94, 0.97 respectively and Chlorella pyrenoidosa, whose r2 value correspondingly between C18:1, C18:3 and TAG content were 0.91, 0.99 as well. This characteristic fatty acid-based method provided a distinct way to quantify TAGs in microalgae, by which TAGs could be measured precisely by immediate transesterification from wet biomass rather than using conventional methods. This procedure simplified the operation and required smaller samples than conventional methods.

  8. Metabolism of fatty acids in rat brain in microsomal membranes

    International Nuclear Information System (INIS)

    Aeberhard, E.E.; Gan-Elepano, M.; Mead, J.F.

    1980-01-01

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool

  9. Feedlot lamb meat fatty acids profile characterization employing gas chromatography

    Directory of Open Access Journals (Sweden)

    M.I. Cruz-Gonzalez

    2014-06-01

    Full Text Available Fat is an important constituent in diet, not only as an energy source, but for its essential fatty acids associated to fats in foods, considering that some polyunsaturated fatty acids like linoleic, linolenic and arachidonic cannot be synthesized by superior animals like humans. Scientific evidence show that the fatty acids ingest can affect the thrombotic tendency, cardiac rhythm, endothelial function systematic inflammation, insulin sensibility and oxidative stress. Samples from 21 ovine crossbreds from Pelibuey, Blackbelly, Dorper and Katahadin (40 kg average weight feed with corn based balanced diets were taken from loin area 18 h after refrigeration. Saturated and polyunsaturated fatty acids levels were analyzed by gas chromatography. Results in this work showed that the healthy fatty acids levels are higher as compared to saturated fatty acids levels, indicating that this meat can influence consumer’s buying choice decision regarded to their health.

  10. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    Energy Technology Data Exchange (ETDEWEB)

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from (1-14C)myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from (14C)C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from (14C)acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development.

  11. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    International Nuclear Information System (INIS)

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from [1-14C]myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from [14C]C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from [14C]acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development

  12. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Science.gov (United States)

    2010-04-01

    ... fatty acids. 172.856 Section 172.856 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely... and/or fatty acids in compliance with § 172.860 and/or oleic acid derived from tall oil fatty acids in...

  13. Composition and variation of fatty acids among groundnut cultivars ...

    African Journals Online (AJOL)

    Groundnuts (Arachis hypogaea L.) contain approximately 44-56% oil made up of fatty acids. Oleic and linoleic acids comprise about 80% of fatty acids in groundnuts. Groundnuts with >80% oleic are beneficial health-wise and also improve groundnut quality, flavour, and extended shelf-life, which is beneficial to traders.

  14. Physicochemical properties and fatty acid composition of star fruit ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... refractive index (1.421), acid value (0.68), free fatty acid (0.84), iodine value (140.50 ... The fatty acid profiles were revealed using Gas Chromatography Mass ... The outcome of this study showed that Averrohoa carambola seed oil may find wider industrial application and ...

  15. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid polyamine condensate... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric acid... substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and P-90-1985...

  16. Composition of fatty acids in selected vegetable oils

    OpenAIRE

    Helena Frančáková; Eva Ivanišová; Štefan Dráb; Tomáš Krajčovič; Marián Tokár; Ján Mareček; Janette Musilová

    2015-01-01

    Plant oils and fats are important and necessary components of the human nutrition. They are energy source and also contain fatty acids - compounds essential for human health. The aim of this study was to evaluate nutritional quality of selected plant oil - olive, rapeseed, pumpkin, flax and sesame; based on fatty acid composition in these oils. Fatty acids (MUFA, PUFA, SFA) were analyzed chromatography using system Agilent 6890 GC, injector multimode, detector FID. The highest c...

  17. Effect of dietary fatty acids on the postprandial fatty acid composition of triacylglycerol-rich lipoproteins in healthy male subjects

    DEFF Research Database (Denmark)

    Bysted, Anette; Holmer, G.; Lund, Pia

    2005-01-01

    interesterified test fats with equal amounts of palmitic acid ( P fat), stearic acid (S fat), trans-18: 1 isomers (T fat), oleic acid (O fat), or linoleic acid (L fat) were tested. Subjects: A total of 16 healthy, normolipidaemic males ( age 23 +/- 2 y) were recruited. Interventions: The participants ingested fat......Objective: The aim of the present study was to investigate the effect of trans-18: 1 isomers compared to other fatty acids, especially saturates, on the postprandial fatty acid composition of triacylglycerols ( TAG) in chylomicrons and VLDL. Design: A randomised crossover experiment where five......-rich test meals ( 1 g fat per kg body weight) and the fatty acid profiles of chylomicron and VLDL TAG were followed for 8 h. Results: The postprandial fatty acid composition of chylomicron TAG resembled that of the ingested fats. The fatty acids in chylomicron TAG were randomly distributed among the three...

  18. Effects of varying levels of n-6:n-3 fatty acid ratio on plasma fatty acid ...

    African Journals Online (AJOL)

    Jane

    2010-12-20

    Dec 20, 2010 ... omega 3 (n-3), omega 6 (n-6) and omega 9 (n-9) fatty acids and are essential in the ... the maintenance of different physiological functions. (Aaes-Jorgensen .... was easier to recognize each one of these cellular types. Mating.

  19. Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise

    NARCIS (Netherlands)

    Romijn, J. A.; Coyle, E. F.; Sidossis, L. S.; Zhang, X. J.; Wolfe, R. R.

    1995-01-01

    To evaluate the extent to which decreased plasma free fatty acid (FFA) concentration contributes to the relatively low rates of fat oxidation during high-intensity exercise, we studied FFA metabolism in six endurance-trained cyclists during 20-30 min of exercise [85% of maximal O2 uptake (VO2max)].

  20. Ruminal fatty acid metabolism : altering rumen biohydrolgenation to improve milk fatty acid profile of dairy cows

    NARCIS (Netherlands)

    Sterk, A.R.

    2011-01-01

    Nutritional guidelines promote a reduced intake of saturated fatty acids (FA) and increased intake of unsaturated FA by humans. Milk and dairy products contain a high proportion of saturated FA caused by extensive alterations of dietary lipids in the rumen through the processes of lipolysis and

  1. Inhibition of fatty acid mobilization by arterial free fatty acid concentration

    DEFF Research Database (Denmark)

    Madsen, J; Bülow, J; Nielsen, N E

    1986-01-01

    Subcutaneous, inguinal adipose tissue from dogs was perfused with blood in which the free fatty acid (FFA) concentration was varied corresponding to FFA/albumin molar ratios between 1 and 6. Otherwise the composition of the perfusate was kept constant. In order to stimulate lipolysis, isoprenaline...

  2. Fatty acid omega-oxidation as a rescue pathway for fatty acid oxidation disorders in humans

    NARCIS (Netherlands)

    Wanders, Ronald J. A.; Komen, Jasper; Kemp, Stephan

    2011-01-01

    Fatty acids (FAs) can be degraded via different mechanisms including alpha-, beta- and omega-oxidation. In humans, a range of different genetic diseases has been identified in which either mitochondrial FA beta-oxidation, peroxisomal FA beta-oxidation or FA alpha-oxidation is impaired. Treatment

  3. Liquid biofuel production from volatile fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Steinbusch, K.J.J.

    2010-03-19

    The production of renewable fuels and chemicals reduces the dependency on fossil fuels and limits the increase of CO2 concentration in the atmosphere only if a sustainable feedstock and an energy efficient process are used. The thesis assesses the possibility to use municipal and industrial waste as biomass feedstock to have little of no competition with food production, and to save greenhouse gasses emissions. Waste is a complex substrate with a diverse composition and high water content. It can be homogenized without losing its initial energy value by anaerobic conversion to volatile fatty acids (VFA). Using VFA gives the opportunity to process cheap and abundantly present biomass residues to a fuel and chemical instead of sugar containing crops or vegetable oil. This thesis describes the feasibility to convert VFA to compounds with a higher energy content using mixed culture fermentations by eliminating of oxygen and/or increasing the carbon and hydrogen content. At high hydrogen pressure, protons and electrons release via the reduction of organic products such as VFA becomes thermodynamically more attractive. Three VFA reduction reactions were studied: hydrogenation to an alcohol with (1) hydrogen and (2) an electrode as electron donor, and (3) by chain elongation with hydrogen and ethanol. Based on concentration, production rate and efficiency, elongation of acetate with hydrogen and/or ethanol was the best technique to convert VFA into a fuel. In a CSTR (Continuous-flow stirred-tank reactor), 10.5 g L{sup -1} caproic acid and 0.48 g L{sup -1} caprylic acid were produced with ethanol and/or hydrogen at a specific MCFA (medium-chain fatty acids) production activity of 2.9 g caproate and 0.09 g caprylate per gram VSS d{sup -1} (volatile suspended solids). The products were selectively removed by calcium precipitation and solvent extraction with ethyl hexanoate and petroleum ether. Microbial characterization revealed that the microbial populations were stable and

  4. Exogenous Polyunsaturated Fatty Acids Impact Membrane Remodeling and Affect Virulence Phenotypes among Pathogenic Vibrio Species.

    Science.gov (United States)

    Moravec, Anna R; Siv, Andrew W; Hobby, Chelsea R; Lindsay, Emily N; Norbash, Layla V; Shults, Daniel J; Symes, Steven J K; Giles, David K

    2017-11-15

    The pathogenic Vibrio species ( V. cholerae , V. parahaemolyticus , and V. vulnificus ) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio 's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids. IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the

  5. Training affects muscle phospholipid fatty acid composition in humans

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Wu, B J; Willer, Mette

    2001-01-01

    on the muscle membrane phospholipid fatty acid composition in humans. Seven male subjects performed endurance training of the knee extensors of one leg for 4 wk. The other leg served as a control. Before, after 4 days, and after 4 wk, muscle biopsies were obtained from the vastus lateralis. After 4 wk......, the phospholipid fatty acid contents of oleic acid 18:1(n-9) and docosahexaenoic acid 22:6(n-3) were significantly higher in the trained (10.9 +/- 0.5% and 3.2 +/- 0.4% of total fatty acids, respectively) than the untrained leg (8.8 +/- 0.5% and 2.6 +/- 0.4%, P fatty acids...... was significantly lower in the trained (11.1 +/- 0.9) than the untrained leg (13.1 +/- 1.2, P fatty acid composition. Citrate synthase activity was increased by 17% in the trained compared with the untrained leg (P

  6. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    Directory of Open Access Journals (Sweden)

    Gao Qianqian

    2012-03-01

    Full Text Available Abstract Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS, have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene.

  7. PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid -Hydroxylase (CYP4 Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    James P. Hardwick

    2009-01-01

    Full Text Available Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis, due to a decrease in mitochondria -oxidation with an increase in both peroxisomal -oxidation, and microsomal -oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs. How steatosis increases PPAR activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid -oxidation and -oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA, monounsaturated (MUFA, or saturated (SFA may be determined by the interplay of PPARs and HNF4 with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the -oxidation cytochrome P450 CYP4A gene expression is increased even with reduced hepatic levels of PPAR. Although numerous studies have suggested the role ethanol-inducible CYP2E1 in contributing to increased oxidative stress, Cyp2e1-null mice still develop steatohepatitis with a dramatic increase in CYP4A gene expression. This strongly implies that CYP4A fatty acid -hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA CYP4A and long-chain fatty acid (LCFA CYP4F -hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increased CYP4A expression with a decrease in CYP4F genes may promote the progression of steatosis to

  8. The effect of conjugated linoleic acid on the fatty acid composition of ...

    African Journals Online (AJOL)

    rahim aydin

    Dietary conjugated linoleic acid (CLA) was reported to increase the levels of saturated fatty ... Hence, the objective of this study was to determine the effects of dietary CLA on the fatty acid ..... silver ion-high performance liquid chromatography.

  9. The development of radioiodinated fatty acids for myocardial imaging

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.

    1993-01-01

    Since free fatty acids are the principal energy source for the normally oxygenated myocardium, the use of iodine-123-labeled fatty acid analogues is an attractive approach for myocardial imaging. Interest in the use of these substances results from divergent fatty acid metabolic pathways in ischemic (triglyceride storage) versus normoxic tissue (β-oxidative clearance), following flow-dependent delivery. Iodine-123-labeled fatty acids may offer a unique opportunity to identity myocardial viability using single photon emission tomography. The development of structurally-modified fatty acids became of interest because of the relatively long acquisition periods required for SPECT. The significant time required by early generation single- or dual-head SPECT systems for data acquisition requires minimal redistribution during the acquisition period to ensure accurate evaluation of the regional fatty acid distribution pattern after re-construction. Research has focussed on the evaluation of structural modifications which can be introduced into the fatty acid chain which would inhibit the subsequent β-oxidative catabolism which normally results in rapid myocardial clearance. Introduction of a methyl group in position-3 of the fatty acid carbon chain has been shown to significantly delay myocardial clearance and iodine-123-labeled 15-(p-iodophenyl)-3- R,S-methylpentadecanoic acid (BMIPP) is a new tracer based on this strategy

  10. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Tsai, Lin; Stadtman, Earl

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(lll)/O-2] depends on the degree of unsaturation of the fatty acid. The fatty acid......-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate fatty acids were oxidized in the presence...... in the formation of protein carbonyls, These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (alpha,beta-unsaturated aldehydes) with lysine residues...

  11. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor.

    Science.gov (United States)

    Göttlicher, M; Widmark, E; Li, Q; Gustafsson, J A

    1992-01-01

    Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate PPAR (peroxisome proliferator-activated receptor), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from the rat that is homologous to that from the mouse [Issemann, I. & Green, S. (1990) Nature (London) 347, 645-650], which encodes a 97% similar protein with a particularly well-conserved putative ligand-binding domain. To search for physiologically occurring activators, we established a transcriptional transactivation assay by stably expressing in CHO cells a chimera of rat PPAR and the human glucocorticoid receptor that activates expression of the placental alkaline phosphatase reporter gene under the control of the mouse mammary tumor virus promoter. Testing of compounds related to lipid metabolism or peroxisomal proliferation revealed that 150 microM concentrations of arachidonic or linoleic acid but not of dehydroepiandrosterone, cholesterol, or 25-hydroxy-cholesterol, activate the receptor chimera. In addition, saturated fatty acids induce the reporter gene. Shortening the chain length to n = 6 or introduction of an omega-terminal carboxylic group abolished the activation potential of the fatty acid. In conclusion, the present results indicate that fatty acids can regulate gene expression mediated by a member of the steroid nuclear receptor superfamily. Images PMID:1316614

  12. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    Science.gov (United States)

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

  13. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids

    Directory of Open Access Journals (Sweden)

    Hester M Den Ruijter

    2010-11-01

    Full Text Available Increased consumption of fatty fish, rich in omega-3 polyunsaturated fatty acids (3-PUFAs reduces the severity and number of arrhythmias. Long term 3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating 3-PUFAs in the bloodstream and incorporated 3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating 3-PUFAs in the bloodstream enhance or diminish the effects of incorporated 3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (3 or sunflower oil (9, as control for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch clamp technique in the absence and presence of acutely administered 3-PUFAs. Plasma of 3 fed rabbits contained more free eicosapentaenoic acid (EPA and isolated myocytes of 3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA in their sarcolemma compared to control. In the absence of acutely administered fatty acids, 3 myocytes had a shorter action potential with a more negative plateau than 9 myocytes. In the 9 myocytes, but not in the 3 myocytes, acute administration of a mixture of EPA+DHA shortened the action potential significantly. From these data we conclude that incorporated 3-PUFAs into the sarcolemma and acutely administered 3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac 3-PUFA status will probably not benefit from short term 3 supplementation as an antiarrhythmic therapy.

  14. Naturally occurring and process-induced trans fatty acids and ...

    African Journals Online (AJOL)

    CHOKRI

    2013-05-22

    May 22, 2013 ... Key words: Trans-fatty acids, conjugated linoleic acid, butter oil. INTRODUCTION ... important role in determining risk of coronary heart diseases (CHD) than ... performance liquid chromatography (HPLC) grade, supplied by.

  15. Oil hyphae of endolithic lichens and their fatty acid composition

    Energy Technology Data Exchange (ETDEWEB)

    Kushnir, E; Tietz, A; Galun, M

    1978-01-01

    The structure of medullary oil hyphae of twelve endolithic lichen species, belonging to different taxa and colonizing different habitats, was examined by light and electron microscopy. The chemical composition of lipids isolated from the oil hyphae and from two corresponding mycobionts grown in culture was determined. The oil hyphae of the various species appeared in different forms and contained large amounts of lipid in the form of oil globules. The hyphae of mycobionts isolated from two of the endoliths and grown in culture also contained large amounts of lipids. Triacylglycerol was the predominant lipid component in all the organisms examined. Hexadecanoic acid was the main saturated fatty acid; octadecenoic acid and octadecdienoic acid the predominant unsaturated fatty acids. Tetradecanoic, hexadecenoic, octadecanoic and octadectrienoic acids were also detected. The fatty acid distribution pattern appeared unaffected by the nature of substrate and climatic conditions. There is a certain similarity in the fatty acid composition in related species. 9 figures, 2 tables.

  16. Factors affecting variations in the detailed fatty acid profile of Mediterranean buffalo milk determined by 2-dimensional gas chromatography.

    Science.gov (United States)

    Pegolo, S; Stocco, G; Mele, M; Schiavon, S; Bittante, G; Cecchinato, A

    2017-04-01

    Buffalo milk is the world's second most widely produced milk, and increasing attention is being paid to its composition, particularly the fatty acid profile. The objectives of the present study were (1) to characterize the fatty acid composition of Mediterranean buffalo milk, and (2) to investigate potential sources of variation in the buffalo milk fatty acid profile. We determined the profile of 69 fatty acid traits in 272 individual samples of Mediterranean buffalo milk using gas chromatography. In total, 51 individual fatty acids were identified: 24 saturated fatty acids, 13 monounsaturated fatty acids, and 14 polyunsaturated fatty acids. The major individual fatty acids in buffalo milk were in the order 16:0, 18:1 cis-9, 14:0, and 18:0. Saturated fatty acids were the predominant fraction in buffalo milk fat (70.49%); monounsaturated and polyunsaturated fatty acids were at 25.95 and 3.54%, respectively. Adopting a classification based on carbon-chain length, we found that medium-chain fatty acids (11-16 carbons) represented the greater part (53.7%) of the fatty acid fraction of buffalo milk, whereas long-chain fatty acids (17-24 carbons) and short-chain fatty acids (4-10 carbons) accounted for 32.73 and 9.72%, respectively. The n-3 and n-6 fatty acids were 0.46 and 1.77%, respectively. The main conjugated linoleic acid, rumenic acid, represented 0.45% of total milk fatty acids. Herd/test date and stage of lactation were confirmed as important sources of variation in the fatty acid profile of buffalo milk. The percentages of short-chain and medium-chain fatty acids in buffalo milk increased in early lactation (+0.6 and +3.5%, respectively), whereas long-chain fatty acids decreased (-4.2%). The only exception to this pattern was butyric acid, which linearly decreased from the beginning of lactation, confirmation that its synthesis is independent of malonyl-CoA. These results seem to suggest that in early lactation the mobilization of energy reserves may have less

  17. What health professionals should know about omega-3 fatty acid ...

    African Journals Online (AJOL)

    Therefore, the aim of this article is to equip health .... of EPA and DHA into the red blood cell membrane fatty acids (a 160% increase ... non-significant changes between plasma EPA and DHA for fish oil. (864 mg .... displayed higher CD levels than the vegetable oils.30 ... analysis, on the n-3 fatty acid content of supplements.

  18. Fatty Acid Composition of the Aerial Parts of Some Centaurea ...

    African Journals Online (AJOL)

    Purpose: To evaluate the fatty acid composition of six Centaurea species, viz, Centaurea behen, C. saligna, C. depressa, C. urvillei subsp. urvillei, C. urvillei subsp. hayekiana and C. aggregata subsp. aggregata, from Elaz.., Turkey. Methods: Fatty acid methyl esters (FAMEs) of the oil extracts of four Centaurea species were ...

  19. Associations of erythrocyte fatty acid patterns with insulin resistance

    Science.gov (United States)

    Background: Synergistic and/or additive effects on cardiometabolic risk may be missed by examining individual fatty acids (FA). A pattern analysis may be a more useful approach. As well, it remains unclear whether erythrocyte fatty acid composition relates to insulin resistance among Hispanic/Latino...

  20. Alternative origins for omega-3 fatty acids in the diet

    NARCIS (Netherlands)

    Lenihan-Geels, Georgia; Bishop, Karen S.

    2016-01-01

    Fish and seafood are important sources for LC PUFAs, EPA and DHA. These fatty acids may be synthesised in the body from short-chain fatty acids, including ALA; however, the enzymes involved in this pathway are considered inefficient. This means direct EPA and DHA sources are an important part of

  1. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    Science.gov (United States)

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%).

  2. GC – MS Characterization of Degutted White Grubs' Fatty Acids ...

    African Journals Online (AJOL)

    Fatty acids composition of white grubs examined by GC- MS identified 19 different fatty acids; 11 saturated, 7 monoene and a cyclopropaneoctanoate. The identified ones are Methyl tetradecanoate (C14:0), Methyl dodecanoate (C12:0), Methyl cis – 9 - octadecenote (C18:1), Methyl(7E) – 7 – hexadecenoate (C16:1), Methyl ...

  3. Isolation of fucoxanthin and fatty acids analysis of Padina australis ...

    African Journals Online (AJOL)

    Fucoxanthin has been successfully isolated from species of Malaysian brown seaweed, namely Padina australis. The purity of the fucoxanthin is >98% as indicated by high performance liquid chromatography analysis. This seaweed also contains a considerable amount of unsaturated fatty acids. Thirteen fatty acids were ...

  4. Lipid profile and levels of omega-3 polyunsaturated fatty acids ...

    African Journals Online (AJOL)

    The intake of polyunsaturated fatty acids especially omega-3 is projected to be way below the recommended intake in Kenya. Thus, there is need to find other sources of polyunsaturated fatty acids (PUFAs). This study screened for the lipid profile and levels of omega-3 PUFAs in jackfruit and explored the variation in lipid ...

  5. Alternative Production of Fatty Acid Methyl Esters from Triglycerides ...

    African Journals Online (AJOL)

    The catalysts activity was tested in thermocatalytic cracking of triglyceride; a direct conversion process for fatty acid methyl esters (biodiesel). The SZ1 not only exhibited higher conversion of triglycerides but higher fatty acid methyl esters (FAMEs) yields of approximately 59% after 3h as compared to SZ2 (32%). In addition ...

  6. Cellular fatty acid composition of marine-derived fungi

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Shridhar, M.P.D.; DeSouza, L.; Naik, C.G.

    . The fatty acids specific to the above mentioned fungi can be used as biomarkers for taxonomic purposes. High concentrations of C18 PUFAs (18:2 n-6 and 18:1 n-9) together with relatively high concentrations of saturated fatty acids like palmitic (16...

  7. Polyunsaturated fatty acid status of Dutch vegans and omnivores

    NARCIS (Netherlands)

    Fokkema, M R; Brouwer, D A; Hasperhoven, M B; Hettema, Y; Bemelmans, W J; Muskiet, F A

    We compared the polyunsaturated fatty acid (PUFA) status of Dutch vegans and omnivores to investigate whether disparities can be explained by different diets and long chain PUFA (LCP) synthesis rates. Dietary intakes and fatty acid compositions of erythrocytes (RBC), platelets (PLT), plasma

  8. Interaction between fatty acid and the elastin network

    NARCIS (Netherlands)

    Vreeswijk, van J.

    1995-01-01

    The aim of the present study was to investigate the interaction between salts of fatty acids (FAS) and elastin. Absorption of fatty acids in elastin may affect the elasticity of elastin-containing tissue. Such phenomena could, for instance, be of relevance for the understanding of the

  9. Polyunsaturated fatty acid status of Dutch vegans and omnivores

    NARCIS (Netherlands)

    Fokkema, M R; Brouwer, D A; Hasperhoven, M B; Hettema, Y; Bemelmans, W J; Muskiet, F A

    2000-01-01

    We compared the polyunsaturated fatty acid (PUFA) status of Dutch vegans and omnivores to investigate whether disparities can be explained by different diets and long chain PUFA (LCP) synthesis rates. Dietary intakes and fatty acid compositions of erythrocytes (RBC), platelets (PLT), plasma

  10. Neonatal fatty acid status and cardiometabolic health at 9 years

    NARCIS (Netherlands)

    Seggers, Jorien; Kikkert, Hedwig K.; de Jong, Corina; Decsi, Tamas; Boehm, Gunther; Hadders-Algra, Mijna

    Background: Long chain polyunsaturated fatty acid (LCPUFA) status is associated with risk of cardiovascular diseases in adulthood. We previously demonstrated no effect of LCPUFA supplementation after birth on BP and anthropometrics. Little is known about the association between fatty acid status at

  11. Increased brain fatty acid uptake in metabolic syndrome

    DEFF Research Database (Denmark)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti

    2010-01-01

    To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it.......To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it....

  12. SYNTHESIS OF FATTY ACID ETHYL ESTER FROM CHICKEN FAT ...

    African Journals Online (AJOL)

    eobe

    synthesis of fatty acid ethyl ester from chicken fat waste using ZnO/SiO fatty acid ethyl ester ... obtained in the range of 56−88%and a second order quadratic polynomial regression model that established the ... Transesterification is a chemical.

  13. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of nine studies in the CHARGE consortium

    Science.gov (United States)

    Scope: Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. We evaluated i...

  14. Nature of the elements transporting long-chain fatty acids through the red cell membrane

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1998-01-01

    Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport......Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport...

  15. Profile of Fatty Acids, Amino Acids, Carotenoid Total, and α-Tocopherol from Flying Fish Eggs

    Directory of Open Access Journals (Sweden)

    Aulia Azka

    2015-12-01

    Full Text Available Flying fish are found in waters of eastern Indonesia, which until now is still limited information about nutritional content. The purpose of this research was determine the composition of fatty acids, amino acids, total carotenoids, α-tocopherol flying fish eggs (Hyrundicthys sp.. The composition of fatty acid was measured by gas chromatography (GC, while amino acids, total carotenoids, α-tocopherol was measured by High performanced Liquid Chromatography (HPLC. Egg contained 22 fatty acids such as saturated fatty acid 29.71%, monounsaturated fatty acid 7.86%, and polysaturated fatty acid 13.64%. The result showed that eggs flying fish contained 17 amino acids, such as essential amino acid 14.96% and non-essential amino acids 20.27%. Eggs contained a total carotenoid of 245.37 ppm. α-tocopherol content of flying fish eggs by 1.06 ppm.

  16. Determination of free fatty acids in beer.

    Science.gov (United States)

    Bravi, Elisabetta; Marconi, Ombretta; Sileoni, Valeria; Perretti, Giuseppe

    2017-01-15

    Free fatty acids (FFA) content of beer affects the ability to form a stable head of foam and plays an important role in beer staling. Moreover, the presence of saturated FAs is related sometimes to gushing problems in beer. The aim of this research was to validate an analytical method for the determination of FFAs in beer. The extraction of FFAs in beer was achieved via Liquid-Liquid Cartridge Extraction (LLCE), the FFAs extract was purified by Solid Phase Extraction (SPE), methylated by boron trifluoride in methanol, and injected into GC-FID system. The performance criteria demonstrate that this method is suitable for the analysis of medium and long chain FFAs in beer. The proposed method was tested on four experimental beers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Production of extracellular fatty acid using engineered Escherichia coli

    Directory of Open Access Journals (Sweden)

    Liu Hui

    2012-04-01

    Full Text Available Abstract Background As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. Results In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing ‘TesA and the deletion of fadL in E. coli BL21 (DE3 improved extracellular fatty acid production, while deletion of fadD didn’t strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-‘tesA-ΔfadL produced 4.8 g L−1 extracellular fatty acid, with the specific productivity of 0.02 g h−1 g−1dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-‘tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired

  18. Oxidative stability of fatty acid alkyl esters: a review.

    Directory of Open Access Journals (Sweden)

    Michal Angelovič

    2015-12-01

    Full Text Available The purpose of this study was to investigate and to process the current literary knowledge of the physico-chemical properties of vegetable oil raw used for biodiesel production in terms of its qualitative stability. An object of investigation was oxidative stability of biodiesel. In the study, we focused on the qualitative physico-chemical properties of vegetable oils used for biodiesel production, oxidative degradation and its mechanisms, oxidation of lipids, mechanisms of autooxidation, effectivennes of different synthetic antioxidants in relation to oxidative stability of biodiesel and methods of oxidative stability determination. Knowledge of the physical and chemical properties of vegetable oil as raw material and the factors affecting these properties is critical for the production of quality biodiesel and its sustainability. According to the source of oilseed, variations in the chemical composition of the vegetable oil are expressed by variations in the molar ratio among different fatty acids in the structure. The relative ratio of fatty acids present in the raw material is kept relatively constant after the transesterification reaction. The quality of biodiesel physico-chemical properties is influenced by the chain length and the level of unsaturation of the produced fatty acid alkyl esters. A biodiesel is thermodynamically stable. Its instability primarily occurs from contact of oxygen present in the ambient air that is referred to as oxidative instability. For biodiesel is oxidation stability a general term. It is necessary to distinguish ‘storage stability' and ‘thermal stability', in relation to oxidative degradation, which may occur during extended periods of storage, transportation and end use. Fuel instability problems can be of two related types, short-term oxidative instability and long-term storage instability. Storage instability is defined in terms of solid formation, which can plug nozzles, filters, and degrade engine

  19. Heterogeneity in limb fatty acid kinetics in type 2 diabetes

    DEFF Research Database (Denmark)

    Sacchetti, M; Olsen, D B; Saltin, B

    2005-01-01

    AIMS/HYPOTHESIS: In order to test the hypothesis that disturbances in skeletal muscle fatty acid metabolism with type 2 diabetes are not equally present in the upper and lower limbs, we studied fatty acid kinetics simultaneously across the arm and leg of type 2 diabetic patients (n=6) and matched...... control subjects (n=7) for 5 h under baseline conditions and during a 4-h hyperinsulinaemic-euglycaemic clamp. METHODS: Limb fatty acid kinetics was determined by means of continuous [U-(13)C]palmitate infusion and measurement of arteriovenous differences. RESULTS: The systemic palmitate rate...... in the dysregulation of skeletal muscle fatty acid metabolism, with only the leg, but not the arm, showing an impairment of fatty acid kinetics at baseline and during a hyperinsulinaemic-euglycaemic clamp causing a physiological increase in insulin concentration....

  20. Thermodynamic analysis of fatty acid esterification for fatty acid alkyl esters production

    International Nuclear Information System (INIS)

    Voll, Fernando A.P.; Silva, Camila da; Rossi, Carla C.R.S.; Guirardello, Reginaldo; Castilhos, Fernanda de; Oliveira, J. Vladimir; Cardozo-Filho, Lucio

    2011-01-01

    The development of renewable energy source alternatives has become a planet need because of the unavoidable fossil fuel scarcity and for that reason biodiesel production has attracted growing interest over the last decade. The reaction yield for obtaining fatty acid alkyl esters varies significantly according to the operating conditions such as temperature and the feed reactants ratio and thus investigation of the thermodynamics involved in such reactional systems may afford important knowledge on the effects of process variables on biodiesel production. The present work reports a thermodynamic analysis of fatty acid esterification reaction at low pressure. For this purpose, Gibbs free energy minimization was employed with UNIFAC and modified Wilson thermodynamic models through a nonlinear programming model implementation. The methodology employed is shown to reproduce the most relevant investigations involving experimental studies and thermodynamic analysis.

  1. Effect of fatty acids on functional properties of normal wheat and waxy wheat starches: A structural basis.

    Science.gov (United States)

    Wang, Shujun; Wang, Jinrong; Yu, Jinglin; Wang, Shuo

    2016-01-01

    The effects of three saturated fatty acids on functional properties of normal wheat and waxy wheat starches were investigated. The complexing index (CI) of normal wheat starch-fatty acid complexes decreased with increasing carbon chain length. In contrast, waxy wheat starch-fatty acid complexes presented much lower CI. V-type crystalline polymorphs were formed between normal wheat starch and three fatty acids, with shorter chain fatty acids producing more crystalline structure. FTIR and Raman spectroscopy presented the similar results with XRD. The formation of amylose-fatty acid complex inhibited granule swelling, gelatinization progression, retrogradation and pasting development of normal wheat starch, with longer chain fatty acids showing greater inhibition. Amylopectin can also form complexes with fatty acids, but the amount of complex was too little to be detected by XRD, FTIR, Raman and DSC. As a consequence, small changes were observed in the functional properties of waxy wheat starch with the addition of fatty acids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Fatty Acids, Lipid Mediators, and T-Cell Function

    Science.gov (United States)

    de Jong, Anja J.; Kloppenburg, Margreet; Toes, René E. M.; Ioan-Facsinay, Andreea

    2014-01-01

    Research toward the mechanisms underlying obesity-linked complications has intensified during the last years. As a consequence, it has become clear that metabolism and immunity are intimately linked. Free fatty acids and other lipids acquired in excess by current feeding patterns have been proposed to mediate this link due to their immune modulatory capacity. The functional differences between saturated and unsaturated fatty acids, in combination with their dietary intake are believed to modulate the outcome of immune responses. Moreover, unsaturated fatty acids can be oxidized in a tightly regulated and specific manner to generate either potent pro-inflammatory or pro-resolving lipid mediators. These oxidative derivatives of fatty acids have received detailed attention during the last years, as they have proven to have strong immune modulatory capacity, even in pM ranges. Both fatty acids and oxidized fatty acids have been studied especially in relation to macrophage and T-cells functions. In this review, we propose to focus on the effect of fatty acids and their oxidative derivatives on T-cells, as it is an active area of research during the past 5 years. The effect of fatty acids and their derivatives on activation and proliferation of T-cells, as well as the delicate balance between stimulation and lipotoxicity will be discussed. Moreover, the receptors involved in the interaction between free fatty acids and their derivatives with T-cells will be summarized. Finally, the mechanisms involved in modulation of T-cells by fatty acids will be addressed, including cellular signaling and metabolism of T-cells. The in vitro results will be placed in context of in vivo studies both in humans and mice. In this review, we summarize the latest findings on the immune modulatory function of lipids on T-cells and will point out novel directions for future research. PMID:25352844

  3. Effects of Fatty Acid Inclusion in a DMPC Bilayer Membrane

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Hansen, Flemming Yssing; Møller, Martin S.

    2009-01-01

    Free fatty acids in biomembranes have been proposed to be a central component in several cellular control and regulatory mechanisms. To elucidate some fundamental elements underlying this, we have applied molecular dynamics simulations and experimental density measurements to study the molecular...... packing and structure of oleic acid (HOA) and stearic acid (HSA) in fluid bilayers of dimyristoylphosphatidylcholine (DMPC). The experimental data show a small but consistent positive excess volume for fatty acid concentrations below 10 mol %. At higher concentrations the fatty acids mix ideally...... with fluid DMPC. The simulations, which were benchmarked against the densitometric data, revealed interesting differences in the structure and location of the fatty acids depending on their protonation status. Thus, the protonated (uncharged) acid is located rather deeply in the membrane with an average...

  4. Fatty acid profile of Albizia lebbeck and Albizia saman seed oils: Presence of coronaric acid

    Science.gov (United States)

    In this work, the fatty acid profiles of the seed oils of Albizia lebbeck and Albizia saman (Samanea saman) are reported. The oils were analyzed by GC, GC-MS, and NMR. The most prominent fatty acid in both oils is linoleic acid (30-40%), followed by palmitic acid and oleic acid for A. lebbeck and ol...

  5. Identification and quantification of intermediates of unsaturated fatty acid metabolism in plasma of patients with fatty acid oxidation disorders

    NARCIS (Netherlands)

    Onkenhout, W.; Venizelos, V.; van der Poel, P. F.; van den Heuvel, M. P.; Poorthuis, B. J.

    1995-01-01

    The free fatty acid and total fatty acid profiles in plasma of nine patients with medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, two with very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency and two with mild-type multiple acyl-CoA dehydrogenase (MAD-m) deficiency, were analyzed by gas

  6. Effect of the fatty acid composition of acclimated oenological Lactobacillus plantarum on the resistance to ethanol.

    Science.gov (United States)

    Bravo-Ferrada, B M; Gómez-Zavaglia, A; Semorile, L; Tymczyszyn, E E

    2015-02-01

    The aim of this work was to evaluate the changes due to acclimation to ethanol on the fatty acid composition of three oenological Lactobacillus plantarum strains and their effect on the resistance to ethanol and malic acid consumption (MAC). Lactobacillus plantarum UNQLp 133, UNQLp 65.3 and UNQLp 155 were acclimated in the presence of 6 or 10% v/v ethanol, for 48 h at 28°C. Lipids were extracted to obtain fatty acid methyl esters and analysed by gas chromatography interfaced with mass spectroscopy. The influence of change in fatty acid composition on the viability and MAC in synthetic wine was analysed by determining the Pearson correlation coefficient. Acclimated strains showed a significant change in the fatty composition with regard to the nonacclimated strains. Adaptation to ethanol led to a decrease in the unsaturated/saturated ratio, mainly resulting from an increase in the contribution of short-length fatty acid C12:0 and a decrease of C18:1. The content of C12:0 was related to a higher viability after inoculation of synthetic wine. The MAC increased at higher contents in saturated fatty acid, but its efficiency was strain dependent. © 2014 The Society for Applied Microbiology.

  7. Fatty acids labelled in the. omega. -position with iodine isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, J.P.; Busquet, G.; Comet, M. (Universite Scientifique et Medicale de Grenoble, 38 - La Tronche (France)); Riche, F.; Vidal, M. (Laboratoire d' Etudes Dynamiques et Structurales de la Selectivite, 38 - Grenoble (France)); Coornaert, S.; Bardy, A. (CEA, Centre de Saclay, 91 - Gif-sur-Yvette (France)); Godart, J. (Institut des Sciences Nucleaires, 38 - Grenoble (France))

    1982-01-01

    The synthesis of saturated acetylenic and olefinic (Z or E) ..omega..-iodinated fatty acids has been carried out and their labelling with iodine-131 or 123 by exchange I/sup -/, *I/sup -/ has been studied. The influence of several parameters -water and fatty acid concentrations, specific activity, labelling solution acidity, iodine carrier presence- on this exchange reaction has been noted, enabling experimental conditions to be defined that produce labelling yields of greater than 95%. These results should lead to widespread clinical use of iodine labelled fatty acids.

  8. Synthesis and antituberculosis activity of new fatty acid amides.

    Science.gov (United States)

    D'Oca, Caroline Da Ros Montes; Coelho, Tatiane; Marinho, Tamara Germani; Hack, Carolina Rosa Lopes; Duarte, Rodrigo da Costa; da Silva, Pedro Almeida; D'Oca, Marcelo Gonçalves Montes

    2010-09-01

    This work reports the synthesis of new fatty acid amides from C16:0, 18:0, 18:1, 18:1 (OH), and 18:2 fatty acids families with cyclic and acyclic amines and demonstrate for the first time the activity of these compounds as antituberculosis agents against Mycobacterium tuberculosis H(37)Rv, M. tuberculosis rifampicin resistance (ATCC 35338), and M. tuberculosis isoniazid resistance (ATCC 35822). The fatty acid amides derivate from ricinoleic acid were the most potent one among a series of tested compounds, with a MIC 6.25 microg/mL for resistance strains. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Profile of Fatty Acids, Amino Acids, Carotenoid Total, and α-Tocopherol from Flying Fish Eggs

    Directory of Open Access Journals (Sweden)

    Aulia Azka

    2015-12-01

    Full Text Available Flying fish are found in waters of eastern Indonesia, which until now is still limited informationabout nutritional content. The purpose of this research was determine the composition offatty acids, amino acids, total carotenoids, α-tocopherol flying fish eggs (Hyrundicthys sp..The composition of fatty acid was measured by gas chromatography (GC, while amino acids,total carotenoids, α-tocopherol was measured by High performanced Liquid Chromatography(HPLC. Egg contained 22 fatty acids such as saturated fatty acid 29.71%, monounsaturated fattyacid 7.86%, and polysaturated fatty acid 13.64%. The result showed that eggs flying fish contained17 amino acids, such as essential amino acid 14.96% and non-essential amino acids 20.27%. Eggscontained a total carotenoid of 245.37 ppm. α-tocopherol content of flying fish eggs by 1.06 ppm.Keywords: Amino acids, carotenoid total, fatty acid, flying fish egg, α-tocopherol

  10. Medium-chain fatty acids undergo elongation before β-oxidation in fibroblasts

    International Nuclear Information System (INIS)

    Jones, Patricia M.; Butt, Yasmeen; Messmer, Bette; Boriak, Richard; Bennett, Michael J.

    2006-01-01

    Although mitochondrial fatty acid β-oxidation (FAO) is considered to be well understood, further elucidation of the pathway continues through evaluation of patients with FAO defects. The FAO pathway can be examined by measuring the 3-hydroxy-fatty acid (3-OHFA) intermediates. We present a unique finding in the study of this pathway: the addition of medium-chain fatty acids to the culture media of fibroblasts results in generation of 3-OHFAs which are two carbons longer than the precursor substrate. Cultured skin fibroblasts from normal and LCHAD-deficient individuals were grown in media supplemented with various chain-length fatty acids. The cell-free medium was analyzed for 3-OHFAs by stable-isotope dilution gas-chromatography/mass-spectrometry. Our finding suggests that a novel carbon chain-length elongation process precedes the oxidation of medium-chain fatty acids. This previously undescribed metabolic step may have important implications for the metabolism of medium-chain triglycerides, components in the dietary treatment of a number of disorders

  11. Survey on the fatty acids profile of fluid goat milk

    Directory of Open Access Journals (Sweden)

    Daniela Pittau

    2013-10-01

    Full Text Available Fluid goat milk submitted to thermal treatment has interesting nutritional properties and a potential expanding market. The present study was aimed to conduct fatty acids profile characterisation of goat milk placed on market. Forty-nine fluid milk samples were collected: 12 pasteurised, 12 pasteurised at high temperature, 11 ultrahigh temperature (UHT whole milk and 14 UHT semi-skimmed milk. Milk samples were collected at retail level from 7 different companies and from different production batches. After extraction and methilation, fatty acids (FAs profile was determined on each sample using a gas chromatograph with flame ionisation detector (GC-FID with high-polarity capillary column. The concentration (g/100mL of saturated fatty acids (SFAs, monounsaturated fatty acids (MUFAs, polyunsaturated fatty acids (PUFAs, trans fatty acids (t-FAs, and isomers of conjugated linoleic acid (CLA was determined. N-6/n-3 ratio, atherogenic index (AI and thrombogenic index (TI were also assessed. Fluid goat milk lipid profile was characterised by SFAs (68.4% of total FAs, PUFAs (5.3%, MUFAs (21.3%, t-FAs (3.6% and CLA (0.8%. The most represented fatty acids were: 16:0 (24.5%, 9cis-18:1 (18.2%, 18:0 (9.6%, 14:0 (9.5%, 10:0 (9.3% and 12:0 (4.5%. Nutritional indices were 2.8-6.8 for n-6/n-3 ratio; 2.3-2.9 for AI; and 2.7-3.2 for TI. Milk produced by small scale plants, with no milk fat standardisation, showed greater differences in fatty acid profile as compared to industrial plants milk. Large scale production is characterised by commingled bulk tank milk of different origins and then is more homogeneous. The whole goat milk supply chain should be controlled to obtain milk with fatty acids of high nutritional value.

  12. Benzothiadiazole oligoene fatty acids: fluorescent dyes with large Stokes shifts

    Directory of Open Access Journals (Sweden)

    Lukas J. Patalag

    2016-12-01

    Full Text Available Herein, we report on the synthesis and characterization of novel fluorescent fatty acids with large Stokes shifts. Three examples consisting of the same number of carbon atoms and thus of similar chain length are presented differing in their degree of unsaturation. As major fluorogenic contributor at the terminus benzo[c][1,2,5]thiadiazole was used. Respective syntheses based on Wittig reactions followed by iodine-mediated isomerization are presented. The absorption properties are modulated by the number of conjugated C=C double bonds of the oligoene chain ranging from one to three. Large Stokes shifts of about 4900–5700 cm−1 and fluorescence quantum yields of up to 0.44 were observed.

  13. Fatty Acid and Phytosterol Content of Commercial Saw Palmetto Supplements

    Directory of Open Access Journals (Sweden)

    Brian L. Lindshield

    2013-09-01

    Full Text Available Saw palmetto supplements are one of the most commonly consumed supplements by men with prostate cancer and/or benign prostatic hyperplasia (BPH. Some studies have found significant improvements in BPH and lower urinary tract symptoms (LUTS with saw palmetto supplementation, whereas others found no benefits. The variation in the efficacy in these trials may be a result of differences in the putative active components, fatty acids and phytosterols, of the saw palmetto supplements. To this end, we quantified the major fatty acids (laurate, myristate, palmitate, stearate, oleate, linoleate and phytosterols (campesterol, stigmasterol, β-sitosterol in 20 commercially available saw palmetto supplements using GC-FID and GC-MS, respectively. Samples were classified into liquids, powders, dried berries, and tinctures. Liquid saw palmetto supplements contained significantly higher (p < 0.05 concentrations of total fatty acids (908.5 mg/g, individual fatty acids, total phytosterols (2.04 mg/g, and individual phytosterols, than the other supplement categories. Powders contained significantly higher (p < 0.05 concentrations of total fatty acids than tinctures, which contain negligible amounts of fatty acids (46.3 mg/g and phytosterols (0.10 mg/g. Our findings suggest that liquid saw palmetto supplements may be the best choice for individuals who want to take a saw palmetto supplement with the highest concentrations of both fatty acids and phytosterols.

  14. Bacterial fatty acid metabolism in modern antibiotic discovery.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2017-11-01

    Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Measurement of the metabolic interconversion of deuterium-labeled fatty acids by gas chromatography/mass spectrometry

    International Nuclear Information System (INIS)

    Rohwedder, W.K.; Duval, S.M.; Wolf, D.J.; Emken, E.A.

    1990-01-01

    An analytical method that was developed to analyze deuterium-labeled fatty acids in human blood has been extended to identify labeled fatty acids from C14 to C24 chain length which are formed by metabolic processes such as desaturation, elongation, or shortening of the labeled fatty acids fed. A new computer and a hardware adder have been utilized to assure reliable data acquisition. Relative standard deviations for the analysis of labeled fatty acids were measured at 0.02, 0.03, and 0.04 at the 5%, 1%, and 0.2% levels of the labeled fatty acid methyl esters, respectively. The method makes extensive use of standards and computer processing for accuracy and high productivity. Data from a chylomicron triacylglycerol fraction are included to demonstrate the sensitivity of detection of metabolites formed by desaturation and elongation

  16. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of 9 studies in the CHARGE consortium

    Science.gov (United States)

    Smith, Caren E.; Follis, Jack L.; Nettleton, Jennifer A.; Foy, Millennia; Wu, Jason H.Y.; Ma, Yiyi; Tanaka, Toshiko; Manichakul, Ani W.; Wu, Hongyu; Chu, Audrey Y.; Steffen, Lyn M.; Fornage, Myriam; Mozaffarian, Dariush; Kabagambe, Edmond K.; Ferruci, Luigi; da Chen, Yii-Der I; Rich, Stephen S.; Djoussé, Luc; Ridker, Paul M.; Tang, Weihong; McKnight, Barbara; Tsai, Michael Y.; Bandinelli, Stefania; Rotter, Jerome I.; Hu, Frank B.; Chasman, Daniel I.; Psaty, Bruce M.; Arnett, Donna K.; King, Irena B.; Sun, Qi; Wang, Lu; Lumley, Thomas; Chiuve, Stephanie E.; Siscovick, David S; Ordovás, José M.; Lemaitre, Rozenn N.

    2015-01-01

    Scope Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. Objective We evaluated interactions between genetic variants and fatty acid intakes for circulating alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). Methods and Results We conducted meta-analyses (N to 11,668) evaluating interactions between dietary fatty acids and genetic variants (rs174538 and rs174548 in FADS1 (fatty acid desaturase 1), rs7435 in AGPAT3 (1-acyl-sn-glycerol-3-phosphate), rs4985167 in PDXDC1 (pyridoxal-dependent decarboxylase domain-containing 1), rs780094 in GCKR (glucokinase regulatory protein) and rs3734398 in ELOVL2 (fatty acid elongase 2)). Stratification by measurement compartment (plasma vs. erthyrocyte) revealed compartment-specific interactions between FADS1 rs174538 and rs174548 and dietary ALA and linoleic acid for DHA and DPA. Conclusion Our findings reinforce earlier reports that genetically-based differences in circulating fatty acids may be partially due to differences in the conversion of fatty acid precursors. Further, fatty acids measurement compartment may modify gene-diet relationships, and considering compartment may improve the detection of gene-fatty acids interactions for circulating fatty acid outcomes. PMID:25626431

  17. Homogeneously catalysed hydrogenation of unsaturated fatty acids to unsaturated fatty alcohols

    NARCIS (Netherlands)

    Stouthamer, B.; Vlugter, J.C.

    1965-01-01

    The use of copper and cadmium oxides or soaps as catalysts for the hydrogenation of unsaturated fatty acids to unsaturated fatty alcohols has been investigated. It is shown that copper soaps homogeneously activate hydrogen. When copper and cadmium oxides are used as catalysts, they react with the

  18. Esterification free fatty acid in palm fatty acid distillate using sulfonated rice husk ash catalyst

    Science.gov (United States)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-01-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as Palm Fatty Acid Distillate (PFAD) from palm oil industries. The use of PFAD can reduce the cost of biodiesel production significantly, which makes PFAD a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid (FFA) on PFAD was studied using rice husk ash (RHA) as heterogeneous catalyst. The rice husk ash catalyst was synthesized by sulfonation using concentrated sulfuric acid. The RHA catalyst were characterized by using different techniques, such as porosity analysis, Fourier transform infrared (FT-IR) spectroscopy, total number of acid sites and elemental analysis. The effects of the molar ratio of methanol to PFAD (1-10%), the molar ratio of methanol to PFAD (4:1-10:1), and the reaction temperature (40-60°C) were studied for the conversion of FFA to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 10:1, the catalyst amount of 10 wt% of PFAD, and reaction temperature of 60°C.

  19. Metabolically engineered cells for the production of polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to the construction and engineering of cells, more particularly microorganisms for producing PUFAs with four or more double bonds from non-fatty acid substrates through heterologous expression of an oxygen requiring pathway. The invention especially involves...... improvement of the PUFA content in the host organism through fermentation optimization, e.g. decreasing the temperature and/or designing an optimal medium, or through improving the flux towards fatty acids by metabolic engineering, e.g. through over-expression of fatty acid synthases, over-expression of other...

  20. Fatty acid composition of meat of Sarda suckling lamb

    OpenAIRE

    Manca, Maria Grazia

    2011-01-01

    The fatty acid composition of dietary fat has an important role in human nutrition because can help to reduce the risk of appearance of some diseases. In this work fatty acid profile of meat of Sarda suckling lamb was studied in order to improve meat fat quality in relation to human health. Aim of this thesis was firstly to assess the effect of different management systems, indoor vs. outdoor, on fatty acid profile of meat of Sarda suckling lamb. Lambs which followed their mother on pasture h...

  1. Antiproliferative activity of synthetic fatty acid amides from renewable resources.

    Science.gov (United States)

    dos Santos, Daiane S; Piovesan, Luciana A; D'Oca, Caroline R Montes; Hack, Carolina R Lopes; Treptow, Tamara G M; Rodrigues, Marieli O; Vendramini-Costa, Débora B; Ruiz, Ana Lucia T G; de Carvalho, João Ernesto; D'Oca, Marcelo G Montes

    2015-01-15

    In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Biosynthesis, degradation, and pharmacological importance of the fatty acid amides

    Science.gov (United States)

    Farrell, Emma K.; Merkler, David J.

    2008-01-01

    The identification of two biologically active fatty acid amides, N-arachidonoylethanolamine (anandamide) and oleamide, has generated a great deal of excitement and stimulated considerable research. However, anandamide and oleamide are merely the best-known and best-understood members of a much larger family of biologically-occurring fatty acid amides. In this review, we will outline which fatty acid amides have been isolated from mammalian sources, detail what is known about how these molecules are made and degraded in vivo, and highlight their potential for the development of novel therapeutics. PMID:18598910

  3. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content.

    Directory of Open Access Journals (Sweden)

    Jessica Garzke

    Full Text Available Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1-5 and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA and arachidonic acid (ARA to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts.

  4. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content.

    Science.gov (United States)

    Garzke, Jessica; Hansen, Thomas; Ismar, Stefanie M H; Sommer, Ulrich

    2016-01-01

    Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1-5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts.

  5. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties.

    Science.gov (United States)

    Kuda, Ondrej; Brezinova, Marie; Rombaldova, Martina; Slavikova, Barbora; Posta, Martin; Beier, Petr; Janovska, Petra; Veleba, Jiri; Kopecky, Jan; Kudova, Eva; Pelikanova, Terezie; Kopecky, Jan

    2016-09-01

    White adipose tissue (WAT) is a complex organ with both metabolic and endocrine functions. Dysregulation of all of these functions of WAT, together with low-grade inflammation of the tissue in obese individuals, contributes to the development of insulin resistance and type 2 diabetes. n-3 polyunsaturated fatty acids (PUFAs) of marine origin play an important role in the resolution of inflammation and exert beneficial metabolic effects. Using experiments in mice and overweight/obese patients with type 2 diabetes, we elucidated the structures of novel members of fatty acid esters of hydroxy fatty acids-lipokines derived from docosahexaenoic acid (DHA) and linoleic acid, which were present in serum and WAT after n-3 PUFA supplementation. These compounds contained DHA esterified to 9- and 13-hydroxyoctadecadienoic acid (HLA) or 14-hydroxydocosahexaenoic acid (HDHA), termed 9-DHAHLA, 13-DHAHLA, and 14-DHAHDHA, and were synthesized by adipocytes at concentrations comparable to those of protectins and resolvins derived from DHA in WAT. 13-DHAHLA exerted anti-inflammatory and proresolving properties while reducing macrophage activation by lipopolysaccharides and enhancing the phagocytosis of zymosan particles. Our results document the existence of novel lipid mediators, which are involved in the beneficial anti-inflammatory effects attributed to n-3 PUFAs, in both mice and humans. © 2016 by the American Diabetes Association.

  6. Physicochemical properties and analysis of Malaysian palm fatty acid distilled

    Science.gov (United States)

    Jumaah, Majd Ahmed; Yusoff, Mohamad Firdaus Mohamad; Salimon, Jumat

    2018-04-01

    Palm fatty acid distillate (PFAD) is cheap and valuable byproduct of edible oil processing industries. This study was carried out to determine the physicochemical properties of Malaysian palm fatty acid distilled (PFAD). The physicochemical properties showed that the free fatty acid (FFA %), acid value, iodine value, saponification value, unsaponifiable matter, hydroxyl value, specific gravity at 28°C, moisture content, viscosity at 40°C and colour at 28°C values were 87.04± 0.1 %, 190.6± 1 mg/g, 53.3±0.2 mg/g, 210.37±0.8 mg/g, 1.5±0.1%, 47±0.2 mg/g, 0.87 g/ml, 0.63 %, 30 cSt and yellowish respectively. Gas chromatography (GC) was used to determine the fatty acid (FA) composition in PFAD. The fatty acids were found to be comprised mostly with 48.9 % palmitic acid (C16:0), 37.4 % oleic acid (C18:1), 9.7 % linoleic acid (C18:2), 2.7 % stearic acid (C18:0) and 1.1 % myristic acid (C14:0). The analysis of high performance liquid chromatography (HPLC) has resulted with 99.2 % of FFA, while diacylglycerol and monoacylglycerol were 0.69 and 0.062 % respectively.

  7. Thai jute seed oil: a potential polyunsaturated fatty acid source

    Directory of Open Access Journals (Sweden)

    Maitree Suttajit

    2006-03-01

    Full Text Available This study examined lipid and fatty acid compositions of different varieties of jute (Po-kra-jao, Corchorus olitorius L. seed grown in Thailand. Four different jute seeds (Nonn-Soong, Keaw-Yai, Cuba and Khonkaen harvested from northeastern Thailand were ground, their lipid was extracted with chloroform: methanol (2:1, v/v, and lipid composition was determined by Iatroscan (TLC/FID. Fatty acid composition was analyzed using GLC with standard methods. Triacylglycerol was a predominant lipid in jute seed oil, ranging from 70% to 74%, and other two minor components were phytosterol (12% to 28% and diacylglycerol (0% to 9%. The ratio of saturates: monounsaturates: polyunsaturates, was approximately 2: 3: 4. Most predominant polyunsaturated fatty acid (PUFA was linoleic acid (18:2n-6, accounting for 40-67% of total fatty acid. Nonn-Soong had the highest amount of PUFA (67.7%, followed by Khonkaen (44.53%, Keaw-Yai (41.14%, and Cuba (40.19%. Another PUFA found was α-linolenic acid (18:3n-3, accounting for about 1% of total fatty acid. The results indicated that jute seed oil was a potential edible PUFA source. The oils obtained from different kinds of jute seeds had significantly different lipid and fatty acid compositions.

  8. Specific fatty acids as metabolic modulators in the dairy cow

    Directory of Open Access Journals (Sweden)

    J.A.A. Pires

    2008-07-01

    Full Text Available This review summarizes recent developments on the utilization of specific fatty acids to modulate bovine energy metabolism, with emphasis on the periparturient dairy cow. A number of experiments have assessed the effects of polyunsaturated fatty acids on bovine hepatic energy metabolism using in vitro and in vivo models. Treatment of hepatocytes with specific fatty acids altered energy metabolism in vitro. For example, linolenic acid seemed to decrease hepatocyte triacylglycerol accumulation. This effect was confirmed in vivo, using parenteral infusions of emulsions derived from different fat sources to feed-restricted non-lactating cows. Additionally, polyunsaturated fatty acids can increase whole body response to insulin, potentially enhancing antilipolytic effects of insulin and muscle protein anabolism in the bovine. There is limited literature on the effects of feeding fat sources rich in omega-3 polyunsaturated fatty acids, such as fish oil and linseed oil, on metabolism of periparturient dairy cows. Available research has yielded conflicting results which need further clarification. On the other hand, specific isomers of conjugated linoleic acid consistently induce milk fat depression and are able to decrease energy export in milk by periparturient dairy cows. Nonetheless, research is still needed to assess whether these effects will ultimately benefit productivity and health status of periparturient dairy cows. Limitations of available methods to protect fatty acids from ruminal biohydrogenation are also addressed.

  9. Topical electrophilic nitro-fatty acids potentiate cutaneous inflammation.

    Science.gov (United States)

    Mathers, Alicia R; Carey, Cara D; Killeen, Meaghan E; Salvatore, Sonia R; Ferris, Laura K; Freeman, Bruce A; Schopfer, Francisco J; Falo, Louis D

    2018-02-01

    Endogenous electrophilic fatty acids mediate anti-inflammatory responses by modulating metabolic and inflammatory signal transduction and gene expression. Nitro-fatty acids and other electrophilic fatty acids may thus be useful for the prevention and treatment of immune-mediated diseases, including inflammatory skin disorders. In this regard, subcutaneous (SC) injections of nitro oleic acid (OA-NO 2 ), an exemplary nitro-fatty acid, inhibit skin inflammation in a model of allergic contact dermatitis (ACD). Given the nitration of unsaturated fatty acids during metabolic and inflammatory processes and the growing use of fatty acids in topical formulations, we sought to further study the effect of nitro-fatty acids on cutaneous inflammation. To accomplish this, the effect of topically applied OA-NO 2 on skin inflammation was evaluated using established murine models of contact hypersensitivity (CHS). In contrast to the effects of subcutaneously injected OA-NO 2 , topical OA-NO 2 potentiated hapten-dependent inflammation inducing a sustained neutrophil-dependent inflammatory response characterized by psoriasiform histological features, increased angiogenesis, and an inflammatory infiltrate that included neutrophils, inflammatory monocytes, and γδ T cells. Consistent with these results, HPLC-MS/MS analysis of skin from psoriasis patients displayed a 56% increase in nitro-conjugated linoleic acid (CLA-NO 2 ) levels in lesional skin compared to non-lesional skin. These results suggest that nitro-fatty acids in the skin microenvironment are products of cutaneous inflammatory responses and, in high local concentrations, may exacerbate inflammatory skin diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin-Fatty Acid Biosynthetic Pathway.

    Science.gov (United States)

    Haushalter, Robert W; Phelan, Ryan M; Hoh, Kristina M; Su, Cindy; Wang, George; Baidoo, Edward E K; Keasling, Jay D

    2017-04-05

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotin and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.

  11. Fatty Acids, Obesity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Peter Arner

    2015-04-01

    Full Text Available Objective: Although elevated free fatty acid (FFA levels in obesity have been considered to be of importance for insulin resistance, a recent meta-analysis suggested normal FFA levels in obese subjects. We investigated fasting circulating FFA and glycerol levels in a large cohort of non-obese and obese subjects. Methods: Subjects recruited for a study on obesity genetics were investigated in the morning after an overnight fast (n = 3,888. Serum FFA (n = 3,306, plasma glycerol (n = 3,776, and insulin sensitivity index (HOMA-IR,n = 3,469 were determined. Obesity was defined as BMI ≥ 30 kg/m2 and insulin resistance as HOMA-IR ≥ 2.21. Results: In obese subjects, circulating FFA and glycerol levels were higher than in non-obese individuals (by 26% and 47%, respectively; both p Conclusion: Circulating FFA and glycerol levels are markedly elevated in obesity but only marginally influenced by insulin resistance and type 2 diabetes. Whether these differences persist during diurnal variations in circulating FFA/glycerol, remains to be established.

  12. Placental fatty acid transport in maternal obesity.

    Science.gov (United States)

    Cetin, I; Parisi, F; Berti, C; Mandò, C; Desoye, G

    2012-12-01

    Pregestational obesity is a significant risk factor for adverse pregnancy outcomes. Maternal obesity is associated with a specific proinflammatory, endocrine and metabolic phenotype that may lead to higher supply of nutrients to the feto-placental unit and to excessive fetal fat accumulation. In particular, obesity may influence placental fatty acid (FA) transport in several ways, leading to increased diffusion driving force across the placenta, and to altered placental development, size and exchange surface area. Animal models show that maternal obesity is associated with increased expression of specific FA carriers and inflammatory signaling molecules in placental cotyledonary tissue, resulting in enhanced lipid transfer across the placenta, dislipidemia, fat accumulation and possibly altered development in fetuses. Cell culture experiments confirmed that inflammatory molecules, adipokines and FA, all significantly altered in obesity, are important regulators of placental lipid exchange. Expression studies in placentas of obese-diabetic women found a significant increase in FA binding protein-4 expression and in cellular triglyceride content, resulting in increased triglyceride cord blood concentrations. The expression and activity of carriers involved in placental lipid transport are influenced by the endocrine, inflammatory and metabolic milieu of obesity, and further studies are needed to elucidate the strong association between maternal obesity and fetal overgrowth.

  13. A microfluidic device for the automated derivatization of free fatty acids to fatty acid methyl esters.

    Science.gov (United States)

    Duong, Cindy T; Roper, Michael G

    2012-02-21

    Free fatty acid (FFA) compositions are examined in feedstock for biodiesel production, as source-specific markers in soil, and because of their role in cellular signaling. However, sample preparation of FFAs for gas chromatography-mass spectrometry (GC-MS) analysis can be time and labor intensive. Therefore, to increase sample preparation throughput, a glass microfluidic device was developed to automate derivatization of FFAs to fatty acid methyl esters (FAMEs). FFAs were delivered to one input of the device and methanolic-HCl was delivered to a second input. FAME products were produced as the reagents traversed a 29 μL reaction channel held at 55 °C. A Design of Experiment protocol was used to determine the combination of derivatization time (T(der)) and ratio of methanolic-HCl:FFA (R(der)) that maximized the derivatization efficiencies of tridecanoic acid and stearic acid to their methyl ester forms. The combination of T(der) = 0.8 min and R(der) = 4.9 that produced optimal derivatization conditions for both FFAs within a 5 min total sample preparation time was determined. This combination of T(der) and R(der) was used to derivatize 12 FFAs with a range of derivatization efficiencies from 18% to 93% with efficiencies of 61% for tridecanoic acid and 84% for stearic acid. As compared to a conventional macroscale derivatization of FFA to FAME, the microfluidic device decreased the volume of methanolic-HCl and FFA by 20- and 1300-fold, respectively. The developed microfluidic device can be used for automated preparation of FAMEs to analyze the FFA compositions of volume-limited samples.

  14. Carnitine transport and fatty acid oxidation.

    Science.gov (United States)

    Longo, Nicola; Frigeni, Marta; Pasquali, Marzia

    2016-10-01

    Carnitine is essential for the transfer of long-chain fatty acids across the inner mitochondrial membrane for subsequent β-oxidation. It can be synthesized by the body or assumed with the diet from meat and dairy products. Defects in carnitine biosynthesis do not routinely result in low plasma carnitine levels. Carnitine is accumulated by the cells and retained by kidneys using OCTN2, a high affinity organic cation transporter specific for carnitine. Defects in the OCTN2 carnitine transporter results in autosomal recessive primary carnitine deficiency characterized by decreased intracellular carnitine accumulation, increased losses of carnitine in the urine, and low serum carnitine levels. Patients can present early in life with hypoketotic hypoglycemia and hepatic encephalopathy, or later in life with skeletal and cardiac myopathy or sudden death from cardiac arrhythmia, usually triggered by fasting or catabolic state. This disease responds to oral carnitine that, in pharmacological doses, enters cells using the amino acid transporter B(0,+). Primary carnitine deficiency can be suspected from the clinical presentation or identified by low levels of free carnitine (C0) in the newborn screening. Some adult patients have been diagnosed following the birth of an unaffected child with very low carnitine levels in the newborn screening. The diagnosis is confirmed by measuring low carnitine uptake in the patients' fibroblasts or by DNA sequencing of the SLC22A5 gene encoding the OCTN2 carnitine transporter. Some mutations are specific for certain ethnic backgrounds, but the majority are private and identified only in individual families. Although the genotype usually does not correlate with metabolic or cardiac involvement in primary carnitine deficiency, patients presenting as adults tend to have at least one missense mutation retaining residual activity. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler

  15. Nutrigenomics and nutrigenetics of ω3 polyunsaturated fatty acids.

    Science.gov (United States)

    Vanden Heuvel, John P

    2012-01-01

    Diets rich in ω3 polyunsaturated fatty acids (ω3-PUFAs) such as alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid are associated with decreased incidence and severity of several chronic diseases including cardiovascular disease (CVD) and cancer. At least some of the beneficial effects of these dietary fatty acids are via metabolites such as prostaglandins, leukotrienes, thromboxanes, and resolvins. The effects of ω3-PUFAs are in contrast to those of fatty acids with virtually identical structures, such as the ω6-PUFAs linoleic acid and arachidonic acid, and their corresponding metabolites. The purpose of this chapter is to discuss both the nutrigenomics (nutrient-gene interactions) and nutrigenetics (genetic variation in nutrition) of dietary fatty acids with a focus on the ω3-PUFAs (Gebauer et al., 2007(1)). Important in the biological response for these fatty acids or their metabolites are cognate receptors that are able to regulate gene expression and coordinately affect metabolic or signaling pathways associated with CVD and cancer. Four nuclear receptor (NR) subfamilies will be emphasized as receptors that respond to dietary and endogenous ligands: (1) peroxisome proliferator-activated receptors, (2) retinoid X receptors, (3) liver X receptors, and (4) farnesoid X receptor. In addition to the different responses elicited by varying structures of fatty acids, responses may vary because of genetic variation in enzymes that metabolize ω3- and ω6 fatty acids or that respond to them. In particular, polymorphisms in the fatty acid desaturases and the aforementioned NRs contribute to the complexity of nutritional effects seen with ω3-PUFAs. Following a brief introduction to the health benefits of ω3-PUFAs, the regulation of gene expression by these dietary fatty acids via NRs will be characterized. Subsequently, the effects of single-nucleotide polymorphisms (SNPs) in key enzymes involved in the metabolism and response to ω3-PUFAs will

  16. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA); Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol

    DEFF Research Database (Denmark)

    Tetens, Inge

    This Opinion of the EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) deals with the setting of Dietary Reference Values (DRVs) for fats. A lower bound of the reference intake range for total fat of 20 energy % (E%) and an upper bound of 35 E% are proposed. Fat intake in infants can......-linolenic acid (ALA) of 0.5 E%; not to set an UL for ALA; to set an AI of 250 mg for eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) for adults; to set an AI of 100 mg DHA for infants (>6 months) and young children...... gradually be reduced from 40 E% in the 6-12 month period to 35-40 E% in the 2nd and 3rd year of life. For specific fatty acids the following is proposed: saturated fatty acid (SFA) and trans fatty acid intake should be as low as possible; not to set any DRV for cis-monounsaturated fatty acids......; not to formulate a DRV for the intake of total cis-polyunsaturated fatty acids (PUFA); not to set specific values for the n-3/n-6 ratio; to set an Adequate Intake (AI) of 4 E% for linoleic acid (LA); not to set any DRV for arachidonic acid; not to set an UL for total or any of the n-6 PUFA; to set an AI for alpha...

  17. Technetium and rhenium complexes with modified fatty acid ligands 4. Evaluation of two new classes of {sup 99m}Tc-labelled fatty acids as potential tracers for myocardial metabolism imaging

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, A.; Kropp, J.; Deussen, A. [TU Dresden, Medizinische Fakultaet Carl Gustav Carus (Germany); Jung, C.M.; Spies, H.

    2002-01-01

    {sup 99m}Tc-labelled fatty acids were synthesized according to the '3+1' mixed-ligand approach and investigated as potential tracers for myocardial SPECT diagnostics on the model of the isolated guinea pig heart. The results indicate a low but specific myocardial uptake of the {sup 99m}Tc fatty acid derivatives subject to chain length and structure. (orig.)

  18. Trienoic fatty acids and plant tolerance of temperature

    Directory of Open Access Journals (Sweden)

    Routaboul Jean-Marc

    2002-01-01

    Full Text Available The biophysical reactions of light harvesting and electron transport during photosynthesis take place in a uniquely constructed bilayer, the thylakoid. In all photosynthetic eukaryotes, the complement of atypical glycerolipid molecules that form the foundation of this membrane are characterised by sugar head-groups and a very high level of unsaturation in the fatty acids that occupy the central portion of the thylakoid bilayer. alpha-linolenic (18:3 or a combination of 18:3 and hexadecatrienoic (16:3 acids typically account for approximately two-thirds of all thylakoid membrane fatty acids and over 90% of the fatty acids of monogalactosyl diacylglycerol, the major thylakoid lipid [1, 2]. The occurrence of trienoic fatty acids as a major component of the thylakoid membrane is especially remarkable since these fatty acids form highly reactive targets for active oxygen species and free radicals, which are often the by-products of oxygenic photosynthesis. Photosynthesis is one of the most temperature-sensitive functions of plant [3, 4]. There remains a widespread belief that these trienoic fatty acids might have some crucial role in plants to be of such universal occurrence, especially in photosynthesis tolerance of temperature [5].

  19. Fatty acids are required for epidermal permeability barrier function.

    Science.gov (United States)

    Mao-Qiang, M; Elias, P M; Feingold, K R

    1993-08-01

    The permeability barrier is mediated by a mixture of ceramides, sterols, and free fatty acids arranged as extracellular lamellar bilayers in the stratum corneum. Whereas prior studies have shown that cholesterol and ceramides are required for normal barrier function, definitive evidence for the importance of nonessential fatty acids is not available. To determine whether epidermal fatty acid synthesis also is required for barrier homeostasis, we applied 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), an inhibitor of acetyl CoA carboxylase, after disruption of the barrier by acetone or tape stripping. TOFA inhibits epidermal fatty acid by approximately 50% and significantly delays barrier recovery. Moreover, coadministration of palmitate with TOFA normalizes barrier recovery, indicating that the delay is due to a deficiency in bulk fatty acids. Furthermore, TOFA treatment also delays the return of lipids to the stratum corneum and results in abnormalities in the structure of lamellar bodies, the organelle which delivers lipid to the stratum corneum. In addition, the organization of secreted lamellar body material into lamellar bilayers within the stratum corneum interstices is disrupted by TOFA treatment. Finally, these abnormalities in lamellar body and stratum corneum membrane structure are corrected by coapplication of palmitate with TOFA. These results demonstrate a requirement for bulk fatty acids in barrier homeostasis. Thus, inhibiting the epidermal synthesis of any of the three key lipids that form the extracellular, lipid-enriched membranes of the stratum corneum results in an impairment in barrier homeostasis.

  20. Thioesterase activity and acyl-CoA/fatty acid cross-talk of hepatocyte nuclear factor-4{alpha}.

    Science.gov (United States)

    Hertz, Rachel; Kalderon, Bella; Byk, Tamara; Berman, Ina; Za'tara, Ghadeer; Mayer, Raphael; Bar-Tana, Jacob

    2005-07-01

    Hepatocyte nuclear factor-4alpha (HNF-4alpha) activity is modulated by natural and xenobiotic fatty acid and fatty acyl-CoA ligands as a function of their chain length, unsaturation, and substitutions. The acyl-CoA site of HNF-4alpha is reported here to consist of the E-F domain, to bind long-chain acyl-CoAs but not the respective free acids, and to catalyze the hydrolysis of bound fatty acyl-CoAs. The free acid pocket, previously reported in the x-ray structure of HNF-4alpha E-domain, entraps fatty acids but excludes acyl-CoAs. The acyl-CoA and free acid sites are distinctive and noncongruent. Free fatty acid products of HNF-4alpha thioesterase may exchange with free acids entrapped in the fatty acid pocket of HNF-4alpha. Cross-talk between the acyl-CoA and free fatty acid binding sites is abrogated by high affinity, nonhydrolyzable acyl-CoA ligands of HNF-4alpha that inhibit its thioesterase activity. Hence, HNF-4alpha transcriptional activity is controlled by its two interrelated acyl ligands and two binding sites interphased in tandem by the thioesterase activity. The acyl-CoA/free-acid and receptor/enzyme duality of HNF-4alpha extends the paradigm of nuclear receptors.

  1. Composition of fatty acids in selected vegetable oils

    Directory of Open Access Journals (Sweden)

    Helena Frančáková

    2015-12-01

    Full Text Available Plant oils and fats are important and necessary components of the human nutrition. They are energy source and also contain fatty acids - compounds essential for human health. The aim of this study was to evaluate nutritional quality of selected plant oil - olive, rapeseed, pumpkin, flax and sesame; based on fatty acid composition in these oils. Fatty acids (MUFA, PUFA, SFA were analyzed chromatography using system Agilent 6890 GC, injector multimode, detector FID. The highest content of saturated fatty acids was observed in pumpkinseed oil (19.07%, the lowest content was found in rapeseed oil (7.03%, with low level of palmitic and stearic acids and high level of behenic acid (0.32% among the evaluated oils. The highest content of linoleic acid was determined in pumpkinseed (46.40% and sesame oil (40.49%; in these samples was also found lowest content of α-linolenic acid. These oils have important antioxidant properties and are not subject to oxidation. The richest source of linolenic acid was flaxseed oil which, which is therefore more difficult to preserve and process in food industry. In olive oil was confirmed that belongs to the group of oils with a predominantly monosaturated oleic acid (more than 70% and a small amount of polysaturated fatty acid. The most commonly used rapeseed oil belongs to the group of oils with the medium content of linolenic acid (8.76%; this oil also showed a high content of linoleic acid (20.24%. The group of these essentially fatty acids showed a suitable ratio ∑n3/n6 in the rapessed oil (0.44.

  2. Mapping QTL for fatty acid composition that segregates between the ...

    African Journals Online (AJOL)

    Mapping QTL for fatty acid composition that segregates between the Japanese Black and Limousin cattle breeds (Short communication). NOM Tshipuliso, LJ Alexander, TW Geary, VM Snelling, DC Rule, JE Koltes, BE Mote, MD MacNeil ...

  3. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    Science.gov (United States)

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Fatty acids changes of baby food fat by γ irradiation

    International Nuclear Information System (INIS)

    Aflaki, F.; Matloubi, H.; Ahmadi, M. A. A.

    2005-01-01

    There is a mutual protection when mixtures of components irradiated together, so experimental investigation is necessary for determination of the effects that actually occur in different class of nutrients in formulated foods. This work is concerned with the effect of γ irradiated on fatty acids content of a formulated baby food fat and the results is compared with changes of fatty acids in irradiated whole foods. Irradiation was performed with a gamma cell (Co-60) at dose levels of 0.5, 1.5, 6, 10, 30, 45 kGy at room temperature and in the presence of air. The samples were analyzed immediately after irradiation by high performance liquid chromatography. The results showed that destruction of fatty acids in this formulated food is reasonably less than fatty acids of whole foods fat

  5. The effect of breed on fatty acid composition of subcutaneous ...

    African Journals Online (AJOL)

    User

    2015-02-23

    Agilent Auto Analyzer 7683 B series, Agilent Technologies, Santa Clara, Calif, USA) into ..... laboratory facilities and financial support. ... supplementation on fatty acid composition and gene expression in adipose tissue of growing ...

  6. Fatty acid methyl esters production: chemical process variables

    Directory of Open Access Journals (Sweden)

    Paulo César Narváez Rincón

    2004-05-01

    Full Text Available The advantages of fatty acid methyl esters as basic oleochemicals over fatty acids, the seventies world energy crisis and the use of those oleochemicals as fuels, have increased research interest on fats and oils trans-esterification. In this document, a review about basic aspects, uses, process variables and problems associated to the production process of fatty acid methyl esters is presented. A global view of recent researches, most of them focused in finding a new catalyst with same activity as the alcohol-soluble hydroxides (NaOH, KOH, and suitable to be used in transforming fats and oils with high levels of free fatty acids and water avoiding separation problems and reducing process costs, is also discussed.

  7. Comparison of fatty acid profile of wild and farm reared ...

    African Journals Online (AJOL)

    lingam

    2015-01-07

    Jan 7, 2015 ... brooders for broodstock diet formulation. Paramaraj Balamurugan. 1 ... Of these, saturated fatty acids dominate over the mono- unsaturated (MUFA) ..... and formation of central nervous system in embryo (Cavalli et al., 1999).

  8. Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel.

    Science.gov (United States)

    Blatti, Jillian L; Michaud, Jennifer; Burkart, Michael D

    2013-06-01

    Microalgae are a promising feedstock for biodiesel and other liquid fuels due to their fast growth rate, high lipid yields, and ability to grow in a broad range of environments. However, many microalgae achieve maximal lipid yields only under stress conditions hindering growth and providing compositions not ideal for biofuel applications. Metabolic engineering of algal fatty acid biosynthesis promises to create strains capable of economically producing fungible and sustainable biofuels. The algal fatty acid biosynthetic pathway has been deduced by homology to bacterial and plant systems, and much of our understanding is gleaned from basic studies in these systems. However, successful engineering of lipid metabolism in algae will necessitate a thorough characterization of the algal fatty acid synthase (FAS) including protein-protein interactions and regulation. This review describes recent efforts to engineer fatty acid biosynthesis toward optimizing microalgae as a biodiesel feedstock. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Omega-3 fatty acids in mood disorders: an overview

    Directory of Open Access Journals (Sweden)

    Young Christopher

    2003-01-01

    Full Text Available This review addresses the potential role of omega-3 fatty acids in mood disorders, from the biochemical rationale for their use to the growing body of data supporting their clinical efficacy.

  10. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation

    DEFF Research Database (Denmark)

    Dzamko, Nicolas; Schertzer, Jonathan D.; Ryall, James G.

    2008-01-01

    The activation of AMP-activated protein kinase (AMPK) and phosphorylation/inhibition of acetyl-CoA carboxylase 2 (ACC2) is believed to be the principal pathway regulating fatty acid oxidation. However, during exercise AMPK activity and ACC Ser-221 phosphorylation does not always correlate...... with rates of fatty acid oxidation. To address this issue we have investigated the requirement for skeletal muscle AMPK in controlling aminoimidazole-4-carboxymide-1-beta-d-ribofuranoside (AICAR) and contraction-stimulated fatty acid oxidation utilizing transgenic mice expressing a muscle-specific kinase...... dead (KD) AMPK alpha2. In wild-type (WT) mice, AICAR and contraction increased AMPK alpha2 and alpha1 activities, the phosphorylation of ACC2 and rates of fatty acid oxidation while tending to reduce malonyl-CoA levels. Despite no activation of AMPK in KD mice, ACC2 phosphorylation was maintained...

  11. Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids

    International Nuclear Information System (INIS)

    Wang Shutao; Song Yanlin; Jiang Lei

    2007-01-01

    Inspired by the lotus effect, we fabricate new microscale and nanoscale hierarchical structured copper mesh films by a simple electrochemical deposition. After modification of the long-chain fatty acid monolayer, these films show superhydrophobic and superoleophilic properties, which could be used for the effective separation of oil and water. The length of the fatty acid chain strongly influences the surface wettability of as-prepared films. It is confirmed that the cooperative effect of the hierarchical structure of the copper film and the nature of the long-chain fatty acid contribute to this unique surface wettability

  12. Effect of saturated and unsaturated fatty acid supplementation on bio-plastic production under submerged fermentation.

    Science.gov (United States)

    Srivastava, S K; Tripathi, Abhishek Dutt

    2013-10-01

    Polyhydroxyalkanoates (PHAs) are intracellular reserve material stored by gram-negative bacteria under nutrient-limited condition. PHAs are utilized in biodegradable plastics (bio-plastics) synthesis due to their similarity with conventional synthetic plastic. In the present study, the effect of addition of saturated and unsaturated fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid) on the production of PHAs by the soil bacterium Alcaligenes sp. NCIM 5085 was studied. Fatty acid supplementation in basal media produced saturated and unsaturated PHAs of medium and short chain length. Gas chromatography analysis of palmitic acid-supplemented media showed the presence of short chain length (scl) PHAs which could potentially serve as precursors for bio-plastic production. The scl PHA was subsequently characterized as PHB by NMR and FTIR. On the other hand, oleic acid and linoleic acid addition showed both saturated and unsaturated PHAs of different chain lengths. Palmitic acid showed maximum PHB content of 70.8 % at concentration of 15 g l -1 under shake flask cultivation. When shake flask cultivation was scaled up in a 7.5-l bioreactor (working volume 3 l), 7.6 g l -1 PHA was produced with a PHB yield (Y P/X ) and productivity of 75.89 % and 0.14 g l -1  h, respectively.

  13. Novel Mechanism of Fatty Acid Sensing in Enteroendocrine Cells: Specific Structures in Oxo-Fatty Acids Produced by Gut Bacteria are Responsible for CCK Secretion in STC-1 Cells via GPR40.

    Science.gov (United States)

    Hira, Tohru; Ogasawara, Shono; Yahagi, Asuka; Kamachi, Minami; Li, Jiaxin; Nishimura, Saki; Sakaino, Masayoshi; Yamashita, Takatoshi; Kishino, Shigenobu; Ogawa, Jun; Hara, Hiroshi

    2018-06-25

    The secretion of gut hormones, such as cholecystokinin (CCK) is stimulated by fatty acids. Although a chain length-dependent mechanism has been proposed, other structural relationships to releasing activity remain unclear. We aimed to elucidate specific structures in fatty acids that are responsible for their CCK-releasing activity, and related sensing mechanisms in enteroendocrine cells. We examined CCK secretory activities in a murine CCK-producing cell line STC-1 by exposing the cells to various modified fatty acids produced by gut lactic acid bacteria. The effects of fatty acids on gastric emptying rate as a CCK-mediated function were examined using acetaminophen- and phenol red-methods in rats. Out of more than thirty octadecanoic (C18)-derived fatty acids tested, five oxo-fatty acids potently stimulated CCK secretion without cytotoxic effects in STC-1 cells. Three fatty acids had a distinct specific structure containing one double-bond, whereas the other two had two double-bonds, nearby an oxo residue. CCK secretion induced by representative fatty acids (10-oxo-trans-11-18:1 and 13-oxo-cis-9,cis-15-18:2) was attenuated by a fatty acid-receptor GPR40 antagonist. Oral administration of 13-oxo-cis-9,cis-15-18:2 lowered the gastric emptying rate in rats in a dose- and structure-dependent manner. These results revealed a novel fatty acid-sensing mechanism in enteroendocrine cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Functional alteration of breast muscle fatty acid profile by ...

    African Journals Online (AJOL)

    Breast muscle fatty acid (FA) profile was studied in broiler chickens fed at different levels of n-6:n-3 polyunsaturated fatty acid (PUFA) ratios in 4 treatment groups; very high level of n-6:n-3 ratios (VH), high level of n-6:n-3 ratios (H), low level of n-6:n-3 ratios (L), very low level of n-6:n-3 ratios (VL) and control, respectively.

  15. Physicochemical characterization and fatty acid content of 'venadillo ...

    African Journals Online (AJOL)

    From physicochemical oil evaluations, an oil density of 0.9099 mg∙ml-1 at 28°C; a refraction index of 1.4740 at 20°C; a saponification index of 159.55 mg KOH∙g-1; a peroxide index of 0.739 meq O2∙kg-1, and 0.367% free fatty acid content were shown. From chromatographic oil evaluations, eight fatty acids were identified ...

  16. Inhibitors of Fatty Acid Synthase for Prostate Cancer. Revision

    Science.gov (United States)

    2013-05-01

    acetyl- cholinesterase inhibitors have been developed, many with femtomolar binding affinities (7). This body of literature also confirms that the...AD_________________ Award Number: W81XWH-09-1-0204 TITLE: Inhibitors of Fatty Acid Synthase for...May 2013 2. REPORT TYPE Revised Final 3. DATES COVERED 01 May 2009-30 Apr 2013 4. TITLE AND SUBTITLE Inhibitors of Fatty Acid Synthase for

  17. Inhibitors of Fatty Acid Synthase for Prostate Cancer

    Science.gov (United States)

    2012-05-01

    compounds. For example, numerous classes of acetyl- cholinesterase inhibitors have been developed, m any with fe mtomolar binding affinities (7). This...AD_________________ Award Number: W81XWH-09-1-0204 TITLE: Inhibitors of Fatty Acid Synthase for...CONTRACT NUMBER Inhibitors of Fatty Acid Synthase for Prostate Cancer 5b. GRANT NUMBER W81XWH-09-1-0204 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  18. Effects of commercial enrichment products on fatty acid components ...

    African Journals Online (AJOL)

    ajl yemi

    2011-10-26

    Oct 26, 2011 ... 3050 (ZB) and Spresso (ZC) on fatty acid compositions in rotifers (Brachionus plicatilis) which were intensively ... docosahexaenoic acid (DHA) and the ratio of n–3/n–6 in enriched rotifers groups were higher (p < 0.05). The level of ...... acid profiles and bacterial load in cultured rotifers (Brachionus plicatilis ...

  19. Omega-6 fatty acid biomarkers and incident type 2 diabetes

    NARCIS (Netherlands)

    Wu, Jason H.Y.; Marklund, Matti; Imamura, Fumiaki; Tintle, Nathan; Ardisson Korat, Andres V.; Goede, de Janette; Zhou, Xia; Yang, Wei Sin; Oliveira Otto, de Marcia C.; Kröger, Janine; Qureshi, Waqas; Virtanen, Jyrki K.; Bassett, Julie K.; Frazier-Wood, Alexis C.; Lankinen, Maria; Murphy, Rachel A.; Rajaobelina, Kalina; Gobbo, Del Liana C.; Forouhi, Nita G.; Luben, Robert; Khaw, Kay Tee; Wareham, Nick; Kalsbeek, Anya; Veenstra, Jenna; Luo, Juhua; Hu, Frank B.; Lin, Hung Ju; Siscovick, David S.; Boeing, Heiner; Chen, Tzu An; Steffen, Brian; Steffen, Lyn M.; Hodge, Allison; Eriksdottir, Gudny; Smith, Albert V.; Gudnason, Vilmunder; Harris, Tamara B.; Brouwer, Ingeborg A.; Berr, Claudine; Helmer, Catherine; Samieri, Cecilia; Laakso, Markku; Tsai, Michael Y.; Giles, Graham G.; Nurmi, Tarja; Wagenknecht, Lynne; Schulze, Matthias B.; Lemaitre, Rozenn N.; Chien, Kuo Liong; Soedamah-Muthu, Sabita S.; Geleijnse, Johanna M.; Sun, Qi; Harris, William S.; Lind, Lars; Ärnlöv, Johan; Riserus, Ulf; Micha, Renata; Mozaffarian, Dariush

    2017-01-01

    Background: The metabolic effects of omega-6 polyunsaturated fatty acids (PUFAs) remain contentious, and little evidence is available regarding their potential role in primary prevention of type 2 diabetes. We aimed to assess the associations of linoleic acid and arachidonic acid biomarkers with

  20. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.

    Science.gov (United States)

    Tucci, Sara; Behringer, Sidney; Spiekerkoetter, Ute

    2015-11-01

    An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing. © 2015 FEBS.

  1. Fatty acid analysis of Erwinia amylovora from Serbia and Montenegro

    Directory of Open Access Journals (Sweden)

    Milan Ivanović

    2011-01-01

    Full Text Available Automated method of fatty acid analysis was used to identify and study heterogeneity of 41 Erwinia amylovora strains, originating from 8 plant species grown in 13 locations in Serbia and one in Montenegro. All strains contained 14:0 3OH fatty acid,characteristic for the “amylovora” group. According to fatty acid composition 39 strains were identified as E. amylovora as the first choice from the database. Due to their specific fatty acid composition, two strains were identified as E. amylovora, but as a second choice. Fatty acid analysis also showed that E. amylovora population from Serbia could be differentiated in three groups, designated in this study as α, β and γ. All strains originating from central or south Serbia, as well as four strains from north Serbia clustered into group α. Group β and γ contained only strains isolated in northern Serbia (Vojvodina. The results show that E. amylovora population in this area is heterogeneous and indicate pathogen introduction from different directions. Fatty acid analysis enabled identificationat species level, as well as new insights of heterogeneity of E. amylovora population.

  2. Dietary monounsaturated fatty acids intake and risk of skin photoaging.

    Directory of Open Access Journals (Sweden)

    Julie Latreille

    Full Text Available Intake of monounsaturated fatty acids has been reported to reduce oxidative stress, insulin resistance and related inflammatory processes and may thus protect from skin photoaging. The objective of this study was to investigate the association between the risk of photoaging, monounsaturated fatty acids intake and the sources of monounsaturated fatty acids.A cross sectional study was conducted within the framework of the SUVIMAX cohort. The survey included 1264 women and 1655 men aged between 45 and 60 years old. Dietary monounsaturated fatty acids intakes were estimated by dietary source through at least ten 24-h diet records completed during the first 2.5 years of the follow-up period. Severity of facial skin photoaging was graded by trained investigators at baseline during a clinical examination using a 6-grade scale illustrated by photographs. A lower risk of severe photoaging was associated with higher intakes of monounsaturated fatty acids from olive oil in both sexes. Strikingly, no association was found with intake of monounsaturated fatty acids from animal sources whether from dairy products, meat or processed meat.These findings support the beneficial effect of dietary olive oil or healthy diet habits associated with olive oil consumption on the severity of facial photoaging.

  3. The omega-6/omega-3 fatty acid ratio: health implications

    Directory of Open Access Journals (Sweden)

    Simopoulos Artemis P.

    2010-09-01

    Full Text Available Today, Western diets are characterized by a higher omega-6 and a lower omega-3 fatty acid intake, whereas during the Paleolithic period when human’s genetic profile was established, there was a balance between omega-6 and omega-3 fatty acids. Their balance is an important determinant for brain development and in decreasing the risk for coronary heart disease (CHD, hypertension, cancer, diabetes, arthritis, and other autoimmune and possibly neurodegenerative diseases. Both omega-6 and omega-3 fatty acids influence gene expression. Because of single nucleotide polymorphisms (SNPs in their metabolic pathways, blood levels of omega-6 and omega-3 fatty acids are determined by both endogenous metabolism and dietary intake making the need of balanced dietary intake essential for health and disease prevention. Whether an omega-6/omega-3 ratio of 3:1 to 4:1 could prevent the pathogenesis of many diseases induced by today’s Western diets (AFSSA, 2010, a target of 1:1 to 2:1 appears to be consistent with studies on evolutionary aspects of diet, neurodevelopment, and genetics. A target of omega-6/omega-3 fatty acid ratio of 1:1 to 2:1 appears to be consistent with studies on evolutionary aspects of diet, neurodevelopment and genetics. A balanced ratio of omega-6/omega-3 fatty acids is important for health and in the prevention of CHD and possibly other chronic diseases.

  4. Omega-3 free fatty acids for the treatment of severe hypertriglyceridemia

    DEFF Research Database (Denmark)

    Kastelein, John J P; Maki, Kevin C; Susekov, Andrey

    2014-01-01

    Omega-3 fatty acids in free fatty acid form have enhanced bioavailability, and plasma levels are less influenced by food than for ethyl ester forms.......Omega-3 fatty acids in free fatty acid form have enhanced bioavailability, and plasma levels are less influenced by food than for ethyl ester forms....

  5. Changes of lipid and fatty acid absorption induced by high dose of citric acid ester and lecithin emulsifiers.

    Science.gov (United States)

    Sadouki, Mohamed; Bouchoucha, Michel

    2014-09-01

    To describe the effect of two food emulsifiers, lecithin (E322) and citric acid esters of mono-and diglycerides of fatty acids (E472c), on the intestinal absorption of lipids. The experiment was conducted on 24 male Wistar rats randomly assigned in three groups. For two groups of six rats, 30% of the lipid intake was replaced with lecithin (L) or citric acid ester of mono and diglycerides, (E); the remaining 12 rats were the control group (C). Diet and fecal fat analysis was used to determine the apparent lipid absorption (ALA) and fatty acids. ALA was significantly lower in the group E than in the groups C and L (p acids decreased while the length of the carbon chains increased, and this decrease was higher in the group E. E472c emulsifier decreased the intestinal absorption of lipids.

  6. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

    Science.gov (United States)

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  7. Enhancing Fatty Acid Production of Saccharomyces cerevisiae as an Animal Feed Supplement.

    Science.gov (United States)

    You, Seung Kyou; Joo, Young-Chul; Kang, Dae Hee; Shin, Sang Kyu; Hyeon, Jeong Eun; Woo, Han Min; Um, Youngsoon; Park, Chulhwan; Han, Sung Ok

    2017-12-20

    Saccharomyces cerevisiae is used for edible purposes, such as human food or as an animal feed supplement. Fatty acids are also beneficial as feed supplements, but S. cerevisiae produces small amounts of fatty acids. In this study, we enhanced fatty acid production of S. cerevisiae by overexpressing acetyl-CoA carboxylase, thioesterase, and malic enzyme associated with fatty acid metabolism. The enhanced strain pAMT showed 2.4-fold higher fatty acids than the wild-type strain. To further increase the fatty acids, various nitrogen sources were analyzed and calcium nitrate was selected as an optimal nitrogen source for fatty acid production. By concentration optimization, 672 mg/L of fatty acids was produced, which was 4.7-fold higher than wild-type strain. These results complement the low level fatty acid production and make it possible to obtain the benefits of fatty acids as an animal feed supplement while, simultaneously, maintaining the advantages of S. cerevisiae.

  8. Effect of impaired fatty acid oxidation on myocardial kinetics of 11C- and 123I-labelled fatty acids

    International Nuclear Information System (INIS)

    Lerch, R.

    1986-01-01

    Positron emission tomography with palmitate 11 C and single photon imaging with terminally radioiodinated fatty acid analogues (FFA 123 I) were evaluated for the noninvasive assessment of regional myocardial fatty acid metabolism during ischaemia. Decreased uptake of tracer and delayed clearance of activity in the ischaemic myocardium were reported for both 11 C- and 123 I-labelled compounds. However, since during ischaemia both myocardial blood flow and oxidative metabolism are reduced concomitantly, either factor can be responsible for the changes observed. Experimental preparations in which fatty acid metabolism can be modified independently of flow are helpful for the characterization of the relationship between metabolism and myocardial kinetics of labelled fatty acids. Results obtained during flow-independent inhibition of fatty acid oxidation include the following observations: - In dogs with controlled coronary perfusion the rate of clearance of palmitate 11 C-activity is decreased during diminished delivery of oxygen, regardless of whether myocardial perfusion is concomitantly reduced or not. - In isolated rabbit hearts perfused at normal flow, the extraction of FFA 123 I is decreased during hypoxia. - During pharmacological inhibition of fatty acid oxidation the deiodination of FFA 123 I is markedly reduced in rat hearts in vivo and in vitro. (orig.)

  9. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    Science.gov (United States)

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  10. Essential fatty acid deficiency in patients with severe fat malabsorption

    DEFF Research Database (Denmark)

    Jeppesen, Palle B; Christensen, Michael Søberg; Høy, Carl-Erik

    1997-01-01

    Essential fatty acid deficiency is commonly described in patients receiving parenteral nutrition, but the occurrence in patients with severe fat malabsorption not receiving parenteral nutrition is uncertain. One hundred twelve patients were grouped according to their degree of fat malabsorption......: group 1, 50% (n = 15). Fecal fat was measured by the method of Van de Kamer the last 2 of 5 d of a 75-g fat diet. Serum fatty acids in the phospholipid fraction were measured by gas-liquid chromatography after separation...... by thin-layer chromatography and expressed as a percentage of total fatty acids. The concentration of linoleic acid in groups 1, 2, 3, and 4 was 21.7%, 19.4%, 16.4%, and 13.4% respectively (P acid in groups 1, 2, 3, and 4 was 0.4%, 0.4%, 0.3% and 0.3%, respectively...

  11. COMPARISON OF DIFFERENT SORTING OF FATTY ACID IN BOVINE MILK IN RELATION TO BODY CONDITION OF CZECH FLECKVIEH DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Jaromir DUCHACEK

    2013-09-01

    Full Text Available Fatty acids in milk are one of the most important components of milk. The aim of this study was to determinate relationships between groups of fatty acids and body condition score change in Czech Fleckvieh cows. Fatty acids were classification along its length of chain and its source of creation. To analysis was included total of 50 Czech Fleckvieh cows with different order of lactation. During the first 4 weeks of lactation, milk samples were collected at a weekly interval and body condition score was assessed. Statistical analyses were performed using Microsoft Office Excel and the procedures MEANS and GLM of SAS 9.1. During the first four week of lactation, the proportions of short- and medium-chain fatty acids as well as de novo synthesised fatty acids increased. Moreover the cows with a greater body condition score change mobilized storage depot fat more intensively, which resulted in higher proportions of dietary and depot fatty acids since week 1 of lactation, and long-chain fatty acids since week 2 of lactation. On the contrary, the animals with only a small body condition score change exhibited high proportions of short- and medium-fatty acids as well as de novo synthesised fatty acids in the most part of the period analysed. This indicates abut negative energy balance in early part of lactation and its compensation. The results also confirm the relationships between different groups of fatty acids, body condition score and negative energy balance. As more accurate for evaluation of intensity of negative energy balance was confirmed rather classification along source of creation. These results further emphasize importance the monitoring of body condition, milk composition and good herd management in first part of lactation.

  12. Dietary Alfalfa and Calcium Salts of Long-Chain Fatty Acids Alter Protein Utilization, Microbial Populations, and Plasma Fatty Acid Profile in Holstein Freemartin Heifers.

    Science.gov (United States)

    He, Yang; Qiu, Qinghua; Shao, Taoqi; Niu, Wenjing; Xia, Chuanqi; Wang, Haibo; Li, Qianwen; Gao, Zhibiao; Yu, Zhantao; Su, Huawei; Cao, Binghai

    2017-12-20

    This study presented the effects of alfalfa and calcium salts of long-chain fatty acids (CSFA) on feed intake, apparent digestibility, rumen fermentation, microbial community, plasma biochemical parameters, and fatty acid profile in Holstein freemartin heifers. Eight Holstein freemartin heifers were randomly divided into a 4 × 4 Latin Square experiment with 2 × 2 factorial diets, with or without alfalfa or CSFA. Dietary supplementation of CSFA significantly increased the apparent digestibility of dry matter, crude protein, neutral detergent fiber, organic matter, and significantly reduced N retention (P fatty acids in the plasma, which was expressed in reducing saturated fatty acid (ΣSFA) ratio and C14-C17 fatty acids proportion except C16:0 (P fatty acid (ΣPUFA) and unsaturated fatty acid (ΣUFA) (P fatty acids in plasma. Alfalfa and CSFA had mutual interaction effect on fat digestion and plasma triglycerides.

  13. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

    Science.gov (United States)

    Du, M; Ahn, D U; Sell, J L

    2000-12-01

    A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

  14. Association between very long chain fatty acids in the meibomian gland and dry eye resulting from n-3 fatty acid deficiency.

    Science.gov (United States)

    Tanaka, Hideko; Harauma, Akiko; Takimoto, Mao; Moriguchi, Toru

    2015-06-01

    In our previously study, we reported lower tear volume in with an n-3 fatty acid deficient mice and that the docosahexaenoic acid and total n-3 fatty acid levels in these mice are significantly reduced in the meibomian gland, which secretes an oily tear product. Furthermore, we noted very long chain fatty acids (≥25 carbons) in the meibomian gland. To verify the detailed mechanism of the low tear volume in the n-3 fatty acid-deficient mice, we identified the very long chain fatty acids in the meibomian gland, measured the fatty acid composition in the tear product. Very long chain fatty acids were found to exist as monoesters. In particular, very long chain fatty acids with 25-29 carbons existed for the most part as iso or anteiso branched-chain fatty acids. n-3 fatty acid deficiency was decreased the amount of meibum secretion from meibomian gland without change of fatty acid composition. These results suggest that the n-3 fatty acid deficiency causes the enhancement of evaporation of tear film by reducing oily tear secretion along with the decrease of meibomian gland function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Growth of Synthrophomonas wolfei on unsaturated short chain fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Amos, D.A.; McInerney, M.J. (Univ. of Oklahoma, Norman, OK (United States))

    1990-01-01

    The anaerobic fatty acid-degrading syntrophic bacterium, Syntrophomonas wolfei, was grown in pure culture with either trans-2-pentenoate, trans-2-hexenoate, trans-3-hexenoate, or trans, trans-2, 4-hexadienoate as the substrate. Trans-2-pentenoate was fermented to acetate, propionate, butyrate, and valerate. Acetate, butyrate and hexanoate were produced from the six-carbon mono- and di-unsaturated acids. Propionate was also product from the trans, trans-2, 4-hexadienoate which suggested that compound was degraded by another pathway in addition to [beta]-oxidation. The transient production of trans-2-hexenoate from trans-3-hexenoate suggested that the position of the double bound shifted from carbon-3 to carbon-2 prior to [beta]-oxidation. The specific growth rate decreased with increasing carbon length and degree of unsaturation. Molar growth yields ranged from 8.4 to 17.5 mg (dry wt.) per mmol and suggested that energy was conserved not only from substrate-level phosphorylation, but also from the reduction of unsaturated substrate.

  16. Efficient production of free fatty acids from soybean meal carbohydrates.

    Science.gov (United States)

    Wang, Dan; Thakker, Chandresh; Liu, Ping; Bennett, George N; San, Ka-Yiu

    2015-11-01

    Conversion of biomass feedstock to chemicals and fuels has attracted increasing attention recently. Soybean meal, containing significant quantities of carbohydrates, is an inexpensive renewable feedstock. Glucose, galactose, and fructose can be obtained by enzymatic hydrolysis of soluble carbohydrates of soybean meal. Free fatty acids (FFAs) are valuable molecules that can be used as precursors for the production of fuels and other value-added chemicals. In this study, free fatty acids were produced by mutant Escherichia coli strains with plasmid pXZ18Z (carrying acyl-ACP thioesterase (TE) and (3R)-hydroxyacyl-ACP dehydratase) using individual sugars, sugar mixtures, and enzymatic hydrolyzed soybean meal extract. For individual sugar fermentations, strain ML211 (MG1655 fadD(-) fabR(-) )/pXZ18Z showed the best performance, which produced 4.22, 3.79, 3.49 g/L free fatty acids on glucose, fructose, and galactose, respectively. While the strain ML211/pXZ18Z performed the best with individual sugars, however, for sugar mixture fermentation, the triple mutant strain XZK211 (MG1655 fadD(-) fabR(-) ptsG(-) )/pXZ18Z with an additional deletion of ptsG encoding the glucose-specific transporter, functioned the best due to relieved catabolite repression. This strain produced approximately 3.18 g/L of fatty acids with a yield of 0.22 g fatty acids/g total sugar. Maximum free fatty acids production of 2.78 g/L with a high yield of 0.21 g/g was achieved using soybean meal extract hydrolysate. The results suggested that soybean meal carbohydrates after enzymatic treatment could serve as an inexpensive feedstock for the efficient production of free fatty acids. © 2015 Wiley Periodicals, Inc.

  17. Effect of intravenous omega-3 fatty acid infusion and hemodialysis on fatty acid composition of free fatty acids and phospholipids in patients with end-stage renal disease.

    Science.gov (United States)

    Madsen, Trine; Christensen, Jeppe Hagstrup; Toft, Egon; Aardestrup, Inge; Lundbye-Christensen, Søren; Schmidt, Erik B

    2011-01-01

    Patients treated with hemodialysis (HD) have been reported to have decreased levels of ω-3 polyunsaturated fatty acids (PUFAs) in plasma and cells. The aim of this study was to investigate the effect of ω-3 PUFAs administered intravenously during HD, as well as the effect of HD treatment, on the fatty acid composition of plasma free fatty acids (FFAs), plasma phospholipids, and platelet phospholipids. Forty-four HD patients were randomized to groups receiving either a single dose of a lipid emulsion containing 4.1 g of ω-3 PUFAs or placebo (saline) administered intravenously during HD. Blood was drawn immediately before (baseline) and after (4 hours) HD and before the next HD session (48 hours). Fatty acid composition was measured using gas chromatography. The increase in ω-3 FFAs was greater in the ω-3 PUFA group compared with the placebo group, whereas the increase in total FFAs was similar between the 2 groups. In the ω-3 PUFA group, ω-3 PUFAs in plasma phospholipids were higher after 48 hours than at baseline, and in platelet phospholipids, ω-3 PUFAs increased after 4 hours. In the placebo group, no changes were observed in ω-3 PUFAs in plasma and platelet phospholipids. Intravenous ω-3 PUFAs administered during HD caused a transient selective increase in ω-3 FFA concentration. Furthermore, ω-3 PUFAs were rapidly incorporated into platelets, and the content of ω-3 PUFAs in plasma phospholipids increased after 48 hours.

  18. Contribution of fatty acids released from lipolysis of plasma triglycerides to total plasma fatty acid flux and tissue-specific fatty acid uptake

    NARCIS (Netherlands)

    Teusink, Bas; Voshol, Peter J.; Dahlmans, Vivian E. H.; Rensen, Patrick C. N.; Pijl, Hanno; Romijn, Johannes A.; Havekes, Louis M.

    2003-01-01

    There is controversy over the extent to which fatty acids (FAs) derived from plasma free FAs (FFAs) or from hydrolysis of plasma triglycerides (TGFAs) form communal or separate pools and what the contribution of each FA source is to cellular FA metabolism. Chylomicrons and lipid emulsions were

  19. Oxygen uptake during the γ-irradiation of fatty acids

    International Nuclear Information System (INIS)

    Metwally, M.M.K.; Moore, J.S.

    1987-01-01

    The radiation-induced oxidation of saturated and unsaturated fatty acids in aqueous solutions has been estimated by measurement of the continuous uptake of oxygen using an oxygen electrode. Chain reactions, initiated by HO radicals, are easily identified to be occurring in the case of unsaturated fatty acids. Other mild oxidation agents, namely (SCN)2 -anion radicals, Br 2 - anion radicals and N 3 -anion radicals, are also found to be capable of oxidizing the polyunsaturated fatty acids. Evidence is presented the O 2- anion radicals may also initiate peroxidation. The oxidation of the polyunsaturated fatty acids is dependent on dose rate, fatty acid concentration, temperature and the presence of antioxidant and other protective agents. Kinetic studies of the reaction of (SCN)2 - anion radicals and Br 2 - anion radicals with linoleic and linolenic acids have been carried out using pulse radiolysis. The bimolecular rate constants for both radical species with the lipids are approx 10 7 mol-? 1 dm 3 s -1 , below their critical micelle concentrations, and decrease at higher concentrations due to micelle formation. (author)

  20. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Melton, Elaina M. [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States); Center for Cardiovascular Sciences, Albany Medical College, Albany, NY (United States); Cerny, Ronald L. [Department of Chemistry, University of Nebraska, Lincoln, NE (United States); DiRusso, Concetta C. [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States); Black, Paul N., E-mail: pblack2@unl.edu [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States)

    2013-11-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  1. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    International Nuclear Information System (INIS)

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2013-01-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  2. Free and Bound Fatty-Acids and Hydroxy Fatty-Acids in the Living and Decomposing Eelgrass Zostera-Marina L

    NARCIS (Netherlands)

    De Leeuw, J.; Rijpstra, W.I.C.; Nienhuis, P.H.

    1995-01-01

    Very early diagenetic processes of free, esterified and amide or glycosidically bound fatty acids and hydroxy fatty acids present in well documented samples of living and decomposing eelgrass (Zostera marina L.) were investigated. Free and esterified fatty acids decreased significantly over a period

  3. Radioiodinated free fatty acids; can we measure myocardial metabolism

    International Nuclear Information System (INIS)

    Visser, F.C.; Eenige, M.J. van; Duwel, C.M.B.; Roos, J.P.

    1986-01-01

    To investigate the feasibility of radioiodinated free fatty acids for ''metabolic imaging'', the kinetics and distribution pattern of metabolites of heptadecanoic acid I 131 (HDA I 131) were studied in canine myocardium throughout metabolic interventions. In control dogs and in dogs during glucose/insulin and sodium lactate infusion, biopsy specimens were taken during a go-min period after HDA I 131 administration and analyzed. Clearly distinct patterns of distribution and elimination were seen during the metabolic interventions, indicating the usefulness of iodinated fatty acids for metabolic studies. (orig.)

  4. Fatty acid composition of the cypselae of two endemic Centaurea species (Asteraceae

    Directory of Open Access Journals (Sweden)

    Janaćković Peđa

    2017-04-01

    Full Text Available The fatty acid composition of cypselae of two endemic species from Macedonia, Centaurea galicicae and C. tomorosii, is analysed for the first time, using GC/MS (gas chromatography/mass spectrometry. In the cypselae of C. galicicae, 11 fatty acids were identified, palmitic (hexadecanoic acid (32.5% being the most dominant. Other fatty acids were elaidic [(E-octadec-9-enoic] acid (13.9%, stearic (octadecanoic acid (12.8% and linoleic [(9Z,12Z-9,12-octadecadienoic] acid (10.6%. Of the 11 identified fatty acids, seven were saturated fatty acids, which represented 41.5% of total fatty acids, while unsaturated fatty acids altogether constituted 58.5%. In the cypselae of C. tomorosii, five fatty acids were identified. The major fatty acid was linolelaidic [(9E,12E-octadeca- 9,12-dienoic] acid (48.8%. The second most dominant fatty acid was oleic [(9Z-octadec-9-enoic] acid (34.2%. Thus, unsaturated fatty acids were present with 83%. The other three fatty acids identified were saturated fatty acids, which represented 17% of total fatty acids. As a minor fatty acid, levulinic (4-oxopentanoic acid was determined in both C. galicicae and C. tomorosii (0.3% and 3.2%, respectively. The obtained results differ from published data on dominant fatty acids in the cypselae of other species belonging to the same section as the species investigated in the present paper (section Arenariae, subgenus Acrolophus, genus Centaurea. They also, differ from published data referable to other genera belonging to the same tribe (Cardueae. The general chemotaxonomic significance of fatty acids is discussed.

  5. Total lipid accumulation and fatty acid profiles of microalga Spirulina ...

    African Journals Online (AJOL)

    Nutrient limitation in terms of nitrogen and phosphorus increased lipid accumulation under depleted growth in Spirulina strains. Nitrogen limitation was found more effective than phosphorus in accumulating lipid. The fatty acid profile was variable: palmitic (48%), linolenic (21%) and linoleic acids (15%) were the most ...

  6. Continuous Cultivation of Photosynthetic Bacteria for Fatty Acids Production

    DEFF Research Database (Denmark)

    Kim, Dong-Hoon; Lee, Ji-Hye; Hwang, Yuhoon

    2013-01-01

    In the present work, we introduced a novel approach for microbial fatty acids (FA) production. Photosynthetic bacteria, Rhodobacter sphaeroides KD131, were cultivated in a continuous-flow, stirred-tank reactor (CFSTR) at various substrate (lactate) concentrations.At hydraulic retention time (HRT)....... sphaeroides was around 35% of dry cell weight, mainly composed of vaccenic acid (C18:1, omega-7)....

  7. Fatty Acid Profile and Physicochemical Properties of Landolphia ...

    African Journals Online (AJOL)

    Methyl esters of the inherent fatty acids were generated by transmethylation while the physicochemical properties of the NL was determined by official methods of the Association of Official Analytical Chemists (AOAC). Results: The acid, iodine, saponification and peroxide values were 2.81 ± 0.01 mg KOH/g, 67.26 ± 1.05.

  8. Synergistic effects of squalene and polyunsaturated fatty acid ...

    African Journals Online (AJOL)

    GREGO

    2007-04-16

    Apr 16, 2007 ... (EPA, C20:5n-3) and docosahexaenoic acid (DHA,. C22:6n-3) present in ... is secreted in human serum, where it protects the skin from ultraviolet radiation ..... Omega-3 fatty acids from fish oils and cardiovascular disease. Mol.

  9. Relations Between Serum Essential Fatty Acids, Cytokines (IL-6 & IL ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the relations between free radical generation, interleukins (IL-6 & IL-8), apoptotic marker soluble Fas (sFas), and the level of ... IL-6, IL-8 and sFas whereas serum fatty acid revealed that Linoleicacid (LA) and alpha linolenic acid (ALA) were significantly decreased in the studied cases .

  10. Fatty acids profile of pulp and nuts of Brazilian fruits

    Directory of Open Access Journals (Sweden)

    Paulo Afonso da Costa

    2011-12-01

    Full Text Available Fruits and nuts from the North and Northeast regions of Brazil were collected to determine the fatty acid profile of their oils. The species studied were Brazil (Bertholletia excelsa H.B.K., Mucajá (Couma rigida M., Inajá (Maximiliana maripa D., Jenipapo (Genipa Americana L., and Buriti (Mauritia flexuosa L. nuts. Fatty acid methyl esters were analyzed by gas chromatography with flame ionization detection (GC-FID. Brazil nut major fatty acid was 18:3n-3 (α-linolenic acid, and Buriti nut had approximately 23 times more 18:3n-3 than the pulp. Mucajá nut presented high content of 12:0 (lauric acid and 16:0 (palmitic acid, and Mucajá pulp showed significant levels of 18:2n-6 (linoleic acid. Considering the PUFA (polyunsaturated fatty acid sum values, almost all fruits and nuts analyzed presented very high levels of these compounds. Regarding n-6/n-3 ratio, only Brazil Nut, Buriti Nut, Inajá pulp, and Jenipapo pulp corresponded to the desired profile. These Brazilian fruits and nuts could be of potential interest due to their high nutritive value and lipid content.

  11. Free Fatty Acids Profiles Are Related to Gut Microbiota Signatures and Short-Chain Fatty Acids

    Directory of Open Access Journals (Sweden)

    Javier Rodríguez-Carrio

    2017-07-01

    Full Text Available A growing body of evidence highlights the relevance of free fatty acids (FFA for human health, and their role in the cross talk between the metabolic status and immune system. Altered serum FFA profiles are related to several metabolic conditions, although the underlying mechanisms remain unclear. Recent studies have highlighted the link between gut microbiota and host metabolism. However, although most of the studies have focused on different clinical conditions, evidence on the role of these mediators in healthy populations is lacking. Therefore, we have addressed the analysis of the relationship among gut microbial populations, short-chain fatty acid (SCFA production, FFA levels, and immune mediators (IFNγ, IL-6, and MCP-1 in 101 human adults from the general Spanish population. Levels of selected microbial groups, representing the major phylogenetic types present in the human intestinal microbiota, were determined by quantitative PCR. Our results showed that the intestinal abundance of Akkermansia was the main predictor of total FFA serum levels, displaying a negative association with total FFA and the pro-inflammatory cytokine IL-6. Similarly, an altered FFA profile, identified by cluster analysis, was related to imbalanced levels of Akkermansia and Lactobacillus as well as increased fecal SCFA, enhanced IL-6 serum levels, and higher prevalence of subclinical metabolic alterations. Although no differences in nutritional intakes were observed, divergent patterns in the associations between nutrient intakes with intestinal microbial populations and SCFA were denoted. Overall, these findings provide new insights on the gut microbiota–host lipid metabolism axis and its potential relevance for human health, where FFA and SCFA seem to play an important role.

  12. The multiple roles of Fatty Acid Handling Proteins in brain

    Directory of Open Access Journals (Sweden)

    Valentine SF Moullé

    2012-09-01

    Full Text Available Lipids are essential components of a living organism as energy source but also as constituent of the membrane lipid bilayer. In addition fatty acid (FA derivatives interact with many signaling pathways. FAs have amphipathic properties and therefore require being associated to protein for both transport and intracellular trafficking. Here we will focus on several fatty acid handling proteins, among which the fatty acid translocase/CD36 (FAT/CD36, members of fatty acid transport proteins (FATPs, and lipid chaperones fatty acid-binding proteins (FABPs. A decade of extensive studies has helped decipher the mechanism of action of these proteins in peripheral tissue with high lipid metabolism. However, considerably less information is available regarding their role in the brain, despite the high lipid content of this tissue. This review will primarily focus on the recent studies that have highlighted the crucial role of lipid handling proteins in brain FA transport, neuronal differentiation and development, cognitive processes and brain diseases. Finally a special focus will be made on the recent studies that have revealed the role of FAT/CD36 in brain lipid sensing and nervous control of energy balance.

  13. Functional properties and fatty acids profile of different beans varieties.

    Science.gov (United States)

    Lo Turco, Vincenzo; Potortì, Angela Giorgia; Rando, Rossana; Ravenda, Pietro; Dugo, Giacomo; Di Bella, Giuseppa

    2016-10-01

    Dried seeds of four varieties of Phaseolus vulgaris, three of Vigna unguiculata ssp. unguiculata and two of Vigna angularis grown and marketed in Italy, Mexico, India, Japan, Ghana and Ivory Coast were analysed for fatty acids content. In oils from seeds of P. vulgaris, the main fatty acids were linolenic (34.7-41.5%) and linoleic (30.7-40.3%), followed by palmitic (10.7-16.8%). The first three aforementioned fatty acids in the lipid fraction of V. unguiculata varieties were 28.4, 28.7 and 26.2%, respectively; while in V. angularis varieties, main fatty acids were linoleic (36.4-39.1%) and palmitic (26.9-33.3%), followed by linolenic (17.9-22.2%). Statistical analyses indicate that botanical species play a rule in bean fatty acids distribution, while the same was not verified for geographical origin. Furthermore, the atherogenic index (AI) and the thrombogenic index (TI) were investigated for health and nutritional information. The results showed that these wide spread legumes have functional features to human health.

  14. Omega-3 Fatty Acids and Skeletal Muscle Health

    Directory of Open Access Journals (Sweden)

    Stewart Jeromson

    2015-11-01

    Full Text Available Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle.

  15. Kinetics of fatty acid binding ability of glycated human serum albumin

    Indian Academy of Sciences (India)

    Unknown

    1-anilino-8-naphtharene sulphonic acid; diabetes, dissociation constant; fatty acids binding; fluorescence displacement ... thought to play an important role in the complications of ..... concentration of serum fatty acid level in type 2 diabetes,.

  16. Positional specificity of saturated and unsaturated fatty acids in phosphatidic acid from rat liver

    NARCIS (Netherlands)

    Possmayer, F.; Scherphof, G.L.; Dubbelman, T.M.A.R.; Golde, L.M.G. van; Deenen, L.L.M. van

    1969-01-01

    1. 1. The relative incorporation of a number of radioactive fatty acids into the different glycerolipids of rat liver microsomes has been investigated. 2. 2. Studies on the distribution of the radioactivity incorporated into phosphatidylcholine, phosphatidylethanolamine and phosphatidic acid

  17. The effect of conjugated linoleic acid on the fatty acid composition of ...

    African Journals Online (AJOL)

    The effect of conjugated linoleic acid on the fatty acid composition of different tissues and yolk lipids in pigeons. ... South African Journal of Animal Science ... Eight established breeding pairs per group were fed either a commercially pelleted pigeon diet mixed with 0.5% safflower oil (SFO) or 0.5% CLA for 12 weeks. For fatty ...

  18. N-3 fatty acids reduced trans fatty acids retention and increased docosahexaenoic acid levels in the brain.

    Science.gov (United States)

    Lavandera, Jimena Verónica; Saín, Juliana; Fariña, Ana Clara; Bernal, Claudio Adrián; González, Marcela Aída

    2017-09-01

    The levels of docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) are critical for the normal structure and function of the brain. Trans fatty acids (TFA) and the source of the dietary fatty acids (FA) interfere with long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis. The aim of this study was to investigate the effect of TFA supplementation in diets containing different proportions of n-9, n-6, and n-3 FA on the brain FA profile, including the retention of TFA, LC-PUFA levels, and n-6/n-3 PUFA ratios. These parameters were also investigated in the liver, considering that LC-PUFA are mainly bioconverted from their dietary precursors in this tissue and transported by serum to the brain. Also, stearoyl-CoA desaturase-1 (SCD1) and sterol regulatory element-binding protein-1c (SREBP-1c) gene expressions were evaluated. Male CF1 mice were fed (16 weeks) diets containing different oils (olive, corn, and rapeseed) with distinct proportions of n-9, n-6, and n-3 FA (55.2/17.2/0.7, 32.0/51.3/0.9, and 61.1/18.4/8.6), respectively, substituted or not with 0.75% of TFA. FA composition of the brain, liver, and serum was assessed by gas chromatography. TFA were incorporated into, and therefore retained in the brain, liver, and serum. However, the magnitude of retention was dependent on the tissue and type of isomer. In the brain, total TFA retention was lower than 1% in all diets. Dietary n-3 PUFA decreased TFA retention and increased DHA accretion in the brain. The results underscore the importance of the type of dietary FA on the retention of TFA in the brain and also on the changes of the FA profile.

  19. Omega-3 fatty acid supplementation and cardiovascular disease

    Science.gov (United States)

    Jump, Donald B.; Depner, Christopher M.; Tripathy, Sasmita

    2012-01-01

    Epidemiological studies on Greenland Inuits in the 1970s and subsequent human studies have established an inverse relationship between the ingestion of omega-3 fatty acids [C20–22 ω 3 polyunsaturated fatty acids (PUFA)], blood levels of C20–22 ω 3 PUFA, and mortality associated with cardiovascular disease (CVD). C20–22 ω 3 PUFA have pleiotropic effects on cell function and regulate multiple pathways controlling blood lipids, inflammatory factors, and cellular events in cardiomyocytes and vascular endothelial cells. The hypolipemic, anti-inflammatory, anti-arrhythmic properties of these fatty acids confer cardioprotection. Accordingly, national heart associations and government agencies have recommended increased consumption of fatty fish or ω 3 PUFA supplements to prevent CVD. In addition to fatty fish, sources of ω 3 PUFA are available from plants, algae, and yeast. A key question examined in this review is whether nonfish sources of ω 3 PUFA are as effective as fatty fish-derived C20–22 ω 3 PUFA at managing risk factors linked to CVD. We focused on ω 3 PUFA metabolism and the capacity of ω 3 PUFA supplements to regulate key cellular events linked to CVD. The outcome of our analysis reveals that nonfish sources of ω 3 PUFA vary in their capacity to regulate blood levels of C20–22 ω 3 PUFA and CVD risk factors. PMID:22904344

  20. Role of 3-Hydroxy Fatty Acid-Induced Hepatic Lipotoxicity in Acute Fatty Liver of Pregnancy

    Directory of Open Access Journals (Sweden)

    Sathish Kumar Natarajan

    2018-01-01

    Full Text Available Acute fatty liver of pregnancy (AFLP, a catastrophic illness for both the mother and the unborn offspring, develops in the last trimester of pregnancy with significant maternal and perinatal mortality. AFLP is also recognized as an obstetric and medical emergency. Maternal AFLP is highly associated with a fetal homozygous mutation (1528G>C in the gene that encodes for mitochondrial long-chain hydroxy acyl-CoA dehydrogenase (LCHAD. The mutation in LCHAD results in the accumulation of 3-hydroxy fatty acids, such as 3-hydroxy myristic acid, 3-hydroxy palmitic acid and 3-hydroxy dicarboxylic acid in the placenta, which are then shunted to the maternal circulation leading to the development of acute liver injury observed in patients with AFLP. In this review, we will discuss the mechanistic role of increased 3-hydroxy fatty acid in causing lipotoxicity to the liver and in inducing oxidative stress, mitochondrial dysfunction and hepatocyte lipoapoptosis. Further, we also review the role of 3-hydroxy fatty acids in causing placental damage, pancreatic islet β-cell glucolipotoxicity, brain damage, and retinal epithelial cells lipoapoptosis in patients with LCHAD deficiency.

  1. Role of 3-Hydroxy Fatty Acid-Induced Hepatic Lipotoxicity in Acute Fatty Liver of Pregnancy

    Science.gov (United States)

    Ibdah, Jamal A.

    2018-01-01

    Acute fatty liver of pregnancy (AFLP), a catastrophic illness for both the mother and the unborn offspring, develops in the last trimester of pregnancy with significant maternal and perinatal mortality. AFLP is also recognized as an obstetric and medical emergency. Maternal AFLP is highly associated with a fetal homozygous mutation (1528G>C) in the gene that encodes for mitochondrial long-chain hydroxy acyl-CoA dehydrogenase (LCHAD). The mutation in LCHAD results in the accumulation of 3-hydroxy fatty acids, such as 3-hydroxy myristic acid, 3-hydroxy palmitic acid and 3-hydroxy dicarboxylic acid in the placenta, which are then shunted to the maternal circulation leading to the development of acute liver injury observed in patients with AFLP. In this review, we will discuss the mechanistic role of increased 3-hydroxy fatty acid in causing lipotoxicity to the liver and in inducing oxidative stress, mitochondrial dysfunction and hepatocyte lipoapoptosis. Further, we also review the role of 3-hydroxy fatty acids in causing placental damage, pancreatic islet β-cell glucolipotoxicity, brain damage, and retinal epithelial cells lipoapoptosis in patients with LCHAD deficiency. PMID:29361796

  2. Inhibition of rotavirus replication by downregulation of fatty acid synthesis.

    Science.gov (United States)

    Gaunt, Eleanor R; Cheung, Winsome; Richards, James E; Lever, Andrew; Desselberger, Ulrich

    2013-06-01

    Recently the recruitment of lipid droplets (LDs) to sites of rotavirus (RV) replication was reported. LDs are polymorphic organelles that store triacylglycerols, cholesterol and cholesterol esters. The neutral fats are derived from palmitoyl-CoA, synthesized via the fatty acid biosynthetic pathway. RV-infected cells were treated with chemical inhibitors of the fatty acid biosynthetic pathway, and the effects on viral replication kinetics were assessed. Treatment with compound C75, an inhibitor of the fatty acid synthase enzyme complex (FASN), reduced RV infectivity 3.2-fold (P = 0.07) and modestly reduced viral RNA synthesis (1.2-fold). Acting earlier in the fatty acid synthesis pathway, TOFA [5-(Tetradecyloxy)-2-furoic acid] inhibits the enzyme acetyl-CoA carboxylase 1 (ACC1). TOFA reduced the infectivity of progeny RV 31-fold and viral RNA production 6-fold. The effect of TOFA on RV infectivity and RNA replication was dose-dependent, and infectivity was reduced by administering TOFA up to 4 h post-infection. Co-treatment of RV-infected cells with C75 and TOFA synergistically reduced viral infectivity. Knockdown by siRNA of FASN and ACC1 produced findings similar to those observed by inhibiting these proteins with the chemical compounds. Inhibition of fatty acid synthesis using a range of approaches uniformly had a more marked impact on viral infectivity than on viral RNA yield, inferring a role for LDs in virus assembly and/or egress. Specific inhibitors of fatty acid metabolism may help pinpoint the critical structural and biochemical features of LDs that are essential for RV replication, and facilitate the development of antiviral therapies.

  3. Higher fatty acids in Chlorella vulgaris (pyrenoidosa): Content of indivudual acids and use of the algae for the preparation of higher fatty acids - 14C(G)

    International Nuclear Information System (INIS)

    Matucha, M.

    1975-01-01

    A survey of data on the occurrence of higher fatty acids in the lipids of C h l o r e l l a v u l g a r i s (pyrenoidosa) is presented with a view to the biosynthetical preparation of fatty acids- 14 C(G). (author)

  4. The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi.

    Science.gov (United States)

    Nagahashi, Gerald; Douds, David D

    2011-01-01

    Two hydroxy fatty acids, tentatively identified previously in carrot root exudates, were tested for their effects on hyphal growth of the arbuscular mycorrhizal (AM) fungus, Gigaspora gigantea (Nicol. and Gerd.) Gerdemann and Trappe. Best results were achieved with a long-term bioassay (7-8d) with nanomolar concentrations throughout the Petri dish in contrast to the rapid microinjection bioassay (16-24h) in which nanogram quantities were injected near growing hyphal tips. When 5nM 2-hydroxy fatty acids of various chain length were tested, the length of the hydroxyl fatty acid was significant since only 2-hydroxytetradecanoic acid (2OH-TDA) and to a slightly lesser degree, 2-hydroxydodecanoic acid (2OH-DDA) induced a hyphal growth response while 2-hydroxydecanoic acid (2OH-DA) and 2-hydroxyhexadecanoic (2OH-HDA) acid did not. The position of the hydroxyl group was critical since 5nM 3-hydroxytetradecanoic acid (3OH-TDA) had no effect on hyphal growth. The length of the non-hydroxy containing straight chain fatty acid, per se, did not appear significant since none of these fatty acids had an effect on hyphal growth. The morphological growth response promoted by 2OH-TDA consisted of multiple lateral branches, spaced fairly regularly apart, along the primary germ tubes as well as some lateral branch formation off the major secondary hyphae. This growth response was identical to that observed when germinated spores were allowed to grow towards cultured carrot roots in vitro. This response to 2OH-TDA also was observed with an unidentified Gigaspora species but no morphological response was observed with Glomus intraradices Schenck and Smith. The results indicate that 2-hydroxy fatty acids are another putative category of root exudate signals perceived by Gigaspora species, stimulating an increase in elongated lateral branches. Published by Elsevier Ltd.

  5. Simultaneous analysis of plasma free fatty acids and their 3-hydroxy analogs in fatty acid beta-oxidation disorders

    NARCIS (Netherlands)

    Costa, C. G.; Dorland, L.; Holwerda, U.; de Almeida, I. T.; Poll-The, B. T.; Jakobs, C.; Duran, M.

    1998-01-01

    We present a new derivatization procedure for the simultaneous gas chromatographic-mass spectrometric analysis of free fatty acids and 3-hydroxyfatty acids in plasma. Derivatization of target compounds involved trifluoroacetylation of hydroxyl groups and tert-butyldimethylsilylation of the carboxyl

  6. Is the fatty acid composition of Daphnia galeata determined by the fatty acid composition of the ingested diet?

    NARCIS (Netherlands)

    Weers, P.M.M.; Siewertsen, K.; Gulati, R.D.

    1997-01-01

    1. The fatty acid (FA) composition of Daphnia galeata and their algal food was analysed and showed many similarities, however, some significant differences were also found in the relative abundance of the FA C16:4 omega 3 and docosahexaenoic acid (DHA). Their relative abundances were much lower in

  7. Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1.

    Science.gov (United States)

    Ranjan Moharana, Tushar; Byreddy, Avinesh R; Puri, Munish; Barrow, Colin; Rao, Nalam Madhusudhana

    2016-01-01

    Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids.

  8. Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures

    DEFF Research Database (Denmark)

    Olsson, P.A.; Bååth, E.; Jakobsen, I.

    1997-01-01

    The distribution of an arbuscular mycorrhizal (AM) fungus between soil and roots, and between mycelial and storage structures, was studied by use of the fatty acid signature 16:1 omega 5. Increasing the soil phosphorus level resulted in a decrease in the level of the fatty acid 16:1 omega 5...... in the soil and roots. A similar decrease was detected by microscopic measurements of root colonization and of the length of AM fungal hyphae in the soil. The fatty acid 16:1 omega 5 was estimated from two types of lipids, phospholipids and neutral lipids, which mainly represent membrane lipids and storage...... lipids, respectively. The numbers of spores of the AM fungus formed in the soil correlated most closely, with neutral lipid fatty acid 16:1 omega 5, whereas the hyphal length in the soil correlated most closely with phospholipid fatty acid 16:1 omega 5. The fungal neutral lipid/phospholipid ratio...

  9. Microalgal Species Selection for Biodiesel Production Based on Fuel Properties Derived from Fatty Acid Profiles

    Directory of Open Access Journals (Sweden)

    Md. Nurun Nabi

    2013-10-01

    Full Text Available Physical and chemical properties of biodiesel are influenced by structural features of the fatty acids, such as chain length, degree of unsaturation and branching of the carbon chain. This study investigated if microalgal fatty acid profiles are suitable for biodiesel characterization and species selection through Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE and Graphical Analysis for Interactive Assistance (GAIA analysis. Fatty acid methyl ester (FAME profiles were used to calculate the likely key chemical and physical properties of the biodiesel [cetane number (CN, iodine value (IV, cold filter plugging point, density, kinematic viscosity, higher heating value] of nine microalgal species (this study and twelve species from the literature, selected for their suitability for cultivation in subtropical climates. An equal-parameter weighted (PROMETHEE-GAIA ranked Nannochloropsis oculata, Extubocellulus sp. and Biddulphia sp. highest; the only species meeting the EN14214 and ASTM D6751-02 biodiesel standards, except for the double bond limit in the EN14214. Chlorella vulgaris outranked N. oculata when the twelve microalgae were included. Culture growth phase (stationary and, to a lesser extent, nutrient provision affected CN and IV values of N. oculata due to lower eicosapentaenoic acid (EPA contents. Application of a polyunsaturated fatty acid (PUFA weighting to saturation led to a lower ranking of species exceeding the double bond EN14214 thresholds. In summary, CN, IV, C18:3 and double bond limits were the strongest drivers in equal biodiesel parameter-weighted PROMETHEE analysis.

  10. Variability in coconut (Cocos nucifera L.) germplasm and hybrids for fatty acid profile of oil.

    Science.gov (United States)

    Kumar, S Naresh

    2011-12-28

    Coconut oil, the main product of coconut fruit, is the richest source of glycerol and lauric acid and hence is called lauric oil. This paper reports the fatty acid profile of oil from 60 Talls, 14 Dwarfs, and 34 hybrids. These include collections from 13 countries covering a large coconut-growing area of the world, apart from the indigenous ones. Capillary gas chromatography analysis of oil indicated a wider variation for the fatty acid profile than earlier reported. Apart from this, for the first time other fatty acids such as behenic and lignoceric acids were detected. Oil from cultivars and hybrids of coconut has significantly differed, particularly for commercially important fatty acids such as lauric acid and unsaturated fatty acids. However, coconut oil seems to have a conserved fatty acid profile, mainly because of low unsaturated fatty acids, indicating the possibility of grouping cultivars on the basis of their fatty acid profiles. The cluster analysis based on fatty acid profile indicated grouping together of geographically and typically closely related cultivars. Cultivars with high concentrations of specific fatty acids can be of potential use for industrial exploitation, whereas those with high concentrations of short- and medium-chain fatty acids and unsaturated fatty acids are more suitable for human consumption. Cultivars and hybrids with high and low values for each of the fatty acids are also identified.

  11. Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis

    Directory of Open Access Journals (Sweden)

    Rawat Richa

    2011-05-01

    Full Text Available Abstract Background Cyclopropane fatty acids (CPA have been found in certain gymnosperms, Malvales, Litchi and other Sapindales. The presence of their unique strained ring structures confers physical and chemical properties characteristic of unsaturated fatty acids with the oxidative stability displayed by saturated fatty acids making them of considerable industrial interest. While cyclopropenoid fatty acids (CPE are well-known inhibitors of fatty acid desaturation in animals, CPE can also inhibit the stearoyl-CoA desaturase and interfere with the maturation and reproduction of some insect species suggesting that in addition to their traditional role as storage lipids, CPE can contribute to the protection of plants from herbivory. Results Three genes encoding cyclopropane synthase homologues GhCPS1, GhCPS2 and GhCPS3 were identified in cotton. Determination of gene transcript abundance revealed differences among the expression of GhCPS1, 2 and 3 showing high, intermediate and low levels, respectively, of transcripts in roots and stems; whereas GhCPS1 and 2 are both expressed at low levels in seeds. Analyses of fatty acid composition in different tissues indicate that the expression patterns of GhCPS1 and 2 correlate with cyclic fatty acid (CFA distribution. Deletion of the N-terminal oxidase domain lowered GhCPS's ability to produce cyclopropane fatty acid by approximately 70%. GhCPS1 and 2, but not 3 resulted in the production of cyclopropane fatty acids upon heterologous expression in yeast, tobacco BY2 cell and Arabidopsis seed. Conclusions In cotton GhCPS1 and 2 gene expression correlates with the total CFA content in roots, stems and seeds. That GhCPS1 and 2 are expressed at a similar level in seed suggests both of them can be considered potential targets for gene silencing to reduce undesirable seed CPE accumulation. Because GhCPS1 is more active in yeast than the published Sterculia CPS and shows similar activity when expressed in model

  12. The effect of chronic exposure to fatty acids

    DEFF Research Database (Denmark)

    Xiao, J.; Gregersen, S.; Kruhøffer, Mogens

    2001-01-01

    Fatty acids affect insulin secretion of pancreatic beta-cells. Investigating gene expression profiles may help to characterize the underlying mechanism. INS-1 cells were cultured with palmitate (0, 50, and 200 microM) for up to 44 d. Insulin secretion and expressions of 8740 genes were studied. We...... 44, respectively. Genes involved in fatty acid oxidation were up-regulated, whereas those involved in glycolysis were down-regulated with 200 microM palmitate. A suppression of insulin receptor and insulin receptor substate-2 gene expression was found on d 44 in cells cultured at 200 microM palmitate....... In conclusion, chronic exposure to low palmitate alters insulin secretion as well as gene expression. The number of genes that changed expression was palmitate dose and exposure time dependent. Randle's fatty acid-glucose cycle seems to be operative on the gene transcription level. A modification of expression...

  13. Fatty acid and phytosterol content of commercial saw palmetto supplements.

    Science.gov (United States)

    Penugonda, Kavitha; Lindshield, Brian L

    2013-09-13

    Saw palmetto supplements are one of the most commonly consumed supplements by men with prostate cancer and/or benign prostatic hyperplasia (BPH). Some studies have found significant improvements in BPH and lower urinary tract symptoms (LUTS) with saw palmetto supplementation, whereas others found no benefits. The variation in the efficacy in these trials may be a result of differences in the putative active components, fatty acids and phytosterols, of the saw palmetto supplements. To this end, we quantified the major fatty acids (laurate, myristate, palmitate, stearate, oleate, linoleate) and phytosterols (campesterol, stigmasterol, β-sitosterol) in 20 commercially available saw palmetto supplements using GC-FID and GC-MS, respectively. Samples were classified into liquids, powders, dried berries, and tinctures. Liquid saw palmetto supplements contained significantly higher (p saw palmetto supplements may be the best choice for individuals who want to take a saw palmetto supplement with the highest concentrations of both fatty acids and phytosterols.

  14. Dietary fatty acids linking postprandial metabolic response and chronic diseases.

    Science.gov (United States)

    Ortega, Almudena; Varela, Lourdes M; Bermudez, Beatriz; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G

    2012-01-01

    Chronic diseases are by far one of the main causes of mortality in the world. One of the current global recommendations to counteract disability and premature death resulting from chronic diseases is to decrease the consumption of energy-dense high-fat diets, particularly those rich in saturated fatty acids (SFA). The most effective replacement for SFA in terms of risk factor outcomes for chronic disease are polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA). The biochemical basis for healthy benefits of such a dietary pattern has been widely evaluated under fasting conditions. However, the increasing amount of data available from multiple studies suggest that the postprandial state, i.e., "the period that comprises and follows a meal", plays an important, yet underappreciated, role in the genesis of numerous pathological conditions. In this review, the potential of MUFA, PUFA, and SFA to postprandially affect selected metabolic abnormalities related to chronic diseases is discussed.

  15. Three new fatty acid esters from the mushroom Boletus pseudocalopus.

    Science.gov (United States)

    Kim, Ki Hyun; Choi, Sang Un; Lee, Kang Ro

    2012-06-01

    A bioassay-guided fractionation and chemical investigation of a MeOH extract of the Korean wild mushroom Boletus pseudocalopus resulted in the identification of three new fatty acid esters, named calopusins A-C (1-3), along with two known fatty acid methyl esters (4-5). These new compounds are structurally unique fatty acid esters with a 2,3-butanediol moiety. Their structures were elucidated through 1D- and 2D-NMR spectroscopic data and GC-MS analysis as well as a modified Mosher's method. The new compounds 1-3 showed significant inhibitory activity against the proliferation of the tested cancer cell lines with IC(50) values in the range 2.77-12.51 μM.

  16. Regulation and limitations to fatty acid oxidation during exercise

    DEFF Research Database (Denmark)

    Jeppesen, Jacob; Kiens, Bente

    2012-01-01

    Fatty acids (FA) as fuel for energy utilization during exercise originate from different sources: FA transported in the circulation either bound to albumin or as triacylglycerol (TG) carried by very low density lipoproteins (VLDL) and FA from lipolysis of muscle TG stores (IMTG). Despite a high...... rate of energy expenditure during high intensity exercise the total fatty acid oxidation is suppressed to below that observed during moderate intensity exercise. Although this has been known for many years, the mechanisms behind this phenomenon are still not fully elucidated. A failure of adipose...... tissue to deliver sufficient fatty acids to exercising muscle has been proposed, but evidence is emerging that factors within the muscle might be of more importance. The high rate of glycolysis during high intensity exercise might be the "driving force" via the increased production of acetyl CoA which...

  17. Marine lipids and the bioavailability of omega-3 fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Müllertz, Anette

    2015-01-01

    of omega-3 fatty acids has been reported to be affected by several factors; among the important factors were the digestion and absorption processes of omega-3 containing lipids in the gastrointestinal tract. Both lipid structures and food structures can affect the bioavailability of omega-3 fatty acids....... In vitro studies provided a mechanistic understanding on the varied bioavailability caused by different lipid structures, the lower relative bioavailability of omega-3 fatty acids from FAEE formulation was closely related to the slower digestion rate of FAEE. Microencapsulated fish oil has often been used...... as a food additive because of its better chemical stability; studies showed that microencapsulation did not affect the bioavailability significantly. Even though food structures also affect the digestion and absorption of omega-3 containing lipids, several studies have shown that long-term intake of fish...

  18. A method for measuring fatty acid oxidation in C. elegans

    DEFF Research Database (Denmark)

    Elle, Ida Coordt; Rødkær, Steven Vestergaard; Fredens, Julius

    2012-01-01

    The nematode C. elegans has during the past decade proven to be a valuable model organism to identify and examine molecular mechanisms regulating lipid storage and metabolism. While the primary approach has been to identify genes and pathways conferring alterations in lipid accumulation, only a few...... recent studies have recognized the central role of fatty acid degradation in cellular lipid homeostasis. In the present study, we show how complete oxidation of fatty acids can be determined in live C. elegans by examining oxidation of tritium-labeled fatty acids to tritiated H2O that can be measured......, the present methodology can be used to delineate the role of specific genes and pathways in the regulation of β-oxidation in C. elegans....

  19. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei.

    Science.gov (United States)

    Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J

    2016-02-01

    Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC(12) but not BODIPY-FLC(5) to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC(12) to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC(12) was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  20. Drug Solubility in Fatty Acids as a Formulation Design Approach for Lipid-Based Formulations: A Technical Note.

    Science.gov (United States)

    Lee, Yung-Chi; Dalton, Chad; Regler, Brian; Harris, David

    2018-06-06

    Lipid-based drug delivery systems have been intensively investigated as a means of delivering poorly water-soluble drugs. Upon ingestion, the lipases in the gastrointestinal tract digest lipid ingredients, mainly triglycerides, within the formulation into monoglycerides and fatty acids. While numerous studies have addressed the solubility of drugs in triglycerides, comparatively few publications have addressed the solubility of drugs in fatty acids, which are the end product of digestion and responsible for the solubility of drug within mixed micelles. The objective of this investigation was to explore the solubility of a poorly water-soluble drug in fatty acids and raise the awareness of the importance of drug solubility in fatty acids. The model API (active pharmaceutical ingredient), a weak acid, is considered a BCS II compound with an aqueous solubility of 0.02 μg/mL and predicted partition coefficient >7. The solubility of API ranged from 120 mg/mL to over 1 g/mL in fatty acids with chain lengths across the range C18 to C6. Hydrogen bonding was found to be the main driver of the solubilization of API in fatty acids. The solubility of API was significantly reduced by water uptake in caprylic acid but not in oleic acid. This report demonstrates that solubility data generated in fatty acids can provide an indication of the solubility of the drug after lipid digestion. This report also highlights the importance of measuring the solubility of drugs in fatty acids in the course of lipid formulation development.

  1. Fatty acid compositions of triglycerides and free fatty acids in sebum depend on amount of triglycerides, and do not differ in presence or absence of acne vulgaris.

    Science.gov (United States)

    Akaza, Narifumi; Akamatsu, Hirohiko; Numata, Shigeki; Matsusue, Miyuki; Mashima, Yasuo; Miyawaki, Masaaki; Yamada, Shunji; Yagami, Akiko; Nakata, Satoru; Matsunaga, Kayoko

    2014-12-01

    To clarify the influence of the fatty acid composition of sebum in acne vulgaris, we investigated the amounts and fatty acid compositions of triglycerides (TG) and free fatty acids (FFA), and the amounts of cutaneous superficial Propionibacterium acnes in acne patients and healthy subjects. The foreheads of 18 female patients, 10 male patients, 10 healthy females and 10 healthy males were studied in a Japanese population. There were significant differences in the amounts of sebum, TG and cutaneous superficial P. acnes, as well as the fatty acid compositions of TG and FFA between acne patients and healthy subjects in females. Their fatty acid compositions were correlated with the amount of TG with or without acne. It was clarified that the fatty acid compositions of TG and FFA depended on the amount of TG, and there were no differences in the fatty acid composition in the presence and absence of acne. © 2014 Japanese Dermatological Association.

  2. Expression of a fatty acid-binding protein in yeast

    International Nuclear Information System (INIS)

    Scholz, H.

    1991-06-01

    The unicellular eukaryotic microorganism, Saccharomyces cerevisiae, transformed with a plasmid containing a cDNA fragment encoding bovine heart fatty acid-binding protein (H-FABP C ) under the control of the inducible yeast GAL10 promoter, expressed FABP during growth on galactose. The maximum level of immunoreactive FABP, identical in size and isoelectric point to native protein, was reached after approximately 16 hours of induction. In contrast, transcription of the gene was induced within half an hour. Both, protein and mRNA were unstable and degraded within 1 h after repression of transcription. Analysis of subcellular fractions showed that FABP was exclusively associated with the cytosol. FABP expressed in yeast cells was functional as was demonstrated by its capacity to bind long chain fatty acids in an in vitro assay. Growth of all transformants on galactose as the carbon source showed no phenotype at temperatures up to 37 deg C, but the growth of FABP-expressing cells at 37 deg C was significantly retarded. Among the biochemical effects of FABP expression on lipid metabolism is a marked reduction of chain elongation and desaturation of exogenously added 14 C-palmitic acid. This effect is most pronounced in triacylglycerols and phospholipids when cells grow at 30 deg C and 37 deg C, respectively. In an in vitro assay determining the desaturation of palmitoyl CoA by microsomal membranes cytosol with or without exo- or endogenous FABP showed the same stimulation of the reaction. The desaturation of exogenously added 14 C-stearic acid, the pattern of unlabelled fatty acids (saturated vs. unsaturated) and the distribution of exogenously added radioactive fatty acids (palmitic, stearic or oleic acid) among lipid classes was not significantly affected. Using high concentrations (1 mM) the uptake of fatty acids was first stimulated and then inhibited when FABP was expressed. (author)

  3. Bezafibrate in skeletal muscle fatty acid oxidation disorders

    DEFF Research Database (Denmark)

    Ørngreen, Mette Cathrine; Madsen, Karen Lindhardt; Preisler, Nicolai

    2014-01-01

    OBJECTIVE: To assess whether bezafibrate increases fatty acid oxidation (FAO) and lowers heart rate (HR) during exercise in patients with carnitine palmitoyltransferase (CPT) II and very long-chain acyl-CoA dehydrogenase (VLCAD) deficiencies. METHODS: This was a 3-month, randomized, double......, triglyceride, and free fatty acid concentrations; however, there were no changes in palmitate oxidation, FAO, or HR during exercise. CONCLUSION: Bezafibrate does not improve clinical symptoms or FAO during exercise in patients with CPT II and VLCAD deficiencies. These findings indicate that previous in vitro...

  4. Saturated and trans-fatty acids in UK takeaway food

    OpenAIRE

    Davies, Ian Glynn; Blackham, Toni; Jaworowska, Agnieszka; Taylor, Catherine; Ashton, Matthew; Stevenson, Leonard

    2016-01-01

    The aim of the study was to analyze the saturated fatty acid (SFA) and trans-fatty acid (TFA) contents of popular takeaway foods in the UK (including English, pizza, Chinese, Indian and kebab cuisine). Samples of meals were analyzed by an accredited public analyst laboratory for SFA and TFA. The meals were highly variable for SFA and TFA. English and Pizza meals had the highest median amount of SFA with 35.7 g/meal; Kebab meals were high in TFA with up to 5.2 g/meal. When compared to UK dieta...

  5. Reciprocal effects of 5-(tetradecyloxy)-2-furoic acid on fatty acid oxidation.

    Science.gov (United States)

    Otto, D A; Chatzidakis, C; Kasziba, E; Cook, G A

    1985-10-01

    Under certain incubation conditions 5-(tetradecyloxy)-2-furoic acid (TOFA) stimulated the oxidation of palmitate by hepatocytes, as observed by others. A decrease in malonyl-CoA concentration accompanied the stimulation of oxidation. Under other conditions, however, TOFA inhibited fatty acid oxidation. The observed effects of TOFA depended on the TOFA and fatty acid concentrations, the cell concentration, the time of TOFA addition relative to the addition of fatty acid, and the nutritional state of the animal (fed or starved). The data indicate that only under limited incubation conditions may TOFA be used as an inhibitor of fatty acid synthesis without inhibition of fatty acid oxidation. When rat liver mitochondria were preincubated with TOFA, ketogenesis from palmitate was slightly inhibited (up to 20%) at TOFA concentrations that were less than that of CoA, but the inhibition became almost complete (up to 90%) when TOFA was greater than or equal to the CoA concentration. TOFA had only slight or no inhibitory effects on the oxidation of palmitoyl-CoA, palmitoyl(-)carnitine, or butyrate. Since TOFA can be converted to TOFyl-CoA, the data suggest that the inhibition of fatty acid oxidation from palmitate results from the decreased availability of CoA for extramitochondrial activation of fatty acids. These data, along with previous data of others, indicate that inhibition of fatty acid oxidation by CoA sequestration is a common mechanism of a group of carboxylic acid inhibitors. A general caution is appropriate with regard to the interpretation of results when using TOFA in studies of fatty acid oxidation.

  6. Leukotriene B4 omega-hydroxylase in human polymorphonuclear leukocytes. Suicidal inactivation by acetylenic fatty acids.

    Science.gov (United States)

    Shak, S; Reich, N O; Goldstein, I M; Ortiz de Montellano, P R

    1985-10-25

    Human polymorphonuclear leukocytes (PMN) not only generate and respond to leukotriene B4 (LTB4), but also catabolize this mediator of inflammation rapidly and specifically by omega-oxidation (probably due to the action of a cytochrome P-450 enzyme). To develop pharmacologically useful inhibitors of the LTB4 omega-hydroxylase in human PMN, we devised a general scheme for synthesizing terminal acetylenic fatty acids based on the "acetylenic zipper" reaction. We found that the LTB4 omega-hydroxylase in intact PMN and in PMN sonicates is inactivated in a concentration-dependent fashion by terminal acetylenic analogues of lauric, palmitic, and stearic acids (i.e. 11-dodecynoic, 15-hexadecynoic, and 17-octadecynoic acids). Consistent with a suicidal process, inactivation of the LTB4 omega-hydroxylase requires molecular oxygen and NADPH, is time-dependent, and follows pseudo-first-order kinetics. Inactivation of the omega-hydroxylase by acetylenic fatty acids also is dependent on the terminal acetylenic moiety and the carbon chain length. Saturated fatty acids lacking a terminal acetylenic moiety do not inactivate the omega-hydroxylase. In addition, the two long-chain (C16, C18) acetylenic fatty acids inactivate the omega-hydroxylase at much lower concentrations (less than 5.0 microM) than those required for inactivation by the short-chain (C12) terminal acetylenic fatty acid (100 microM). Potent suicidal inhibitors of the LTB4 omega-hydroxylase in human PMN will help elucidate the roles played by LTB4 and its omega-oxidation products in regulating PMN function and in mediating inflammation.

  7. Metabolism of dietary fatty alcohol, fatty acid, and wax ester in carp

    International Nuclear Information System (INIS)

    Mankura, Mitsumasa; Kayama, Mitsu; Iijima, Noriaki.

    1987-01-01

    Lipids in various tissues of the carp, Cyprinus carpio were analyzed. The fates of force-fed [1- 14 C]palmitic acids, [1- 14 C]cetyl alcohol, and oleyl[1- 14 C]linoleate, were compared with those given in vitro experiments. Major lipid classes in all except adipose tissue were found to be polar lipids (phospholipids) and triacylglycerols. The major fatty acids in nearly all the tissues were 16 : 0, 18 : 1, 18 : 2, and 22 : 6. Although the radioactivity incorporation into wax esters from [1- 14 C]palmitic acid and [1- 14 C]cetyl alcohol for various tissue homogenates was quite high, in vivo incorporation of these labelled compounds into wax esters was very low and radioactivity was distributed mainly in the lipids of muscle, skin, hepatopancreas, intestine, and gill. Almost all the radioactivity in various tissues was present in phospatidylcholine and triacylglycerols. Most of the oleyl[1- 14 C]linoleate was easily hydrolyzed by various tissue homogenates. Force-fed oleyl[1- 14 C]linoleate was hydrolyzed in the intestine and then transported to other tissues, such as muscle, kin, gill, and hepatopancreas. Moreover, released radioactivity from oleyl[1- 14 C]linoleate was present in mainly phosphatidylcholine and triacylglycerols. Radioactivity was also detected in wax esters in plasma. Certain amounts for fatty acids released from [1- 14 C]triolein in the hepatopancreas homogenates were incorporated into wax esters; this was stimulated by the addition of oleyl alcohol. The present results indicate extensive hydrolysis of wax ester to possibly occur in the intestine and certain portions of the fatty alcohol moiety to be resterfied. The portions may be oxidized to fatty acids and which subsequently behave as dietary fatty acids. (author) 50 ref

  8. Heterologous Reconstitution of Omega-3 Polyunsaturated Fatty Acids in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sun Hee Kim

    2015-01-01

    Full Text Available Reconstitution of nonnative, very-long-chain polyunsaturated fatty acid (VLC-PUFA biosynthetic pathways in Arabidopsis thaliana was undertaken. The introduction of three primary biosynthetic activities to cells requires the stable coexpression of multiple proteins within the same cell. Herein, we report that C22 VLC-PUFAs were synthesized from C18 precursors by reactions catalyzed by Δ6-desaturase, an ELOVL5-like enzyme involved in VLC-PUFA elongation, and Δ5-desaturase. Coexpression of the corresponding genes (McD6DES, AsELOVL5, and PtD5DES under the control of the seed-specific vicilin promoter resulted in production of docosapentaenoic acid (22:5 n-3 and docosatetraenoic acid (22:4 n-6 as well as eicosapentaenoic acid (20:5 n-3 and arachidonic acid (20:4 n-6 in Arabidopsis seeds. The contributions of the transgenic enzymes and endogenous fatty acid metabolism were determined. Specifically, the reasonable synthesis of omega-3 stearidonic acid (18:4 n-3 could be a useful tool to obtain a sustainable system for the production of omega-3 fatty acids in seeds of a transgenic T3 line 63-1. The results indicated that coexpression of the three proteins was stable. Therefore, this study suggests that metabolic engineering of oilseed crops to produce VLC-PUFAs is feasible.

  9. Homocysteine regulates fatty acid and lipid metabolism in yeast.

    Science.gov (United States)

    Visram, Myriam; Radulovic, Maja; Steiner, Sabine; Malanovic, Nermina; Eichmann, Thomas O; Wolinski, Heimo; Rechberger, Gerald N; Tehlivets, Oksana

    2018-04-13

    S -Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S -adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. 21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glyceryl-lacto esters of fatty acids. 172.852... HUMAN CONSUMPTION Multipurpose Additives § 172.852 Glyceryl-lacto esters of fatty acids. Glyceryl-lacto esters of fatty acids (the lactic acid esters of mono- and diglycerides) may be safely used in food in...

  11. Separation of free fatty acids from high free fatty acid crude palm oil using short-path distillation

    Science.gov (United States)

    Japir, Abd Al-Wali; Salimon, Jumat; Derawi, Darfizzi; Bahadi, Murad; Yusop, Muhammad Rahimi

    2016-11-01

    The separation of free fatty acids (FFAs) was done by using short-path distillation (SPD). The separation parameters was at their boiling points, a feed amount of 2.3 mL/min, an operating pressure of 10 Torr, a condenser temperature of 60°C, and a rotor speed of 300 rpm. The physicochemical characteristics of oil before and after SPD were determined. The results showed that FFA % of 8.7 ± 0.3 and 0.9 ± 0.1 %, iodine value of 53.1 ± 0.4 and 52.7 ± 0.5 g I2/100 g, hydroxyl value of 32.5 ± 0.6 and 13.9 ± 1.1 mg KOH/g, unsaponifiable value of 0.31 ± 0.01 and 0.20 ± 0.15%, moisture content of 0.31 ± 0.01 and 0.24 ± 0.01 % for high free fatty acid crude palm oil before and after distillation, respectively. Gas chromatography (GC) results showed that the major fatty acids in crude palm oil (CPO) were palmitic acid (44.4% - 45%) followed by oleic acid (39.6% - 39.8%). In general, high free fatty acid crude palm oil after molecular distillation (HFFA-CPOAM) showed admirably physicochemical properties.

  12. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    International Nuclear Information System (INIS)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-01-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. 14 C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell

  13. Gene transfer of Chlorella vulgaris n-3 fatty acid desaturase optimizes the fatty acid composition of human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Meilan Xue

    2012-12-01

    Full Text Available Chlorella vulgaris has the gene of n-3 fatty acid desaturase (CvFad3, which can synthesize the precursor of n-3 polyunsaturated fatty acids (PUFAs or convert n-6 to n-3 PUFAs. The objective of the present study was to examine whether the CvFad3 gene from C. vulgaris can be functionally and efficiently expressed in human breast cancer cells and whether its expression can exert a significant effect on cell fatty acid composition. We inserted the CvFad3 gene into the plasmid pEGFP-C3 to construct the eukaryotic expression vector pEGFP-C3-n-3 and to express the n-3 Fad gene in human breast cancer cells (MCF-7 cells. Transfection of MCF-7 cells with the recombinant vector resulted in a high expression of n-3 fatty acid desaturase. Lipid analysis indicated that the ratio of n-6/n-3 PUFAs was decreased from 6:1 in the control cells to about 1:1 in the cells expressing the n-3 fatty acid desaturase. Accordingly, the CvFad3 gene significantly decreased the ratio of n-6/n-3 PUFAs of the MCF-7 cell membrane. The expression of the CvFad3 gene can decrease cell proliferation and promote cell apoptosis. This study demonstrates that the CvFad3 gene can dramatically balance the ratio of n-6/n-3 PUFAs and may provide an effective approach to the modification of the fatty acid composition of mammalian cells, also providing a basis for potential applications of its transfer in experimental and clinical settings.

  14. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    Energy Technology Data Exchange (ETDEWEB)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-05-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. /sup 14/C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell.

  15. Gene transfer of Chlorella vulgaris n-3 fatty acid desaturase optimizes the fatty acid composition of human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Meilan; Ge, Yinlin; Zhang, Jinyu [Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao Shandong (China); Wang, Qing [Affiliated Hospital of Qingdao University, Qingdao Shandong (China); Hou, Lin [Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao Shandong (China)

    2012-09-14

    Chlorella vulgaris has the gene of n-3 fatty acid desaturase (CvFad3), which can synthesize the precursor of n-3 polyunsaturated fatty acids (PUFAs) or convert n-6 to n-3 PUFAs. The objective of the present study was to examine whether the CvFad3 gene from C. vulgaris can be functionally and efficiently expressed in human breast cancer cells and whether its expression can exert a significant effect on cell fatty acid composition. We inserted the CvFad3 gene into the plasmid pEGFP-C3 to construct the eukaryotic expression vector pEGFP-C3-n-3 and to express the n-3 Fad gene in human breast cancer cells (MCF-7 cells). Transfection of MCF-7 cells with the recombinant vector resulted in a high expression of n-3 fatty acid desaturase. Lipid analysis indicated that the ratio of n-6/n-3 PUFAs was decreased from 6:1 in the control cells to about 1:1 in the cells expressing the n-3 fatty acid desaturase. Accordingly, the CvFad3 gene significantly decreased the ratio of n-6/n-3 PUFAs of the MCF-7 cell membrane. The expression of the CvFad3 gene can decrease cell proliferation and promote cell apoptosis. This study demonstrates that the CvFad3 gene can dramatically balance the ratio of n-6/n-3 PUFAs and may provide an effective approach to the modification of the fatty acid composition of mammalian cells, also providing a basis for potential applications of its transfer in experimental and clinical settings.

  16. Gene transfer of Chlorella vulgaris n-3 fatty acid desaturase optimizes the fatty acid composition of human breast cancer cells

    International Nuclear Information System (INIS)

    Xue, Meilan; Ge, Yinlin; Zhang, Jinyu; Wang, Qing; Hou, Lin

    2012-01-01

    Chlorella vulgaris has the gene of n-3 fatty acid desaturase (CvFad3), which can synthesize the precursor of n-3 polyunsaturated fatty acids (PUFAs) or convert n-6 to n-3 PUFAs. The objective of the present study was to examine whether the CvFad3 gene from C. vulgaris can be functionally and efficiently expressed in human breast cancer cells and whether its expression can exert a significant effect on cell fatty acid composition. We inserted the CvFad3 gene into the plasmid pEGFP-C3 to construct the eukaryotic expression vector pEGFP-C3-n-3 and to express the n-3 Fad gene in human breast cancer cells (MCF-7 cells). Transfection of MCF-7 cells with the recombinant vector resulted in a high expression of n-3 fatty acid desaturase. Lipid analysis indicated that the ratio of n-6/n-3 PUFAs was decreased from 6:1 in the control cells to about 1:1 in the cells expressing the n-3 fatty acid desaturase. Accordingly, the CvFad3 gene significantly decreased the ratio of n-6/n-3 PUFAs of the MCF-7 cell membrane. The expression of the CvFad3 gene can decrease cell proliferation and promote cell apoptosis. This study demonstrates that the CvFad3 gene can dramatically balance the ratio of n-6/n-3 PUFAs and may provide an effective approach to the modification of the fatty acid composition of mammalian cells, also providing a basis for potential applications of its transfer in experimental and clinical settings

  17. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.

    Science.gov (United States)

    Senan, Ahmed M; Zhang, Sicheng; Zeng, Miao; Chen, Zhuqi; Yin, Guochuan

    2017-08-16

    Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu 2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu 2+ , and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.

  18. Omega 3 fatty acids, gestation and pregnancy outcomes.

    Science.gov (United States)

    Larqué, Elvira; Gil-Sánchez, Alfonso; Prieto-Sánchez, María Teresa; Koletzko, Berthold

    2012-06-01

    Pregnancy is associated with a reduction in maternal serum docosahexaenoic acid (DHA, 22:6 n-3) percentage and its possible depletion in the maternal store. Since the synthesis of long chain polyunsaturated fatty acids (LCPUFA) in the fetus and placenta is low, both the maternal LCPUFA status and placental function are critical for their supply to the fetus. Maternal supplementation with DHA up to 1 g/d or 2·7 g n-3 LCPUFA did not have any harmful effect. DHA supplementation in large studies slightly the enhanced length of gestation (by about 2 days), which may increase the birth weight by about 50 g at delivery. However no advice can be given on their general using to avoid preterm deliveries in low or high risk pregnancies. Several studies, but not all, reported improvements of the offspring in some neurodevelopmental tests as a result of DHA supplementation during gestation, or, at least, positive relationships between maternal or cord serum DHA percentages and cognitive skills in young children. The effect seems more evident in children with low DHA proportions, which raises the question of how to identify those mothers who might have a poor DHA status and who could benefit from such supplementation. Most studies on the effects of n-3 LCPUFA supplementation during pregnancy on maternal depression were judged to be of low-to-moderate quality, mainly due to small sample sizes and failure to adhere to Consolidated Standards of Reporting Trials guidelines. In contrast, the effects of n-3 LCPUFA supplementation on reducing allergic diseases in offspring are promising.

  19. Omega-3 fatty acids for breast cancer prevention and survivorship.

    Science.gov (United States)

    Fabian, Carol J; Kimler, Bruce F; Hursting, Stephen D

    2015-05-04

    Women with evidence of high intake ratios of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid have been found to have a reduced risk of breast cancer compared with those with low ratios in some but not all case-control and cohort studies. If increasing EPA and DHA relative to arachidonic acid is effective in reducing breast cancer risk, likely mechanisms include reduction in proinflammatory lipid derivatives, inhibition of nuclear factor-κB-induced cytokine production, and decreased growth factor receptor signaling as a result of alteration in membrane lipid rafts. Primary prevention trials with either risk biomarkers or cancer incidence as endpoints are underway but final results of these trials are currently unavailable. EPA and DHA supplementation is also being explored in an effort to help prevent or alleviate common problems after a breast cancer diagnosis, including cardiac and cognitive dysfunction and chemotherapy-induced peripheral neuropathy. The insulin-sensitizing and anabolic properties of EPA and DHA also suggest supplementation studies to determine whether these omega-3 fatty acids might reduce chemotherapy-associated loss of muscle mass and weight gain. We will briefly review relevant omega-3 fatty acid metabolism, and early investigations in breast cancer prevention and survivorship.

  20. Expression of fatty acid synthesis genes and fatty acid accumulation in haematococcus pluvialis under different stressors

    Directory of Open Access Journals (Sweden)

    Lei Anping

    2012-03-01

    Full Text Available Abstract Background Biofuel has been the focus of intensive global research over the past few years. The development of 4th generation biofuel production (algae-to-biofuels based on metabolic engineering of algae is still in its infancy, one of the main barriers is our lacking of understanding of microalgal growth, metabolism and biofuel production. Although fatty acid (FA biosynthesis pathway genes have been all cloned and biosynthesis pathway was built up in some higher plants, the molecular mechanism for its regulation in microalgae is far away from elucidation. Results We cloned main key genes for FA biosynthesis in Haematococcus pluvialis, a green microalga as a potential biodiesel feedstock, and investigated the correlations between their expression alternation and FA composition and content detected by GC-MS under different stress treatments, such as nitrogen depletion, salinity, high or low temperature. Our results showed that high temperature, high salinity, and nitrogen depletion treatments played significant roles in promoting microalgal FA synthesis, while FA qualities were not changed much. Correlation analysis showed that acyl carrier protein (ACP, 3-ketoacyl-ACP-synthase (KAS, and acyl-ACP thioesterase (FATA gene expression had significant correlations with monounsaturated FA (MUFA synthesis and polyunsaturated FA (PUFA synthesis. Conclusions We proposed that ACP, KAS, and FATA in H. pluvialis may play an important role in FA synthesis and may be rate limiting genes, which probably could be modified for the further study of metabolic engineering to improve microalgal biofuel quality and production.

  1. Degradation of amino acids to short-chain fatty acids in humans. An in vitro study

    DEFF Research Database (Denmark)

    Rasmussen, H S; Holtug, K; Mortensen, P B

    1988-01-01

    Short-chain fatty acids (SCFA) originate mainly in the colon through bacterial fermentation of polysaccharides. To test the hypothesis that SCFA may originate from polypeptides as well, the production of these acids from albumin and specific amino acids was examined in a faecal incubation system....... Albumin was converted to all C2-C5-fatty acids, whereas amino acids generally were converted to specific SCFA, most often through the combination of a deamination and decarboxylation of the amino acids, although more complex processes also took place. This study indicates that a part of the intestinal...

  2. Fatty acid solubilizer from the oral disk of the blowfly.

    Directory of Open Access Journals (Sweden)

    Yuko Ishida

    Full Text Available Blowflies are economic pests of the wool industry and potential vectors for epidemics. The establishment of a pesticide-free, environmentally friendly blowfly control strategy is necessary. Blowflies must feed on meat in order to initiate the cascade of events that are involved in reproduction including juvenile hormone synthesis, vitellogenesis, and mating. During feeding blowflies regurgitate salivary lipase, which may play a role in releasing fatty acids from triglycerides that are found in food. However, long-chain fatty acids show low solubility in aqueous solutions. In order to solubilize and ingest the released hydrophobic fatty acids, the blowflies must use a solubilizer.We applied native PAGE, Edman degradation, cDNA cloning, and RT-PCR to characterize a protein that accumulated in the oral disk of the black blowfly, Phormia regina. In situ hybridization was carried out to localize the expression at the cellular level. A fluorescence competitive binding assay was used to identify potential ligands of this protein.A protein newly identified from P. regina (PregOBP56a belonged to the classic odorant-binding protein (OBP family. This gene was expressed in a cluster of cells that was localized between pseudotracheae on the oral disk, which are not accessory cells of the taste peg chemosensory sensilla that normally synthesize OBPs. At pH 7 and pH 6, PregOBP56a bound palmitic, stearic, oleic, and linoleic acids, that are mainly found in chicken meat. The binding affinity of PregOBP56a decreased at pH 5. We propose that PregOBP56a is a protein that solubilizes fatty acids during feeding and subsequently helps to deliver the fatty acids to the midgut where it may help in the process of reproduction. As such, PregOBP56a is a potential molecular target for controlling the blowfly.

  3. Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids.

    Science.gov (United States)

    Kim, Kyoung-Rok; Oh, Hye-Jin; Park, Chul-Soon; Hong, Seung-Hye; Park, Ji-Young; Oh, Deok-Kun

    2015-11-01

    The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis-9 and cis-12 double-bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio-selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13-dihydroxyoctadecanoic acid biosynthesis. Linoleate 13-hydratase (LHT-13) selectively converted 10 mM linoleic acid to 13S-hydroxy-9(Z)-octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid-hydroxylation enzymes and facilitate the designed production of the regio-selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks. © 2015 Wiley Periodicals, Inc.

  4. Fatty acids and survival of bacteria in Hammam Pharaon springs, Egypt

    Directory of Open Access Journals (Sweden)

    Yehia A. Osman

    2018-06-01

    Full Text Available A great lack of knowledge of Hammam Pharaon's microbial community; the most famous hot spring in Sinai, Egypt, derived this work. Three different hyperthermophilic bacterial were isolated from vents in the area, where the temperature was above 80 °C. Response Surface Methodology algorithm such as Central Composite Design determined the optimum cultivation conditions for these isolates. Accordingly, the best growth conditions were at 70 °C and at neutral to slightly acidic pH values. The constructed phylogenetic tree built using the 16S rRNA gene sequences has shown that the isolated strains (HM101, HM102 and HM103 belong to Geobacillus, Rhodothermus and Thermus bacteria, respectively. The fatty acid profiles, an indicative of thermotolerance, dominated by the short chain Dodecanoic acid (Lauric acid; (12:0, which represented about 40% of the total fatty acid contents for each of the three isolates. The enzymatic capabilities of the three strains were determined and α-amylase was found to be the most prominent one. Our own data had led us to conclude that the length of the fatty acid chain and the degree of saturation could be species specific. Moreover, the biotechnological potentials of these local isolates could contribute to fighting viral diseases and/or improve their amylolytic activities for sugar industry; where thermotolerance is really an important factor.

  5. Dietary fatty acids and cardiovascular disease: A review

    Directory of Open Access Journals (Sweden)

    Raquel Eccel Prates

    2015-09-01

    Full Text Available Fatty acids (FAs can be classified into saturated (SFA, unsaturated (poly- or monounsaturated and trans FA. Recent studies have found that both the quantity and quality of dietary FAs may influence their role in metabolic pathways. Due to their chemical composition, some FAs play a major role in the development and progression of cardiovascular disease. This is especially true for SFA and n-3 polyunsaturated fatty acids, which include marine eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. The proinflammatory effects of high SFA intake may increase the risk of atherosclerosis. On the other hand, dietary n-3 intake may reduce the risk of cardiovascular disease by decreasing atherosclerosis, inflammation, and thrombotic processes. The goal of this study was to review the current literature on the role of FA intake in the prevention and risk of cardiovascular disease.

  6. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice

    Directory of Open Access Journals (Sweden)

    Carlos Rodriguez-Navas

    2016-08-01

    Full Text Available Objective: In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Methods: Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Results: Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Conclusions: Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD. Keywords: Obesity, N43, Palmitic acid, Linoleic acid, Central nervous system, Western diet, ω6-fatty acids

  7. Significance of long chain polyunsaturated fatty acids in human health

    Czech Academy of Sciences Publication Activity Database

    Zárate, R.; El Jaber-Vazdekis, Nabil; Tejera, N.; Pérez, J.A.; Rodrígues, C.

    2017-01-01

    Roč. 6, JUL 27 (2017), s. 1-19, č. článku 25. ISSN 2001-1326 R&D Projects: GA MŠk(CZ) LO1416 Institutional support: RVO:61388971 Keywords : Lipidomics * Lipids * Long chain polyunsaturated fatty acids Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology

  8. Fatty acid composition of Dioscorea dumetorum (Pax) varieties ...

    African Journals Online (AJOL)

    The purpose of the present investigation was to study the fatty acid compositions of edible and wild Dioscorea dumetorum (Pax) varieties harvested from farms and forests of Ikot Akpanabia village in Akwa Ibom State, Nigeria in order to evaluate their nutritional and biochemical significance. Tubers were conveyed from farm ...

  9. Efficiency of fatty acid accumulation into breast muscles of chickens ...

    African Journals Online (AJOL)

    The purpose of the investigation was to determine the effect of the addition of 12 ppm lycopene (Lyc), 2% fish oil (FO) or 0.25 ppm Se as selenate (SeVI) or selenized yeast (SeY) to an isoenergetic and isonitrogenous basal diet containing sunflower oil (SO) as the source of energy on the concentrations of fatty acids (FA), ...

  10. Seed oil content and fatty acid composition of annual halophyte ...

    African Journals Online (AJOL)

    Suaeda acuminata produces two morphologically distinct types of seeds on the same plant. This study was conducted to compare oil content and fatty acid composition of the two seed morphs. Though oil characteristics between dimorphic seeds showed statistically significant difference, these differences were relatively ...

  11. Fatty Acid Profile and Bioactivity from Annona hypoglauca Seeds Oil ...

    African Journals Online (AJOL)

    Plants from Annona (Annonaceae) genus are present in tropical regions, where they have economic and medicinal potential. Information on the fatty acids profile and bioactivity from seed oil of Annona species are incipient. The objective of this work was to investigate Annona hypoglauca seeds oil in terms of its yield, ...

  12. Free fatty acids profiling in response to carnitine synergize with ...

    African Journals Online (AJOL)

    Background: The objective of this study was to investigate the fatty acids profiling in diabetic rats induced by sterptozocine (STZ) and their response to administration of lutein and carnitine. Materials and methods: Ninety male albino rats were divided into 6 groups as follows: Normal control. The remaining rats were injected ...

  13. Chemical Sciences A comparative study of triglyceride and fatty acid ...

    African Journals Online (AJOL)

    Triglyceride and fatty acid composition were determined for palm oils from three different oil palm plantations in South-Eastern Nigeria. Each of the plantations belong to slightly different vegetation belts. The red fruits if the Tenera variety exhibited significant variations (P < 0.5) across the locations. Much of the variations ...

  14. Nanotechnology Formulations for Antibacterial Free Fatty Acids and Monoglycerides.

    Science.gov (United States)

    Jackman, Joshua A; Yoon, Bo Kyeong; Li, Danlin; Cho, Nam-Joon

    2016-03-03

    Free fatty acids and monoglycerides have long been known to possess broad-spectrum antibacterial activity that is based on lytic behavior against bacterial cell membranes. Considering the growing challenges of drug-resistant bacteria and the need for new classes of antibiotics, the wide prevalence, affordable cost, and broad spectrum of fatty acids and monoglycerides make them attractive agents to develop for healthcare and biotechnology applications. The aim of this review is to provide a brief introduction to the history of antimicrobial lipids and their current status and challenges, and to present a detailed discussion of ongoing research efforts to develop nanotechnology formulations of fatty acids and monoglycerides that enable superior in vitro and in vivo performance. Examples of nano-emulsions, liposomes, solid lipid nanoparticles, and controlled release hydrogels are presented in order to highlight the potential that lies ahead for fatty acids and monoglycerides as next-generation antibacterial solutions. Possible application routes and future directions in research and development are also discussed.

  15. Nanotechnology Formulations for Antibacterial Free Fatty Acids and Monoglycerides

    Directory of Open Access Journals (Sweden)

    Joshua A. Jackman

    2016-03-01

    Full Text Available Free fatty acids and monoglycerides have long been known to possess broad-spectrum antibacterial activity that is based on lytic behavior against bacterial cell membranes. Considering the growing challenges of drug-resistant bacteria and the need for new classes of antibiotics, the wide prevalence, affordable cost, and broad spectrum of fatty acids and monoglycerides make them attractive agents to develop for healthcare and biotechnology applications. The aim of this review is to provide a brief introduction to the history of antimicrobial lipids and their current status and challenges, and to present a detailed discussion of ongoing research efforts to develop nanotechnology formulations of fatty acids and monoglycerides that enable superior in vitro and in vivo performance. Examples of nano-emulsions, liposomes, solid lipid nanoparticles, and controlled release hydrogels are presented in order to highlight the potential that lies ahead for fatty acids and monoglycerides as next-generation antibacterial solutions. Possible application routes and future directions in research and development are also discussed.

  16. Catalytic Deoxygenation of Fatty Acids: Elucidation of the Inhibition Process

    NARCIS (Netherlands)

    Hollak, S.A.W.; Jong, de K.P.; Es, van D.S.

    2014-01-01

    Catalytic deoxygenation of unsaturated fatty acids in the absence of H2 is known to suffer from significant catalyst inhibition. Thus far, no conclusive results have been reported on the cause of deactivation. Here we show that CC double bonds present in the feed or the products dramatically reduce

  17. Mitochondrial fatty acid oxidation defects--remaining challenges

    DEFF Research Database (Denmark)

    Gregersen, Niels; Andresen, Brage S; Pedersen, Christina B

    2008-01-01

    Mitochondrial fatty acid oxidation defects have been recognized since the early 1970s. The discovery rate has been rather constant, with 3-4 'new' disorders identified every decade and with the most recent example, ACAD9 deficiency, reported in 2007. In this presentation we will focus on three...

  18. Omega-3 Fatty Acid Supplements for Chronic Epilepsy

    OpenAIRE

    J Gordon Millichap

    2005-01-01

    Omega-3 fatty acid (FA) supplements (lg EPA and 0.7g DHA daily) were used in the treatment of 58 patients with refractory epilepsy, in a 12-week double-blind, placebo-controlled trial conducted by researchers at the UCL Institute of Neurology, London, UK.

  19. Omega-3 Fatty Acid Supplements for Chronic Epilepsy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2005-09-01

    Full Text Available Omega-3 fatty acid (FA supplements (lg EPA and 0.7g DHA daily were used in the treatment of 58 patients with refractory epilepsy, in a 12-week double-blind, placebo-controlled trial conducted by researchers at the UCL Institute of Neurology, London, UK.

  20. Quick and sensitive determination of gene expression of fatty acid ...

    African Journals Online (AJOL)

    User

    2011-05-16

    May 16, 2011 ... from fatty acid synthase (FAS) with a different glucose level in ... By using the following formula, this study was able to quantify the mRNA expression of ... hypertension, heart disease and diabetes. ... regulation of gene expression has emerged in recent ... stages of adipocyte meta-bolism are relatively well.

  1. Volume 10 No. 8 August 2010 2956 FATTY ACID COMPOSITION ...

    African Journals Online (AJOL)

    user

    2010-08-08

    Aug 8, 2010 ... Total fat content was low in both varieties with the wild ... the teaming Nigerian population if it is processed for consumption or ... use of yam as food had increased because of the significance of its .... Plant fatty acids serve as good and healthy fat .... Mediterranean diet, traditional risk factor, and the rate of ...

  2. Essential fatty acid deficiency in mice impairs lactose digestion

    NARCIS (Netherlands)

    Lukovac, S.; Los, E. L.; Stellaard, F.; Rings, E. H. H. M.; Verkade, H. J.

    Essential fatty acid (EFA) deficiency in mice induces fat malabsorption. We previously reported indications that the underlying mechanism is located at the level of the intestinal mucosa. We have investigated the effects of EFA deficiency on small intestinal morphology and function. Mice were fed an

  3. Fatty Acid Signaling: The New Function of Intracellular Lipases

    Directory of Open Access Journals (Sweden)

    Zuzana Papackova

    2015-02-01

    Full Text Available Until recently, intracellular triacylglycerols (TAG stored in the form of cytoplasmic lipid droplets have been considered to be only passive “energy conserves”. Nevertheless, degradation of TAG gives rise to a pleiotropic spectrum of bioactive intermediates, which may function as potent co-factors of transcription factors or enzymes and contribute to the regulation of numerous cellular processes. From this point of view, the process of lipolysis not only provides energy-rich equivalents but also acquires a new regulatory function. In this review, we will concentrate on the role that fatty acids liberated from intracellular TAG stores play as signaling molecules. The first part provides an overview of the transcription factors, which are regulated by fatty acids derived from intracellular stores. The second part is devoted to the role of fatty acid signaling in different organs/tissues. The specific contribution of free fatty acids released by particular lipases, hormone-sensitive lipase, adipose triacylglycerol lipase and lysosomal lipase will also be discussed.

  4. Biotechnology for improving hydroxy fatty acid production in lesquerella

    Science.gov (United States)

    P Lesquerella [Physaria fendleri (A. Gray)], formerly Lesquerella fendleri, (Brassicaceae), being developed as a new industrial oilseed crop in the southwestern region of the United States, is valued for its unusual hydroxy fatty acid (HFA) in seed. The majority of HFA in lesquerella is lesquerolic...

  5. Fatty Acid Composition of the Aerial Parts of Some Centaurea ...

    African Journals Online (AJOL)

    The fatty acid methyl esters (FAMEs) were analyzed on a Hewlett Packard Agilent 6890 N gas chromatograph (GC), equipped with a flame ionization detector (FID) and fitted to a Supelco. SP-2380 fused silica capillary column (60 m,. 0.25 mm i.d. and 0.2 µm). Injector and detector temperatures were set at 250 and 260ºC,.

  6. Effect of Omega-3 Fatty Acids Treatment on Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Mogoş Tiberius

    2014-12-01

    Full Text Available Background and aims: Insulin resistance (IR is a common pathogenic factor of several diseases: diabetes mellitus, the metabolic syndrome, arterial hypertension, atherosclerosis, dyslipidemia, etc. There are many therapeutic factors involved in decreasing IR. Among them we mention metformin, pioglitazone, physical activity, weight loss, diet, etc. In the last decade, there are more observations of the influence of polyunsaturated fatty acids on IR. The most powerful seem to be omega-3 fatty acids. In our study, we wanted to asses if the administration of omega-3 fatty acids is involved in modifying IR. Materials and methods: We evaluated 126 diabetic patients with IR from January 2011 until July 2014. The study was open-label and non-randomized. For the determination of IR we used the HOMA-IR method. Results: For both males and females there was a regression of HOMA-IR during the 4 weeks of treatment with omega-3 and also after 2 weeks after stopping the administration of these fatty acids. The decrease of HOMA-IR was statistically significant (p<0.05. The statistic result observed in the next 2 weeks after stopping administration of omega-3 was also significant (p<0.05.

  7. Influencing fatty acid composition of yeasts by lanthanides

    Czech Academy of Sciences Publication Activity Database

    Kolouchová, I.; Sigler, Karel; Zimola, M.; Řezanka, Tomáš; Matatková, O.; Masák, J.

    2016-01-01

    Roč. 32, č. 8 (2016), s. 126 ISSN 0959-3993 R&D Projects: GA ČR GA14-00227S Institutional support: RVO:61388971 Keywords : Fatty acids * Lanthanides * Microbial lipids Subject RIV: EE - Microbiology, Virology Impact factor: 1.658, year: 2016

  8. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  9. Meat quality and intramuscular fatty acid composition of Catria Horse.

    Science.gov (United States)

    Trombetta, Maria Federica; Nocelli, Francesco; Pasquini, Marina

    2017-08-01

    In order to extend scientific knowledge on autochthonous Italian equine meat, the physical-chemical parameters of Catria Horse Longissimus thoracis (LT) muscle and its nutritional characteristics have been investigated. Ten steaks of Catria foal raised at pasture and fattened indoors for 2 months were dissected, and LT muscle was analyzed for chemical composition, total iron, drip loss, colorimetric characteristics, intramuscular fat, fatty acid profile and nutritional indexes. Steak dissection showed that LT muscle accounted for 36.78% and fat accounted for 9.19% of weight of steak. Regarding chemical composition, protein and fat content was 20.31% and 2.83%, respectively. Total iron content (1.95 mg/100 g) was lower than data reported in the literature. Color parameters showed a luminous and intense red hue muscle. The sum of unsaturated fatty acid composition (50.3%) was higher than the sum of saturated fatty acids (46.64 %). The fatty acid profile and nutritional values of Catria Horse meat could be modified adopting extensive rearing systems and grazing. The data suggests that further investigation on the composition of Catria Horse meat should be carried out to valorize this autochthonous breed, reared in sustainable livestock systems, and its meat in local short-chain systems. © 2016 Japanese Society of Animal Science.

  10. Soybean seed viability and changes of fatty acids content as ...

    African Journals Online (AJOL)

    The characteristics of soybean seed chemical composition are related to specific processes occurring in seed during storage. These changes lead to seed aging during storage and affect seed vigour and content of fatty acids. In order to reveal severity of their influence, the following vigour tests were applied: Standard ...

  11. Effects of Fermentation on the Fatty Acids, Sterols and ...

    African Journals Online (AJOL)

    Walnut contains fatty acids that are essential for infants' growth and development. This study explored the possibility of fermenting walnuts for use as a complementary food. Raw fermented (RF), cooked fermented (CF), raw unfermented (RUF) and cooked unfermented (CUF) samples of walnuts products were analyzed for ...

  12. Fatty acids composition of microalgae Chlorella vulgaris can be ...

    African Journals Online (AJOL)

    Varying culture methods of Chlorella vulgaris (CV) has been associated with different nutrient composition. The aim of this study was to investigate the fatty acid contents and other nutrients of CV subjected to various culturing conditions. We found that CV cultured under 24 h light and 10% CO2 showed the best growth rates ...

  13. Effects of commercial enrichment products on fatty acid components ...

    African Journals Online (AJOL)

    This study was undertaken to test the effects of enrichment products. Red pepper paste (ZA), AlgaMac 3050 (ZB) and Spresso (ZC) on fatty acid compositions in rotifers (Brachionus plicatilis) which were intensively cultured on a mixture of ω3 algae and ω3 yeast. Enriched rotifers were seen to have higher level of ...

  14. The effects of seasons on cholesterol content and fatty acid ...

    African Journals Online (AJOL)

    Background: The aim of the present study is the determination of the effects of seasonal variations on the proximate analysis, cholesterol content and fatty acid compositions of Helix aspersa. Materials and Methods: Garden snails (Helix aspersa) were picked up by hand from the Central Anatolia Region of Turkey, in autumn ...

  15. Fatty acid and cholesterol content, chemical composition and ...

    African Journals Online (AJOL)

    This study aimed to determine the fatty acid and chemical composition and cholesterol concentration of horsemeat, and to evaluate its taste acceptability by the Brazilian population. Horsemeat samples (M. longissimus dorsi) were obtained from a Paraná State slaughterhouse. The chemical composition revealed a low lipid ...

  16. Dietary trans-fatty acids and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Zdzisław Kochan

    2010-12-01

    Full Text Available Trans-fatty acids (TFAs, products of partial hydrogenation of vegetable oils, have become more prevalent in our diet since the 1960s, when they replaced animal fats. TFAs also occur naturally in meat and dairy products from ruminants. There is growing evidence that dietary trans-fatty acids may increase the risk of metabolic syndrome. Several studies have demonstrated adverse effects of TFAs on plasma lipids and lipoproteins. In dietary trials, trans-fatty acids have been shown to raise the total cholesterol/HDL cholesterol ratio and Lp(a levels in blood. Moreover, a high intake of TFAs has been associated with an increased risk of coronary heart disease. Prospective cohort studies have shown that dietary trans-fatty acids promote abdominal obesity and weight gain. In addition, it appears that TFA consumption may be associated with the development of insulin resistance and type 2 diabetes. The documented adverse health effects of TFAs emphasise the importance of efforts to reduce the content of partially hydrogenated vegetable oils in foods.

  17. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Science.gov (United States)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2017-12-26

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacyl-ethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings.

  18. Fish fatty acids and mental health in older people

    NARCIS (Netherlands)

    Rest, van de O.

    2009-01-01

    Background
    It has been suggested that the intake of fish and marine n-3 polyunsaturated fatty acids could protect against age-related cognitive decline and impaired mental well-being. However, results from observational studies are inconclusive and data from randomized controlled trials in

  19. Dietary habits, plasma polyunsaturated fatty acids and selected ...

    African Journals Online (AJOL)

    Dietary habits, plasma polyunsaturated fatty acids and selected coronary disease risk factors in Tanzania. ... Conclusion: Our results indicate that, there are significant differences in dietary patterns among the three study areas, and that the intake of fish is inversely associated with selected risk factors for coronary heart ...

  20. Antiatherogenic effects of n-3 fatty acids - evidence and mechanisms

    Directory of Open Access Journals (Sweden)

    Antonella Zampolli

    2006-12-01

    Full Text Available N-3 (omega-3 (polyunsaturated fatty acids are thought to display a variety of beneficial effects for human health. Clues to the occurrence of cardiovascular protective effects have been, however, the spur for the first biomedical interest in these compounds, and are the best documented. Historically, the epidemiologic association between dietary consumption of n-3 fatty acids and cardiovascular protection was first suggested by Bang and Dyerberg, who identified the high consumption of fish, and therefore, of fish oil-derived n-3 fatty acids, as the likely explanation for the strikingly low rate of coronary heart disease events reported in the Inuit population. Since their initial reports, research has proceeded in parallel to provide further evidence for their cardioprotection and to understand underlying mechanisms. Decreased atherogenesis is currently thought to be a part of the cardiovascular protection by n-3 fatty acids. This article summarizes the evidence for such a claim and the mechanisms putatively involved. (Heart International 2006; 3-4: 141-54

  1. Functional alteration of breast muscle fatty acid profile by ...

    African Journals Online (AJOL)

    ajl yemi

    2011-03-28

    Mar 28, 2011 ... copper (Pesti and Bakalli, 1996), α-tocopherol acetate. (Ashgar et al., 1989) and n-3 fatty acid ..... Pesti GM, Bakalli RI (1996). Studies on the feeding of cupric sulfate pentahydrate and cupric citrate to broiler chickens. Poult.

  2. Effects of smoking on fatty acids composition of croaker ...

    African Journals Online (AJOL)

    ... smoked croakers analysed without skin (skinless).The relationship of PUFA to SFA for fresh and smoked croakers were greater than 0.4 and the omega-6 to omega-3 ratios of both the fresh and smoked croaker were far less than one (1) thus constituting an excellent source of omega-3 fatty acids and a highly healthy food.

  3. Can serum free fatty acids assessment predict severe preeclampsia?

    African Journals Online (AJOL)

    Nermeen Saad El Beltagy

    2011-10-20

    Oct 20, 2011 ... Methods: Twenty cases with severe preeclampsia (blood pressure P 160/110 after 20th week of ges- tation and ... ing factor with preeclampsia in non-obese pregnant women. ... Preeclampsia (PE) is a common pregnancy disorder that is ... centration of free fatty acids in the serum was measured by an.

  4. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Science.gov (United States)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  5. Dyslipidemia, altered erythrocyte fatty acids and selenium are ...

    African Journals Online (AJOL)

    Venous blood sample was drawn from all subjects and erythrocytes separated for the determination of fatty acids. Plasma lipids, selenium and vitamin E levels were also measured. There were no differences in BMI, weight and height among the three groups except for systolic BP that was lower in VD (148.3±41.8mmHg) ...

  6. Fatty acid utilization in pressure-overload hypertrophied rat hearts

    International Nuclear Information System (INIS)

    Reibel, D.K.; O'Rourke, B.

    1986-01-01

    The authors have previously shown that the levels of total tissue coenzyme A and carnitine are reduced in hypertrophied hearts of rats subjected to aortic constriction. It was therefore of interest to determine if these changes were associated with alterations in fatty acid oxidation by the hypertrophied myocardium. Hearts were excised from sham-operated and aortic-constricted rats and perfused at 10 cm H 2 O left atrial filling pressure with a ventricular afterload of 80 cm of H 2 O with buffer containing 1.2 mM 14 C-linoleate. Heart rate and peak systolic pressure were not different in control and hypertrophied hearts. 14 CO 2 production was linear in both groups of hearts between 10 and 30 minutes of perfusion. The rate of fatty acid oxidation determined by 14 CO 2 production during this time was 0.728 +/- 0.06 μmoles/min/g dry in control hearts and 0.710 +/- 0.02 μmoles/min/g dry in hypertrophied hearts. Comparable rates of fatty acid oxidation were associated with comparable rates of O 2 consumption in the two groups of hearts (39.06 +/- 3.50 and 36.78 +/- 2.39 μmoles/g dry/min for control and hypertrophied hearts, respectively). The data indicate that the ability of the hypertrophied heart to oxidize fatty acids under these perfusion conditions is not impaired in spite of significant reductions in tissue levels of coenzyme A and carnitine

  7. Volatile fatty acids production in ruminants and the role of ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... Essential to these roles is their rapid transport across the plasma membrane, which is catalyzed ... The aim of this review is to critically discuss short-chain fatty acids production and the functional ... Two major functions of monocarboxylate transporter proteins, namely the facilitation of the ...

  8. Carcass properties, chemical content and fatty acid composition of ...

    African Journals Online (AJOL)

    The aim of this study was to examine carcass properties and variability in chemical content and fatty acid composition in the musculus longissimus lumborum et thoracis (MLLT) of different genotypes of pigs. Of 36 male castrated animals used in the trial, 24 were from two strains of Mangalitsa pigs (12 Swallow - bellied ...

  9. Seed oil and fatty acid composition in Capsicum spp

    Science.gov (United States)

    The oil content and fatty acid composition of seed of 233 genebank accessions (total) of nine Capsicum species, and a single accession of Tubocapsicum anomalum, were determined. The physicochemical characteristics of oil extracted from seed of C. annuum and C. baccatum were also examined. Significan...

  10. Fatty acid profiles of in vitro digested processed milk

    Science.gov (United States)

    Digestion of milkfat releases some of the long-chain (18-carbon) fatty acids (FA) that can provide health benefits to the consumer, yet because they are found in small amounts and can be difficult to identify, there is limited information on the effects that common fluid milk processing may have on ...

  11. Fatty acid content and lipid fractions in herbs

    DEFF Research Database (Denmark)

    Petersen, Majbritt Bonefeld; Søegaard, Karen; Jensen, Søren Krogh

    2012-01-01

    Experiments have shown a higher transfer efficiency of n-3 and n-6 fatty acids (FA) to milk when feeding herbs compared to feeding grass-clover. With the aim to gain more knowledge for this, the FA profile of ten single plant species and the incorporation of FA in lipid fractions were analysed...

  12. Quick and sensitive determination of gene expression of fatty acid ...

    African Journals Online (AJOL)

    Obesity results from an imbalance between energy intake and energy expenditure, which leads to a pathological accumulation of adipose tissue, but the underlying mechanism at gene level, is far from being elucidated. The objective of this study was to investigate the correlation between mRNA express from fatty acid ...

  13. Proteomic evaluation of free fatty acid biosynthesis in Jatropha ...

    African Journals Online (AJOL)

    WincoolV5

    2013-05-22

    May 22, 2013 ... was analyzed at each stage using gas chromatography after conversion to methyl esters. Fatty acid levels .... Total protein extraction .... Total RNA isolation and cDNA synthesis. Total RNA was ..... In this work, the SDS-PAGE-LC-MS based ... thesis in animals, bacteria and plants (Jackowski et al.,. 1991 ...

  14. The Use of natural fatty acids in processing tritium gas

    International Nuclear Information System (INIS)

    El-Sharnouby, A.K.; Abdelgeleel, M.; Eskander, S.B.

    1997-01-01

    Natural unsaturated fatty acid (e.g cotton, corn, litmus, castor and palm oils) were used to fix tritium gas. The data obtained show that the affinity of the different used natural oils fixation of hydrogen (tritium) was in the following order: cotton oils> corn oil> litmus oil> castor oil> palm oil. The quantity of hydrogen (tritium) which can be fixed by one gram cotton oil is about 5.824 ml H 2 (5.56 x 10 1 1 Bq tritium) while one gram corn oil can fix only 5.04 ml H 2 (4.811 x 10 1 1 Bq tritium). Tritiated cotton oil and corn oil can be solidified using an epoxy resin (Araldite-B-W-1193), the polymer sample can contain up to 5% by weight from hydrogenated (tritiated) oils. The results obtained show that the compressive strength measurements of the final solid waste forms (fatty acid/epoxy) increased with increasing curing time and decreased with increasing fatty acid content. The leachability of tritium from the final solid waste forms increased with increasing fatty acid content in the polymer matrix. The cumulative leach fraction of tritium varied between 4.00 x 10 -3 cm and 6.60 x 10 -3 cm according to the experimental conditions. 15 figs., 1 tab

  15. Variations in fatty acid composition during maturation of cumin ...

    African Journals Online (AJOL)

    Changes in fatty acids were studied during maturation of cumin (Cuminum cyminum L.) seeds cultivated in the North-Eastern region of Tunisia (Menzel Temim). The fruits matured in 49 Days after flowering (DAF). The first results show a rapid oil accumulation started in newly formed fruits (8.2%) and continued until their full ...

  16. Free fatty acids increase hepatic glycogen content in obese males

    NARCIS (Netherlands)

    Allick, G.; Sprangers, F.; Weverling, G. J.; Ackermans, M. T.; Meijer, A. J.; Romijn, J. A.; Endert, E.; Bisschop, P. H.; Sauerwein, H. P.

    2004-01-01

    Obesity is associated with increased hepatic glycogen content. In vivo and in vitro data suggest that plasma free fatty acids (FFA) may cause this increase. In this study we investigated the effect of physiological plasma FFA levels on hepatic glycogen metabolism by studying intrahepatic glucose

  17. Analysis and stability of fatty acid esterified xanthophylls from microalgae

    NARCIS (Netherlands)

    Weesepoel, Y.J.A.

    2014-01-01

    Fatty acid esterified xanthophylls (e.g. astaxanthin) produced by microalgae are regarded as a natural alternative for food colourants, but little is known on the stability of these compounds in foods. The aims of this research were (i) to develop protocols to analyze esterified

  18. Microbial electrochemical monitoring of volatile fatty acids during anaerobic digestion

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Jin, Xiangdan; Angelidaki, Irini

    2015-01-01

    desalination cell, MDC) was built to realize the on-line measuring the concentration of volatile fatty acid (VFA). The correlation between current densities of the biosensor and VFA concentrations was firstly evaluated with synthetic digestate. Two linear relationships were observed between current densities...

  19. Microbial electrochemical monitoring of volatile fatty acids during anaerobic digestion

    DEFF Research Database (Denmark)

    Jin, Xiangdan; Angelidaki, Irini; Zhang, Yifeng

    2016-01-01

    Volatile fatty acid (VFA) concentration is known as an important indicator to control and optimize anaerobic digestion (AD) process. In this study, an innovative VFA biosensor was developed based on the principle of a microbial desalination cell. The correlation between current densities and VFA...

  20. Fatty acid profile, cholesterol and oxidative status in broiler chicken ...

    African Journals Online (AJOL)

    Nazim

    2015-05-25

    May 25, 2015 ... The LO diet increased the total n-3 fatty acids and decreased the n-6 : n-3 .... the muscle samples were snap frozen in liquid nitrogen and stored at −80 ..... precursor for the synthesis of molecules such as steroid hormones, ...

  1. The effect of breed on fatty acid composition of subcutaneous ...

    African Journals Online (AJOL)

    User

    2015-02-23

    Feb 23, 2015 ... FA, total polyunsaturated fatty acid (PUFA) and n-6PUFA contents were observed in the subcutaneous adipose .... frozen at −20 ºC, pending FA analysis. Samples of the .... The synthesis and metabolism of FAs in the ruminant ...

  2. Fatty acid composition of subcutaneous and kidney fat depots of ...

    African Journals Online (AJOL)

    60. Fatty acid composition of subcutaneous and kidney fat depots of Boer goats and the response to varying levels of maize meal. N.H. Casey" and W.A. van Niekerk. Department of Animal Science, Faculty of Agriculture,. University of Pretoria, Pretoria, 0002 Republic of South Africa. xTo whom correspondence should be ...

  3. Alkyl chain length impacts the antioxidative effect of lipophilized ferulic acid in fish oil enriched milk

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Lyneborg, Karina Sieron; Villeneuve, Pierre

    2015-01-01

    Lipophilization of phenolics by esterification with fatty alcohols may alter their localization in an emulsion and thereby their antioxidant efficacy. In this study, synthesized unbranched alkyl ferulates were evaluated as antioxidants in fish oil enriched milk. Lipid oxidation was determined...... by peroxide values and concentration of volatile oxidation products. A cut-off effect in the antioxidant efficacy in relation to the alkyl chain length was observed. The most efficient alkyl ferulate was methyl ferulate followed by ferulic acid and butyl ferulate, whereas octyl ferulate was prooxidative...

  4. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    Science.gov (United States)

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. Published by Elsevier B.V.

  5. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing.

    Science.gov (United States)

    Bourre, J M

    2004-01-01

    Among various organs, in the brain, the fatty acids most extensively studied are omega-3 fatty acids. Alpha-linolenic acid (18:3omega3) deficiency alters the structure and function of membranes and induces minor cerebral dysfunctions, as demonstrated in animal models and subsequently in human infants. Even though the brain is materially an organ like any other, that is to say elaborated from substances present in the diet (sometimes exclusively), for long it was not accepted that food can have an influence on brain structure, and thus on its function. Lipids, and especially omega-3 fatty acids, provided the first coherent experimental demonstration of the effect of diet (nutrients) on the structure and function of the brain. In fact the brain, after adipose tissue, is the organ richest in lipids, whose only role is to participate in membrane structure. First it was shown that the differentiation and functioning of cultured brain cells requires not only alpha-linolenic acid (the major component of the omega-3, omega3 family), but also the very long omega-3 and omega-6 carbon chains (1). It was then demonstrated that alpha-linolenic acid deficiency alters the course of brain development, perturbs the composition and physicochemical properties of brain cell membranes, neurones, oligodendrocytes, and astrocytes (2). This leads to physicochemical modifications, induces biochemical and physiological perturbations, and results in neurosensory and behavioural upset (3). Consequently, the nature of polyunsaturated fatty acids (in particular omega-3) present in formula milks for infants (premature and term) conditions the visual and cerebral abilities, including intellectual. Moreover, dietary omega-3 fatty acids are certainly involved in the prevention of some aspects of cardiovascular disease (including at the level of cerebral vascularization), and in some neuropsychiatric disorders, particularly depression, as well as in dementia, notably Alzheimer's disease. Recent

  6. Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids.

    Science.gov (United States)

    Papina, M; Meziane, T; van Woesik, R

    2003-07-01

    We compared the fatty acid composition of the host-coral Montipora digitata with the fatty acid composition in the coral's endosymbiotic dinoflagellates (zooxanthellae). Fatty acids as methyl esters were determined using gas chromatography (GC) and verified by GC-mass spectrometry. We found the main difference between the fatty acids in the host and their symbionts were that zooxanthellae supported higher proportions of polyunsaturated fatty acids. The presence of fatty acids specific to dinoflagellates (i.e. 18:4omega3, 22:5omega3 and 22:6omega3) in the host tissue suggests that zooxanthellae provide the coral host not only with saturated fatty acids, but also with diverse polyunsaturated fatty acids.

  7. Value of heart-type fatty acid-binding protein (H-FABP) for ...

    African Journals Online (AJOL)

    Key Words: heart-type fatty acid-binding protein, acute coronary syndrome, biomarker. ... is essential to prevent major complications and death. Routinely used biomarkers such ..... fatty acid binding proteins: their function and physiological sig-.

  8. Effect of heat processing on the profiles of trans fatty acids and ...

    African Journals Online (AJOL)

    SFA). Meanwhile, published information about trans fatty acids (TFAs) content in TBO remains unexplored. Therefore, a comparison of the fatty acid (FA) composition of traditional butter (TB) and (TBO) with emphasis on geometric and conjugated ...

  9. Influence of ethanol and temperature on the cellular fatty acid composition of Zygosaccharomyces bailii spoilage yeasts

    NARCIS (Netherlands)

    Baleiras Couto, M.M.; Huis in 't Veld, J.H.J.

    1995-01-01

    Changes in the fatty acid profile of Zygosaccharomyces bailii strains, isolated from different sources, after growth at increasing concentrations of ethanol and/or decreasing temperatures were determined. Differences in fatty acid composition between Zygosaccharomyces bailii strains at standard

  10. Fatty acid intake in relation to reproductive hormones and testicular volume among young healthy men

    DEFF Research Database (Denmark)

    Mínguez-alarcón, Lidia; Chavarro, Jorgee; Mendiola, Jaime

    2017-01-01

    , and provided a blood sample. Linear regression was used to examine the association between each fatty acid type and reproductive hormone levels and testicular volumes. Monounsaturated fatty acids intake was inversely associated with serum blood levels of calculated free testosterone, total testosterone......, and inhibin B. A positive association was observed between the intake of polyunsaturated fatty acids, particularly of omega-6 polyunsaturated fatty acids, and luteinizing hormone concentrations. In addition, the intake of trans fatty acids was associated with lower total testosterone and calculated free...... testosterone concentrations (P trend = 0.01 and 0.02, respectively). The intake of omega-3 polyunsaturated fatty acids was positively related to testicular volume while the intake of omega-6 polyunsaturated fatty acids and trans fatty acids was inversely related to testicular volume. These data suggest...

  11. Macrocyclic lactones: A versatile source for omega radiohalogenated fatty acid analogs

    International Nuclear Information System (INIS)

    Dougan, A.H.; Lyster, D.M.; Robertson, K.A.; Vincent, J.S.

    1984-01-01

    For each omega halogenated fatty acid there exists a potential omega hydroxy fatty acid and the corresponding macrocyclic lactone. The authors have utilized such lactones as starting materials for omega /sup 123/I fatty acid analogs intended for myocardial imaging. Macrocyclic musk lactones are industrially available; 120 analogs are described in the literature. The preparation requires saponification, tosylation, and radio-iodide substitution. Iodo-fatty acids are readily separated from tosylate fatty acids on TLC. While providing a secure source of 16-iodo-hexadecanoic acid and 17-iodo-heptadecanoic acid, the scheme allows ready access to a large number of untried fatty acid analogs. Examples presented are 16-iodo-hexadecanoic acid, 16-iodo-7-hexadecanoic acid, 16-iodo-12-oxa-hexadecanoic acid, 15-iodo-pentadecanoic acid, and 15-iodo-12-keto-pentadecanoic acid. Metabolic studies are in progress in mice and dogs to assess the utility of these analogs for myocardial imaging

  12. Intake of dietary saturated fatty acids and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition Netherlands cohort : Associations by types, sources of fatty acids and substitution by macronutrients

    NARCIS (Netherlands)

    Liu, S.; van der Schouw, Y.T.; Soedamah-Muthu, S.S.; Spijkerman, A.M.W.; Sluijs, I.

    2018-01-01

    Purpose: The association between dietary saturated fatty acids (SFA) intake and type 2 diabetes (T2D) remains unclear. This study aimed at investigating the association between SFA intake and T2D risk based on (1) individual SFA (differing in carbon chain length), (2) food sources of SFA and (3) the

  13. Intake of dietary saturated fatty acids and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort: associations by types, sources of fatty acids and substitution by macronutrients.

    NARCIS (Netherlands)

    Liu, Shengxin; van der Schouw, Yvonne T; Soedamah-Muthu, Sabita S; Spijkerman, Annemieke M W; Sluijs, Ivonne

    2018-01-01

    The association between dietary saturated fatty acids (SFA) intake and type 2 diabetes (T2D) remains unclear. This study aimed at investigating the association between SFA intake and T2D risk based on (1) individual SFA (differing in carbon chain length), (2) food sources of SFA and (3) the

  14. Quantification of Fatty Acid Oxidation Products Using On-line High Performance Liquid Chromatography Tandem Mass Spectrometry

    Science.gov (United States)

    Levison, Bruce S.; Zhang, Renliang; Wang, Zeneng; Fu, Xiaoming; DiDonato, Joseph A.; Hazen, Stanley L.

    2013-01-01

    Oxidized fatty acids formed via lipid peroxidation are implicated in pathological processes such as inflammation and atherosclerosis. A number of methods may be used to detect specific oxidized fatty acids containing a single or multiple combinations of epoxide, hydroxyl, ketone and hydroperoxide moieties on varying carbon chain lengths from C8 up to C30. Some of these methods are nonspecific and their use in biological systems is fraught with difficulty. Measures of specific-oxidized fatty acid derivatives help in identifying oxidation pathways in pathological processes. We used liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-MS/MS) as efficient, selective and sensitive methods for identifying and analyzing multiple specific fatty acid peroxidation products in human plasma and other biological matrices. We then distilled the essential components of a number of these analyses to provide an efficient protocol by which fatty acid oxidation products and their parent compounds can be determined. In this protocol, addition of synthetic internal standard to the sample, followed by base hydrolysis at elevated temperature, and liquid-liquid phase sample extraction with lighter than water solvents facilitates isolation of the oxidized fatty acid species. These species can be identified and accurately quantified using stable isotope dilution and multiple reaction monitoring. Use of a coupled multiplexed gradient HPLC system on the front end enables high-throughput chromatography and more efficient use of mass spectrometer time. PMID:23499838

  15. Characterization of free and bound fatty acids in human gallstones by capillary gas liquid chromatography

    International Nuclear Information System (INIS)

    Channa, N.A.; Khand, F.D.; Noorani, M.A.; Bhanger, M.I.

    2002-01-01

    Forty-four human gallstone samples either of pure cholesterol or cholesterol and bilirubin were randomly selected and analyzed by capillary gas liquid chromatography for the relative percentage composition of free and total fatty acids. The results showed that bound fatty acids were present in higher amounts than the free fatty acids. Amongst the bound fatty acids the percentage occurrence for palmitic acid was highest followed by stearic, oleic, linoleic and myristic acids. Fatty acids myristic, palmitic and linoleic were present in higher amounts in cholesterol gallstones, whereas stearic acid in cholesterol and bilirubin gallstones. When compared, no significant difference (p < 0.05) in the levels of free and bound fatty acids were seen in gallstones of males and females. The results suggest that bound fatty acids have a role to play in the structure of gallstones. (author)

  16. Modification of fatty acid profile of cow milk by calcium salts of fatty acids and its use in ice cream.

    Science.gov (United States)

    Nadeem, Muhammad; Abdullah, Muhammad; Hussain, Imtiaz; Inayat, Saima

    2015-02-01

    This study was conducted to determine the effect of calcium salts of fatty acids (CSFA) on fatty acid profile of milk of "Sahiwal" cows and suitability of milk with modified fatty acids in the formulation of ice cream. Fatty acid profile of cow milk was modified by feeding CSFA to eighteen randomly stratified "Sahiwal" cows of first and early lactation divided into three groups. CSFA were offered at two different levels i.e. T1 (150 g per cow per day) T2 (300 g per cow per day) both treatments were compared with a control (T0) without any addition of calcium salts of fatty acids. Iso caloric and iso nitrogenous feeds were given to both experimental groups and control. Concentrations of short chain fatty acids in T0, T1 and T2 were 9.85 ± 0.48a, 8.8 ± 0.24b and 7.1 ± 0.37c %, respectively and the concentrations of C18:1 and C18:2 increased (P ice cream did not have any adverse effect on pH, acidity and compositional attributes of ice cream. Viscosity of T1 was 67.94 ± 3.77a as compared to (T0) control 68.75 ± 2.46a (CP). Firmness of experimental samples and control were almost similar (P > 0.05) overall acceptability score of T2 was 7.1 ± 0.28b out of 9 (total score) which was more than 78 ± 2.92 %. It was concluded that CSFA may be successfully incorporated up to T2 level (300 g per cow per day) into the feed of "Sahiwal" cows to produce milk with higher content of unsaturated fatty acids and it may be used in the formulation of ice cream with acceptable sensory characteristics and increased health benefits.

  17. Omega-3 fatty acids as treatments for mental illness: which disorder and which fatty acid?

    Directory of Open Access Journals (Sweden)

    Sieswerda Lee E

    2007-09-01

    Full Text Available Abstract Background A growing number of observational and epidemiological studies have suggested that mental illness, in particular mood disorders, is associated with reduced dietary intake and/or cellular abundance of omega-3 polyunsaturated fatty acids (PUFA. This has prompted researchers to test the efficacy of omega-3 PUFA in a range of different psychiatric disorders. We have critically reviewed the double blind placebo controlled clinical trials published prior to April 2007 to determine whether omega-3 PUFA are likely to be efficacious in these disorders. Results Most trials involved a small number of participants but were largely well designed. Omega-3 PUFA were well tolerated by both children and adults with mild gastrointestinal effects being the only consistently reported adverse event. For schizophrenia and borderline personality disorder we found little evidence of a robust clinically relevant effect. In the case of attention deficit hyperactivity disorder and related disorders, most trials showed at most small benefits over placebo. A limited meta-analysis of these trials suggested that benefits of omega-3 PUFA supplementation may be greater in a classroom setting than at home. Some evidence indicates that omega-3 PUFA may reduce symptoms of anxiety although the data is preliminary and inconclusive. The most convincing evidence for beneficial effects of omega-3 PUFA is to be found in mood disorders. A meta-analysis of trials involving patients with major depressive disorder and bipolar disorder provided evidence that omega-3 PUFA supplementation reduces symptoms of depression. Furthermore, meta-regression analysis suggests that supplementation with eicosapentaenoic acid may be more beneficial in mood disorders than with docosahexaenoic acid, although several confounding factors prevented a definitive conclusion being made regarding which species of omega-3 PUFA is most beneficial. The mechanisms underlying the apparent efficacy of

  18. Effect of extracellular fatty acids on lipid metabolism in cultured rabbit articular chondrocytes

    International Nuclear Information System (INIS)

    Nagao, M.; Ishii, S.; Murata, Y.; Akino, T.

    1991-01-01

    Rabbit articular chondrocytes were cultured for 8 h in the presence of various concentrations (5-500 microM) of 14 C oleic, 14 C linoleic, and 3H arachidonic acids. The radioactive unsaturated fatty acids were incorporated into triacylglycerol (TG) and phosphatidylcholine (PC) in a concentration-dependent manner; more fatty acids were incorporated into TG than into PC, at higher concentrations of extracellular fatty acids. Among these fatty acids, arachidonic acid was incorporated into TG much more than into PC, in spite of a very low concentration of arachidonic acid in TG. After transfer of the labeled cells to maintenance medium, the radioactivity in TG declined rapidly and 3 H arachidonic acid radioactivity in PC increased continuously during the chase time periods. Palmitoyl-unsaturated species were mainly formed in PC when cultured at a concentration of 5 microM of each fatty acid. However, when cultured at 500 microM, unsaturated-unsaturated species, specific for each unsaturated fatty acid were actively formed. These findings indicate that (1) fatty acid composition of TG and PC in articular chondrocytes is influenced by the degree of fatty acid supply, (2) formation and turnover of TG plays a role in fatty acid metabolism of cells, and (3) fatty acid pairing in PC is modulated by extracellular fatty acid concentrations

  19. Fluoxetine potentiation of omega-3 fatty acid antidepressant effect: evaluating pharmacokinetic and brain fatty acid-related aspects in rodents.

    Science.gov (United States)

    Laino, Carlos Horacio; Garcia, Pilar; Podestá, María Fernanda; Höcht, Christian; Slobodianik, Nora; Reinés, Analía

    2014-10-01

    We previously reported that combined fluoxetine administration at antidepressant doses renders additive antidepressant effects, whereas non-antidepressant doses potentiate the omega-3 fatty acid antidepressant effect. In the present study, we aimed to evaluate putative pharmacokinetic and brain omega-3 fatty acid-related aspects for fluoxetine potentiation of omega-3 fatty acid antidepressant effect in rats. Coadministration of omega-3 fatty acids with a non-antidepressant dose of fluoxetine (1 mg/kg day) failed to affect both brain fluoxetine concentration and norfluoxetine plasma concentration profile. Fluoxetine plasma concentrations remained below the sensitivity limit of the detection method. Either antidepressant (10 mg/kg day) or non-antidepressant (1 mg/kg day) doses of fluoxetine in combination with omega-3 fatty acids increased hippocampal docosapentaenoic acid (DPA, 22:5 omega-3) levels. Although individual treatments had no effects on DPA concentration, DPA increase was higher when omega-3 were combined with the non-antidepressant dose of fluoxetine. Chronic DPA administration exerted antidepressant-like effects in the forced swimming test while increasing hippocampal docosahexaenoic (22:6 omega-3) and DPA levels. Our results suggest no pharmacokinetic interaction and reveal specific hippocampal DPA changes after fluoxetine and omega-3 combined treatments in our experimental conditions. The DPA role in the synergistic effect of fluoxetine and omega-3 combined treatments will be for sure the focus of future studies. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3316-3325, 2014. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Kefir Grains Change Fatty Acid Profile of Milk during Fermentation and Storage.

    Science.gov (United States)

    Vieira, C P; Álvares, T S; Gomes, L S; Torres, A G; Paschoalin, V M F; Conte-Junior, C A

    2015-01-01

    Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when p<0.05. The highest palmitic acid content, which is antimutagenic compost, was seen in AV grain (36.6g/100g fatty acids), which may have contributed to increasing the antimutagenic potential in fermented milk. Higher monounsaturated fatty acid (25.8 g/100g fatty acids) and lower saturated fatty acid (72.7 g/100g fatty acids) contents were observed in AV, when compared to other grains, due to higher Δ9-desaturase activity (0.31) that improves the nutritional quality of lipids. Higher oleic acid (25.0 g/100g fatty acids) and monounsaturated fatty acid (28.2g/100g fatty acids) and lower saturated fatty acid (67.2g/100g fatty acids) contents were found in stored kefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality.

  1. PTH1 receptor is involved in mediating cellular response to long-chain polyunsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Jose Candelario

    Full Text Available The molecular pathways by which long chain polyunsaturated fatty acids (LCPUFA influence skeletal health remain elusive. Both LCPUFA and parathyroid hormone type 1 receptor (PTH1R are known to be involved in bone metabolism while any direct link between the two is yet to be established. Here we report that LCPUFA are capable of direct, PTH1R dependent activation of extracellular ligand-regulated kinases (ERK. From a wide range of fatty acids studied, varying in chain length, saturation, and position of double bonds, eicosapentaenoic (EPA and docosahexaenoic fatty acids (DHA caused the highest ERK phosphorylation. Moreover, EPA potentiated the effect of parathyroid hormone (PTH(1-34 in a superagonistic manner. EPA or DHA dependent ERK phosphorylation was inhibited by the PTH1R antagonist and by knockdown of PTH1R. Inhibition of PTH1R downstream signaling molecules, protein kinases A (PKA and C (PKC, reduced EPA and DHA dependent ERK phosphorylation indicating that fatty acids predominantly activate G-protein pathway and not the β-arrestin pathway. Using picosecond time-resolved fluorescence microscopy and a genetically engineered PTH1R sensor (PTH-CC, we detected conformational responses to EPA similar to those caused by PTH(1-34. PTH1R antagonist blocked the EPA induced conformational response of the PTH-CC. Competitive binding studies using fluorescence anisotropy technique showed that EPA and DHA competitively bind to and alter the affinity of PTH1 receptor to PTH(1-34 leading to a superagonistic response. Finally, we showed that EPA stimulates protein kinase B (Akt phosphorylation in a PTH1R-dependent manner and affects the osteoblast survival pathway, by inhibiting glucocorticoid-induced cell death. Our findings demonstrate for the first time that LCPUFAs, EPA and DHA, can activate PTH1R receptor at nanomolar concentrations and consequently provide a putative molecular mechanism for the action of fatty acids in bone.

  2. Polyunsaturated fatty acids acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increases postprandial insulin sensitivity

    NARCIS (Netherlands)

    Jans, Anneke; Konings, Ellen; Goossens, Gijs H.; Bouwman, Freek G.; Moors, Chantalle C.; Boekschoten, Mark; Afman, Lydia; Muller, Michael; Mariman, Edwin C.; Blaak, Ellen E.

    2012-01-01

    Dietary fat quality may influence skeletal muscle lipid handling and fat accumulation, thereby modulating insulin sensitivity. Objective: To examine acute effects of meals with various fatty acid (FA) compositions on skeletal muscle FA handling and postprandial insulin sensitivity in obese insulin

  3. Essential fatty acid supplemented diet increases renal excretion of prostaglandin E and water in essential fatty acid deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.

    1981-01-01

    Weanling male rats were fed an essential fatty acid (EFA)-deficient diet for 25 weeks and then switched to an EFA-supplemented diet for 3 weeks. Control rats received the EFA-supplemented diet for 25 weeks and then the EFA-deficient diet for 3 weeks. Throughout the last 19 weeks, the rats were...

  4. Spatial Patterns and Temperature Predictions of Tuna Fatty Acids: Tracing Essential Nutrients and Changes in Primary Producers.

    Directory of Open Access Journals (Sweden)

    Heidi R Pethybridge

    Full Text Available Fatty acids are among the least understood nutrients in marine environments, despite their profile as key energy components of food webs and that they are essential to all life forms. Presented here is a novel approach to predict the spatial-temporal distributions of fatty acids in marine resources using generalized additive mixed models. Fatty acid tracers (FAT of key primary producers, nutritional condition indices and concentrations of two essential long-chain (≥C20 omega-3 fatty acids (EFA measured in muscle of albacore tuna, Thunnus alalunga, sampled in the south-west Pacific Ocean were response variables. Predictive variables were: location, time, sea surface temperature (SST and chlorophyll-a (Chla, and phytoplankton biomass at time of catch and curved fork length. The best model fit for all fatty acid parameters included fish length and SST. The first oceanographic contour maps of EFA and FAT (FATscapes were produced and demonstrated clear geographical gradients in the study region. Predicted changes in all fatty acid parameters reflected shifts in the size-structure of dominant primary producers. Model projections show that the supply and availability of EFA are likely to be negatively affected by increases in SST especially in temperate waters where a 12% reduction in both total fatty acid content and EFA proportions are predicted. Such changes will have large implications for the availability of energy and associated health benefits to high-order consumers. Results convey new concerns on impacts of projected climate change on fish-derived EFA in marine systems.

  5. 21 CFR 573.640 - Methyl esters of higher fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl esters of higher fatty acids. 573.640... ANIMALS Food Additive Listing § 573.640 Methyl esters of higher fatty acids. The food additive methyl esters of higher fatty acids may be safely used in animal feeds in accordance with the following...

  6. Drought and heat stress effects on soybean fatty acid composition and oil stability

    Science.gov (United States)

    Previous studies have shown that oil concentration and fatty acid profile (composition) change with genotype, environment (mainly heat and drought), and geographical location. The changes in fatty acid composition under these conditions affect fatty acid stability, creating a challenge to oil proces...

  7. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  8. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Science.gov (United States)

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

  9. Fatty acids in beef from grain- and grass-fed cattle: the unique South ...

    African Journals Online (AJOL)

    Objective: Different fatty acids elicit different responses in the human body once ingested. Although red meat is often considered to be a source of fatty acids which has a negative impact on human health, many studies have reflected variability in the quantity and quality of fatty acids found in red meat produced on different ...

  10. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders

    NARCIS (Netherlands)

    Houten, Sander M.; Violante, Sara; Ventura, Fatima V.; Wanders, Ronald J. A.

    2016-01-01

    Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when

  11. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves

    Science.gov (United States)

    The seeds of many non-domesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered ...

  12. Selection in Europeans on fatty acid desaturases associated with dietary changes

    DEFF Research Database (Denmark)

    Buckley, Matthew T.; Racimo, Fernando; Allentoft, Morten Erik

    2017-01-01

    FADS genes encode fatty acid desaturases that are important for the conversion of short chain polyunsaturated fatty acids (PUFAs) to long chain fatty acids. Prior studies indicate that the FADS genes have been subjected to strong positive selection in Africa, South Asia, Greenland, and Europe. By...

  13. Efficacy of Catalysts in the Batch Esterification of the Fatty Acids of ...

    African Journals Online (AJOL)

    The methyl, ethyl, propyl and butyl esters of the fatty acids of Thevetia peruviana seed oil were successfully prepared by the batch-esterification procedures. Various acid catalyst and various molar ratios of fatty acid to alcohol were investigated. H3PO4 was found to be ineffective to catalyze the esterification of the free fatty ...

  14. Maximized PUFA measurements improve insight in changes in fatty acid composition in response to temperature

    NARCIS (Netherlands)

    Van Dooremalen, C.; Pel, R.; Ellers, J.

    2009-01-01

    A general mechanism underlying the response of ectotherms to environmental changes often involves changes in fatty acid composition. Theory predicts that a decrease in temperature causes an increase in unsaturation of fatty acids, with an important role for long-chain poly-unsaturated fatty acids

  15. Maximized PUFA measurements improve insight in changes in fatty acid composition in response to temperature.

    NARCIS (Netherlands)

    van Dooremalen, J.A.; Pel, R.; Ellers, J.

    2009-01-01

    A general mechanism underlying the response of ectotherms to environmental changes often involves changes in fatty acid composition. Theory predicts that a decrease in temperature causes an increase in unsaturation of fatty acids, with an important role for long-chain poly-unsaturated fatty acids

  16. The Cumulus Cell Layer Protects Bovine Maturing Oocyte Against Fatty Acid-Induced Lipotoxicity

    NARCIS (Netherlands)

    Lolicato, Francesca|info:eu-repo/dai/nl/314639586; Brouwers, Jos F.|info:eu-repo/dai/nl/173812694; van de Lest, Chris H.A.|info:eu-repo/dai/nl/146063570; Wubbolts, Richard|info:eu-repo/dai/nl/181688255; Aardema, Hilde|info:eu-repo/dai/nl/304824100; Priore, Paola; Roelen, Bernard A.J.|info:eu-repo/dai/nl/109291859; Helms, J. Bernd|info:eu-repo/dai/nl/080626742; Gadella, Bart M|info:eu-repo/dai/nl/115389873

    2015-01-01

    Mobilization of fatty acids from adipose tissue during metabolic stress increases the amount of free fatty acids in blood and follicular fluid and is associated with impaired female fertility. In a previous report we described the effects of the three predominant fatty acids in follicular fluid

  17. 40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated fatty acid amide... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting under...

  18. New insights into structure and function of the different types of fatty acid-binding protein

    NARCIS (Netherlands)

    Zimmerman, Augusta Wilhelmina

    2002-01-01

    Fatty acid binding proteins (FABPs) are small cytosolic proteins with virtually identical backbone structures that facilitate the solubility and intracellular transport of fatty acids. They may also modulate the effect of fatty acids on various metabolic enzymes and receptors and on cellular

  19. Genomic regions associated with bovine milk fatty acids in both summer and winter milk samples

    NARCIS (Netherlands)

    Bouwman, A.C.; Visker, M.H.P.W.; Arendonk, van J.A.M.; Bovenhuis, H.

    2012-01-01

    Background - In this study we perform a genome-wide association study (GWAS) for bovine milk fatty acids from summer milk samples. This study replicates a previous study where we performed a GWAS for bovine milk fatty acids based on winter milk samples from the same population. Fatty acids from

  20. Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion

    DEFF Research Database (Denmark)

    Ferreira, Raphael; Teixeiraa, Paulo Goncalves; Siewers, Verena

    2018-01-01

    and tightly regulated metabolic network. Here we generated a Saccharomyces cerevisiae platform strain with a simplified lipid metabolism network with high-level production of free fatty acids (FFAs) due to redirected fatty acid metabolism and reduced feedback regulation. Deletion of the main fatty acid...

  1. Hypothalamic fatty acid sensing in Senegalese sole (Solea senegalensis): response to long-chain saturated, monounsaturated, and polyunsaturated (n-3) fatty acids.

    Science.gov (United States)

    Conde-Sieira, Marta; Bonacic, Kruno; Velasco, Cristina; Valente, Luisa M P; Morais, Sofia; Soengas, José L

    2015-12-15

    We assessed the presence of fatty acid (FA)-sensing mechanisms in hypothalamus of Senegalese sole (Solea senegalensis) and investigated their sensitivity to FA chain length and/or level of unsaturation. Stearate (SA, saturated FA), oleate (OA, monounsaturated FA of the same chain length), α-linolenate [ALA, a n-3 polyunsaturated fatty acid (PUFA) of the same chain length], and eicosapentanoate (EPA, a n-3 PUFA of a larger chain length) were injected intraperitoneally. Parameters related to FA sensing and neuropeptide expression in the hypothalamus were assessed after 3 h and changes in accumulated food intake after 4, 24, and 48 h. Three FA sensing systems characterized in rainbow trout were also found in Senegalese sole and were activated by OA in a way similar to that previously characterized in rainbow trout and mammals. These hypothalamic FA sensing systems were also activated by ALA, differing from mammals, where n-3 PUFAs do not seem to activate FA sensors. This might suggest additional roles and highlights the importance of n-3 PUFA in fish diets, especially in marine species. The activation of FA sensing seems to be partially dependent on acyl chain length and degree of saturation, as no major changes were observed after treating fish with SA or EPA. The activation of FA sensing systems by OA and ALA, but not SA or EPA, is further reflected in the expression of hypothalamic neuropeptides involved in the control of food intake. Both OA and ALA enhanced anorexigenic capacity compatible with the activation of FA sensing systems. Copyright © 2015 the American Physiological Society.

  2. Effect of Enriched Feed by n-3 fatty acids and 2% of n-6 fatty acid on Danio rerio Reproduction

    Directory of Open Access Journals (Sweden)

    N.B.P Utomo

    2007-07-01

    Full Text Available This experiment was conducted to determine the optimum n-3 fatty acid level in the diet containing 2 % of n-6 fatty acid on the reproductive performance of zebra fish (Danio rerio. There experimental diets containing 0.0; 1.0; 1.5 % n-3 fatty acid with 2.0 % n-6 fatty acid was fed to the fish, three times daily, at satiation, for two months. In order to evaluate the gonadal development of the broodstock, two gonads og fish was used for histologis preparation in every 7 days. At the end of the second month, reproductive performance was evaluated through parameters of gonad somato indeks, fecundity, fertilization rate, hatching rate, yolk egg absorbtion rate, survival rate of 3 days old larvae. Sample of fish also was taken for proximate composition as the end of this experiment. Results shows that at the fifth weeks of this experiment, gonad of fish fed on 1.0 % of n-3 fatty acid and 2.0 % n-6 fatty acid already produce eggs with the some size, while others. Still produce small size of eggs. It was found also that the whole body of fish fed an diet with 1.0% n-3 fatty acid contain the highest protein level compare to two other diets. Based on the evaluation of reproduction performance parameters, it was concluded that the optimum dietary level of n-3 fatty acid with 2.0 % n-6 fatty acid for Danio rerio was 0.81 - 0.90 %. Keywords: essential fatty, acids, reproduction, zebra fish, Danio rerio   ABSTRAK Penelitian ini bertujuan untuk menentukan kadar asam lemak n-3 optimum dalam pakan yang mempunyai kadar asam lemak n-6 tetap. Tiga macam pakan dengan kadar asam lemak n-3 berbeda yaitu 0.0; 1.0; dan 2.0 % diberikan pada ikan dengan bobot rata-rata 0.12 g. Pakan diberikan secara at satiation, 4 kali sehari selama 60 hari. Setiap 7 hari sekali diambil sampel ikan untuk pembentukan preparat histologi gonad dengan tujuan untuk mengevaluasi perkembangan gonad. Pada akhir penelitian, induk dipijahkan dan dievaluasi performan reproduksi berdasarkan

  3. Fatty acids profile of chia oil-loaded lipid microparticles

    Directory of Open Access Journals (Sweden)

    M. F. Souza

    Full Text Available ABSTRACT Encapsulation of poly-unsaturated fatty acid (PUFAis an alternative to increase its stability during processing and storage. Chia (Salvia hispanica L. oil is a reliable source of both omega-3 and omega-6 and its encapsulation must be better evaluated as an effort to increase the number of foodstuffs containing PUFAs to consumers. In this work chia oil was extracted and encapsulated in stearic acid microparticles by the hot homogenization technique. UV-Vis spectroscopy coupled with Multivariate Curve Resolution with Alternating Least-Squares methodology demonstrated that no oil degradation or tocopherol loss occurred during heating. After lyophilization, the fatty acids profile of the oil-loaded microparticles was determined by gas chromatography and compared to in natura oil. Both omega-3 and omega-6 were effectively encapsulated, keeping the same omega-3:omega-6 ratio presented in the in natura oil. Calorimetric analysis confirmed that encapsulation improved the thermal stability of the chia oil.

  4. Development of radioiodinated fatty acids for applications in nuclear cardiology

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Goodman, M.M.; Elmaleh, D.R.; Okada, R.; Strauss, H.W.

    1985-01-01

    The use of radioiodinated fatty acids for the evaluation of myocardial perfusion and the assessment of regional fatty acid metabolism in relation to myocardial disease have seen rapid growth in the last few years. In this paper the development and use of these agents are reviewed. In addition to a discussion of the design of structurally modified fatty acids, the development of new radiolabeling methods for preparation of the iodine-123-labeled agents is presented. The development of these new agents is discussed, and their potential use in conjunction with single-photon tomography is an exciting new area. A summary of the clinical studies involving measurement of regional washout rate which have been performed with agents such as 17-([ 123 I]iodo)heptadecanoic acid and 15-(p-[ 123 I]iodo phenyl)pentadecanoic acid is also presented. The combined interest and expertise of chemists and clinicians have worked effectively together to make many recent contributions to this area of radiopharmaceutical development

  5. Cholesterol and fatty acids profile of Brazilian commercial chicken giblets.

    Science.gov (United States)

    Pereira, Nádia Rosa; Muniz, Edvani Curti; Matsushita, Makoto; Evelázio de Souza, Nilson

    2002-06-01

    This study was carried out to determine the chemical composition, cholesterol contents and fatty acids profile of Brazilian commercial chicken giblets. The analysis were performed in gizzard, liver and heart in natura and also in cooked gizzard, fried liver and roasted heart. Fat and cholesterol contents ranged from 0.88% and 72.68 mg/100 g, in cooked gizzard, to 22.19% and 213.18 mg/100 g, in roasted heart. As the fat content gets higher, so does the cholesterol content. Palmitic (C16:0) and stearic acids (C18:0) were the predominant saturated fatty acids (SFA). The C16:0 ranged from 6.39% in cooked gizzard to 18.51% in fried liver. The C18:0 level ranged from 6.62% in roasted heart to 19.19% in cooked gizzard. Linoleic acid (C18:2 omega 6) was the predominant polyunsaturated fatty acid (PUFA). The data revealed that the three different analysed giblets presented a good PUFA/SFA ratio, with values of 1.11, 1.14 and 1.40 for cooked gizzard, fried liver and roasted heart, respectively.

  6. Myocardial scintigraphy with I-123 labeled fatty acids

    International Nuclear Information System (INIS)

    Dudczak, R.

    1983-01-01

    This study presents experimental and clinical data in the use of I-123 labeled aromatic and aliphatic fatty acids. I-123 p-phenylpentadecanoic acid (p-IPPA) and I-123 heptadecanoic acid (HDA) were applied for myocardial scintigraphy. The feasibility of p-IPPA and HDA for myocardial scintigraphy was substantiated in animal experiments. Clinical studies were performed in patients with coronary artery disease (CAD) and cardiomyopathy (CMP). In CAD the results of fatty acid studies were compared with those of Tl-201. I-123 labeled fatty acids proved to be a useful tool for myocardial scintigraphy. The possibility to evaluate non invasively the myocardial metabolic function in man may add a complementary diagnostic tool in the clinical follow up of patients with heart disease. In CAD studies with I-123 p-IPPA and I-123 HDA might provide a means to assess the degree of myocardial viability and to identify a subgroup of patients who are at increased risk for irreversible myocardial damage. In patients with CMP it is probable that these studies may be used as a means of separating groups of patients with this disease. (Author)

  7. Erythrocyte and platelet fatty acids in retinitis pigmentosa.

    Science.gov (United States)

    Stanzial, A M; Bonomi, L; Cobbe, C; Olivieri, O; Girelli, D; Trevisan, M T; Bassi, A; Ferrari, S; Corrocher, R

    1991-05-01

    The fatty acid composition and the glutathione-peroxidase activity (GSH-Px) of erythrocytes and platelets, the production of malondialdehyde (MDA) by platelets and the activity of the main systems of transmembrane cation transport in erythrocyte have been studied in 12 patients (5 males and 7 females) affected by retinitis pigmentosa (RP). A remarkable increase of saturated fatty acids (SFA), particularly of stearic acid (C18:0), has been noted in these patients. The reduced unsaturated/saturated fatty acids ratio (PUFA/SFA) observed in both erythrocytes and platelets and the decrease of arachidonic acid in platelets may depend by an active peroxidation process as documented by the increase of MDA. Platelet glutathione-peroxidase (PTL-GSH-PX) and plasma retinol were in the normal range, whereas erythrocyte glutathione-peroxidase (E-GSH-PX), MDA and plasma alfa-toco-pherol were increased in patients with RP. The activities of Na(+)-K+ pump, cotransport and Na(+)-Li+ countertransport were normal in RP erythrocytes.

  8. Qualitative and quantitative assessment of fatty acids of buddleja asiatica by GC-MS

    International Nuclear Information System (INIS)

    Ali, F.; Ali, I.; Bibi, H.; Malik, A.

    2013-01-01

    To analyze the fatty acid contents of Buddleja asiatica Lour,both the non-volatile oil and fat obtained from the n-hexane soluble sub- fraction were subjected to GC/MS using BSTFA (N,O-bis(trimethylsilyl) trifloroacetamide) derivatization. The oil showed the presence of six fatty acids including palmitic acid (46.75 %), linoleic acid (37.80 %), stearic acid (10.98 %), arachidic acid, margaric acid and lignoceric acid (< 3 %) . Analysis of the fat revealed nine fatty acids including lignoceric acid (43.12 %), behenic acid (26.39 %), arachidic acid (9.29 %) and stearic acid (5.3 %). Cerotic acid, montanic acid, melissic acid and palmitic acid were found in low amounts (< 5 %) while trycosylic acid (4.83 %) was the only fatty acid with odd number of carbon atoms. The oil showed a low thermal stability. (author)

  9. Fatty acids composition of Spanish black (Morus nigra L.) and white (Morus alba L.) mulberries.

    Science.gov (United States)

    Sánchez-Salcedo, Eva M; Sendra, Esther; Carbonell-Barrachina, Ángel A; Martínez, Juan José; Hernández, Francisca

    2016-01-01

    This research has determined qualitatively and quantitatively the fatty acids composition of white (Morus alba) and black (Morus nigra) fruits grown in Spain, in 2013 and 2014. Four clones of each species were studied. Fourteen fatty acids were identified and quantified in mulberry fruits. The most abundant fatty acids were linoleic (C18:2), palmitic (C16:0), oleic (C18:1), and stearic (C18:0) acids in both species. The main fatty acid in all clones was linoleic (C18:2), that ranged from 69.66% (MN2) to 78.02% (MA1) of the total fatty acid content; consequently Spanish mulberry fruits were found to be rich in linoleic acid, which is an essential fatty acid. The fatty acid composition of mulberries highlights the nutritional and health benefits of their consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools.

    Science.gov (United States)

    Taha, Ameer Y; Cheon, Yewon; Faurot, Keturah F; Macintosh, Beth; Majchrzak-Hong, Sharon F; Mann, J Douglas; Hibbeln, Joseph R; Ringel, Amit; Ramsden, Christopher E

    2014-05-01

    Dietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations. To evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, alters unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache. Secondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3-L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet. Compared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3-L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations. Dietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFAs for 12 weeks further increases n-3 PUFA plasma concentrations and reduces AA. Published by Elsevier Ltd.

  11. Staphylococcus aureus utilizes host-derived lipoprotein particles as sources of exogenous fatty acids.

    Science.gov (United States)

    Delekta, Phillip C; Shook, John C; Lydic, Todd A; Mulks, Martha H; Hammer, Neal D

    2018-03-26

    Methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health. Consequently, much effort has focused on the development of new antimicrobials that target novel aspects of S. aureus physiology. Fatty acids are required to maintain cell viability, and bacteria synthesize fatty acids using the type II fatty acid synthesis pathway (FASII). FASII is significantly different from human fatty acid synthesis, underscoring the therapeutic potential of inhibiting this pathway. However, many Gram-positive pathogens incorporate exogenous fatty acids, bypassing FASII inhibition and leaving the clinical potential of FASII inhibitors uncertain. Importantly, the source(s) of fatty acids available to pathogens within the host environment remains unclear. Fatty acids are transported throughout the body by lipoprotein particles in the form of triglycerides and esterified cholesterol. Thus, lipoproteins, such as low-density lipoprotein (LDL) represent a potentially rich source of exogenous fatty acids for S. aureus during infection. We sought to test the ability of LDLs to serve as a fatty acid source for S. aureus and show that cells cultured in the presence of human LDLs demonstrate increased tolerance to the FASII inhibitor, triclosan. Using mass spectrometry, we observed that host-derived fatty acids present in the LDLs are incorporated into the staphylococcal membrane and that tolerance to triclosan is facilitated by the fatty acid kinase A, FakA, and Geh, a triacylglycerol lipase. Finally, we demonstrate that human LDLs support the growth of S. aureus fatty acid auxotrophs. Together, these results suggest that human lipoprotein particles are a viable source of exogenous fatty acids for S. aureus during infection. IMPORTANCE Inhibition of bacterial fatty acid synthesis is a promising approach to combating infections caused by S. aureus and other human pathogens. However, S. aureus incorporates exogenous fatty acids into its phospholipid bilayer. Therefore, the

  12. Low omega-3 index values and monounsaturated fatty acid levels in early pregnancy: an analysis of maternal erythrocytes fatty acids.

    Science.gov (United States)

    Hoge, Axelle; Bernardy, Florence; Donneau, Anne-Françoise; Dardenne, Nadia; Degée, Sylvie; Timmermans, Marie; Nisolle, Michelle; Guillaume, Michèle; Castronovo, Vincenzo

    2018-04-02

    It is unanimously recognized that the maternal nutritional status at the pregnancy onset influence both short-term and long-term health of the mother and offspring. Among several nutrients, LCPUFA, particularly from the omega-3 family, are of utmost importance. This study was carried out to determine fatty acids profile of maternal erythrocyte membranes in early pregnancy and to identify potential determinants impacting on this status. A cohort of 122 healthy women with a singleton pregnancy was included. Fatty acids were analyzed using gas chromatography. Because of the lack of cutoff values, reference ranges were used to determine fatty acids categories. Of concern, our data revealed low monounsaturated and long-chain omega-3 fatty acid status in most participants. More than 75% of Belgian pregnant women exhibited Pal, AO and EPA levels as well as IOM3 values below the laboratory reference ranges. Higher DHA concentrations and IOM3 values were found among foreign-nationality participants, non-smokers and physically active women. With regard to dietary factors, omega-3 supplements and diet seem to be complementary since DHA from supplements (but not from diet) and EPA from diet (but not from supplements) were found to be associated with higher concentrations of DHA and EPA, respectively. Our study presents evidence demonstrating that the fatty acid status of most early pregnant women is far from being optimal based on the admitted general reference values. Clinicians should be advice to carefully evaluate and improve this status to guarantee the best possible outcome for both the mother and the baby.

  13. Effect of Non-Esterified Fatty Acids on Fatty Acid Metabolism-Related Genes in Calf Hepatocytes Cultured in Vitro

    Directory of Open Access Journals (Sweden)

    Peng Li

    2013-11-01

    Full Text Available Background: NEFA plays numerous roles in the metabolism of glucose, lipids, and proteins. A number of experimental studies have shown that NEFA may have an important role in fatty acid metabolism in the liver, especially in dairy cows that experience negative energy balance (NEB during early lactation. Methods: In this study, using fluorescent quantitative RT-PCR, ELISA, and primary hepatocytes cultured in vitro, we examined the effect of NEFA (0, 0.2, 0.4, 0.8, 1.6, and 3.2 mmol/L on fatty acid metabolism by monitoring the mRNA and protein expression of the following key enzymes: long chain acyl-CoA synthetase (ACSL, carnitine palmitoyltransferase IA (CPT IA, long chain acyl-CoA dehydrogenase (ACADL, and acetyl-CoA carboxylase (ACC. Results: The mRNA and protein expression levels of ACSL and ACADL markedly increased as the concentration of NEFA in the media was increased. The mRNA and protein expression levels of CPT IA were enhanced significantly when the NEFA concentrations increased from 0 to 1.6 mmol/L and decreased significantly when the NEFA concentrations increased from 1.6 to 3.2 mmol/L. The mRNA and protein expression of ACC decreased gradually with increasing concentrations of NEFA. Conclusion: These findings indicate that increased NEFA significantly promote the activation and β-oxidation of fatty acids, but very high NEFA concentrations may inhibit the translocation of fatty acids into mitochondria of hepatocytes. This may explain the development of ketosis or liver lipidosis in dairy cows. CPT IA might be the key control enzyme of the fatty acid oxidation process in hepatocytes.

  14. Metabolism of very long-chain Fatty acids: genes and pathophysiology.

    Science.gov (United States)

    Sassa, Takayuki; Kihara, Akio

    2014-02-01

    Fatty acids (FAs) are highly diverse in terms of carbon (C) chain-length and number of double bonds. FAs with C>20 are called very long-chain fatty acids (VLCFAs). VLCFAs are found not only as constituents of cellular lipids such as sphingolipids and glycerophospholipids but also as precursors of lipid mediators. Our understanding on the function of VLCFAs is growing in parallel with the identification of enzymes involved in VLCFA synthesis or degradation. A variety of inherited diseases, such as ichthyosis, macular degeneration, myopathy, mental retardation, and demyelination, are caused by mutations in the genes encoding VLCFA metabolizing enzymes. In this review, we describe mammalian VLCFAs by highlighting their tissue distribution and metabolic pathways, and we discuss responsible genes and enzymes with reference to their roles in pathophysiology.

  15. Optimization of the carrot leaf dehydration aiming at the preservation of omega-3 fatty acids

    Directory of Open Access Journals (Sweden)

    Vanessa Vivian de Almeida

    2009-01-01

    Full Text Available The carrot leaf dehydration conditions in air circulation oven were optimized through response surface methodology (RSM for minimizing the degradation of polyunsaturated fatty acids, particularly alpha-linolenic (LNA, 18:3n-3. The optimized leaf drying time and temperature were 43 h and 70 ºC, respectively. The fatty acids (FA were investigated using gas chromatography equipped with a flame ionization detector and fused silica capillary column; FA were identified with standards and based on equivalent-chain-length. LNA and other FA were quantified against C21:0 internal standard. After dehydration, the amount of LNA, quantified in mg/100 g dry matter of dehydrated carrot leaves, were 984 mg.

  16. Crystallite structure formation at the collapse pressure of fatty acid Langmuir films

    International Nuclear Information System (INIS)

    Valdes-Covarrubias, M A; Cadena-Nava, R D; Vasquez-MartInez, E; Valdez-Perez, D; Ruiz-GarcIa, J

    2004-01-01

    We report isotherm and atomic force microscopy studies of collapsed Langmuir monolayers of fatty acids. The Langmuir monolayers were overcompressed in the range 7-40 deg. C and transferred onto mica after the sharp pressure drop when the collapse pressure was reached. Collapsed material was observed by AFM, which revealed that the multilayers are indeed three-dimensional crystallites. We found that the shape of the crystallites depends on the collapse temperature, the phase from which the collapse occurs and/or the chain length. However, at higher temperatures the collapsed films no longer show a well defined crystallite formation, but rather a more heterogeneous melt-like pattern. We associated the crystallite formation with known bulk crystal phases of the fatty acids

  17. The response of quartz crystals coated with thin fatty acid film to organic gases

    CERN Document Server

    Jin, C N; Kim, K H; Kwon, Y S

    1999-01-01

    We tried to apply a quartz crystal as a sensor by using the resonant frequency and the resistance properties of quartz crystals. Four kinds of fatty acids that have the same head groups were coated on the surfaces of the quartz crystals, and the shift of the resonant frequency and the resistance were observed based on the lengths of the tail groups. Myristic acid (C sub 1 sub 4), palmitic acid (C sub 1 sub 6), stearic acid (C sub 1 sub 8), and arachidic acid (C sub 2 sub 0) were deposited on the surfaces of quartz crystals by using the Langmuir-Blodgett (LB) method. As a result, the resonant frequency change was more sensitive to high molecular-weight fatty acids than to low molecular-weight ones. We also observed the effect of temperature on stearic acid LB films, and the response properties of quartz crystals coated with stearic-acid LB films to organic gases were investigated. As a result, the sensitivity of quartz crystals to organic gases was higher for higher molecular-weight gas, and we found that quar...

  18. gamma-linolenic acid does not augment long-chain polyunsaturated fatty acid omega-3 status

    NARCIS (Netherlands)

    Brouwer, DAJ; Hettema, Y; van Doormaal, JJ; Muskiet, FAJ

    Augmentation of long chain polyunsaturated omega 3 fatty acid (LCPUFA omega 3) status can be reached by consumption of fish oil or by improvement of the conversion of a-linolenic acid (ALA) to LCPUFA omega 3. Since gamma-linolenic acid (GLA) might activate the rate-limiting Delta-6 desaturation, we

  19. Regulation of Connexin-Based Channels by Fatty Acids

    Science.gov (United States)

    Puebla, Carlos; Retamal, Mauricio A.; Acuña, Rodrigo; Sáez, Juan C.

    2017-01-01

    In this mini-review, we briefly summarize the current knowledge about the effects of fatty acids (FAs) on connexin-based channels, as well as discuss the limited information about the impact FAs may have on pannexins (Panxs). FAs regulate diverse cellular functions, some of which are explained by changes in the activity of channels constituted by connexins (Cxs) or Panxs, which are known to play critical roles in maintaining the functional integrity of diverse organs and tissues. Cxs are transmembrane proteins that oligomerize into hexamers to form hemichannels (HCs), which in turn can assemble into dodecamers to form gap junction channels (GJCs). While GJCs communicate the cytoplasm of contacting cells, HCs serve as pathways for the exchange of ions and small molecules between the intra and extracellular milieu. Panxs, as well as Cx HCs, form channels at the plasma membrane that enable the interchange of molecules between the intra and extracellular spaces. Both Cx- and Panx-based channels are controlled by several post-translational modifications. However, the mechanism of action of FAs on these channels has not been described in detail. It has been shown however that FAs frequently decrease GJC-mediated cell-cell communication. The opposite effect also has been described for HC or Panx-dependent intercellular communication, where, the acute FA effect can be reversed upon washout. Additionally, changes in GJCs mediated by FAs have been associated with post-translational modifications (e.g., phosphorylation), and seem to be directly related to chemical properties of FAs (e.g., length of carbon chain and/or degree of saturation), but this possible link remains poorly understood. PMID:28174541

  20. Capillary gas chromatographic analysis of mycolic acid cleavage products, cellular fatty acids, and alcohols of Mycobacterium xenopi.

    OpenAIRE

    Luquin, M; Lopez, F; Ausina, V

    1989-01-01

    The fatty acids, alcohols, and mycolic acids of 26 strains of Mycobacterium xenopi were studied by capillary gas chromatography and thin-layer chromatography. All strains contained alpha-, keto-, and omega-carboxymycolates. The primary mycolic acid cleavage product was hexacosanoic acid. The fatty acid patterns and, especially, the presence of 2-docosanol are characteristic markers of M. xenopi.

  1. Effects of exogenous fatty acids and inhibition of de novo fatty acid synthesis on disaturated phosphatidylcholine production by fetal lung cells and adult type II cells.

    Science.gov (United States)

    Maniscalco, W M; Finkelstein, J N; Parkhurst, A B

    1989-05-01

    De novo fatty acid synthesis may be an important source of saturated fatty acids for fetal lung disaturated phosphatidylcholine (DSPC) production. To investigate the roles of de novo fatty acid synthesis and exogenous fatty acids, we incubated dispersed fetal lung cells and freshly isolated adult type II cells with exogenous palmitate and oleate and measured DSPC synthesis. Unlike adult type II cells, fetal lung cells did not increase DSPC synthesis when exogenous palmitate was available; adult type II cells increased DSPC synthesis by 70% in the presence of palmitate. Exogenous oleate decreased DSPC synthesis by 48% in fetal cells but not in adult type II cells. Incubation of fetal lung cells with TOFA [2-furancarboxylate, 5-(tetradecyloxy)-sodium], a metabolic inhibitor of fatty acid synthesis, decreased fatty acid synthesis by 65%. There was a simultaneous 56% inhibition of DSPC production, but no effect on protein, DNA, or glyceride-glycerol production, measured by precursor incorporation. The inhibition of DSPC synthesis associated with TOFA was partially prevented by exogenous palmitate but not oleate. Fetal cells prepared from explants that had been cultured in dexamethasone also had TOFA-associated inhibition of DSPC synthesis that was similar to non-dexamethasone-exposed cells. These studies suggest that under baseline conditions of low fatty acid availability, such as in the fetus, de novo fatty acid synthesis in fetal cells, but not in adult type II cells, provides sufficient saturated fatty acids to support maximal DSPC production. Inhibition of de novo fatty acid synthesis resulting in decreased DSPC production in fetal lung cells in conditions of low fatty acid availability suggests that fatty acid synthesis may be central to maintain DSPC synthesis in the fetus.

  2. Fatty acid sulphoalkyl amides and esters as cosmetic surfactants.

    Science.gov (United States)

    Petter, P J

    1984-10-01

    Synopsis A review is given of the manufacture, properties and applications of the anionic surfactants commonly known as taurates and isethionates (fatty acid sulphoalkyl amides and esters, respectively). Originally developed in the 1930s for textile processing, these surfactants are used increasingly in the cosmetic field, particularly those derived from coconut fatty acid. Both types are produced from sodium isethionate, HO degrees C(2)H(4)SO(3)Na. The acyl isethionate, R degrees COO degrees C(2)H(4)SO(3)Na, is obtained by reaction with a fatty acid ('direct process'). or fatty acid chloride ('indirect process'). The direct process is cheaper but requires extreme conditions which can lead to discoloration of the product and a loss of shorter chain fatty acid components. The N-methyl-N-acyltaurate, R degrees CON(R(1))C(2)H(4)SO(3)Na, is obtained by Schotten-Baumann reaction of a fatty acid chloride with N-methyltaurine, which is derived from sodium isethionate via methylamine. Taurates and isethionates retain the benefits of the soaps to which they are structurally similar, but chemical modifications have eliminated many undesirable features. Thus they combine good detergency and wetting with high foaming, and maintain their performance in hard or salt water. Taurates are stable to hydrolysis over the whole pH range. Isethionates are prone to hydrolysis at high (>8) or low (soap bars based on isethionate can be formulated at neutral pH ('Dove type'bars) instead of the alkaline pH of soap, and have been shown in various studies to be milder than soap and better tolerated by the young, the old and those with sensitive skins. Similarly, isethionates have been shown to be less irritating than other anionic or amphoteric surfactants used in cosmetics. The difference has been related to the negligible effect of isethionate on the water-binding capacity of stratum corneum. Other cosmetic applications besides toilet bars include shampoos (excellent cleaning, mild to scalp

  3. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits.

    Science.gov (United States)

    Shahidi, Fereidoon; Ambigaipalan, Priyatharini

    2018-03-25

    Omega-3 polyunsaturated fatty acids (PUFAs) include α-linolenic acid (ALA; 18:3 ω-3), stearidonic acid (SDA; 18:4 ω-3), eicosapentaenoic acid (EPA; 20:5 ω-3), docosapentaenoic acid (DPA; 22:5 ω-3), and docosahexaenoic acid (DHA; 22:6 ω-3). In the past few decades, many epidemiological studies have been conducted on the myriad health benefits of omega-3 PUFAs. In this review, we summarized the structural features, properties, dietary sources, metabolism, and bioavailability of omega-3 PUFAs and their effects on cardiovascular disease, diabetes, cancer, Alzheimer's disease, dementia, depression, visual and neurological development, and maternal and child health. Even though many health benefits of omega-3 PUFAs have been reported in the literature, there are also some controversies about their efficacy and certain benefits to human health.

  4. Characterization of Aspergillus species based on fatty acid profiles.

    Science.gov (United States)

    Fraga, Marcelo E; Santana, Djalva Maria N; Gatti, Mario Jorge; Direito, Gloria Maria; Cavaglieri, Lilia R; Rosa, Carlos Alberto R

    2008-09-01

    Cellular fatty acid (FA) composition was utilized as a taxonomic tool to discriminate between different Aspergillus species. Several of the tested species had the same FA composition and different relative FA concentrations. The most important FAs were palmitic acid (C16:0), estearic acid (C18:0), oleic acid (C18:1) and linoleic acid (C18:2), which represented 95% of Aspergillus FAs. Multivariate data analysis demonstrated that FA analysis is a useful tool for differentiating species belonging to genus Aspergillus. All the species analyzed showed significantly FA acid profiles (p < 0.001). Furthermore, it will be possible to distinguish among Aspergillus spp. in the Flavi Section. FA composition can serve as a useful tool for the identification of filamentous fungi.

  5. Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1).

    Science.gov (United States)

    Demidenko, Aleksandr; Akberdin, Ilya R; Allemann, Marco; Allen, Eric E; Kalyuzhnaya, Marina G

    2016-01-01

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1) . Most of the genes homologous to typical Type II fatty acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of fatty acid transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for fatty acid biosynthesis regulation, farE , was identified and studied. Its deletion resulted in drastic changes to the fatty acid profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE -knockout mutants and farE -overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. The gene expression and fatty acid profiles of the different farE -strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.

  6. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice.

    Science.gov (United States)

    Rodriguez-Navas, Carlos; Morselli, Eugenia; Clegg, Deborah J

    2016-08-01

    In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD) for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD.

  7. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain.

    Science.gov (United States)

    Schönfeld, Peter; Reiser, Georg

    2013-10-01

    It is puzzling that hydrogen-rich fatty acids are used only poorly as fuel in the brain. The long-standing belief that a slow passage of fatty acids across the blood-brain barrier might be the reason. However, this has been corrected by experimental results. Otherwise, accumulated nonesterified fatty acids or their activated derivatives could exert detrimental activities on mitochondria, which might trigger the mitochondrial route of apoptosis. Here, we draw attention to three particular problems: (1) ATP generation linked to β-oxidation of fatty acids demands more oxygen than glucose, thereby enhancing the risk for neurons to become hypoxic; (2) β-oxidation of fatty acids generates superoxide, which, taken together with the poor anti-oxidative defense in neurons, causes severe oxidative stress; (3) the rate of ATP generation based on adipose tissue-derived fatty acids is slower than that using blood glucose as fuel. Thus, in periods of extended continuous and rapid neuronal firing, fatty acid oxidation cannot guarantee rapid ATP generation in neurons. We conjecture that the disadvantages connected with using fatty acids as fuel have created evolutionary pressure on lowering the expression of the β-oxidation enzyme equipment in brain mitochondria to avoid extensive fatty acid oxidation and to favor glucose oxidation in brain.

  8. Expression of Vibrio harveyi acyl-ACP synthetase allows efficient entry of exogenous fatty acids into the Escherichia coli fatty acid and lipid A synthetic pathways.

    Science.gov (United States)

    Jiang, Yanfang; Morgan-Kiss, Rachael M; Campbell, John W; Chan, Chi Ho; Cronan, John E

    2010-02-02

    Although the Escherichia coli fatty acid synthesis (FAS) pathway is the best studied type II fatty acid synthesis system, a major experimental limitation has been the inability to feed intermediates into the pathway in vivo because exogenously supplied free fatty acids are not efficiently converted to the acyl-acyl carrier protein (ACP) thioesters required by the pathway. We report that expression of Vibrio harveyi acyl-ACP synthetase (AasS), a soluble cytosolic enzyme that ligates free fatty acids to ACP to form acyl-ACPs, allows exogenous fatty acids to enter the E. coli fatty acid synthesis pathway. The free fatty acids are incorporated intact and can be elongated or directly incorporated into complex lipids by acyltransferases specific for acyl-ACPs. Moreover, expression of AasS strains and supplementation with the appropriate fatty acid restored growth to E. coli mutant strains that lack essential fatty acid synthesis enzymes. Thus, this strategy provides a new tool for circumventing the loss of enzymes essential for FAS function.

  9. Maternal adipose tissue becomes a source of fatty acids for the fetus in fasted pregnant rats given diets with different fatty acid compositions.

    Science.gov (United States)

    López-Soldado, Iliana; Ortega-Senovilla, Henar; Herrera, Emilio

    2017-11-10

    The utilization of long-chain polyunsaturated fatty acids (LCPUFA) by the fetus may exceed its capacity to synthesize them from essential fatty acids, so they have to come from the mother. Since adipose tissue lipolytic activity is greatly accelerated under fasting conditions during late pregnancy, the aim was to determine how 24 h fasting in late pregnant rats given diets with different fatty acid compositions affects maternal and fetal tissue fatty acid profiles. Pregnant Sprague-Dawley rats were given isoenergetic diets containing 10% palm-, sunflower-, olive- or fish-oil. Half the rats were fasted from day 19 of pregnancy and all were studied on day 20. Triacylglycerols (TAG), glycerol and non-esterified fatty acids (NEFA) were analyzed by enzymatic methods and fatty acid profiles were analyzed by gas chromatography. Fasting caused increments in maternal plasma NEFA, glycerol and TAG, indicating increased adipose tissue lipolytic activity. Maternal adipose fatty acid profiles paralleled the respective diets and, with the exception of animals on the olive oil diet, maternal fasting increased the plasma concentration of most fatty acids. This maintains the availability of LCPUFA to the fetus during brain development. The results show the major role played by maternal adipose tissue in the storage of dietary fatty acids during pregnancy, thus ensuring adequate availability of LCPUFA to the fetus during late pregnancy, even when food supply is restricted.

  10. Biological properties of nitro-fatty acids in plants.

    Science.gov (United States)

    Mata-Pérez, Capilla; Padilla, María N; Sánchez-Calvo, Beatriz; Begara-Morales, Juan C; Valderrama, Raquel; Chaki, Mounira; Barroso, Juan B

    2018-03-27

    Nitro-fatty acids (NO 2 -FAs) are formed from the reaction between nitrogen dioxide (NO 2 ) and mono and polyunsaturated fatty acids. Knowledge concerning NO 2 -FAs has significantly increased within a few years ago and the beneficial actions of these species uncovered in animal systems have led to consider them as molecules with therapeutic potential. Based on their nature and structure, NO 2 -FAs have the ability to release nitric oxide (NO) in aqueous environments and the capacity to mediate post-translational modifications (PTM) by nitroalkylation. Recently, based on the potential of these NO-derived molecules in the animal field, the endogenous occurrence of nitrated-derivatives of linolenic acid (NO 2 -Ln) was assessed in plant species. Moreover and through RNA-seq technology, it was shown that NO 2 -Ln can induce a large set of heat-shock proteins (HSPs) and different antioxidant systems suggesting this molecule may launch antioxidant and defence responses in plants. Furthermore, the capacity of this nitro-fatty acid to release NO has also been demonstrated. In view of this background, here we offer an overview on the biological properties described for NO 2 -FAs in plants and the potential of these molecules to be considered new key intermediaries of NO metabolism in the plant field. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Fatty Acid Profiles of In Vitro Digested Processed Milk

    Directory of Open Access Journals (Sweden)

    Michael H. Tunick

    2017-11-01

    Full Text Available Digestion of milkfat releases some long-chain (18-carbon fatty acids (FAs that can provide health benefits to the consumer, yet because they are found in small amounts and can be difficult to identify, there is limited information on the effects that common fluid milk processing may have on the digestibility of these FAs. This study provides FA profiles for raw and combinations of homogenized and/or heat-treated (high and ultra-high temperature pasteurization milk, before and after in vitro digestion, in order to determine the effects of processing on the digestibility of these healthy fatty acids. Use of a highly sensitive separation column resulted in improved FA profiles that showed that, when milk was subjected to both pasteurization and homogenization, the release of the 18-carbon FAs, oleic acid, linoleic acid (an omega-6 FA, rumenic acid (a conjugated linoleic acid, CLA, and linolenic acid (an omega-3 FA tended to be higher than with either pasteurization or homogenization, or with no treatment. Milk is noted for containing the omega-3 FAs and CLAs, which are associated with positive health benefits. Determining how processing factors may impact the components in milk will aid in understanding the release of healthy FAs when milk and dairy foods are consumed.

  12. Recent developments in the antiprotozoal and anticancer activities of the 2-alkynoic fatty acids

    Science.gov (United States)

    Carballeira, Néstor M.

    2013-01-01

    The 2-alkynoic fatty acids are an interesting group of synthetic compounds that display antimycobacterial, antifungal, anticancer, and pesticidal activities but their antiprotozoal activity has received little attention until recently. In this review we have summarized our present knowledge of the biomedical potential of the 2-hexadecynoic acid (2-HDA) and 2-octadecynoic acid (2-ODA) together with several mechanistic pieces of work attesting to the fact that these compounds, and their metabolites, are good fatty acid biosynthesis inhibitors. The antiprotozoal activity of 2-HDA and 2-ODA against Leishmania donovani and Plasmodium falciparum, parasites responsible for visceral leishmaniasis and malaria, respectively, is also reviewed. The evidence obtained so far supports the fact that these fatty acids are good inhibitors of the L. donovani DNA topoisomerase IB enzyme (LdTopIB) and the potency of LdTopIB inhibition is chain length dependent. We also demonstrate the generality of the antiprotozoal activity of 2-HDA and 2-ODA against P. falciparum, and review our present knowledge of their inhibition of key P. falciparum enzymes such as PfFabZ, PfFabG, and PfFabI together with some possible modes of inhibition. Recent research by our group has also demonstrated that 2-ODA displays antineoplastic activity, specifically against the neuroblastoma SH-SY5Y cell line via lactate dehydrogenase (LDH) release, which is a cell death mechanism principally associated to necrosis. This is the first comprehensive review of the medicinal chemistry of this interesting group of acetylenic fatty acids. PMID:23727443

  13. Effects of volatile fatty acids on propionate metabolism and gluconeogenesis in caprine hepatocytes

    International Nuclear Information System (INIS)

    Aiello, R.J.; Armentano, L.E.

    1987-01-01

    Isolated caprine hepatocytes were incubated with fatty acids of various chain lengths. Short-chain fatty acids effects on rates of gluconeogenesis and oxidation from [2- 14 C] propionate were determined. Additions of glucose (2.5 mM) had no effect on hepatic [2- 14 C]-propionate metabolism in the presence and absence of amino acids. A complete mixture of amino acids increased label incorporation from [2- 14 C] propionate into [ 14 C] glucose by 22%. Butyrate inhibited [2- 14 C] propionate metabolism and increased the apparent Michaelis constant for [2- 14 C] propionate incorporation into [ 14 C] glucose from 2.4 +/- 1.5 to 5.6 +/- .9 mM. Butyrate's effects on propionate were similar in the presence and absence of L-carnitine (1 mM). Isobutyrate, 2-methylbutyrate, and valerate (1.25 mM) had no effect on [ 14 C] glucose production but decreased 14 CO 2 production to 57, 61, and 54% of the control [2- 14 C] propionate (1.25 mM). This inhibition on 14 CO 2 was not competitive. Isovalerate had no effect on either [2- 14 C] propionate incorporation into glucose of CO 2 . An increase in ratio of [ 14 C] glucose to 14 CO 2 from [2- 14 C]-propionate demonstrated that short-chain fatty acids other than butyrate do not inhibit gluconeogenesis from propionate. In addition, fatty acids that generate a net synthesis of intracellular oxaloacetate may partition propionate carbons toward gluconeogenic rather than oxidative pathways in goat hepatocytes

  14. Recent developments in the antiprotozoal and anticancer activities of the 2-alkynoic fatty acids.

    Science.gov (United States)

    Carballeira, Néstor M

    2013-01-01

    The 2-alkynoic fatty acids are an interesting group of synthetic compounds that display antimycobacterial, antifungal, anticancer, and pesticidal activities but their antiprotozoal activity has received little attention until recently. In this review we have summarized our present knowledge of the biomedical potential of the 2-hexadecynoic acid (2-HDA) and 2-octadecynoic acid (2-ODA) together with several mechanistic pieces of work attesting to the fact that these compounds, and their metabolites, are good fatty acid biosynthesis inhibitors. The antiprotozoal activity of 2-HDA and 2-ODA against Leishmania donovani and Plasmodium falciparum, parasites responsible for visceral leishmaniasis and malaria, respectively, is also reviewed. The evidence obtained so far supports the fact that these fatty acids are good inhibitors of the L. donovani DNA topoisomerase IB enzyme (LdTopIB) and the potency of LdTopIB inhibition is chain length dependent. We also demonstrate the generality of the antiprotozoal activity of 2-HDA and 2-ODA against P. falciparum, and review our present knowledge of their inhibition of key P. falciparum enzymes such as PfFabZ, PfFabG, and PfFabI together with some possible modes of inhibition. Recent research by our group has also demonstrated that 2-ODA displays antineoplastic activity, specifically against the neuroblastoma SH-SY5Y cell line via lactate dehydrogenase (LDH) release, which is a cell death mechanism principally associated to necrosis. This is the first comprehensive review of the medicinal chemistry of this interesting group of acetylenic fatty acids. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Comprehensive genetic study of fatty acids helps explain the role of noncoding inflammatory bowel disease associated SNPs and fatty acid metabolism in disease pathogenesis.

    Science.gov (United States)

    Jezernik, Gregor; Potočnik, Uroš

    2018-03-01

    Fatty acids and their derivatives play an important role in inflammation. Diet and genetics influence fatty acid profiles. Abnormalities of fatty acid profiles have been observed in inflammatory bowel diseases (IBD), a group of complex diseases defined by chronic gastrointestinal inflammation. IBD associated fatty acid profile abnormalities were observed independently of nutritional status or disease activity, suggesting a common genetic background. However, no study so far has attempted to look for overlap between IBD loci and fatty acid associated loci or investigate the genetics of fatty acid profiles in IBD. To this end, we conducted a comprehensive genetic study of fatty acid profiles in IBD using iCHIP, a custom microarray platform designed for deep sequencing of immune-mediated disease associated loci. This study identifies 10 loci associated with fatty acid profiles in IBD. The most significant associations were a locus near CBS (p = 7.62 × 10 -8 ) and a locus in LRRK2 (p = 1.4 × 10 -7 ). Of note, this study replicates the FADS gene cluster locus, previously associated with both fatty acid profiles and IBD pathogenesis. Furthermore, we identify 18 carbon chain trans-fatty acids (p = 1.12 × 10 -3 ), total trans-fatty acids (p = 4.49 × 10 -3 ), palmitic acid (p = 5.85 × 10 -3 ) and arachidonic acid (p = 8.58 × 10 -3 ) as significantly associated with IBD pathogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Directory of Open Access Journals (Sweden)

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  17. Short-Chain Fatty Acids Enhance the Lipid Accumulation of 3T3-L1 Cells by Modulating the Expression of Enzymes of Fatty Acid Metabolism.

    Science.gov (United States)

    Yu, Haining; Li, Ran; Huang, Haiyong; Yao, Ru; Shen, Shengrong

    2018-01-01

    Short-chain fatty acids (SCFA) such as acetic acid, propionic acid, and butyric acid are produced by fermentation by gut microbiota. In this paper, we investigate the effects of SCFA on 3T3-L1 cells and the underlying molecular mechanisms. The cells were treated with acetic acid, propionic acid, or butyric acid when cells were induced to differentiate into adipocytes. MTT assay was employed to detect the viability of 3T3-L1 cells. Oil Red O staining was used to visualize the lipid content in 3T3-L1 cells. A triglyceride assay kit was used to detect the triacylglycerol content in 3T3-L1 cells. qRT-PCR and Western blot were used to evaluate the expression of metabolic enzymes. MTT results showed that safe concentrations of acetic acid, propionic acid, and butyric acid were less than 6.4, 3.2, and 0.8 mM, respectively. Oil Red O staining and triacylglycerols detection results showed that treatment with acetic acid, propionic acid, and butyric acid accelerated the 3T3-L1 adipocyte differentiation. qRT-PCR and Western blot results showed that the expressions of lipoprotein lipase (LPL), adipocyte fatty acid binding protein 4 (FABP4), fatty acid transporter protein 4 (FATP4), and fatty acid synthase (FAS) were significantly increased by acetic acid, propionic acid, and butyric acid treatment during adipose differentiation (p fatty acid metabolism. © 2018 AOCS.

  18. Eicosapentaenoic Acid Supplementation Changes Fatty Acid Composition and Corrects Endothelial Dysfunction in Hyperlipidemic Patients

    Directory of Open Access Journals (Sweden)

    Ken Yamakawa

    2012-01-01

    Full Text Available We investigated the effects of purified eicosapentaenoic acid (EPA on vascular endothelial function and free fatty acid composition in Japanese hyperlipidemic subjects. In subjects with hyperlipidemia (total cholesterol ≥220 mg/dL and/or triglycerides ≥150 mg/dL, lipid profile and forearm blood flow (FBF during reactive hyperemia were determined before and 3 months after supplementation with 1800 mg/day EPA. Peak FBF during reactive hyperemia was lower in the hyperlipidemic group than the normolipidemic group. EPA supplementation did not change serum levels of total, HDL, or LDL cholesterol, apolipoproteins, remnant-like particle (RLP cholesterol, RLP triglycerides, or malondialdehyde-modified LDL cholesterol. EPA supplementation did not change total free fatty acid levels in serum, but changed the fatty acid composition, with increased EPA and decreased linoleic acid, γ-linolenic acid, and dihomo-γ-linolenic acid. EPA supplementation recovered peak FBF after 3 months. Peak FBF recovery was correlated positively with EPA and EPA/arachidonic acid levels and correlated inversely with dihomo-γ-linolenic acid. EPA supplementation restores endothelium-dependent vasodilatation in hyperlipidemic patients despite having no effect on serum cholesterol and triglyceride patterns. These results suggest that EPA supplementation may improve vascular function at least partly via changes in fatty acid composition.

  19. Fatty acid composition of commercially available Iranian edible oils

    Directory of Open Access Journals (Sweden)

    Sedigheh Asgary

    2009-08-01

    Full Text Available

    • BACKGROUND: Trans-fatty acids (TFAs, unsaturated fats with at least one double bond in the Trans configuration, are industrially formed in large quantities when vegetable oils are partially hydrogenated. This study was  ndertaken to quantify the amounts of the common fatty acids in several commercial oils marketing in Iran.
    • METHODS: The most consumed commercially available brands of vegetable oils were randomly selected from products available in supermarkets. A 10g sample was drawn from each mixed sample and prepared for fatty cid analysis by gas chromatography (GC.
    • RESULTS: Palmitic acid (C16:0 and stearic acid (C18:0 jointly constituted 21% of total fatty acids in partially hydrogenated vegetable oils (PHVOs. More than one third of total fatty acids in Iranian PHVOs were Trans fats. TFAs constituted almost 1% and 3% of total fatty  cids in Iranian cooking and frying oils. This study  howed higher contents of TFAs in Iranian commercially available hydrogenated vegetable oils. Statistical Package for Social Sciences was used for all statistical analyses.
    • CONCLUSIONS: Although

    • Negative confounding by essential fatty acids in methylmercury neurotoxicity associations

      DEFF Research Database (Denmark)

      Choi, Anna L; Mogensen, Ulla Brasch; Bjerve, Kristian S

      2014-01-01

      acid concentrations in the analysis (-22.0, 95% confidence interval [CI]=-39.4, -4.62). In structural equation models, poorer memory function (corresponding to a lower score in the learning trials and short delay recall in CVLT) was associated with a doubling of prenatal exposure to methylmercury after...... concentrations of fatty acids were determined in cord serum phospholipids. Neuropsychological performance in verbal, motor, attention, spatial, and memory functions was assessed at 7 years of age. Multiple regression and structural equation models (SEMs) were carried out to determine the confounder......-adjusted associations with methylmercury exposure. RESULTS: A short delay recall (in percent change) in the California Verbal Learning Test (CVLT) was associated with a doubling of cord blood methylmercury (-18.9, 95% confidence interval [CI]=-36.3, -1.51). The association became stronger after the inclusion of fatty...