WorldWideScience

Sample records for length density profiles

  1. Minimal length, Friedmann equations and maximum density

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Adel [Center for Theoretical Physics, British University of Egypt,Sherouk City 11837, P.O. Box 43 (Egypt); Department of Physics, Faculty of Science, Ain Shams University,Cairo, 11566 (Egypt); Ali, Ahmed Farag [Centre for Fundamental Physics, Zewail City of Science and Technology,Sheikh Zayed, 12588, Giza (Egypt); Department of Physics, Faculty of Science, Benha University,Benha, 13518 (Egypt)

    2014-06-16

    Inspired by Jacobson’s thermodynamic approach, Cai et al. have shown the emergence of Friedmann equations from the first law of thermodynamics. We extend Akbar-Cai derivation http://dx.doi.org/10.1103/PhysRevD.75.084003 of Friedmann equations to accommodate a general entropy-area law. Studying the resulted Friedmann equations using a specific entropy-area law, which is motivated by the generalized uncertainty principle (GUP), reveals the existence of a maximum energy density closed to Planck density. Allowing for a general continuous pressure p(ρ,a) leads to bounded curvature invariants and a general nonsingular evolution. In this case, the maximum energy density is reached in a finite time and there is no cosmological evolution beyond this point which leaves the big bang singularity inaccessible from a spacetime prospective. The existence of maximum energy density and a general nonsingular evolution is independent of the equation of state and the spacial curvature k. As an example we study the evolution of the equation of state p=ωρ through its phase-space diagram to show the existence of a maximum energy which is reachable in a finite time.

  2. Chemical theory and modelling through density across length scales

    International Nuclear Information System (INIS)

    Ghosh, Swapan K.

    2016-01-01

    One of the concepts that has played a major role in the conceptual as well as computational developments covering all the length scales of interest in a number of areas of chemistry, physics, chemical engineering and materials science is the concept of single-particle density. Density functional theory has been a versatile tool for the description of many-particle systems across length scales. Thus, in the microscopic length scale, an electron density based description has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids. Density concept has been used in the form of single particle number density in the intermediate mesoscopic length scale to obtain an appropriate picture of the equilibrium and dynamical processes, dealing with a wide class of problems involving interfacial science and soft condensed matter. In the macroscopic length scale, however, matter is usually treated as a continuous medium and a description using local mass density, energy density and other related property density functions has been found to be quite appropriate. The basic ideas underlying the versatile uses of the concept of density in the theory and modelling of materials and phenomena, as visualized across length scales, along with selected illustrative applications to some recent areas of research on hydrogen energy, soft matter, nucleation phenomena, isotope separation, and separation of mixture in condensed phase, will form the subject matter of the talk. (author)

  3. Density profiles of the exclusive queuing process

    Science.gov (United States)

    Arita, Chikashi; Schadschneider, Andreas

    2012-12-01

    The exclusive queuing process (EQP) incorporates the exclusion principle into classic queuing models. It is characterized by, in addition to the entrance probability α and exit probability β, a third parameter: the hopping probability p. The EQP can be interpreted as an exclusion process of variable system length. Its phase diagram in the parameter space (α,β) is divided into a convergent phase and a divergent phase by a critical line which consists of a curved part and a straight part. Here we extend previous studies of this phase diagram. We identify subphases in the divergent phase, which can be distinguished by means of the shape of the density profile, and determine the velocity of the system length growth. This is done for EQPs with different update rules (parallel, backward sequential and continuous time). We also investigate the dynamics of the system length and the number of customers on the critical line. They are diffusive or subdiffusive with non-universal exponents that also depend on the update rules.

  4. Length Scales of the Neutral Wind Profile over Homogeneous Terrain

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Mann, Jakob

    2010-01-01

    The wind speed profile for the neutral boundary layer is derived for a number of mixing-length parameterizations, which account for the height of the boundary layer. The wind speed profiles show good agreement with the reanalysis of the Leipzig wind profile (950 m high) and with combined cup–soni...

  5. Measurements of electron density profiles using an angular filter refractometer

    International Nuclear Information System (INIS)

    Haberberger, D.; Ivancic, S.; Hu, S. X.; Boni, R.; Barczys, M.; Craxton, R. S.; Froula, D. H.

    2014-01-01

    A novel diagnostic technique, angular filter refractometry (AFR), has been developed to characterize high-density, long-scale-length plasmas relevant to high-energy-density physics experiments. AFR measures plasma densities up to 10 21  cm −3 with a 263-nm probe laser and is used to study the plasma expansion from CH foil and spherical targets that are irradiated with ∼9 kJ of ultraviolet (351-nm) laser energy in a 2-ns pulse. The data elucidate the temporal evolution of the plasma profile for the CH planar targets and the dependence of the plasma profile on target radius for CH spheres

  6. Measurements of electron density profiles using an angular filter refractometer

    Energy Technology Data Exchange (ETDEWEB)

    Haberberger, D., E-mail: dhab@lle.rochester.edu; Ivancic, S.; Hu, S. X.; Boni, R.; Barczys, M.; Craxton, R. S.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14636 (United States)

    2014-05-15

    A novel diagnostic technique, angular filter refractometry (AFR), has been developed to characterize high-density, long-scale-length plasmas relevant to high-energy-density physics experiments. AFR measures plasma densities up to 10{sup 21} cm{sup −3} with a 263-nm probe laser and is used to study the plasma expansion from CH foil and spherical targets that are irradiated with ∼9 kJ of ultraviolet (351-nm) laser energy in a 2-ns pulse. The data elucidate the temporal evolution of the plasma profile for the CH planar targets and the dependence of the plasma profile on target radius for CH spheres.

  7. Density limit in ASDEX discharges with peaked density profiles

    International Nuclear Information System (INIS)

    Staebler, A.; Niedermeyer, H.; Loch, R.; Mertens, V.; Mueller, E.R.; Soeldner, F.X.; Wagner, F.

    1989-01-01

    Results concerning the density limit in OH and NI-heated ASDEX discharges with the usually observed broad density profiles have been reported earlier: In ohmic discharges with high q a (q-cylindrical is used throughout this paper) the Murakami parameter (n e R/B t ) is a good scaling parameter. At the high densities edge cooling is observed causing the plasma to shrink until an m=2-instability terminates the discharge. When approaching q a =2 the density limit is no longer proportional to I p ; a minimum exists in n e,max (q a ) at q a ∼2.15. With NI-heating the density limit increases less than proportional to the heating power; the behaviour during the pre-disruptive phase is rather similar to the one of OH discharges. There are specific operating regimes on ASDEX leading to discharges with strongly peaked density profiles: the improved ohmic confinement regime, counter neutral injection, and multipellet injection. These regimes are characterized by enhanced energy and particle confinement. The operational limit in density for these discharges is, therefore, of great interest having furthermore in mind that high central densities are favourable in achieving high fusion yields. In addition, further insight into the mechanisms of the density limit observed in tokamaks may be obtained by comparing plasmas with rather different density profiles at their maximum attainable densities. 7 refs., 2 figs

  8. Vacuum heating evaluation for plasmas of exponentially decreasing density profile

    International Nuclear Information System (INIS)

    Pestehe, S.J.; Mohammadnejad, M.

    2008-01-01

    Ultra-short pulse lasers have opened a regime of laser-plasma interaction where plasmas have scale lengths shorter than the laser wavelength and allow the possibility of generating near-solid density plasmas. The interaction of high-intensity laser beams with sharply bounded high-density and small scale length plasmas is considered. Absorption of the laser energy associated with the mechanism of dragging electrons out of the plasma into the vacuum and sending them back into the plasma with the electric field component along the density gradient, so called vacuum heating, is studied. An exponentially decreasing electron density profile is assumed. The vector potential of the electromagnetic field propagating through the plasma is calculated and the behaviour of the electric and magnetic components of the electromagnetic field is studied. The fraction of laser power absorbed in this process is calculated and plotted versus the laser beam incidence angle, illumination energy, and the plasma scale length

  9. Maximum length scale in density based topology optimization

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Wang, Fengwen

    2017-01-01

    The focus of this work is on two new techniques for imposing maximum length scale in topology optimization. Restrictions on the maximum length scale provide designers with full control over the optimized structure and open possibilities to tailor the optimized design for broader range...... of manufacturing processes by fulfilling the associated technological constraints. One of the proposed methods is based on combination of several filters and builds on top of the classical density filtering which can be viewed as a low pass filter applied to the design parametrization. The main idea...

  10. Current density profile evolution in JET

    International Nuclear Information System (INIS)

    Stubberfield, P.M.; Balet, B.; Campbell, D.; Challis, C.D.; Cordey, J.G.; O'Rourke, J.; Hammett, G.; Schmidt, G.L.

    1989-01-01

    Simulation studies have been made of the current density profile evolution in discharges where the bootstrap current is expected to be significant. The changes predicted in the total current profile have been confirmed by comparison with experimental results. (author) 8 refs., 6 figs

  11. Density Functional Theory and Materials Modeling at Atomistic Length Scales

    Directory of Open Access Journals (Sweden)

    Swapan K. Ghosh

    2002-04-01

    Full Text Available Abstract: We discuss the basic concepts of density functional theory (DFT as applied to materials modeling in the microscopic, mesoscopic and macroscopic length scales. The picture that emerges is that of a single unified framework for the study of both quantum and classical systems. While for quantum DFT, the central equation is a one-particle Schrodinger-like Kohn-Sham equation, the classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential, the exact functional form of which is unknown. One therefore approximates the exchange-correlation potential for quantum systems and the excess free energy density functional or the direct correlation functions for classical systems. Illustrative applications of quantum DFT to microscopic modeling of molecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are highlighted.

  12. Effects of fine root length density and root biomass on soil preferential flow in forest ecosystems

    Directory of Open Access Journals (Sweden)

    Yinghu Zhang

    2015-04-01

    Full Text Available Aim of study: The study was conducted to characterize the impacts of plant roots systems (e.g., root length density and root biomass on soil preferential flow in forest ecosystems. Area of study: The study was carried out in Jiufeng National Forest Park, Beijing, China. Material and methods: The flow patterns were measured by field dye tracing experiments. Different species (Sophora japonica Linn,Platycladus orientalis Franco, Quercus dentata Thunbwere quantified in two replicates, and 12 soil depth were applied. Plant roots were sampled in the sieving methods. Root length density and root biomass were measured by WinRHIZO. Dye coverage was implied in the image analysis, and maximum depth of dye infiltration by direct measurement. Main results: Root length density and root biomass decreased with the increasing distance from soil surface, and root length density was 81.6% higher in preferential pathways than in soil matrix, and 66.7% for root biomass with respect to all experimental plots. Plant roots were densely distributed in the upper soil layers. Dye coverage was almost 100% in the upper 5-10 cm, but then decreased rapidly with soil depth. Root length density and root biomass were different from species: Platycladus orientalis Franco > Quercus dentata Thunb > Sophora japonica Linn. Research highlights: The results indicated that fine roots systems had strong effects on soil preferential flow, particularly root channels enhancing nutrition transport across soil profiles in forest dynamics.

  13. Edge density profiles in high-performance JET plasmas

    International Nuclear Information System (INIS)

    Summers, D.D.R.; Viaccoz, B.; Vince, J.

    1997-01-01

    Detailed electron density profiles of the scrape-off layer in high-performance JET plasmas (plasma current, I p nbi ∝17 MW) have been measured by means of a lithium beam diagnostic system featuring high spatial resolution [Kadota (1978)[. Measurements were taken over a period of several seconds, allowing examination of the evolution of the edge profile at a location upstream from the divertor target. The data clearly show the effects of the H-mode transition - an increase in density near the plasma separatrix and a reduction in density scrape-off length. The profiles obtained under various plasma conditions are compared firstly with data from other diagnostics, located elsewhere in the vessel, and also with the predictions of an 'onion-skin' model (DIVIMP), which used, as initial parameters, data from an array of probes located in the divertor target. (orig.)

  14. A SURVEY OF CORONAL CAVITY DENSITY PROFILES

    International Nuclear Information System (INIS)

    Fuller, J.; Gibson, S. E.

    2009-01-01

    Coronal cavities are common features of the solar corona that appear as darkened regions at the base of coronal helmet streamers in coronagraph images. Their darkened appearance indicates that they are regions of lowered density embedded within the comparatively higher density helmet streamer. Despite interfering projection effects of the surrounding helmet streamer (which we refer to as the cavity rim), Fuller et al. have shown that under certain conditions it is possible to use a Van de Hulst inversion of white-light polarized brightness (pB) data to calculate the electron density of both the cavity and cavity rim plasma. In this article, we apply minor modifications to the methods of Fuller et al. in order to improve the accuracy and versatility of the inversion process, and use the new methods to calculate density profiles for both the cavity and cavity rim in 24 cavity systems. We also examine trends in cavity morphology and how departures from the model geometry affect our density calculations. The density calculations reveal that in all 24 cases the cavity plasma has a flatter density profile than the plasma of the cavity rim, meaning that the cavity has a larger density depletion at low altitudes than it does at high altitudes. We find that the mean cavity density is over four times greater than that of a coronal hole at an altitude of 1.2 R sun and that every cavity in the sample is over twice as dense as a coronal hole at this altitude. Furthermore, we find that different cavity systems near solar maximum span a greater range in density at 1.2 R sun than do cavity systems near solar minimum, with a slight trend toward higher densities for systems nearer to solar maximum. Finally, we found no significant correlation of cavity density properties with cavity height-indeed, cavities show remarkably similar density depletions-except for the two smallest cavities that show significantly greater depletion.

  15. Estimation and display of beam density profiles

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, S; Mukhopadhyay, T; Roy, A; Mallik, C

    1989-03-15

    A setup in which wire-scanner-type beam-profile monitor data are collected on-line in a nuclear data-acquisition system has been used and a simple algorithm for estimation and display of the current density distribution in a particle beam is described.

  16. Exact analytical density profiles and surface tension

    Indian Academy of Sciences (India)

    journal of. May 2005 physics pp. 785–801. Classical charged fluids at equilibrium near ... is provided by the excess surface tension for an air–water interface, which is determined ... the potential drop created by the electric layer which appears as soon as the fluid has ...... radii, by symmetry, the charge density profile is flat,.

  17. Matter Density Profile Shape Effects at DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kevin J. [Northwestern U.; Parke, Stephen J. [Fermilab

    2018-02-19

    Quantum mechanical interactions between neutrinos and matter along the path of propagation, the Wolfenstein matter effect, are of particular importance for the upcoming long-baseline neutrino oscillation experiments, specifically the Deep Underground Neutrino Experiment (DUNE). Here, we explore specifically what about the matter density profile can be measured by DUNE, considering both the shape and normalization of the profile between the neutrinos' origin and detection. Additionally, we explore the capability of a perturbative method for calculating neutrino oscillation probabilities and whether this method is suitable for DUNE. We also briefly quantitatively explore the ability of DUNE to measure the Earth's matter density, and the impact of performing this measurement on measuring standard neutrino oscillation parameters.

  18. Electon density profiles of the topside ionosphere

    Directory of Open Access Journals (Sweden)

    D. Bilitza

    2002-06-01

    Full Text Available The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from h m F 2 to ~ 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms but most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350 000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis-status. html. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2 down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The TOPside Ionogram Scaler with True height algorithm TOPIST software developed for this task is successfully scaling ~ 70% of the ionograms. An «editing process» is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle.

  19. Measurement of the lunar neutron density profile

    International Nuclear Information System (INIS)

    Woolum, D.S.; Burnett, D.S.; Furst, M.; Weiss, J.R.

    1975-01-01

    An in situ measurement of the lunar neutron density from 20 to 400 g cm -2 depth below the lunar surface was made by the Apollo 17 Lunar Neutron Probe Experiment (LNPE) using particle tracks produced by the 10 B (n,α) 7 Li reaction. Both the absolute magnitude and the depth profile of the neutron density are in good agreement with theoretical calculations by Lingenfelter, Canfield, and Hampel. However, relatively small deviations between experiment and theory in the effect of Cd absorption on the neutron density and in the relative 149 Sm to 157 Gd capture rates reported previously (Russ et al., 1972) imply that the true lunar 157 Gd capture rate is about one half of that calculated theoretically. (Auth.)

  20. Electron density profile in multilayer systems

    International Nuclear Information System (INIS)

    Toekesi, K.

    2004-01-01

    Complete text of publication follows. Electron energy loss spectroscopy (EELS) has been used extensively to study the multilayer systems, where the thickness of layers are in the nanometer range. These studies has received considerable attention because of its technological interest, for example in the nanotechnology. On the most fundamental level, its importance is derived from the basic physics that is involved. One key quantities of interest is the response of a many-body system to an external perturbation: How act and how modify the interface between the solid-solid or solid-vacuum the excitations in the solid and in the vicinity of the interfaces. In this work, as a starting point of such investigations we calculated the electron density profile for multilayer systems. Our approach employs the time-dependent density functional theory (TDDFT), that is, the solution of a time-dependent Schroedinger equation in which the potential and forces are determined selfconsistently from the dynamics governed by the Schroedinger equation. We treat the problem in TDDFT at the level of the local-density approximation (LDA). Later, the comparison of experimentally obtained loss functions and the theory, based on our TDDFT calculations can provide deeper understanding of surface physics. We performed the calculations for half-infinite samples characterized by r s =1.642 and r s =1.997. We also performed the calculations for double layer systems. The substrate was characterized by r s =1.997 and the coverage by r s =1.642. Fig. 1. shows the obtained electron density profile in LDA approximation. Because of the sharp cutoff of electronic wave vectors at the Fermi surface, the densities in the interior exhibit slowly decaying Friedel oscillations. To highlight the Friedel oscillation we enlarged the electron density profile in Fig. 1a. and Fig. 1b. The work was supported by the Hungarian Scientific Research Found: OTKA No. T038016, the grant 'Bolyai' from the Hungarian Academy of

  1. Step Density Profiles in Localized Chains

    Science.gov (United States)

    De Roeck, Wojciech; Dhar, Abhishek; Huveneers, François; Schütz, Marius

    2017-06-01

    We consider two types of strongly disordered one-dimensional Hamiltonian systems coupled to baths (energy or particle reservoirs) at the boundaries: strongly disordered quantum spin chains and disordered classical harmonic oscillators. These systems are believed to exhibit localization, implying in particular that the conductivity decays exponentially in the chain length L. We ask however for the profile of the (very slowly) transported quantity in the steady state. We find that this profile is a step-function, jumping in the middle of the chain from the value set by the left bath to the value set by the right bath. This is confirmed by numerics on a disordered quantum spin chain of 9 spins and on much longer chains of harmonic oscillators. From theoretical arguments, we find that the width of the step grows not faster than √{L}, and we confirm this numerically for harmonic oscillators. In this case, we also observe a drastic breakdown of local equilibrium at the step, resulting in a heavily oscillating temperature profile.

  2. Flare plasma density determination using observed temperature profiles

    International Nuclear Information System (INIS)

    Garcia, H.A.

    1986-01-01

    Observed electron temperature variations derived from flux intensity ratios of whole-disk continuum soft X-ray spectra recorded by GOES satellites are presently subjected to an analysis that is based on the nonequilibrium energy balance equation in order to obtain the physical properties of a large solar flare from onset through the gradual phase. A self-similar formalism which reduces the nonlinear, second-order PDE in length and time to a more tractable, nonlinear, first-order Ricatti equation is invoked. Plasma density is the principal unknown variable contained in the Ricatti equation, which also contains first-order time derivatives and first- and second-order spatial derivatives of temperature. This methodology is presently applied to the moderate size flare of January 28, 1982, for which a density profile is deduced under various parametric conditions. 37 references

  3. Correlation of H-mode density barrier width and neutral penetration length

    International Nuclear Information System (INIS)

    Groebner, R.J.

    2002-01-01

    Pedestal studies in DIII-D find a good correlation between the width of the H-mode particle barrier width(ne) and the neutral penetration length. These results are obtained by comparing experimental n e profiles to the predictions of an analytic model for the density profile, obtained from a solution of the particle continuity equations for electrons and deuterium atoms. Initial bench-marking shows that the model is consistent with the fluid neutrals model of the UEDGE code. In its range of validity (edge temperature between 0.02-0.3 keV), the model quantitatively predicts the observed values of width(ne), the observed decrease of width(ne) as the pedestal density n e,ped increases, the observed increase of the gradient of n e with the square of n e,ped , and the observation that L-mode and H-mode profiles with the same n e,ped have very similar widths. In the model, width(ne) depends on the fuelling source and on the plasma transport. Thus, these results provide evidence that the width of the particle barrier depends on both plasma physics and atomic physics. (author)

  4. Length scale and manufacturability in density-based topology optimization

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Wang, Fengwen; Sigmund, Ole

    2016-01-01

    Since its original introduction in structural design, density-based topology optimization has been applied to a number of other fields such as microelectromechanical systems, photonics, acoustics and fluid mechanics. The methodology has been well accepted in industrial design processes where it can...... provide competitive designs in terms of cost, materials and functionality under a wide set of constraints. However, the optimized topologies are often considered as conceptual due to loosely defined topologies and the need of postprocessing. Subsequent amendments can affect the optimized design...

  5. The relationship between fission track length and track density in apatite

    International Nuclear Information System (INIS)

    Laslett, G.M.; Gleadow, A.J.W.; Duddy, I.R.

    1984-01-01

    Fission track dating is based upon an age equation derived from a random line segment model for fission tracks. This equation contains the implicit assumption of a proportional relationship between the true mean length of fission tracks and their track density in an isotropic medium. Previous experimental investigation of this relationship for both spontaneous and induced tracks in apatite during progressive annealment model in an obvious fashion. Corrected equations relating track length and density for apatite, an anisotropic mineral, show that the proportionality in this case is between track density and a length factor which is a generalization of the mean track length combining the actual length and crystallographic orientation of the track. This relationship has been experimentally confirmed for induced tracks in Durango apatite, taking into account bias in sampling of the track lengths, and the effect of the bulk etching velocity. (author)

  6. The virialization density of peaks with general density profiles under spherical collapse

    OpenAIRE

    Rubin, Douglas; Loeb, Abraham

    2013-01-01

    We calculate the non-linear virialization density, $\\Delta_c$, of halos under spherical collapse from peaks with an arbitrary initial and final density profile. This is in contrast to the standard calculation of $\\Delta_c$ which assumes top-hat profiles. Given our formalism, the non-linear halo density can be calculated once the shape of the initial peak's density profile and the shape of the virialized halo's profile are provided. We solve for $\\Delta_c$ for halos in an Einstein de-Sitter an...

  7. NEW CONCEPTS AND TEST METHODS OF CURVE PROFILE AREA DENSITY IN SURFACE: ESTIMATION OF AREAL DENSITY ON CURVED SPATIAL SURFACE

    OpenAIRE

    Hong Shen

    2011-01-01

    The concepts of curve profile, curve intercept, curve intercept density, curve profile area density, intersection density in containing intersection (or intersection density relied on intersection reference), curve profile intersection density in surface (or curve intercept intersection density relied on intersection of containing curve), and curve profile area density in surface (AS) were defined. AS expressed the amount of curve profile area of Y phase in the unit containing surface area, S...

  8. Core fueling to produce peaked density profiles in large tokamaks

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; McGuire, K.M.; Schmidt, G.L.; Zweben, S.J.

    1994-06-01

    Peaking the density profile increases the usable bootstrap current and the average fusion power density; this could reduce the current drive power and increase the net output of power producing tokamaks. The use of neutral beams and pellet injection to produce peaked density profiles is assessed. We show that with radially ''hollow'' diffusivity profiles (and no particle pinch) moderately peaked density profiles can be produced by particle source profiles which are peaked off-axis. The fueling penetration requirements can therefore be relaxed and this greatly improves the feasibility of generating peaked density profiles in large tokamaks. In particular, neutral beam fueling does not require MeV particle energy. Even with beam voltages of ∼200 keV, however, exceptionally good particle confinement, τ p much-gt τ E is required to achieve net electrical power generation. In system with no power production requirement (e.g., neutron sources) neutral beam fueling should be capable of producing peaked density profiles in devices as large as ITER. Fueling systems with low energy cost per particle (such as cryogenic pellet injection) must be used in power producing tokamaks when τ p ∼ τ E . Simulations with pellet injection speeds of 7 km/sec show the peaking factor, n eo /left-angle n e right-angle, approaching 2

  9. Core fuelling to produce peaked density profiles in large tokamaks

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; McGuire, K.M.; Schmidt, G.L.; Zweben, S.J.

    1995-01-01

    Peaking the density profile increases the usable bootstrap current and the average fusion power density; this could reduce the current drive power and increase the net output of power producing tokamaks. The use of neutral beams and pellet injection to produce peaked density profiles is assessed. It is shown that with radially 'hollow' diffusivity profiles (and no particle pinch) moderately peaked density profiles can be produced by particle source profiles that are peaked off-axis. The fuelling penetration requirements can therefore be relaxed and this greatly improves the feasibility of generating peaked density profiles in large tokamaks. In particular, neutral beam fuelling does not require Megavolt particle energies. Even with beam voltages of ∼ 200 keV, however, exceptionally good particle confinement is needed to achieve net electrical power generation. The required ratio of particle to thermal diffusivities is an order of magnitude outside the range reported for tokamaks. In a system with no power production requirement (e.g., neutron sources) neutral beam fuelling should be capable of producing peaked density profiles in devices as large as ITER. Fuelling systems with low energy cost per particle - such as cryogenic pellet injection - must be used in power producing tokamaks when τ P ∼ τ E . Simulations with pellet injection speeds of 7 km/s show that the peaking factor, n e0 / e >, approaches 2. (author). 65 refs, 8 figs

  10. Thickness Evaluation of Pipeline Using Density Profile on a Radiograph

    International Nuclear Information System (INIS)

    Lee, Sung Sik; Jang, Byoung Gyu; Kim, Young H.

    2002-01-01

    The computer simulation has been done for non-insulated and insulated pipes which are vacant or half filled with liquid. The simulation results showed that the density profile on the radiography is continuous and symmetrical around the center of pipe in the case of vacant pipe. On the other hand the density profiles are not symmetrical and depend on geometrical setting for radiography in the case of half filled pipes. Finally, experimental testing on a non-insulated carbon steel pipe with artificial notches of different depth is carried out using Ir-192 and industrial film. Comparing the measured density profile on the radiograph to the calculated one, it has been shown that it is possible to evaluate thickness variation by measuring density profile on a radiograph

  11. Electron density profile measurements by microwave reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Paume, M.; Chareau, J.M.

    1995-01-01

    A proposal is presented developing reflectometry diagnostic for electron density profile measurements as routine diagnostic without manual intervention as achieved at JET. Since density fluctuations seriously perturb the reflected signal and the measurement of the group delay, a method is described to overcome the irrelevant results with the help of an adaptive filtering technique. Accurate profiles are estimated for about 70% of the shots. (author) 3 refs.; 6 figs

  12. Application of soft x-ray laser interferometry to study large-scale-length, high-density plasmas

    International Nuclear Information System (INIS)

    Wan, A.S.; Barbee, T.W., Jr.; Cauble, R.

    1996-01-01

    We have employed a Mach-Zehnder interferometer, using a Ne-like Y x- ray laser at 155 Angstrom as the probe source, to study large-scale- length, high-density colliding plasmas and exploding foils. The measured density profile of counter-streaming high-density colliding plasmas falls in between the calculated profiles using collisionless and fluid approximations with the radiation hydrodynamic code LASNEX. We have also performed simultaneous measured the local gain and electron density of Y x-ray laser amplifier. Measured gains in the amplifier were found to be between 10 and 20 cm -1 , similar to predictions and indicating that refraction is the major cause of signal loss in long line focus lasers. Images showed that high gain was produced in spots with dimensions of ∼ 10 μm, which we believe is caused by intensity variations in the optical drive laser. Measured density variations were smooth on the 10-μm scale so that temperature variations were likely the cause of the localized gain regions. We are now using the interferometry technique as a mechanism to validate and benchmark our numerical codes used for the design and analysis of high-energy-density physics experiments. 11 refs., 6 figs

  13. Modeling relaxation length and density of acacia mangium wood using gamma - ray attenuation technique

    International Nuclear Information System (INIS)

    Tamer A Tabet; Fauziah Abdul Aziz

    2009-01-01

    Wood density measurement is related to the several factors that influence wood quality. In this paper, density, relaxation length and half-thickness value of eight ages, 3, 5, 7, 10, 11, 13 and 15 year-old of Acacia mangium wood were determined using gamma radiation from 137 Cs source. Results show that Acacia mangium tree of age 3 year has the highest relaxation length of 83.33 cm and least density of 0.43 gcm -3 , while the tree of age 15 year has the least Relaxation length of 28.56 cm and highest density of 0.76 gcm -3 . Results also show that the 3 year-old Acacia mangium wood has the highest half thickness value of 57.75 cm and 15 year-old tree has the least half thickness value of 19.85 cm. Two mathematical models have been developed for the prediction of density, variation with relaxation length and half-thickness value of different age of tree. A good agreement (greater than 85% in most cases) was observed between the measured values and predicted ones. Very good linear correlation was found between measured density and the age of tree (R2 = 0.824), and between estimated density and Acacia mangium tree age (R2 = 0.952). (Author)

  14. Electron Density Profile Data Contains Virtual Height/Frequency Pairs from a Profile or Profiles (Composite Months) of Ionograms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Electron Density Profile, N(h), data set contains both individual profiles and composite months. The data consist of virtual height/frequency pairs from a...

  15. Ion acceleration in electrostatic collisionless shock: on the optimal density profile for quasi-monoenergetic beams

    Science.gov (United States)

    Boella, E.; Fiúza, F.; Stockem Novo, A.; Fonseca, R.; Silva, L. O.

    2018-03-01

    A numerical study on ion acceleration in electrostatic shock waves is presented, with the aim of determining the best plasma configuration to achieve quasi-monoenergetic ion beams in laser-driven systems. It was recently shown that tailored near-critical density plasmas characterized by a long-scale decreasing rear density profile lead to beams with low energy spread (Fiúza et al 2012 Phys. Rev. Lett. 109 215001). In this work, a detailed parameter scan investigating different plasma scale lengths is carried out. As result, the optimal plasma spatial scale length that allows for minimizing the energy spread while ensuring a significant reflection of ions by the shock is identified. Furthermore, a new configuration where the required profile has been obtained by coupling micro layers of different densities is proposed. Results show that this new engineered approach is a valid alternative, guaranteeing a low energy spread with a higher level of controllability.

  16. Space potential, temperature, and density profile measurements on RENTOR

    International Nuclear Information System (INIS)

    Schoch, P.M.

    1983-05-01

    Radial profiles of the space potential, electron temperature, and density have been measured on RENTOR with a heavy-ion-beam probe. The potential profile has been compared to predictions from a stochastic magnetic field fluctuation theory, using the measured temperature and density profiles. The comparison shows strong qualitative agreement in that the potential is positive and the order of T/sub e//e. There is some quantitative disagreement in that the measured radial electric fields are somewhat smaller than the theoretical predictions. To facilitate this comparison, a detailed analysis of the possible errors has been completed

  17. A parameterization of momentum roughness length and displacement height for a wide range of canopy densities

    Directory of Open Access Journals (Sweden)

    A. Verhoef

    1997-01-01

    Full Text Available Values of the momentum roughness length, z0, and displacement height, d, derived from wind profiles and momentum flux measurements, are selected from the literature for a variety of sparse canopies. These include savannah, tiger-bush and several row crops. A quality assessment of these data, conducted using criteria such as available fetch, height of wind speed measurement and homogeneity of the experimental site, reduced the initial total of fourteen sites to eight. These datapoints, combined with values carried forward from earlier studies on the parameterization of z0 and d, led to a maximum number of 16 and 24 datapoints available for d and z0, respectively. The data are compared with estimates of roughness length and displacement height as predicted from a detailed drag partition model, R92 (Raupach, 1992, and a simplified version of this model, R94 (Raupach, 1994. A key parameter in these models is the roughness density or frontal area index, λ. Both the comprehensive and the simplified model give accurate predictions of measured z0 and d values, but the optimal model coefficients are significantly different from the ones originally proposed in R92 and R94. The original model coefficients are based predominantly on measured aerodynamic parameters of relatively closed canopies and they were fitted `by eye'. In this paper, best-fit coefficients are found from a least squares minimization using the z0 and d values of selected good-quality data for sparse canopies and for the added, mainly closed canopies. According to a statistical analysis, based on the coefficient of determination (r2, the number of observations and the number of fitted model coefficients, the simplified model, R94, is deemed to be the most appropriate for future z0 and d predictions. A CR value of 0.35 and a cd1 value of about 20 are found to be appropriate for a large range of canopies varying in density from closed to very sparse. In this case, 99% of the total variance

  18. Sugarcane root length density and distribution from root intersection counting on a trench-profile Densidade de comprimento e distribuição de raízes de cana-de-açúcar a partir da contagem de intersecção de raízes na parede do perfil

    Directory of Open Access Journals (Sweden)

    Mateus Carvalho Basilio de Azevedo

    2011-02-01

    Full Text Available Root length density (RLD is a critical feature in determining crops potential to uptake water and nutrients, but it is difficult to be measured. No standard method is currently available for assessing RLD in the soil. In this study, an in situ method used for other crops for studying root length density and distribution was tested for sugarcane (Saccharum spp.. This method involved root intersection counting (RIC on a Rhodic Eutrudox profile using grids with 0.05 x 0.05 m and modeling RLD from RIC. The results were compared to a conventional soil core-sampled method (COR (volume 0.00043 m³. At four dates of the cropping season in three tillage treatments (plowing soil, minimum tillage and direct planting, with eight soil depths divided in 0.1 m soil layer (between 0-0.6 and 1.6-1.8 m and three horizontal distances from the row (0-0.23, 0.23-0.46 and 0.46-0.69 m, COR and RIC methods presented similar RLD results. A positive relationship between COR and RIC was found (R² = 0.76. The RLD profiles considering the average of the three row distances per depth obtained using COR and RIC (mean of four dates and 12 replications were close and did not differ at each depth of 0.1 m within a total depth of 0.6 m. Total RLD between 0 and 0.6 m was 7.300 and 7.100 m m-2 for COR and RIC respectively. For time consumption, the RIC method was tenfold less time-consuming than COR and RIC can be carried out in the field with no need to remove soil samples. The RLD distribution in depth and row distance (2-D variability by RIC can be assessed in relation to the soil properties in the same soil profiles. The RIC method was suitable for studying these 2-D (depth and row distance in the soil profile relationships between soil, tillage and root distribution in the field.A densidade de comprimento de raízes (DCR é uma característica importante para determinar o potencial de absorção de água e nutrientes das plantas, mas é difícil de ser medida. Nenhum m

  19. Characterization of laser-produced plasma density profiles using grid image refractometry

    International Nuclear Information System (INIS)

    Craxton, R.S.; Turner, F.S.; Hoefen, R.; Darrow, C.; Gabl, E.F.; Busch, G.E.

    1993-01-01

    Grid image refractometry (GIR) is proposed as a technique for determining the two-dimensional density profiles of long scale-length laser-produced plasmas. Its distinctive feature is that an optical probe beam is broken up into ''rays'' by being passed through a grid before traversing the plasma. The refraction angles of the rays are measured by imaging the plasma at two or more object planes and are integrated to yield the phase front. For cylindrically symmetric plasmas the density profile is then determined using Abel inversion. The feasibility of GIR is illustrated by an experiment in which a thick CH target was irradiated with ∼100 J of 527 nm radiation and diagnosed with a 20 ps, 263 nm probe. The resulting density profile is substantially larger than any that have previously been reported using interferometry and compares quite closely with hydrodynamic simulations

  20. Charnock's Roughness Length Model and Non-dimensional Wind Profiles Over the Sea

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik

    2008-01-01

    An analysis tool for the study of wind speed profiles over the water has been developed. The profiles are analysed using a modified dimensionless wind speed and dimensionless height, assuming that the sea surface roughness can be predicted by Charnock's roughness length model. In this form, the r...

  1. Influence of an axial magnetic field on the density profile of capillary plasma channels

    CERN Document Server

    Ivanov, V V; Toma, E S; Bijkerk, F

    2003-01-01

    A narrow capillary plasma channel, with a sizeable depletion of the electron density on the channel axis, has been proposed to guide a laser pulse over a length of several to several tens of centimetres. We discuss the possibility to significantly improve the wave-guiding properties of such a channel by applying an axial magnetic field. Our analytical and numerical studies show that a pulsed axial magnetic field of 10 T in a hydrogen capillary plasma at a pressure of 50 Torr will reduce the on-axis plasma density by a factor of three, and the full width at half maximum of the density profile by a factor of two. The resulting parabolic plasma density profile is expected to be more efficient in guiding laser pulses.

  2. Effects of wall roughness and entry length on void profile in vertical bubbly flow

    International Nuclear Information System (INIS)

    Takamasa, Tomoji

    1988-01-01

    An experimental study of upward air-water bubbly two-phase flow in an entry region was performed with various rough wall test tubes. The objective of the work is to clarify the effects of wall roughness and entry length on void profile. The fluid flows in the vertical circular test tube of 25 mm I.D. under nearly atmospheric pressure, at room temperature. The void profile changes from a pattern similar in appearance to the saddle shape which has local void peaks near the wall, into the power law shape whose curve is approximated by a power law formula, with increasing wall roughness and/or entry length. That is, wall roughness and entry length have a similar effect upon void profile. There are two patterns in the power law shape, a pattern with sharp center peak and a pattern with obtuse center peak. As wall roughness and/or entry length increase, the void profile changes from the former pattern to the latter pattern. At enough long entry length (L/D ≅ 150), every void profile has almost the same power law shape independent of wall roughness. Some void profiles are asymmetric to the axis. (author)

  3. Length-scale effect due to periodic variation of geometrically necessary dislocation densities

    DEFF Research Database (Denmark)

    Oztop, M. S.; Niordson, Christian Frithiof; Kysar, J. W.

    2013-01-01

    Strain gradient plasticity theories have been successful in predicting qualitative aspects of the length scale effect, most notably the increase in yield strength and hardness as the size of the deforming volume decreases. However new experimental methodologies enabled by recent developments...... of high spatial resolution diffraction methods in a scanning electron microscope give a much more quantitative understanding of plastic deformation at small length scales. Specifically, geometrically necessary dislocation densities (GND) can now be measured and provide detailed information about...... the microstructure of deformed metals in addition to the size effect. Recent GND measurements have revealed a distribution of length scales that evolves within a metal undergoing plastic deformation. Furthermore, these experiments have shown an accumulation of GND densities in cell walls as well as a variation...

  4. Static correlation lengths in QCD at high temperatures and finite densities

    CERN Document Server

    Hart, A; Philipsen, O

    2000-01-01

    We use a perturbatively derived effective field theory and three-dimensional lattice simulations to determine the longest static correlation lengths in the deconfined QCD plasma phase at high temperatures (T\\gsim 2 Tc) and finite densities (\\mu\\lsim 4 T). For vanishing chemical potential, we refine a previous determination of the Debye screening length, and determine the dependence of different correlation lengths on the number of massless flavours as well as on the number of colours. For non-vanishing but small chemical potential, the existence of Debye screening allows us to carry out simulations corresponding to the full QCD with two (or three) massless dynamical flavours, in spite of a complex action. We investigate how the correlation lengths in the different quantum number channels change as the chemical potential is switched on.

  5. Density profile evolution during dynamic processes in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Nunes, I.; Santos, J.; Salzedas, F.; Manso, M.; Serra, F.; Conway, G.D.; Horton, L.D.; Neuhauser, J.; Suttrop, W.

    2005-01-01

    The current understanding of edge localized modes (ELMs) and the trigger of major disruptions is largely based on phenomenology. The need to better understand the processes underlying these phenomena requires high temporal and spatial resolution diagnostics. Fast diagnostics for the temperature measurements exist, such as the ECE radiometer but, for the plasma density, the existing diagnostics such as Lithium Beam and Thomson Scattering do not have the required high temporal resolution for a period long enough to characterize the entire ELM event. The microwave reflectometry system on ASDEX Upgrade has the capability to measure electron density profiles simultaneously at the low-field and high-field sides, in broadband swept ultrafast (35μs) operation with a spatial resolution of 5mm. In this paper we report on recent results on the effects of type I ELMs on density profiles and on the density pedestal width and ELM affected depth. During the ELM event, three phases are identified: precursor, collapse and recovery. The density pedestal width is found to be approximately constant for all the ELMy H-mode discharges analyzed here, except for high input power discharges, where an increase of the density pedestal width is observed. Major disruptions limit the range of parameters used in the operation of a tokamak, especially density limit disruptions, that limit the maximum usable density. Very abrupt increases of density are observed before the onset of the electron temperature profile erosion, supporting the hypothesis that this erosion is due to convection of the magnetic field. In ITER, during the long steady state flat-top phase of the discharges magnetic measurements may accumulate significant drifts. Plasma position and shape control using reflectometry is being assessed in ASDEX Upgrade for ITER like scenarios with successful results, where it is shown that position measurements from reflectometry compared to magnetic data satisfy the ITER requirements

  6. Behavior of the bottomside electron density profile over Pruhonice

    Czech Academy of Sciences Publication Activity Database

    Mosert, M.; Burešová, Dalia; Ezquer, R.; Mansilla, G.

    2004-01-01

    Roč. 34, č. 9 (2004), s. 1982-1989 ISSN 0273-1177 R&D Projects: GA AV ČR IAA3042102 Institutional research plan: CEZ:AV0Z3042911 Keywords : Electron density profiles * Variability Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.548, year: 2004

  7. Current density profile inside q=1 on Tore Supra

    International Nuclear Information System (INIS)

    Joffrin, E.; Desgranges, C.; Sabot, R.; Dubois, M.A.

    1995-01-01

    The Tore Supra polarimeter used to measure the poloidal field distribution is described. The current density profiles are computed in two different ways using the interferometric and polarimetric data in conjunction with the magnetic data and the location of the inversion radius determined by the soft X-ray camera. The current density inside the q=1 surface is investigated for normal and monster sawteeth. Its variation are also measured by the polarimeter and compared with that predicted by the current diffusion equation assuming complete reconnection. Finally, the safety factor profile is compared with that obtained with the striation data of the pellet ablation. The results of the evolution of the q profile during sawteeth are in good agreement with those obtained in other devices. (author) 9 refs.; 4 figs

  8. Properties of ion temperature gradient and trapped electron modes in tokamak plasmas with inverted density profiles

    Science.gov (United States)

    Du, Huarong; Jhang, Hogun; Hahm, T. S.; Dong, J. Q.; Wang, Z. X.

    2017-12-01

    We perform a numerical study of linear stability of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM) in tokamak plasmas with inverted density profiles. A local gyrokinetic integral equation is applied for this study. From comprehensive parametric scans, we obtain stability diagrams for ITG modes and TEMs in terms of density and temperature gradient scale lengths. The results show that, for the inverted density profile, there exists a normalized threshold temperature gradient above which the ITG mode and the TEM are either separately or simultaneously unstable. The instability threshold of the TEM for the inverted density profile is substantially different from that for normal and flat density profiles. In addition, deviations are found on the ITG threshold from an early analytic theory in sheared slab geometry with the adiabatic electron response [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. A possible implication of this work on particle transport in pellet fueled tokamak plasmas is discussed.

  9. Stationary density profiles in the Alcator C-mod tokamak

    International Nuclear Information System (INIS)

    Kesner, J.; Ernst, D.; Hughes, J.; Mumgaard, R.; Shiraiwa, S.; Whyte, D.; Scott, S.

    2012-01-01

    In the absence of an internal particle source, plasma turbulence will impose an intrinsic relationship between an inwards pinch and an outwards diffusion resulting in a stationary density profile. The Alcator C-mod tokamak utilizes RF heating and current drive so that fueling only occurs in the vicinity of the separatrix. Discharges that transition from L-mode to I-mode are seen to maintain a self-similar stationary density profile as measured by Thomson scattering. For discharges with negative magnetic shear, an observed rise of the safety factor in the vicinity of the magnetic axis appears to be accompanied by a decrease of electron density, qualitatively consistent with the theoretical expectations.

  10. PEGylation on mixed monolayer gold nanoparticles: Effect of grafting density, chain length, and surface curvature.

    Science.gov (United States)

    Lin, Jiaqi; Zhang, Heng; Morovati, Vahid; Dargazany, Roozbeh

    2017-10-15

    PEGylation on nanoparticles (NPs) is widely used to prevent aggregation and to mask NPs from the fast clearance system in the body. Understanding the molecular details of the PEG layer could facilitate rational design of PEGylated NPs that maximize their solubility and stealth ability without significantly compromising the targeting efficiency and cellular uptake. Here, we use molecular dynamics (MD) simulation to understand the structural and dynamic the PEG coating of mixed monolayer gold NPs. Specifically, we modeled gold NPs with PEG grafting densities ranging from 0-2.76chain/nm 2 , chain length with 0-10 PEG monomers, NP core diameter from 5nm to 500nm. It is found that the area accessed by individual PEG chains gradually transits from a "mushroom" to a "brush" conformation as NP surface curvature become flatter, whereas such a transition is not evident on small NPs when grafting density increases. It is shown that moderate grafting density (∼1.0chain/nm 2 ) and short chain length are sufficient enough to prevent NPs from aggregating in an aqueous medium. The effect of grafting density on solubility is also validated by dynamic light scattering measurements of PEGylated 5nm gold NPs. With respect to the shielding ability, simulations predict that increase either grafting density, chain length, or NP diameter will reduce the accessibility of the protected content to a certain size molecule. Interestingly, reducing NP surface curvature is estimated to be most effective in promoting shielding ability. For shielding against small molecules, increasing PEG grafting density is more effective than increasing chain length. A simple model that includes these three investigated parameters is developed based on the simulations to roughly estimate the shielding ability of the PEG layer with respect to molecules of different sizes. The findings can help expand our current understanding of the PEG layer and guide rational design of PEGylated gold NPs for a particular

  11. A simple method for estimating the length density of convoluted tubular systems.

    Science.gov (United States)

    Ferraz de Carvalho, Cláudio A; de Campos Boldrini, Silvia; Nishimaru, Flávio; Liberti, Edson A

    2008-10-01

    We present a new method for estimating the length density (Lv) of convoluted tubular structures exhibiting an isotropic distribution. Although the traditional equation Lv=2Q/A is used, the parameter Q is obtained by considering the collective perimeters of tubular sections. This measurement is converted to a standard model of the structure, assuming that all cross-sections are approximately circular and have an average perimeter similar to that of actual circular cross-sections observed in the same material. The accuracy of this method was tested in eight experiments using hollow macaroni bent into helical shapes. After measuring the length of the macaroni segments, they were boiled and randomly packed into cylindrical volumes along with an aqueous suspension of gelatin and India ink. The solidified blocks were cut into slices 1.0 cm thick and 33.2 cm2 in area (A). The total perimeter of the macaroni cross-sections so revealed was stereologically estimated using a test system of straight parallel lines. Given Lv and the reference volume, the total length of macaroni in each section could be estimated. Additional corrections were made for the changes induced by boiling, and the off-axis position of the thread used to measure length. No statistical difference was observed between the corrected estimated values and the actual lengths. This technique is useful for estimating the length of capillaries, renal tubules, and seminiferous tubules.

  12. Density profiles of supernova matter and determination of neutrino parameters

    Science.gov (United States)

    Chiu, Shao-Hsuan

    2007-08-01

    The flavor conversion of supernova neutrinos can lead to observable signatures related to the unknown neutrino parameters. As one of the determinants in dictating the efficiency of resonant flavor conversion, the local density profile near the Mikheyev-Smirnov-Wolfenstein (MSW) resonance in a supernova environment is, however, not so well understood. In this analysis, variable power-law functions are adopted to represent the independent local density profiles near the locations of resonance. It is shown that the uncertain matter density profile in a supernova, the possible neutrino mass hierarchies, and the undetermined 1-3 mixing angle would result in six distinct scenarios in terms of the survival probabilities of νe and ν¯e. The feasibility of probing the undetermined neutrino mass hierarchy and the 1-3 mixing angle with the supernova neutrinos is then examined using several proposed experimental observables. Given the incomplete knowledge of the supernova matter profile, the analysis is further expanded to incorporate the Earth matter effect. The possible impact due to the choice of models, which differ in the average energy and in the luminosity of neutrinos, is also addressed in the analysis.

  13. Midplane neutral density profiles in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, D. P., E-mail: dstotler@pppl.gov; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podestà, M.; Roquemore, A. L.; Ross, P. W. [Princeton Plasma Physics Laboratory, Princeton University, P. O. Box 451, Princeton, New Jersey 08543-0451 (United States); Scotti, F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-08-15

    Atomic and molecular density data in the outer midplane of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] are inferred from tangential camera data via a forward modeling procedure using the DEGAS 2 Monte Carlo neutral transport code. The observed Balmer-β light emission data from 17 shots during the 2010 NSTX campaign display no obvious trends with discharge parameters such as the divertor Balmer-α emission level or edge deuterium ion density. Simulations of 12 time slices in 7 of these discharges produce molecular densities near the vacuum vessel wall of 2–8 × 10{sup 17 }m{sup −3} and atomic densities ranging from 1 to 7 × 10{sup 16 }m{sup −3}; neither has a clear correlation with other parameters. Validation of the technique, begun in an earlier publication, is continued with an assessment of the sensitivity of the simulated camera image and neutral densities to uncertainties in the data input to the model. The simulated camera image is sensitive to the plasma profiles and virtually nothing else. The neutral densities at the vessel wall depend most strongly on the spatial distribution of the source; simulations with a localized neutral source yield densities within a factor of two of the baseline, uniform source, case. The uncertainties in the neutral densities associated with other model inputs and assumptions are ≤50%.

  14. Comparing mixing-length models of the diabatic wind profile over homogeneous terrain

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Hasager, Charlotte Bay

    2010-01-01

    Models of the diabatic wind profile over homogeneous terrain for the entire atmospheric boundary layer are developed using mixing-length theory and are compared to wind speed observations up to 300 m at the National Test Station for Wind Turbines at Høvsøre, Denmark. The measurements are performe...

  15. Surface tension of droplets and Tolman lengths of real substances and mixtures from density functional theory

    Science.gov (United States)

    Rehner, Philipp; Gross, Joachim

    2018-04-01

    The curvature dependence of interfacial properties has been discussed extensively over the last decades. After Tolman published his work on the effect of droplet size on surface tension, where he introduced the interfacial property now known as Tolman length, several studies were performed with varying results. In recent years, however, some consensus has been reached about the sign and magnitude of the Tolman length of simple model fluids. In this work, we re-examine Tolman's equation and how it relates the Tolman length to the surface tension and we apply non-local classical density functional theory (DFT) based on the perturbed chain statistical associating fluid theory (PC-SAFT) to characterize the curvature dependence of the surface tension of real fluids as well as mixtures. In order to obtain a simple expression for the surface tension, we use a first-order expansion of the Tolman length as a function of droplet radius Rs, as δ(Rs) = δ0 + δ1/Rs, and subsequently expand Tolman's integral equation for the surface tension, whereby a second-order expansion is found to give excellent agreement with the DFT result. The radius-dependence of the surface tension of increasingly non-spherical substances is studied for n-alkanes, up to icosane. The infinite diameter Tolman length is approximately δ0 = -0.38 Å at low temperatures. For more strongly non-spherical substances and for temperatures approaching the critical point, however, the infinite diameter Tolman lengths δ0 turn positive. For mixtures, even if they contain similar molecules, the extrapolated Tolman length behaves strongly non-ideal, implying a qualitative change of the curvature behavior of the surface tension of the mixture.

  16. Axial length and cone density as assessed with adaptive optics in myopia

    Directory of Open Access Journals (Sweden)

    Supriya Dabir

    2015-01-01

    Full Text Available Aim: To assess the variations in cone mosaic in myopia and its correlation with axial length (AL. Subjects and Methods: Twenty-five healthy myopic volunteers underwent assessment of photoreceptors using adaptive optics retinal camera at 2° and 3° from the foveal center in four quadrants superior, inferior, temporal and nasal. Data was analyzed using SPSS version 17 (IBM. Multivariable regression analysis was conducted to study the relation between cone density and AL, quadrant around the fovea and eccentricity from the fovea. Results: The mean cone density was significantly lower as the eccentricity increased from 2° from the fovea to 3° (18,560 ± 5455-16,404 ± 4494/mm 2 respectively. There was also a statistically significant difference between four quadrants around the fovea. The correlation of cone density and spacing with AL showed that there was a significant inverse relation of AL with the cone density. Conclusion: In myopic patients with good visual acuity cone density around the fovea depends on the quadrant, distance from the fovea as well as the AL. The strength of the relation of AL with cone density depends on the quadrant and distance.

  17. THE DARK MATTER DENSITY PROFILE OF THE FORNAX DWARF

    International Nuclear Information System (INIS)

    Jardel, John R.; Gebhardt, Karl

    2012-01-01

    We construct axisymmetric Schwarzschild models to measure the mass profile of the Local Group dwarf galaxy Fornax. These models require no assumptions to be made about the orbital anisotropy of the stars, as is the case for commonly used Jeans models. We test a variety of parameterizations of dark matter density profiles and find cored models with uniform density ρ c = (1.6 ± 0.1) × 10 –2 M ☉ pc –3 fit significantly better than the cuspy halos predicted by cold dark matter simulations. We also construct models with an intermediate-mass black hole, but are unable to make a detection. We place a 1σ upper limit on the mass of a potential intermediate-mass black hole at M . ≤ 3.2 × 10 4 M ☉ .

  18. Diagnostic development for current density profile control at KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J., E-mail: jinseok@nfri.re.kr [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); University of Science and Technology, Daejeon 34113 (Korea, Republic of); Chung, J. [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Messmer, M.C.C. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands)

    2016-11-01

    Highlights: • The motional Stark effect (MSE) diagnostic installed at KSTAR. • Engineering challenges and solutions on the design and fabrication of the front optics housing and filter modules. • Characterization of the bandpass filters and the responses to polarized light. - Abstract: The current density profile diagnostics are critical for the control of the steady-state burning plasma operations. A multi-channel motional Stark effect (MSE) diagnostic system has been implemented for the measurements of the internal magnetic field structures that constrain the magnetic equilibrium reconstruction to accurately produce the tokamak safety factor and current density profiles for the Korea Superconducting Tokamak Advanced Research (KSTAR). This work presents the design and fabrication of the front optics and the filter modules and the calibration activities for the MSE diagnostic at KSTAR.

  19. Ion transition heights from topside electron density profiles

    International Nuclear Information System (INIS)

    Titheridge, J.E.

    1976-01-01

    Theoretical electron density profiles are calculated for the topside ionosphere to determine the major factors controlling the profile shape. Only the mean temperature, the vertical temperature gradient and the O + /H + ion transition height are important. Vertical proton fluxes alter the ion transition height but have no other effect on the profile shape. Diffusive equilibrium profiles including only these three effects fit observed profiles, at all latitudes, to within experimental accuracy. Values of plasma temperature, temperature gradient and ion transition height hsub(T) were determined by fitting theoretical models to 60,000 experimental profiles obtained from Alouette 1 ionograms, at latitudes of 75 0 S to 85 0 N near solar minimum. Inside the plasmasphere hsub(T) varies from about 500 km on winter nights to 850 km on summer days. Diurnal variations are caused primarily by the production and loss of O + in the ionosphere. The approximately constant winter night value of hsub(T) is close to the level for chemical equilibrium. In summer hsub(T) is always above the equilibrium level, giving a continual production of protons which travel along lines of force to aid in maintaining the conjugate winter night ionosphere. Outside the plasmasphere hsub(T) is 300 to 600 km above the equilibrium level at all times. This implies a continual near-limiting upwards flux of protons which persists down to latitudes of about 60 0 at night and 50 0 during the day. (author)

  20. Analytic expressions for mode conversion in a plasma with a parabolic density profile: Generalized results

    International Nuclear Information System (INIS)

    Hinkel-Lipsker, D.E.; Fried, B.D.; Morales, G.J.

    1993-01-01

    This study provides an analytic solution to the general problem of mode conversion in an unmagnetized plasma. Specifically, an electromagnetic wave of frequency ω propagating through a plasma with a parabolic density profile of scale length L p is examined. The mode conversion points are located a distance Δ 0 from the peak of the profile, where the electron plasma frequency ω p (z) matches the wave frequency ω. The corresponding reflection, transmission, and mode conversion coefficients are expressed analytically in terms of parabolic cylinder functions for all values of Δ 0 . The method of solution is based on a source approximation technique that is valid when the electromagnetic and electrostatic scale lengths are well separated. For large Δ 0 , i.e., (cL p /ω) 1/2 much-lt Δ 0 p , the appropriately scaled result [D. E. Hinkel-Lipsker et al., Phys. Fluids B 4, 559 (1992)] for a linear density profile is recovered as the parabolic cylinder functions asymptotically become Airy functions. When Δ 0 →0, the special case of conversion at the peak of the profile [D. E. Hinkel-Lipsker et al., Phys. Fluids B 4, 1772 (1992)] is obtained

  1. Atmospheric turbulence profiling with unknown power spectral density

    Science.gov (United States)

    Helin, Tapio; Kindermann, Stefan; Lehtonen, Jonatan; Ramlau, Ronny

    2018-04-01

    Adaptive optics (AO) is a technology in modern ground-based optical telescopes to compensate for the wavefront distortions caused by atmospheric turbulence. One method that allows to retrieve information about the atmosphere from telescope data is so-called SLODAR, where the atmospheric turbulence profile is estimated based on correlation data of Shack-Hartmann wavefront measurements. This approach relies on a layered Kolmogorov turbulence model. In this article, we propose a novel extension of the SLODAR concept by including a general non-Kolmogorov turbulence layer close to the ground with an unknown power spectral density. We prove that the joint estimation problem of the turbulence profile above ground simultaneously with the unknown power spectral density at the ground is ill-posed and propose three numerical reconstruction methods. We demonstrate by numerical simulations that our methods lead to substantial improvements in the turbulence profile reconstruction compared to the standard SLODAR-type approach. Also, our methods can accurately locate local perturbations in non-Kolmogorov power spectral densities.

  2. LPWA using supersonic gas jet with tailored density profile

    Science.gov (United States)

    Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras

    2016-10-01

    Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.

  3. Plasma density profiles and finite bandwidth effects on electron heating

    International Nuclear Information System (INIS)

    Spielman, R.B.; Mizuno, K.; DeGroot, J.S.; Bollen, W.M.; Woo, W.

    1980-01-01

    Intense, p-polarized microwaves are incident on an inhomogeneous plasma in a cylindrical waveguide. Microwaves are mainly absorbed by resonant absorption near the critical surface (where the plasma frequency, ω/sub pe/, equals the microwave frequency, ω/sub o/). The localized plasma waves strongly modify the plasma density. Step-plateau density profiles or a cavity are created depending on the plasma flow speed. Hot electron production is strongly affected by the microwave bandwidth. The hot electron temperature varies as T/sub H/ is proportional to (Δ ω/ω) -0 25 . As the hot electron temperature decreases with increasing driver bandwidth, the hot electron density increases. This increase is such that the heat flux into the overdense region (Q is proportional to eta/sub H/T/sub H/ 3 2 ) is nearly constant

  4. Temperature-dependence of Threshold Current Density-Length Product in Metallization Lines: A Revisit

    International Nuclear Information System (INIS)

    Duryat, Rahmat Saptono; Kim, Choong-Un

    2016-01-01

    One of the important phenomena in Electromigration (EM) is Blech Effect. The existence of Threshold Current Density-Length Product or EM Threshold has such fundamental and technological consequences in the design, manufacture, and testing of electronics. Temperature-dependence of Blech Product had been thermodynamically established and the real behavior of such interconnect materials have been extensively studied. The present paper reviewed the temperature-dependence of EM threshold in metallization lines of different materials and structure as found in relevant published articles. It is expected that the reader can see a big picture from the compiled data, which might be overlooked when it was examined in pieces. (paper)

  5. Profiles of radiation power density in WEGA stellarator

    International Nuclear Information System (INIS)

    Zhang, D.; Otte, M.; Giannone, L.

    2005-01-01

    On the WEGA stellarator, a 12 channel bolometer camera has been used to measure the radiation power losses of the plasma, which is heated by ECR at 2.45 GHz with a maximum power of 26 kW. The typical electron temperatures achieved are around 10 eV. The bolometer is of the Au resistor type and is positioned on the mid-plane, viewing the plasma from the low-field side with a spatial resolution of about 6 cm. The viewing angle is opened to poloidally (±47 o ) and covers the whole cross-section. Angular profiles of radiation power density (emissivity) can be achieved using the measured fluxes to the channels, which are given by the integrals along the sight lines. Using Abel inversion with maximum entropy regularisation, radial profiles of emissivity could be obtained. It is found that the angular profile of emissivity depends on the magnetic configuration, the working gas (Ar, He) and the heating scenario. Peaked and hollow emissivity profiles have been obtained by using different types of heating antenna. By changing the magnetic configuration, strong edge radiation has been observed. The largest emissivity values are obtained in the upper SOL range of Ar-discharges. This edge radiation can be reduced by shifting the flux surfaces inwards or by changing their shape at the antenna. The reconstruction of the radial profile of the emissivity was carried out in the case of a peaked angular profile with minimum edge radiation. The total radiation power was estimated by linear extrapolation of the integrated radiation power in the viewing region to the torus volume. It is typically less than 30% of the ECRH input power, but depending on the ECRH input power, again the magnetic configuration, the working gas as well as the absolute field strength on the magnetic axis. Maximum radiation losses have been obtained around 0.6·B0, where B 0 =87.5 mT is the resonant field strength of the ECRH. No evidence for impurities was obtained from spectroscopic measurements, and thus the

  6. Automated Processing of ISIS Topside Ionograms into Electron Density Profiles

    Science.gov (United States)

    Reinisch, bodo W.; Huang, Xueqin; Bilitza, Dieter; Hills, H. Kent

    2004-01-01

    Modeling of the topside ionosphere has for the most part relied on just a few years of data from topside sounder satellites. The widely used Bent et al. (1972) model, for example, is based on only 50,000 Alouette 1 profiles. The International Reference Ionosphere (IRI) (Bilitza, 1990, 2001) uses an analytical description of the graphs and tables provided by Bent et al. (1972). The Alouette 1, 2 and ISIS 1, 2 topside sounder satellites of the sixties and seventies were ahead of their times in terms of the sheer volume of data obtained and in terms of the computer and software requirements for data analysis. As a result, only a small percentage of the collected topside ionograms was converted into electron density profiles. Recently, a NASA-funded data restoration project has undertaken and is continuing the process of digitizing the Alouette/ISIS ionograms from the analog 7-track tapes. Our project involves the automated processing of these digital ionograms into electron density profiles. The project accomplished a set of important goals that will have a major impact on understanding and modeling of the topside ionosphere: (1) The TOPside Ionogram Scaling and True height inversion (TOPIST) software was developed for the automated scaling and inversion of topside ionograms. (2) The TOPIST software was applied to the over 300,000 ISIS-2 topside ionograms that had been digitized in the fkamework of a separate AISRP project (PI: R.F. Benson). (3) The new TOPIST-produced database of global electron density profiles for the topside ionosphere were made publicly available through NASA s National Space Science Data Center (NSSDC) ftp archive at . (4) Earlier Alouette 1,2 and ISIS 1, 2 data sets of electron density profiles from manual scaling of selected sets of ionograms were converted fiom a highly-compressed binary format into a user-friendly ASCII format and made publicly available through nssdcftp.gsfc.nasa.gov. The new database for the topside ionosphere established

  7. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis

    Science.gov (United States)

    Vanderfleet, Oriana M.; Osorio, Daniel A.; Cranston, Emily D.

    2017-12-01

    Cellulose nanocrystals (CNCs) are emerging nanomaterials with a large range of potential applications. CNCs are typically produced through acid hydrolysis with sulfuric acid; however, phosphoric acid has the advantage of generating CNCs with higher thermal stability. This paper presents a design of experiments approach to optimize the hydrolysis of CNCs from cotton with phosphoric acid. Hydrolysis time, temperature and acid concentration were varied across nine experiments and a linear least-squares regression analysis was applied to understand the effects of these parameters on CNC properties. In all but one case, rod-shaped nanoparticles with a high degree of crystallinity and thermal stability were produced. A statistical model was generated to predict CNC length, and trends in phosphate content and zeta potential were elucidated. The CNC length could be tuned over a relatively large range (238-475 nm) and the polydispersity could be narrowed most effectively by increasing the hydrolysis temperature and acid concentration. The CNC phosphate content was most affected by hydrolysis temperature and time; however, the charge density and colloidal stability were considered low compared with sulfuric acid hydrolysed CNCs. This study provides insight into weak acid hydrolysis and proposes `design rules' for CNCs with improved size uniformity and charge density. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  8. Element-specific density profiles in interacting biomembrane models

    International Nuclear Information System (INIS)

    Schneck, Emanuel; Rodriguez-Loureiro, Ignacio; Bertinetti, Luca; Gochev, Georgi; Marin, Egor; Novikov, Dmitri; Konovalov, Oleg

    2017-01-01

    Surface interactions involving biomembranes, such as cell–cell interactions or membrane contacts inside cells play important roles in numerous biological processes. Structural insight into the interacting surfaces is a prerequisite to understand the interaction characteristics as well as the underlying physical mechanisms. Here, we work with simplified planar experimental models of membrane surfaces, composed of lipids and lipopolymers. Their interaction is quantified in terms of pressure–distance curves using ellipsometry at controlled dehydrating (interaction) pressures. For selected pressures, their internal structure is investigated by standing-wave x-ray fluorescence (SWXF). This technique yields specific density profiles of the chemical elements P and S belonging to lipid headgroups and polymer chains, as well as counter-ion profiles for charged surfaces. (paper)

  9. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, O., E-mail: olena.kononenko@desy.de [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Lopes, N.C.; Cole, J.M.; Kamperidis, C.; Mangles, S.P.D.; Najmudin, Z. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Osterhoff, J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Poder, K. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Rusby, D.; Symes, D.R. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Warwick, J. [Queens University Belfast, North Ireland (United Kingdom); Wood, J.C. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Palmer, C.A.J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  10. Measurements of edge density profile modifications during IBW on TFTR

    International Nuclear Information System (INIS)

    Hanson, G.R.; Bush, C.E.; Wilgen, J.B.

    1997-01-01

    Ion Bernstein wave (IBW) antennas are known to have substantial localized effects on the plasma edge. To allow better understanding and measurement of these effects, the TFTR edge reflectometer has been relocated to the new IBW antenna. This move was facilitated by the incorporation of a diagnostic access tube in the IBW antenna identical to the original diagnostic tube in the fast-wave (FW) antenna. This allowed the reflectometer launcher to simply be moved from the old FW antenna to the new IBW antenna. Only a moderate extension of the waveguide transmission line was required to reconnect the reflectometer to the launcher in its new location. Edge density profile modification during IBW experiments has been observed. Results from IBW experiments will be presented and contrasted to the edge density modifications previously observed during FW heating experiments

  11. Femtosecond laser effect on the self-sealing properties of the corneal incision of various lengths and profile (experimental trial

    Directory of Open Access Journals (Sweden)

    Yulduz Shavkatovna Nizametdinova

    2015-06-01

    Full Text Available An experimental investigation was carried out to study self-sealing properties of corneal incisions of different profile and length carried out with femtosecond laser Victus (Technolas Perfect Vision/Bausch&Lomb. Using femtosecond laser for this purpose allows creating corneal incisions of high precision and predictability. Reproducibility and standardization of the incision profile and length are an advantage of this technology. Obtained results showed that single-profile incisions are less stable and safe when compared to multi-profile ones. It was noted that incision length increase promotes its self-sealing properties.

  12. Angular filter refractometry analysis using simulated annealing [An improved method for characterizing plasma density profiles using angular filter refractometry

    International Nuclear Information System (INIS)

    Angland, P.; Haberberger, D.; Ivancic, S. T.; Froula, D. H.

    2017-01-01

    Here, a new method of analysis for angular filter refractometry images was developed to characterize laser-produced, long-scale-length plasmas using an annealing algorithm to iterative converge upon a solution. Angular filter refractometry (AFR) is a novel technique used to characterize the density pro files of laser-produced, long-scale-length plasmas. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on a minimization of the χ2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in average uncertainty in the density profile of 5-10% in the region of interest.

  13. Discrimination among individuals using terminal restriction fragment length polymorphism profiling of bacteria derived from forensic evidence.

    Science.gov (United States)

    Nishi, Eiji; Tashiro, Yukihiro; Sakai, Kenji

    2015-05-01

    DNA typing from forensic evidence is commonly used to identify individuals. However, when the quantity of the forensic evidence is insufficient, successful identification using DNA typing is impossible. Such evidence may also contain DNA from bacteria that occur naturally on the skin. In this study, we aimed to establish a profiling method using terminal restriction fragment length polymorphisms (T-RFLPs) of the amplified bacterial 16S ribosomal RNA (rRNA) gene. First, the extraction and digestion processes were investigated, and the T-RFLP profiling method using the 16S rRNA gene amplicon was optimized. We then used this method to compare the profiles of bacterial flora from the hands of 12 different individuals. We found that the T-RFLP profiles from one person on different days displayed higher similarity than those between individuals. In a principal component analysis (PCA), T-RFLPs from each individual were closely clustered in 11 out of 12 cases. The clusters could be distinguished from each other, even when the samples were collected from different conditions. No major change of the profile was observed after six months except in two cases. When handprints on glass plates were compared, 11 of 12 individuals were assigned to a few clusters including the cluster corresponding to the correct individual. In conclusion, a method for reproducible T-RFLP profiling of bacteria from trace amounts of handprints was established. The profiles were obtained for particular individuals clustered in PCA and were experimentally separable from other individuals in most cases. This technique could provide useful information for narrowing down a suspect in a criminal investigation.

  14. Control-oriented modeling of the plasma particle density in tokamaks and application to real-time density profile reconstruction

    NARCIS (Netherlands)

    Blanken, T.C.; Felici, F.; Rapson, C.J.; de Baar, M.R.; Heemels, W.P.M.H.

    2018-01-01

    A model-based approach to real-time reconstruction of the particle density profile in tokamak plasmas is presented, based on a dynamic state estimator. Traditionally, the density profile is reconstructed in real-time by solving an ill-conditioned inversion problem using a measurement at a single

  15. Real-time feedback control of the plasma density profile on ASDEX Upgrade

    International Nuclear Information System (INIS)

    Mlynek, A.; Reich, M.; Giannone, L.; Treutterer, W.; Behler, K.; Blank, H.; Buhler, A.; Cole, R.; Eixenberger, H.; Fischer, R.; Lohs, A.; Lueddecke, K.; Merkel, R.; Neu, G.; Ryter, F.; Zasche, D.

    2011-01-01

    The spatial distribution of density in a fusion experiment is of significant importance as it enters in numerous analyses and contributes to the fusion performance. The reconstruction of the density profile is therefore commonly done in offline data analysis. In this paper, we present an algorithm which allows for density profile reconstruction from the data of the submillimetre interferometer and the magnetic equilibrium in real-time. We compare the obtained results to the profiles yielded by a numerically more complex offline algorithm. Furthermore, we present recent ASDEX Upgrade experiments in which we used the real-time density profile for active feedback control of the shape of the density profile.

  16. Density profile of nitrogen in cylindrical pores of MCM-41

    Science.gov (United States)

    Soper, Alan K.; Bowron, Daniel T.

    2017-09-01

    A straightforward approach using radiation scattering (X-ray or neutron) combined with atomistic modelling is used to accurately assess the pore dimensions in the porous silica, MCM-41. The method is used to calculate the density profile of nitrogen absorbed in this material at a variety of fractional pressures, p/p0, where p0 is the saturated vapour pressure, up to p/p0 = 0.36 at T = 87 K in the present instance. At this pressure two distinct layers of liquid nitrogen occur on the silica surface, with a relatively sharp gas-liquid interface. It is suggested surface tension effects at this interface strongly influence the growth of further layers.

  17. Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins

    DEFF Research Database (Denmark)

    Kingshott, P.; Thissen, H.; Griesser, H.J.

    2002-01-01

    The effects of pinning density, chain length, and 'cloud point' (CP) versus non-CP grafting conditions have been studied on the ability of polyethylene glycol (PEG) layers to minimize adsorption from a multicomponent (lysozyme, human serum albumin (HSA), IgG and lactoferrin) protein solution...... density) r.f.g.d. polymer layers. The PEG graft density was varied also by increasing the temperature and salt (K2SO4) content of the grafting solution; it reached a maximum at the CP of the PEGs. The CP reaction conditions were critical for producing PEG layers capable of minimizing protein adsorption. X...... density and chain length are interrelated, but the key factor is optimization of PEG chain density by use of the CP conditions, provided that a sufficient density of pinning sites exists. (C) 2002 Elsevier Science Ltd. Al l rights reserved....

  18. Surface density profile and surface tension of the one-component classical plasma

    International Nuclear Information System (INIS)

    Ballone, P.; Senatore, G.; Trieste Univ.; Tosi, M.P.; Oxford Univ.

    1982-08-01

    The density profile and the interfacial tension of two classical plasmas in equilibrium at different densities are evaluated in the square-density-gradient approximation. For equilibrium in the absence of applied external voltage, the profile is oscillatory in the higher-density plasma and the interfacial tension is positive. The amplitude and phase of these oscillations and the magnitude of the interfacial tension are related to the width of the background profile. Approximate representations of the equilibrium profile by matching of its asymptotic forms are analyzed. A comparison with computer simulation data and a critical discussion of a local-density theory are also presented. (author)

  19. Universal global imprints of genome growth and evolution--equivalent length and cumulative mutation density.

    Directory of Open Access Journals (Sweden)

    Hong-Da Chen

    Full Text Available BACKGROUND: Segmental duplication is widely held to be an important mode of genome growth and evolution. Yet how this would affect the global structure of genomes has been little discussed. METHODS/PRINCIPAL FINDINGS: Here, we show that equivalent length, or L(e, a quantity determined by the variance of fluctuating part of the distribution of the k-mer frequencies in a genome, characterizes the latter's global structure. We computed the L(es of 865 complete chromosomes and found that they have nearly universal but (k-dependent values. The differences among the L(e of a chromosome and those of its coding and non-coding parts were found to be slight. CONCLUSIONS: We verified that these non-trivial results are natural consequences of a genome growth model characterized by random segmental duplication and random point mutation, but not of any model whose dominant growth mechanism is not segmental duplication. Our study also indicates that genomes have a nearly universal cumulative "point" mutation density of about 0.73 mutations per site that is compatible with the relatively low mutation rates of (1-5 x 10(-3/site/Mya previously determined by sequence comparison for the human and E. coli genomes.

  20. Effects of the Length of Jet Grouted Columns and Soil Profile on the Settlement of Shallow Foundations

    Directory of Open Access Journals (Sweden)

    Zaheer Ahmed Almani

    2012-07-01

    Full Text Available In this paper, the effect of length of jet grouted columns and varying soil profile under shallow foundations of buildings constructed on the liquefiable ground was studied. The isolated shallow footing pad which supports a typical simple frame structure was constructed on the liquefiable ground. This ground was reinforced with jet grouted column rows under the shallow foundations of structure. The system was modeled as plane-strain using the FLAC 2D (Fast Lagrangian Analysis of Continua dynamic modelling and analysis code. This case focuses on the length of jet grouted columns in a soil profile and the effect of soil profiles of varying thickness on the settlements of building structure when the soil is liquefied during an earthquake. The results show that liquefaction-induced large settlements of shallow foundation of building decrease to tolerable limits with the increase in the length of columns. For soil profiles, with a relatively thinner liquefiable layer, a certain minimum length of columns (extended in base non liquefiable layer is required to meet the settlement tolerable limits. For soil profiles, with a relatively thicker liquefiable layer, this length should be equal to the thickness of the liquefiable layer from the footing base plus some extension in the base non liquefiable dense layer. In the soil profile with the base liquefiable layer underlying the non liquefiable layer, settlements could not be reduced to the tolerable limits even with columns of relatively larger length which may be critical.

  1. CO{sub 2} laser diagnostics for measurements of the plasma density profile and plasma density fluctuations on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Vyacheslavov, L.N. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Tanaka, K.; Kawahata, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-04-01

    A CO{sub 2} laser based diagnostics complimentary to the existing FIR interferometer is proposed. It combines interferometry for plasma density profile measurement under conditions of large density gradients, and both imaging and scattering techniques for observation of plasma fluctuations. Two-colour interferometer with a slablike probe beam and a single multichannel linear detector array provide observation of plasma density profile and density fluctuations at two locations along the probe beam. Basic characteristics of the diagnostics are considered as well as some effects that include dispersion and are critical for two colour imaging technique. The results of the bench-top experiments with the prototype of the interferometer are presented. (author)

  2. CO2 laser diagnostics for measurements of the plasma density profile and plasma density fluctuations on LHD

    International Nuclear Information System (INIS)

    Vyacheslavov, L.N.; Tanaka, K.; Kawahata, K.

    2001-04-01

    A CO 2 laser based diagnostics complimentary to the existing FIR interferometer is proposed. It combines interferometry for plasma density profile measurement under conditions of large density gradients, and both imaging and scattering techniques for observation of plasma fluctuations. Two-colour interferometer with a slablike probe beam and a single multichannel linear detector array provide observation of plasma density profile and density fluctuations at two locations along the probe beam. Basic characteristics of the diagnostics are considered as well as some effects that include dispersion and are critical for two colour imaging technique. The results of the bench-top experiments with the prototype of the interferometer are presented. (author)

  3. Diagnosis of Weibel instability evolution in the rear surface density scale lengths of laser solid interactions via proton acceleration

    International Nuclear Information System (INIS)

    Scott, G G; Brenner, C M; Clarke, R J; Green, J S; Heathcote, R I; Rusby, D R; McKenna, P; Neely, D; Bagnoud, V; Zielbauer, B; Gonzalez-Izquierdo, B; Powell, H W

    2017-01-01

    It is shown for the first time that the spatial and temporal distribution of laser accelerated protons can be used as a diagnostic of Weibel instability presence and evolution in the rear surface scale lengths of a solid density target. Numerical modelling shows that when a fast electron beam is injected into a decreasing density gradient on the target rear side, a magnetic instability is seeded with an evolution which is strongly dependent on the density scale length. This is manifested in the acceleration of a filamented proton beam, where the degree of filamentation is also found to be dependent on the target rear scale length. Furthermore, the energy dependent spatial distribution of the accelerated proton beam is shown to provide information on the instability evolution on the picosecond timescale over which the protons are accelerated. Experimentally, this is investigated by using a controlled prepulse to introduce a target rear scale length, which is varied by altering the time delay with respect to the main pulse, and similar trends are measured. This work is particularly pertinent to applications using laser pulse durations of tens of picoseconds, or where a micron level density scale length is present on the rear of a solid target, such as proton-driven fast ignition, as the resultant instability may affect the uniformity of fuel energy coupling. (paper)

  4. Soil aggregation and slope stability related to soil density, root length, and mycorrhiza

    Science.gov (United States)

    Graf, Frank; Frei, Martin

    2013-04-01

    Eco-engineering measures combine the use of living plants and inert mechanical constructions to protect slopes against erosion and shallow mass movement. Whereas in geotechnical engineering several performance standards and guidelines for structural safety and serviceability of construction exist, there is a lack of comparable tools in the field of ecological restoration. Various indicators have been proposed, including the fractal dimension of soil particle size distribution, microbiological parameters, and soil aggregate stability. We present results of an soil aggregate stability investigation and compare them with literature data of the angle of internal friction ?' which is conventionally used in slope stability analysis and soil failure calculation. Aggregate stability tests were performed with samples of differently treated moraine, including soil at low (~15.5 kN/m³) and high (~19.0 kN/m³) dry unit weight, soil planted with Alnus incana (White Alder) as well as the combination of soil planted with alder and inoculated with the mycorrhizal fungus Melanogaster variegatus s.l. After a 20 weeks growth period in a greenhouse, a total of 100 samples was tested and evaluated. Positive correlations were found between the soil aggregate stability and the three variables dry unit weight, root length per soil volume, and degree of mycorrhization. Based on robust statistics it turned out that dry unit weight and mycorrhization degree were strongest correlated with soil aggregate stability. Compared to the non-inoculated control plants, mycorrhized White Alder produced significantly more roots and higher soil aggregate stability. Furthermore, the combined biological effect of plant roots and mycorrhizal mycelia on aggregate stability on soil with low density (~15.5 kN/m³) was comparable to the compaction effect of the pure soil from 15.5 to ~19.0 kN/m³. Literature data on the effect of vegetation on the angle of internal friction ?' of the same moraine showed

  5. MEASURING PROTOPLANETARY DISK GAS SURFACE DENSITY PROFILES WITH ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jonathan P.; McPartland, Conor, E-mail: jpw@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-10-10

    The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams and Best to show that gas surface density profiles can be measured from high fidelity {sup 13}CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, M {sub gas} = 0.048 M {sub ⊙}, and accretion disk characteristic size R {sub c} = 213 au and gradient γ = 0.39. The same parameters match the C{sup 18}O 2–1 image and indicate an abundance ratio [{sup 12}CO]/[C{sup 18}O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large {sup 13}CO 2–1 image library and fit simulated data. For disks with gas masses 3–10 M {sub Jup} at 150 pc, ALMA observations with a resolution of 0.″2–0.″3 and integration times of ∼20 minutes allow reliable estimates of R {sub c} to within about 10 au and γ to within about 0.2. Economic gas imaging surveys are therefore feasible and offer the opportunity to open up a new dimension for studying disk structure and its evolution toward planet formation.

  6. RELATIONSHIPS BETWEEN ANATOMICAL FEATURES AND INTRA-RING WOOD DENSITY PROFILES IN Gmelina arborea APPLYING X-RAY DENSITOMETRY

    Directory of Open Access Journals (Sweden)

    Mario Tomazelo-Filho

    2007-12-01

    Full Text Available Four annual tree-rings (2 of juvenile wood and 2 of mature wood were sampled from fast-growth plantations ofGmelina arborea in two climatic conditions (dry and wet tropical in Costa Rica. Each annual tree-ring was divided in equal parts ina radial direction. For each part, X-ray density as well as vessel percentage, length and width fiber, cell wall thickness and lumendiameter were measured. Wood density and profile patterns of cell dimension demonstrated inconsistency between juvenile andmature wood and climatic conditions. The Pearson correlation matrix showed that intra-ring wood density was positively correlatedwith the cell wall thickness and negatively correlated with vessel percentage, fiber length, lumen diameter and width. The forwardstepwise regressions determined that: (i intra-ring wood density variation could be predicted from 76 to 96% for anatomicalvariation; (ii cell wall thickness was the most important anatomical feature to produce intra-ring wood density variation and (iii thevessel percentage, fiber length, lumen diameter and width were the second most statically significant characteristics to intra-ring wooddensity, however, with low participation of the determination coefficient of stepwise regressions.

  7. Density profile analysis during an ELM event in ASDEX Upgrade H-modes

    International Nuclear Information System (INIS)

    Nunes, I.; Manso, M.; Serra, F.; Horton, L.D.; Conway, G.D.; Loarte, A.

    2005-01-01

    This paper reports results on measurements of the density profiles. Here we analyse the behaviour of the electron density for a set of experiments in type I ELMy H-mode discharges in ASDEX Upgrade where the plasma current, plasma density, triangularity and input power were varied. Detailed measurements of the radial extent of the perturbation on the density profiles caused by the edge localized mode (ELM) crash (ELM affected depth), the velocity of the radial propagation of the perturbation as well as the width and gradient of the density pedestal are determined. The effect of a type I ELM event on the density profiles affects the outermost 20-40% of the plasma minor radius. At the scrape-off layer (SOL) the density profile broadens while in the pedestal region the density decreases resulting in a smaller density gradient. This change in the density profile defines a pivot point around which the density profile changes. The average radial velocity at the SOL is in the range 125-150 ms -1 and approximately constant for all the density layers far from the pivot point. The width of the density pedestal is approximately constant for all the ELMy H-mode discharges analysed, with values between 2 and 3.5 cm. These results are then compared with an analytical model where the width of the density is predominantly set by ionization (neutral penetration model). The width of the density profiles for L-mode discharges is included, since L- and H-mode have different particle transport. No agreement between the experimental results and the model is found

  8. [Profile of human milk bank donors and relationship with the length of the donation].

    Science.gov (United States)

    Sierra Colomina, G; García Lara, N; Escuder Vieco, D; Vázquez Román, S; Cabañes Alonso, E; Pallás Alonso, C R

    2014-04-01

    The promotion of Human Milk Banks is an important social service. The Human Milk Banks depend on donors, and knowing the profile of donors seems quite important. To study the demographics and lifestyles of the donors, the reasons or influences for donating, and to associate these variables with the length of the donation. This is a descriptive, cross-sectional study conducted on 168 mothers who answered the written questionnaire when they agreed to become donors. 98 (58%) responded to the telephone interview. The mean age was 33.1 ± 4.5 years. Of the total 27.9% lived outside Madrid and 21.4% were immigrants, with 23.7% working full time, 65.3% had a university education, and 96.2% had a stable partner. The main reasons for donating were too much milk (77%), and to help others (75%). The main obstacle was transportation to the Human Milk Bank for 20% of the donors, and for 61% the main reason for terminating donation was due to reaching the end of lactation. A longer donation is associated with: having a term newborn, with birth weight over 1500 g, starting donating early and reconciling the donation to the work situation. The most common donor profile was a young woman, with university education and a stable partner. Having a term new born, starting donating early, and the conciliation with work is associated with longer donations. Milk pick-up at home would make donation easier. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  9. Do climate variables and human density affect Achatina fulica (Bowditch) (Gastropoda: Pulmonata) shell length, total weight and condition factor?

    Science.gov (United States)

    Albuquerque, F S; Peso-Aguiar, M C; Assunção-Albuquerque, M J T; Gálvez, L

    2009-08-01

    The length-weight relationship and condition factor have been broadly investigated in snails to obtain the index of physical condition of populations and evaluate habitat quality. Herein, our goal was to describe the best predictors that explain Achatina fulica biometrical parameters and well being in a recently introduced population. From November 2001 to November 2002, monthly snail samples were collected in Lauro de Freitas City, Bahia, Brazil. Shell length and total weight were measured in the laboratory and the potential curve and condition factor were calculated. Five environmental variables were considered: temperature range, mean temperature, humidity, precipitation and human density. Multiple regressions were used to generate models including multiple predictors, via model selection approach, and then ranked with AIC criteria. Partial regressions were used to obtain the separated coefficients of determination of climate and human density models. A total of 1.460 individuals were collected, presenting a shell length range between 4.8 to 102.5 mm (mean: 42.18 mm). The relationship between total length and total weight revealed that Achatina fulica presented a negative allometric growth. Simple regression indicated that humidity has a significant influence on A. fulica total length and weight. Temperature range was the main variable that influenced the condition factor. Multiple regressions showed that climatic and human variables explain a small proportion of the variance in shell length and total weight, but may explain up to 55.7% of the condition factor variance. Consequently, we believe that the well being and biometric parameters of A. fulica can be influenced by climatic and human density factors.

  10. Do climate variables and human density affect Achatina fulica (Bowditch (Gastropoda: Pulmonata shell length, total weight and condition factor?

    Directory of Open Access Journals (Sweden)

    FS. Albuquerque

    Full Text Available The length-weight relationship and condition factor have been broadly investigated in snails to obtain the index of physical condition of populations and evaluate habitat quality. Herein, our goal was to describe the best predictors that explain Achatina fulica biometrical parameters and well being in a recently introduced population. From November 2001 to November 2002, monthly snail samples were collected in Lauro de Freitas City, Bahia, Brazil. Shell length and total weight were measured in the laboratory and the potential curve and condition factor were calculated. Five environmental variables were considered: temperature range, mean temperature, humidity, precipitation and human density. Multiple regressions were used to generate models including multiple predictors, via model selection approach, and then ranked with AIC criteria. Partial regressions were used to obtain the separated coefficients of determination of climate and human density models. A total of 1.460 individuals were collected, presenting a shell length range between 4.8 to 102.5 mm (mean: 42.18 mm. The relationship between total length and total weight revealed that Achatina fulica presented a negative allometric growth. Simple regression indicated that humidity has a significant influence on A. fulica total length and weight. Temperature range was the main variable that influenced the condition factor. Multiple regressions showed that climatic and human variables explain a small proportion of the variance in shell length and total weight, but may explain up to 55.7% of the condition factor variance. Consequently, we believe that the well being and biometric parameters of A. fulica can be influenced by climatic and human density factors.

  11. Chain length dependence of the critical density of organic homologous series

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios M.; Fredenslund, Aage; Tassios, Dimitrios P.

    1995-01-01

    Whether the critical density of organic compounds belonging to a certain homologous series increases or decreases with (increasing) molecular weight has been a challenging question over the years. Two sets of experimental data have recently appeared in the literature for the critical density of n......-alkanes: Steele's data (up to n-decane) suggest that critical density increases with carbon number and reaches a limiting value. On the other hand, the data of Teja et al., 1990 which cover a broader range of n-alkanes (up to n-octadecane), reveal a decreasing trend of the critical density after a maximum at n......-heptane. Teja et al. have also presented critical density measurements for 1-alkenes (up to 1-decene) and 1-alkanols (up to 1-undecanol). These data follow the same decreasing trend with the molecular weight as n-alkanes. This trend is not in agreement with the predictions of most group-contribution methods...

  12. Charged plate in asymmetric electrolytes: One-loop renormalization of surface charge density and Debye length due to ionic correlations.

    Science.gov (United States)

    Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun

    2016-10-01

    Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.

  13. Determination of Jupiter's electron density profile from plasma wave observations

    International Nuclear Information System (INIS)

    Gurnett, D.A.; Scarf, F.L.; Kurth, W.S.; Shaw, R.R.; Poynter, R.L.

    1981-01-01

    This paper summarizes the electron density measurements obtained in the Jovian magnetosphere from the plasma wave instruments on the Voyager 1 and 2 spacecraft. Three basic techniques are discussed for determining the electron density: (1) local measurements from the low-frequency cutoff of continuum radiation, (2) local measurements from the frequency of upper hybrid resonance emissions, and (3) integral measurements from the dispersion of whistlers. The limitations and advantages of each technique are critically reviewed. In all cases the electron densities are unaffected by spacecraft charging or sheath effects, which makes these measurements of particular importance for verifying in situ plasma and low-energy charged particle measurments. In the outer regions of the dayside magnetosphere, beyond about 40 R/sub J/, the electron densities range from about 3 x 10 -3 to 3 x 10 -2 cm -3 . On Voyager 2, several brief excursions apparently occurred into the low-density region north of the plasma sheet with densities less than 10 -3 cm -3 . Approaching the planet the electron density gradually increases, with the plasma frequency extending above the frequency range of the plasma wave instrument (56 kHz, or about 38 electrons cm -3 ) inside of about 8 R/sub J/. Within the high-density region of the Io plasma torus, whistlers provide measurements of the north-south scale height of the plasma torus, with scale heights ranging from about 0.9 to 2.5 R/sub J/

  14. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.; Murakami, S.; Yamazaki, K.

    2002-01-01

    Energy confinement and heat transport of net current-free NBI-heated plasmas in the Large Helical Device (LHD) are discussed with an emphasis on density dependence. Although the apparent density dependence of the energy confinement time has been demonstrated in a wide parameter range in LHD, the loss of this dependence has been observed in the high density regime under the specific condition. Broad heat deposition due to off-axis alignment and shallow penetration of neutral beams degrades the global energy confinement while the local heat transport maintains a clear temperature dependence lying between Bohm and gyro-Bohm characteristics. The central heat deposition inclines towards an intrinsic density dependence like τ E ∝(n-bar e /P) 0.6 from the saturated state. The broadening of the temperature profile due to the broad heat deposition profile contrasts with the invariant property which has observed widely as profile consistency and stiffness in tokamak experiments. (author)

  15. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.; Murakami, S.; Yamazaki, K.

    2003-01-01

    Energy confinement and heat transport of net current-free NBI-heated plasmas in the Large Helical Device (LHD) are discussed with an emphasis on density dependence. Although the apparent density dependence of the energy confinement time has been demonstrated in a wide parameter range in LHD, the loss of this dependence has been observed in the high density regime under the specific condition. Broad heat deposition due to off-axis alignment and shallow penetration of neutral beams degrades the global energy confinement while the local heat transport maintains a clear temperature dependence lying between Bohm and gyro-Bohm characteristics. The central heat deposition inclines towards an intrinsic density dependence like τ E ∝(n-bars e /P) 0.6 from the saturated state. The broadening of the temperature profile due to the broad heat deposition profile contrasts with the invariant property which has observed widely as profile consistency and stiffness in tokamak experiments. (author)

  16. An analytical calculation of the axial density profile for 1-d slab expansion

    International Nuclear Information System (INIS)

    Ho, D

    1999-01-01

    Obtaining an analytical expression for the axial density profile can provide us with a quick and convenient way to evaluate the density evolution for targets with different densities and dimensions. In this note, we show that such an analytical expression can be obtained based on the self-similar solutions and the method of characteristics for 1-D slab expansion

  17. Photonic density of states in the vicinity of a single-wall finite-length carbon nanotube

    International Nuclear Information System (INIS)

    Nemilentsau, A; Ya Slepyan, G; Maksimenko, S A

    2009-01-01

    Photonic density of states in the vicinity of a single-wall finite-length carbon nanotube (CNT) is investigated theoretically in this paper. The analysis is based on the fluctuation-dissipative theorem in the Callen-Welton form. The Dyson equation for the Green dyadic of the electromagnetic field in the presence of CNT is formulated and a method for its numerical solution is elaborated. We show that the photonic density of states spectrum has a nontrivial resonant structure in the terahertz range in the vicinity of the metallic single-wall CNT. The origin of these resonances is the surface plasmon resonances on the CNT's edges.

  18. The Surface Density Profile of the Galactic Disk from the Terminal Velocity Curve

    Science.gov (United States)

    McGaugh, Stacy S.

    2016-01-01

    The mass distribution of the Galactic disk is constructed from the terminal velocity curve and the mass discrepancy-acceleration relation. Mass models numerically quantifying the detailed surface density profiles are tabulated. For R0 = 8 kpc, the models have stellar mass 5 spiral galaxy that obeys scaling relations like the Tully-Fisher relation, the size-mass relation, and the disk maximality-surface brightness relation. The stellar disk is maximal, and the spiral arms are massive. The bumps and wiggles in the terminal velocity curve correspond to known spiral features (e.g., the Centaurus arm is a ˜50% overdensity). The rotation curve switches between positive and negative over scales of hundreds of parsecs. The rms amplitude { }1/2≈ 14 {km} {{{s}}}-1 {{kpc}}-1, implying that commonly neglected terms in the Jeans equations may be nonnegligible. The spherically averaged local dark matter density is ρ0,DM ≈ 0.009 {M}⊙ {{pc}}-3 (0.34 {GeV} {{cm}}-3). Adiabatic compression of the dark matter halo may help reconcile the Milky Way with the c-V200 relation expected in ΛCDM while also helping to mitigate the too-big-to-fail problem, but it remains difficult to reconcile the inner bulge/bar-dominated region with a cuspy halo. We note that NGC 3521 is a near twin to the Milky Way, having a similar luminosity, scale length, and rotation curve.

  19. Measurement of electron density profiles by soft X-ray tomography on the RTP tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, D.F. da; Donne, A.J.H.; Lyadina, E.S.; Rutteman, R.H.; Tanzi, C.P. [FOM-Instituut voor Plasmafysica, Rijnhuizen (Netherlands)

    1993-12-31

    Tomographic diagnosis of the soft x-ray emissivity profile is a powerful method for studying several plasma parameters. The x-ray emissivity is a complicated function of plasma quantities like the electron density and temperature, and the impurity content in the plasma. These quantities can be studied separately provided that information is available on the remaining parameters. Soft x-ray emissivity profiles have already been used successfully in other machines to determine local values of impurity densities and the effective charge Z{sub eff}. In the RTP tokamak the electron density profile has been inferred from a modelling of the x-ray emissivity in situations where information is available on the electron temperature profile, the value of Z{sub eff}, and the relative proportion of the impurities. The method can be useful for the study of hollow density profiles that cannot be properly reconstructed by Abel inversion of interferometer or reflectometer data. (author) 7 refs., 2 figs.

  20. Measurement of electron density profiles by soft X-ray tomography on the RTP tokamak

    International Nuclear Information System (INIS)

    Cruz, D.F. da; Donne, A.J.H.; Lyadina, E.S.; Rutteman, R.H.; Tanzi, C.P.

    1993-01-01

    Tomographic diagnosis of the soft x-ray emissivity profile is a powerful method for studying several plasma parameters. The x-ray emissivity is a complicated function of plasma quantities like the electron density and temperature, and the impurity content in the plasma. These quantities can be studied separately provided that information is available on the remaining parameters. Soft x-ray emissivity profiles have already been used successfully in other machines to determine local values of impurity densities and the effective charge Z eff . In the RTP tokamak the electron density profile has been inferred from a modelling of the x-ray emissivity in situations where information is available on the electron temperature profile, the value of Z eff , and the relative proportion of the impurities. The method can be useful for the study of hollow density profiles that cannot be properly reconstructed by Abel inversion of interferometer or reflectometer data. (author) 7 refs., 2 figs

  1. Data description and quality assessment of ionospheric electron density profiles for ARPA modeling project. Technical report

    International Nuclear Information System (INIS)

    Conkright, R.O.

    1977-03-01

    This report presents a description of the automated method used to produce electron density (N(h)) profiles from ionograms recorded on 35mm film and an assessment of the resulting data base. A large data base of about 30,000 profiles was required for an ionospheric modeling project. This motivated a search for an automated method of producing profiles. The automated method used is fully described, the resulting data are given a quality grade, and the noon and midnight profiles are presented. Selected portions of this data base are compared with profiles produced by the standard profiling method in use by the Environmental Data Service at Boulder, Colorado

  2. Electron temperature and density profiles measurement in the TJ-1 tokamak by Thomson scattering

    International Nuclear Information System (INIS)

    Pardo, C.; Zurro, B.

    1986-01-01

    Electron temperature and density profiles of ohmically heated hydrogen plasmas in the TJ-1 tokamak have been measured by Thomson scattering. The temperature profile peaks sharply in the central region while the density profile is very flat. Temperature values between 100 and 390 eV have been measured for densities in the range of 5.10 12 to 2.6.10 13 cm -3 . Parameters characterizing TJ-1 plasma, such as confinement times Z eff , have been deduced from experimental data. Energy confinement times are compared with experimental scaling laws. (author)

  3. Electron number density profiles derived from radio occultation on the CASSIOPE spacecraft

    DEFF Research Database (Denmark)

    Shume, E. B.; Vergados, P.; Komjathy, A.

    2017-01-01

    This paper presents electron number density profiles derived from high resolution Global Positioning System (GPS) radio occultation (RO) observations performed using the Enhanced Polar Outflow Probe (e-POP) payload on the high inclination CAScade, Smallsat and IOnospheric Polar Explorer (CASSIOPE...... good agreement with density profiles estimated from ionosonde data, measured over nearby stations to the latitude and longitude of the RO tangent points, (2) in good agreement with density profiles inferred from GPS RO measured by the Constellation Observing System for Meteorology, Ionosphere...

  4. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.

    2002-01-01

    Significant density dependence of the energy confinement time as described in the ISS95 scaling has been demonstrated in the extended parameter regimes in LHD. However, recent experiments have indicated that this density dependence is lost at a certain density under specific conditions. This paper discusses the cause of this saturation and related characteristics of anomalous transport. The saturation of the energy confinement time is observed in the density ramp-up phase of NBI heated plasmas. In contrast to the global energy confinement time, the local heat conduction coefficient still indicates the temperature dependence which is a companion to the density dependence of the energy confinement time. The apparent contradiction between the global confinement and the local transport can be attributed to the change of the heat deposition profile. Through this study, the response of temperature and density profiles to the heat deposition profile is highlighted, which is contrasted to the concept of stiffness or profile consistency observed in tokamaks. The major anomalous transport models based on ITG/TEM and interchange/ballooning modes are assessed. (author)

  5. Production of fine structures in type III solar radio bursts due to turbulent density profiles

    International Nuclear Information System (INIS)

    Loi, Shyeh Tjing; Cairns, Iver H.; Li, Bo

    2014-01-01

    Magnetic reconnection events in the corona release energetic electron beams along open field lines, and the beams generate radio emission at multiples of the electron plasma frequency f p to produce type III solar radio bursts. Type III bursts often exhibit irregularities in the form of flux modulations with frequency and/or local temporal advances and delays, and a type IIIb burst represents the extreme case where a type III burst is fragmented into a chain of narrowband features called striae. Remote and in situ spacecraft measurements have shown that density turbulence is ubiquitous in the corona and solar wind, and often exhibits a Kolmogorov power spectrum. In this work, we numerically investigate the effects of one-dimensional macroscopic density turbulence (along the beam direction) on the behavior of type III bursts, and find that this turbulence produces stria-like fine structures in the dynamic spectra of both f p and 2 f p radiation. Spectral and temporal fine structures in the predicted type III emission are produced by variations in the scattering path lengths and group speeds of radio emission, and in the locations and sizes of emitting volumes. Moderate turbulence levels yield flux enhancements with much broader half-power bandwidths in f p than 2 f p emission, possibly explaining the often observed type IIIb-III harmonic pairs as being where intensifications in 2 f p radiation are not resolved observationally. Larger turbulence levels producing trough-peak regions in the plasma density profile may lead to broader, resolvable intensifications in 2 f p radiation, which may account for the type IIIb-IIIb pairs that are sometimes observed.

  6. Electron density and temperature profile diagnostics for C-2 field reversed configuration plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Deng, B. H.; Kinley, J. S.; Schroeder, J. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2012-10-15

    The 9-point Thomson scattering diagnostic system for the C-2 field reversed configuration plasmas is improved and the measured electron temperature profiles are consistent with theoretical expectations. Rayleigh scattering revealed a finite line width of the ruby laser emission, which complicates density calibration. Taking advantage of the plasma wobble motion, density profile reconstruction accuracy from the 6-chord two-color CO{sub 2}/HeNe interferometer data is improved.

  7. Advances in the density profile evaluation from broadband reflectometry on ASDEX upgrade

    International Nuclear Information System (INIS)

    Varela, P.; Manso, M.; Conway, G.

    2001-01-01

    The high temporal and spatial resolutions provided by broadband microwave reflectometry make it an attractive diagnostic technique to measure the density profile in fusion plasmas. However, great problems have been encountered due to the plasma turbulence that difficult, and sometimes prevent, the routine evaluation of density profiles. Advanced broadband systems employ ultra-fast sweeping in an attempt to perform the profile measurement in a time window smaller than the temporal scale of the main plasma fluctuations but this is not sufficient. Indeed, abrupt plasma movements and/or spatial turbulence always affect the reflectometry signals, as shown by numerical studies (with both one- and two-dimensional codes), for the case of ultra-fast sweeping and pulse radar systems. For this reason not only the system performance is important but the software tools also play a crucial role for reflectometry to become a standard density profile diagnostic. Here we present the recent advances towards automatic evaluation of density profiles from broadband reflectometry on ASDEX Upgrade. For regimes with moderate levels of plasma turbulence, density profiles are obtained from single reflectometry samples (temporal resolution of 20 μs), and for higher turbulence levels average profiles are obtained from bursts of ultra-fast (20 μs), closely spaced (10 μs) sweeps. This method improved the accuracy and reliability of density profiles, which can now be obtained automatically from the edge to the bulk plasma - using reflectometry alone - in most plasma regimes of ASDEX Upgrade. New data processing capability has been implemented that allows the profiles to be available to the end-users 10-12 minutes after each discharge. These developments were possible due to the flexibility and high performance of the control and data acquisition systems and to the large number of measurements that can be performed with the diagnostic during each discharge (720 profiles both on the low- and

  8. Characterization of the intrinsic density profiles for liquid surfaces

    International Nuclear Information System (INIS)

    Chacon, Enrique; Tarazona, Pedro

    2005-01-01

    This paper presents recent advances in the characterization of the intrinsic structures in computer simulations of liquid surfaces. The use of operational definitions for the intrinsic surface, associated with each molecular configuration of a liquid slab, gives direct access to the intrinsic profile and to the wavevector dependent surface tension. However, the characteristics of these functions depend on the definition used for the intrinsic surface. We discuss the pathologies associated with a local Gibbs dividing surface definition, and consider the alternative definition of a minimal area surface, going though a set of surface pivots, self-consistently chosen to represent the first liquid layer

  9. Comparison of neutral density profiles measured using Dα and C5+ in NSTX-U

    Science.gov (United States)

    Bell, R. E.; Scotti, F.; Diallo, A.; Leblanc, B. P.; Podesta, M.; Sabbagh, S. A.

    2017-10-01

    Edge neutral density profiles determined from two different measurements are compared on NSTX-U plasmas. Neutral density measurements were not typical on NSTX plasmas. An array of fibers dedicated to the measurement of passive emission of C5+, used to subtract background emission for charge exchange recombination spectroscopy (CHERS), can be used to infer deuterium neutral density near the plasma edge. The line emission from C5+ is dominated by charge exchange with neutral deuterium near the plasma edge. An edge neutral density diagnostic consisting of a camera with a Dα filter was installed on NSTX-U. The line-integrated measurements from both diagnostics are inverted to obtain local emissivity profiles. Neutral density is then inferred using atomics rates from ADAS and profile measurements from Thomson scattering and CHERS. Comparing neutral density profiles from the two diagnostic measurements helps determine the utility of using the more routinely available C5+ measurements for neutral density profiles. Initial comparisons show good agreement between the two measurements inside the separatrix. Supported by US DoE Contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.

  10. High precision measurement of fuel density profiles in nuclear fusion plasmas

    NARCIS (Netherlands)

    Svensson, J.; von Hellermann, M.; Konig, R.

    2002-01-01

    This paper presents a method for deducing fuel density profiles of nuclear fusion plasmas in realtime during an experiment. A Multi Layer Perceptron (MLP) neural network is used to create a mapping between plasma radiation spectra and indirectly deduced hydrogen isotope densities. By combining

  11. Role of substituents on the reactivity and electron density profile of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 5. Role of substituents on the reactivity and electron density profile of diimine ligands: A density functional theory based study. Bhakti S Kulkarni Deepti Mishra Sourav Pal. Volume 125 Issue 5 September 2013 pp 1247-1258 ...

  12. ICRF power-deposition profiles and heating in monster sawtooth and peaked-density profile discharges in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Taroni, A.; Ellis, J.J.; Jacquinot, J.; Stuart, D.F.

    1989-01-01

    In this paper, we compare experimental results of electron and ion-heating in discharges that feature monster sawtooth with those in pellet-produced peaked-density profile discharges which were heated with ICRF. Also we carry out a comprehensive analysis of ICRF-heated peaked-density profile discharges by a transport code to simulate the evolution of JET discharges and to provide an insight into the improved heating and confinement found in these discharges. In this analysis, the ICRF power-deposition profile in the minority-heating scenario is computed by the ray-tracing code BRAYCO that self-consistently takes the finite antenna geometry, its radiation spectrum and the hot-plasma damping into account. The power delivered to ions and electrons is calculated based on Stix model. (author) 10 refs., 5 figs

  13. Transport simulations of a density limit in radiation-dominated tokamak discharges: profile effects

    International Nuclear Information System (INIS)

    Stotler, D.P.

    1988-01-01

    The density limit observed in tokamak experiments is thought to be due to a radiative collapse of the current channel. A transport code coupled with a magnetohydrodynamic (MHD) equilibrium routine is used to determine the detailed, self-consistent evolution of the plasma profiles in tokamak discharges with radiated power close to or equaling the input power. The present work is confined to Ohmic discharges in steady state. It is found that the shape of the density profile can have a significant impact on the variation of the maximum electron density with plasma current. Analytic calculations confirm this result

  14. Transport simulations of a density limit in radiation-dominated tokamak discharges: Profile effects

    International Nuclear Information System (INIS)

    Stotler, D.P.

    1988-06-01

    The density limit observed in tokamak experiments is thought to be due to a radiative collapse of the current channel. A transport code coupled with an MHD equilibrium routine is used to determine the detailed, self-consistent evolution of the plasma profiles in tokamak discharges with radiated power close to or equalling the input power. The present work is confined to ohmic discharges in steady state. It is found that the shape of the density profile can have a significant impact on the variation of the maximum electron density with plasma current. Analytic calculations confirm this result. 41 refs., 9 figs

  15. Experimental electron density profiles of the mid-latitude lower ionosphere and winter anomaly

    International Nuclear Information System (INIS)

    Rapoport, Z.Ts.; Sinel'nikov, V.M.

    1996-01-01

    Summarized measurements of high-latitude electron density profiles of N e lower ionosphere, obtained at M100B meteorological rockets by precision method of coherent frequencies during 1979-1990 at the Volgograd test site (φ = 48 deg 41' N; λ = 44 deg 21 E), are presented. The profiles obtained represent average values of electron density at various altitudes of lower ionosphere (h = 70-100 km) during night and day time hours in winter and non winter periods. Increased electron density values during daytime hours in winter are related to winter anomaly phenomenon. 36 refs.; 1 fig

  16. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.

    Science.gov (United States)

    Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  17. Electron density profiles in the background of LF absorption during Forbush-decrease and PSE

    International Nuclear Information System (INIS)

    Satori, G.

    1989-01-01

    Based on the simulation of different Forbush decrease and particle precipitation effects in the D region, electron density profiles in the mid-latitudes the ionospheric absorption of low frequency (LF) radio waves was determined. The absorption variations at different frequenceis are strongly affected by the shape of the electron density profile. A structure appears which sometimes resembles the letter S (in a sloping form). Both the height (around 70 to 72 km) and the depth of the local minimum in the electron density contribute to the computed absorption changes of various degree at different frequencies. In this way several observed special absorption events can be interpreted

  18. Polar observations of electron density distribution in the Earth’s magnetosphere. 2. Density profiles

    Directory of Open Access Journals (Sweden)

    H. Laakso

    2002-11-01

    Full Text Available Using spacecraft potential measurements of the Polar electric field experiment, we investigate electron density variations of key plasma regions within the magnetosphere, including the polar cap, cusp, trough, plasmapause, and auroral zone. The statistical results were presented in the first part of this study, and the present paper reports detailed structures revealed by individual satellite passes. The high-altitude (> 3 RE polar cap is generally one of the most tenuous regions in the magnetosphere, but surprisingly, the polar cap boundary does not appear as a steep density decline. At low altitudes (1 RE in summer, the polar densities are very high, several 100 cm-3 , and interestingly, the density peaks at the central polar cap. On the noonside of the polar cap, the cusp appears as a dense, 1–3° wide region. A typical cusp density above 4 RE distance is between several 10 cm-3 and a few 100 cm-3 . On some occasions the cusp is crossed multiple times in a single pass, simultaneously with the occurrence of IMF excursions, as the cusp can instantly shift its position under varying solar wind conditions, similar to the magnetopause. On the nightside, the auroral zone is not always detected as a simple density cavity. Cavities are observed but their locations, strengths, and sizes vary. Also, the electric field perturbations do not necessarily overlap with the cavities: there are cavities with no field disturbances, as well as electric field disturbances observed with no clear cavitation. In the inner magnetosphere, the density distributions clearly show that the plasmapause and trough densities are well correlated with geomagnetic activity. Data from individual orbits near noon and midnight demonstrate that at the beginning of geomagnetic disturbances, the retreat speed of the plasmapause can be one L-shell per hour, while during quiet intervals the plasmapause can expand anti-earthward at the same speed. For the trough region, it is found

  19. Influence of shrub cover vegetal and slope length on soil bulk density

    International Nuclear Information System (INIS)

    Bienes, R.; Jimenez, R.; Ruiz, M.; Garcia-Estringana, P.; Marques, M. J.

    2009-01-01

    In arid and semiarid environments of the Mediterranean climate, the shrub species play an important role in the revegetation of abandoned lands, which enables to control the soil losses, organic material and water. In this article are compared the results obtained under different revegetation in abandoned lands in the central area of Spain. In these revegetation has been used two native shrubs: A triplex halimus (Ah) and Retama sphaerocarpa (Rs), and were analyzed the influence of these revegetation in the contents of organic material of soil and apparent density in 5 years time after planting. As control, have been considered the pieces of ground with spontaneous vegetation abandoned in the same date that the shrubs revegetation. Atriplex halimus gives to the soil a covering capable to intercept a big amount of water drops absorbing a great amount part of the kinetic energy of the rain, while provides a microclimates as a result of be able to soften the wind, the temperature and the evaporation-transpiration, which makes it efficient to control the erosion and the desertification (Le Houerou, 2000). Retama sphaerocarpa was chosen because it is a native shrub very characteristic, and, due to its symbiosis with the Bradyrhizobium, enriches the soil in nitrogen, which is taken by the nitrophilous species enhancing the spontaneous vegetal covering. (Author) 9 refs.

  20. Semi-analytical model of laser resonance absorption in plasmas with a parabolic density profile

    International Nuclear Information System (INIS)

    Pestehe, S J; Mohammadnejad, M

    2010-01-01

    Analytical expressions for mode conversion and resonance absorption of electromagnetic waves in inhomogeneous, unmagnetized plasmas are required for laboratory and simulation studies. Although most of the analyses of this problem have concentrated on the linear plasma density profile, there are a few research works that deal with different plasma density profiles including the parabolic profile. Almost none of them could give clear analytical formulae for the electric and magnetic components of the electromagnetic field propagating through inhomogeneous plasmas. In this paper, we have considered the resonant absorption of laser light near the critical density of plasmas with parabolic electron density profiles followed by a uniform over-dense region and have obtained expressions for the electric and magnetic vectors of laser light propagating through the plasma. An estimation of the fractional absorption of laser energy has also been carried out. It has been shown that, in contrast to the linear density profile, the energy absorption depends explicitly on the value of collision frequency as well as on a new parameter, N, called the over-dense density order.

  1. Density and impurity profile behaviours in HL-2A tokamak with different gas fuelling methods

    International Nuclear Information System (INIS)

    Zheng-Ying, Cui; Yan, Zhou; Wei, Li; Bei-Bin, Feng; Ping, Sun; Chun-Feng, Dong; Yi, Liu; Wen-Yu, Hong; Qing-Wei, Yang; Xuan-Tong, Ding; Xu-Ru, Duan

    2009-01-01

    The electron density profile peaking and the impurity accumulation in the HL-2A tokamak plasma are observed when three kinds of fuelling methods are separately used at different fuelling particle locations. The density profile becomes more peaked when the line-averaged electron density approaches the Greenwald density limit n G and, consequently, impurity accumulation is often observed. A linear increase regime in the density range n e G and a saturation regime in n e > 0.6n G are obtained. There is no significant difference in achieved density peaking factor f ne between the supersonic molecular beam injection (SMBI) and gas puffing into the plasma main chamber. However, the achieved f ne is relatively low, in particular, in the case of density below 0.7n G , when the working gas is puffed into the divertor chamber. A discharge with a density as high as 1.2n G , i.e. n e = 1.2n G , can be achieved by SMBI just after siliconization as a wall conditioning. The metallic impurities, such as iron and chromium, also increase remarkably when the impurity accumulation happens. The mechanism behind the density peaking and impurity accumulation is studied by investigating both the density peaking factor versus the effective collisionality and the radiation peaking versus density peaking. (fluids, plasmas and electric discharges)

  2. Quasi-quadrature interferometer for plasma density radial profile measurements

    International Nuclear Information System (INIS)

    Lowenthal, D.D.; Hoffman, A.L.

    1979-01-01

    A cw Mach Zehnder multichannel interferometer has been developed to measure time-dependent fractional fringe shifts with an accuracy of one-fortieth fringe. The design is quasi-quadrature in that known phase shifts, introduced in the reference beam, are time multiplexed with the normal reference beam. This technique requires only one detector per interferometer channel as compared to two detectors for most quadrature designs. The quadrature information makes the sense of density changes unambiguous, it automatically calibrates the instrument during the plasma event, and it makes fringe shift measurements virtually independent of fringe contrast fluctuations caused by plasma refractive and/or absorptive effects. The interferometer optical design is novel in that the electro-optic crystal used to introduce the 90 0 phase shifts is located in the common 2-mm-diam HeNe entrance beam to the interferometer, by exploiting polarization techniques, rather than in the expanded 1--2-cm reference beam itself. This arrangement greatly reduces the size, cost, and high-voltage requirements for the phase modulating crystal

  3. Earth-mass haloes and the emergence of NFW density profiles

    Science.gov (United States)

    Angulo, Raul E.; Hahn, Oliver; Ludlow, Aaron D.; Bonoli, Silvia

    2017-11-01

    We simulate neutralino dark matter (χDM) haloes from their initial collapse, at ˜ earth mass, up to a few percent solar. Our results confirm that the density profiles of the first haloes are described by a ˜r-1.5 power law. As haloes grow in mass, their density profiles evolve significantly. In the central regions, they become shallower and reach on average ˜r-1, the asymptotic form of an NFW profile. Using non-cosmological controlled simulations, we observe that temporal variations in the gravitational potential caused by major mergers lead to a shallowing of the inner profile. This transformation is more significant for shallower initial profiles and for a higher number of merging systems. Depending on the merger details, the resulting profiles can be shallower or steeper than NFW in their inner regions. Interestingly, mergers have a much weaker effect when the profile is given by a broken power law with an inner slope of -1 (such as NFW or Hernquist profiles). This offers an explanation for the emergence of NFW-like profiles: after their initial collapse, r-1.5 χDM haloes suffer copious major mergers, which progressively shallows the profile. Once an NFW-like profile is established, subsequent merging does not change the profile anymore. This suggests that halo profiles are not universal but rather a combination of (1) the physics of the formation of the microhaloes and (2) their early merger history - both set by the properties of the dark matter particle - as well as (3) the resilience of NFW-like profiles to perturbations.

  4. Equatorial bottom and topside electron density profiles and comparison with IRI

    International Nuclear Information System (INIS)

    Reinisch, B.W.; Huang, X.; Conway, J.; Komjathy, A.

    2001-01-01

    A new technique of estimating the ionospheric topside profile from the information contained in the groundbased ionograms is described. The electron density profile above the F2 layer peak is approximated by an α-Chapman function with a constant scale height that is derived from the bottomside profile shape near the F2 peak. The scale height is obtained from the bottomside profile by representing the latter in terms of α-Chapman functions with scale heights H(h) that vary as a function of height. The scale height at the layer peak is then used for the topside profile. The bottomside and topside electron contents is obtained by integrating the electron density from h=0 to hmF2 and from hmF2 to ∞. The ionogram derived electron content values for Jicamarca in 1998 are compared with the respective IRI values. (author)

  5. Numerical analysis of the optimal length and profile of a linearly chirped fiber Bragg grating for dispersion compensation.

    Science.gov (United States)

    Thibault, S; Lauzon, J; Cliche, J F; Martin, J; Duguay, M A; Têtu, M

    1995-03-15

    We propose a theoretical investigation of the length and coupling profile of a linearly chirped fiber Bragg grating for maximum dispersion compensation in a repeaterless optical communication system. The system consists of 100 km of standard optical fiber in which a 1550-nm signal, directly modulated at 2.5 Gbits/s, is launched. We discuss the results obtained with 6-, 4.33-, and 1-cm-long linearly chirped fiber Bragg gratings having Gaussian and uniform coupling profiles. We numerically show that a 4.33-cm-long chirped fiber Bragg grating having a uniform coupling profile is capable of compensating efficiently for the dispersion of our optical communication system.

  6. Confinement properties of JET plasmas with different temperature and density profiles

    International Nuclear Information System (INIS)

    Watkins, M.L.; Balet, B.; Bhatnagar, V.P.

    1989-01-01

    The confinement properties of plasmas with substantially different temperature and density profiles have been analysed. The effects of fast particles and energy pedestals on the overall confinement of plasma energy in limiter (L-mode) and X-point (L- and H-modes) discharges heated by NBI or ICRF or both are determined. The importance of the bootstrap current when such energy pedestals are formed is noted. Using sets of consistent experimental data, including ion temperature profile measurements, the local transport properties are compared in the L- and H-phases of a single null X-point medium density NBI heated discharge, the ''enhanced'' confinement phase of a limiter high density pellet-fuelled and ICRF heated discharge, the hot-ion phase of a double null X-point low density NBI heated discharge and the hot-ion and H-phases of a double null X-point low density high temperature NBI heated discharge. (author)

  7. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Congsen [LaserLaB Amsterdam, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Department of Physics, National University of Defense Technology, Changsha 410073 (China); Janssen, Maurice H. M. [LaserLaB Amsterdam, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  8. The effect of the cation alkyl chain length on density and diffusion in dialkylpyrrolidinium bis(mandelato)borate ionic liquids.

    Science.gov (United States)

    Filippov, Andrei; Taher, Mamoun; Shah, Faiz Ullah; Glavatskih, Sergei; Antzutkin, Oleg N

    2014-12-28

    The physicochemical properties of ionic liquids are strongly affected by the selective combination of the cations and anions comprising the ionic liquid. In particular, the length of the alkyl chains of ions has a clear influence on the ionic liquid's performance. In this paper, we study the self-diffusion of ions in a series of halogen-free boron-based ionic liquids (hf-BILs) containing bis(mandelato)borate anions and dialkylpyrrolidinium cations with long alkyl chains CnH2n+1 with n from 4 to 14 within a temperature range of 293-373 K. It was found that the hf-BILs with n = 4-7 have very similar diffusion coefficients, while hf-BILs with n = 10-14 exhibit two liquid sub-phases in almost the entire temperature range studied (293-353 K). Both liquid sub-phases differ in their diffusion coefficients, while values of the slower diffusion coefficients are close to those of hf-BILs with shorter alkyl chains. To explain the particular dependence of diffusion on the alkyl chain length, we examined the densities of the hf-BILs studied here. It was shown that the dependence of the density on the number of CH2 groups in long alkyl chains of cations can be accurately described using a "mosaic type" model, where regions of long alkyl chains of cations (named 'aliphatic' regions) and the residual chemical moieties in both cations and anions (named 'ionic' regions) give additive contributions. Changes in density due to an increase in temperature and the number of CH2 groups in the long alkyl chains of cations are determined predominantly by changes in the free volume of the 'ionic' regions, while 'aliphatic' regions are already highly compressed by van der Waals forces, which results in only infinitesimal changes in their free volumes with temperature.

  9. Non-power law behavior of the radial profile of phase-space density of halos

    International Nuclear Information System (INIS)

    Popolo, A. Del

    2011-01-01

    We study the pseudo phase-space density, ρ(r)/σ 3 (r), of ΛCDM dark matter halos with and without baryons (baryons+DM, and pure DM), by using the model introduced in Del Popolo (2009), which takes into account the effect of dynamical friction, ordered and random angular momentum, baryons adiabatic contraction and dark matter baryons interplay. We examine the radial dependence of ρ(r)/σ 3 (r) over 9 orders of magnitude in radius for structures on galactic and cluster of galaxies scales. We find that ρ(r)/σ 3 (r) is approximately a power-law only in the range of halo radius resolved by current simulations (down to 0.1% of the virial radius) while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. The non-power-law behavior is more evident for halos constituted both of dark matter and baryons while halos constituted just of dark matter and with angular momentum chosen to reproduce a Navarro-Frenk-White (NFW) density profile, are characterized by an approximately power-law behavior. The results of the present paper lead to conclude that density profiles of the NFW type are compatible with a power-law behavior of ρ(r)/σ 3 (r), while those flattening to the halo center, like those found in Del Popolo (2009) or the Einasto profile, or the Burkert profile, cannot produce radial profile of the pseudo-phase-space density that are power-laws at all radii. The results argue against universality of the pseudo phase-space density and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in Del Popolo (2009)

  10. Comparative study of the electron density profiles in the compact torus plasma merging experiments

    International Nuclear Information System (INIS)

    Hayashiya, Hitoshi; Asaka, Takeo; Katsurai, Makoto

    2003-01-01

    Following two previous papers on the comparative studies of the electron density distributions for a single compact torus (CT) and a spherical tokamak (ST), and for the a single ST and a merged ST, a comparative study on the dynamics of the electron density profile and after the CT and ST plasma merging process was performed. The sharpness of the peak in the electron density profile around the mid-plane just after the merging of CT with a low safety factor (q value) such as RFP or spheromak is found to be related to the speed of the magnetic axis during the plasma merging process. It is also found that the electron density gradient near the plasma edge in a high q ST is larger than that of a low q CT. High q ST is found to be provided with the magnetic structure which is able to sustain a large thermal pressure by a strong j x B force. Despite these differences in the electron density profile between CT and ST during merging, the confinement characteristics evaluated from the number of electrons confined within the magnetic separatrix after the completion of the merging is almost similar between in the merging CT and in the merging ST. For all configurations, the electron density profiles after the completion of the merging are analogous to those of the corresponding single configuration produced without the merging process. (author)

  11. Real-time control of the plasma density profile on ASDEX upgrade

    International Nuclear Information System (INIS)

    Mlynek, Alexander

    2010-01-01

    The tokamak concept currently is the most promising approach to future power generation by controlled thermonuclear fusion. The spatial distribution of the particle density in the toroidally confined fusion plasma is of particular importance. This thesis work therefore focuses on the question as to what extent the shape of the density profile can be actively controlled by a feedback loop in the fusion experiment ASDEX Upgrade. There are basically two essential requirements for such feedback control of the density profile, which has been experimentally demonstrated within the scope of this thesis work: On the one hand, for this purpose the density profile must be continuously calculated under real-time constraints during a plasma discharge. The calculation of the density profile is based on the measurements of a sub-millimeter interferometer, which provides the line-integrated electron density along 5 chords through the plasma. Interferometric density measurements can suffer from counting errors by integer multiples of 2π when detecting the phase difference between a probing and a reference beam. As such measurement errors have severe impact on the reconstructed density profile, one major part of this work consists in the development of new readout electronics for the interferometer, which allows for detection of such measurement errors in real-time with high reliability. A further part of this work is the design of a computer algorithm which reconstructs the spatial distribution of the plasma density from the line-integrated measurements. This algorithm has to be implemented on a computer which communicates the measured data to other computers in real-time, especially to the tokamak control system. On the other hand, a second fundamental requirement for the successful implementation of a feedback controller is the identification of at least one actuator which enables a modification of the density profile. Here, electron cyclotron resonance heating (ECRH) has been

  12. Electron density profile determination by means of laser blow-off injected neutral beam

    International Nuclear Information System (INIS)

    Kocsis, G.; Bakos, J.S.; Ignacz, P.N.; Kardon, B.; Koltai, L.; Veres, G.

    1992-01-01

    This paper is devoted to the experimental and theoretical studies of the determination of the electron density profiles by means of laser blow-off neutrals. For the determination of the density profile the time and spatial distributions of the spectral line radiation intensity of the injected neutrals are used. The method is compared to other previously proposed methods and the advantages and disadvantages of the different methods are discussed. The result of the comparison is that our method gives the most reliable result with the highest temporal resolution for the density profile of the edge plasma. The only disadvantage is the need of careful calibration of the sensitivity of the spatial channels. The advantage is the ability of the method as a standard diagnostic. (orig.)

  13. Density profile effects on confinement and MHD stability of currentless NBI plasmas in Heliotron E

    International Nuclear Information System (INIS)

    Sudo, Shigeru; Zushi, Hideki; Kondo, Katsumi

    1993-01-01

    Density profile effects on confinement and MHD stability of currentless NBI plasmas in Heliotron E are studied. The peaked density profile produced by pellet injection increases the stored energy by 20-30% compared to the gas puffed plasmas which obey the empirical stellarator/heliotron scaling in a moderate density range. In contrast to confinement, the peaked pressure profile tends to destabilize the plasma. By limiter insertion, MHD instability occurs (seems to locate near ι/2π=1) even in case of low β (β 0 ≤1%, where β 0 is the central β value) plasmas. On the other hand, the mode of m/n=3/2 at ι/2π=2/3, seems to be a key parameter to the major MHD instability in case of high β (β 0 ≥2%) plasmas. (author)

  14. ICRF power-deposition profiles, heating and confinement of monster sawtooth and peaked-density profile discharges in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Taroni, A.; Ellis, J.J.; Jacquinot, J.; Start, D.F.H.

    1989-01-01

    The ion cyclotron resonance heating of monster sawtooth (period greater than the energy confinement time) and pellet-fueled peaked-density profiles in limiter discharges of JET Tokamak are studied. The monster sawtooth is a characteristic JET regime which is related to fast ions generated during the minority ion heating. In the ICRF heating of peaked-density profile discharges, we find typically the T i0 is higher roughly by a factor of 2 and T e0 roughly by 35% at a fixed P TOT /n e0 when compared to non-peaked profile cases. Here, T e0 and T i0 are central electron and ion temperatures, respectively, n e0 is the central electron density and P TOT is the total input power. The ion heating is improved in the pellet case, in part, due to a higher collisionality between the background ions and the energetic minority, but more significantly by a reduction of local ion energy transport in the central region. The transport-code simulation of these discharges reveals that there is a reduction of both χ e and χ i in the central region of the plasma in the ICRF heated peaked-profile discharges where χ e and χ i are the electron and ion heat conductivities, respectively. The improvement of confinement is not explained quantitatively by any of the existing η i -driven turbulence theories as the n i parameter (η i = d ln T i /d ln n i where T i is the ion temperature and n i is the ion density), instead of dropping below the critical value, remains above it for most of the duration of the improved confinement phase. The physical mechanism(s) that plays a role in this improvement is not yet clear. (author)

  15. Effects of Polyethylene Glycol Spacer Length and Ligand Density on Folate Receptor Targeting of Liposomal Doxorubicin In Vitro

    Directory of Open Access Journals (Sweden)

    Kumi Kawano

    2011-01-01

    Full Text Available The folate receptor is an attractive target for selective tumor delivery of liposomal doxorubicin (DXR because it is abundantly expressed in a large percentage of tumors. This study examined the effect of polyethylene glycol (PEG spacer length and folate ligand density on the targeting ability of folate-modified liposomes. Liposomes were modified with folate-derivatized PEG-distearoylphosphatidylethanolamine with PEG molecular weights of 2000, 3400, or 5000. The association of DXR-loaded liposomes with KB cells, which overexpress the folate receptor, was evaluated by flow cytometry at various ratios of folate modification. A low ratio of folate modification with a sufficiently long PEG chain showed the highest folate receptor-mediated association with the cells, but did not show the highest in vitro cytotoxicity. DXR release from folate-modified liposomes in endosomes might be different. These findings will be useful for designing folate receptor-targeting carriers.

  16. Avalanche consumption and the stationary regions of the density profile around the droplets in the theory of condensation

    OpenAIRE

    Kurasov, V.

    1998-01-01

    The contradiction between the stationary aproach to the density profile and the avalanche character of the metastable phase consumption is investigated. The exact solution for the metastable phase profile is obtained. The reconsidered value for the special parameter responsible for the hierarchy in the structure of the density profile around the droplet is presented.

  17. The diverse density profiles of galaxy clusters with self-interacting dark matter plus baryons

    Science.gov (United States)

    Robertson, Andrew; Massey, Richard; Eke, Vincent; Tulin, Sean; Yu, Hai-Bo; Bahé, Yannick; Barnes, David J.; Bower, Richard G.; Crain, Robert A.; Dalla Vecchia, Claudio; Kay, Scott T.; Schaller, Matthieu; Schaye, Joop

    2018-05-01

    We present the first simulated galaxy clusters (M200 > 1014 M⊙) with both self-interacting dark matter (SIDM) and baryonic physics. They exhibit a greater diversity in both dark matter and stellar density profiles than their counterparts in simulations with collisionless dark matter (CDM), which is generated by the complex interplay between dark matter self-interactions and baryonic physics. Despite variations in formation history, we demonstrate that analytical Jeans modelling predicts the SIDM density profiles remarkably well, and the diverse properties of the haloes can be understood in terms of their different final baryon distributions.

  18. Kinetic theory of neutrals in a bounded plasma slab with inhomogeneous temperature and density profile

    International Nuclear Information System (INIS)

    Tendler, M.B.; Agren, O.

    1982-01-01

    The transport of neutral hydrogen atoms in a hydrogen plasma slab is considered. The influence of the inhomogeneous ion temperature profile on the neutral density and distribution is discussed as well as the influence of the neutral edge energy, charge exchange, and ionization rates. The analytical solutions for the neutral density and distribution function are obtained and compared with the numerical results. The effects due to the inhomogeneous temperature profile are discussed. The recommen-dations from the viewpoint of the effects mentioned previously for the purposes of the cold-gas mantle system have been given

  19. A Numerical Fit of Analytical to Simulated Density Profiles in Dark Matter Haloes

    Science.gov (United States)

    Caimmi, R.; Marmo, C.; Valentinuzzi, T.

    2005-06-01

    Analytical and geometrical properties of generalized power-law (GPL) density profiles are investigated in detail. In particular, a one-to-one correspondence is found between mathematical parameters (a scaling radius, r_0, a scaling density, rho_0, and three exponents, alpha, beta, gamma), and geometrical parameters (the coordinates of the intersection of the asymptotes, x_C, y_C, and three vertical intercepts, b, b_beta, b_gamma, related to the curve and the asymptotes, respectively): (r_0,rho_0,alpha,beta,gamma) (x_C,y_C,b,b_beta,b_gamma). Then GPL density profiles are compared with simulated dark haloes (SDH) density profiles, and nonlinear least-absolute values and least-squares fits involving the above mentioned five parameters (RFSM5 method) are prescribed. More specifically, the sum of absolute values or squares of absolute logarithmic residuals, R_i= log rhoSDH(r_i)-log rhoGPL(r_i), is evaluated on 10^5 points making a 5- dimension hypergrid, through a few iterations. The size is progressively reduced around a fiducial minimum, and superpositions on nodes of earlier hypergrids are avoided. An application is made to a sample of 17 SDHs on the scale of cluster of galaxies, within a flat LambdaCDM cosmological model (Rasia et al. 2004). In dealing with the mean SDH density profile, a virial radius, rvir, averaged over the whole sample, is assigned, which allows the calculation of the remaining parameters. Using a RFSM5 method provides a better fit with respect to other methods. The geometrical parameters, averaged over the whole sample of best fitting GPL density profiles, yield (alpha,beta,gamma) approx(0.6,3.1,1.0), to be compared with (alpha,beta,gamma)=(1,3,1), i.e. the NFW density profile (Navarro et al. 1995, 1996, 1997), (alpha,beta,gamma)=(1.5,3,1.5) (Moore et al. 1998, 1999), (alpha,beta,gamma)=(1,2.5,1) (Rasia et al. 2004); and, in addition, gamma approx 1.5 (Hiotelis 2003), deduced from the application of a RFSM5 method, but using a different

  20. Axial Length Variation Impacts on Superficial Retinal Vessel Density and Foveal Avascular Zone Area Measurements Using Optical Coherence Tomography Angiography.

    Science.gov (United States)

    Sampson, Danuta M; Gong, Peijun; An, Di; Menghini, Moreno; Hansen, Alex; Mackey, David A; Sampson, David D; Chen, Fred K

    2017-06-01

    To evaluate the impact of image magnification correction on superficial retinal vessel density (SRVD) and foveal avascular zone area (FAZA) measurements using optical coherence tomography angiography (OCTA). Participants with healthy retinas were recruited for ocular biometry, refraction, and RTVue XR Avanti OCTA imaging with the 3 × 3-mm protocol. The foveal and parafoveal SRVD and FAZA were quantified with custom software before and after correction for magnification error using the Littman and the modified Bennett formulae. Relative changes between corrected and uncorrected SRVD and FAZA were calculated. Forty subjects were enrolled and the median (range) age of the participants was 30 (18-74) years. The mean (range) spherical equivalent refractive error was -1.65 (-8.00 to +4.88) diopters and mean (range) axial length was 24.42 mm (21.27-28.85). Images from 13 eyes were excluded due to poor image quality leaving 67 for analysis. Relative changes in foveal and parafoveal SRVD and FAZA after correction ranged from -20% to +10%, -3% to +2%, and -20% to +51%, respectively. Image size correction in measurements of foveal SRVD and FAZA was greater than 5% in 51% and 74% of eyes, respectively. In contrast, 100% of eyes had less than 5% correction in measurements of parafoveal SRVD. Ocular biometry should be performed with OCTA to correct image magnification error induced by axial length variation. We advise caution when interpreting interocular and interindividual comparisons of SRVD and FAZA derived from OCTA without image size correction.

  1. Radiation power profiles and density limit with a divertor in the W7-AS stellarator

    International Nuclear Information System (INIS)

    Giannone, L.; Burhenn, R.; McCormick, K.; Brakel, R.; Feng, Y.; Grigull, P.; Igitkhanov, Y.

    2002-01-01

    The addition of a divertor into the W7-AS stellarator has allowed access to a high density regime where the radiation profiles reach a steady state. In earlier limiter discharges, the plasma suffered a radiative collapse at high densities. In contrast to limiter experiments, where the impurity confinement time measured by Al laser blow-off increased with increasing line integrated density, in divertor discharges, above a density threshold, the impurity confinement time decreased with increasing line integrated density. The observation that the divertor plasma radiates mainly at the plasma edge rather than the plasma centre is a further indication that changes to the impurity transport coefficients at these high densities are the basis for the achievement of steady state discharges in the divertor configuration of W7-AS. The maximum line integrated density reached with a divertor is compared to that reached with a limiter. The previously derived scaling law for the density limit with a limiter shows that the achieved densities do not exceed those predicted when the higher deposited power is taken into account. In a divertor the radiated power is located at the plasma edge and increasing the density, cooling the plasma edge and radiating sufficient power to cause plasma detachment determines the density limit. (author)

  2. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak

    International Nuclear Information System (INIS)

    Stefanikova, E.; Peterka, M.; Bohm, P.; Bilkova, P.; Aftanas, M.; Urban, J.; Hron, M.; Panek, R.; Sos, M.

    2016-01-01

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence on the actual magnetic configuration.

  3. Real-time evaluation of electron and current density profile parameters on TEXTOR

    International Nuclear Information System (INIS)

    Bruessau, W.D.; Soltwisch, H.

    1985-08-01

    The shapes of electron and current density profiles are monitored in real-time mode in order to get rapid qualitative information on the development of a TEXTOR tokamak plasma. The profiles are described by form parameters which relate to the signals of a 9-channel FIR-polari/interferometer in simple mathematical formulae. These profile parameters are obtained by real-time conversion of measured quantities for display on a storage oscilloscope or on a chart recorder. The application of the parameters is demonstrated in some examples. (orig.)

  4. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Stefanikova, E. [Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 180 00 Prague (Czech Republic); Division of Fusion Plasma Physics, KTH Royal Institute of Technology, SE-10691 Stockholm (Sweden); Peterka, M. [Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 180 00 Prague (Czech Republic); MFF Charles University, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Bohm, P., E-mail: bohm@ipp.cas.cz; Bilkova, P.; Aftanas, M.; Urban, J.; Hron, M.; Panek, R. [Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 180 00 Prague (Czech Republic); Sos, M. [Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 180 00 Prague (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic)

    2016-11-15

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence on the actual magnetic configuration.

  5. Psychological Profiles in the Prediction of Leukocyte Telomere Length in Healthy Individuals.

    Directory of Open Access Journals (Sweden)

    Louisia Starnino

    Full Text Available Shorter telomere length (TL may signal premature cellular aging and increased risk for disease. While depression and psychosocial stress have been associated with shorter telomeres, other psychological risk factors for cardiovascular disease have received less attention.To evaluate the association between TL and psychological risk factors (symptoms of anxiety and depression, hostility and defensiveness traits for heart disease, and to examine whether chronological age and sex moderate the associations observed.132 healthy men and women (Mage = 45.34 years completed the Marlowe-Crowne Social Desirability Scale, the Beck Depression Inventory II, The Beck Anxiety Inventory and the Cook-Medley Hostility Scale. Relative TL was measured by quantitative polymerase chain reaction (PCR of total genomic DNA samples. A series of hierarchical linear regressions were performed controlling for pertinent covariates.Shorter TL was observed among individuals high in defensiveness (β = -.221 and depressive symptoms (β = -.213, as well as in those with less hostility (β =.256 and anxiety (β =.220(all Ps<.05. Psychological variables explained 19% of the variance over and above that explained by covariates (age, sex, exercise, alcohol consumption, systemic inflammation, and 24-hr mean arterial pressure. Age moderated the relation between TL and defensiveness (β =.179, p =.03. Sex did not influence any of the relations.Telomere length is associated with psychological burden though the direction of effect differs depending on the psychological variables under study. Further research is needed to determine the reasons for and implications of these seemingly contradictory findings.

  6. Fast electron current density profile and diffusion studies during LHCD in PBX-M

    International Nuclear Information System (INIS)

    Jones, S.E.; Kesner, J.; Luckhardt, S.; Paoletti, F.

    1993-08-01

    Successful current profile control experiments using lower hybrid current drive (LCHD) clearly require knowledge of (1) the location of the driven fast electrons and (2) the ability to maintain that location from spreading due to radial diffusion. These issues can be addressed by examining the data from the hard x-ray camera on PBX-M, a unique diagnostic producing two-dimensional, time resolved tangential images of fast electron bremsstrahlung. Using modeling, these line-of-sight images are inverted to extract a radial fast electron current density profile. We note that ''hollow'' profiles have been observed, indicative of off-axis current drive. These profiles can then be used to calculate an upper bound for an effective fast electron diffusion constant: assuming an extremely radially narrow lower hybrid absorption profile and a transport model based on Rax and Moreau, a model fast electron current density profile is calculated and compared to the experimentally derived profile. The model diffusion constant is adjusted until a good match is found. Applied to steady-state quiescent modes on PBX-M, we obtain an upper limit for an effective diffusion constant of about D*=1.1 m 2 /sec

  7. On the contact values of the density profiles in an electric double layer using density functional theory

    Directory of Open Access Journals (Sweden)

    L.B. Bhuiyan

    2012-06-01

    Full Text Available A recently proposed, local second contact value theorem [Henderson D., Boda D., J. Electroanal. Chem., 2005, Vol. 582, 16] for the charge profile of an electric double layer is used in conjunction with existing Monte Carlo data from the literature to assess the contact behavior of the electrode-ion distributions predicted by the density functional theory. The results for the contact values of the co- and counterion distributions and their product are obtained for the symmetric valency, restricted primitive model planar double layer for a range of electrolyte concentrations and temperatures. Overall the theoretical results satisfy the second contact value theorem reasonably well the agreement with the simulations being semi-quantitative or better. The product of the co- and counterion contact values as a function of the electrode surface charge density is qualitative with the simulations with increasing deviations at higher concentrations.

  8. Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil.

    Science.gov (United States)

    Uncu, Ali Tevfik; Uncu, Ayse Ozgur; Frary, Anne; Doganlar, Sami

    2017-04-15

    The aim of this study was to compare the performance of a DNA-barcode assay with fatty acid profile analysis to authenticate the botanical origin of olive oil. To achieve this aim, we performed a PCR-capillary electrophoresis (PCR-CE) approach on olive oil: seed oil blends using the plastid trnL (UAA) intron barcode. In parallel to genomic analysis, we subjected the samples to gas chromatography analysis of fatty acid composition. While the PCR-CE assay proved equally efficient as gas chromatography analysis in detecting adulteration with soybean, palm, rapeseed, sunflower, sesame, cottonseed and peanut oils, it was superior to the widely utilized analytical chemistry approach in revealing the adulterant species and detecting small quantities of corn and safflower oils in olive oil. Moreover, the DNA-based test correctly identified all tested olive oil: hazelnut oil blends whereas it was not feasible to detect hazelnut oil adulteration through fatty acid profile analysis. Thus, the present research has shown the feasibility of a PCR-CE barcode assay to detect adulteration in olive oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    NARCIS (Netherlands)

    Meng, C.; Janssen, M.H.M.

    2015-01-01

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the

  10. Experimental profile evolution of a high-density field-reversed configuration

    International Nuclear Information System (INIS)

    Ruden, E. L.; Zhang, Shouyin; Intrator, T. P.; Wurden, G. A.

    2006-01-01

    A field-reversed configuration (FRC) gains angular momentum over time, eventually resulting in an n=2 rotational instability (invariant under rotation by π) terminating confinement. To study this, a laser interferometer probes the time history of line integrated plasma density along eight chords of the high-density (∼10 17 cm -3 ) field-reversed configuration experiment with a liner. Abel and tomographic inversions provide density profiles during the FRC's azimuthally symmetric phase, and over a period when the rotational mode has saturated and rotates with a roughly fixed profile, respectively. During the latter part of the symmetric phase, the FRC approximates a magnetohydrodynamic (MHD) equilibrium, allowing the axial magnetic-field profile to be calculated from pressure balance. Basic FRC properties such as temperature and poloidal flux are then inferred. The subsequent two-dimensional n=2 density profiles provide angular momentum information needed to set bounds on prior values of the stability relevant parameter α (rotational to ion diamagnetic drift frequency ratio), in addition to a view of plasma kinematics useful for benchmarking plasma models of higher order than MHD

  11. Novel analysis technique for measuring edge density fluctuation profiles with reflectometry in the Large Helical Device

    Science.gov (United States)

    Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.

    2017-07-01

    A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.

  12. Magnetically filtered Faraday probe for measuring the ion current density profile of a Hall thruster

    International Nuclear Information System (INIS)

    Rovey, Joshua L.; Walker, Mitchell L.R.; Gallimore, Alec D.; Peterson, Peter Y.

    2006-01-01

    The ability of a magnetically filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4x10 -4 Pa Xe (3.3x10 -6 Torr Xe) to 1.1x10 -3 Pa Xe (8.4x10 -6 Torr Xe) in order to study the ability of the Faraday probe designs to filter out CEX ions. Detailed examination of the results shows that the nude probe measures a greater ion current density profile than both the MFFP and BFP over the range of angular positions investigated for each operating condition. The differences between the current density profiles obtained by each probe are attributed to the ion filtering systems employed. Analysis of the results shows that the MFFP, operating at a +5 A solenoid current, provides the best agreement with flight-test data and across operating pressures

  13. Affinity proteomic profiling of plasma for proteins associated to area-based mammographic breast density.

    Science.gov (United States)

    Byström, Sanna; Eklund, Martin; Hong, Mun-Gwan; Fredolini, Claudia; Eriksson, Mikael; Czene, Kamila; Hall, Per; Schwenk, Jochen M; Gabrielson, Marike

    2018-02-14

    Mammographic breast density is one of the strongest risk factors for breast cancer, but molecular understanding of how breast density relates to cancer risk is less complete. Studies of proteins in blood plasma, possibly associated with mammographic density, are well-suited as these allow large-scale analyses and might shed light on the association between breast cancer and breast density. Plasma samples from 1329 women in the Swedish KARMA project, without prior history of breast cancer, were profiled with antibody suspension bead array (SBA) assays. Two sample sets comprising 729 and 600 women were screened by two different SBAs targeting a total number of 357 proteins. Protein targets were selected through searching the literature, for either being related to breast cancer or for being linked to the extracellular matrix. Association between proteins and absolute area-based breast density (AD) was assessed by quantile regression, adjusting for age and body mass index (BMI). Plasma profiling revealed linear association between 20 proteins and AD, concordant in the two sets of samples (p density and processes of tissue homeostasis, DNA repair, cancer development and/or progression in breast cancer. Further validation and follow-up studies of the shortlisted protein candidates in independent cohorts will be needed to infer their role in breast density and its progression in premenopausal and postmenopausal women.

  14. Analytical solutions for the profile of two-dimensional droplets with finite-length precursor films

    Science.gov (United States)

    Perazzo, Carlos Alberto; Mac Intyre, J. R.; Gomba, J. M.

    2017-12-01

    By means of the lubrication approximation we obtain the full family of static bidimensional profiles of a liquid resting on a substrate under partial-wetting conditions imposed by a disjoining-conjoining pressure. We show that for a set of quite general disjoining-conjoining pressure potentials, the free surface can adopt only five nontrivial static patterns; in particular, we find solutions when the height goes to zero which describe satisfactorily the complete free surface for a finite amount of fluid deposited on a substrate. To test the extension of the applicability of our solutions, we compare them with those obtained when the lubrication approximations are not employed and under conditions where the lubrication hypothesis are not strictly valid, and also with axisymmetric solutions. For a given disjoining-conjoining potential, we report a new analytical solution that accounts for all the five possible solutions.

  15. Mars Global Surveyor Radio Science Electron Density Profiles: Interannual Variability and Implications for the Neutral Atmosphere

    Science.gov (United States)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2003-01-01

    The Mars Global Surveyor (MGS) Radio Science (RS) experiment employs an ultrastable oscillator aboard the spacecraft. The signal from the oscillator to Earth is refracted by the Martian ionosphere, allowing retrieval of electron density profiles versus radius and geopotential. The present analysis is carried out on five sets of occultation measurements: (1) four obtained near northern summer solstice (Ls = 74-116, near aphelion) at high northern latitudes (64.7-77.6N), and (2) one set of profiles approaching equinox conditions (Ls = 135- 146) at high southern latitudes (64.7-69.1S). Electron density profiles (95 to 200 km) are examined over a narrow range of solar zenith angles (76.5-86.9 degrees) for local true solar times of (1) 3-4 hours and (2) 12.1 hours. Variations spanning 1-Martian year are specifically examined in the Northern hemisphere.

  16. Comparison of the observed results of the electron density profiles with the IRI90

    International Nuclear Information System (INIS)

    Zhang Manlian; Radicella, S.M.; Dai Kailiang

    1996-01-01

    The daily and composite profiles and the thickness parameter of the electron density profiles are compared with the results of IRI90 for the stations of Ramey (15.8 deg. N, 292.9 deg. E), Wuchang (30.6 deg. N, 114.3 deg. E), Chongqing (29.5 deg. N, 106.4 deg. E) and Wrumchi (43.8 deg. N, 87.6 deg. E). It is found that the electron density profiles produced by IRI90, both with the old Standard B0 and the new Gulyaeva-B0 thickness parameter, are too thick below F2-peak compared with the observed results. It is also shown that the IRI90 results show a very poor agreement with the observed results for the intermediate (F1) layer of the ionosphere. (author). 1 ref., 4 figs,

  17. Electron density profile measurements from hydrogen line intensity ratio method in Versatile Experimental Spherical Torus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, YooSung; Shi, Yue-Jiang, E-mail: yjshi@snu.ac.kr; Yang, Jeong-hun; Kim, SeongCheol; Kim, Young-Gi; Dang, Jeong-Jeung; Yang, Seongmoo; Jo, Jungmin; Chung, Kyoung-Jae [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Oh, Soo-Ghee [Division of Energy Systems Research, Ajou University, Suwon 442-749 (Korea, Republic of); Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Center for Advanced Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2016-11-15

    Electron density profiles of versatile experiment spherical torus plasmas are measured by using a hydrogen line intensity ratio method. A fast-frame visible camera with appropriate bandpass filters is used to detect images of Balmer line intensities. The unique optical system makes it possible to take images of H{sub α} and H{sub β} radiation simultaneously, with only one camera. The frame rate is 1000 fps and the spatial resolution of the system is about 0.5 cm. One-dimensional local emissivity profiles have been obtained from the toroidal line of sight with viewing dumps. An initial result for the electron density profile is presented and is in reasonable agreement with values measured by a triple Langmuir probe.

  18. Measurements of density profile evolution during the stably-stratified filling of an open enclosure

    International Nuclear Information System (INIS)

    Tarawneh, Constantine M.; Homan, K.O.

    2008-01-01

    The stably-stratified filling of an open enclosure produces an interfacial gradient layer which is transported through the enclosure with the bulk flow. The evolution of this interfacial layer is strongly time-dependent and is driven by the nature of the interaction between the internal gravity waves and the inlet-driven interfacial shear. Measurements of density profile evolution have been completed for a rectangular enclosure with a single corner inlet and density variation produced by saline concentration. This system serves as a mass transfer analog to large-scale, thermally-stratified energy storage devices, preserving dynamic similitude in a laboratory-scale system. The experiments covered jet Reynolds numbers of 200-2200 and Froude numbers of 0.06-0.6 in an enclosure with a width 23 times the jet inlet height. The density profiles are seen to be strongly asymmetric and exhibit growth rates significantly different than due to simple one-dimensional molecular diffusion. In addition, shadowgraph and hydrogen bubble visualizations of the density and velocity fields in the gradient layer show the persistence of complex multi-dimensional flow structure even at relatively late stages of the filling process when the gradient layer has been transported well away from the enclosure inlet. The evolution of the vertical density profile has been compared quantitatively to a quasi one-dimensional model based upon empirical diffusivity coefficients

  19. A thermodynamic perturbation theory for the surface tension and ion density profile of a liquid metal

    International Nuclear Information System (INIS)

    Evans, R.; Kumaravadivel, R.

    1976-01-01

    A simple scheme for determining the ion density profile and the surface tension of a liquid metal is described. Assuming that the interaction between metallic pseudo-ions is of the form introduced by Evans, an approximate expression for the excess free energy of the system is derived using the thermodynamic perturbation theory of Weeks, Chandler and Anderson. This excess free energy is then minimized with respect to a parameter which specifies the ion density profile, and the surface tension is given directly. From a consideration of the dependence of the interionic forces on the electron density it is predicted that the ions should take up a very steep density profile at the liquid metal surface. This behaviour is contrasted with that to be expected for rare-gas fluids in which the interatomic forces are density-independent. The values of the surface tension calculated for liquid Na, K and Al from a simplified version of the theory are in reasonable agreement with experiment. (author)

  20. Analysis of Total Electron Content and Electron Density Profile during Different Geomagnetic Storms

    Science.gov (United States)

    Chapagain, N. P.; Rana, B.; Adhikari, B.

    2017-12-01

    Total Electron content (TEC) and electron density are the key parameters in the mitigation of ionospheric effects on radio communication system. Detail study of the TEC and electron density variations has been carried out during geomagnetic storms, with longitude and latitude, for four different locations: (13˚N -17˚N, 88˚E -98˚E), (30˚N-50˚N, 120˚W -95˚W), (29˚S-26˚S, 167˚W-163˚W,) and (60˚S-45˚S, 120˚W-105˚W) using the Gravity Recovery and Climate Experiment (GRACE) satellite observations. In order to find the geomagnetic activity, the solar wind parameters such as north-south component of inter planetary magnetic field (Bz), plasma drift velocity (Vsw), flow pressure (nPa), AE, Dst and Kp indices were obtained from Operating Mission as Nodes on the Internet (OMNI) web system. The data for geomagnetic indices have been correlated with the TEC and electron density for four different events of geomagnetic storms on 6 April 2008, 27 March 2008, 4 September 2008, and 11 October 2008. The result illustrates that the observed TEC and electron density profile significantly vary with longitudes and latitudes. This study illustrates that the values of TEC and the vertical electron density profile are influenced by the solar wind parameters associated with solar activities. The peak values of electron density and TEC increase as the geomagnetic storms become stronger. Similarly, the electron density profile varies with altitudes, which peaks around the altitude range of about 250- 350 km, depending on the strength of geomagnetic storms. The results clearly show that the peak electron density shifted to higher altitude (from about 250 km to 350 km) as the geomagnetic disturbances becomes stronger.

  1. Interaction of the modulated electron beam with inhomogeneous plasma: plasma density profile deformation and langmuir waves excitation

    International Nuclear Information System (INIS)

    Anisimov, I.O.; Kelnyk, O.I.; Soroka, S.V.; Siversky, T.V.

    2005-01-01

    Nonlinear deformation of the initially linear plasma density profile due to the modulated electron beam is studied via computer simulation. In the initial time period the field slaves to the instantaneous profile of the plasma density. Langmuir waves excitation is suppressed by the density profile deformation. The character of the plasma density profile deformation for the late time period depends significantly on the plasma properties. Particularly, for plasma with hot electrons quasi-periodic generation of ion-acoustic pulses takes place in the vicinity of the initial point of plasma resonance

  2. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    Science.gov (United States)

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; Lehe, Remi; Mao, Hann-Shin; Mittelberger, Daniel E.; Steinke, Sven; Nakamura, Kei; van Tilborg, Jeroen; Schroeder, Carl; Esarey, Eric; Geddes, Cameron G. R.; Leemans, Wim

    2018-04-01

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically varied the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔEFWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-ramp width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.

  3. Topside electron density: comparison of experimental and IRI model profiles during low solar activity period

    International Nuclear Information System (INIS)

    Alazo, K.; Coisson, P.; Radicella, S.M.

    2003-01-01

    The pattern of the topside electron density profiles is not yet very well represented by the IRI model. In this work the topside profiles obtained by the ISIS-2 satellite during low solar activity conditions are compared to those modeled by IRI. We take the quantitative parameter ε to measure the deviation of the model from the observed profiles. The results showed that the IRI overestimation of the topside profile is higher for low dip latitudes. The dispersion of the epsilon values is from 40 to 140%, more in equinoctial months and some lower for Winter. The best modeling is about 20% to 40% in middle and high latitudes of the North Hemisphere. (author)

  4. Bayesian modeling of JET Li-BES for edge electron density profiles using Gaussian processes

    Science.gov (United States)

    Kwak, Sehyun; Svensson, Jakob; Brix, Mathias; Ghim, Young-Chul; JET Contributors Collaboration

    2015-11-01

    A Bayesian model for the JET lithium beam emission spectroscopy (Li-BES) system has been developed to infer edge electron density profiles. The 26 spatial channels measure emission profiles with ~15 ms temporal resolution and ~1 cm spatial resolution. The lithium I (2p-2s) line radiation in an emission spectrum is calculated using a multi-state model, which expresses collisions between the neutral lithium beam atoms and the plasma particles as a set of differential equations. The emission spectrum is described in the model including photon and electronic noise, spectral line shapes, interference filter curves, and relative calibrations. This spectral modeling gets rid of the need of separate background measurements for calculating the intensity of the line radiation. Gaussian processes are applied to model both emission spectrum and edge electron density profile, and the electron temperature to calculate all the rate coefficients is obtained from the JET high resolution Thomson scattering (HRTS) system. The posterior distributions of the edge electron density profile are explored via the numerical technique and the Markov chain Monte Carlo (MCMC) samplings. See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia.

  5. Root length densities of UK wheat and oilseed rape crops with implications for water capture and yield

    Science.gov (United States)

    White, Charlotte A.; Sylvester-Bradley, Roger; Berry, Peter M.

    2015-01-01

    Root length density (RLD) was measured to 1 m depth for 17 commercial crops of winter wheat (Triticum aestivum) and 40 crops of winter oilseed rape [Brassica napus; oilseed rape (OSR)] grown in the UK between 2004 and 2013. Taking the critical RLD (cRLD) for water capture as 1cm cm–3, RLDs appeared inadequate for full water capture on average below a depth of 0.32 m for winter wheat and below 0.45 m for OSR. These depths compare unfavourably (for wheat) with average depths of ‘full capture’ of 0.86 m and 0.48 m, respectively, determined for three wheat crops and one OSR crop studied in the 1970s and 1980s, and treated as references here. A simple model of water uptake and yield indicated that these shortfalls in wheat and OSR rooting compared with the reference data might be associated with shortfalls of up to 3.5 t ha–1 and 1.2 t ha–1, respectively, in grain yields under water-limited conditions, as increasingly occur through climate change. Coupled with decreased summer rainfall, poor rooting of modern arable crops could explain much of the yield stagnation that has been observed on UK farms since the 1990s. Methods of monitoring and improving rooting under commercial conditions are reviewed and discussed. PMID:25750427

  6. Dark matter and gas density profiles - a consequence of entropy bifurcation

    International Nuclear Information System (INIS)

    Leubner, M. P.

    2006-01-01

    The radial profiles of dark matter and hot plasma density distributions of relaxed galaxies and clusters were hitherto commonly fitted by empirical functions. On the other hand, the fundamental concept of non-extensive statistics accounts for long-range interactions and correlations present in gravitationally coupled ensembles and plasmas. We provide a theoretical link of non-extensive statistics to large scale astrophysical structures and show that the underlying tandem character of the entropy results in a bifurcation of the density distribution. A kinetic dark matter and thermodynamic gas branch turn out as natural consequence within the theory and is controlled by one single parameter, measuring physically the degree of correlations in the system. The theoretically derived density profiles are shown to represent accurately the characteristics of both, DM and hot plasma distributions, as observed or generated in N-body and hydro-simulations. The significant advantage over empirical fitting functions is provided by the physical content of the non-extensive approach wherefore it is proposed to model observed density profiles of astrophysical structures within the fundamental context of entropy generalization, accounting for nonlocality and long-range interactions in gravitationally coupled systems

  7. A two-dimensional regularization algorithm for density profile evaluation from broadband reflectometry

    International Nuclear Information System (INIS)

    Nunes, F.; Varela, P.; Silva, A.; Manso, M.; Santos, J.; Nunes, I.; Serra, F.; Kurzan, B.; Suttrop, W.

    1997-01-01

    Broadband reflectometry is a current technique that uses the round-trip group delays of reflected frequency-swept waves to measure density profiles of fusion plasmas. The main factor that may limit the accuracy of the reconstructed profiles is the interference of the probing waves with the plasma density fluctuations: plasma turbulence leads to random phase variations and magneto hydrodynamic activity produces mainly strong amplitude and phase modulations. Both effects cause the decrease, and eventually loss, of signal at some frequencies. Several data processing techniques can be applied to filter and/or interpolate noisy group delay data obtained from turbulent plasmas with a single frequency sweep. Here, we propose a more powerful algorithm performing two-dimensional regularization (in space and time) of data provided by multiple consecutive frequency sweeps, which leads to density profiles with improved accuracy. The new method is described and its application to simulated data corrupted by noise and missing data is considered. It is shown that the algorithm improves the identification of slowly varying plasma density perturbations by attenuating the effect of fast fluctuations and noise contained in experimental data. First results obtained with this method in ASDEX Upgrade tokamak are presented. copyright 1997 American Institute of Physics

  8. Quantum Hall states of atomic Bose gases: Density profiles in single-layer and multilayer geometries

    International Nuclear Information System (INIS)

    Cooper, N. R.; Lankvelt, F. J. M. van; Reijnders, J. W.; Schoutens, K.

    2005-01-01

    We describe the density profiles of confined atomic Bose gases in the high-rotation limit, in single-layer and multilayer geometries. We show that, in a local-density approximation, the density in a single layer shows a landscape of quantized steps due to the formation of incompressible liquids, which are analogous to fractional quantum Hall liquids for a two-dimensional electron gas in a strong magnetic field. In a multilayered setup we find different phases, depending on the strength of the interlayer tunneling t. We discuss the situation where a vortex lattice in the three-dimensional condensate (at large tunneling) undergoes quantum melting at a critical tunneling t c 1 . For tunneling well below t c 1 one expects weakly coupled or isolated layers, each exhibiting a landscape of quantum Hall liquids. After expansion, this gives a radial density distribution with characteristic features (cusps) that provide experimental signatures of the quantum Hall liquids

  9. Dwarf galaxy dark matter density profiles inferred from stellar and gas kinematics

    International Nuclear Information System (INIS)

    Adams, Joshua J.; Simon, Joshua D.; Fabricius, Maximilian H.; Bender, Ralf; Thomas, Jens; Van den Bosch, Remco C. E.; Van de Ven, Glenn; Barentine, John C.; Gebhardt, Karl; Hill, Gary J.; Murphy, Jeremy D.; Swaters, R. A.

    2014-01-01

    We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low-mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high-resolution integral-field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although two of the seven galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, γ, are generally robust. The mean and standard deviation of the logarithmic slope for the population are γ = 0.67 ± 0.10 when measured in the stars and γ = 0.58 ± 0.24 when measured in the gas. We also find that the halos are not under-concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. While such models do not yet have falsifiable predictions that we can measure, we investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. The central DM density slope weakly correlates with the abundance of α elements in the stellar population, anti-correlates with H I fraction, and anti-correlates with vertical orbital anisotropy. We expect, if anything, the opposite of these

  10. Measuring Density Profiles of Electrons and Heavy Particles in a Stable Axially Blown Arc

    Science.gov (United States)

    Carstensen, J.; Stoller, P.; Galletti, B.; Doiron, C. B.; Sokolov, A.

    2017-08-01

    Two-color spatial carrier wave interferometry employing pulsed 532- and 671-nm lasers is used to measure the electron-density and heavy-particle-density profiles in the stagnation point of a stable, axially blown arc in argon for currents of 50 to 200 A and stagnation point pressures of 0.2 to 16 bar. This technique takes advantage of the fact that the free-electron contribution to the refractive index depends strongly on the wavelength, while that of the heavy particles does not. The high spatial resolution achieved allows the hot core of the arc to be readily distinguished from the surrounding boundary layer. A custom-built test device is used to ensure flow conditions that lead to a stable, axisymmetric arc; this permits the reconstruction of the density and temperature profiles using a single projection (interferometric image) of the refractive-index distribution through the arc (at two wavelengths). The arc radius determined from the heavy-particle density decreases with increasing stagnation pressure and increases with the current. These measurements are in good agreement with a simple axially blown arc model taking into account Ohmic heating, radiation losses, and enthalpy flow for core temperatures of approximately 16 500 K. The measured electron density at the center of the arc agrees well with a prediction based on local thermodynamic equilibrium.

  11. Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space

    International Nuclear Information System (INIS)

    Soric, J C; Chen, P Y; Alù, A; Kerkhoff, A; Rainwater, D; Melin, K

    2013-01-01

    We present the first experimental realization and verification of a three-dimensional stand-alone mantle cloak designed to suppress the total scattering of a finite-length dielectric rod of moderate cross-section. Mantle cloaking has been proposed to realize ultralow-profile conformal covers that may achieve substantial camouflage, transparency and high-performance non-invasive near-field sensing. Here, we realize and verify a mantle cloak for radio-waves. We report an extensive campaign of far- and near-field free-space measurements demonstrating that conformal cloaks can indeed produce strong scattering suppression in all directions and over a relatively broad bandwidth of operation. (paper)

  12. Analytical solution for the mode conversion equations with steep exponential density profiles

    International Nuclear Information System (INIS)

    Alava, M.J.; Heikkinen, J.A.

    1992-01-01

    A general analytical solution for the converted power from the fast magnetosonic wave to an ion Bernstein wave in a magnetized plasma with an exponential steeply increasing density profile is given in the closed form. The solution covers both the conversion at the lower-hybrid resonance and the conversion through the density gradient for small parallel wave numbers. As an application, the conversion coefficients at the scrape-off layer plasma are estimated in the context of ion cyclotron heating of a tokamak plasma

  13. Electron density profile reconstruction by maximum entropy method with multichannel HCN laser interferometer system on SPAC VII

    International Nuclear Information System (INIS)

    Kubo, S.; Narihara, K.; Tomita, Y.; Hasegawa, M.; Tsuzuki, T.; Mohri, A.

    1988-01-01

    A multichannel HCN laser interferometer system has been developed to investigate the plasma electron confinement properties in SPAC VII device. Maximum entropy method is applied to reconstruct the electron density profile from measured line integrated data. Particle diffusion coefficient in the peripheral region of the REB ring core spherator was obtained from the evolution of the density profile. (author)

  14. Reproducibility of Macular Pigment Optical Density Measurement by Two-wave Length Auto-fluorescence in a Clinical Setting

    Science.gov (United States)

    You, Qi-Sheng; Bartsch, Dirk-Uwe G.; Espina, Mark; Alam, Mostafa; Camacho, Natalia; Mendoza, Nadia; Freeman, William

    2015-01-01

    Purpose Macular pigment, composed of lutein, zeaxanthin, and meso-zeaxanthin, is postulated to protect against age-related macular degeneration (AMD), likely due to filtering blue light and its antioxidant properties. Macular pigment optical density (MPOD) is reported to be associated with macular function evaluated by visual acuity and multifocal electroretinogram. Given the importance of macular pigment, reliable and accurate measurement methods are important. The main purpose of current study is to determine the reproducibility of MPOD measurement by two-wave length auto-fluorescence method using scanning laser ophthalmoscopy. Methods Sixty eight eyes of 39 persons were enrolled in the study, including 11 normal eyes, 16 eyes with wet AMD, 16 eyes with dry AMD, 11 eyes with macular edema due to diabetic mellitus, branch retinal vein occlusion or macular telangiectasia and 14 eyes with tractional maculopathy including vitreomacular traction, epiretinal membrane or macular hole. MPOD was measured with a two-wavelength (488 and 514 nm) auto-fluorescence method with the Spectralis HRA+OCT after pupil dilation. The measurement was repeated for each eye 10 minutes later. The Analysis of variance (ANOVA) and Bland-Altman plot were used to assess the reproducibility between the two measurements. Results The mean MPOD at eccentricities of 1° and 2° was 0.36±0.17 (range: 0.04–0.69) and 0.15±0.08(range: −0.03, 0.35) for the first measurement and 0.35±0.17 (range: 0.02, 0.68) and 0.15±0.08 (range: −0.01, 0.33) for the second measurement respectively. The difference between the two measurements was not statistically significant, and the Bland-Altman plot showed 7.4% and 5.9% points outside the 95% limits of agreement, indicating an overall excellent reproducibility. Similarly, there is no significant difference between the first and second measurements of MPOD volume within eccentricities of 1°, 2° and 6° radius, and the Bland-Altman plot showed 8.8%, 2.9% and

  15. Inter-ELM evolution of the edge current density profile on the ASDEX Upgrade tokamak

    International Nuclear Information System (INIS)

    Dunne, Michael G.

    2014-01-01

    The sudden decrease of plasma stored energy and subsequent power deposition on the first wall of a tokamak device due to edge localised modes (ELMs) is potentially detrimental to the success of a future fusion reactor. Understanding and control of ELMs is critical for the longevity of these devices and also to maximise their performance. The commonly accepted picture of ELMs posits a critical pressure gradient and current density in the plasma edge, above which coupled magnetohydrodynamic (MHD) peeling-ballooning modes are driven unstable. Much analysis has been presented in recent years on the spatial and temporal evolution of the edge pressure gradient. However, the edge current density has typically been overlooked due to the difficulties in measuring this quantity. In this thesis, a novel method of current density recovery is presented, using the equilibrium solver CLISTE to reconstruct a high resolution equilibrium utilising both external magnetic and internal edge kinetic data measured on the ASDEX Upgrade (AUG) tokamak. The evolution of the edge current density relative to an ELM crash is presented, showing that a resistive delay in the buildup of the current density is unlikely. An uncertainty analysis shows that the edge current density can be determined with an accuracy consistent with that of the kinetic data used. A comparison with neoclassical theory demonstrates excellent agreement between the current density determined by CLISTE and the calculated profiles. Three ELM mitigation regimes are investigated: Type-II ELMs, ELMs suppressed by external magnetic perturbations (MPs), and Nitrogen seeded ELMs. In the first two cases, the current density is found to decrease as mitigation onsets, indicating a more ballooning-like plasma behaviour. In the latter case, the flux surface averaged current density can decrease while the local current density increases, thus providing a mechanism to suppress both the peeling and ballooning modes.

  16. Inter-ELM evolution of the edge current density profile on the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, Michael G.

    2014-02-15

    The sudden decrease of plasma stored energy and subsequent power deposition on the first wall of a tokamak device due to edge localised modes (ELMs) is potentially detrimental to the success of a future fusion reactor. Understanding and control of ELMs is critical for the longevity of these devices and also to maximise their performance. The commonly accepted picture of ELMs posits a critical pressure gradient and current density in the plasma edge, above which coupled magnetohydrodynamic (MHD) peeling-ballooning modes are driven unstable. Much analysis has been presented in recent years on the spatial and temporal evolution of the edge pressure gradient. However, the edge current density has typically been overlooked due to the difficulties in measuring this quantity. In this thesis, a novel method of current density recovery is presented, using the equilibrium solver CLISTE to reconstruct a high resolution equilibrium utilising both external magnetic and internal edge kinetic data measured on the ASDEX Upgrade (AUG) tokamak. The evolution of the edge current density relative to an ELM crash is presented, showing that a resistive delay in the buildup of the current density is unlikely. An uncertainty analysis shows that the edge current density can be determined with an accuracy consistent with that of the kinetic data used. A comparison with neoclassical theory demonstrates excellent agreement between the current density determined by CLISTE and the calculated profiles. Three ELM mitigation regimes are investigated: Type-II ELMs, ELMs suppressed by external magnetic perturbations (MPs), and Nitrogen seeded ELMs. In the first two cases, the current density is found to decrease as mitigation onsets, indicating a more ballooning-like plasma behaviour. In the latter case, the flux surface averaged current density can decrease while the local current density increases, thus providing a mechanism to suppress both the peeling and ballooning modes.

  17. Reconstruction and analysis of temperature and density spatial profiles inertial confinement fusion implosion cores

    International Nuclear Information System (INIS)

    Mancini, R. C.

    2007-01-01

    We discuss several methods for the extraction of temperature and density spatial profiles in inertial confinement fusion implosion cores based on the analysis of the x-ray emission from spectroscopic tracers added to the deuterium fuel. The ideas rely on (1) detailed spectral models that take into account collisional-radiative atomic kinetics, Stark broadened line shapes, and radiation transport calculations, (2) the availability of narrow-band, gated pinhole and slit x-ray images, and space-resolved line spectra of the core, and (3) several data analysis and reconstruction methods that include a multi-objective search and optimization technique based on a novel application of Pareto genetic algorithms to plasma spectroscopy. The spectroscopic analysis yields the spatial profiles of temperature and density in the core at the collapse of the implosion, and also the extent of shell material mixing into the core. Results are illustrated with data recorded in implosion experiments driven by the OMEGA and Z facilities

  18. Electron momentum density and Compton profile by a semi-empirical approach

    Science.gov (United States)

    Aguiar, Julio C.; Mitnik, Darío; Di Rocco, Héctor O.

    2015-08-01

    Here we propose a semi-empirical approach to describe with good accuracy the electron momentum densities and Compton profiles for a wide range of pure crystalline metals. In the present approach, we use an experimental Compton profile to fit an analytical expression for the momentum densities of the valence electrons. This expression is similar to a Fermi-Dirac distribution function with two parameters, one of which coincides with the ground state kinetic energy of the free-electron gas and the other resembles the electron-electron interaction energy. In the proposed scheme conduction electrons are neither completely free nor completely bound to the atomic nucleus. This procedure allows us to include correlation effects. We tested the approach for all metals with Z=3-50 and showed the results for three representative elements: Li, Be and Al from high-resolution experiments.

  19. Method of measuring a profile of the density of charged particles in a particle beam

    International Nuclear Information System (INIS)

    Hyman, L.G.; Jankowski, D.J.

    1975-01-01

    A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam

  20. The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chihway; et al.

    2017-10-18

    Splashback refers to the process of matter that is accreting onto a dark matter halo reaching its first orbital apocenter and turning around in its orbit. The cluster-centric radius at which this process occurs, r_sp, defines a halo boundary that is connected to the dynamics of the cluster, in contrast with other common halo boundary definitions such as R_200. A rapid decline in the matter density profile of the halo is expected near r_sp. We measure the galaxy number density and weak lensing mass profiles around RedMapper galaxy clusters in the first year Dark Energy Survey (DES) data. For a cluster sample with mean mass ~2.5 x 10^14 solar masses, we find strong evidence of a splashback-like steepening of the galaxy density profile and measure r_sp=1.16 +/- 0.08 Mpc/h, consistent with earlier SDSS measurements of More et al. (2016) and Baxter et al. (2017). Moreover, our weak lensing measurement demonstrates for the first time the existence of a splashback-like steepening of the matter profile of galaxy clusters. We measure r_sp=1.28 +/- 0.18 Mpc/h from the weak lensing data, in good agreement with our galaxy density measurements. Applying our analysis to different cluster and galaxy samples, we find that consistent with LambdaCDM simulations, r_sp scales with R_200m and does not evolve with redshift over the redshift range of 0.3--0.6. We also find that potential systematic effects associated with the RedMapper algorithm may impact the location of r_sp, in particular the choice of scale used to estimate cluster richness. We discuss progress needed to understand the systematic uncertainties and fully exploit forthcoming data from DES and future surveys, emphasizing the importance of more realistic mock catalogs and independent cluster samples.

  1. Edge density profile measurements by X-mode reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Bottereau, C.; Chareau, J.M.; Paume, M.; Sabot, R.

    2000-10-01

    A broadband reflectometer operating in the frequency range 50-75 GHz has been developed on Tore Supra to measure electron density profiles at the edge. The system uses extraordinary mode polarization and performs routine measurements in 20 μs with a heterodyne detection to ensure a high dynamic range sensitivity. It allows separate phase and amplitude information of the signal. The density profiles are fully automatically calculated from the raw phase. The initialization is done with an automatic detection of the first cut-off from the amplitude of the reflected signal with accuracy up to ±0.5 cm. The profiles are now part of the public database of Tore Supra (TS) and can provide details of density structures better than the centimeter range. High reliability of the measurements for various plasma conditions make this diagnostic an ideal tool to study specific edge plasma physics with given examples on detached plasma behaviour and RF antenna-plasma coupling processes. It also is shown how the presence of suprathermal electrons may perturb the measurements. (authors)

  2. Modification of K-line emission profiles in laser-created solid-density plasmas

    International Nuclear Information System (INIS)

    Sengebusch, A.; Reinholz, H.; Roepke, G.

    2010-01-01

    Complete text of publication follows. X-ray emissions in the keV energy range have shown to be suitable radiation to investigate the properties of laser-created solid-density plasmas. We use the modifications of inner shell transitions due to the environment to characterize these plasmas. A theoretical treatment of spectral line profiles based on a self-consistent ion sphere model is applied on moderately ionized mid-Z materials, such as titanium, silicon and chlorine. We observe large contributions of satellite transitions due to M-shell ionization and excitation. To determine the composition a mixture of various excited and ionized ionic states embedded in a plasma has to be considered. Plasma polarization effects that cause shifts of the emission and ionization energies are taken into account. K-line profiles are calculated for bulk temperatures up to 100 eV and free electron densities up to 10 24 cm -3 in order to analyze recent measurements with respect to the plasma parameters of electron heated target regions. Moreover, in high-intensity laser-matter interactions, inevitable prepulses are likely to create preplasma and shocks within the target before the main pulse arrives. We investigate the influence of density gradients due to prepulses on the spectral profiles. Further, radial bulk temperature distributions as well the composition of the created warm dense matter are inferred.

  3. Real-time control of the current density and pressure profiles in Jet

    International Nuclear Information System (INIS)

    Mazon, D.; Moreau, D.; Litaudon, X.; Joffrin, E.; Laborde, L.; Zabeo, L.; Crisanti, F.; Riva, M.; Felton, R.; Murari, A.; Tala, T.

    2003-01-01

    In order to ultimately control internal transport barriers during advanced operation scenarios, new algorithms using a truncated singular value decomposition of a linearized model operator have been implemented in the JET real-time controller, with the potentiality of retaining the distributed nature of plasma parameter profiles. First experiments using the simplest, lumped-parameter, version of this technique have been dedicated to the feedback control of the current density profile in a negative shear plasma using three heating and current drive actuators, namely neutral beam injection (NBI), ion cyclotron resonant frequency heating (ICRH) and lower hybrid current drive (LHCD). Successful control of the safety factor profile has been achieved on the time scale of the current redistribution time, first during an extended preheat phase with only LHCD as actuator and, then, in quasi steady-state conditions during the main heating phase of a discharge, using the three heating and current drive actuators

  4. Line profiles of hydrogenic ions from high-temperature and high-density plasmas

    International Nuclear Information System (INIS)

    Hou Qing; Li Jianming

    1991-01-01

    Applying the Hooper's first-order theory, the authors calculate the static micro-electric field distributions in plasmas containing various multiply-charged ions. The influences of the impurity concentrations on the micro electric field distributions and on the Lyman profiles (n→1) from hydrogenic ions are analysed. Based on the optical-thin line profiles, the radiation transfer equation in sphere plasmas with various optical depths is solved. The results confirm that the opacity-broadening of the line profiles has almost no effect on the separation of Lyman β splitted peaks. Such separation is determined by electric field at which the static micro-electric field distribution has a maximum. The separation can be utilized for spatially resolved and temporally resolved density diagnostic of fusion plasmas

  5. Advanced density profile reflectometry; the state-of-the-art and measurement prospects for ITER

    Science.gov (United States)

    Doyle, E. J.

    2006-10-01

    Dramatic progress in millimeter-wave technology has allowed the realization of a key goal for ITER diagnostics, the routine measurement of the plasma density profile from millimeter-wave radar (reflectometry) measurements. In reflectometry, the measured round-trip group delay of a probe beam reflected from a plasma cutoff is used to infer the density distribution in the plasma. Reflectometer systems implemented by UCLA on a number of devices employ frequency-modulated continuous-wave (FM-CW), ultrawide-bandwidth, high-resolution radar systems. One such system on DIII-D has routinely demonstrated measurements of the density profile over a range of electron density of 0-6.4x10^19,m-3, with ˜25 μs time and ˜4 mm radial resolution, meeting key ITER requirements. This progress in performance was made possible by multiple advances in the areas of millimeter-wave technology, novel measurement techniques, and improved understanding, including: (i) fast sweep, solid-state, wide bandwidth sources and power amplifiers, (ii) dual polarization measurements to expand the density range, (iii) adaptive radar-based data analysis with parallel processing on a Unix cluster, (iv) high memory depth data acquisition, and (v) advances in full wave code modeling. The benefits of advanced system performance will be illustrated using measurements from a wide range of phenomena, including ELM and fast-ion driven mode dynamics, L-H transition studies and plasma-wall interaction. The measurement capabilities demonstrated by these systems provide a design basis for the development of the main ITER profile reflectometer system. This talk will explore the extent to which these reflectometer system designs, results and experience can be translated to ITER, and will identify what new studies and experimental tests are essential.

  6. TIDAL STIRRING OF SATELLITES WITH SHALLOW DENSITY PROFILES PREVENTS THEM FROM BEING TOO BIG TO FAIL

    Energy Technology Data Exchange (ETDEWEB)

    Tomozeiu, Mihai; Mayer, Lucio [Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Quinn, Thomas, E-mail: mihai@physik.uzh.ch [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2016-08-10

    The “too big to fail” problem is revisited by studying the tidal evolution of populations of dwarf satellites with different density profiles. The high-resolution cosmological ΛCDM “ErisMod” set of simulations is used. These simulations can model both the stellar and dark matter components of the satellites, and their evolution under the action of the tides of a Milky Way (MW)-sized host halo at a force resolution better than 10 pc. The stronger tidal mass loss and re-shaping of the mass distribution induced in satellites with γ = 0.6 dark matter density distributions, as those resulting from the effect of feedback in hydrodynamical simulations of dwarf galaxy formation, are sufficient to bring the circular velocity profiles in agreement with the kinematics of MW’s dSphs. In contrast, in simulations in which the satellites retain cusps at z = 0 there are several “massive failures” with circular velocities in excess of the observational constraints. Various sources of deviations in the conventionally adopted relation between the circular velocity at the half-light radius and the one-dimensional line of sight velocity dispersions are found. Such deviations are caused by the response of circular velocity profiles to tidal effects, which also varies depending on the initially assumed inner density profile and by the complexity of the stellar kinematics, which include residual rotation and anisotropy. In addition, tidal effects naturally induce large deviations in the stellar mass–halo mass relation for halo masses below 10{sup 9} M {sub ⊙}, preventing any reliable application of the abundance matching technique to dwarf galaxy satellites.

  7. Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M. [Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); Roberge, Aki [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Kóspál, Ágnes; Moór, Attila; Ábrahám, Peter [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest (Hungary); Kamp, Inga [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Wilner, David J.; Andrews, Sean M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); Kastner, Joel H., E-mail: amhughes@astro.wesleyan.edu [Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2017-04-20

    We present ∼0.″4 resolution images of CO(3–2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ∼100 and 310 au, with a marginally significant enhancement of surface density at a radius of ∼110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ∼80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ∼20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (∼220 au) is smaller than that of the dust disk (∼300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.

  8. Investigation of Electron Density Profile in the ionospheric D and E region by Kagoshima rocket experiment

    Science.gov (United States)

    Ashihara, Y.; Ishisaka, K.; Miyake, T.; Okada, T.; Nagano, I.; Abe, T.; Ono, T.

    2007-12-01

    The radio wave propagation characteristic in the lower ionosphere is important because of its effect on commercial radio communication, navigation, and broadcast services. The electron density is of primary interest in this region because the high ion-neutral collision frequencies result in radio wave absorption. In order to investigate the ionization structure in the ionospheric D and E region by using the propagation characteristics of MF-band and LF-band radio waves, S-310-37 and S-520-23 sounding rocket experiments have been carried out at Uchinoura Space Center (USC). S-310-37 sounding rocket was launched at 11:20 LT on January 16, 2007. The apex of rocket trajectory was about 138 km. Then S-520-23 sounding rocket was launched at 19:20 LT on September 2, 2007. The apex was about 279 km. As a common measurement, these sounding rockets measure the fields intensities and the waveform of radio waves from NHK Kumamoto broadcasting station (873kHz, 500kW) and JJY signals from Haganeyama LF radio station (60kHz, 50kW). The approximate electron density profile can be determined from the comparison between these experimental results and propagation characteristics calculated by the full wave method. We will get the most probable electron density profile in the ionosphere. In presentation, we will show the propagation characteristic of LF/MF radio waves measured by two sounding rocket experiments. Then we will discuss the analysis method and the estimated electron density profile in the ionosphere.

  9. Impact of measurement approach on the quality of gamma scanning density profile in a tray type lab-scale column

    International Nuclear Information System (INIS)

    Shahabinejad, H.; Feghhi, S.A.H.; Khorsandi, M.

    2014-01-01

    This article presents a study for investigating impact of the measurement approach on the quality of gamma scanning density profile in tray type columns using experimental and computational evaluations. Experimental density profiles from the total and the photopeak count measurements, as two approaches in gamma ray column scanning technique, has been compared with the computational density profile from Monte Carlo simulation results. We used a laboratory distillation column of 51 cm diameter as an illustrative example for this investigation. 137 Cs was used as a gamma ray source with the activity of 296 MBq (8 mCi), with a NaI(Tl) detector. MCNP4C Monte Carlo code has been used for simulations. The quality of the density profile in the photopeak count approach is relatively within 155–204% better than that of the total count approach for experimental results. The same comparison for simulation results leads to a relative difference within 100–135% for the density profile. - Highlights: • The quality of density profile in gamma scanning technique has been studied. • Quality of density profile depends on the measurement approach. • A laboratory distillation column has been used as an illustrative example. • MCNP4C Monte Carlo code has been used for simulations

  10. Recent measurements of electron density profiles of plasmas in PLADIS I, a plasma disruption simulator

    International Nuclear Information System (INIS)

    Bradley, J. III; Sharp, G.; Gahl, J.M. Kuznetsov, V.; Rockett, P.; Hunter, J.

    1995-01-01

    Tokamak disruption simulation experiments are being conducted at the University of New Mexico (UNM) using the PLADIS I plasma gun system. PLADIS I is a high power, high energy coaxial plasma gun configured to produce an intense plasma beam. First wall candidate materials are placed in the beam path to determine their response under disruption relevant energy densities. An optically thick vapor shield plasma has been observed to form above the target surface in PLADIS I. Various diagnostics have been used to determine the characteristics of the incident plasma and the vapor shielding plasma. The cross sectional area of the incident plasma beam is a critical characteristic, as it is used in the calculation of the incident plasma energy density. Recently, a HeNe interferometer in the Mach-Zehnder configuration has been constructed and used to probe the electron density of the incident plasma beam and vapor shield plasma. The object beam of the interferometer is scanned across the plasma beam on successive shots, yielding line integrals of beam density on different chords through the plasma. Data from the interferometer is used to determine the electron density profile of the incident plasma beam as a function of beam radius. This data is then used to calculate the effective beam area. Estimates. of beam area, obtained from other diagnostics such as damage targets, calorimeter arrays and off-axis measurements of surface pressure, will be compared with data from the interferometer to obtain a better estimate of the beam cross sectional area

  11. Topside ionospheric vertical electron density profile reconstruction using GPS and ionosonde data: possibilities for South Africa

    Directory of Open Access Journals (Sweden)

    P. Sibanda

    2011-02-01

    Full Text Available Successful empirical modeling of the topside ionosphere relies on the availability of good quality measured data. The Alouette, ISIS and Intercosmos-19 satellite missions provided large amounts of topside sounder data, but with limited coverage of relevant geophysical conditions (e.g., geographic location, diurnal, seasonal and solar activity by each individual mission. Recently, methods for inferring the electron density distribution in the topside ionosphere from Global Positioning System (GPS-based total electron content (TEC measurements have been developed. This study is focused on the modeling efforts in South Africa and presents the implementation of a technique for reconstructing the topside ionospheric electron density (Ne using a combination of GPS-TEC and ionosonde measurements and empirically obtained Upper Transition Height (UTH. The technique produces reasonable profiles as determined by the global models already in operation. With the added advantage that the constructed profiles are tied to reliable measured GPS-TEC and the empirically determined upper transition height, the technique offers a higher level of confidence in the resulting Ne profiles.

  12. Segment density profiles of polyelectrolyte brushes determined by Fourier transform ellipsometry

    Science.gov (United States)

    Biesalski, Markus; Rühe, Jürgen; Johannsmann, Diethelm

    1999-10-01

    We describe a method for the explicit determination of the segment density profile φ(z) of surface-attached polymer brushes with multiple angle of incidence null-ellipsometry. Because the refractive index contrast between the brush layer and the solvent is weak, multiple reflections are of minor influence and the ellipsometric spectrum is closely related to the Fourier transform of the refractive index profile, thereby allowing for explicit inversion of the ellipsometric data. We chose surface-attached monolayers of polymethacrylic acid (PMAA), a weak polyelectrolyte, as a model system and determined the segment density profile of this system as a function of the pH value of the surrounding medium by the Fourier method. Complementary to the Fourier analysis, fits with error functions are given as well. The brushes were prepared on the bases of high refractive index prisms with the "grafting-from" technique. In water, the brushes swell by more than a factor of 30. The swelling increases with increasing pH because of a growing fraction of dissociated acidic groups leading to a larger electrostatic repulsion.

  13. Generalized saddle point condition for ignition in a tokamak reactor with temperature and density profiles

    International Nuclear Information System (INIS)

    Mitari, O.; Hirose, A.; Skarsgard, H.M.

    1989-01-01

    In this paper, the concept of a generalized ignition contour map, is extended to the realistic case of a plasma with temperature and density profiles in order to study access to ignition in a tokamak reactor. The generalized saddle point is found to lie between the Lawson and ignition conditions. If the height of the operation path with Goldston L-mode scaling is higher than the generalized saddle point, a reactor can reach ignition with this scaling for the case with no confinement degradation effect due to alpha-particle heating. In this sense, the saddle point given in a general form is a new criterion for reaching ignition. Peaking the profiles for the plasma temperature and density can lower the height of the generalized saddle point and help a reactor to reach ignition. With this in mind, the authors can judge whether next-generation tokamaks, such as Compact Ignition Tokamak, Tokamak Ignition/Burn Experimental Reactor, Next European Torus, Fusion Experimental Reactor, International Tokamak Reactor, and AC Tokamak Reactor, can reach ignition with realistic profile parameters and an L-mode scaling law

  14. Constraining the Milky Way dark matter density profile with gamma-rays with Fermi-LAT

    International Nuclear Information System (INIS)

    Bernal, Nicolás; Palomares-Ruiz, Sergio

    2012-01-01

    We study the abilities of the Fermi-LAT instrument on board of the Fermi mission to simultaneously constrain the Milky Way dark matter density profile and some dark matter particle properties, as annihilation cross section, mass and branching ratio into dominant annihilation channels. A single dark matter density profile is commonly assumed to determine the capabilities of gamma-ray experiments to extract dark matter properties or to set limits on them. However, our knowledge of the Milky Way halo is far from perfect, and thus in general, the obtained results are too optimistic. Here, we study the effect these astrophysical uncertainties would have on the determination of dark matter particle properties and conversely, we show how gamma-ray searches could also be used to learn about the structure of the Milky Way halo, as a complementary tool to other type of observational data that study the gravitational effect caused by the presence of dark matter. In addition, we also show how these results would improve if external information on the annihilation cross section and on the local dark matter density were included and compare our results with the predictions from numerical simulations

  15. Density profile measurements from a two-gun plasma focus device

    International Nuclear Information System (INIS)

    Tzeng, C.C.; Yen, C.K.; Yeh, T.R.; Kuo, Y.Y.; Shang, D.J.; Yu, Y.Z.; Hou, W.S.

    1990-01-01

    The dynamics of the plasma evolution in a two-gun plasma focus device has been studied using the laser shadowgraphy as well as the laser interferometry. The experiments were carried out from a 700 kJ two-gun plasma focus device reported earlier, which consisted of a pair of Mather type coaxial electrodes connected muzzle to muzzle. Previous results indicated that the simultaneous formation of the two deuterium plasma foci occurred earlier and then after ∼ 100 ns a disk-shaped plasma of ∼ 1.5 cm in diameter appeared in the middle region between the anodes. It is, therefore, the authors' goal to study the density profiles in the plasma foci and the middle region in order to understand further the formation of the plasma foci and their time evolution. The laser shadowgraphy was done with a XeCl excimer pumped dye laser system which operated at 550 nm with pulse width of ∼ 10 ns. The laser interferometry, on the other hand, was carried out using a TEA-TEA oscillator-amplifier N 2 -laser system with 337.1 nm and subnano-second pulse width. Both results show that the maximum electron density is ≥2 x 10 19 cm -3 and, in addition, the growth of the hydrodynamic instabilities are observed. These results together with the detailed density profiles are presented and discussed

  16. Effect of plasma density profile of tokamak on Kelvin-Helmholtz instability

    International Nuclear Information System (INIS)

    Tang Fulin

    1984-01-01

    The purpose of this paper is to study the effect of radial distribution of plasma density profile of tokamak on Kelvin-Helmholtz instability caused by toroidal rotation. The effect of radial distribution of plasma rotational velocity on stability is also examine for comparison. It is found that within the range of tokamak parameters the only radial distribution of plasma rotational velocity cannot induce Kelvin-Helmholtz instability. On the contrary, when there is a radial distribution of plasma density, i.e. P 01 =P 0 e -tx and V 0 1 = const, plasma becomes unstable, and instability will increase proportionally to the value of t. Meanwhile when the value of t remains constant, the instability growth rate will decrease if P 0 grows or the distance between plasma and wall of container decreases too. It shows that the Kelvin-Helmoltz instability is not only influenced by the steepness of density profile but also by the inertia of plasma in central region, which is helpful for depressing the instability. (author). 5 refs, 4 figs, 2 tabs

  17. Fluid and gyrokinetic modelling of particle transport in plasmas with hollow density profiles

    International Nuclear Information System (INIS)

    Tegnered, D; Oberparleiter, M; Nordman, H; Strand, P

    2016-01-01

    Hollow density profiles occur in connection with pellet fuelling and L to H transitions. A positive density gradient could potentially stabilize the turbulence or change the relation between convective and diffusive fluxes, thereby reducing the turbulent transport of particles towards the center, making the fuelling scheme inefficient. In the present work, the particle transport driven by ITG/TE mode turbulence in regions of hollow density profiles is studied by fluid as well as gyrokinetic simulations. The fluid model used, an extended version of the Weiland transport model, Extended Drift Wave Model (EDWM), incorporates an arbitrary number of ion species in a multi-fluid description, and an extended wavelength spectrum. The fluid model, which is fast and hence suitable for use in predictive simulations, is compared to gyrokinetic simulations using the code GENE. Typical tokamak parameters are used based on the Cyclone Base Case. Parameter scans in key plasma parameters like plasma β, R/L T , and magnetic shear are investigated. It is found that β in particular has a stabilizing effect in the negative R/L n region, both nonlinear GENE and EDWM show a decrease in inward flux for negative R/L n and a change of direction from inward to outward for positive R/L n . This might have serious consequences for pellet fuelling of high β plasmas. (paper)

  18. Relativistic self-focusing of intense laser beam in thermal collisionless quantum plasma with ramped density profile

    Directory of Open Access Journals (Sweden)

    S. Zare

    2015-04-01

    Full Text Available Propagation of a Gaussian x-ray laser beam has been analyzed in collisionless thermal quantum plasma with considering a ramped density profile. In this density profile due to the increase in the plasma density, an earlier and stronger self-focusing effect is noticed where the beam width oscillates with higher frequency and less amplitude. Moreover, the effect of the density profile slope and the initial plasma density on the laser propagation has been studied. It is found that, by increasing the initial density and the ramp slope, the laser beam focuses faster with less oscillation amplitude, smaller laser spot size and more oscillations. Furthermore, a comparison is made among the laser self-focusing in thermal quantum plasma, cold quantum plasma and classical plasma. It is realized that the laser self-focusing in the quantum plasma becomes stronger in comparison with the classical regime.

  19. High-Latitude Topside Ionospheric Vertical Electron Density Profile Changes in Response to Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2016-01-01

    Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst -100nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial andor temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.

  20. Identification of the full-length β-actin sequence and expression profiles in the tree shrew (Tupaia belangeri).

    Science.gov (United States)

    Zheng, Yu; Yun, Chenxia; Wang, Qihui; Smith, Wanli W; Leng, Jing

    2015-02-01

    The tree shrew (Tupaia belangeri) diverges from the primate order (Primates) and is classified as a separate taxonomic group of mammals - Scandentia. It has been suggested that the tree shrew can be used as an animal model for studying human diseases; however, the genomic sequence of the tree shrew is largely unidentified. In the present study, we reported the full-length cDNA sequence of the housekeeping gene, β-actin, in the tree shrew. The amino acid sequence of β-actin in the tree shrew was compared to that of humans and other species; a simple phylogenetic relationship was discovered. Quantitative polymerase chain reaction (qPCR) and western blot analysis further demonstrated that the expression profiles of β-actin, as a general conservative housekeeping gene, in the tree shrew were similar to those in humans, although the expression levels varied among different types of tissue in the tree shrew. Our data provide evidence that the tree shrew has a close phylogenetic association with humans. These findings further enhance the potential that the tree shrew, as a species, may be used as an animal model for studying human disorders.

  1. Iterative noise removal from temperature and density profiles in the TJ-II Thomson scattering

    International Nuclear Information System (INIS)

    Farias, G.; Dormido-Canto, S.; Vega, J.; Santos, M.; Pastor, I.; Fingerhuth, S.; Ascencio, J.

    2014-01-01

    TJ-II Thomson Scattering diagnostic provides temperature and density profiles of plasma. The CCD camera acquires images that are corrupted with some kind of noise called stray-light. This noise degrades both image contrast and measurement accuracy, which could produce unreliable profiles of the diagnostic. So far, several approaches have been applied in order to decrease the noise in the TJ-II Thomson scattering images. Since the presence of the noise is not global but located in some particular regions of the image, advanced processing techniques are needed. However such methods require of manual fine-tuning of parameters to reach a good performance. In this contribution, an iterative image processing approach is applied in order to reduce the stray light effects in the images of the TJ-II Thomson scattering diagnostic. The proposed solution describes how the noise can be iteratively reduced in the images when a key parameter is automatically adjusted during the iterative process

  2. Iterative noise removal from temperature and density profiles in the TJ-II Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Farias, G., E-mail: gonzalo.farias@ucv.cl [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile); Dormido-Canto, S., E-mail: sebas@dia.uned.es [Departamento de Informática y Automática, UNED, 28040 Madrid (Spain); Vega, J., E-mail: jesus.vega@ciemat.es [Asociación EURATOM/CIEMAT para Fusión, Avd. Complutense 22, 28040 Madrid (Spain); Santos, M., E-mail: msantos@ucm.es [Departamento de Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, 28040 Madrid (Spain); Pastor, I., E-mail: ignacio.pastor@ciemat.es [Asociación EURATOM/CIEMAT para Fusión, Avd. Complutense 22, 28040 Madrid (Spain); Fingerhuth, S., E-mail: sebastian.fingerhuth@ucv.cl [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile); Ascencio, J., E-mail: j_ascencio21@hotmail.com [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile)

    2014-05-15

    TJ-II Thomson Scattering diagnostic provides temperature and density profiles of plasma. The CCD camera acquires images that are corrupted with some kind of noise called stray-light. This noise degrades both image contrast and measurement accuracy, which could produce unreliable profiles of the diagnostic. So far, several approaches have been applied in order to decrease the noise in the TJ-II Thomson scattering images. Since the presence of the noise is not global but located in some particular regions of the image, advanced processing techniques are needed. However such methods require of manual fine-tuning of parameters to reach a good performance. In this contribution, an iterative image processing approach is applied in order to reduce the stray light effects in the images of the TJ-II Thomson scattering diagnostic. The proposed solution describes how the noise can be iteratively reduced in the images when a key parameter is automatically adjusted during the iterative process.

  3. Density profiles of granular gases studied by molecular dynamics and Brownian bridges

    Science.gov (United States)

    Peñuñuri, F.; Montoya, J. A.; Carvente, O.

    2018-02-01

    Despite the inherent frictional forces and dissipative collisions, confined granular matter can be regarded as a system in a stationary state if we inject energy continuously. Under these conditions, both the density and the granular temperature are, in general, non-monotonic variables along the height of the container. In consequence, an analytical description of a granular system is hard to conceive. Here, by using molecular dynamics simulations, we measure the packing fraction profiles for a vertically vibrating three-dimensional granular system in several gaseous-like stationary states. We show that by using the Brownian bridge concept, the determined packing fraction profiles can be reproduced accurately and give a complete description of the distribution of the particles inside the simulation box.

  4. Modelling of the electron density height profiles in the mid-latitude ionospheric D-region

    Directory of Open Access Journals (Sweden)

    P. Y. Mukhtarov

    1996-06-01

    Full Text Available A new mid-latitude D-region (50-105 km model of the electron density is presented obtained on the basis of a full wave theory and by a trial-and-error inversion method. Daytime (at different solar zenith angles absorption measurements by A3-technique made in Bulgaria yielded data with the aid of which the seasonal and diurnal courses of the Ne(h-profiles were derived. Special attention is drawn to the event diurnal asymmetry, or uneven formation of the ionosphere as a function of insulation. The latter is probably connected with the influence of the diurnal fluctuations in the local temperature on the chemistry involved in the electron loss rate, as well as the diurnal variations of the main ionizing agent (NO in the D-region. That is why the Ne(h-profiles in the midlatitude D-region are modelled separately for morning and afternoon hours.

  5. On the choice of lens density profile in time delay cosmography

    Science.gov (United States)

    Sonnenfeld, Alessandro

    2018-03-01

    Time delay lensing is a mature and competitive cosmological probe. However, it is limited in accuracy by the well-known problem of the mass-sheet degeneracy: too rigid assumptions on the density profile of the lens can potentially bias the inference on cosmological parameters. I investigate the degeneracy between the choice of the lens density profile and the inference on the Hubble constant, focusing on double image systems. By expanding lensing observables in terms of the local derivatives of the lens potential around the Einstein radius, and assuming circular symmetry, I show that 3 degrees of freedom in the radial direction are necessary to achieve a few per cent accuracy in the time-delay distance. Additionally, while the time delay is strongly dependent on the second derivative of the potential, observables typically used to constrain lens models in time-delay studies, such as image position and radial magnification information, are mostly sensitive to the first and third derivatives, making it very challenging to accurately determine time-delay distances with lensing data alone. Tests on mock observations show that the assumption of a power-law density profile results in a 5 per cent average bias on H0, with a 6 per cent scatter. Using a more flexible model and adding unbiased velocity dispersion constraints allows me to obtain an inference with 1 per cent accuracy. A power-law model can still provide 3 per cent accuracy if velocity dispersion measurements are used to constrain its slope. Although this study is based on the assumption of axisymmetry, its main findings can be generalized to cases with moderate ellipticity.

  6. Exploration of one-dimensional plasma current density profile for K-DEMO steady-state operation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J.S. [Seoul National University, Seoul 151-742 (Korea, Republic of); Jung, L. [National Fusion Research Institute, Daejeon (Korea, Republic of); Byun, C.-S.; Na, D.H.; Na, Y.-S. [Seoul National University, Seoul 151-742 (Korea, Republic of); Hwang, Y.S., E-mail: yhwang@snu.ac.kr [Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-11-01

    Highlights: • One-dimensional current density and its optimization for the K-DEMO are explored. • Plasma current density profile is calculated with an integrated simulation code. • The impact of self and external heating profiles is considered self-consistently. • Current density is identified as a reference profile by minimizing heating power. - Abstract: Concept study for Korean demonstration fusion reactor (K-DEMO) is in progress, and basic design parameters are proposed by targeting high magnetic field operation with ITER-sized machine. High magnetic field operation is a favorable approach to enlarge relative plasma performance without increasing normalized beta or plasma current. Exploration of one-dimensional current density profile and its optimization process for the K-DEMO steady-state operation are reported in this paper. Numerical analysis is conducted with an integrated plasma simulation code package incorporating a transport code with equilibrium and current drive modules. Operation regimes are addressed with zero-dimensional system analysis. One-dimensional plasma current density profile is calculated based on equilibrium, bootstrap current analysis, and thermal transport analysis. The impact of self and external heating profiles on those parameters is considered self-consistently, where thermal power balance and 100% non-inductive current drive are the main constraints during the whole exploration procedure. Current and pressure profiles are identified as a reference steady-state profile by minimizing the external heating power with desired fusion power.

  7. Hollow density profile on electron cyclotron resonance heating JFT-2M plasma

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Hoshino, Katsumichi; Kawashima, Hisato; Ogawa, Toshihide; Kawakami, Tomohide; Shiina, Tomio; Ishige, Youichi

    1998-01-01

    The first hollow electron density profile in the central region on the JAERI Fusion Torus-2M (JFT-2M) is measured during electron cyclotron resonance heating (ECRH) with a TV Thomson scattering system (TVTS). The peripheral region is not hollow but is accumulated due to pump-out from the central region. The hollowness increases with time but is saturated at ∼40 ms and maintains a constant hollow ratio. The hollowness is strongly related to the steep temperature gradient of the heated zone. (author)

  8. Measurements of electron density and temperature profiles in a gas blanket experiment

    International Nuclear Information System (INIS)

    Kuthy, A.

    1979-02-01

    Radial profiles of electron density, temperature and H sub(β) intensity are presented for the rotating plasma device F-1. The hydrogen filling pressure, the average magnetic field strength at the midplane, and the power input to the discharge have been varied in the ranges 10-100 mTorr, 0.25-0.5 Tesla, and 0.1 to 1.5 MW, respectively. These experiments have been performed with the main purpose of studying the gas blanket (cold-mantle) state of the plasma. It is shown, that a simple spectroscopic method can be used to derive the radial distribution of the electron temperature in such plasmas. The observed peak temperatures and densities are in agreement with earlier theoretical estimates. (author)

  9. Fast-scan monitor examines neutral-beam ion-density profile

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    All of the magnetic mirror confinement fusion experiments at LLL and at other laboratories depend on pulsed, energetic neutral-beam injection for fueling and imparting energy to the trapped plasma for density build-up and stability studies. It is vital to be able to monitor how well the injected ion beam is aimed and focused. To do this, we have designed an ion-beam current-density profile monitor that uses a commercial minimodular data acquisition system. Our prototype model monitors a single 20-kV, 50-A, 10-ms beam. However, the method is applicable to any number of beams with similar sampling target arrays. Also, the electronics can be switched to monitor any one of several target collectors

  10. Specific Modulus and Density Profile as Characterization Criteria of Prefabricated Wood Composite Materials

    Directory of Open Access Journals (Sweden)

    Pavel Král

    2015-01-01

    Full Text Available Wood based product industry has developed and modified a wide range of products to cater changing demands of construction industry. Development of a product necessitates characterization to ensure compliance to established standards. Traditionally a product was characterized by properties like bending properties, density and swelling factor etc. Whereas, advances in technology has introduced more sophisticated parameters which represent a combination of various classical factors and provide more practical and detailed information. In this study, we procured four different types of commercial products, viz. Gypsum board, cement board, oriented strand board and gypsum fiber board and tried to characterized them using density profile ratio and stiffness ratio. We observed some interesting empirical relations between various parameters as represented in various plots.

  11. Density profiles and collective excitations of a trapped two-component Fermi vapour

    International Nuclear Information System (INIS)

    Amoruso, M.; Meccoli, I.; Minguzzi, A.; Tosi, M.P.

    1999-08-01

    We discuss the ground state and the small-amplitude excitations of a degenerate vapour of fermionic atoms placed in two hyperfine states inside a spherical harmonic trap. An equations-of-motion approach is set up to discuss the hydrodynamic dissipation processes from the interactions between the two components of the fluid beyond mean-field theory and to emphasize analogies with spin dynamics and spin diffusion in a homogeneous Fermi liquid. The conditions for the establishment of a collisional regime via scattering against cold-atom impurities are analyzed. The equilibrium density profiles are then calculated for a two-component vapour of 40 K atoms: they are little modified by the interactions for presently relevant values of the system parameters, but spatial separation of the two components will spontaneously arise as the number of atoms in the trap is increased. The eigenmodes of collective oscillation in both the total particle number density and the concentration density are evaluated analytically in the special case of a symmetric two-component vapour in the collisional regime. The dispersion relation of the surface modes for the total particle density reduces in this case to that of a one-component Fermi vapour, whereas the frequencies of all other modes are shifted by the interactions. (author)

  12. Density profiles in the Scrape-Off Layer interpreted through filament dynamics

    Science.gov (United States)

    Militello, Fulvio

    2017-10-01

    We developed a new theoretical framework to clarify the relation between radial Scrape-Off Layer density profiles and the fluctuations that generate them. The framework provides an interpretation of the experimental features of the profiles and of the turbulence statistics on the basis of simple properties of the filaments, such as their radial motion and their draining towards the divertor. L-mode and inter-ELM filaments are described as a Poisson process in which each event is independent and modelled with a wave function of amplitude and width statistically distributed according to experimental observations and evolving according to fluid equations. We will rigorously show that radially accelerating filaments, less efficient parallel exhaust and also a statistical distribution of their radial velocity can contribute to induce flatter profiles in the far SOL and therefore enhance plasma-wall interactions. A quite general result of our analysis is the resiliency of this non-exponential nature of the profiles and the increase of the relative fluctuation amplitude towards the wall, as experimentally observed. According to the framework, profile broadening at high fueling rates can be caused by interactions with neutrals (e.g. charge exchange) in the divertor or by a significant radial acceleration of the filaments. The framework assumptions were tested with 3D numerical simulations of seeded SOL filaments based on a two fluid model. In particular, filaments interact through the electrostatic field they generate only when they are in close proximity (separation comparable to their width in the drift plane), thus justifying our independence hypothesis. In addition, we will discuss how isolated filament motion responds to variations in the plasma conditions, and specifically divertor conditions. Finally, using the theoretical framework we will reproduce and interpret experimental results obtained on JET, MAST and HL-2A.

  13. First density profile measurements using frequency modulation of the continuous wave reflectometry on JETa)

    Science.gov (United States)

    Meneses, L.; Cupido, L.; Sirinelli, A.; Manso, M. E.; Jet-Efds Contributors

    2008-10-01

    We present the main design options and implementation of an X-mode reflectometer developed and successfully installed at JET using an innovative approach. It aims to prove the viability of measuring density profiles with high spatial and temporal resolution using broadband reflectometry operating in long and complex transmission lines. It probes the plasma with magnetic fields between 2.4 and 3.0 T using the V band [~(0-1.4)×1019 m-3]. The first experimental results show the high sensitivity of the diagnostic when measuring changes in the plasma density profile occurring ITER relevant regimes, such as ELMy H-modes. The successful demonstration of this concept motivated the upgrade of the JET frequency modulation of the continuous wave (FMCW) reflectometry diagnostic, to probe both the edge and core. This new system is essential to prove the viability of using the FMCW reflectometry technique to probe the plasma in next step devices, such as ITER, since they share the same waveguide complexity.

  14. Finding evidence for density fluctuation effects on electron cyclotron heating deposition profiles on DIII-D

    International Nuclear Information System (INIS)

    Brookman, M. W.; Austin, M. E.; Petty, C. C.

    2015-01-01

    Theoretical work, computation, and results from TCV [J. Decker “Effect of density fluctuations on ECCD in ITER and TCV,” EPJ Web of Conf. 32, 01016 (2012)] suggest that density fluctuations in the edge region of a tokamak plasma can cause broadening of the ECH deposition profile. In this paper, a GUI tool is presented which is used for analysis of ECH deposition as a first step towards looking for this broadening, which could explain effects seen in previous DIII-D ECH transport studies [K.W. Gentle “Electron energy transport inferences from modulated electron cyclotron heating in DIII-D,” Phys. Plasmas 13, 012311 (2006)]. By applying an FFT to the T e measurements from the University of Texas’s 40-channel ECE Radiometer, and using a simplified thermal transport equation, the flux surface extent of ECH deposition is determined. The Fourier method analysis is compared with a Break-In-Slope (BIS) analysis and predictions from the ray-tracing code TORAY. Examination of multiple Fourier harmonics and BIS fitting methods allow an estimation of modulated transport coefficients and thereby the true ECH deposition profile. Correlations between edge fluctuations and ECH deposition in legacy data are also explored as a step towards establishing a link between fluctuations and deposition broadening in DIII-D

  15. Control of the current density profile with lower hybrid current drive on PBX-M

    International Nuclear Information System (INIS)

    Bell, R.E.; Bernabei, S.; Chu, T.K.; Gettelfinger, G.; Greenough, N.; Hatcher, R.; Ignat, D.; Jardin, S.; Kaita, R.; Kaye, S.; Kozub, T.; Kugel, H.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Sauthoff, N.; Sesnic, S.; Sun, Y.; Takahashi, H.; Tighe, W.; Valeo, E.; von Goeler, S.; Jones, S.; Kesner, J.; Luckhardt, S.; Paoletti, F.; Levinton, F.; Timini, F.

    1993-07-01

    Lower hybrid current drive (LHCD) is being explored as a means to control the current density profile on PBX-M with the goal of raising the central safety factor q(O) to values of 1.5-2 to facilitate access to a full-volume second stable regime. Initial experiments have been conducted with up to 400 kW of 4.6 GHz LH power in circular and indented plasmas with modest parameters. A tangential-viewing two-dimensional hard x-ray imaging diagnostic has been used to observe the bremsstrahlung emission from the suprathermal electrons generated during LHCD. Hollow hard x-ray images have indicated off-axis localization of the driven current. A serious obstacle to the control of the current density profile with LHCD is the concomitant generation of MHD activity, which can seriously degrade the confinement of suprathermal electrons. By combining neutral beam injection with LHCD, an MHD-free condition has been obtained where q(O) is raised above 1

  16. Finding evidence for density fluctuation effects on electron cyclotron heating deposition profiles on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Brookman, M. W., E-mail: brookmanmw@fusion.gat.com; Austin, M. E. [Institute for Fusion Studies, University of Texas at Austin, MS 13-505, 3483 Dunhill St, San Diego, CA 92121-1200 (United States); Petty, C. C. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States)

    2015-12-10

    Theoretical work, computation, and results from TCV [J. Decker “Effect of density fluctuations on ECCD in ITER and TCV,” EPJ Web of Conf. 32, 01016 (2012)] suggest that density fluctuations in the edge region of a tokamak plasma can cause broadening of the ECH deposition profile. In this paper, a GUI tool is presented which is used for analysis of ECH deposition as a first step towards looking for this broadening, which could explain effects seen in previous DIII-D ECH transport studies [K.W. Gentle “Electron energy transport inferences from modulated electron cyclotron heating in DIII-D,” Phys. Plasmas 13, 012311 (2006)]. By applying an FFT to the T{sub e} measurements from the University of Texas’s 40-channel ECE Radiometer, and using a simplified thermal transport equation, the flux surface extent of ECH deposition is determined. The Fourier method analysis is compared with a Break-In-Slope (BIS) analysis and predictions from the ray-tracing code TORAY. Examination of multiple Fourier harmonics and BIS fitting methods allow an estimation of modulated transport coefficients and thereby the true ECH deposition profile. Correlations between edge fluctuations and ECH deposition in legacy data are also explored as a step towards establishing a link between fluctuations and deposition broadening in DIII-D.

  17. Universal analytical scattering form factor for shell-, core-shell, or homogeneous particles with continuously variable density profile shape.

    Science.gov (United States)

    Foster, Tobias

    2011-09-01

    A novel analytical and continuous density distribution function with a widely variable shape is reported and used to derive an analytical scattering form factor that allows us to universally describe the scattering from particles with the radial density profile of homogeneous spheres, shells, or core-shell particles. Composed by the sum of two Fermi-Dirac distribution functions, the shape of the density profile can be altered continuously from step-like via Gaussian-like or parabolic to asymptotically hyperbolic by varying a single "shape parameter", d. Using this density profile, the scattering form factor can be calculated numerically. An analytical form factor can be derived using an approximate expression for the original Fermi-Dirac distribution function. This approximation is accurate for sufficiently small rescaled shape parameters, d/R (R being the particle radius), up to values of d/R ≈ 0.1, and thus captures step-like, Gaussian-like, and parabolic as well as asymptotically hyperbolic profile shapes. It is expected that this form factor is particularly useful in a model-dependent analysis of small-angle scattering data since the applied continuous and analytical function for the particle density profile can be compared directly with the density profile extracted from the data by model-free approaches like the generalized inverse Fourier transform method. © 2011 American Chemical Society

  18. A Simultaneous Density-Integral System for Estimating Stem Profile and Biomass: Slash Pine and Willow Oak

    Science.gov (United States)

    Bernard R. Parresol; Charles E. Thomas

    1996-01-01

    In the wood utilization industry, both stem profile and biomass are important quantities. The two have traditionally been estimated separately. The introduction of a density-integral method allows for coincident estimation of stem profile and biomass, based on the calculus of mass theory, and provides an alternative to weight-ratio methodology. In the initial...

  19. X mode reflectometry for edge density profile measurements on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Bottereau, C.; Chareau, J.M.; Paume, M.; Sabot, R.

    1999-01-01

    X mode heterodyne reflectometry associated with fast sweep capabilities demonstrates very precise measurement on Tore Supra and a high sensitivity (∼10 17 m -3 ) to density variations. Very good agreement with Thomson scattering measurement is observed. Fluctuations of the radial positions of the profile are no more than ± 0.5 cm. However, edge magnetic field ripple can be a concern since it is not easy to stand precisely for the wave trajectory into the plasma and for the toroidal position of the cutoff layer; nevertheless if the error can be estimated to be less than than 3 cm in the position of the whole profile, addition work is needed combining 3-D ray tracing and different antenna systems. Additional LH heating generates an ECE noise in the same frequency range of the reflectometer and is detected. This emission throughout the plasma is fortunately stopped by the upper X mode cutoff and is also reabsorbed by the electron cyclotron resonance. But at the very edge, due to a misalignment of the antenna to the plasma magnetic field and the low optical thickness of the plasma, the first cutoff frequency, i.e. the profile initialization, may be determined less precisely. (authors)

  20. Impact of Te and ne on edge current density profiles in ELM mitigated regimes on ASDEX Upgrade

    Science.gov (United States)

    Dunne, M. G.; Rathgeber, S.; Burckhart, A.; Fischer, R.; Giannone, L.; McCarthy, P. J.; Schneider, P. A.; Wolfrum, E.; the ASDEX Upgrade Team

    2015-01-01

    ELM resolved edge current density profiles are reconstructed using the CLISTE equilibrium code. As input, highly spatially and temporally resolved edge electron temperature and density profiles are used in addition to data from the extensive set of external poloidal field measurements available at ASDEX Upgrade, flux loop difference measurements, and current measurements in the scrape-off layer. Both the local and flux surface averaged current density profiles are analysed for several ELM mitigation regimes. The focus throughout is on the impact of altered temperature and density profiles on the current density. In particular, many ELM mitigation regimes rely on operation at high density. Two reference plasmas with type-I ELMs are analysed, one with a deuterium gas puff and one without, in order to provide a reference for the behaviour in type-II ELMy regimes and high density ELM mitigation with external magnetic perturbations at ASDEX Upgrade. For type-II ELMs it is found that while a similar pedestal top pressure is sustained at the higher density, the temperature gradient decreases in the pedestal. This results in lower local and flux surface averaged current densities in these phases, which reduces the drive for the peeling mode. No significant differences between the current density measured in the type-I phase and ELM mitigated phase is seen when external perturbations are applied, though the pedestal top density was increased. Finally, ELMs during the nitrogen seeded phase of a high performance discharge are analysed and compared to ELMs in the reference phase. An increased pedestal pressure gradient, which is the source of confinement improvement in impurity seeded discharges, causes a local current density increase. However, the increased Zeff in the pedestal acts to reduce the flux surface averaged current density. This dichotomy, which is not observed in other mitigation regimes, could act to stabilize both the ballooning mode and the peeling mode at the

  1. MGS Radio Science Electron Density Profiles: Interannual Variability and Implications for the Martian Neutral Atmosphere

    Science.gov (United States)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2004-01-01

    Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate what the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower and upper atmospheres. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2 Martian years are investigated near aphelion conditions at high northern latitudes (64.7 - 77.6 N) making use of four of these data sets. A mean ionospheric peak height of 133.5 - 135 km is obtained near SZA = 78 - 82 deg.; a corresponding mean peak density of 7.3 - 8.5 x l0(exp 4)/ qu cm is also measured during solar moderate conditions at Mars. Strong wave number 2 - 3 oscillations in peak heights are consistently observed as a function of longitude over the 2 Martian years. These observed ionospheric features are remarkably similar during aphelion conditions 1 Martian year apart. This year-to-year repeatability in the thermosphere-ionosphere structure is consistent with that observed in multiyear aphelion temperature data of the Mars lower atmosphere. Coupled Mars general circulation model (MGCM) and Mars thermospheric general circulation model (MTGCM) codes are run for Mars aphelion conditions, yielding mean and longitude variable ionospheric peak heights that reasonably match RS observations. A tidal decomposition of MTGCM thermospheric densities shows that observed ionospheric wave number 3 features are linked to a non-migrating tidal mode with semidiurnal period (sigma = 2) and zonal wave number 1 (s = -1) characteristics. The height of this photochemically determined ionospheric peak should be monitored regularly.

  2. Constraining Saturn's interior density profile from precision gravity field measurement obtained during Grand Finale

    Science.gov (United States)

    Movshovitz, N.; Fortney, J. J.; Helled, R.; Hubbard, W. B.; Mankovich, C.; Thorngren, D.; Wahl, S. M.; Militzer, B.; Durante, D.

    2017-12-01

    The external gravity field of a planetary body is determined by the distribution of mass in its interior. Therefore, a measurement of the external field, properlyinterpreted, tells us about the interior density profile, ρ(r), which in turn can be used to constrain the composition in the interior and thereby learn about theformation mechanism of the planet. Recently, very high precision measurements of the gravity coefficients for Saturn have been made by the radio science instrument on the Cassini spacecraft during its Grand Finale orbits. The resulting coefficients come with an associated uncertainty. The task of matching a given density profile to a given set of gravity coefficients is relatively straightforward, but the question of how to best account for the uncertainty is not. In essentially all prior work on matching models to gravity field data inferences about planetary structure have rested on assumptions regarding the imperfectly known H/He equation of state and the assumption of an adiabatic interior. Here we wish to vastly expand the phase space of such calculations. We present a framework for describing all the possible interior density structures of a Jovian planet constrained by a given set of gravity coefficients and their associated uncertainties. Our approach is statistical. We produce a random sample of ρ(a) curves drawn from the underlying (and unknown) probability distribution of all curves, where ρ is the density on an interior level surface with equatorial radius a. Since the resulting set of density curves is a random sample, that is, curves appear with frequency proportional to the likelihood of their being consistent with the measured gravity, we can compute probability distributions for any quantity that is a function of ρ, such as central pressure, oblateness, core mass and radius, etc. Our approach is also Bayesian, in that it can utilize any prior assumptions about the planet's interior, as necessary, without being overly

  3. Constraining the interior density profile of a Jovian planet from precision gravity field data

    Science.gov (United States)

    Movshovitz, Naor; Fortney, Jonathan J.; Helled, Ravit; Hubbard, William B.; Thorngren, Daniel; Mankovich, Chris; Wahl, Sean; Militzer, Burkhard; Durante, Daniele

    2017-10-01

    The external gravity field of a planetary body is determined by the distribution of mass in its interior. Therefore, a measurement of the external field, properly interpreted, tells us about the interior density profile, ρ(r), which in turn can be used to constrain the composition in the interior and thereby learn about the formation mechanism of the planet. Planetary gravity fields are usually described by the coefficients in an expansion of the gravitational potential. Recently, high precision measurements of these coefficients for Jupiter and Saturn have been made by the radio science instruments on the Juno and Cassini spacecraft, respectively.The resulting coefficients come with an associated uncertainty. And while the task of matching a given density profile with a given set of gravity coefficients is relatively straightforward, the question of how best to account for the uncertainty is not. In essentially all prior work on matching models to gravity field data, inferences about planetary structure have rested on imperfect knowledge of the H/He equation of state and on the assumption of an adiabatic interior. Here we wish to vastly expand the phase space of such calculations. We present a framework for describing all the possible interior density structures of a Jovian planet, constrained only by a given set of gravity coefficients and their associated uncertainties. Our approach is statistical. We produce a random sample of ρ(a) curves drawn from the underlying (and unknown) probability distribution of all curves, where ρ is the density on an interior level surface with equatorial radius a. Since the resulting set of density curves is a random sample, that is, curves appear with frequency proportional to the likelihood of their being consistent with the measured gravity, we can compute probability distributions for any quantity that is a function of ρ, such as central pressure, oblateness, core mass and radius, etc. Our approach is also bayesian, in that

  4. Retrieval of Electron Density Profile for KOMPSAT-5 GPS Radio Occultation

    Directory of Open Access Journals (Sweden)

    Woo-Kyoung Lee

    2007-12-01

    Full Text Available The AOPOD (Atmosphere Occultation and Precision Orbit Determination system, the secondary payload of KOMPSAT (KOrea Multi-Purpose SATellite-5 scheduled to be launched in 2010, shall provide GPS radio occultation data. In this paper, we simulated the GPS radio occultation characteristic of KOMPSAT-5 and retrieved electron density profiles using KROPS (KASI Radio Occultation Processing Software. The electron density retrieved from CHAMP (CHAllenging Minisatellite Payload GPS radio occultation data on June 20, 2004 was compared with IRI (International Reference Ionosphere - 2001, PLP (Planar Langmuir Probe, and ionosonde measurements. When the result was compared with ionosonde measurements, the discrepancies were 5 km on the F_2 peak height (hmF_2 and 3×10^{10} el/m^3 on the electron density of the F_2 peak height (NmF_2. By comparing with the Langmuir Probe measurements of CHAMP satellite (PLP, both agrees with 1.6×10^{11} el/m^3 at the height of 365.6 km.

  5. Simultaneous Conduction and Valence Band Quantization in Ultrashallow High-Density Doping Profiles in Semiconductors

    Science.gov (United States)

    Mazzola, F.; Wells, J. W.; Pakpour-Tabrizi, A. C.; Jackman, R. B.; Thiagarajan, B.; Hofmann, Ph.; Miwa, J. A.

    2018-01-01

    We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.

  6. Emission spectra from super-critical rippled plasma density profiles illuminated by intense laser pulses

    International Nuclear Information System (INIS)

    Ondarza R, R.; Boyd, T.J.M.

    2000-01-01

    High-order harmonic emission from the interaction of intense femtosecond laser pulses with super-critical plasmas characterized by a rippled density profile at the vacuum-plasma interface has been observed from particle-in-cell (PIC) simulations. A plasma simulation box several laser wavelengths in extent was prepared with a rippled density of a fraction of a laser wavelength. Emission spectra at the very initial stage of the interaction were recorded with spectral characteristics dissimilar to those previously reported in the literature. The reflected light spectra were characterized by a strong emission at the plasma line and by a series of harmonics at multiples of the ripple frequency. Harmonic spectra were obtained for different values of the plasma ripple frequency. In all cases the harmonics were emitted at the precise multiple harmonic number of the ripple frequency. Another important feature apparent from the simulations was that the emission peaks appeared to havea complex structure as compared with those for unrippled plasmas. For the cases when the plasma was rippled the peaks that corresponded to the multiples of the rippled density typically showed a double peak for the first few harmonics. The reflected emission plots for the main laser pulse showed strong emission at the plasma frequency and at multiples of that frequency as reported by the authors in the literature. (Author)

  7. Effects of low central fuelling on density and ion temperature profiles in reversed shear plasmas on JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Takenaga, H; Ide, S; Sakamoto, Y; Fujita, T [Japan Atomic Energy Agency, Naka Ibaraki 311-0193 (Japan)], E-mail: takenaga.hidenobu@jaea.go.jp

    2008-07-15

    Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.

  8. Effects of low central fuelling on density and ion temperature profiles in reversed shear plasmas on JT-60U

    Science.gov (United States)

    Takenaga, H.; Ide, S.; Sakamoto, Y.; Fujita, T.; JT-60 Team

    2008-07-01

    Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.

  9. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.

    Science.gov (United States)

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  10. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hiratsuka, Junichi, E-mail: hiratsuka.junichi@jaea.go.jp; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0193 (Japan); Miyamoto, Kenji [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan)

    2016-02-15

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  11. Determination of CT number and density profile of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using computed tomography imaging and electron density phantom

    International Nuclear Information System (INIS)

    Yusof, Mohd Fahmi Mohd; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz; Bauk, Sabar; Hashim, Rokiah

    2015-01-01

    Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest value of CT number to water substitute at 80 and 120 kVp CT energies with χ 2 value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ 2 value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies

  12. Determination of CT number and density profile of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using computed tomography imaging and electron density phantom

    Energy Technology Data Exchange (ETDEWEB)

    Yusof, Mohd Fahmi Mohd, E-mail: mfahmi@usm.my; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Bauk, Sabar [School of Distance Education, Universiti Sains Malaysia, 11800 Penang (Malaysia); Hashim, Rokiah [School of Industrial Technologies, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-04-29

    Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest value of CT number to water substitute at 80 and 120 kVp CT energies with χ{sup 2} value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ{sup 2} value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.

  13. Semi-analytical study of the tokamak pedestal density profile in a single-null diverted plasma with puffing-recycling gas sources

    Science.gov (United States)

    Shi, Bingren

    2010-10-01

    The tokamak pedestal density structure is generally studied using a diffusion-dominant model. Recent investigations (Stacey and Groebner 2009 Phys. Plasmas 16 102504) from first principle based physics have shown a plausible existence of large inward convection in the pedestal region. The diffusion-convection equation with rapidly varying convection and diffusion coefficients in the near edge region and model puffing-recycling neutral particles is studied in this paper. A peculiar property of its solution for the existence of the large convection case is that the pedestal width of the density profile, qualitatively different from the diffusion-dominant case, depends mainly on the width of the inward convection and only weakly on the neutral penetration length and its injection position.

  14. Semi-analytical study of the tokamak pedestal density profile in a single-null diverted plasma with puffing-recycling gas sources

    Energy Technology Data Exchange (ETDEWEB)

    Shi Bingren, E-mail: shibr@swip.ac.c [Southwestern Institute of Physics, PO Box 432, Chengdu, Sichuan 610041 (China)

    2010-10-15

    The tokamak pedestal density structure is generally studied using a diffusion-dominant model. Recent investigations (Stacey and Groebner 2009 Phys. Plasmas 16 102504) from first principle based physics have shown a plausible existence of large inward convection in the pedestal region. The diffusion-convection equation with rapidly varying convection and diffusion coefficients in the near edge region and model puffing-recycling neutral particles is studied in this paper. A peculiar property of its solution for the existence of the large convection case is that the pedestal width of the density profile, qualitatively different from the diffusion-dominant case, depends mainly on the width of the inward convection and only weakly on the neutral penetration length and its injection position.

  15. Asymmetric Velocity Distributions from Halo Density Profiles in the Eddington Approach

    International Nuclear Information System (INIS)

    Vergados, J. D.

    2015-01-01

    We show how to obtain the energy distribution f(E) in our vicinity starting from WIMP density profiles in a self-consistent way by employing the Eddington approach and adding reasonable angular momentum dependent terms in the expression of the energy. We then show how we can obtain the velocity dispersions and the asymmetry parameter β in terms of the parameters describing the angular momentum dependence. From this expression, for f(E), we proceed to construct an axially symmetric WIMP a velocity distribution, which, for a gravitationally bound system, automatically has a velocity upper bound and is characterized by the same asymmetriy β. This approach is tested and clarified by constructing analytic expressions in a simple model, with adequate structure. We then show how such velocity distributions can be used in determining the event rates, including modulation, in both the standard and the directional WIMP searches.

  16. Density profiles and particle fluxes of heavy impurities in the limiter shadow region of a tokamak

    International Nuclear Information System (INIS)

    Claassen, H.A.; Repp, H.

    1980-01-01

    For the case of low impurity concentration, transport calculations have been performed for heavy impurities, in the scrape-off layer plasma of a tokamak with a poloidal ring limiter. The theory is based on the drift-kinetic equations for the various ionization states of the impurity ions taking due consideration of the convection and collision processes. The background plasma and the impurity sources from the torus wall and the limiter surface enter the theory as input parameters. The theory is developed for the first two orders of the drift approximation. Numerical results are given to zero order drift approximation for the radial profiles of density and particle fluxes parallel to the magnetic field. (orig.)

  17. 1 μs broadband frequency sweeping reflectometry for plasma density and fluctuation profile measurements

    Science.gov (United States)

    Clairet, F.; Bottereau, C.; Medvedeva, A.; Molina, D.; Conway, G. D.; Silva, A.; Stroth, U.; ASDEX Upgrade Team; Tore Supra Team; Eurofusion Mst1 Team

    2017-11-01

    Frequency swept reflectometry has reached the symbolic value of 1 μs sweeping time; this performance has been made possible, thanks to an improved control of the ramp voltage driving the frequency source. In parallel, the memory depth of the acquisition system has been upgraded and can provide up to 200 000 signals during a plasma discharge. Additional improvements regarding the trigger delay determination of the acquisition and the voltage ramp linearity required by this ultra-fast technique have been set. While this diagnostic is traditionally dedicated to the plasma electron density profile measurement, such a fast sweeping rate can provide the study of fast plasma events and turbulence with unprecedented time and radial resolution from the edge to the core. Experimental results obtained on ASDEX Upgrade plasmas are presented to demonstrate the performances of the diagnostic.

  18. Proton conducting graft copolymers with tunable length and density of phosphonated side chains for fuel cell membranes

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Takamuku, Shogo; Jankova Atanasova, Katja

    2014-01-01

    Polysulfones functionalized with highly phosphonated poly(pentafluorostyrene) side chains of different lengths were synthesized applying controlled polymerization and modification methods. The graft copolymers' thermal properties were evaluated by differential scanning calorimetry and thermal...... gravimetrical analyses. The proton conductivity of membrane prepared from the graft copolymer with the shortest phosphonated side chains was 134 mS cm(-1) at 100 degrees C under fully immersed conditions. The graft copolymer TEM image shows a nanophase separation of ion-rich segments within the polysulfone...

  19. Anomalous plasma heating induced by modulation of the current-density profile

    International Nuclear Information System (INIS)

    Lopes Cardozo, N.J.

    1985-05-01

    The usual plasma heating in a tokamak needs additional heating to reach ignition temperature (approx. 10 8 K). The method used in the TORTUR III experiment is to induce anomalous plasma resistivity by applying a short (10 microseconds) high-voltage pulse. A sharp rise of the plasma temperature is found almost simultaneously, but this effect, though considerable, is too short-lived to be of interest for a thermonuclear chain reaction. A second pulse gives a second rise of temperature, but this time a slow one, extending over several milliseconds. The mechanism of this delayed heating and the reservoir within the plasma supplying the energy are subjects of investigation in the TORTUR III experiments. Some conclusions concerning the plasma heating mechanism are presented. The conclusion is reached that the application of the high-voltage pulse results in a modulation of the current-density profile: the (normally already peaked) profile sharpens, the current concentrates in the centre of the plasma column. This is a non-equilibrium situation. It relaxes to the noraml current distribution within approximately 2 milliseconds. As long as this relaxation process is not finished, the dissipation is on an enhanced level and anomalous plasma heating is observed. Many plasma parameters are surveyed and evaluated: temperature (both of the ions and the electrons), density, emission spectrum (from microwaves to hard X-rays) and the fluctuation spectrum. Main subject of this report is the measurement and interpretation of the X-rays of the emission spectrum. Experimental results are presented and discussed

  20. Strong orientation dependence of surface mass density profiles of dark haloes at large scales

    Science.gov (United States)

    Osato, Ken; Nishimichi, Takahiro; Oguri, Masamune; Takada, Masahiro; Okumura, Teppei

    2018-06-01

    We study the dependence of surface mass density profiles, which can be directly measured by weak gravitational lensing, on the orientation of haloes with respect to the line-of-sight direction, using a suite of N-body simulations. We find that, when major axes of haloes are aligned with the line-of-sight direction, surface mass density profiles have higher amplitudes than those averaged over all halo orientations, over all scales from 0.1 to 100 Mpc h-1 we studied. While the orientation dependence at small scales is ascribed to the halo triaxiality, our results indicate even stronger orientation dependence in the so-called two-halo regime, up to 100 Mpc h-1. The orientation dependence for the two-halo term is well approximated by a multiplicative shift of the amplitude and therefore a shift in the halo bias parameter value. The halo bias from the two-halo term can be overestimated or underestimated by up to {˜ } 30 per cent depending on the viewing angle, which translates into the bias in estimated halo masses by up to a factor of 2 from halo bias measurements. The orientation dependence at large scales originates from the anisotropic halo-matter correlation function, which has an elliptical shape with the axis ratio of ˜0.55 up to 100 Mpc h-1. We discuss potential impacts of halo orientation bias on other observables such as optically selected cluster samples and a clustering analysis of large-scale structure tracers such as quasars.

  1. Fatty acid profile in patients with phenylketonuria and its relationship with bone mineral density.

    Science.gov (United States)

    Lage, Sergio; Bueno, María; Andrade, Fernando; Prieto, José Angel; Delgado, Carmen; Legarda, María; Sanjurjo, Pablo; Aldámiz-Echevarría, Luis Jose

    2010-12-01

    Patients with phenylketonuria (PKU) undergo a restrictive vegan-like diet, with almost total absence of n-3 fatty acids, which have been proposed as potential contributors to bone formation in the healthy population. The PKU diet might lead these patients to bone mass loss and, consequently, to the development of osteopenia/osteoporosis. Therefore, we proposed to analyze their plasma fatty acid profile status and its relationship with bone health. We recruited 47 PKU patients for this cross-sectional study and divided the cohort into three age groups (6-10 years, 11-18 years, 19-42 years). We measured their plasma fatty acid profile and bone mineral density (BMD) (both at the femoral neck and the lumbar spine). Seventy-seven healthy controls also participated as reference values of plasma fatty acids. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) and total n-3 fatty acids were significantly diminished in PKU patients compared with healthy controls. DHA, EPA, and total n-3 fatty acids were also positively associated with bone mineral density (r = 0.83, p = 0.010; r = 0.57, p = 0.006; r = 0.73, p = 0.040, respectively). There was no association between phenylalanine (Phe), Index of Dietary Control (IDC), calcium, 25-hydroxivitamin D concentrations, daily calcium intake, and BMD. Our results suggest a possible influence of essential fatty acids over BMD in PKU patients. The lack of essential n-3 fatty acids intake in the PKU diet might affect bone mineralization. Further clinical trials are needed to confirm the effect of the n-3 essential fatty acids on bone accrual in a cohort of PKU patients.

  2. Study of flow profile distortions and efficiency in counter pressure moderated partial filling micellar electrokinetic chromatography in relation to the relative buffer zone lengths.

    Science.gov (United States)

    Michalke, Daniela; Welsch, Thomas

    2002-06-25

    The influence of the relative buffer zone lengths on the efficiency was investigated in partial filling micellar electrokinetic chromatography using sodium dodecyl sulfate as separation additive. Varying relative zone lengths were obtained by applying identical initial separation zone lengths but different total lengths of the capillaries. Plate numbers of a homologous series of omega-phenylalcohols were measured to indicate the effect of both a changing relative zone length during the run and a counter pressure applied on the cathodic buffer reservoir. The magnitude and the course of these plate numbers are discussed on the basis of models for flow profile superposition and flow profile deformation which are caused by an intersegmental pressure arising at the boundary between the two buffer zones with different electroosmotic flow velocities. Calculation of the intersegmental pressure and of the resulting laminar flow components in the buffer zones on the basis of some equations for electroosmotic and hydrodynamic flow supported the interpretation that a long background buffer zone should be avoided

  3. Tidal Disruption of Milky Way Satellites with Shallow Dark Matter Density Profiles

    Directory of Open Access Journals (Sweden)

    Ewa L. Łokas

    2016-11-01

    Full Text Available Dwarf galaxies of the Local Group provide unique possibilities to test current theories of structure formation. Their number and properties have put the broadly accepted cold dark matter model into question, posing a few problems. These problems now seem close to resolution due to the improved treatment of baryonic processes in dwarf galaxy simulations which now predict cored rather than cuspy dark matter profiles in isolated dwarfs with important consequences for their subsequent environmental evolution. Using N-body simulations, we study the evolution of a disky dwarf galaxy with such a shallow dark matter profile on a typical orbit around the Milky Way. The dwarf survives the first pericenter passage but is disrupted after the second due to tidal forces from the host. We discuss the evolution of the dwarf’s properties in time prior to and at the time of disruption. We demonstrate that the dissolution occurs on a rather short timescale as the dwarf expands from a spheroid into a stream with non-zero mean radial velocity. We point out that the properties of the dwarf at the time of disruption may be difficult to distinguish from bound configurations, such as tidally induced bars, both in terms of surface density and line-of-sight kinematics.

  4. The influence of birth weight and length on bone mineral density and content in adolescence: The Tromsø Study, Fit Futures.

    Science.gov (United States)

    Christoffersen, Tore; Ahmed, Luai A; Daltveit, Anne Kjersti; Dennison, Elaine M; Evensen, Elin K; Furberg, Anne-Sofie; Gracia-Marco, Luis; Grimnes, Guri; Nilsen, Ole-Andreas; Schei, Berit; Tell, Grethe S; Vlachopoulos, Dimitris; Winther, Anne; Emaus, Nina

    2017-12-01

    The influence of birth weight and length on bone mineral parameters in adolescence is unclear. We found a positive association between birth size and bone mineral content, attenuated by lifestyle factors. This highlights the impact of environmental stimuli and lifestyle during growth. The influence of birth weight and length on bone mineral density and content later in life is unclear, especially in adolescence. This study evaluated the impact of birth weight and length on bone mineral density and content among adolescents. We included 961 participants from the population-based Fit Futures study (2010-2011). Dual-energy X-ray absorptiometry (DXA) was used to measure bone mineral density (BMD) and bone mineral content (BMC) at femoral neck (FN), total hip (TH) and total body (TB). BMD and BMC measures were linked with birth weight and length ascertained from the Medical Birth Registry of Norway. Linear regression models were used to investigate the influence of birth parameters on BMD and BMC. Birth weight was positively associated with BMD-TB and BMC at all sites among girls; standardized β coefficients [95% CI] were 0.11 [0.01, 0.20] for BMD-TB and 0.15 [0.06, 0.24], 0.18 [0.09, 0.28] and 0.29 [0.20, 0.38] for BMC-FN, TH and TB, respectively. In boys, birth weight was positively associated with BMC at all sites with estimates of 0.10 [0.01, 0.19], 0.12 [0.03, 0.21] and 0.15 [0.07, 0.24] for FN, TH and TB, respectively. Corresponding analyses using birth length as exposure gave significantly positive associations with BMC at all sites in both sexes. The significant positive association between birth weight and BMC-TB in girls, and birth length and BMC-TB in boys remained after multivariable adjustment. We found a positive association between birth size and BMC in adolescence. However, this association was attenuated after adjustment for weight, height and physical activity during adolescence.

  5. Relationship between nutritional profile, measures of adiposity, and bone mineral density in postmenopausal Saudi women.

    Science.gov (United States)

    Alissa, Eman M; Alnahdi, Wafa A; Alama, Nabeel; Ferns, Gordon A

    2014-01-01

    Osteoporosis remains a major health problem in all developed countries and is a condition in which several dietary factors have been implicated. To assess the nutritional status and levels of adiposity of postmenopausal women in relation to bone mineral density. A cross-sectional study in which dietary intake was estimated by a food frequency questionnaire in 300 Saudi postmenopausal women aged 46-88 years. Bone profile biochemistry (serum calcium, phosphate, parathyroid hormone [PTH], vitamin D) and bone mineral density (BMD) in 3 skeletal sites were determined for all participants. Overweight and obesity were highly prevalent among the study population. No significant correlation was found between dietary calcium and vitamin D and bone mass at any site. Dietary intake of calcium and vitamin D was significantly less than the recommended levels for a large proportion of the cohort. Energy-adjusted intakes of carbohydrates, fat, protein, and unsaturated fatty acids were associated with BMD in the postmenopausal women. Age, body weight, and residency type were predictors of BMD at all sites. Serum-intact PTH was a predictor of BMD at lumbar spine and femoral neck. Waist : hip ratio (WHR) was a predictor for BMD at femoral neck. These results suggest that BMD is influenced by dietary factors other than calcium and vitamin D. However, nondietary factors such as age, WHR, PTH, and body weight may be important determinants of BMD in postmenopausal women.

  6. Evidence for length-dependent wire expansion, filament dedensification and consequent degradation of critical current density in Ag-alloy sheathed Bi-2212 wires

    International Nuclear Information System (INIS)

    Malagoli, A; Lee, P J; Jiang, J; Trociewitz, U P; Hellstrom, E E; Larbalestier, D C; Ghosh, A K; Scheuerlein, C; Di Michiel, M

    2013-01-01

    It is well known that longer Bi-2212 conductors have significantly lower critical current density (J c ) than shorter ones, and recently it has become clear that a major cause of this reduction is internal gas pressure generated during heat treatment, which expands the wire diameter and dedensifies the Bi-2212 filaments. Here we report on the length-dependent expansion of 5–240 cm lengths of state-of-the-art, commercial Ag alloy sheathed Bi-2212 wire after full and some partial heat treatments. Detailed image analysis along the wire length shows that the wire diameter increases with distance from the ends, longer samples often showing evident damage and leaks provoked by the internal gas pressure. Comparison of heat treatments carried out just below the melting point and with the usual melt process makes it clear that melting is crucial to developing high internal pressure. The decay of J c away from the ends is directly correlated to the local wire diameter increase, which decreases the local Bi-2212 filament mass density and lowers J c , often by well over 50%. It is clear that control of the internal gas pressure is crucial to attaining the full J c of these very promising round wires and that the very variable properties of Bi-2212 wires are due to the fact that this internal gas pressure has so far not been well controlled. (paper)

  7. Modeling root length density of field grown potatoes under different irrigation strategies and soil textures using artificial neural networks

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Sepaskhah, Ali Reza; Andersen, Mathias Neumann

    2014-01-01

    ) of the eight input variables: soil layer intervals (D), percentages of sand (Sa), silt (Si), and clay (Cl), bulk density of soil layers (Bd), weighted soil moisture deficit during the irrigation strategies period (SMD), geometric mean particle size diameter (dg), and geometric standard deviation (σg......). The results of the study showed that all the nine ANN models predicted the target RLD values satisfactorily with a correlation coefficient R2>0.98. The simplest and most complex ANN architectures were 3:2:1 and 5:5:1 consisting of D, SMD, dg, and D, Bd, SMD, σg, dg as the input variables, respectively. Low...

  8. Measurements of electron density and temperature profiles in plasma produced by Nike KrF laser for laser plasma instability research

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Karasik, M.; Chan, L. Y.

    2015-08-01

    A grid image refractometer (GIR) has been implemented at the Nike krypton fluoride laser facility of the Naval Research Laboratory. This instrument simultaneously measures propagation angles and transmissions of UV probe rays (λ = 263 nm, Δt = 10 ps) refracted through plasma. We report results of the first Nike-GIR measurement on a CH plasma produced by the Nike laser pulse (˜1 ns FWHM) with the intensity of 1.1 × 1015 W/cm2. The measured angles and transmissions were processed to construct spatial profiles of electron density (ne) and temperature (Te) in the underdense coronal region of the plasma. Using an inversion algorithm developed for the strongly refracted rays, the deployed GIR system probed electron densities up to 4 × 1021 cm-3 with the density scale length of 120 μm along the plasma symmetry axis. The resulting ne and Te profiles are verified to be self-consistent with the measured quantities of the refracted probe light.

  9. Effects of triangularity on confinement, density limit and profile stiffness of H-modes on ASDEX upgrade

    International Nuclear Information System (INIS)

    Stober, J.; Gruber, O.; Kallenbach, A.; Mertens, V.; Ryter, F.; Staebler, A.; Suttrop, W.; Treutterer, W.

    2000-01-01

    At ASDEX Upgrade the influence of triangularity on the H-mode performance has been studied intensively. It has been found that confinement increases with δ for a fixed line-averaged density. Though confinement decreases with increasing density for all analysed values of δ, H-factors (ITERH-98P) at the Greenwald density could be raised to 1 for the highest δ values achieved so far. The H-mode density limit could be increased by approx. 20%. There is a scatter of about 30% on the confinement data, which is anti-correlated to the average density in the scrape-off layer or the neutral fluxes outside the plasma. For nearly all discharges analysed so far, the temperature profiles are self-similar. This indication of profile stiffness could be verified by changing the heat-flux profile by changing the beam-voltage of the neutral-beam injection (NBI) at high density. At low density, first results indicate a deviation from this stiff behaviour. (author)

  10. Relationship between habitat, densities and metabolic profile in brown hares (Lepus europaeus Pallas

    Directory of Open Access Journals (Sweden)

    Marco Bagliacca

    2010-01-01

    Full Text Available Some habitat traits and haematic parameters were studied to understand the relationships between the hare densities, habitat characteristics and physiological and nutritional condition of the animals. A total of 33 protected areas, reserved for wild game reproduction, located in the Province of Florence (Central Italy, were monitored during a 2-year period. In each protected area the hares were submitted to census. The habitat features of the protected areas were studied and the following parameters were categorised: altitude; cleared-land/total-land ratio; main exposure; main ground composition; water availability; main slope; anthropogenic presence; predator presence; wooded borders; presence of trees and shrubs; surveillance against hunting; demographic predator control; kind of cultivation; unharvested crops for game. After the census the hares were captured for translocation outside in “free” hunting areas. During capture the hares were put in darkened, wooden capture-boxes and remained inside for a variable period of time (10min to 3h. A sample of 3 to 7 hares, captured per year and per each protected area, were removed from the boxes (physically restrained, with covered eyes for blood sample collection, sex, age and live weight determination. The following analyses were performed on frozen plasma samples: ALanine aminoTransferase (ALT, ASpartate aminoTransferase (AST, glucose, cholesterol, Blood Urea Nitrogen (BUN, Ca, P, Mg, Na, K, and Cl concentrations. The relationship between hare density and habitat characteristics was analysed by single regressions analysis. Then the habitat characteristics were subjected to multivariate analysis in relationship to hare body condition. The haematic parameters were analysed by least square means considering habitat traits, animal density, age and sex, as main categorical factors, interaction sex*age, and “pregnant and non-reproducing” nested within sex. Results showed that the highest density

  11. Note: Interpolation for evaluation of a two-dimensional spatial profile of plasma densities at low gas pressures

    International Nuclear Information System (INIS)

    Oh, Se-Jin; Kim, Young-Chul; Chung, Chin-Wook

    2011-01-01

    An interpolation algorithm for the evaluation of the spatial profile of plasma densities in a cylindrical reactor was developed for low gas pressures. The algorithm is based on a collisionless two-dimensional fluid model. Contrary to the collisional case, i.e., diffusion fluid model, the fitting algorithm depends on the aspect ratio of the cylindrical reactor. The spatial density profile of the collisionless fitting algorithm is presented in two-dimensional images and compared with the results of the diffusion fluid model.

  12. Comparison of apical transportation and change of working length in K3, NRT AND PROFILE rotary instruments using transparent resin block

    Directory of Open Access Journals (Sweden)

    Min-Jung Yoon

    2011-01-01

    Full Text Available Objectives The purpose of this study is to compare the apical transportation and working length change in curved root canals created in resin blocks, using 3 geometrically different types of Ni-Ti files, K3, NRT, and Profile. Materials and Methods The curvature of 30 resin blocks was measured by Schneider technique and each groups of Ni-Ti files were allocated with 10 resin blocks at random. The canals were shaped with Ni-Ti files by Crown-down technique. It was analyzed by Double radiograph superimposition method (Backman CA 1992, and for the accuracy and consistency, specially designed jig, digital X-ray, and CAD/CAM software for measurement of apical transportation were used. The amount of apical transportation was measured at 0, 1, 3, 5 mm from 'apical foramen - 0.5 mm' area, and the alteration of the working length before and after canal shaping was also measured. For statistics, Kruskal-Wallis One Way Analysis was used. Results There was no significant difference between the groups in the amount of working length change and apical transportation at 0, 1, and 3 mm area (p = 0.027, however, the amount of apical transportation at 5 mm area showed significant difference between K3 and Profile system (p = 0.924. Conclusions As a result of this study, the 3 geometrically different Ni-Ti files showed no significant difference in apical transportation and working length change and maintained the original root canal shape.

  13. High triglycerides and low high-density lipoprotein cholesterol lipid profile in rheumatoid arthritis: A potential link among inflammation, oxidative status, and dysfunctional high-density lipoprotein.

    Science.gov (United States)

    Rodríguez-Carrio, Javier; Alperi-López, Mercedes; López, Patricia; López-Mejías, Raquel; Alonso-Castro, Sara; Abal, Francisco; Ballina-García, Francisco J; González-Gay, Miguel Á; Suárez, Ana

    The interactions between inflammation and lipid profile in rheumatoid arthritis (RA) are poorly understood. The lipid profile study in RA has been biased toward lipoprotein levels, whereas those of triglycerides (TGs) and lipoprotein functionality have been underestimated. Since recent findings suggest a role for TG and TG-rich lipoproteins (TRL) on inflammation, we aimed to evaluate a combined lipid profile characterized by high TG and low high-density lipoprotein cholesterol levels (TG high HDL low ) in RA. Lipid profiles were analyzed in 113 RA patients, 113 healthy controls, and 27 dyslipemic subjects. Levels of inflammatory mediators, paraoxonase-1 (PON1) activity, and total antioxidant capacity were quantified in serum. PON1-rs662 status was evaluated by real-time polymerase chain reaction. The TG high HDL low profile was detected in 29/113 RA patients. Although no differences in prevalence compared with healthy controls or dyslipemic subjects were observed, this profile was associated with increased tumor necrosis factor α (P = .004), monocyte chemotactic protein (P = .004), interferon-gamma-inducible protein-10 (P = .018), and leptin (P < .001) serum levels in RA, where decreased PON1 activity and total antioxidant capacity were found. TG high HDL low prevalence was lower among anti-TNFα-treated patients (P = .004). When RA patients were stratified by PON1-rs662 status, these associations remained in the low-activity genotype (QQ). Finally, a poor clinical response on TNFα blockade was related to an increasing prevalence of the TG high HDL low profile over treatment (P = .021) and higher TRL levels at baseline (P = .042). The TG high HDL low profile is associated with systemic inflammation, decreased PON1 activity, and poor clinical outcome on TNFα blockade in RA, suggesting a role of TRL and HDL dysfunction as the missing link between inflammation and lipid profile. Copyright © 2017 National Lipid Association. Published by Elsevier Inc

  14. First observation of density profile in directly laser-driven polystyrene targets for ablative Rayleigh-Taylor instability research

    International Nuclear Information System (INIS)

    Fujioka, Shinsuke; Shiraga, Hiroyuki; Nishikino, Masaharu; Shigemori, Keisuke; Sunahara, Atsushi; Nakai, Mitsuo; Azechi, Hiroshi; Nishihara, Katsunobu; Yamanaka, Tatsuhiko

    2003-01-01

    The temporal evolution of the density profile of a directly laser-driven polystyrene target was observed for the first time using an x-ray penumbral imaging technique coupled with side-on x-ray backlighting at the GEKKO XII [C. Yamanaka et al., IEEE J. Quantum Electron. QE-17, 1639 (1981)]-High Intensity Plasma Experimental Research laser facility (I L =0.7x10 14 W/cm 2 , λ L =0.35 μm). This density measurement makes it possible to experimentally confirm all physical parameters [γ(k),k,g,m,ρ a ,L m ] appearing in the modified Takabe formula for the growth rate of the ablative Rayleigh-Taylor instability. The measured density profiles were well reproduced by a one-dimensional hydrodynamic simulation code. The density measurement contributes toward fully understanding the ablative Rayleigh-Taylor instability

  15. Comparison of collisional radiative models for edge electron density reconstruction from Li I (2s-2p) emission profiles

    Energy Technology Data Exchange (ETDEWEB)

    Stoschus, H.; Hudson, B.; Munoz Burgos, J. M. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831-0117 (United States); Thomas, D. M. [General Atomics, San Diego, California 92186-5608 (United States); Schweinzer, J. [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, 85748 Garching (Germany)

    2012-10-15

    Four collisional radiative models (CRMs) for reconstruction of the edge electron density profile from the measured Li I (2s-2p) emission profile of an accelerated lithium beam are compared using experimental data from DIII-D. It is shown for both L- and H-mode plasmas that edge density profiles reconstructed with the CRMs DDD2, ABSOLUT, [Sasaki et al. Rev. Sci. Instrum. 64, 1699 (1993)] and a new model developed at DIII-D agree in a density scan from n{sub e}{sup ped}= (2.0-6.5) Multiplication-Sign 10{sup 19} m{sup -3} within 20%, 20%, <5%, and 40%, respectively, of the pedestal density measured with Thomson scattering. Profile shape and absolute density vary in a scan of the effective ion charge Z{sub eff}= 1-6 up to a factor of two but agree with Thomson data for Z{sub eff}= 1-2 within the error bars.

  16. Analysis of plasma equilibrium based on orbit-driven current density profile in steady-state plasma on QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K., E-mail: nakamura@triam.kyushu-u.ac.jp [RIAM, Kyushu University, Kasuga 816-8580 (Japan); Alam, M.M. [IGSES, Kyushu University, Kasuga 816-8580 (Japan); Jiang, Y.Z. [Tsinghua University, Beijing 100084 (China); Mitarai, O. [Tokai University, Kumamoto 862-8652 (Japan); Kurihara, K.; Kawamata, Y.; Sueoka, M.; Takechi, M. [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Hasegawa, M.; Tokunaga, K.; Araki, K.; Zushi, H.; Hanada, K.; Fujisawa, A.; Idei, H.; Nagashima, Y.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Nagata, T. [RIAM, Kyushu University, Kasuga 816-8580 (Japan); and others

    2016-11-01

    Highlights: • High energy particle guiding center orbit is calculated as a contour plot of conserved variable. • Current density profile is analyzed based on the orbit-driven current. • Plasma equilibrium is reconstructed by considering the hollow current profile. - Abstract: In the present RF-driven (ECCD) steady-state plasma on QUEST (B{sub t} = 0.25 T, R = 0.68 m, a = 0.40 m), plasma current seems to flow in the open magnetic surface outside of the closed magnetic surface in the low-field region according to plasma current fitting (PCF) method. We consider that the current in the open magnetic surface is due to orbit-driven current by high-energy particles in RF-driven plasma. So based on the analysis of current density profile based on the orbit-driven current, plasma equilibrium is to be calculated. We calculated high energy particles guiding center orbits as a contour plot of conserved variable in Hamiltonian formulation and considered particles initial position with different levels of energy and pitch angles that satisfy resonance condition. Then the profile of orbit-driven current is estimated by multiplying the particle density on the resonance surface and the velocity on the orbits. This analysis shows negative current near the magnetic axis and hollow current profile is expected even if pressure driven current is considered. Considering the hollow current profile shifted toward the low-field region, the equilibrium is fitted by J-EFIT coded by MATLAB.

  17. Axisymmetric instability of a self-pinched beam with rounded radial density profile

    International Nuclear Information System (INIS)

    Chen, H.C.; Uhm, H.S.

    1983-01-01

    The axisymmetric perturbations (sausage and hollowing modes) of an intense relativistic self-pinched electron beam propagating in a resistive plasma background are studied, especially for a beam with rounded radial density profile. The Bennett profiles are assumed for both the equilibrium beam current J/sub b/(r) = J/sub b/(0) (1+r 2 /R 2 /sub b/) -2 and plasma return current J/sub p/(r) = -fJ/sub b/(0) (1+r 2 /R 2 /sub p/) -2 , where R/sub b/ and R/sub p/ are the characteristic radii of the beam and plasma return currents, respectively. It is further assumed that the electric conductivity sigma(r) of the plasma channel is proportional to the return current. For a paraxial electron beam with complete space-charge neutralization by the ambient plasma, the axisymmetric modes can be destabilized by the phase lag between the magnetic field and beam current, even without the plasma return current. The plasma return current significantly modifies the growth rate of the instability such that the ratio of plasma current to beam current (-I/sub p//I/sub b/ = fR 2 /sub p// iR 2 /sub b/) largely determines the stability character of the beam. Furthermore, for the same fractional current neutralization f, the modes are highly unstable for a smaller ratio of plasma to beam radius R/sub p//R/sub b/. As compared to the resistive hose instability, the growth rates for the hollowing mode can be larger than those of the hose mode, while the sausage mode is much stabler than the hose mode. Stability properties are illustrated in detail for various system parameters

  18. Formulation of detector response function to calculate the power density profiles using in-core neutron detectors

    International Nuclear Information System (INIS)

    Ahmed, S. A.; Peter, J. K.; Semmler, W.; Shultis, J. K.

    2007-01-01

    By measuring neutron fluxes at different locations throughout a core, it's possible to derive the power-density profile P k (W cm - 3), at an axial depth z of fuel rod k. Micro-pocket fission detectors (MPFD) have been fabricated to perform such in-core neutron flux measurements. The purpose of this study is to develop a mathematical model to obtain axial power density distributions in the fuel rods from the in-core responses of the MPFDs

  19. Confinement bifurcation by current density profile perturbation in TUMAN-3M tokamak

    International Nuclear Information System (INIS)

    Lebedev, S.V.; Andreiko, M.V.; Askinazi, L.G.

    2001-01-01

    In the recent experiments performed on TUMAN-3M the possibility to switch on/off the H-mode by current density profile perturbations has been shown. The j(r) perturbations were created by fast Current Ramp Up/Down or by Magnetic Compression produced by a fast increase of the toroidal magnetic field. It was found that the Current Ramp Up (CRU) and Magnetic Compression (MC) are useful means for H-mode triggering. The Current Ramp Down (CRD) triggers H-L transition. The difference in the j(r) behavior in these experiments suggests the peripheral current density may not be the critical parameter controlling L-H and H-L transitions. Confinement bifurcation in the above experiments could be explained by the unified mechanism: variation of a turbulent transport resulting from radial electric field emerging near the edge in the conditions of alternating toroidal electric field Ej and different electron and ion collisionalities. According to the suggested model the toroidal field E φ arising in the periphery during the CRU and MC processes amplifies Ware drift, which mainly influences electron component. As a result the favorable for the transition negative (inward directed) E r emerges. In the CRD scenario, when E φ is opposite to the total plasma current direction, the mechanism should generate positive E r , which is thought to be unfavorable for the H-mode. The experimental data on L-H and H-L transitions in various scenarios and the results of the modeling of E r emerging in the CRU experiment are presented in the paper. (author)

  20. Uncovering genes and ploidy involved in the high diversity in root hair density, length and response to local scarce phosphate in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Markus G Stetter

    Full Text Available Plant root hairs increase the root surface to enhance the uptake of sparingly soluble and immobile nutrients, such as the essential nutrient phosphorus, from the soil. Here, root hair traits and the response to scarce local phosphorus concentration were studied in 166 accessions of Arabidopsis thaliana using split plates. Root hair density and length were correlated, but highly variable among accessions. Surprisingly, the well-known increase in root hair density under low phosphorus was mostly restricted to genotypes that had less and shorter root hairs under P sufficient conditions. By contrast, several accessions with dense and long root hairs even had lower hair density or shorter hairs in local scarce phosphorus. Furthermore, accessions with whole-genome duplications developed more dense but phosphorus-insensitive root hairs. The impact of genome duplication on root hair density was confirmed by comparing tetraploid accessions with their diploid ancestors. Genome-wide association mapping identified candidate genes potentially involved in root hair responses tp scarce local phosphate. Knock-out mutants in identified candidate genes (CYR1, At1g32360 and RLP48 were isolated and differences in root hair traits in the mutants were confirmed. The large diversity in root hair traits among accessions and the diverse response when local phosphorus is scarce is a rich resource for further functional analyses.

  1. Modeling and control of the current density profile in Tokamaks and its relation to electron transport

    International Nuclear Information System (INIS)

    Zucca, C.

    2009-04-01

    The current density in tokamak plasmas strongly affects transport phenomena, therefore its understanding and control represent a crucial challenge for controlled thermonuclear fusion. Within the vast framework of tokamak studies, three topics have been tackled in the course of the present thesis: first, the modelling of the current density evolution in electron Internal Transport Barrier (eITB) discharges in the Tokamak à Configuration Variable (TCV); second, the study of current diffusion and inversion of electron transport properties observed during Swing Electron Cyclotron Current Drive (Swing ECCD) discharges in TCV; third, the analysis of the current density tailoring obtained by local ECCD driven by the improved EC system for sawtooth control and reverse shear scenarios in the International Thermonuclear Experimental Reactor (ITER). The work dedicated to the study of eITBs in TCV has been undertaken to identify which of the main parameters, directly related to the current density, played a relevant role in the confinement improvement created during these advanced scenarios. In this context, the current density has to be modeled, there being no measurement currently available on TCV. Since the Rebut-Lallia-Watkins (RLW) model has been validated on TCV ohmic heated plasmas, the corresponding scaling factor has often been used as a measure of improved confinement on TCV. The many interpretative simulations carried on different TCV discharges have shown that the thermal confinement improvement factor, H RLW , linearly increases with the absolute value of the minimum shear outside ρ > 0.3, ρ indicating a normalized radial coordinate. These investigations, performed with the transport code ASTRA, therefore confirmed a general observation, formulated through previous studies, that the formation of the transport barrier is correlated with the magnetic shear reversal. This was, indeed, found to be true in all cases studied, regardless of the different heating and

  2. Novel lipoprotein density profiling in healthy dogs of various breeds, healthy miniature schnauzers, and miniature schnauzers with hyperlipidemia

    Science.gov (United States)

    2013-01-01

    Background Despite the importance of abnormalities in lipoprotein metabolism in clinical canine medicine, the fact that most previously used methods for lipoprotein profiling are rather laborious and time-consuming has been a major obstacle to the wide clinical application and use of lipoprotein profiling in this species. The aim of the present study was to assess the feasibility of a continuous lipoprotein density profile (CLPDP) generated within a bismuth sodium ethylenediaminetetraacetic acid (NaBiEDTA) density gradient to characterize and compare the lipoprotein profiles of healthy dogs of various breeds, healthy Miniature Schnauzers, and Miniature Schnauzers with primary hypertriacylglycerolemia. A total of 35 healthy dogs of various breeds with serum triacylglycerol (TAG) and cholesterol concentrations within their respective reference intervals were selected for use as a reference population. Thirty-one Miniature Schnauzers with serum TAG and cholesterol concentrations within their respective reference intervals and 31 Miniature Schnauzers with hypertriacylglyceridemia were also included in the study. Results The results suggest that CLPDP using NaBiEDTA provides unique diagnostic information in addition to measurements of serum TAG and cholesterol concentrations and that it is a useful screening method for dogs with suspected lipoprotein metabolism disorders. Using the detailed and continuous density distribution information provided by the CLPDP, important differences in lipoprotein profiles can be detected even among dogs that have serum TAG and cholesterol concentrations within the reference interval. Miniature Schnauzers with serum TAG and cholesterol concentrations within the reference interval had significantly different lipoprotein profiles than dogs of various other breeds. In addition, it was further established that specific lipoprotein fractions are associated with hypertriacylglyceridemia in Miniature Schnauzers. Conclusions The results of the

  3. Density profile of dark matter haloes and galaxies in the HORIZON-AGN simulation: the impact of AGN feedback

    Science.gov (United States)

    Peirani, Sébastien; Dubois, Yohan; Volonteri, Marta; Devriendt, Julien; Bundy, Kevin; Silk, Joe; Pichon, Christophe; Kaviraj, Sugata; Gavazzi, Raphaël; Habouzit, Mélanie

    2017-12-01

    Using a suite of three large cosmological hydrodynamical simulations, HORIZON-AGN, HORIZON–NOAGN (no AGN feedback) and HORIZON-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density profiles of massive dark matter haloes and galaxies. Based on direct object-to-object comparisons, we find that the integrated inner mass and density slope differences between objects formed in these three simulations (hereafter, HAGN, HnoAGN and HDM) significantly evolve with time. More specifically, at high redshift (z ∼ 5), the mean central density profiles of HAGN and HnoAGN dark matter haloes tend to be much steeper than their HDM counterparts owing to the rapidly growing baryonic component and ensuing adiabatic contraction. By z ∼ 1.5, these mean halo density profiles in HAGN have flattened, pummelled by powerful AGN activity ('quasar mode'): the integrated inner mass difference gaps with HnoAGN haloes have widened, and those with HDM haloes have narrowed. Fast forward 9.5 billion years, down to z = 0, and the trend reverses: HAGN halo mean density profiles drift back to a more cusped shape as AGN feedback efficiency dwindles ('radio mode'), and the gaps in integrated central mass difference with HnoAGN and HDM close and broaden, respectively. On the galaxy side, the story differs noticeably. Averaged stellar profile central densities and inner slopes are monotonically reduced by AGN activity as a function of cosmic time, resulting in better agreement with local observations.

  4. Construction of an SNP-based high-density linkage map for flax (Linum usitatissimum L.) using specific length amplified fragment sequencing (SLAF-seq) technology.

    Science.gov (United States)

    Yi, Liuxi; Gao, Fengyun; Siqin, Bateer; Zhou, Yu; Li, Qiang; Zhao, Xiaoqing; Jia, Xiaoyun; Zhang, Hui

    2017-01-01

    Flax is an important crop for oil and fiber, however, no high-density genetic maps have been reported for this species. Specific length amplified fragment sequencing (SLAF-seq) is a high-resolution strategy for large scale de novo discovery and genotyping of single nucleotide polymorphisms. In this study, SLAF-seq was employed to develop SNP markers in an F2 population to construct a high-density genetic map for flax. In total, 196.29 million paired-end reads were obtained. The average sequencing depth was 25.08 in male parent, 32.17 in the female parent, and 9.64 in each F2 progeny. In total, 389,288 polymorphic SLAFs were detected, from which 260,380 polymorphic SNPs were developed. After filtering, 4,638 SNPs were found suitable for genetic map construction. The final genetic map included 4,145 SNP markers on 15 linkage groups and was 2,632.94 cM in length, with an average distance of 0.64 cM between adjacent markers. To our knowledge, this map is the densest SNP-based genetic map for flax. The SNP markers and genetic map reported in here will serve as a foundation for the fine mapping of quantitative trait loci (QTLs), map-based gene cloning and marker assisted selection (MAS) for flax.

  5. Variation of solvent scattering-length density small-angle neutron scattering as a means of determining structure of composite materials

    International Nuclear Information System (INIS)

    Hjelm, R.P.; Wampler, W.; Gerspacher, M.

    1994-01-01

    As part of our work on the, structure of composite materials we have been exploring the use of small-angle neutron scattering using the method of contrast variation to dissect the component form, structure and distribution. This approach has resulted in a new look at very old problem reinforcement of elastomers by carbon black. Using this approach we studied an experimental high surface area (HSA) carbon black and a gel of ''HSA-bound'' rubber in cyclohexane/deuterocyclohexane mixtures. HSA in cyclohexane is found to be short rodlike particle aggregates. The aggregates have a shell-core structure with a high density graphitic outer shell and an inner core of lower density amorphous carbon. The core is continuous throughout the carbon black aggregate, making the aggregate a stiff, integral unit. Contrast variation of swollen composite gels shows that there are two length scales in the gel structure. Above 10 Angstrom, scattering from carbon black predominates, and below 10 Angstrom the scattering is from both carbon black and the elastomer. The HSA in the composite is completely embedded in polyisoprene. An estimate of the carbon black structure factor shows strong exclusion of neighboring aggregates, probably from excluded volume effects. The surface structure of the carbon black is unaltered by the interactions with elastomer and appears smooth over length scales above about 10 Angstrom. These results show that contrast variation can provide information on composite structure that is not available by other means. This information relates to the reinforcement mechanism of elastomers by carbon blacks

  6. Melatonin implantation during the non-growing period of cashmere increases the cashmere yield of female Inner Mongolian cashmere goats by increasing fiber length and density

    International Nuclear Information System (INIS)

    Wu, Z.; Duan, C.; Li, Y.; Duan, T.; Mo, F.; Zhang, W.

    2018-01-01

    This study aimed to evaluate if melatonin implantation at the end of April and June was able to increase cashmere production in female Inner Mongolian cashmere goats and to search for contributing factors accounting for the melatonin increasing in cashmere production. One hundred and fifty female Inner Mongolian cashmere goats (initial body weight 37.2 ± 3.3 kg) were randomly assigned to either a control (n=75) or a treatment (n=75) group. Goats in the treatment group were implanted with melatonin (2 mg/kg of body weight) on April 30 and June 30, 2014 while goats in the control received no treatment. Melatonin implantation increased cashmere yield by 23.4% while increasing the length and density of the cashmere fiber by 19.8% and 11.4%, whereas it decreased cashmere fiber diameter by 4.4%. Melatonin treatment had no effect on doe growth, litter size or birth and weaning weights of kid. Melatonin implantation promoted cashmere yield by increasing fiber length and density without impacting the performance of goats and their offspring. Therefore, melatonin implantation during the cashmere non-growing period (late April and June) is an effective way to increase cashmere yield and improve cashmere characteristics of goats.

  7. Role of ion magnetization in formation of radial density profile in magnetically expanding plasma produced by helicon antenna

    Science.gov (United States)

    Yadav, Sonu; Ghosh, Soumen; Bose, Sayak; Barada, Kshitish K.; Pal, Rabindranath; Chattopadhyay, Prabal K.

    2018-04-01

    Experimentally, the density profile in the magnetic nozzle of a helicon antenna based plasma device is seen to be modified from being centrally peaked to that of hollow nature as the external magnetic field is increased. It occurs above a characteristic field value when the ions become magnetized in the expansion chamber. The density profile in the source chamber behind the nozzle, however, remains peaked on-axis irrespective of the magnetic field. The electron temperature there is observed to be hollow and this nature is carried to the expansion chamber along the field line. In the electron energy distribution near the off axis peak location, a high energy tail exists. Rotation of these tail electrons in the azimuthal direction due to the gradient-B drift in the expansion chamber leads to an additional off-axis ionization and forms the hollow density profile. It seems that if the ions are not magnetized, then the off-axially produced additional plasma is not confined and the density profile retains the on-axis peak nature. The present experiment successfully demonstrates how the knowledge of the ion magnetization together with tail electrons significantly contributes to the design of an efficient helicon plasma based thruster.

  8. Density profile and cholesterol concentration of serum lipoproteins in experimental animals and human subjects on hypercholesterolaemic diets

    NARCIS (Netherlands)

    Beynen, A.C.; Terpstra, A.H.M.

    1984-01-01

    1. 1. The density profile of Sudan black stained serum lipoproteins was studied in human subjects and various animal species on diets supplemented with cholesterol. 2. 2. In the animals studied (rabbits, calves, mice, chickens, rats and guinea-pigs), the feeding of cholesterol resulted in an

  9. Expression profiling on high-density DNA grids to detect novel targets in dendritic cells

    International Nuclear Information System (INIS)

    Weissmann, M.

    2000-10-01

    Gene expression analyzes on a large scale using DNA microarrays is a novel approach to study transcription of thousands of genes in parallel. By comparing gene expression profiles of different cell-types and of cells in different activation, novel regulatory networks will be identified that are unique to a cell-type and hence, important in its biological function. Among the differentially expressed genes many novel drug targets will be found. The Genetic department of the Novartis Research Institute was following this approach to identify novel genes, which are critical in the antigen presenting function of DCs and could become promising drug targets. Drugs that modulate effector functions of DCs towards induction of energy or tolerance in T-cells could be useful in the treatment of chronic inflammatory or autoimmune diseases. By using specific robotics equipment high-density cDNA grids on nylon membranes have been produced for hybridizations with various radioactive labeled DNA probes. By our format, based on 384 well plates and limited by the resolution power of our current image analysis software, 27.648 cDNA clones, bacterial colonies or pure DNA, were spotted on one filter. For RNA profiling, we generated filters containing a collection of genes expressed in peripheral blood DCs or monocytes and characterized by oligonucleotide fingerprinting (ONF) as being differentially expressed. The gene collection contained many unknown genes. Sequence analysis of to date 18.000 cDNA clones led to an estimate of 5.000 non-redundant genes being represented in the collection. 10 % of them are either completely unknown or homologous to rare ESTs (expressed sequence tags) in the public EST database. These clones occurred predominantly in small fingerprint clusters and were therefore assumed to be rarely expressed in DCs or monocytes. Some of those genes may become novel drug targets if their expression is DC specific or induced by external stimuli driving DCs into

  10. Modes in a nonneutral plasma column of finite length

    International Nuclear Information System (INIS)

    Rasband, S. Neil; Spencer, Ross L.

    2002-01-01

    A Galerkin, finite-element, nonuniform mesh computation of the mode equation for waves in a non-neutral plasma of finite length in a Cold-Fluid model gives an accurate calculation of the mode eigenfrequencies and eigenfunctions. We report on studies of the following: (1) finite-length Trivelpiece-Gould modes with flat-top and realistic density profiles, (2) finite-length diocotron modes with flat density profiles. We compare with the frequency equation of Fine and Driscoll [Phys Plasmas 5, 601 (1998)

  11. The predominant effect of stroke length on velocity profiles at the exit of axisymmetric synthetic jet actuators

    Czech Academy of Sciences Publication Activity Database

    Kordík, Jozef; Trávníček, Zdeněk; Timchenko, V.; Ismail, N.A.

    2017-01-01

    Roč. 66, August (2017), s. 197-208 ISSN 0142-727X R&D Projects: GA ČR(CZ) GA16-16596S Institutional support: RVO:61388998 Keywords : synthetic jet * stroke length * reynolds number Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.873, year: 2016 http://www.sciencedirect.com/science/article/pii/S0142727X17300073

  12. Improved density profile measurements in the C-2U advanced beam-driven Field-Reversed Configuration (FRC) plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Beall, M., E-mail: mbeall@trialphaenergy.com; Deng, B. H.; Gota, H. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    In the prior C-2 experiment, electron density was measured using a two-color 6-chord CO{sub 2}/HeNe interferometer. Analysis shows that high-frequency common mode phase noise can be reduced by a factor of 3 by constructing a reference chord. In the system upgrade from C-2 to C-2U a 4-chord far-infrared laser interferometer was developed, which demonstrated superior sensitivity (1 × 10{sup 16} m{sup −2} at >1 MHz bandwidth) and solved the under spatial sampling issue of the C-2 interferometer system. Improved density-profile measurement results are presented in this paper, including evidence of fast-ion modified density profile and stabilization of the n = 1 plasma wobble mode.

  13. Phase Behavior and Evaporation Profile of Tween 20 - Eugenol System. Effect of Different Alkane Chain Length and Solvent System

    International Nuclear Information System (INIS)

    Kassim, A.; Lim, W.H.; Kuangl, D.; Rusmawati, W.W.M.; Abdullah, A.H.; Teoh, S.P.

    2003-01-01

    The isotropic region of Tween 20/eugenol/n-alkane in aqueous systems was determined. The solubilisation trend of isotropic solution formed in the presence of eugenol was studied as a function of different alkyl chain length of n-alkane. The solubility of solvent in surfactant solution is dependent on their molecular polarity. An increase in n-alkane chain length (lower polarity) lead to smaller isotropic region which will affect the surfactant partitioning between the interface, the oil phase and the aqueous phase of the microemulsion as the oil chain length is varied. The changes of evaporation behaviour were affected strongly by the types of phases existed in the systems. The increment of n-alkane and water content led to higher evaporation rate. But the formation of w/o microemulsion would lower the evaporation rate because water molecules were trapped in the core of aggregates. In solubilisation system, evaporation rate is dependent on the solvent content and the interaction between Tween 20 and solvent molecules in the mixed composition. (author)

  14. A decentralised model of psychiatric care: Profile, length of stay and outcome of mental healthcare users admitted to a district-level public hospital in the Western Cape

    Directory of Open Access Journals (Sweden)

    Eileen Thomas

    2015-02-01

    Full Text Available Background. There is a lack of studies assessing the profile and outcome of psychiatric patients at entry-level public hospitals that are prescribed by the Mental Health Care Act to provide a decentralised model of psychiatric care. Objective. To assess the demographic and clinical profile as well as length of stay and outcomes of mental healthcare users admitted to a district-level public hospital in the Western Cape.  Method. Demographic data, clinical diagnosis, length of stay, referral profile and outcomes of patients (N=487 admitted to Helderberg Hospital during the period 1 January 2011 - 31 December 2011 were collected.  Results. Psychotic disorders were the most prevalent (n=287, 59% diagnoses, while 228 (47% of admission episodes had comorbid/secondary diagnoses. Substance use disorders were present in 184 (38% of admission episodes, 37 (57% of readmissions and 19 (61% of abscondments. Most admission episodes (n=372, 76% were discharged without referral to specialist/tertiary care.  Conclusion. Methamphetamine use places a significant burden on the provision of mental healthcare services at entry-level care. Recommendations for improving service delivery at this district-level public hospital are provided.

  15. THE INITIAL MASS FUNCTION AND THE SURFACE DENSITY PROFILE OF NGC 6231

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Hwankyung [Department of Astronomy and Space Science, Sejong University, 98, Kunja-dong, Kwangjin-gu, Seoul 143-747 (Korea, Republic of); Sana, Hugues [Astronomical Institute ' Anton Pannekeok' , Amsterdam University, Science Park 904, 1098-XH Amsterdam (Netherlands); Bessell, Michael S., E-mail: sungh@sejong.ac.kr, E-mail: H.Sana@uva.nl, E-mail: bessell@mso.anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, MSO, Cotter Road, Weston, ACT 2611 (Australia)

    2013-02-01

    We have performed new wide-field photometry of the young open cluster NGC 6231 to study the shape of the initial mass function (IMF) and mass segregation. We also investigated the reddening law toward NGC 6231 from optical to mid-infrared color excess ratios, and found that the total-to-selective extinction ratio is R{sub V} = 3.2, which is very close to the normal value. But many early-type stars in the cluster center show large color excess ratios. We derived the surface density profiles of four member groups, and found that they reach the surface density of field stars at about 10', regardless of stellar mass. The IMF of NGC 6231 is derived for the mass range 0.8-45 M{sub Sun }. The slope of the IMF of NGC 6231 ({Gamma} = -1.1 {+-} 0.1) is slightly shallower than the canonical value, but the difference is marginal. In addition, the mass function varies systematically, and is a strong function of radius-it is very shallow at the center, and very steep at the outer ring suggesting the cluster is mass segregated. We confirm the mass segregation for the massive stars (m {approx}> 8 M{sub Sun }) by a minimum spanning tree analysis. Using a Monte Carlo method, we estimate the total mass of NGC 6231 to be about 2.6 ({+-} 0.6) Multiplication-Sign 10{sup 3} M{sub Sun }. We constrain the age of NGC 6231 by comparison with evolutionary isochrones. The age of the low-mass stars ranges from 1 to 7 Myr with a slight peak at 3 Myr. However, the age of the high-mass stars depends on the adopted models and is 3.5 {+-} 0.5 Myr from the non-rotating or moderately rotating models of Brott et al. as well as the non-rotating models of Ekstroem et al. But the age is 4.0-7.0 Myr if the rotating models of Ekstroem et al. are adopted. This latter age is in excellent agreement with the timescale of ejection of the high-mass runaway star HD 153919 from NGC 6231, albeit the younger age cannot be entirely excluded.

  16. Reconstruction of intra-bundle fission density profile during a postulated LOCA in a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, D. [Oak Ridge National Laboratory (United States); Rahnema, F. [Georgia Inst. of Technology (United States); Nuclear and Radiological Engineering/Medical Physics Programs, George W. Woodruff School, Georgia Inst. of Technology, Atlanta, GA 30332-0405 (United States); Serghiuta, D. [Canadian Nuclear Safety Commission (Canada); Sarsour, H.; Turinsky, P. J. [North Carolina State Univ. (United States); Stamm' ler, R. [Studsvik Scandpower AS (Norway)

    2006-07-01

    In this paper, results related to the reconstruction of intra-bundle fission density profile for a 37-pin CANDU-6 bundle with the highest enthalpy deposition during a postulated large LOCA stagnation break in a Bruce B core are presented. Bruce B is a nuclear power plant in Kincardine, Ontario (Canada)), on the shores of Lake Huron with 4 CANDU reactors that are rated at about 750 MWe. The reconstruction of the fuel pin fission densities is based on steady-state, three-dimensional simulations with the Monte Carlo code MCNP for a subset of 27 out of 69 time steps during the first two seconds of the power pulse predicted for the fuel bundle at core location V13/8. Two-group cross section data libraries are generated for MCNP at each time step by the lattice depletion neutron transport code HELIOS-1.7. To include the effect of the surrounding core environment, the calculations are performed with time-dependent albedo boundary conditions inferred from a full core simulation of the transient by the nodal diffusion code NESTLE with HELIOS homogenized cross-sections. It is found that the local peaking factor (LPF) in the outer ring varies during the transient, but never exceeds its value before the transient. Inclusion of the core environment increases the LPF in the outer ring. For the analyzed case, the increase is 0.72% with a relative error of 0.01% for the LPF before the transient and 0.55% (with a relative error of 0.01%) for the maximum average LPF during the transient. The latter is based on only four selected transient time points. Note that the immediate environment of the 'hot bundle' does not contain any reactivity devices or other perturbing factors. As a result, the increases observed in the LPF in the outer ring may not be representative of the situations in which 'other' core environment perturbing factors are present. To determine the effect of these factors on the LPF, further analyses of a bundle in the proximity of control devices

  17. Restricted primitive model for electrical double layers: modified HNC theory of density profiles and Monte Carlo study of differential capacitance

    International Nuclear Information System (INIS)

    Ballone, P.; Pastore, G.; Tosi, M.P.

    1986-02-01

    Interfacial properties of an ionic fluid next to a uniformly charged planar wall are studied in the restricted primitive model by both theoretical and Monte Carlo methods. The system is a 1:1 fluid of equisized charged hard spheres in a state appropriate to 1M aqueous electrolyte solutions. The interfacial density profiles of counterions and coions are evaluated by extending the hypernetted chain approximation (HNC) to include the leading bridge diagrams for the wall-ion correlations. The theoretical results compare well with those of grand canonical Monte Carlo computations of Torrie and Valleau over the whole range of surface charge density considered by these authors, thus resolving the earlier disagreement between statistical mechanical theories and simulation data at large charge densities. In view of the importance of the model as a testing ground for theories of the diffuse layer, the Monte Carlo calculations are tested by considering alternative choices for the basic simulation cell and are extended so as to allow an evaluation of the differential capacitance of the model interface by two independent methods. These involve numerical differentiation of the mean potential drop as a function of the surface charge density or alternatively an appropriate use of a fluctuation theory formula for the capacitance. The results of these two Monte Carlo approaches consistently indicate an initially smooth increase of the diffuse layer capacitance followed by structure at large charge densities, this behaviour being connected with layering of counterions as already revealed in the density profiles reported by Torrie and Valleau. (author)

  18. Implementation of reflectometry as a standard density profile diagnostic on DIII-D

    International Nuclear Information System (INIS)

    Zeng, L.; Doyle, E. J.; Luce, T. C.; Peebles, W. A.

    2001-01-01

    The profile reflectometer system on the DIII-D tokamak has been significantly upgraded in order to improve time coverage, data quality, and profile availability. The performance of the reflectometer system, which utilizes continuous frequency modulated (FMCW) radar techniques, has been improved as follows: First, a new PC-based data acquisition system has been installed, providing higher data sampling rates and larger memory depth. The higher sampling rate enables use of faster frequency sweeps of the FMCW microwave source, improving time resolution, and increasing profile accuracy. The larger memory depth enables longer data records, so that profiles can now be obtained throughout 5 s discharges at 100 Hz profile measurement rates, while continuous sampling at 10 MHz is available for 1 s for high time resolution physics studies. Second, an initial automated between-shots profile analysis capability is now available. Third, availability of the profiles to end users has been significantly improved

  19. The effect of different temperature profiles upon the length and crystallinity of vertically-aligned multi-walled carbon nanotubes.

    Science.gov (United States)

    Yun, Jongju; Lee, Cheesung; Zheng, Qing; Baik, Seunghyun

    2012-08-01

    We synthesized vertically-aligned multi-walled carbon nanotubes with an inner diameter of 1.6-7.5 nm and stack height of 80-28600 microm by chemical vapor deposition. The effects of synthesis conditions such as substrate position in the tube furnace, maximum temperature, temperature increasing rate and synthesis duration on the structure of nanotubes were investigated. It was found that slightly faster temperature increase rate resulted in significantly longer length, larger diameter and more defects of nanotubes. Structural parameters such as inner, outer diameters, wall thickness and defects were investigated using transmission electron microscopy and Raman spectroscopy.

  20. Design of an O-mode frequency modulated reflectometry system for the measurement of Alborz Tokamak plasma density profile

    Energy Technology Data Exchange (ETDEWEB)

    Koohestani, Saeideh [Department of Energy Engineering and physics, Amirkabir University of Technology, Tehran, 15875-4413, Islamic Republic of Iran (Iran, Islamic Republic of); Amrollahi, Reza, E-mail: amrollahi@aut.ac.ir [Department of Energy Engineering and physics, Amirkabir University of Technology, Tehran, 15875-4413, Islamic Republic of Iran (Iran, Islamic Republic of); Moradi, Gholamreza [Department of Electrical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Islamic Republic of Iran (Iran, Islamic Republic of)

    2016-12-15

    Reflectometry is a common method for plasma diagnostic, in which microwaves are launched into the plasma and reflected at the critical surfaces. Comparing the reflected microwave signals with the launched waves would give rise to the plasma density profiles. In the present study, an ordinary mode (O-mode) frequency modulation (FM) reflectometry system has been designed for the electron density profile measurement of the Alborz Tokamak plasma. This system has been considered to operate at K-band (18–26.5 GHz) frequency range and scan the frequency band between 18 to 26 GHz in 40 μS. The density profile from major radius r = 47.9–51.55 cm can be measured in Alborz Tokamak plasma. Based on the Alborz Tokamak operational conditions, the characteristic frequencies, and some dimensional limitations, all parts of reflectometer have been designed so that an appropriate efficiency with minimum attenuation, especially in transmitting/receiving system would be achieved. A dual antenna and an oversized waveguide of X-band (8–12 GHz) for transmitting and receiving purposes and a balanced detector for absolute phase determination have been utilized. The details of the Alborz Tokamak FM reflectometry components focusing on the antenna and waveguide design and mounting are described in this paper. Additionally, the procedure of plasma profile reconstruction using the system output signal is discussed. This system uses signal phase shift to determine the position of the cutoff layer.

  1. Prospects for steady-state tokamak reactor operation through feedback control of the current density profile

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, D

    1994-12-31

    A brief overview of the most relevant experiments on current profile modifications, strong improvements with respect to the usual L-mode scaling laws and Troyon beta limit is presented, as relevant issues for most tokamaks. Practical means and scenarios for producing and maintaining the optimum current profiles in the various phases of the thermonuclear discharge (profile formation, current ramp-up, burn phase) are proposed. (author). 34 refs., 3 figs.

  2. Measurements of Pfirsch-Schlueter current and pressure profile for the high density ECH plasmas in Heliotron DR

    International Nuclear Information System (INIS)

    Morimoto, S.; Yanagi, N.; Nakasuga, M.; Obiki, T.; Iiyoshi, A.; Uo, K.

    1988-01-01

    The Pfirsch-Schlueter current and pressure profiles are estimated from magnetic measurements for high density electron cyclotron heating (ECH) plasmas (n-bar e =(2-3)x10 13 cm -3 , T e0 =200-400 eV, (β) 0 (1-(r/a) 2 ) s , is about two in macroscopically stable plasmas. A fast loss of plasma energy from the centre to the periphery is observed during the onset of the MHD instability. This method of measuring the pressure profile shape is simple and useful for heliotron type devices. (author). 20 refs, 8 figs, 1 tab

  3. Profiles of plasma parameters and density of negative hydrogen ions by laser detachment measurements in RF-driven ion sources

    International Nuclear Information System (INIS)

    Christ-Koch, Sina

    2007-01-01

    This work shows the application of the Laserdetachment method for spatially resolved measurements of negative Hydrogen/Deuterium ion density. It was applied on a high power low pressure RF-driven ion source. The Laser detachment method is based on the measurement of electron currents on a positively biased Langmuir probe before and during/after a laser pulse. The density ratio of negative ions to electrons can be derived from the ratio of currents to the probe. The absolute density of negative ions can be obtained when the electron density is measured with the standard Langmuir probe setup. Measurements with the Langmuir probe additionally yield information about the floating and plasma potential, the electron temperature and the density of positive ions. The Laser detachment setup had to be adapted to the special conditions of the RF-driven source. In particular the existence of RF fields (1 MHz), high source potential (-20 kV), magnetic fields (∝ 7 mT) and caesium inside the source had to be considered. The density of negative ions could be identified in the range of n(H - )=1.10 17 1/m 3 , which is in the same order of magnitude as the electron density. Only the application of the Laser detachment method with the Langmuir probe measurements will yield spatially resolved plasma parameters and H- density profiles. The influence of diverse external parameters, such as pressure, RF-power, magnetic fields on the plasma parameters and their profiles were studied and explained. Hence, the measurements lead to a detailed understanding of the processes inside the source. (orig.)

  4. Short-length and high-density TiO{sub 2} nanorod arrays for the efficient charge separation interface in perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Guannan; Shi, Chengwu, E-mail: shicw506@foxmail.com; Zhang, Zhengguo; Li, Nannan; Li, Long

    2017-05-15

    The TiO{sub 2} nanorod arrays with the length of 70 nm, the diameter of 20 nm, and the areal density of 1000 µm{sup −2} were firstly prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 60 min. Over-500 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layers were successfully obtained by sequential deposition routes using 1.7 M PbI{sub 2}·DMSO complex precursor solution and 0.465 M isopropanol solution of the methylammonium halide mixture with the molar ratio of CH{sub 3}NH{sub 3}I/CH{sub 3}NH{sub 3}Br=85/15. The perovskite solar cells based on the TiO{sub 2} nanorod array and 560 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer exhibited the best photoelectric conversion efficiency (PCE) of 15.93%, while the corresponding planar perovskite solar cells without the TiO{sub 2} nanorod array and with 530 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer gave the best PCE of 12.82% at the relative humidity of 50–54%. - Graphical abstract: The TiO{sub 2} nanorod arrays with the length of 70 nm, the diameter of 20 nm, and the areal density of 1000 µm{sup −2} were prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 60 min. The optimal annealing temperature of TiO{sub 2} nanorod arrays was 450 °C. The perovskite solar cells based on the TiO{sub 2} nanorod array and 560 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer exhibited the best photoelectric conversion efficiency (PCE) of 15.93% and the average PCE of 13.41±2.52%, while the corresponding planar perovskite solar cells without the TiO{sub 2} nanorod array and with 530 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer gave the best PCE of 12.82% and the average PCE of 10.54±2.28% at the relative humidity of 50–54%. - Highlights:

  5. Short-length and high-density TiO2 nanorod arrays for the efficient charge separation interface in perovskite solar cells

    International Nuclear Information System (INIS)

    Xiao, Guannan; Shi, Chengwu; Zhang, Zhengguo; Li, Nannan; Li, Long

    2017-01-01

    The TiO 2 nanorod arrays with the length of 70 nm, the diameter of 20 nm, and the areal density of 1000 µm −2 were firstly prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 60 min. Over-500 nm-thickness CH 3 NH 3 PbI 3−x Br x absorber layers were successfully obtained by sequential deposition routes using 1.7 M PbI 2 ·DMSO complex precursor solution and 0.465 M isopropanol solution of the methylammonium halide mixture with the molar ratio of CH 3 NH 3 I/CH 3 NH 3 Br=85/15. The perovskite solar cells based on the TiO 2 nanorod array and 560 nm-thickness CH 3 NH 3 PbI 3−x Br x absorber layer exhibited the best photoelectric conversion efficiency (PCE) of 15.93%, while the corresponding planar perovskite solar cells without the TiO 2 nanorod array and with 530 nm-thickness CH 3 NH 3 PbI 3−x Br x absorber layer gave the best PCE of 12.82% at the relative humidity of 50–54%. - Graphical abstract: The TiO 2 nanorod arrays with the length of 70 nm, the diameter of 20 nm, and the areal density of 1000 µm −2 were prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 60 min. The optimal annealing temperature of TiO 2 nanorod arrays was 450 °C. The perovskite solar cells based on the TiO 2 nanorod array and 560 nm-thickness CH 3 NH 3 PbI 3−x Br x absorber layer exhibited the best photoelectric conversion efficiency (PCE) of 15.93% and the average PCE of 13.41±2.52%, while the corresponding planar perovskite solar cells without the TiO 2 nanorod array and with 530 nm-thickness CH 3 NH 3 PbI 3−x Br x absorber layer gave the best PCE of 12.82% and the average PCE of 10.54±2.28% at the relative humidity of 50–54%. - Highlights: • Preparation of TiO 2 nanorod array with length of 70 nm and density of 1000 µm −2 . • Influence of annealing temperatures on the -OH content of Ti

  6. Density and temperature profile modifications with electron cyclotron power injection in quiescent double barrier discharges on DIII-D

    International Nuclear Information System (INIS)

    Casper, T A; Burrell, K H; Doyle, E J; Gohil, P; Lasnier, C J; Leonard, A W; Moller, J M; Osborne, T H; Snyder, P B; Thomas, D M; Weiland, J; West, W P

    2006-01-01

    Quiescent double barrier (QDB) conditions often form when an internal transport barrier is created with high-power neutral-beam injection into a quiescent H-mode (QH) plasma. These QH-modes offer an attractive, high-performance operating scenario for burning plasma experiments due to their quasi-stationarity and lack of edge localized modes. Our initial experiments and modelling using ECH/ECCD in QDB shots were designed to control the current profile and, indeed, we have observed a strong dependence on the q-profile when EC-power is used inside the core transport barrier region. While strong electron heating is observed with EC power injection, we also observe a drop in the other core parameters, namely ion temperature and rotation, electron density and impurity concentration. At onset and termination of the EC pulse, dynamically changing conditions are induced that provide a rapid evolution of T e /T i profiles accessible with 0.3 e /T i ) axis e /T i ratio as the ion temperature and density profiles flatten with this change in transport. The change in transport is consistent with a destabilization of ITG turbulence as inferred from the reduction of the stability threshold due to the change in T e /T i

  7. High-Latitude Topside Ionospheric Vertical Electron-Density-Profile Changes in Response to Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2015-01-01

    Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.

  8. FULL-LENGTH PEPTIDE ASSAY OF ANTIGENIC PROFILE OF ENVELOPE PROTEINS FROM SIBERIAN ISOLATES OF HEPATITIS C VIRUS

    Directory of Open Access Journals (Sweden)

    A. A. Grazhdantseva

    2010-01-01

    Full Text Available Antigenic profiles of envelope glycoproteins of hepatitis C virus presented by three genotypes 1b, 2a/2c and 3a, which are most widespread in the territory of Russia and, in particular, in Novosibirsk, were studied using a panel of overlapping synthetic peptides. It was shown that highly immunogenic peptide epitopes of Е1 and Е2 proteins common for all HCV genotypes, are located in amino acid positions 250-260, 315-325 (Е1 protein, 390-400 (hypervariable region 1, 430-440, and 680-690 (Е2 protein. The greatest inter-genotypic differences were recorded in positions 280-290, 410-430 and 520-540. A novel antigenic determinant was detected in the region of aa 280-290 of the Е1 protein which was typical only for HCV 2a/2c genotype. A broad variation in the boundaries for the most epitopes suggests a high variability of the Е1 and Е2 viral proteins; however, a similar repertoire of antibodies induced by different HCV genotypes indicates to an opportunity of designing a new generation of cross-reactive HCV vaccines based on mapping of the E1 and E2 antigenic regions.

  9. Space charge profiles in low density polyethylene samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Bambery, K.R.; Fleming, R.J.; Holbøll, Joachim

    2001-01-01

    .5×107 V m-1. Current density was also measured as a function of temperature and field. Space charge due exclusively to the temperature gradient was detected, with density of order 0.01 C m-3. The activation energy associated with the transport of electrons through the bulk was calculated as 0.09 e...

  10. Edge electron density profiles and fluctuations measured by two-dimensional beam emission spectroscopy in the KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Y. U., E-mail: yunam@nfri.re.kr; Wi, H. M. [National Fusion Research Institute, Daejeon (Korea, Republic of); Zoletnik, S.; Lampert, M. [Wigner RCP Institute for Particle and Nuclear Physics, Budapest (Hungary); Kovácsik, Ákos [Institute of Nuclear Techniques, Budapest Technical University, Budapest (Hungary)

    2014-11-15

    Beam emission spectroscopy (BES) system in Korea Superconducting Tokamak Advanced Research (KSTAR) has recently been upgraded. The background intensity was reduced from 30% to 2% by suppressing the stray lights. This allows acquisition of the relative electron density profiles on the plasma edge without background subtraction from the beam power modulation signals. The KSTAR BES system has its spatial resolution of 1 cm, the temporal resolution of 2 MHz, and a total 32 channel (8 radial × 4 poloidal) avalanche photo diode array. Most measurements were done on the plasma edge, r/a ∼ 0.9, with 8 cm radial measurement width that covers the pedestal range. High speed density profile measurements reveal temporal behaviors of fast transient events, such as the precursors of edge localized modes and the transitions between confinement modes. Low background level also allows analysis of the edge density fluctuation patterns with reduced background fluctuations. Propagation of the density structures can be investigated by comparing the phase delays between the spatially distributed channels.

  11. In depth fusion flame spreading with a deuterium—tritium plane fuel density profile for plasma block ignition

    International Nuclear Information System (INIS)

    Malekynia, B.; Razavipour, S. S.

    2012-01-01

    Solid-state fuel ignition was given by Chu and Bobin according to the hydrodynamic theory at x = 0 qualitatively. A high threshold energy flux density, i.e., E* = 4.3 × 10 12 J/m 2 , has been reached. Recently, fast ignition by employing clean petawatt—picosecond laser pulses was performed. The anomalous phenomena were observed to be based on suppression of prepulses. The accelerated plasma block was used to ignite deuterium—tritium fuel at solid-state density. The detailed analysis of the thermonuclear wave propagation was investigated. Also the fusion conditions at x ≠ 0 layers were clarified by exactly solving hydrodynamic equations for plasma block ignition. In this paper, the applied physical mechanisms are determined for nonlinear force laser driven plasma blocks, thermonuclear reaction, heat transfer, electron—ion equilibration, stopping power of alpha particles, bremsstrahlung, expansion, density dependence, and fluid dynamics. New ignition conditions may be obtained by using temperature equations, including the density profile that is obtained by the continuity equation and expansion velocity. The density is only a function of x and independent of time. The ignition energy flux density, E* t , for the x ≠ 0 layers is 1.95 × 10 12 J/m 2 . Thus threshold ignition energy in comparison with that at x = 0 layers would be reduced to less than 50 percent. (physics of gases, plasmas, and electric discharges)

  12. Determination of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite

    International Nuclear Information System (INIS)

    Berecz, Tibor; Jenei, Péter; Csóré, András; Lábár, János; Gubicza, Jenő

    2016-01-01

    The microstructure and the dislocation density in as-quenched ferrous lath martensite were studied by different methods. The blocks, packets and variants formed due to martensitic transformation were identified and their sizes were determined by electron backscatter diffraction (EBSD). Concomitant transmission electron microscopy (TEM) investigation revealed that the laths contain subgrains with the size between 50 and 100 nm. A novel evaluation procedure of EBSD images was elaborated for the determination of the density and the space distribution of geometrically necessary dislocations from the misorientation distribution. The total dislocation density obtained by X-ray diffraction line profile analysis was in good agreement with the value determined by EBSD, indicating that the majority of dislocations formed due to martensitic transformation during quenching are geometrically necessary dislocations.

  13. Model-based Optimization and Feedback Control of the Current Density Profile Evolution in NSTX-U

    Science.gov (United States)

    Ilhan, Zeki Okan

    Nuclear fusion research is a highly challenging, multidisciplinary field seeking contributions from both plasma physics and multiple engineering areas. As an application of plasma control engineering, this dissertation mainly explores methods to control the current density profile evolution within the National Spherical Torus eXperiment-Upgrade (NSTX-U), which is a substantial upgrade based on the NSTX device, which is located in Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ. Active control of the toroidal current density profile is among those plasma control milestones that the NSTX-U program must achieve to realize its next-step operational goals, which are characterized by high-performance, long-pulse, MHD-stable plasma operation with neutral beam heating. Therefore, the aim of this work is to develop model-based, feedforward and feedback controllers that can enable time regulation of the current density profile in NSTX-U by actuating the total plasma current, electron density, and the powers of the individual neutral beam injectors. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards control design is the development of a physics-based, control-oriented model for the current profile evolution in NSTX-U in response to non-inductive current drives and heating systems. Numerical simulations of the proposed control-oriented model show qualitative agreement with the high-fidelity physics code TRANSP. The next step is to utilize the proposed control-oriented model to design an open-loop actuator trajectory optimizer. Given a desired operating state, the optimizer produces the actuator trajectories that can steer the plasma to such state. The objective of the feedforward control design is to provide a more systematic approach to advanced scenario planning in NSTX-U since the development of such scenarios is conventionally carried out experimentally by modifying the tokamak's actuator

  14. Modelling of the energy density deposition profiles of ultrashort laser pulses focused in optical media

    International Nuclear Information System (INIS)

    Vidal, F; Lavertu, P-L; Bigaouette, N; Moore, F; Brunette, I; Giguere, D; Kieffer, J-C; Olivie, G; Ozaki, T

    2007-01-01

    The propagation of ultrashort laser pulses in dense optical media is investigated theoretically by solving numerically the nonlinear Schroedinger equation. It is shown that the maximum energy density deposition as a function of the pulse energy presents a well-defined threshold that increases with the pulse duration. As a consequence of plasma defocusing, the maximum energy density deposition is generally smaller and the size of the energy deposition zone is generally larger for shorter pulses. Nevertheless, significant values of the energy density deposition can be obtained near threshold, i.e., at lower energy than for longer pulses

  15. Simulated X-ray galaxy clusters at the virial radius: Slopes of the gas density, temperature and surface brightness profiles

    Science.gov (United States)

    Roncarelli, M.; Ettori, S.; Dolag, K.; Moscardini, L.; Borgani, S.; Murante, G.

    2006-12-01

    Using a set of hydrodynamical simulations of nine galaxy clusters with masses in the range 1.5 × 1014 matter of tension between simulated and observed properties, and up to the virial radius and beyond, where present observations are unable to provide any constraints. We have modelled the radial profiles between 0.3R200 and 3R200 with power laws with one index, two indexes and a rolling index. The simulated temperature and [0.5-2] keV surface brightness profiles well reproduce the observed behaviours outside the core. The shape of all these profiles in the radial range considered depends mainly on the activity of the gravitational collapse, with no significant difference among models including extraphysics. The profiles steepen in the outskirts, with the slope of the power-law fit that changes from -2.5 to -3.4 in the gas density, from -0.5 to -1.8 in the gas temperature and from -3.5 to -5.0 in the X-ray soft surface brightness. We predict that the gas density, temperature and [0.5-2] keV surface brightness values at R200 are, on average, 0.05, 0.60, 0.008 times the measured values at 0.3R200. At 2R200, these values decrease by an order of magnitude in the gas density and surface brightness, by a factor of 2 in the temperature, putting stringent limits on the detectable properties of the intracluster-medium (ICM) in the virial regions.

  16. Experimental study of a swept reflectometer with a single antenna for plasma density profile measurement

    International Nuclear Information System (INIS)

    Calderon, M.A.G.; Simonet, F.

    1984-12-01

    The feasibility of a swept microwave reflectometer, with one antenna only, for plasma electron density measurement is studied. Experimental results obtained in the laboratory by simulating the plasma with a metallic mirror are presented

  17. Density functional theory study of silodithiophene thiophenepyrrolopyrroledion-based small molecules: The effect of alkyl side chain length in electron donor materials

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong Kyun; Yeo, Hak; Kwak, Kyung Won [Dept. of Chemistry, Chung-Ang University, Seoul (Korea, Republic of); Yoon, Young Woon; Kim, Bong Soo [Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Kyung Koo [Dept. of Chemistry, Kunsan National University, Gunsan (Korea, Republic of)

    2015-02-15

    Push–pull small molecules are promising electron-donor materials for organic solar cells. Thus, precise prediction of their electronic structures is of paramount importance to control the optical and electrical properties of the solar cells. Various types of alkyl chains are usually introduced to increase solubility and modify the morphology of the resulting molecular films. Here, using density functional theory (DFT) and time-dependent DFT (TD-DFT), we report the precise effect of increasing the length of the alkyl chain on the electronic structure of an electron donor molecule 6,60-((4,4-dialkyl-4H-silolo[3,2-b:4,5-b′]-dithiophene-2,6-diyl) bis(thiophene-5,2-diyl))bis(2,5-alkyl-3-(thiophen-2-yl) -2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (DTS1TDPP). Alkyl groups were attached to the bridging position (silicon atom) of the fused rings and nitrogen atom of the pyrrolopyrroledione groups. We demonstrate that the alkyl groups do not perturb the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels, π-delocalized backbone structure, and UV–Vis absorption spectrum when they are placed at the least steric effect positions.

  18. Development of high-polarization Fe/Ge neutron polarizing supermirror: Possibility of fine-tuning of scattering length density in ion beam sputtering

    Science.gov (United States)

    Maruyama, R.; Yamazaki, D.; Akutsu, K.; Hanashima, T.; Miyata, N.; Aoki, H.; Takeda, M.; Soyama, K.

    2018-04-01

    The multilayer structure of Fe/Si and Fe/Ge systems fabricated by ion beam sputtering (IBS) was investigated using X-ray and polarized neutron reflectivity measurements and scanning transmission electron microscopy with energy-dispersive X-ray analysis. The obtained result revealed that the incorporation of sputtering gas particles (Ar) in the Ge layer gives rise to a marked reduction in the neutron scattering length density (SLD) and contributes to the SLD contrast between the Fe and Ge layers almost vanishing for spin-down neutrons. Bundesmann et al. (2015) have shown that the implantation of primary Ar ions backscattered at the target is responsible for the incorporation of Ar particles and that the fraction increases with increasing ion incidence angle and increasing polar emission angle. This leads to a possibility of fine-tuning of the SLD for the IBS, which is required to realize a high polarization efficiency of a neutron polarizing supermirror. Fe/Ge polarizing supermirror with m = 5 fabricated under the same condition showed a spin-up reflectivity of 0.70 at the critical momentum transfer. The polarization was higher than 0.985 for the qz range where the correction for the polarization inefficiencies of the beamline works properly. The result of the polarized neutron reflectivity measurement suggests that the "magnetically-dead" layers formed at both sides of the Fe layer, together with the SLD contrast, play a critical role in determining the polarization performance of a polarizing supermirror.

  19. Sub-millisecond electron density profile measurement at the JET tokamak with the fast lithium beam emission spectroscopy system

    Science.gov (United States)

    Réfy, D. I.; Brix, M.; Gomes, R.; Tál, B.; Zoletnik, S.; Dunai, D.; Kocsis, G.; Kálvin, S.; Szabolics, T.; JET Contributors

    2018-04-01

    Diagnostic alkali atom (e.g., lithium) beams are routinely used to diagnose magnetically confined plasmas, namely, to measure the plasma electron density profile in the edge and the scrape off layer region. A light splitting optics system was installed into the observation system of the lithium beam emission spectroscopy diagnostic at the Joint European Torus (JET) tokamak, which allows simultaneous measurement of the beam light emission with a spectrometer and a fast avalanche photodiode (APD) camera. The spectrometer measurement allows density profile reconstruction with ˜10 ms time resolution, absolute position calculation from the Doppler shift, spectral background subtraction as well as relative intensity calibration of the channels for each discharge. The APD system is capable of measuring light intensities on the microsecond time scale. However ˜100 μs integration is needed to have an acceptable signal to noise ratio due to moderate light levels. Fast modulation of the beam up to 30 kHz is implemented which allows background subtraction on the 100 μs time scale. The measurement covers the 0.9 background subtraction, the relative calibration, and the comprehensive error calculation, runs a Bayesian density reconstruction code, and loads results to the JET database. The paper demonstrates the capability of the APD system by analyzing fast phenomena like pellet injection and edge localized modes.

  20. Modeling of morpho-functional profile of sportsmen of high qualification who specialize in swimming in way butterfly stroke at distances of various lengths.

    Directory of Open Access Journals (Sweden)

    Olga Pilipko

    2017-02-01

    Full Text Available Purpose: the development of modern morpho-functional models of sportsmen of high qualification who specialize in swimming in way butterfly stroke at distances of various lengths. Material & Methods: the analysis of scientifically-methodical literature, timekeeping, measurement of morpho-functional indicators with application of private techniques, methods of mathematical statistics. The contingent of the investigated was made by sportsmen who specialized in distances of 50, 100 and 200 meters in way butterfly stroke and had the level of sports qualification: MSU, MSIC. Results: it is established that the morpho-functional profile of the sportsmen specializing in swimming in way butterfly stroke at distances of various length has the features; model morpho-functional characteristics of sportsmen, who act in swimming in way butterfly stroke at distances of 50, 100 and 200 meters, are developed. Conclusions: the definition of compliance of individual characteristics of the sportsman to the morpho-functional status will allow choosing correctly remote specialization of the swimmer, to open his potential opportunities most fully.

  1. Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz

    Science.gov (United States)

    Citrin, J.; Bourdelle, C.; Casson, F. J.; Angioni, C.; Bonanomi, N.; Camenen, Y.; Garbet, X.; Garzotti, L.; Görler, T.; Gürcan, O.; Koechl, F.; Imbeaux, F.; Linder, O.; van de Plassche, K.; Strand, P.; Szepesi, G.; Contributors, JET

    2017-12-01

    Quasilinear turbulent transport models are a successful tool for prediction of core tokamak plasma profiles in many regimes. Their success hinges on the reproduction of local nonlinear gyrokinetic fluxes. We focus on significant progress in the quasilinear gyrokinetic transport model QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036), which employs an approximated solution of the mode structures to significantly speed up computation time compared to full linear gyrokinetic solvers. Optimisation of the dispersion relation solution algorithm within integrated modelling applications leads to flux calculations × {10}6-7 faster than local nonlinear simulations. This allows tractable simulation of flux-driven dynamic profile evolution including all transport channels: ion and electron heat, main particles, impurities, and momentum. Furthermore, QuaLiKiz now includes the impact of rotation and temperature anisotropy induced poloidal asymmetry on heavy impurity transport, important for W-transport applications. Application within the JETTO integrated modelling code results in 1 s of JET plasma simulation within 10 h using 10 CPUs. Simultaneous predictions of core density, temperature, and toroidal rotation profiles for both JET hybrid and baseline experiments are presented, covering both ion and electron turbulence scales. The simulations are successfully compared to measured profiles, with agreement mostly in the 5%-25% range according to standard figures of merit. QuaLiKiz is now open source and available at www.qualikiz.com.

  2. Visualization and analysis of pulsed ion beam energy density profile with infrared imaging

    Science.gov (United States)

    Isakova, Y. I.; Pushkarev, A. I.

    2018-03-01

    Infrared imaging technique was used as a surface temperature-mapping tool to characterize the energy density distribution of intense pulsed ion beams on a thin metal target. The technique enables the measuring of the total ion beam energy and the energy density distribution along the cross section and allows one to optimize the operation of an ion diode and control target irradiation mode. The diagnostics was tested on the TEMP-4M accelerator at TPU, Tomsk, Russia and on the TEMP-6 accelerator at DUT, Dalian, China. The diagnostics was applied in studies of the dynamics of the target cooling in vacuum after irradiation and in the experiments with target ablation. Errors caused by the target ablation and target cooling during measurements have been analyzed. For Fluke Ti10 and Fluke Ti400 infrared cameras, the technique can achieve surface energy density sensitivity of 0.05 J/cm2 and spatial resolution of 1-2 mm. The thermal imaging diagnostics does not require expensive consumed materials. The measurement time does not exceed 0.1 s; therefore, this diagnostics can be used for the prompt evaluation of the energy density distribution of a pulsed ion beam and during automation of the irradiation process.

  3. The improved DGR analytical model of electron density height profile and total electron content in the ionosphere

    OpenAIRE

    Radicella, S. M.; Zhang, M. L.

    1995-01-01

    Tests of the analytical model of the electron density profile originally proposed by G, Di Giovanni and S.M. Radicella (DGR model) have shown the need to introduce improvements in order to obtain a model able to reproduce the ionosphere in a larger spectrum of geophysical and time conditions. The present paper reviews the steps toward such progress and presents the final formulation of the model. It gives also a brief re- view of tests of the improved model done by different authors.

  4. Optimization of E r-density profile for efficient pumping and high signal gain in Erbium-doped fiber amplifiers

    International Nuclear Information System (INIS)

    Arzi, E.; Hassani, A.; Esmaili Seraji, F.

    2000-01-01

    Recently, the Erbium-Doped Fiber Amplifier has been shown to have a great potentiality in Fiber-Optics Communication. A model is suggested for calculating the E r-density profile, using the propagation and rate equations of a homogeneous two-level laser medium in Erbium-Doped Fiber Amplifier, such that efficient pumping and high signal gain is achieved for different fiber waveguide structure. The result of this numerical calculation shows that the gain, compared with the gain of the existing Erbium-Doped Fiber Amplifier, is higher by a factor of 3.5. This model is applicable in all active waveguides and any other dopant as well

  5. The utilization of electronic computers for bone density measurements with iodine 125 profile scanner

    International Nuclear Information System (INIS)

    Reiners, C.

    1974-01-01

    The utilization of electronic computers in the determination of the mineral content in bone with the 125 I profile scanner offers many advantages. The computer considerably lessens intensive work of routine evaluation. It enables the direct calculation of the attenuation coefficients. This means a greater accuracy and correctness of the results compared to the former 'graphical' method, as the approximations are eliminated and reference errors are avoided. (orig./LH) [de

  6. A distribution-free multi-factorial profiler for harvesting information from high-density screenings.

    Science.gov (United States)

    Besseris, George J

    2013-01-01

    Data screening is an indispensable phase in initiating the scientific discovery process. Fractional factorial designs offer quick and economical options for engineering highly-dense structured datasets. Maximum information content is harvested when a selected fractional factorial scheme is driven to saturation while data gathering is suppressed to no replication. A novel multi-factorial profiler is presented that allows screening of saturated-unreplicated designs by decomposing the examined response to its constituent contributions. Partial effects are sliced off systematically from the investigated response to form individual contrasts using simple robust measures. By isolating each time the disturbance attributed solely to a single controlling factor, the Wilcoxon-Mann-Whitney rank stochastics are employed to assign significance. We demonstrate that the proposed profiler possesses its own self-checking mechanism for detecting a potential influence due to fluctuations attributed to the remaining unexplainable error. Main benefits of the method are: 1) easy to grasp, 2) well-explained test-power properties, 3) distribution-free, 4) sparsity-free, 5) calibration-free, 6) simulation-free, 7) easy to implement, and 8) expanded usability to any type and size of multi-factorial screening designs. The method is elucidated with a benchmarked profiling effort for a water filtration process.

  7. A distribution-free multi-factorial profiler for harvesting information from high-density screenings.

    Directory of Open Access Journals (Sweden)

    George J Besseris

    Full Text Available Data screening is an indispensable phase in initiating the scientific discovery process. Fractional factorial designs offer quick and economical options for engineering highly-dense structured datasets. Maximum information content is harvested when a selected fractional factorial scheme is driven to saturation while data gathering is suppressed to no replication. A novel multi-factorial profiler is presented that allows screening of saturated-unreplicated designs by decomposing the examined response to its constituent contributions. Partial effects are sliced off systematically from the investigated response to form individual contrasts using simple robust measures. By isolating each time the disturbance attributed solely to a single controlling factor, the Wilcoxon-Mann-Whitney rank stochastics are employed to assign significance. We demonstrate that the proposed profiler possesses its own self-checking mechanism for detecting a potential influence due to fluctuations attributed to the remaining unexplainable error. Main benefits of the method are: 1 easy to grasp, 2 well-explained test-power properties, 3 distribution-free, 4 sparsity-free, 5 calibration-free, 6 simulation-free, 7 easy to implement, and 8 expanded usability to any type and size of multi-factorial screening designs. The method is elucidated with a benchmarked profiling effort for a water filtration process.

  8. Improvement of Lipid Profile Is Accompanied by Atheroprotective Alterations in High-Density Lipoprotein Composition Upon Tumor Necrosis Factor Blockade A Prospective Cohort Study in Ankylosing Spondylitis

    NARCIS (Netherlands)

    Eijk, van I.C.; Vries, de M.K.; Levels, J.H.M.; Peters, M.J.L.; Huizer, E.E.; Dijkmans, B.A.C.; Horst - Bruinsma, van der I.E.; Hazenberg, B.P.C.; Stadt, van de R.J.; Wolbink, G.; Nurmohamed, M.T.

    2009-01-01

    Objective. Cardiovascular mortality is increased in ankylosing spondylitis (AS), and inflammation plays an important role. Inflammation deteriorates the lipid profile and alters high-density lipoprotein cholesterol (HDL-c) composition, reflected by increased concentrations of serum amyloid A (SAA)

  9. ASSESSMENT OF THE LOCALIZATION OF HYPOCENTERS OF CRUSTAL EARTHQUAKES RELATIVE TO THE DEPTH AND RELIEF OF THE BORDER DENSITY STRATIFICATION IN THE CRUST OF THE NORTHEASTERN SECTION OF THE REFERENCE GEOLOGICAL-GEOPHYSICAL PROFILE 3-DV

    Directory of Open Access Journals (Sweden)

    N. K. Gayday

    2017-01-01

    Full Text Available The total length of the seismic profiles in the northeastern regions ofRussiaand, accordingly, the area of the territories covered by the seismic data interpretations, remains insignificant in comparison with the total area of these regions. At the same time, the geological objects in the northeastern regions attract much attention in view of their prospects, including potential mineral resources. The challenge is to construct the regional models of the crust structure without deep seismic survey data, and to analyze the regional seismicity that depends on the features of the deep crust structure. We develop a density model of the crust structure using the new interpretational gravimetry method. The density modeling results show that the density changes in the crust can be used to estimate the position of a surface separating the lower (quasi-homogeneous and upper (heterogeneous parts of the crust, i.e. to assess the density boundary of stratification. This boundary is formed due to a complex of physical and chemical processes that facilitate the transition of the material in the lower part of the crust into the quasi-uniform (homogeneous state. The study area is the junction zone of the Ayan-Yuryakh anticlinorium and Inyali-Debin synclinorium (62‒63°N, 148‒152° E. The initial interpretation of the deep seismic survey data on the reference geological-geophysical profile 3-DV was available, so the ambiguity of the density modeling was reduced. In turn, the density modeling results can provide additional information for geological-geophysical interpretation of the DSS results on the sites wherein the seismic profiles go along the fault zones. The relationship between seismic events and the relief of the density boundary of stratification in the crust was studied quantitatively on the basis of the data from the regional catalog of seismic events and the results of the earlier analysis of seismicity in the study area. The analysis shows that

  10. ON THE AVERAGE DENSITY PROFILE OF DARK-MATTER HALOS IN THE INNER REGIONS OF MASSIVE EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Grillo, C.

    2012-01-01

    We study a sample of 39 massive early-type lens galaxies at redshift z ∼< 0.3 to determine the slope of the average dark-matter density profile in the innermost regions. We keep the strong-lensing and stellar population synthesis modeling as simple as possible to measure the galaxy total and luminous masses. By rescaling the values of the Einstein radius and dark-matter projected mass with the values of the luminous effective radius and mass, we combine all the data of the galaxies in the sample. We find that between 0.3 and 0.9 times the value of the effective radius the average logarithmic slope of the dark-matter projected density profile is –1.0 ± 0.2 (i.e., approximately isothermal) or –0.7 ± 0.5 (i.e., shallower than isothermal), if, respectively, a constant Chabrier or heavier, Salpeter-like stellar initial mass function is adopted. These results provide positive evidence of the influence of the baryonic component on the contraction of the galaxy dark-matter halos, compared to the predictions of dark-matter-only cosmological simulations, and open a new way to test models of structure formation and evolution within the standard ΛCDM cosmological scenario.

  11. A New Inversion Routine to Produce Vertical Electron-Density Profiles from Ionospheric Topside-Sounder Data

    Science.gov (United States)

    Wang, Yongli; Benson, Robert F.

    2011-01-01

    Two software applications have been produced specifically for the analysis of some million digital topside ionograms produced by a recent analog-to-digital conversion effort of selected analog telemetry tapes from the Alouette-2, ISIS-1 and ISIS-2 satellites. One, TOPIST (TOPside Ionogram Scalar with True-height algorithm) from the University of Massachusetts Lowell, is designed for the automatic identification of the topside-ionogram ionospheric-reflection traces and their inversion into vertical electron-density profiles Ne(h). TOPIST also has the capability of manual intervention. The other application, from the Goddard Space Flight Center based on the FORTRAN code of John E. Jackson from the 1960s, is designed as an IDL-based interactive program for the scaling of selected digital topside-sounder ionograms. The Jackson code has also been modified, with some effort, so as to run on modern computers. This modification was motivated by the need to scale selected ionograms from the millions of Alouette/ISIS topside-sounder ionograms that only exist on 35-mm film. During this modification, it became evident that it would be more efficient to design a new code, based on the capabilities of present-day computers, than to continue to modify the old code. Such a new code has been produced and here we will describe its capabilities and compare Ne(h) profiles produced from it with those produced by the Jackson code. The concept of the new code is to assume an initial Ne(h) and derive a final Ne(h) through an iteration process that makes the resulting apparent-height profile fir the scaled values within a certain error range. The new code can be used on the X-, O-, and Z-mode traces. It does not assume any predefined profile shape between two contiguous points, like the exponential rule used in Jackson s program. Instead, Monotone Piecewise Cubic Interpolation is applied in the global profile to keep the monotone nature of the profile, which also ensures better smoothness

  12. Density profile evolution and nonequilibrium effects in partial and full spreading measurements of surface diffusion

    DEFF Research Database (Denmark)

    Nikunen, P.; Vattulainen, Ilpo Tapio; Ala-Nissila, T.

    2001-01-01

    in D-C(theta) depend on the initial density gradient and the initial state from which the spreading starts. To this end, we carry out extensive Monte Carlo simulations for a lattice-gas model of the O/W(110) system. Studies of submonolayer spreading from an initially ordered p(2x1) phase at theta = 1....../2 reveal that the spreading and diffusion rates in directions parallel and perpendicular to rows of oxygen atoms are significantly different within the ordered phase. Aside from this effect, we find that the degree of ordering in the initial phase has a relatively small impact on the overall behavior of D...

  13. Spectroscopic observation of the middle ultraviolet earth albedo by S-520-4 rocket and mesospheric ozone density profile

    International Nuclear Information System (INIS)

    Suzuki, Katsuhisa; Ogawa, Toshihiro.

    1982-01-01

    The ozone Hartey absorption band in the middle ultraviolet range is commonly adopted for the ozone measurement by rocket and satellite observations. In Japan, since 1965 the ozone absorption in the solar ultraviolet radiation has been observed by rocket-borne uv photometers. On the other hand the spectroscopic measurements of the scattered solar ultraviolet radiation from the terrestrial atmosphere will be performed by the EXOS-C satellite which will be launched in 1984. We tested the spectrometer for this satellite experiment by S-520-4 rocket launched on 5 September 1981. This instrument observed the scattered radiation of 2500 A -- 3300 A and the visible earth albedo of 4030 A. The spectrometer is consisted of a concave grating and has about 10 A wavelength resolution. A photomultiplier having a Cs-Te photocathode is used as a uv detector. The visible albedo is measured by a photometer consisting of an interference filter and a phototube. We estimated the atmospheric ozone profile, comparing the uv spectrum obtained by this experiment with the model calculations. The estimated ozone density profile higher than 30 km altitude has good agreement with the profile obtained by the previous uv photometer experiments at Uchinoura. There are differences between the observed spectrum and the calculated one in = 3100 A. We can explain them by the effect of Mie scattering and the uv stray light. In the present experiment we could successfully test the functions of the instrument in the space. rocket, spectrometer, solar ultraviolet radiation, earth albedo, ozone (author)

  14. Measurements of Electron Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.

    2013-10-01

    Knowing spatial profiles of electron density (ne) in the underdense coronal region (n Nike LPI experiment, a side-on grid imaging refractometer (GIR) was deployed for measuring the underdense plasma profiles. Plasmas were produced from flat CH targets illuminated by Nike KrF laser with total energies up to 1 kJ of 0.5 ~ 1 nsec FWHM pulses. The GIR resolved ne up to 3 ×1021 /cm3 in space taking 2D snapshot images of probe laser (λ = 263 nm, Δt = 10 ps) beamlets (50 μm spacing) refracted by the plasma at a selected time during the laser illumination. The individual beamlet transmittances were also measured for Te estimation. Time-resolved spectrometers with an absolute-intensity-calibrated photodiode array and a streak camera simultaneously detected light emission from the plasma in spectral ranges relevant to Raman (SRS) and two plasmon decay instabilities. The measured spatial profiles are compared with simulation results from the FAST3D radiation hydrocode and their effects on the LPI observations are investigated. Work supported by DoE/NNSA and performed at Naval Research Laboratory.

  15. Theory for the asymmetry in the auroral ionization density profile for the generation of auroral infrasonic waves

    International Nuclear Information System (INIS)

    Goodwin, P.A.

    1979-01-01

    Traveling pressure waves with periods from 10 to 100 seconds are generated in the lower ionosphere by auroral electrojet current filaments as they move supersonically in an equatorward direction. The infrasonic waves produced by the auroral motions propagate to the ground as highly directional bow waves that can be detected by infrasonic microphones on the surface. There is an asymmetry in the reception of auroral infrasonic waves (AIW) with respect to whether the auroral arcs are moving equatorward to poleward. In the literature it is suggested that the asymmetry may be due to anisotropic propagation conditions along the acoustic ray path from the E-region, where AIW are produced, to the surface. Some intrinsic property of the AIW generation mechanism itself has also been suggested as a possible explanation. In this thesis anisotropic propagation is eliminated as the cause of the AIW reception asymmetry. Theoretical calculations, beginning with a model of an auroral precipitation region, are presented to show that there can be a significant difference in the transverse ionization density profiles between an auroral arc that is moving equatorward and an arc that is moving poleward, for a given equatorward-directed E-region ambient electric field. The calculation has been accomplished by solving the equations of motion and continuity for the cross-sectional ionization density profile associated with the transverse motion of a filamentary auroral electrojet. Thus, it is shown that there is an asymmetry in the ionization profiles associated with moving arcs, and in their coupling, that is related to the relative direction of motion of the arc with respect to the ambient electric field, and that it is this asymmetry that is probably the cause of the observed AIW reception asymmetry

  16. Interspecies Interactions in Relation to Root Distribution Across the Rooting Profile in Wheat-Maize Intercropping Under Different Plant Densities

    Directory of Open Access Journals (Sweden)

    Yifan Wang

    2018-04-01

    Full Text Available In wheat-maize intercropping systems, the maize is often disadvantageous over the wheat during the co-growth period. It is unknown whether the impaired growth of maize can be recovered through the enhancement of the belowground interspecies interactions. In this study, we (i determined the mechanism of the belowground interaction in relation to root growth and distribution under different maize plant densities, and (ii quantified the “recovery effect” of maize after wheat harvest. The three-year (2014–2016 field experiment was conducted at the Oasis Agriculture Research Station of Gansu Agricultural University, Wuwei, Northwest China. Root weight density (RWD, root length density (RLD, and root surface area density (RSAD, were measured in single-cropped maize (M, single-cropped wheat (W, and three intercropping systems (i wheat-maize intercropping with no root barrier (i.e., complete belowground interaction, IC, (ii nylon mesh root barrier (partial belowground interaction, IC-PRI, and (iii plastic sheet root barrier (no belowground interaction, IC-NRI. The intercropped maize was planted at low (45,000 plants ha−1 and high (52,000 plants ha−1 densities. During the wheat/maize co-growth period, the IC treatment increased the RWD, RLD, and RSAD of the intercropped wheat in the 20–100 cm soil depth compared to the IC-PRI and IC-NRI systems; intercropped maize had 53% lower RWD, 81% lower RLD, and 70% lower RSAD than single-cropped maize. After wheat harvest, the intercropped maize recovered the growth with the increase of RWD by 40%, RLD by 44% and RSAD by 11%, compared to the single-cropped maize. Comparisons among the three intercropping systems revealed that the “recovery effect” of the intercropped maize was attributable to complete belowground interspecies interaction by 143%, the compensational effect due to root overlap by 35%, and the compensational effect due to water and nutrient exchange (CWN by 80%. The higher maize plant

  17. Innovative User Defined Density Profile Approach To FSW Of Aluminium Foam

    International Nuclear Information System (INIS)

    Contorno, Dorotea; Fratini, Livan; Filice, Luigino; Gagliardi, Francesco; Umbrello, Domenico; Shivpuri, Rajiv

    2007-01-01

    Metallic foams are one of the most exciting materials in the world of mechanical industry due to their reduced mass and the good mechanical, thermal and acoustic characteristics. Consequently, their application, is increasing day by day even with the important drawbacks that reduce their suitability and diffusion such as high manufacturing cost and difficulty in processing. An innovative approach is outlined in this paper that enables the production of complex shapes taking advantage of deformation processing and friction stir welding (FSW). The aim is to create customized tailored manufactured parts. The cellular construction of foams makes this approach rather challenging as the cell walls are extremely thin and deform unpredictably especially in the presence of rotating and moving hard tool. In this paper, an integrated approach to overcome some of the above challenges is proposed. The initial density is modified by using simple deformation processes, in order to obtained the desired 'crushed density', customized for the intended application. Then, the panels are joined to specially designed solid blocks by using FSW process with a proper set-up. Finally, the obtained specimens are evaluated for mechanical performance and the quality of the joint.

  18. Spatial profiles of electron and metastable atom densities in positive polarity fast ionization waves sustained in helium

    International Nuclear Information System (INIS)

    Weatherford, Brandon R.; Barnat, E. V.; Xiong, Zhongmin; Kushner, Mark J.

    2014-01-01

    Fast ionization waves (FIWs), often generated with high voltage pulses over nanosecond timescales, are able to produce large volumes of ions and excited states at moderate pressures. The mechanisms of FIW propagation were experimentally and computationally investigated to provide insights into the manner in which these large volumes are excited. The two-dimensional structure of electron and metastable densities produced by short-pulse FIWs sustained in helium were measured using laser-induced fluorescence and laser collision-induced fluorescence diagnostics for times of 100–120 ns after the pulse, as the pressure was varied from 1 to 20 Torr. A trend of center-peaked to volume-filling to wall-peaked electron density profiles was observed as the pressure was increased. Instantaneous FIW velocities, obtained from plasma-induced emission, ranged from 0.1 to 3 × 10 9  cm s −1 , depending on distance from the high voltage electrode and pressure. Predictions from two-dimensional modeling of the propagation of a single FIW correlated well with the experimental trends in electron density profiles and wave velocity. Results from the model show that the maximum ionization rate occurs in the wavefront, and the discharge continues to propagate forward after the removal of high voltage from the powered electrode due to the potential energy stored in the space charge. As the pressure is varied, the radial distribution of the ionization rate is shaped by changes in the electron mean free path, and subsequent localized electric field enhancement at the walls or on the centerline of the discharge.

  19. Profile of cortisol, glycaemia, and blood parameters of American Bullfrog tadpoles Lithobates catesbeianus exposed to density and hypoxia stressors

    Directory of Open Access Journals (Sweden)

    Patricia C. Teixeira

    2012-12-01

    Full Text Available The aim of this study was to evaluate alterations to the physiological profile (cortisol, glycaemia, and blood parameters of Lithobates catesbeianus caused by the stressors density and hypoxia. The organisms were in the prometamorphosis stage and exposed to different tadpole densities: 1 tadpole/L (T1, 5 tadpoles/L (T2, and 10 tadpoles/L (T3 for 12 days. The blood was collected through the rupture of the caudal blood vessel and collected under normoxia (immediate collection and hypoxia (after 15 minutes of air exposure conditions. Cortisol levels rose on the fourth and eighth days of treatment and returned to basal levels by the end of the experiment. The stressor mechanisms tested did not affect glycaemia. White blood cells (total number of lymphocytes, neutrophils, and eosinophils showed a significant difference at the twelfth day of the experiment when compared with the start of the experiment. We concluded that, under controlled conditions, a density of up to 10 tadpoles/L and air exposure for 15 minutes did not cause harmful physiological alterations during the experimental period. The answer to these stressors maybe was in another hormonal level (corticosterone.

  20. Thomson scattering on argon surfatron plasmas at intermediate pressures: Axial profiles of the electron temperature and electron density

    International Nuclear Information System (INIS)

    Palomares, J.M.; Iordanova, E.; Veldhuizen, E.M. van; Baede, L.; Gamero, A.; Sola, A.; Mullen, J.J.A.M. van der

    2010-01-01

    The axial profiles of the electron density n e and electron temperature T e of argon surfatron plasmas in the pressure range of 6-20 mbar and microwave power between 32 and 82 W have been determined using Thomson Scattering of laser irradiation at 532 nm. For the electron density and temperature we found values in the ranges 5 x 10 18 e 19 m -3 and 1.1 e e and T e down to 8% and 3%, respectively. It is found that n e decreases in the direction of the wave propagation with a slope that is nearly constant. The slope depends on the pressure but not on the power. Just as predicted by theories we see that increasing the power leads to longer plasma columns. However, the plasmas are shorter than what is predicted by theories based on the assumption that for the plasma-wave interaction electron-atom collisions are of minor importance (the so-called collisionless regime). The plasma vanishes long before the critical value of the electron density is reached. In contrast to what is predicted by the positive column model it is found that T e does not stay constant along the column, but monotonically increases with the distance from the microwave launcher. Increases of more than 50% over 30 cm were found.

  1. The control of plasma density profile in Tore Supra. Comparison of different fueling techniques

    International Nuclear Information System (INIS)

    Commaux, N.

    2007-09-01

    The behaviour of a reactor-class plasma when fuelled using the existing techniques (gas puffing, supersonic molecular beam injection and pellet injection) is still very difficult to foresee. The present work has been initiated on Tore Supra in order to extrapolate the consequences of the different fuelling systems on ITER. Two main topics have been studied: the comparison of the plasma behaviour when fuelled using the different techniques at high Greenwald density fractions and the study of the homogenization following a pellet injection (main fuelling technique for ITER burning plasmas). The experiments at high Greenwald density fractions performed on Tore Supra showed that the plasma behaviour is very dependent on the fuelling method. The plasma energy confinement is following the scaling laws determined at low density when fuelled using pellet injection. which is better than for gas puffing and SMBI. both inducing a significant confinement loss. This behaviour is nor related to a transport modification: the ratio between effective diffusion and convection is similar to the pellet case. The difference between these shots is related only to the position of the matter source (at the edge for gas and close to the center for pellets). The study concerning the homogenization phenomena following a pellet injection aims mainly to study the ∇B-drift effect that expels the mater deposited by a pellet toward the low field side. A new phenomenon. which appears to be particularly important for the ∇B-drift during low field side injections. was then discovered: the influence of magnetic surfaces with an integer-valued safety factor (q). When the mater drifting toward low field side crosses an integer q surface. it experiences an important braking effect which stops the drift motion. It implies that the pellet material is mainly deposited on the last integer q surface crossed by the pellet during its injection. This study allows also to determine that the

  2. Observation of the skin-like profiles of electron temperature and density of turbulently heated plasmas in the TRIAM-1 tokamak

    International Nuclear Information System (INIS)

    Hiraki, Naoji; Nakamura, Kazuo; Toi, Kazuo; Itoh, Satoshi

    1980-01-01

    The time evolution of electron temperature and density profiles are measured on the turbulent heating experiment in the TRIAM-1 tokamak. The skin-like profiles of electron temperature and density are observed just after the application of the pulsed electric field for turbulent heating. The width of the skin layer of the electron temperature profile is about 1 cm, and agrees well with the theoretical value. The above mentioned skin heating of electrons just after the heating pulse is also spectroscopically confirmed by the remarkable decrease of the volume emission of visible lines which is localized at the outer plasma region. (author)

  3. Observation of the skin-like profiles of electron temperature and density of turbulently heated plasmas in the TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Nakamura, K; Toi, K; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-07-01

    The time evolution of electron temperature and density profiles are measured on the turbulent heating experiment in the TRIAM-1 tokamak. The skin-like profiles of electron temperature and density are observed just after the application of the pulsed electric field for turbulent heating. The width of the skin layer of the electron temperature profile is about 1 cm, and agrees well with the theoretical value. The above mentioned skin heating of electrons just after the heating pulse is also spectroscopically confirmed by the remarkable decrease of the volume emission of visible lines which is localized at the outer plasma region.

  4. Improving the Automatic Inversion of Digital Alouette/ISIS Ionogram Reflection Traces into Topside Electron Density Profiles

    Science.gov (United States)

    Benson, Robert F.; Truhlik, Vladimir; Huang, Xueqin; Wang, Yongli; Bilitza, Dieter

    2012-01-01

    The topside sounders of the International Satellites for Ionospheric Studies (ISIS) program were designed as analog systems. The resulting ionograms were displayed on 35 mm film for analysis by visual inspection. Each of these satellites, launched between 1962 and 1971, produced data for 10 to 20 years. A number of the original telemetry tapes from this large data set have been converted directly into digital records. Software, known as the Topside Ionogram Scalar With True-Height (TOPIST) algorithm, has been produced and used for the automatic inversion of the ionogram reflection traces on more than 100,000 ISIS-2 digital topside ionograms into topside vertical electron density profiles Ne(h). Here we present some topside ionospheric solar cycle variations deduced from the TOPIST database to illustrate the scientific benefit of improving and expanding the topside ionospheric Ne(h) database. The profile improvements will be based on improvements in the TOPIST software motivated by direct comparisons between TOPIST profiles and profiles produced by manual scaling in the early days of the ISIS program. The database expansion will be based on new software designed to overcome limitations in the original digital topside ionogram database caused by difficulties encountered during the analog-to-digital conversion process in the detection of the ionogram frame sync pulse and/or the frequency markers. This improved and expanded TOPIST topside Ne(h) database will greatly enhance investigations into both short- and long-term ionospheric changes, e.g., the observed topside ionospheric responses to magnetic storms, induced by interplanetary magnetic clouds, and solar cycle variations, respectively.

  5. Lipid, fatty acid and energy density profiles of white sharks: insights into the feeding ecology and ecophysiology of a complex top predator.

    Directory of Open Access Journals (Sweden)

    Heidi R Pethybridge

    Full Text Available Lipids are major sources of metabolic energy in sharks and are closely linked to environmental conditions and biological cycles, such as those related to diet, reproduction and migration. In this study, we report for the first time, the total lipid content, lipid class composition and fatty acid profiles of muscle and liver tissue of white sharks, Carcharodon carcharias, of various lengths (1.5-3.9 m, sampled at two geographically separate areas off southern and eastern Australia. Muscle tissue was low in total lipid content (90% of total lipid and polyunsaturated fatty acids (34±12% of total fatty acids. In contrast, liver was high in total lipid which varied between 51-81% wm and was dominated by triacylglycerols (>93% and monounsaturated fatty acids (36±12%. With knowledge of total lipid and dry tissue mass, we estimated the energy density of muscle (18.4±0.1 kJ g-1 dm and liver (34.1±3.2 kJ g-1 dm, demonstrating that white sharks have very high energetic requirements. High among-individual variation in these biochemical parameters and related trophic markers were observed, but were not related to any one biological or environmental factor. Signature fatty acid profiles suggest that white sharks over the size range examined are generalist predators with fish, elasmobranchs and mammalian blubber all contributing to the diet. The ecological applications and physiological influences of lipids in white sharks are discussed along with recommendations for future research, including the use of non-lethal sampling to examine the nutritional condition, energetics and dietary relationships among and between individuals. Such knowledge is fundamental to better understand the implications of environmental perturbations on this iconic and threatened species.

  6. Lipid, fatty acid and energy density profiles of white sharks: insights into the feeding ecology and ecophysiology of a complex top predator.

    Science.gov (United States)

    Pethybridge, Heidi R; Parrish, Christopher C; Bruce, Barry D; Young, Jock W; Nichols, Peter D

    2014-01-01

    Lipids are major sources of metabolic energy in sharks and are closely linked to environmental conditions and biological cycles, such as those related to diet, reproduction and migration. In this study, we report for the first time, the total lipid content, lipid class composition and fatty acid profiles of muscle and liver tissue of white sharks, Carcharodon carcharias, of various lengths (1.5-3.9 m), sampled at two geographically separate areas off southern and eastern Australia. Muscle tissue was low in total lipid content (90% of total lipid) and polyunsaturated fatty acids (34±12% of total fatty acids). In contrast, liver was high in total lipid which varied between 51-81% wm and was dominated by triacylglycerols (>93%) and monounsaturated fatty acids (36±12%). With knowledge of total lipid and dry tissue mass, we estimated the energy density of muscle (18.4±0.1 kJ g-1 dm) and liver (34.1±3.2 kJ g-1 dm), demonstrating that white sharks have very high energetic requirements. High among-individual variation in these biochemical parameters and related trophic markers were observed, but were not related to any one biological or environmental factor. Signature fatty acid profiles suggest that white sharks over the size range examined are generalist predators with fish, elasmobranchs and mammalian blubber all contributing to the diet. The ecological applications and physiological influences of lipids in white sharks are discussed along with recommendations for future research, including the use of non-lethal sampling to examine the nutritional condition, energetics and dietary relationships among and between individuals. Such knowledge is fundamental to better understand the implications of environmental perturbations on this iconic and threatened species.

  7. Measurement of Pion and Proton Response and Longitudinal Shower Profiles up to 20 Nuclear Interaction Lengths with the ATLAS Tile Calorimeter

    CERN Document Server

    Adragna, P; Anderson, K; Antonaki, A; Arabidze, A; Batkova, L; Batusov, V; Beck, H P; Bergeaas Kuutmann, E; Biscarat, C; Blanchot, G; Bogush, A; Bohm, C; Boldea, V; Bosman, M; Bromberg, C; Budagov, J; Burckhart-Chromek, D; Caprini, M; Caloba, L; Calvet, D; Carli, T; Carvalho, J; Cascella, M; Castelo, J; Castillo, M V; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clement, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Corso-Radu, A; Cuenca, C; Damazio, D O; Davidek, T; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Djobava, T; Dobson, M; Dotti, A; Downing, R; Efthymiopoulos, I; Eriksson, D; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Febbraro, R; Fenyuk, A; Ferdi, C; Ferrer, A; Flaminio, V; Francis, D; Fullana, E; Gadomski, S; Gameiro, S; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; Gonzalez, V; Gorini, B; Grenier, P; Gris, P; Gruwe, M; Guarino, V; Guicheney, C; Gupta, A; Haeberli, C; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higon, E; Holmgren, S; Hurwitz, M; Huston, J; Iglesias, C; Isaev, A; Jen-La Plante, I; Jon-And, K; Joos, M; Junk, T; Karyukhin, A; Kazarov, A; Khandanyan, H; Khramov, J; Khubua, J; Kolos, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; LeCompte, T; Lefevre, R; Lehmann, G; Leitner, R; Lembesi, M; Lesser, J; Li, J; Liablin, M; Lokajicek, M; Lomakin, Y; Lupi, A; Maidanchik, C; Maio, A; Makouski, M; Maliukov, S; Manousakis, A; Mapelli, L; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F; Miagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Mosidze, M; Myagkov, A; Nemecek, S; Nessi, M; Nodulman, L; Nordkvist, B; Norniella, O; Novakova, J; Onofre, A; Oreglia, M; Pallin, D; Pantea, D; Petersen, J; Pilcher, J; Pina, J; Pinhao, J; Podlyski, F; Portell Bueso, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramstedt, M; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsev, V; Russakovich, N; Salto, O; Salvachua, B; Sanchis, E; Sanders, H; Santoni, C; Saraiva, J G; Sarri, F; Satsunkevitch, I; Says, L P; Schlager, G; Schlereth, J; Seixas, J M; Sellden, B; Shalanda, N; Shevtsov, P; Shochet, M; Silva, J; Da Silva, P; Simaitis, V; Simonyan, M; Sissakian, A; Sjolin, J; Solans, C; Solodkov, A; Soloviev, I; Solovyanov, O; Sosebee, M; Spano, F; Stanek, R; Starchenko, E; Starovoitov, P; Stavina, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Tremblet, L; Tsiareshka, P; Tylmad, M; Underwood, D; Unel, G; Usai, G; Valero, A; Valkar, S; Valls, J A; Vartapetian, A; Vazeille, F; Vichou, I; Vinogradov, V; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenine, A; Zenis, T

    2010-01-01

    The response of pions and protons in the energy range of 20 to 180 GeV produced at CERN's SPS H8 test beam line in the ATLAS iron-scintillator Tile hadron calorimeter has been measured. The test-beam configuration allowed to measure the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It is found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion to proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parameterization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parameterised as a function of the b...

  8. Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adragna, P [Pisa University and INFN, Pisa (Italy); Alexa, C [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Anderson, K [University of Chicago, Chicago, IL (United States); Antonaki, A; Arabidze, A [University of Athens, Athens (Greece); Batkova, L [Comenius University, Bratislava (Slovakia); Batusov, V [JINR, Dubna (Russian Federation); Beck, H P [Laboratory for High Energy Physics, University of Bern (Switzerland); Bergeaas Kuutmann, E [Stockholm University, Stockholm (Sweden); Biscarat, C [LPC Clermont-Ferrand, Universite Blaise Pascal, Clermont-Ferrand (France); Blanchot, G [CERN, Geneva (Switzerland); Bogush, A [Institute of Physics, National Academy of Sciences, Minsk (Belarus); Bohm, C [Stockholm University, Stockholm (Sweden); Boldea, V [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Bosman, M [Institut de Fisica d' Altes Energies, Universitat Autonoma de Barcelona, Barcelona (Spain); Bromberg, C [Michigan State University, East Lansing, MI (United States); Budagov, J [JINR, Dubna (Russian Federation); Burckhart-Chromek, D [CERN, Geneva (Switzerland); Caprini, M [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Caloba, L [COPPE/EE/UFRJ, Rio de Janeiro (Brazil)

    2010-04-01

    The response of pions and protons in the energy range of 20-180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron-scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parametrization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parametrized as a function of the beam energy and the calorimeter depth. This allows for a leakage correction of test-beam results in the standard projective geometry.

  9. Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter

    International Nuclear Information System (INIS)

    Adragna, P.; Alexa, C.; Anderson, K.; Antonaki, A.; Arabidze, A.; Batkova, L.; Batusov, V.; Beck, H.P.; Bergeaas Kuutmann, E.; Biscarat, C.; Blanchot, G.; Bogush, A.; Bohm, C.; Boldea, V.; Bosman, M.; Bromberg, C.; Budagov, J.; Burckhart-Chromek, D.; Caprini, M.; Caloba, L.

    2010-01-01

    The response of pions and protons in the energy range of 20-180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron-scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parametrization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parametrized as a function of the beam energy and the calorimeter depth. This allows for a leakage correction of test-beam results in the standard projective geometry.

  10. Profiles

    International Nuclear Information System (INIS)

    2004-01-01

    Profiles is a synthetic overview of more than 100 national energy markets in the world, providing insightful facts and key energy statistics. A Profile is structured around 6 main items and completed by key statistics: Ministries, public agencies, energy policy are concerned; main companies in the oil, gas, electricity and coal sectors, status, shareholders; reserve, production, imports and exports, electricity and refining capacities; deregulation of prices, subsidies, taxes; consumption trends by sector, energy market shares; main energy projects, production and consumption prospects. Statistical Profiles are present in about 3 pages the main data and indicators on oil, gas, coal and electricity. (A.L.B.)

  11. Determination of density profiles of unevenly compressed wood of Po­pu­lus tremula using the X – RAY DENSE – LAB laboratory device

    Directory of Open Access Journals (Sweden)

    Aleš Dejmal

    2009-01-01

    Full Text Available The paper deals with the measuring of the density profile of unevenly pressed wood of European aspen (Populus tremula L.. The main aim of the work is to examine in an experimental way the possibilities of using the X – RAY DENSE – LAB laboratory equipment designed for the determination of density profiles of agglomerated and plied large-area materials. The work uses the X – RAY DENSE – LAB equipment to determine the density profile of the cross-section of unevenly pressed aspen wood, plasticized hydrothermically, without the presence of chemical substances. The work also presents calculations of the level of compression/densification in dependence on the density and it describes the factors that can influence the density profile of compressed/densified wood; at the same time, it presents the possible ways to determine the density profile in the cross-section. Further, it includes the creation of the methodology for sample preparation so that the results do not get distorted during measuring. It describes the preparation of sample pieces, the orientation of the anatomic structure, the methodology of pressing, air conditioning, sample preparation, their measuring and analysis. The paper also describes the theory and the principles of measuring with use of X – RAY DENSE – LAB and its calibration. The paper analyses the obtained results of density profiles and searches for and describes the causes of the uneven distribution of the density in the cross-section. It concludes by summarizing the results and recommending the procedure for future measuring.

  12. The effect of plasma density profile on the backscatter of microwaves from a plasma-covered plane conductor

    International Nuclear Information System (INIS)

    Destler, W.W.; Singh, A.; Rodgers, J.

    1993-01-01

    In order to gain further insight into the mechanism of anomalous absorption of microwaves in a pulsed plasma column, the latter was studied using single and double Langmuir probes. Graphs of plasma potential recorded by floating Langmuir probes as a function of time were obtained for a range of pressure of the background gas and at different distances from the plasma-covered plane-conducting plate. From this data, two main components of the plasma have been identified. The first appears earlier, exhibits greater fluctuations and is shorter in duration than the second component. The presence of these two plasma components is consistent with earlier observations obtained from transverse transmission measurements of microwaves through the plasma. Variations in the envelopes of these two components as experimental conditions are changed will be presented. Microwave backscatter measurements under varying conditions of plasma-density profile and ambient gas pressure will also be presented

  13. Defining the bone morphometry, micro-architecture and volumetric density profile in osteopenic vs non-osteopenic adolescent idiopathic scoliosis.

    Science.gov (United States)

    Wang, Zhi-Wei; Lee, Wayne Yuk-Wai; Lam, Tsz-Ping; Yip, Benjamin Hon-Kei; Yu, Fiona Wai-Ping; Yu, Wing-Sze; Zhu, Feng; Ng, Bobby Kin-Wah; Qiu, Yong; Cheng, Jack Chun-Yiu

    2017-06-01

    Osteopenia has been widely reported in about 30 % of girls with adolescent idiopathic scoliosis (AIS). However, the bone quality profile of the 70 % non-osteopenic AIS defined by areal bone mineral density (BMD) with conventional dual-energy X-ray absorptiometry (DXA) has not been adequately studied. Our purpose was to verify whether abnormal volumetric BMD (vBMD) and bone structure (morphometry and micro-architecture) also existed in the non-osteopenic AIS when compared with matched controls using both DXA and high-resolution peripheral computed tomography (HR-pQCT). This was a case-control cross-sectional study. 257 AIS girls with a mean age of 12.7 (SD = 0.8) years old and 187 age- and gender-matched normal controls with an average age of 12.9 (SD = 0.5) years old were included. Areal BMD (aBMD) and bone quality were measured with standard DXA and HR-pQCT, respectively. The parameters of HR-pQCT could be categorized as bone morphometry, vBMD and bone micro-architecture. The results were compared between the osteopenic AIS and osteopenic control, and between the non-osteopenic AIS and non-osteopenic control. In addition to the lower aBMD and vBMD, osteopenic AIS showed significantly greater cortical perimeter and trabecular area than the osteopenic control even after adjustments of age (P architecture and volumetric density profile compared with their normal matched controls. The observed abnormalities were suggestive of decreased endocortical bone apposition or active endocortical resorption that could affect the mechanical bone strength in AIS. The underlying pathomechanism might be attributed to abnormal bone modeling/remodeling that could be associated with the etiopathogenesis of AIS.

  14. Finite length thermal equilibria of a pure electron plasma column

    International Nuclear Information System (INIS)

    Prasad, S.A.; O'Neil, T.M.

    1979-01-01

    The electrons of a pure electron plasma may be in thermal equilibrium with each other and still be confined by static magnetic and electric fields. Since the electrons make a significant contribution to the electric field, only certain density profiles are consistent with Poisson's equation. The class of such distributions for a finite length cylindrical column is investigated. In the limit where the Debye length is small compared with the dimensions of the column, the density is essentially constant out to some surface of revolution and then falls off abruptly. The falloff in density is a universal function when measured along the local normal to the surface of revolution and scaled in terms of the Debye length. The solution for the shape of the surface of revolution is simplified by passage to the limit of zero Debye length

  15. Hollow density profile and particle transport of ECH plasmas in the low-aspect-ratio heliotron/torsatron CHS

    International Nuclear Information System (INIS)

    Iguchi, H.; Kubo, S.; Idei, H.

    1993-01-01

    Transport enhancement due to helical ripples is the main problem for a low-aspect-ratio helical system to survive as a magnetic fusion device. Optimization of the magnetic configuration has been experimentally studied for neutral beam heated plasmas in the Compact Helical System (CHS). A confinement regime compatible with the LHD scaling has been obtained by shifting the magnetic axis inward with respect to the minor axis of the helical windings. However a power balance analysis suggests that the improvement of plasma parameters has mainly been achieved by the improvement of power deposition. On the other hand, electron density profiles become peaked with the inward shifted magnetic axis in contrast to flattened profiles with the outward shifted one. A question arises: Does the magnetic structure really affect transport processes? In order to answer this question, it is most suitable to examine ECH plasmas in a low collisionality regime. In this paper we report some characteristics of the ECH plasmas in the low-aspect-ratio device CHS and discuss the effect of magnetic field ripples on transport processes. (author) 10 refs., 4 figs

  16. Improving the Automatic Inversion of Digital ISIS-2 Ionogram Reflection Traces into Topside Vertical Electron-Density Profiles

    Science.gov (United States)

    Benson, R. F.; Truhlik, V.; Huang, X.; Wang, Y.; Bilitza, D.

    2011-01-01

    The topside-sounders on the four satellites of the International Satellites for Ionospheric Studies (ISIS) program were designed as analog systems. The resulting ionograms were displayed on 35-mm film for analysis by visual inspection. Each of these satellites, launched between 1962 and 1971, produced data for 10 to 20 years. A number of the original telemetry tapes from this large data set have been converted directly into digital records. Software, known as the TOPside Ionogram Scalar with True-height (TOPIST) algorithm has been produced that enables the automatic inversion of ISIS-2 ionogram reflection traces into topside vertical electron-density profiles Ne(h). More than million digital Alouette/ISIS topside ionograms have been produced and over 300,000 are from ISIS 2. Many of these ISIS-2 ionograms correspond to a passive mode of operation for the detection of natural radio emissions and thus do not contain ionospheric reflection traces. TOPIST, however, is not able to produce Ne(h) profiles from all of the ISIS-2 ionograms with reflection traces because some of them did not contain frequency information. This information was missing due to difficulties encountered during the analog-to-digital conversion process in the detection of the ionogram frame-sync pulse and/or the frequency markers. Of the many digital topside ionograms that TOPIST was able to process, over 200 were found where direct comparisons could be made with Ne(h) profiles that were produced by manual scaling in the early days of the ISIS program. While many of these comparisons indicated excellent agreement (inversion process: (1) improve the quality of the digital ionogram database by remedying the missing frequency-information problem when possible, and (2) using the above-mentioned comparisons as teaching examples of how to improve the original TOPIST software.

  17. CO2 laser imaging heterodyne and phase contrast interferometer for density profile and fluctuation measurements in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Akiyama, T.; Kawahata, K.; Ito, Y.; Vyacheslavov, L.N.; Sanin, A.L.; Okajima, S.

    2007-01-01

    A CO 2 laser heterodyne imaging interferometer (CO 2 HI) and a CO 2 laser phase contrast imaging interferometer (CO 2 PCI) were installed in LHD. The purpose of CO 2 HI is to measure electron density profile at high density (>1x10 20 m -3 ), where the existing far infrared laser (wavelength 118.9 μm) interferometer suffers from fringe jump due to the reduction of signal intensity caused by refraction. In the beginning of 10th LHD experimental campaign (2006-2007), sixty three three of CO 2 HI with 10 channels of YAG HI for vibration compensation, and in the later of 10th LHD experimental campaign. Eighty one channels CO 2 HI and 15 channels YAG HI became available. The purpose of CO 2 PCI is to measure turbulent fluctuation, which can contribute to the energy and particle transport. In order to get local fluctuation information, magnetic shear technique was applied with use of 48 (6 by 8) channel two dimensional detector. (author)

  18. Thomson scattering on argon surfatron plasmas at intermediate pressures: Axial profiles of the electron temperature and electron density

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, J.M., E-mail: f02palij@gmail.co [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain); Iordanova, E.; Veldhuizen, E.M. van; Baede, L. [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Gamero, A.; Sola, A. [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain); Mullen, J.J.A.M. van der, E-mail: j.j.a.m.v.d.Mullen@tue.n [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain)

    2010-03-15

    The axial profiles of the electron density n{sub e} and electron temperature T{sub e} of argon surfatron plasmas in the pressure range of 6-20 mbar and microwave power between 32 and 82 W have been determined using Thomson Scattering of laser irradiation at 532 nm. For the electron density and temperature we found values in the ranges 5 x 10{sup 18} < n{sub e} < 8 x 10{sup 19} m{sup -3} and 1.1 < T{sub e} < 2.0 eV. Due to several improvements of the setup we could reduce the errors of n{sub e} and T{sub e} down to 8% and 3%, respectively. It is found that n{sub e} decreases in the direction of the wave propagation with a slope that is nearly constant. The slope depends on the pressure but not on the power. Just as predicted by theories we see that increasing the power leads to longer plasma columns. However, the plasmas are shorter than what is predicted by theories based on the assumption that for the plasma-wave interaction electron-atom collisions are of minor importance (the so-called collisionless regime). The plasma vanishes long before the critical value of the electron density is reached. In contrast to what is predicted by the positive column model it is found that T{sub e} does not stay constant along the column, but monotonically increases with the distance from the microwave launcher. Increases of more than 50% over 30 cm were found.

  19. Characterization of gut microbiota profiles by disease activity in patients with Crohn's disease using data mining analysis of terminal restriction fragment length polymorphisms.

    Science.gov (United States)

    Andoh, Akira; Kobayashi, Toshio; Kuzuoka, Hiroyuki; Tsujikawa, Tomoyuki; Suzuki, Yasuo; Hirai, Fumihito; Matsui, Toshiyuki; Nakamura, Shiro; Matsumoto, Takayuki; Fujiyama, Yoshihide

    2014-05-01

    The gut microbiota plays a significant role in the pathogenesis of Crohn's disease (CD). In this study, we analyzed the disease activity and associated fecal microbiota profiles in 160 CD patients and 121 healthy individuals. Fecal samples from the CD patients were collected during three different clinical phases, the active (n=66), remission-achieved (n=51) and remission-maintained (n=43) phases. Terminal restriction fragment length polymorphism (T-RFLP) and data mining analysis using the Classification and Regression Tree (C&RT) approach were performed. Data mining provided a decision tree that clearly identified the various subject groups (nodes). The majority of the healthy individuals were divided into Node-5 and Node-8. Healthy subjects comprised 99% of Node-5 (91 of 92) and 84% of Node-8 (21 of 25 subjects). Node-3 was characterized by CD (136 of 160 CD subjects) and was divided into Node-6 and Node-7. Node-6 (n=103) was characterized by subjects in the active phase (n=48; 46%) and remission-achieved phase (n=39; 38%) and Node-7 was characterized by the remission-maintained phase (21 of 37 subjects; 57%). Finally, Node-6 was divided into Node-9 and Node-10. Node-9 (n=78) was characterized by subjects in the active phase (n=43; 55%) and Node-10 (n=25) was characterized by subjects in the remission-maintained phase (n=16; 64%). Differences in the gut microbiota associated with disease activity of CD patients were identified. Thus, data mining analysis appears to be an ideal tool for the characterization of the gut microbiota in inflammatory bowel disease.

  20. Improving the AGR fuel testing power density profile versus irradiation-time in the advanced test reactor

    International Nuclear Information System (INIS)

    Chang, Gray S.; Lillo, Misti A.; Maki, John T.; Petti, David A.

    2009-01-01

    The Very High Temperature gas-cooled Reactor (VHTR), which is currently being developed, achieves simplification of safety through reliance on ceramic-coated fuel particles. Each TRISO-coated fuel particle has its own containment which serves as the principal barrier against radionuclide release under normal operating and accident conditions. These fuel particles, in the form of graphite fuel compacts, are currently undergoing a series of irradiation tests in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) to support the Advanced Gas-Cooled Reactor (AGR) fuel qualification program. A representive coated fuel particle with an 235 U enrichment of 19.8 wt% was used in this analysis. The fuel burnup analysis tool used to perform the neutronics study reported herein, couples the Monte Carlo transport code MCNP, with the radioactive decay and burnup code ORIGEN2. The fuel burnup methodology known as Monte-Carlo with ORIGEN2 (MCWO) was used to evaluate the AGR experiment assembly and demonstrate compliance with ATR safety requirements. For the AGR graphite fuel compacts, the MCWO-calculated fission power density (FPD) due to neutron fission in 235 U is an important design parameter. One of the more important AGR fuel testing requirements is to maintain the peak fuel compact temperature close to 1250degC throughout the proposed irradiation campaign of 550 effective full power days (EFPDs). Based on the MCWO-calculated FPD, a fixed gas gap size was designed to allow regulation of the fuel compact temperatures throughout the entire fuel irradiation campaign by filling the gap with a mixture of helium and neon gases. The chosen fixed gas gap can only regulate the peak fuel compact temperature in the desired range during the irradiation test if the ratio of the peak power density to the time-dependent low power density (P/T) at 550 EFPDs is less than 2.5. However, given the near constant neutron flux within the ATR driver core and the depletion of 235 U

  1. Joint refinement model for the spin resolved one-electron reduced density matrix of YTiO3 using magnetic structure factors and magnetic Compton profiles data.

    Science.gov (United States)

    Gueddida, Saber; Yan, Zeyin; Kibalin, Iurii; Voufack, Ariste Bolivard; Claiser, Nicolas; Souhassou, Mohamed; Lecomte, Claude; Gillon, Béatrice; Gillet, Jean-Michel

    2018-04-28

    In this paper, we propose a simple cluster model with limited basis sets to reproduce the unpaired electron distributions in a YTiO 3 ferromagnetic crystal. The spin-resolved one-electron-reduced density matrix is reconstructed simultaneously from theoretical magnetic structure factors and directional magnetic Compton profiles using our joint refinement algorithm. This algorithm is guided by the rescaling of basis functions and the adjustment of the spin population matrix. The resulting spin electron density in both position and momentum spaces from the joint refinement model is in agreement with theoretical and experimental results. Benefits brought from magnetic Compton profiles to the entire spin density matrix are illustrated. We studied the magnetic properties of the YTiO 3 crystal along the Ti-O 1 -Ti bonding. We found that the basis functions are mostly rescaled by means of magnetic Compton profiles, while the molecular occupation numbers are mainly modified by the magnetic structure factors.

  2. Dislocation density and Burgers vector population in fiber-textured Ni thin films determined by high-resolution X-ray line profile analysis

    DEFF Research Database (Denmark)

    Csiszár, Gábor; Pantleon, Karen; Alimadadi, Hossein

    2012-01-01

    distribution are determined by high-resolution X-ray diffraction line profile analysis. The substructure parameters are correlated with the strength of the films by using the combined Taylor and Hall-Petch relations. The convolutional multiple whole profile method is used to obtain the substructure parameters......Nanocrystalline Ni thin films have been produced by direct current electrodeposition with different additives and current density in order to obtain 〈100〉, 〈111〉 and 〈211〉 major fiber textures. The dislocation density, the Burgers vector population and the coherently scattering domain size...

  3. Gemini NIFS survey of feeding and feedback processes in nearby active galaxies - II. The sample and surface mass density profiles

    Science.gov (United States)

    Riffel, R. A.; Storchi-Bergmann, T.; Riffel, R.; Davies, R.; Bianchin, M.; Diniz, M. R.; Schönell, A. J.; Burtscher, L.; Crenshaw, M.; Fischer, T. C.; Dahmer-Hahn, L. G.; Dametto, N. Z.; Rosario, D.

    2018-02-01

    We present and characterize a sample of 20 nearby Seyfert galaxies selected for having BAT 14-195 keV luminosities LX ≥ 1041.5 erg s-1, redshift z ≤ 0.015, being accessible for observations with the Gemini Near-Infrared Field Spectrograph (NIFS) and showing extended [O III]λ5007 emission. Our goal is to study Active Galactic Nucleus (AGN) feeding and feedback processes from near-infrared integral-field spectra, which include both ionized (H II) and hot molecular (H2) emission. This sample is complemented by other nine Seyfert galaxies previously observed with NIFS. We show that the host galaxy properties (absolute magnitudes MB, MH, central stellar velocity dispersion and axial ratio) show a similar distribution to those of the 69 BAT AGN. For the 20 galaxies already observed, we present surface mass density (Σ) profiles for H II and H2 in their inner ˜500 pc, showing that H II emission presents a steeper radial gradient than H2. This can be attributed to the different excitation mechanisms: ionization by AGN radiation for H II and heating by X-rays for H2. The mean surface mass densities are in the range (0.2 ≤ ΣH II ≤ 35.9) M⊙ pc-2, and (0.2 ≤ ΣH2 ≤ 13.9)× 10-3 M⊙ pc-2, while the ratios between the H II and H2 masses range between ˜200 and 8000. The sample presented here will be used in future papers to map AGN gas excitation and kinematics, providing a census of the mass inflow and outflow rates and power as well as their relation with the AGN luminosity.

  4. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  5. The effects of temperature and alkyl chain length on the density and surface tension of the imidazolium-based geminal dicationic ionic liquids

    International Nuclear Information System (INIS)

    Moosavi, Majid; Khashei, Fatemeh; Sharifi, Ali; Mirzaei, Mojtaba

    2017-01-01

    Highlights: • Surface tension and density of three GDILs were measured at different temperatures. • Surface entropy and surface enthalpy indicate the surface ordering in these GDILs. • Parachors and critical temperatures of these systems were estimated. • Results of GDILs were compared with the results of corresponding traditional MILs. • Relations between surface tension, density and viscosity of GDILs were demonstrated. - Abstract: Surface tensions and densities of three imidazolium-based geminal dicationic ionic liquids (GDILs) with the bis(trifluoromethylsulfonyl)imide, [NTf 2 ] − , as a common anion, have been measured at ambient pressure at different temperatures in the range from 296.00 to 353.15 K. The surface thermodynamic functions such as surface entropy and surface enthalpy were derived from the temperature dependence of surface tension which indicated the surface ordering in these GDILs. As well as the parachor, the critical temperatures of these systems have been estimated using the Guggenheim and Eotvos correlations. In each case, the results of GDILs have been compared with the results of corresponding traditional monocationic ILs (MILs). Also, the relations between the surface tension and density and also surface tension and viscosity data have been demonstrated and discussed.

  6. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  7. Effects of probiotic supplementation in different nutrient density diets on growth performance, nutrient digestibility, blood profiles, fecal microflora and noxious gas emission in weaning pig.

    Science.gov (United States)

    Lan, Ruixia; Tran, Hoainam; Kim, Inho

    2017-03-01

    Probiotics can serve as alternatives to antibiotics to increase the performance of weaning pigs, and the intake of probiotics is affected by dietary nutrient density. The objective of this study was to evaluate the effects of a probiotic complex in different nutrient density diets on growth performance, digestibility, blood profiles, fecal microflora and noxious gas emission in weaning pigs. From day 22 to day 42, both high-nutrient-density and probiotic complex supplementation diets increased (P probiotic complex supplementation diets had higher (P probiotic complex supplementation diets. Interactive effects on average daily feed intake (ADFI) were observed from day 22 to day 42 and overall, where probiotic complex improved ADFI more dramatically in low-nutrient-density diets. The beneficial effects of probiotic complex (Bacillus coagulans, Bacillus licheniformis, Bacillus subtilis and Clostridium butyricum) supplementation on ADFI is more dramatic with low-nutrient-density diets. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Latent Profiles of Macronutrient Density and their Association with Mobility Limitations in an Observational Longitudinal Study of Older U.S. Adults.

    Science.gov (United States)

    Bishop, N J; Zuniga, K E; Lucht, A L

    2018-01-01

    Our first objective was to estimate empirically-derived subgroups (latent profiles) of observed carbohydrate, protein, and fat intake density in a nationally representative sample of older U.S. adults. Our second objective was to determine whether membership in these groups was associated with levels of, and short term change in, physical mobility limitations. Measures of macronutrient density were taken from the 2013 Health Care and Nutrition Study, an off-year supplement to the Health and Retirement Study, which provided indicators of physical mobility limitations and sociodemographic and health-related covariates. 3,914 community-dwelling adults age 65 years and older. Percent of daily calories from carbohydrate, protein, and fat were calculated based on responses to a modified Harvard food frequency questionnaire. Latent profile analysis was used to describe unobserved heterogeneity in measures of carbohydrate, protein, and fat density. Mobility limitation counts were based on responses to 11 items indicating physical limitations. Poisson regression models with autoregressive controls were used to identify associations between macronutrient density profile membership and mobility limitations. Sociodemographic and health-related covariates were included in all Poisson regression models. Four latent subgroups of macronutrient density were identified: "High Carbohydrate", "Moderate with Fat", "Moderate", and "Low Carbohydrate/High Fat". Older adults with the lowest percentage of daily calories coming from carbohydrate and the greatest percentage coming from fat ("Low Carbohydrate/High Fat") were found to have greater reported mobility limitations in 2014 than those identified as having moderate macronutrient density, and more rapid two-year increases in mobility limitations than those identified as "Moderate with Fat" or "Moderate". Older adults identified as having the lowest carbohydrate and highest fat energy density were more likely to report a greater number

  9. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D.

    Science.gov (United States)

    Haskey, S R; Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Pablant, N A; Stagner, L

    2016-11-01

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.

  10. The effect of ingestion of egg and low density lipoprotein (LDL oxidation on serum lipid profiles in hypercholesterolemic women

    Directory of Open Access Journals (Sweden)

    Taweesak Techakriengkrai1

    2012-04-01

    Full Text Available Egg is a major source of dietary cholesterol. The serum lipid response to egg shows marked individual variation, beingpartly genetically determined, and influence by ethnic groups and the overall diet response. In the present investigation, weinvestigated the effect of ingestion of egg and low density lipoprotein (LDL oxidation on serum lipid profile in hypercholesterolemicwomen. Forty hypercholesterolemic women volunteers on a cholesterol-lowering diet (CLD divided into 2 groups ina randomized controlled cross-over study of one egg per day (CLD + 1 egg for 4-week and three eggs per day (CLD + 3 eggsfor 4-week, separated by 4-week period egg-free. The body weight, blood pressure, serum lipid profiles and LDL oxidationwere measured at 4-week intervals. Cholesterol-lowering diet was applied throughout the study by a dietitian using a foodexchange program and 3-day dietary recall every 4 weeks. Compared to the values obtained at baseline, the mean serum totalcholesterol and LDL cholesterol of CLD + 3 eggs was not significantly different from baseline whereas of those of 4-week ofegg-free period and CLD + 1 egg were significantly decreased (238.3±2.9 mg/dL and 228.3±4.7 mg/dL compared to thebaseline (252.2±5.9 mg/dL as was LDL cholesterol (161.2±3.0 mg/dL and 155.7±4.8 mg/dL compared to the baseline (177.5±6.0 mg/dL (p<0.05. The study showed there were no significantly difference the body weight, blood pressure, HDL cholesterol,triglycerides or LDL oxidation during the study. However, serum total cholesterol and LDL cholesterol of 1 or 3 eggsper day after 4-week of egg consumption was not significantly higher than the egg-free period. The study suggests that inhypercholesterolemic women who are on cholesterol-lowering diet, consuming one or three eggs per day did not raise serumcholesterol or LDL cholesterol levels at 4 weeks or result in any change in LDL oxidation.

  11. GALAXY CLUSTERING AND PROJECTED DENSITY PROFILES AS TRACED BY SATELLITES IN PHOTOMETRIC SURVEYS: METHODOLOGY AND LUMINOSITY DEPENDENCE

    International Nuclear Information System (INIS)

    Wang Wenting; Jing, Y. P.; Li Cheng; Okumura, Teppei; Han Jiaxin

    2011-01-01

    We develop a new method which measures the projected density distribution w p (r p )n of photometric galaxies surrounding a set of spectroscopically identified galaxies and simultaneously the projected cross-correlation function w p (r p ) between the two populations. In this method, we are able to divide the photometric galaxies into subsamples in luminosity intervals even when redshift information is unavailable, enabling us to measure w p (r p )n and w p (r p ) as a function of not only the luminosity of the spectroscopic galaxy, but also that of the photometric galaxy. Extensive tests show that our method can measure w p (r p ) in a statistically unbiased way. The accuracy of the measurement depends on the validity of the assumption inherent to the method that the foreground/background galaxies are randomly distributed and are thus uncorrelated with those galaxies of interest. Therefore, our method can be applied to the cases where foreground/background galaxies are distributed in large volumes, which is usually valid in real observations. We have applied our method to data from the Sloan Digital Sky Survey (SDSS) including a sample of 10 5 luminous red galaxies at z ∼ 0.4 and a sample of about half a million galaxies at z ∼ 0.1, both of which are cross-correlated with a deep photometric sample drawn from the SDSS. On large scales, the relative bias factor of galaxies measured from w p (r p ) at z ∼ 0.4 depends on luminosity in a manner similar to what is found for those at z ∼ 0.1, which are usually probed by autocorrelations of spectroscopic samples in previous studies. On scales smaller than a few Mpc and at both z ∼ 0.4 and z ∼ 0.1, the photometric galaxies of different luminosities exhibit similar density profiles around spectroscopic galaxies at fixed luminosity and redshift. This provides clear observational support for the assumption commonly adopted in halo occupation distribution models that satellite galaxies of different luminosities are

  12. LoCuSS: THE MASS DENSITY PROFILE OF MASSIVE GALAXY CLUSTERS AT z = 0.2 {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Okabe, Nobuhiro; Umetsu, Keiichi [Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), P. O. Box 23-141, Taipei 10617, Taiwan (China); Smith, Graham P. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Takada, Masahiro [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), University of Tokyo, Chiba 277-8582 (Japan); Futamase, Toshifumi, E-mail: okabe@asiaa.sinica.edu.tw, E-mail: gps@star.sr.bham.ac.uk [Astronomical Institute, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan)

    2013-06-01

    We present a stacked weak-lensing analysis of an approximately mass-selected sample of 50 galaxy clusters at 0.15 < z < 0.3, based on observations with Suprime-Cam on the Subaru Telescope. We develop a new method for selecting lensed background galaxies from which we estimate that our sample of red background galaxies suffers just 1% contamination. We detect the stacked tangential shear signal from the full sample of 50 clusters, based on this red sample of background galaxies, at a total signal-to-noise ratio of 32.7. The Navarro-Frenk-White model is an excellent fit to the data, yielding sub-10% statistical precision on mass and concentration: M{sub vir}=7.19{sup +0.53}{sub -0.50} Multiplication-Sign 10{sup 14} h{sup -1} M{sub sun}, c{sub vir}=5.41{sup +0.49}{sub -0.45} (c{sub 200}=4.22{sup +0.40}{sub -0.36}). Tests of a range of possible systematic errors, including shear calibration and stacking-related issues, indicate that they are subdominant to the statistical errors. The concentration parameter obtained from stacking our approximately mass-selected cluster sample is broadly in line with theoretical predictions. Moreover, the uncertainty on our measurement is comparable with the differences between the different predictions in the literature. Overall, our results highlight the potential for stacked weak-lensing methods to probe the mean mass density profile of cluster-scale dark matter halos with upcoming surveys, including Hyper-Suprime-Cam, Dark Energy Survey, and KIDS.

  13. Fundamental length

    International Nuclear Information System (INIS)

    Pradhan, T.

    1975-01-01

    The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)

  14. rRNA:mRNA pairing alters the length and the symmetry of mRNA-protected fragments in ribosome profiling experiments

    OpenAIRE

    O?Connor, Patrick B. F.; Li, Gene-Wei; Weissman, Jonathan S.; Atkins, John F.; Baranov, Pavel V.

    2013-01-01

    Motivation: Ribosome profiling is a new technique that allows monitoring locations of translating ribosomes on mRNA at a whole transcriptome level. A recent ribosome profiling study demonstrated that internal Shine?Dalgarno (SD) sequences have a major global effect on translation rates in bacteria: ribosomes pause at SD sites in mRNA. Therefore, it is important to understand how SD sites effect mRNA movement through the ribosome and generation of ribosome footprints. Results: Here, we provide...

  15. The density and length of root hairs are enhanced in response to cadmium and arsenic by modulating gene expressions involved in fate determination and morphogenesis of root hairs in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ramin Bahmani

    2016-11-01

    Full Text Available Root hairs are tubular outgrowths that originate from epidermal cells. Exposure of Arabidopsis to cadmium (Cd and arsenic [arsenite, As(III] increases root hair density and length. To examine the underlying mechanism, we measured the expression of genes involved in fate determination and morphogenesis of root hairs. Cd and As(III downregulated TTG1 and GL2 (negative regulators of fate determination and upregulated GEM (positive regulator, suggesting that root hair fate determination is stimulated by Cd and As(III. Cd and As(III increased the transcript levels of genes involved in root hair initiation (RHD6 and AXR2 and root hair elongation (AUX1, AXR1, ETR1, and EIN2 except CTR1. DR5::GUS transgenic Arabidopsis showed a higher DR5 expression in the root tip, suggesting that Cd and As(III increased the auxin content in the root tip. Knockdown of TTG1 in Arabidopsis resulted in increased root hair density and decreased root hair length compared with the control (Col-0 on 1/2 MS media. This phenotype may be attributed to the downregulation of GL2 and CTR1 and upregulation of RHD6. By contrast, gem mutant plants displayed a decrease in root hair density and length with reduced expression of RHD6, AXR2, AUX1, AXR1, ETR1, CTR1, and EIN2. Taken together, our results indicate that fate determination, initiation, and elongation of root hairs are stimulated in response to Cd and As(III through the modulation of the expression of genes involved in these processes in Arabidopsis.

  16. Characterization of Electron Temperature and Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Chan, L.-Y.; Serlin, V.

    2011-10-01

    Previous experiments with Nike KrF laser (λ = 248 nm , Δν ~ 1 THz) observed LPI signatures near quarter critical density (nc / 4) in CH plasmas, however, detailed measurement of the temperature (Te) and density (ne) profiles was missing. The current Nike LPI campaign will perform experimental determination of the plasma profiles. A side-on grid imaging refractometer (GIR) is the main diagnostic to resolve Te and ne in space taking 2D snapshots of probe laser (λ = 266 nm , Δt = 8 psec) beamlets (50 μm spacing) refracted by the plasma at laser peak time. Ray tracing of the beamlets through hydrodynamically simulated (FASTRAD3D) plasma profiles estimates the refractometer may access densities up to ~ 0 . 2nc . With the measured Te and ne profiles in the plasma corona, we will discuss analysis of light data radiated from the plasmas in spectral ranges relevant to two plasmon decay and convective Raman instabilities. Validity of the (Te ,ne) data will also be discussed for the thermal transport study. Work supported by DoE/NNSA and ONR and performed at NRL.

  17. Production of enzymatically active recombinant full-length barley high pI alpha-glucosidase of glycoside family 31 by high cell-density fermentation of Pichia pastoris and affinity purification

    DEFF Research Database (Denmark)

    Næsted, Henrik; Kramhøft, Birte; Lok, F.

    2006-01-01

    Recombinant barley high pI alpha-glucosidase was produced by high cell-density fermentation of Pichia pastoris expressing the cloned full-length gene. The gene was amplified from a genomic clone and exons (coding regions) were assembled by overlap PCR. The resulting cDNA was expressed under contr...... nM x s(-1), and 85 s(-1) using maltose as substrate. This work presents the first production of fully active recombinant alpha-glucosidase of glycoside hydrolase family 31 from higher plants. (c) 2005 Elsevier Inc. All rights reserved....

  18. New Vary-Chap Profile of the Topside Ionosphere Electron Density Distribution for use with the IRI Model and the GIRO Real-Time Data

    Science.gov (United States)

    Nsumei, Patrick; Reinisch, Bodo W.; Huang, Xueqin; Bilitza, Dieter

    2012-01-01

    A new Vary-Chap function is introduced for the empirical modeling of the electron density N(h) profile in the topside ionosphere that uses a shape function S(h) in the generalized Chapman function. The Vary-Chap profile extends the bottomside profile that is specified by the IRI model or measured by the Global Ionospheric Radio Observatory (GIRO) to the altitude of the ISIS-2 satellite. Some 80,000 topside profiles, measured by the topside sounder on the ISIS-2 satellite were analyzed, and the shape function S(h) was calculated for each profile. A parameterized function S*(h), composed of two sub-functions S1(h) and S2(h), is fitted to the measured S(h) profile using three free parameters. At altitudes just above the F2 layer peak height hmF2, the shape function S1 controls S(h), and at greater altitudes S2 controls S(h). The height of the intersection of S1 and S2 is defined as the transition height h(sub T) indicating the transition from an O(+) to an H(+)-dominated profile shape. The observed transition heights range from approx.500 km to 800 km.

  19. A gravity study along a profile across the Sichuan Basin, the Qinling Mountains and the Ordos Basin (central China): Density, isostasy and dynamics

    Science.gov (United States)

    Zhang, Yongqian; Teng, Jiwen; Wang, Qianshen; Lü, Qingtian; Si, Xiang; Xu, Tao; Badal, José; Yan, Jiayong; Hao, Zhaobing

    2017-10-01

    In order to investigate the structure of the crust beneath the Middle Qinling Mountains (MQL) and neighboring areas in the North China Block and South China Block, a north-south gravity profile from Yuquan in the Sichuan Basin to Yulin in the Ordos Basin was conducted in 2011. The Bouguer gravity anomaly is determined from a high-quality gravity dataset collected between 31°N and 36°N of latitude, and varies between -200 and -110 mGal in the study region. Using accredited velocity density relationships, an initial crust-mantle density model is constructed for MQL and adjacent areas, which is later refined interactively to simulate the observed gravity anomaly. The present study reveals the features of the density and Bouguer gravity with respect to the tectonic units sampled by the profile. The lithosphere density model shows typical density values that depict a layered structure and allow differentiate the blocks that extend along the reference profile. The gravity field calculated by forward modeling from the final density distribution model correlates well with the measured gravity field within a standard deviation of 1.26 mGal. The density in the crystalline crust increases with depth from 2.65 g/cm3 up to the highest value of 2.95 g/cm3 near the bottom of the crust. The Conrad interface is identified as a density jump of about 0.05 g/cm3. The average density of the crust in MQL is clearly lower than the density in the formations on both sides. Starting from a combined Airy-Pratt isostatic compensation model, a partly compensated crust is found below MQL, suggesting future growth of the crust, unlike the Ordos and Sichuan basins that will remain stable. On the basis of the density and isostatic state of the crust and additional seismological research, such as the P-wave velocity model and Poisson's ratio, it is concluded that the lower crust delamination is a reasonable interpretation for the geophysical characteristics below the Qinling Orogen.

  20. Density measurements in the boundary layer of the ASDEX RF heated plasma

    International Nuclear Information System (INIS)

    El Shaer, M.

    1986-11-01

    The boundary layer in the main chamber of ASDEX is diagnosed using a movable 2.2 mm microwave interferometer. The measured radial density profile decreases exponentially outside of the separatrix with three different e-folding lengths, the middle part of the profile is flatter with a larger e-folding length. The boundary density increases proportionally to the increase of the main plasmy density near the separatrix, far from the separatrix this increase is weaker. The boundary density increases with the increase of the main magnetic field in the discharge. With the application of the RF heating at the lower hybrid frequency the boundary density is submitted to a large modification. The behavior of this modification in the density profile depends on the rate of injection of the cold feeding gas. In the discharge with a constant or decreasing gas feeding rate the density profile flattens, and with an increasing rate it steepens when the RF pulse is applied. (orig.)

  1. Bond length and electric current oscillation of long linear carbon chains: Density functional theory, MpB model, and quantum spin transport studies

    International Nuclear Information System (INIS)

    Oeiras, R. Y.; Silva, E. Z. da

    2014-01-01

    Carbon linear atomic chains attached to graphene have experimentally been produced. Motivated by these results, we study the nature of the carbon bonds in these nanowires and how it affects their electrical properties. In the present study we investigate chains with different numbers of atoms and we observe that nanowires with odd number of atoms present a distinct behavior than the ones with even numbers. Using graphene nanoribbons as leads, we identify differences in the quantum transport of the chains with the consequence that even and odd numbered chains have low and high electrical conduction, respectively. We also noted a dependence of current with the wire size. We study this unexpected behavior using a combination of first principles calculations and simple models based on chemical bond theory. From our studies, the electrons of carbon nanowires present a quasi-free electron behavior and this explains qualitatively the high electrical conduction and the bond lengths with unexpected values for the case of odd nanowires. Our study also allows the understanding of the electric conduction dependence with the number of atoms and their parity in the chain. In the case of odd number chains a proposed π-bond (MpB) model describes unsaturated carbons that introduce a mobile π-bond that changes dramatically the structure and transport properties of these wires. Our results indicate that the nature of bonds plays the main role in the oscillation of quantum electrical conduction for chains with even and odd number of atoms and also that nanowires bonded to graphene nanoribbons behave as a quasi-free electron system, suggesting that this behavior is general and it could also remain if the chains are bonded to other materials

  2. Profiles of plasma parameters and density of negative hydrogen ions by laser detachment measurements in RF-driven ion sources; Profile der Plasmaparameter und Dichte negativer Wasserstoffionen mittels Laserdetachmentmessungen in HF-angeregten Ionenquellen

    Energy Technology Data Exchange (ETDEWEB)

    Christ-Koch, Sina

    2007-12-20

    This work shows the application of the Laserdetachment method for spatially resolved measurements of negative Hydrogen/Deuterium ion density. It was applied on a high power low pressure RF-driven ion source. The Laser detachment method is based on the measurement of electron currents on a positively biased Langmuir probe before and during/after a laser pulse. The density ratio of negative ions to electrons can be derived from the ratio of currents to the probe. The absolute density of negative ions can be obtained when the electron density is measured with the standard Langmuir probe setup. Measurements with the Langmuir probe additionally yield information about the floating and plasma potential, the electron temperature and the density of positive ions. The Laser detachment setup had to be adapted to the special conditions of the RF-driven source. In particular the existence of RF fields (1 MHz), high source potential (-20 kV), magnetic fields ({proportional_to} 7 mT) and caesium inside the source had to be considered. The density of negative ions could be identified in the range of n(H{sup -})=1.10{sup 17} 1/m{sup 3}, which is in the same order of magnitude as the electron density. Only the application of the Laser detachment method with the Langmuir probe measurements will yield spatially resolved plasma parameters and H- density profiles. The influence of diverse external parameters, such as pressure, RF-power, magnetic fields on the plasma parameters and their profiles were studied and explained. Hence, the measurements lead to a detailed understanding of the processes inside the source. (orig.)

  3. Derivation of the threshold condition for the ion temperature gradient mode with an inverted density profile from a simple physics picture

    Science.gov (United States)

    Jhang, Hogun

    2018-05-01

    We show that the threshold condition for the toroidal ion temperature gradient (ITG) mode with an inverted density profile can be derived from a simple physics argument. The key in this picture is that the density inversion reduces the ion compression due to the ITG mode and the electron drift motion mitigates the poloidal potential build-up. This condition reproduces the same result that has been reported from a linear gyrokinetic calculation [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. The destabilizing role of trapped electrons in toroidal geometry is easily captured in this picture.

  4. Comparison of electron density profiles observed in China's low latitude station with that produced by the International Reference Ionosphere (IRI2001)

    International Nuclear Information System (INIS)

    Zhang Manlian; Shi Jiankui; Wang Xiao

    2003-01-01

    One month's data of ionograms observed by DPS-4 digisonde in China's low latitude station Hainan (19.4 deg N/109.0 deg E) for the high solar activity year 2002 is used to make a comparison study between the observational electron density profiles and that produced by the newly updated International Reference Ionosphere (IRI2001). The present study showed that for the month studied (April, 2002): (1) When B0-Tab value is used, profiles given by IRI2001 are in poor agreement with the observational results during daytime and nearby midnight hours when standard Ne(h) option is chosen, whereas when the LAY functions version is chosen, IRI2001 produces profiles with erroneous features during evening and nighttime hours, although it produces profiles in a reasonable good agreement with the observational ones during daytime hours. (2) In general, profiles produced by IRI2001 with B0-Gulyaeva choice is in better agreement with observational profiles than when B0-Tab is chosen. When the B0-Gulyaeva and LAY functions version of Ne(h) are both chosen, IRI2001 produced the best results when compared with the observational results. (3) The B0 parameter given by B0-Gulyaeva choice in IRI2001 is much closer to the observed (best fitted) one than that given by the B0-Tab choice is. (author)

  5. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    International Nuclear Information System (INIS)

    Habibi, M.; Ghamari, F.

    2014-01-01

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam

  6. Effect of ion orbit loss on the structure in the H-mode tokamak edge pedestal profiles of rotation velocity, radial electric field, density, and temperature

    International Nuclear Information System (INIS)

    Stacey, Weston M.

    2013-01-01

    An investigation of the effect of ion orbit loss of thermal ions and the compensating return ion current directly on the radial ion flux flowing in the plasma, and thereby indirectly on the toroidal and poloidal rotation velocity profiles, the radial electric field, density, and temperature profiles, and the interpretation of diffusive and non-diffusive transport coefficients in the plasma edge, is described. Illustrative calculations for a high-confinement H-mode DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] plasma are presented and compared with experimental results. Taking into account, ion orbit loss of thermal ions and the compensating return ion current is found to have a significant effect on the structure of the radial profiles of these quantities in the edge plasma, indicating the necessity of taking ion orbit loss effects into account in interpreting or predicting these quantities

  7. A NEW RECIPE FOR OBTAINING CENTRAL VOLUME DENSITIES OF PRESTELLAR CORES FROM SIZE MEASUREMENTS

    International Nuclear Information System (INIS)

    Tassis, Konstantinos; Yorke, Harold W.

    2011-01-01

    We propose a simple analytical method for estimating the central volume density of prestellar molecular cloud cores from their column density profiles. Prestellar cores feature a flat central part of the column density and volume density profiles of the same size indicating the existence of a uniform-density inner region. The size of this region is set by the thermal pressure force which depends only on the central volume density and temperature of the core, and can provide a direct measurement of the central volume density. Thus, a simple length measurement can immediately yield a central density estimate independent of any dynamical model for the core and without the need for fitting. Using the radius at which the column density is 90% of the central value as an estimate of the size of the flat inner part of the column density profile yields an estimate of the central volume density within a factor of two for well-resolved cores.

  8. Evaluation of the methodologies used to generate random pavement profiles based on the power spectral density: An approach based on the International Roughness Index

    Directory of Open Access Journals (Sweden)

    Boris Jesús Goenaga

    2017-01-01

    Full Text Available The pavement roughness is the main variable that produces the vertical excitation in vehicles. Pavement profiles are the main determinant of (i discomfort perception on users and (ii dynamic loads generated at the tire-pavement interface, hence its evaluation constitutes an essential step on a Pavement Management System. The present document evaluates two specific techniques used to simulate pavement profiles; these are the shaping filter and the sinusoidal approach, both based on the Power Spectral Density. Pavement roughness was evaluated using the International Roughness Index (IRI, which represents the most used index to characterize longitudinal road profiles. Appropriate parameters were defined in the simulation process to obtain pavement profiles with specific ranges of IRI values using both simulation techniques. The results suggest that using a sinusoidal approach one can generate random profiles with IRI values that are representative of different road types, therefore, one could generate a profile for a paved or an unpaved road, representing all the proposed categories defined by ISO 8608 standard. On the other hand, to obtain similar results using the shaping filter approximation a modification in the simulation parameters is necessary. The new proposed values allow one to generate pavement profiles with high levels of roughness, covering a wider range of surface types. Finally, the results of the current investigation could be used to further improve our understanding on the effect of pavement roughness on tire pavement interaction. The evaluated methodologies could be used to generate random profiles with specific levels of roughness to assess its effect on dynamic loads generated at the tire-pavement interface and user’s perception of road condition.

  9. Helical variation of density profiles and fluctuations in the tokamak pedestal with applied 3D fields and implications for confinement

    Science.gov (United States)

    Wilcox, R. S.; Rhodes, T. L.; Shafer, M. W.; Sugiyama, L. E.; Ferraro, N. M.; Lyons, B. C.; McKee, G. R.; Paz-Soldan, C.; Wingen, A.; Zeng, L.

    2018-05-01

    Small 3D perturbations to the magnetic field in DIII-D ( δB /B ˜2 ×10-4 ) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. The resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.

  10. Near-surface density profiling of Fe ion irradiated Si (100) using extremely asymmetric x-ray diffraction by variation of the wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U. [Solid State Physics, University of Siegen, D-57068 Siegen (Germany); Facsko, S. [Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany); Doyle, S. [Synchrotron Light Source ANKA, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-20

    In this work, we report on correlations between surface density variations and ion parameters during ion beam-induced surface patterning process. The near-surface density variations of irradiated Si(100) surfaces were investigated after off-normal irradiation with 5 keV Fe ions at different fluences. In order to reduce the x-ray probing depth to a thickness below 5 nm, the extremely asymmetrical x-ray diffraction by variation of wavelength was applied, exploiting x-ray refraction at the air-sample interface. Depth profiling was achieved by measuring x-ray rocking curves as function of varying wavelengths providing incidence angles down to 0°. The density variation was extracted from the deviations from kinematical Bragg angle at grazing incidence angles due to refraction of the x-ray beam at the air-sample interface. The simulations based on the dynamical theory of x-ray diffraction revealed that while a net near-surface density decreases with increasing ion fluence which is accompanied by surface patterning, there is a certain threshold of ion fluence to surface density modulation. Our finding suggests that the surface density variation can be relevant with the mechanism of pattern formation.

  11. The role of concavo-convex walls of a nanopore on the density profile, adsorption, solvation force, and capillary condensation of confined fluids: A DFT study

    International Nuclear Information System (INIS)

    Helmi, Abbas; Keshavarzi, Ezat

    2014-01-01

    Highlights: • The effect of concavo-convex walls of nanopores on the density profile was studied. • For HS fluids the contact density at concave wall is greater than for convex wall. • For Yukawa fluid the contact density at concave wall can be less than convex wall. • Capillary condensation was observed for Yukawa fluids in the homocentric pores. - Abstract: We investigate the effects of concavo-convex walls of a nanopore on the structure and certain thermodynamic properties of confined fluids. Adsorption, solvation force, and capillary condensation in a nanopore formed between two homocentric spheres will be determined using the MFMT. For hard sphere fluids, contact density is greater at the concave wall than it is at the convex wall. In Yukawa fluids, for the thermodynamic state in which the energy effect is the dominant factor, contact density at a concave wall is less than that at a convex wall; this will be reversed for the thermodynamic state in which the entropy effect is the dominant factor. It is possible to find thermodynamic states in which contact densities at concave and convex walls become identical. The adsorption and solvation force of hard sphere fluid show an oscillatory behavior versus H. Capillary condensation is in certain cases observed for Yukawa fluids

  12. Measuring the stellar luminosity function and spatial density profile of the inner 0.5 pc of the Milky Way nuclear star cluster

    Science.gov (United States)

    Do, Tuan; Ghez, Andrea; Lu, Jessica R.; Morris, Mark R.; Yelda, Sylvana; Martinez, Gregory D.; Peter, Annika H. G.; Wright, Shelley; Bullock, James; Kaplinghat, Manoj; Matthews, K.

    2012-07-01

    We report on measurements of the luminosity function of early (young) and late-type (old) stars in the central 0.5 pc of the Milky Way nuclear star cluster as well as the density profiles of both components. The young (~ 6 Myr) and old stars (> 1 Gyr) in this region provide different physical probes of the environment around a supermassive black hole; the luminosity function of the young stars offers us a way to measure the initial mass function from star formation in an extreme environment, while the density profile of the old stars offers us a probe of the dynamical interaction of a star cluster with a massive black hole. The two stellar populations are separated through a near-infrared spectroscopic survey using the integral-field spectrograph OSIRIS on Keck II behind the laser guide star adaptive optics system. This spectroscopic survey is able to separate early-type (young) and late-type (old) stars with a completeness of 50% at K' = 15.5. We describe our method of completeness correction using a combination of star planting simulations and Bayesian inference. The completeness corrected luminosity function of the early-type stars contains significantly more young stars at faint magnitudes compared to previous surveys with similar depth. In addition, by using proper motion and radial velocity measurements along with anisotropic spherical Jeans modeling of the cluster, it is possible to measure the spatial density profile of the old stars, which has been difficult to constrain with number counts alone. The most probable model shows that the spatial density profile, n(r) propto r-γ, to be shallow with γ = 0.4 ± 0.2, which is much flatter than the dynamically relaxed case of γ = 3/2 to 7/4, but does rule out a 'hole' in the distribution of old stars. We show, for the first time, that the spatial density profile, the black hole mass, and velocity anisotropy can be fit simultaneously to obtain a black hole mass that is consistent with that derived from

  13. THE BOSS EMISSION-LINE LENS SURVEY. II. INVESTIGATING MASS-DENSITY PROFILE EVOLUTION IN THE SLACS+BELLS STRONG GRAVITATIONAL LENS SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, Adam S.; Brownstein, Joel R.; Shu Yiping; Arneson, Ryan A. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, UT 84112 (United States); Kochanek, Christopher S. [Department of Astronomy and Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Schlegel, David J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Wake, David A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Connolly, Natalia [Department of Physics, Hamilton College, Clinton, NY 13323 (United States); Maraston, Claudia [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Weaver, Benjamin A., E-mail: bolton@astro.utah.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2012-09-20

    We present an analysis of the evolution of the central mass-density profile of massive elliptical galaxies from the SLACS and BELLS strong gravitational lens samples over the redshift interval z Almost-Equal-To 0.1-0.6, based on the combination of strong-lensing aperture mass and stellar velocity-dispersion constraints. We find a significant trend toward steeper mass profiles (parameterized by the power-law density model with {rho}{proportional_to}r {sup -{gamma}}) at later cosmic times, with magnitude d < {gamma} > /dz = -0.60 {+-} 0.15. We show that the combined lens-galaxy sample is consistent with a non-evolving distribution of stellar velocity dispersions. Considering possible additional dependence of <{gamma} > on lens-galaxy stellar mass, effective radius, and Sersic index, we find marginal evidence for shallower mass profiles at higher masses and larger sizes, but with a significance that is subdominant to the redshift dependence. Using the results of published Monte Carlo simulations of spectroscopic lens surveys, we verify that our mass-profile evolution result cannot be explained by lensing selection biases as a function of redshift. Interpreted as a true evolutionary signal, our result suggests that major dry mergers involving off-axis trajectories play a significant role in the evolution of the average mass-density structure of massive early-type galaxies over the past 6 Gyr. We also consider an alternative non-evolutionary hypothesis based on variations in the strong-lensing measurement aperture with redshift, which would imply the detection of an 'inflection zone' marking the transition between the baryon-dominated and dark-matter halo-dominated regions of the lens galaxies. Further observations of the combined SLACS+BELLS sample can constrain this picture more precisely, and enable a more detailed investigation of the multivariate dependences of galaxy mass structure across cosmic time.

  14. The Effect of Air Density on Sand Transport Structures and the Adobe Abrasion Profile: A Field Wind-Tunnel Experiment Over a Wide Range of Altitude

    Science.gov (United States)

    Han, Qingjie; Qu, Jianjun; Dong, Zhibao; Zu, Ruiping; Zhang, Kecun; Wang, Hongtao; Xie, Shengbo

    2014-02-01

    Aeolian sand transport results from interactions between the surface and the airflow above. Air density strongly constrains airflow characteristics and the resulting flow of sand, and therefore should not be neglected in sand transport models. In the present study, we quantify the influence of air density on the sand flow structure, sand transport rate, adobe abrasion profiles, and abrasion rate using a portable wind-tunnel in the field. For a given wind speed, the flow's ability to transport sand decreases at low air density, so total sand transport decreases, but the saltation height increases. Thus, the damage to human structures increases compared with what occurs at lower altitudes. The adobe abrasion rate by the cloud of blowing sand decreases exponentially with increasing height above the surface, while the wind erosion and dust emission intensity both increase with increasing air density. Long-term feedback processes between air density and wind erosion suggest that the development of low-altitude areas due to long-term deflation plays a key role in dust emission, and will have a profound significance for surface Aeolian processes and geomorphology.

  15. Healthy Snacks: Using Nutrient Profiling to Evaluate the Nutrient-Density of Common Snacks in the United States.

    Science.gov (United States)

    Hess, Julie M; Slavin, Joanne L

    2017-09-01

    To quantify and compare the nutrient-density of commonly consumed snacks using two nutrient-density measures, Nutrient Rich Foods Indices 9.3 (NRF 9.3) and 15.3 (NRF 15.3). Identify commonly consumed categories of snacks and individual snack foods, calculate NRF 9.3 and 15.3 scores, rank snacks by category and by individual food based on nutrient density, compare and contrast scores generated by the two NRF Indices. NRF 9.3 and 15.3 scores. Averages and standard deviations of nutrient-density scores for each snack category. Vegetables and coffee/tea received the highest category scores on both indices. Cakes/cookies/pastries and sweets had the lowest category scores. NRF 9.3 scores for individual snacks ranged from -46 (soda) to 524 (coffee). NRF 15.3 scores ranged from -45 (soda) to 736 (coffee). If added to food labels, NRF scores could help consumers identify more nutritious choices. The differences between NRF 9.3 and 15.3 scores generated for the same foods and the limitations of these indices highlight the need for careful consideration of which nutrient-density measure to include on food labels as well as consumer education. © 2017 Institute of Food Technologists®.

  16. Imaging the density profile of a volcano interior with cosmic-ray muon radiography combined with classical gravimetry

    International Nuclear Information System (INIS)

    Okubo, S; Tanaka, H K M

    2012-01-01

    Cosmic-ray muon radiography has the potential to reveal the density structure of gigantic objects. It utilizes the strong penetration ability of high-energy muons. By measuring the number of muons that travel through a target object, the average density can be calculated along the muon path. Since muons travel in straight paths through matter, specially designed detectors can generate density maps with higher spatial resolution than those obtained with conventional geophysical methods. However, this technique has a few notable limitations in that it can only be applied to near-surface structures above the muon sensor and strongly depends on the characteristics of the local topography. This is due to the fact that almost all cosmic-ray muons arrive only from the upper hemisphere. Geological structures, e.g. volcanoes, that allow for muon detectors to be placed on a slope directly below the point of interest are thus the best candidates for this technique. The drawback of muon radiography that only the horizontally integrated density above the sensor is measured with a time resolution larger than several weeks may be partly remedied by combining its results with gravity data, as they are both sensitive to target density while complementary to each other in several aspects. An example of such a combination is presented: real-time monitoring of magma head height in a volcano conduit. (topical review)

  17. CLASH-VLT: The stellar mass function and stellar mass density profile of the z=0.44 cluster of galaxies MACS J1206.2-0847

    CERN Document Server

    Annunziatella, M; Mercurio, A.; Nonino, M.; Rosati, P.; Balestra, I.; Presotto, V.; Girardi, M.; Gobat, R.; Grillo, C.; Medezinski, E.; Kelson, D.; Postman, M.; Scodeggio, M.; Brescia, M.; Sartoris, B.; Demarco, R.; Fritz, A.; Koekemoer, A.; Lemze, D.; Lombardi, M.; Bradley, L.; Coe, D.; Donahue, M.; Regös, E.; Umetsu, K.; Vanzella, E.; Infante, L.; Kuchner, U.; Maier, C.; Verdugo, M.; Ziegler, B.

    2014-01-01

    Context. The study of the galaxy stellar mass function (SMF) in relation to the galaxy environment and the stellar mass density profile, rho(r), is a powerful tool to constrain models of galaxy evolution. Aims. We determine the SMF of the z=0.44 cluster of galaxies MACS J1206.2-0847 separately for passive and star-forming (SF) galaxies, in different regions of the cluster, from the center out to approximately 2 virial radii. We also determine rho(r) to compare it to the number density and total mass density profiles. Methods. We use the dataset from the CLASH-VLT survey. Stellar masses are obtained by SED fitting on 5-band photometric data obtained at the Subaru telescope. We identify 1363 cluster members down to a stellar mass of 10^9.5 Msolar. Results. The whole cluster SMF is well fitted by a double Schechter function. The SMFs of cluster SF and passive galaxies are statistically different. The SMF of the SF cluster galaxies does not depend on the environment. The SMF of the passive population has a signif...

  18. Measurements of Laser Plasma Instability (LPI) and Electron Density/Temperature Profiles in Plasmas Produced by the Nike KrF Laser

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.

    2016-10-01

    We will present results of simultaneous measurements of LPI-driven light scattering and density/temperature profiles in CH plasmas produced by the Nike krypton fluoride laser (λ = 248 nm). The primary diagnostics for the LPI measurement are time-resolved spectrometers with absolute intensity calibration in spectral ranges relevant to the optical detection of stimulated Raman scattering or two plasmon decay. The spectrometers are capable of monitoring signal intensity relative to thermal background radiation from plasma providing a useful way to analyze LPI initiation. For further understanding of LPI processes, the recently implemented grid image refractometer (Nike-GIR)a is used to measure the coronal plasma profiles. In this experiment, Nike-GIR is equipped with a 5th harmonic probe laser (λ = 213 nm) in attempt to probe into a high density region over the previous peak density with λ = 263 nm probe light ( 4 ×1021 cm-3). The LPI behaviors will be discussed with the measured data sets. Work supported by DoE/NNSA.

  19. Storage affects the phenolic profiles and antioxidant activities of cherries (Prunus avium L) on human low-density lipoproteins

    DEFF Research Database (Denmark)

    Goncalves, B.; Landbo, Anne-Katrine Regel; Let, Mette Bruni

    2004-01-01

    Four sweet cherry cultivars (cvs), Burlat, Saco, Summit and Van, were analysed at harvest and after storage at 2 and 15degreesC for 30 and 6 days respectively. Phenolic profiles in methanolic extracts of freeze-dried samples of the fresh and differently stored cherries were quantified by high...

  20. Calculation of gravity and magnetic anomalies along profiles with end corrections and inverse solutions for density and magnetization

    Science.gov (United States)

    Cady, John W.

    1977-01-01

    An equation derived for the vertical gravity field due to a body with polygonal cross section and finite strike length.  The equations consists of the 2-dimensional equation of Talwani, Worzel, and Landisman (1959), with the addition of end corrections.  Equations for the magnetic field due to a similar body were derived by Shuey and Pasquale (1973).  They coined the term "2 1/2-dimensional" to describe the geometry.

  1. Whistler wave trapping in a density crest

    International Nuclear Information System (INIS)

    Sugai, H.; Niki, H.; Inutake, M.; Takeda, S.

    1979-11-01

    The linear trapping process of whistler waves in a field-aligned density crest is investigated theoretically and experimentally below ω = ωsub(c)/2 (half gyrofrequency). The conditions of the crest trapping are derived in terms of the frequency ω/ωsub(c), the incident wave-normal angle theta sub(i), and the density ratio n sub(i)/n sub(o), where n sub(i) and n sub(o) denote the density at the incident point and that at the ridge, respectively. The oscillation length of the trapped ray path is calculated for a parabolic density profile. The experiment on antenna-excited whistler wave has been performed in a large magnetized plasma with the density crest. The phase and amplitude profile of the whistler wave is measured along and across the crest. The measurement has verified characteristic behaviors of the crest trapping. (author)

  2. Probing ultrafast changes of spin and charge density profiles with resonant XUV magnetic reflectivity at the free-electron laser FERMI.

    Science.gov (United States)

    Gutt, C; Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Raimondi, L; Nikolov, I P; Kiskinova, M; Jaiswal, S; Jakob, G; Kläui, M; Zabel, H; Pietsch, U

    2017-09-01

    We report the results of resonant magnetic XUV reflectivity experiments performed at the XUV free-electron laser FERMI. Circularly polarized XUV light with the photon energy tuned to the Fe M 2,3 edge is used to measure resonant magnetic reflectivities and the corresponding Q -resolved asymmetry of a Permalloy/Ta/Permalloy trilayer film. The asymmetry exhibits ultrafast changes on 240 fs time scales upon pumping with ultrashort IR laser pulses. Depending on the value of the wavevector transfer Q z , we observe both decreasing and increasing values of the asymmetry parameter, which is attributed to ultrafast changes in the vertical spin and charge density profiles of the trilayer film.

  3. Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Arbacher, Becca

    2011-01-01

    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.

  4. Density profiles of small Dirac operator eigenvalues for two color QCD at nonzero chemical potential compared to matrix models

    OpenAIRE

    Akemann, G; Bittner, E; Lombardo, M; Markum, H; Pullirsch, R

    2004-01-01

    We investigate the eigenvalue spectrum of the staggered Dirac matrix in two color QCD at finite chemical potential. The profiles of complex eigenvalues close to the origin are compared to a complex generalization of the chiral Gaussian Symplectic Ensemble, confirming its predictions for weak and strong non-Hermiticity. They differ from the QCD symmetry class with three colors by a level repulsion from both the real and imaginary axis.

  5. Density profiles of small Dirac operator eigenvalues for two color QCD at nonzero chemical potential compared to matrix models

    International Nuclear Information System (INIS)

    Akemann, Gernot; Bittner, Elmar; Lombardo, Maria-Paola; Markum, Harald; Pullirsch, Rainer

    2005-01-01

    We investigate the eigenvalue spectrum of the staggered Dirac matrix in two color QCD at finite chemical potential. The profiles of complex eigenvalues close to the origin are compared to a complex generalization of the chiral Gaussian Symplectic Ensemble, confirming its predictions for weak and strong non-Hermiticity. They differ from the QCD symmetry class with three colors by a level repulsion from both the real and imaginary axis

  6. Assessment risk of osteoporosis in Chinese people: relationship among body mass index, serum lipid profiles, blood glucose, and bone mineral density

    Directory of Open Access Journals (Sweden)

    Cui RT

    2016-07-01

    Full Text Available Rongtao Cui,1 Lin Zhou,2 Zuohong Li,2 Qing Li,2 Zhiming Qi,2 Junyong Zhang3 1Department of Orthopedic and Trauma Surgery, Surgical Research, Duisburg-Essen University Hospital, Essen, Germany; 2Department of Orthopedics, Dalian Central Hospital, Dalian, 3Department of Gastroenterology, Shandong Provincial Hospital, Jinan, People’s Republic of China Objective: The aim of our study was to investigate the relationship among age, sex, body mass index (BMI, serum lipid profiles, blood glucose (BG, and bone mineral density (BMD, making an assessment of the risk of osteoporosis.Materials and methods: A total of 1,035 male and 3,953 female healthy volunteers (aged 41–95 years were recruited by an open invitation. The basic information, including age, sex, height, weight, waistline, hipline, menstrual cycle, and medical history, were collected by a questionnaire survey and physical examination. Serum lipid profiles, BG, postprandial blood glucose, and glycosylated hemoglobin were obtained after 12 hours fasting. BMD in lumbar spine was measured by dual-energy X-ray absorptiometry scanning.Results: The age-adjusted BMD in females was significantly lower than in males. With aging, greater differences of BMD distribution exist in elderly females than in males (P<0.001, and the fastigium of bone mass loss was in the age range from 51 to 55 in females and from 61 to 65 years in males. After adjustment for sex, there were significant differences in BMD among BMI-stratified groups in both males and females. The subjects with a BMI of <18.5 had a higher incidence of osteoporosis than BMI ≥18.5 in both sexes. BMD in type 2 diabetes mellitus with a BG of >7.0 mmol/L was lower than in people with BG of ≤7.0 mmol/L (P<0.001. People with serum high-density lipoprotein cholesterol levels of ≥1.56 mmol/L had a greater prevalence of osteoporosis compared with high-density lipoprotein cholesterol ≤1.55 mmol/L. Logistic regression with odds ratios showed that

  7. Density Profiles, Energy, and Oscillation Strength of a Quantum Dot in Two Dimensions with a Harmonic Oscillator External Potential using an Orbital-free Energy Functional Based on Thomas–Fermi Theory

    Directory of Open Access Journals (Sweden)

    Suhufa Alfarisa

    2016-03-01

    Full Text Available This research aims i to determine the density profile and calculate the ground state energy of a quantum dot in two dimensions (2D with a harmonic oscillator potential using orbital-free density functional theory, and ii to understand the effect of the harmonic oscillator potential strength on the electron density profiles in the quantum dot. This study determines the total energy functional of the quantum dot that is a functional of the density that depends only on spatial variables. The total energy functional consists of three terms. The first term is the kinetic energy functional, which is the Thomas–Fermi approximation in this case. The second term is the external potential. The harmonic oscillator potential is used in this study. The last term is the electron–electron interactions described by the Coulomb interaction. The functional is formally solved to obtain the electron density as a function of spatial variables. This equation cannot be solved analytically, and thus a numerical method is used to determine the profile of the electron density. Using the electron density profiles, the ground state energy of the quantum dot in 2D can be calculated. The ground state energies obtained are 2.464, 22.26, 90.1957, 252.437, and 496.658 au for 2, 6, 12, 20, and 56 electrons, respectively. The highest electron density is localized close to the middle of the quantum dot. The density profiles decrease with the increasing distance, and the lowest density is at the edge of the quantum dot. Generally, increasing the harmonic oscillator potential strength reduces the density profiles around the center of the quantum dot.

  8. Possible influence of the Kuramoto length in a photo-catalytic water splitting reaction revealed by Poisson-Nernst-Planck equations involving ionization in a weak electrolyte

    Science.gov (United States)

    Suzuki, Yohichi; Seki, Kazuhiko

    2018-03-01

    We studied ion concentration profiles and the charge density gradient caused by electrode reactions in weak electrolytes by using the Poisson-Nernst-Planck equations without assuming charge neutrality. In weak electrolytes, only a small fraction of molecules is ionized in bulk. Ion concentration profiles depend on not only ion transport but also the ionization of molecules. We considered the ionization of molecules and ion association in weak electrolytes and obtained analytical expressions for ion densities, electrostatic potential profiles, and ion currents. We found the case that the total ion density gradient was given by the Kuramoto length which characterized the distance over which an ion diffuses before association. The charge density gradient is characterized by the Debye length for 1:1 weak electrolytes. We discuss the role of these length scales for efficient water splitting reactions using photo-electrocatalytic electrodes.

  9. Measurements of Electron Temperature and Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.

    2012-10-01

    ExperimentsfootnotetextJ. Oh, et al, GO5.4, APS DPP (2010).^,footnotetextJ. L. Weaver, et al, GO5.3, APS DPP (2010). using Nike KrF laser observed LPI signatures from CH plasmas at the laser intensities above ˜1x10^15 W/cm^2. Knowing spatial profiles of temperature (Te) and density (ne) in the underdense coronal region (0 Nike LPI experiment, a side-on grid imaging refractometer (GIR)footnotetextR. S. Craxton, et al, Phys. Fluids B 5, 4419 (1993). is being deployed for measuring the underdense plasma profiles. The GIR will resolve Te and ne in space taking a 2D snapshot of probe laser (λ= 263 nm, δt = 10 psec) beamlets (50μm spacing) refracted by the plasma at a selected time during the laser illumination. Time-resolved spectrometers with an absolute-intensity-calibrated photodiode array and a streak camera will simultaneously monitor light emission from the plasma in spectral ranges relevant to Raman (SRS) and two plasmon decay (TDP) instabilities. The experimental study of effects of the plasma profiles on the LPI initiation will be presented.

  10. Similar Spectral Power Densities Within the Schumann Resonance and a Large Population of Quantitative Electroencephalographic Profiles: Supportive Evidence for Koenig and Pobachenko.

    Science.gov (United States)

    Saroka, Kevin S; Vares, David E; Persinger, Michael A

    2016-01-01

    In 1954 and 1960 Koenig and his colleagues described the remarkable similarities of spectral power density profiles and patterns between the earth-ionosphere resonance and human brain activity which also share magnitudes for both electric field (mV/m) and magnetic field (pT) components. In 2006 Pobachenko and colleagues reported real time coherence between variations in the Schumann and brain activity spectra within the 6-16 Hz band for a small sample. We examined the ratios of the average potential differences (~3 μV) obtained by whole brain quantitative electroencephalography (QEEG) between rostral-caudal and left-right (hemispheric) comparisons of 238 measurements from 184 individuals over a 3.5 year period. Spectral densities for the rostral-caudal axis revealed a powerful peak at 10.25 Hz while the left-right peak was 1.95 Hz with beat-differences of ~7.5 to 8 Hz. When global cerebral measures were employed, the first (7-8 Hz), second (13-14 Hz) and third (19-20 Hz) harmonics of the Schumann resonances were discernable in averaged QEEG profiles in some but not all participants. The intensity of the endogenous Schumann resonance was related to the 'best-of-fitness' of the traditional 4-class microstate model. Additional measurements demonstrated real-time coherence for durations approximating microstates in spectral power density variations between Schumann frequencies measured in Sudbury, Canada and Cumiana, Italy with the QEEGs of local subjects. Our results confirm the measurements reported by earlier researchers that demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity.

  11. Similar Spectral Power Densities Within the Schumann Resonance and a Large Population of Quantitative Electroencephalographic Profiles: Supportive Evidence for Koenig and Pobachenko.

    Directory of Open Access Journals (Sweden)

    Kevin S Saroka

    Full Text Available In 1954 and 1960 Koenig and his colleagues described the remarkable similarities of spectral power density profiles and patterns between the earth-ionosphere resonance and human brain activity which also share magnitudes for both electric field (mV/m and magnetic field (pT components. In 2006 Pobachenko and colleagues reported real time coherence between variations in the Schumann and brain activity spectra within the 6-16 Hz band for a small sample. We examined the ratios of the average potential differences (~3 μV obtained by whole brain quantitative electroencephalography (QEEG between rostral-caudal and left-right (hemispheric comparisons of 238 measurements from 184 individuals over a 3.5 year period. Spectral densities for the rostral-caudal axis revealed a powerful peak at 10.25 Hz while the left-right peak was 1.95 Hz with beat-differences of ~7.5 to 8 Hz. When global cerebral measures were employed, the first (7-8 Hz, second (13-14 Hz and third (19-20 Hz harmonics of the Schumann resonances were discernable in averaged QEEG profiles in some but not all participants. The intensity of the endogenous Schumann resonance was related to the 'best-of-fitness' of the traditional 4-class microstate model. Additional measurements demonstrated real-time coherence for durations approximating microstates in spectral power density variations between Schumann frequencies measured in Sudbury, Canada and Cumiana, Italy with the QEEGs of local subjects. Our results confirm the measurements reported by earlier researchers that demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity.

  12. Influence of soft ferromagnetic sections on the magnetic flux density profile of a large grain, bulk Y–Ba–Cu–O superconductor

    International Nuclear Information System (INIS)

    Philippe, M P; Wéra, L; Fagnard, J-F; Vanderheyden, B; Vanderbemden, P; Ainslie, M D; Dennis, A R; Shi, Y-H; Cardwell, D A

    2015-01-01

    Bulk, high temperature superconductors have significant potential for use as powerful permanent magnets in a variety of practical applications due to their ability to trap record magnetic fields. In this paper, soft ferromagnetic sections are combined with a bulk, large grain Y–Ba–Cu–O high temperature superconductor to form superconductor/ferromagnet hybrid structures. We study how the ferromagnetic sections influence the shape of the profile of the trapped magnetic induction at the surface of each structure and report the surface magnetic flux density measured by Hall probe mapping. These configurations have been modelled using a 2D axisymmetric finite element method based on the H-formulation and the results show excellent qualitative and quantitative agreement with the experimental measurements. The model has also been used to study the magnetic flux distribution and predict the behaviour for other constitutive laws and geometries. The results show that the ferromagnetic material acts as a magnetic shield, but the flux density and its gradient are enhanced on the face opposite to the ferromagnet. The thickness and saturation magnetization of the ferromagnetic material are important and a characteristic ferromagnet thickness d* is derived: below d*, saturation of the ferromagnet occurs, and above d*, a weak thickness-dependence is observed. The influence of the ferromagnet is observed even if its saturation magnetization is lower than the trapped flux density of the superconductor. Conversely, thin ferromagnetic discs can be driven to full saturation even though the outer magnetic field is much smaller than their saturation magnetization. (paper)

  13. Convective equilibrium and mixing-length theory for stellarator reactors

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Kulsrud, R.M.

    1985-09-01

    In high β stellarator and tokamak reactors, the plasma pressure gradient in some regions of the plasma may exceed the critical pressure gradient set by ballooning instabilities. In these regions, convective cells break out to enhance the transport. As a result, the pressure gradient can rise only slightly above the critical gradient and the plasma is in another state of equilibrium - ''convective equilibrium'' - in these regions. Although the convective transport cannot be calculated precisely, it is shown that the density and temperature profiles in the convective region can still be estimated. A simple mixing-length theory, similar to that used for convection in stellar interiors, is introduced in this paper to provide a qualitative description of the convective cells and to show that the convective transport is highly efficient. A numerical example for obtaining the density and temperature profiles in a stellarator reactor is given

  14. Development of an x-ray Talbot-Lau moire deflectometer for fast density profile measurements of dense plasmas generated by beam-target interactions

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dan [National Security Technol., LLC, Los Alamos, NM (United States); Berninger, M; Meidinger, A; Stutman, Dan; Valdivia, Maria Pia

    2015-05-01

    For the first time an x-ray Talbot-Lau moire deflectometer is being developed that will use a flash tube source and fast detector for dynamic density gradient measurements. In Talbot-Lau moire deflectometry, an x-ray grating makes an image of itself on a second grating (the Talbot effect) to produce a moire pattern on a detector. The test object is placed between these gratings, with variations in index of refraction changing the pattern. A third grating in front of an incoherent x-ray source produces an array of coherent sources. With a 150 kV x-ray flash tube as the source, the gratings are placed in a glancing angle setup for performance at ~60 keV. The detector is a gated CCD with a fast scintillator for x-ray conversion. This diagnostic, designed for the Dual-Axis Radiographic Hydrodynamic Test facility (DARHT) at Los Alamos National Laboratory, measures the density profile of dense plasma plumes ejected from beam-target interactions. DARHT has two high-current, pulsed, inductive linear electron accelerators with bremsstrahlung targets at the end of each beam line to create 2-D radiographic images of hydrodynamic tests. One multi-pulse accelerator has up to four beam pulses striking the same target within 2 μs. Computer simulations that model target evolution and ejected material between pulses are used to design these targets for optimal radiographic performance; the x-ray deflectometer will directly measure density gradients in the ejected plumes and provide the first experimental constraints to these models. During the first year, currently underway, the diagnostic systems are being designed. In year two, the flash tube and fast detector will be deployed at DARHT for radiographic imaging while the deflectometer is built and tested on the bench with a continuous source. Finally, in year three, the fast deflectometer will be installed on DARHT and density measurements will be performed.

  15. Interrelationships between postprandial lipoprotein B:CIII particle changes and high-density lipoprotein subpopulation profiles in mixed hyperlipoproteinemia.

    Science.gov (United States)

    Saïdi, Y; Sich, D; Camproux, A; Egloff, M; Federspiel, M C; Gautier, V; Raisonnier, A; Turpin, G; Beucler, I

    1999-01-01

    We studied the relationships postprandially between triglyceride-rich lipoprotein (TRL) and high-density lipoprotein (HDL) in 11 mixed hyperlipoproteinemia (MHL) and 11 hypercholesterolemia (HCL) patients. The high and prolonged postprandial triglyceridemia response observed in MHL but not HCL patients was essentially dependent on very-low-density lipoprotein (VLDL) changes. This abnormal response was related to decreased lipoprotein lipase (LPL) activity (-48.7%, P<.01) in MHL compared with HCL subjects. Cholesteryl ester transfer protein (CETP) activity was postprandially enhanced only in MHL patients, and this elevation persisted in the late period (+19% at 12 hours, P<.05), sustaining the delayed enrichment of VLDL with cholesteryl ester (CE). The late postprandial period in MHL patients was also characterized by high levels of apolipoprotein B (apoB)-containing lipoproteins with apoCIII ([LpB:CIII] +36% at 12 hours, P<.01) and decreased levels of apoCIII contained in HDL ([LpCIII-HDL] -34% at 12 hours, P<.01), reflecting probably a defective return of apoCIII from TRL toward HDL. In MHL compared with HCL patients, decreased HDL2 levels were related to both HDL2b and HDL2a subpopulations (-57% and -49%, respectively, P<.01 for both) and decreased apoA-I levels (-53%, P<.01) were equally linked to decreased HDL2 with apoA-I only (LpA-I) and HDL2 with both apoA-I and apoA-II ([LpA-I:A-II] -55% and -52%, respectively, P<.01 for both). The significant inverse correlations between the postprandial magnitude of LpB:CIII and HDL2-LpA-I and HDL2b levels in MHL patients underline the close TRL-HDL interrelationships. Our findings indicate that TRL and HDL abnormalities evidenced at fasting were postprandially amplified, tightly interrelated, and persistent during the late fed period in mixed hyperlipidemia. Thus, these fasting abnormalities are likely postprandially originated and may constitute proatherogenic lipoprotein disorders additional to the HCL in MHL patients.

  16. CORRELATION OF H-MODE BARRIER WIDTH AND NEUTRAL PENETRATION LENGTH

    International Nuclear Information System (INIS)

    GROEBNER, R.J.; MAHDAVI, M.A.; LEONARD, A.W.; OSBORNE, T.H.; WOLF, N.S.; PORTER, G.D.; STANGEBY, P.C.; BROOKS, N.H.; COLCHIN, R.J.; HEIDBRINK, W.W.; LUCE, T.C.; MCKEE, G.R.; OWEN, L.W.; WANG, G.; WHYTE, D.G.

    2002-01-01

    OAK A271 CORRELATION OF H-MODE BARRIER WIDTH AND NEUTRAL PENETRATION LENGTH. Pedestal studies in DIII-D find a good correlation between the width of the H-mode density barrier and the neutral penetration length. These results are obtained by comparing experimental density profiles to the predictions of an analytic model for the profile, obtained from the particle continuity equations for electrons and deuterium atoms. In its range of validity (edge temperature between 40-500 eV), the analytic model quantitatively predicts the observed decrease of the width as the pedestal density increases, the observed strong increase of the gradient of the density as the pedestal density increases and the observation that L-mode and H-mode profiles with the same pedestal density have very similar shapes. The width of the density barrier, measured from the edge of the electron temperature barrier, is the lower limit for the observed width of the temperature barrier. These results support the hypothesis that particle fueling provides the dominant control for the size of the H-mode transport barrier

  17. CORRELATION OF H-MODE BARRIER WIDTH AND NEUTRAL PENTRATION LENGTH

    International Nuclear Information System (INIS)

    GROEBNER, R.J.; MAHDAVI, M.A.; LEONARD, A.W.; OSBORNE, T.H.; WOLF, N.S.; PORTER, G.D.; STANGEBY, P.C.; BROOKS, N.H.; COLCHIN, R.J.; HEIDBRINK, W.W.; LUCE, T.C.; MCKEE, G.R.; OWEN, L.W.; WANG, G.; WHYTE, D.G.

    2002-01-01

    OAK A271 CORRELATION OF H-MODE BARRIER WIDTH AND NEUTRAL PENTRATION LENGTH. Pedestal studies in DIII-D find a good correlation between the width of the region of steep gradient in the H-mode density and the neutral penetration length. These results are obtained by comparing experimental density profiles to the predictions of an analytic model for the profile, obtained from the particle continuity equations for electrons and deuterium atoms. In its range of validity (edge temperature between 40-500 eV), the analytic model quantitatively predicts the observed decrease of the width as the pedestal density increases, the observed strong increase of the gradient of the density as the pedestal density increases and the observation that L-mode and H-mode profiles with the same pedestal density have very similar shapes. The width of the density barrier, measured from the edge of the electron temperature barrier, is the lower limit for the observed width of the temperature barrier. These results support the hypothesis that particle fueling provides a dominant control for the size of the H-mode transport barrier

  18. On the relation between plasma and neutral gas profiles in a cold gas-blanket system

    International Nuclear Information System (INIS)

    Bures, M.

    1981-01-01

    A solution for the neutral density profile using the measured plasma density and temperature gradients is presented. The fluid model is used. It is found that the penetration length for neutrals is underestimated in the situation where the integrated profiles are used. The ionization rate need not be inferred in the present calculation, because the ionization of neutrals diffusing into the plasma is implicitly included in measured profiles. This calculation is advantageous in the low temperature range where the ionization rate is a strongly varying function of temperature. Finally the presented solution indicates that the temperature gradient plays the essential role in the determination of the neutral density profile. (Auth.)

  19. Chronic caffeine consumption prevents cognitive decline from young to middle age in rats, and is associated with increased length, branching, and spine density of basal dendrites in CA1 hippocampal neurons.

    Science.gov (United States)

    Vila-Luna, S; Cabrera-Isidoro, S; Vila-Luna, L; Juárez-Díaz, I; Bata-García, J L; Alvarez-Cervera, F J; Zapata-Vázquez, R E; Arankowsky-Sandoval, G; Heredia-López, F; Flores, G; Góngora-Alfaro, J L

    2012-01-27

    Chronic caffeine consumption has been inversely associated with the risk of developing dementia and Alzheimer's disease. Here we assessed whether chronic caffeine treatment prevents the behavioral and cognitive decline that male Wistar rats experience from young (≈3 months) to middle age (≈10 months). When animals were young they were evaluated at weekly intervals in three tests: motor activity habituation in the open field (30-min sessions at the same time on consecutive days), continuous spontaneous alternation in the Y-maze (8 min), and elevated plus-maze (5 min). Afterward, rats from the same litter were randomly assigned either to a caffeine-treated group (n=13) or a control group (n=11), which received only tap water. Caffeine treatment (5 mg/kg/day) began when animals were ≈4 months old, and lasted for 6 months. Behavioral tests were repeated from day 14 to day 28 after caffeine withdrawal, a time period that is far in excess for the full excretion of a caffeine dose in this species. Thirty days after caffeine discontinuation brains were processed for Golgi-Cox staining. Compared with controls, we found that middle-aged rats that had chronically consumed low doses of caffeine (1) maintained their locomotor habituation during the second consecutive day exposure to the open field (an index of non-associative learning), (2) maintained their exploratory drive to complete the conventional minimum of nine arm visits required to calculate the alternation performance in the Y-maze in a greater proportion, (3) maintained their alternation percentage above chance level (an index of working memory), and (4) did not increase the anxiety indexes assessed by measuring the time spent in the open arms of the elevated plus maze. In addition, morphometric analysis of hippocampal neurons revealed that dendritic branching (90-140 μm from the soma), length of 4th and 5th order branches, total dendritic length, and spine density in distal dendritic branches were greater in

  20. High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density peptide microarrays

    DEFF Research Database (Denmark)

    Engmark, Mikael; Andersen, Mikael Rørdam; Laustsen, Andreas Hougaard

    2016-01-01

    Snakebite envenoming is a serious condition requiring medical attention and administration of antivenom. Current antivenoms are antibody preparations obtained from the plasma of animals immunised with whole venom(s) and contain antibodies against snake venom toxins, but also against other antigens....... In order to better understand the molecular interactions between antivenom antibodies and epitopes on snake venom toxins, a high-throughput immuno-profiling study on all manually curated toxins from Dendroaspis species and selected African Naja species was performed based on custom-made high......-density peptide microarrays displaying linear toxin fragments. By detection of binding for three different antivenoms and performing an alanine scan, linear elements of epitopes and the positions important for binding were identified. A strong tendency of antivenom antibodies recognizing and binding to epitopes...

  1. Probing ultrafast changes of spin and charge density profiles with resonant XUV magnetic reflectivity at the free-electron laser FERMI

    Directory of Open Access Journals (Sweden)

    C. Gutt

    2017-09-01

    Full Text Available We report the results of resonant magnetic XUV reflectivity experiments performed at the XUV free-electron laser FERMI. Circularly polarized XUV light with the photon energy tuned to the Fe M2,3 edge is used to measure resonant magnetic reflectivities and the corresponding Q-resolved asymmetry of a Permalloy/Ta/Permalloy trilayer film. The asymmetry exhibits ultrafast changes on 240 fs time scales upon pumping with ultrashort IR laser pulses. Depending on the value of the wavevector transfer Qz, we observe both decreasing and increasing values of the asymmetry parameter, which is attributed to ultrafast changes in the vertical spin and charge density profiles of the trilayer film.

  2. Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile

    International Nuclear Information System (INIS)

    Nanda, Vikas; Kant, Niti; Wani, Manzoor Ahmad

    2013-01-01

    The early and strong self-focusing of a Hermite-cosh-Gaussian laser beam in magnetoplasma in the presence of density ramp has been observed. Focusing and de-focusing nature of the Hermite-cosh-Gaussian laser beam with decentered parameter and magnetic field has been studied, and strong self-focusing is reported. It is investigated that decentered parameter 'b' plays a significant role for the self-focusing of the laser beam and is very sensitive as in case of extraordinary mode. For mode indices, m = 0, 1, 2, and b = 4.00, 3.14, and 2.05, strong self-focusing is observed. Similarly in case of ordinary mode, for m = 0, 1, 2 and b = 4.00, 3.14, 2.049, respectively, strong self-focusing is reported. Further, it is seen that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For mode indices m = 0, 1, and 2, diffraction term becomes more dominant over nonlinear term for decentered parameter b=0. For selective higher values of decentered parameter in case of mode indices m=0, 1, and 2, self-focusing effect becomes strong for extraordinary mode. Also increase in the value of magnetic field enhances the self-focusing ability of the laser beam, which is very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers

  3. Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti; Wani, Manzoor Ahmad [Department of Physics, Lovely Professional University, Phagwara 144411, Punjab (India)

    2013-11-15

    The early and strong self-focusing of a Hermite-cosh-Gaussian laser beam in magnetoplasma in the presence of density ramp has been observed. Focusing and de-focusing nature of the Hermite-cosh-Gaussian laser beam with decentered parameter and magnetic field has been studied, and strong self-focusing is reported. It is investigated that decentered parameter 'b' plays a significant role for the self-focusing of the laser beam and is very sensitive as in case of extraordinary mode. For mode indices, m = 0, 1, 2, and b = 4.00, 3.14, and 2.05, strong self-focusing is observed. Similarly in case of ordinary mode, for m = 0, 1, 2 and b = 4.00, 3.14, 2.049, respectively, strong self-focusing is reported. Further, it is seen that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For mode indices m = 0, 1, and 2, diffraction term becomes more dominant over nonlinear term for decentered parameter b=0. For selective higher values of decentered parameter in case of mode indices m=0, 1, and 2, self-focusing effect becomes strong for extraordinary mode. Also increase in the value of magnetic field enhances the self-focusing ability of the laser beam, which is very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers.

  4. Stellar Populations in the Central 0.5 pc of the Galaxy. I. A New Method for Constructing Luminosity Functions and Surface-density Profiles

    Science.gov (United States)

    Do, T.; Lu, J. R.; Ghez, A. M.; Morris, M. R.; Yelda, S.; Martinez, G. D.; Wright, S. A.; Matthews, K.

    2013-02-01

    We present new high angular resolution near-infrared spectroscopic observations of the nuclear star cluster surrounding the Milky Way's central supermassive black hole. Using the integral-field spectrograph OSIRIS on Keck II behind the laser-guide-star adaptive optics system, this spectroscopic survey enables us to separate early-type (young, 4-6 Myr) and late-type (old, >1 Gyr) stars with a completeness of 50% down to K' = 15.5 mag, which corresponds to ~10 M ⊙ for the early-type stars. This work increases the radial extent of reported OSIRIS/Keck measurements by more than a factor of three from 4'' to 14'' (0.16 to 0.56 pc), along the projected disk of young stars. For our analysis, we implement a new method of completeness correction using a combination of star-planting simulations and Bayesian inference. We assign probabilities for the spectral type of every source detected in deep imaging down to K' = 15.5 mag using information from spectra, simulations, number counts, and the distribution of stars. The inferred radial surface-density profiles, Σ(R)vpropR -Γ, for the young stars and late-type giants are consistent with earlier results (Γearly = 0.93 ± 0.09, Γlate = 0.16 ± 0.07). The late-type surface-density profile is approximately flat out to the edge of the survey. While the late-type stellar luminosity function is consistent with the Galactic bulge, the completeness-corrected luminosity function of the early-type stars has significantly more young stars at faint magnitudes compared with previous surveys with similar depth. This luminosity function indicates that the corresponding mass function of the young stars is likely less top-heavy than that inferred from previous surveys.

  5. Construction of a high-density genetic map using specific length amplified fragment markers and identification of a quantitative trait locus for anthracnose resistance in walnut (Juglans regia L.).

    Science.gov (United States)

    Zhu, Yufeng; Yin, Yanfei; Yang, Keqiang; Li, Jihong; Sang, Yalin; Huang, Long; Fan, Shu

    2015-08-18

    Walnut (Juglans regia, 2n = 32, approximately 606 Mb per 1C genome) is an economically important tree crop. Resistance to anthracnose, caused by Colletotrichum gloeosporioides, is a major objective of walnut genetic improvement in China. The recently developed specific length amplified fragment sequencing (SLAF-seq) is an efficient strategy that can obtain large numbers of markers with sufficient sequence information to construct high-density genetic maps and permits detection of quantitative trait loci (QTLs) for molecular breeding. SLAF-seq generated 161.64 M paired-end reads. 153,820 SLAF markers were obtained, of which 49,174 were polymorphic. 13,635 polymorphic markers were sorted into five segregation types and 2,577 markers of them were used to construct genetic linkage maps: 2,395 of these fell into 16 linkage groups (LGs) for the female map, 448 markers for the male map, and 2,577 markers for the integrated map. Taking into account the size of all LGs, the marker coverage was 2,664.36 cM for the female map, 1,305.58 cM for the male map, and 2,457.82 cM for the integrated map. The average intervals between two adjacent mapped markers were 1.11 cM, 2.91 cM and 0.95 cM for three maps, respectively. 'SNP_only' markers accounted for 89.25% of the markers on the integrated map. Mapping markers contained 5,043 single nucleotide polymorphisms (SNPs) loci, which corresponded to two SNP loci per SLAF marker. According to the integrated map, we used interval mapping (Logarithm of odds, LOD > 3.0) to detect our quantitative trait. One QTL was detected for anthracnose resistance. The interval of this QTL ranged from 165.51 cM to 176.33 cM on LG14, and ten markers in this interval that were above the threshold value were considered to be linked markers to the anthracnose resistance trait. The phenotypic variance explained by each marker ranged from 16.2 to 19.9%, and their LOD scores varied from 3.22 to 4.04. High-density genetic maps for walnut containing 16

  6. Modeling the Lower Part of the Topside Ionospheric Vertical Electron Density Profile Over the European Region by Means of Swarm Satellites Data and IRI UP Method

    Science.gov (United States)

    Pignalberi, A.; Pezzopane, M.; Rizzi, R.

    2018-03-01

    An empirical method to model the lower part of the ionospheric topside region from the F2 layer peak height to about 500-600 km of altitude over the European region is proposed. The method is based on electron density values recorded from December 2013 to June 2016 by Swarm satellites and on foF2 and hmF2 values provided by IRI UP (International Reference Ionosphere UPdate), which is a method developed to update the IRI model relying on the assimilation of foF2 and M(3000)F2 data routinely recorded by a network of European ionosonde stations. Topside effective scale heights are calculated by fitting some definite analytical functions (α-Chapman, β-Chapman, Epstein, and exponential) through the values recorded by Swarm and the ones output by IRI UP, with the assumption that the effective scale height is constant in the altitude range considered. Calculated effective scale heights are then modeled as a function of foF2 and hmF2, in order to be operationally applicable to both ionosonde measurements and ionospheric models, like IRI. The method produces two-dimensional grids of the median effective scale height binned as a function of foF2 and hmF2, for each of the considered topside profiles. A statistical comparison with Constellation Observing System for Meteorology, Ionosphere, and Climate/FORMOsa SATellite-3 collected Radio Occultation profiles is carried out to assess the validity of the proposed method and to investigate which of the considered topside profiles is the best one. The α-Chapman topside function displays the best performance compared to the others and also when compared to the NeQuick topside option of IRI.

  7. The Nutrient Density of Snacks: A Comparison of Nutrient Profiles of Popular Snack Foods Using the Nutrient-Rich Foods Index.

    Science.gov (United States)

    Hess, Julie; Rao, Goutham; Slavin, Joanne

    2017-01-01

    Background: Although Americans receive almost a quarter of their daily energy from snacks, snacking remains a poorly defined and understood eating occasion. However, there is little dietary guidance about choosing snacks. Families, clinicians, and researchers need a comprehensive approach to assessing their nutritional value. Objective: To quantify and compare the nutrient density of commonly consumed snacks by their overall nutrient profiles using the Nutrient-Rich Foods (NRF) Index 10.3. Methods: NRF Index scores were calculated for the top 3 selling products (based on 2014 market research data) in different snack categories. These NRF scores were averaged to provide an overall nutrient-density score for each category. Results: Based on NRF scores, yogurt (55.3), milk (52.5), and fruit (30.1) emerged as the most nutrient-dense snacks. Ice cream (-4.4), pies and cakes (-11.1), and carbonated soft drinks (-17.2) emerged as the most nutrient-poor snacks. Conclusions: The NRF Index is a useful tool for assessing the overall nutritional value of snacks based on nutrients to limit and nutrients to encourage.

  8. Plasma hormonal profiles and dendritic spine density and morphology in the hippocampal CA1 stratum radiatum, evidenced by light microscopy, of virgin and postpartum female rats.

    Science.gov (United States)

    Brusco, Janaína; Wittmann, Raul; de Azevedo, Márcia S; Lucion, Aldo B; Franci, Celso R; Giovenardi, Márcia; Rasia-Filho, Alberto A

    2008-06-27

    Successful reproduction requires that changes in plasma follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), oxytocin (OT), estrogen (E(2)) and progesterone (P(4)) occur together with the display of maternal behaviors. Ovarian steroids and environmental stimuli can affect the dendritic spines in the rat hippocampus. Here, studying Wistar rats, it is described: (a) the sequential and concomitant changes in the hormonal profile of females at postpartum days (PP) 4, 8, 12, 16, 20 and 24, comparing to estrous cycle referential values; (b) the dendritic spine density in the stratum radiatum of CA1 (CA1-SR) Golgi-impregnated neurons in virgin females across the estrous cycle and in multiparous age-matched ones; and (c) the proportion of different types of spines in the CA1-SR of virgin and postpartum females, both in diestrus. Plasma levels of gonadotrophins and ovarian hormones remained low along PP while LH increased and PRL decreased near the end of the lactating period. The lowest dendritic spine density was found in virgin females in estrus when compared to diestrus and proestrus phases or to postpartum females in diestrus (p0.4). There were no differences in the proportions of the different spine types in nulliparous and postpartum females (p>0.2). Results suggest that medium layer CA1-SR spines undergo rapid modifications in Wistar females across the estrous cycle (not quite comparable to Sprague-Dawley data or to hormonal substitutive therapy following ovariectomy), but persistent effects of motherhood on dendritic spine density and morphology were not found in this area.

  9. Effect of the microenvironment and embryo density on developmental characteristics and gene expression profile of bovine preimplantative embryos cultured in vitro.

    Science.gov (United States)

    Hoelker, Michael; Rings, Franka; Lund, Qamaruddin; Ghanem, Nasser; Phatsara, Chirawath; Griese, Josef; Schellander, Karl; Tesfaye, Dawit

    2009-03-01

    The Well of the Well (WOW) system has been developed to culture embryos in small groups or to track the development of single embryos. In the present study, we aimed to examine the effects of the microenvironment provided by the WOW system and embryo density on developmental rates, embryo quality and preimplantative gene expression profile of the resulting embryos. Embryos cultured in a group of 16 reached the blastocyst stage at a significantly lower level than zygotes cultured in a group of 50 (22.2 vs 30.3%), whereas zygotes cultured in WOW were able to compensate against low embryo densities, reaching a blastocyst rate as high as embryos cultured in a group of 50 (31.3 vs 30.3%). Moreover, embryos derived from WOW culture did not differ in terms of differential cell counts and apoptotic cell index compared with controls. The gene expression analysis revealed 62 transcripts to be upregulated and 33 transcripts to be downregulated by WOW culture. Comparing the in vivo derived blastocysts with the blastocysts derived from WOW culture, and group culture, expression of ATP5A1, PLAC8 and KRT8 was more similar to the embryos derived from WOW culture, whereas expression of S100A10 and ZP3 genes was more similar to blastocysts cultured in a group. In conclusion, microenvironment as well as embryo density significantly affected developmental rates. While subsequent blastocysts did not differ in terms of differential cell counts and apoptotic cell index, significant differences were observed in terms of the relative abundance of transcripts in the resulting embryos.

  10. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease.

    Science.gov (United States)

    Emoto, Takuo; Yamashita, Tomoya; Kobayashi, Toshio; Sasaki, Naoto; Hirota, Yushi; Hayashi, Tomohiro; So, Anna; Kasahara, Kazuyuki; Yodoi, Keiko; Matsumoto, Takuya; Mizoguchi, Taiji; Ogawa, Wataru; Hirata, Ken-Ichi

    2017-01-01

    The association between atherosclerosis and gut microbiota has been attracting increased attention. We previously demonstrated a possible link between gut microbiota and coronary artery disease. Our aim of this study was to clarify the gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism (T-RFLP). This study included 39 coronary artery disease (CAD) patients and 30 age- and sex- matched no-CAD controls (Ctrls) with coronary risk factors. Bacterial DNA was extracted from their fecal samples and analyzed by T-RFLP and data mining analysis using the classification and regression algorithm. Five additional CAD patients were newly recruited to confirm the reliability of this analysis. Data mining analysis could divide the composition of gut microbiota into 2 characteristic nodes. The CAD group was classified into 4 CAD pattern nodes (35/39 = 90 %), while the Ctrl group was classified into 3 Ctrl pattern nodes (28/30 = 93 %). Five additional CAD samples were applied to the same dividing model, which could validate the accuracy to predict the risk of CAD by data mining analysis. We could demonstrate that operational taxonomic unit 853 (OTU853), OTU657, and OTU990 were determined important both by the data mining method and by the usual statistical comparison. We classified the gut microbiota profiles in coronary artery disease patients using data mining analysis of T-RFLP data and demonstrated the possibility that gut microbiota is a diagnostic marker of suffering from CAD.

  11. Sap flow measurements combining sap-flux density radial profiles with punctual sap-flux density measurements in oak trees (Quercus ilex and Quercus pyrenaica) - water-use implications in a water-limited savanna-

    Science.gov (United States)

    Reyes, J. Leonardo; Lubczynski1, Maciek W.

    2010-05-01

    measurements using the HFD-measured radial profiles. The standard TDP daily mean of sap-flux density was 95% higher than the 2cm equivalent of the HFD for Q. ilex and 70% higher for Q. pyrenaica. NTG-corrected TDP daily mean of sap-flux density was 34% higher than HFD for Q. ilex and 47% lower for Q. pyrenaica. Regarding sap flow measurements, the standard TDP sap flow was 81% higher than HFD sap flow for Q. ilex and 297% for Q. pyrenaica. The NTG-corrected TDP sap flow was 24% higher than HFD sap flow for Q. ilex and 23% for Q. pyrenaica. The radial correction, for TDP-NTG-corrected sap-flux density, produced sap-flow measurements in well agreement with HFD, just slightly lower (-3% Q.i. and -4% Q.p.). The TDP-HFD sap flow data acquired in dry season over the savanna type of sparsely distributed oak trees (Q. ilex & Q. pyrenaica) showed that the TDP method must be corrected for NTG and for radial variability of sap flux density in trees with sapwood thicker than 2 cm. If such corrections are not taken into consideration, the amount of accounted water used by the trees is prone to overestimation, especially for Quercus pyrenaica. The obtained results indicate also that the combination of HFD and TDP leads to an efficient and accurate operational sap flow measurement schema that is currently in the optimization stage.

  12. Espectrofotometria de longo caminho óptico em espectrofotômetro de duplo-feixe convencional: uma alternativa simples para investigações de amostras com densidade óptica muito baixa Long optical path length spectrophotometry in conventional double-beam spectrophotometers: a simple alternative for investigating samples of very low optical density

    Directory of Open Access Journals (Sweden)

    André Luiz Galo

    2009-01-01

    Full Text Available We describe the design and tests of a set-up mounted in a conventional double beam spectrophotometer, which allows the determination of optical density of samples confined in a long liquid core waveguide (LCW capillary. Very long optical path length can be achieved with capillary cell, allowing measurements of samples with very low optical densities. The device uses a custom optical concentrator optically coupled to LCW (TEFLON® AF. Optical density measurements, carried out using a LCW of ~ 45 cm, were in accordance with the Beer-Lambert Law. Thus, it was possible to analyze quantitatively samples at concentrations 45 fold lower than that regularly used in spectrophotometric measurements.

  13. Telomere Length and Mortality

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P

    2008-01-01

    Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...

  14. Scattered light evidence for short density scale heights near critical density in laser-irradiated plasmas

    International Nuclear Information System (INIS)

    Phillion, D.W.; Lerche, R.A.; Rupert, V.C.; Haas, R.A.; Boyle, M.J.

    1976-01-01

    Experimental evidence is presented of a steepened electron density profile near critical density obtained from studying the time-integrated scattered light from targets illuminated by linearly polarized, 1.06 μ light. Both 10 μ thick disks and DT-filled glass microshells were irradiated by light focused by f/1 or f/2.5 lenses in one and two-beam experiments, respectively. From the dependence of the asymmetry of the scattered light about the beam axis upon the scattering angle, we infer scale lengths on the order of one micron. Scale lengths have also been deduced from measurements on the polarization state of the reflected light. Both analytic and numerical results are presented to show how the polarization state varies with the incidence angle and the scale length

  15. Scattered light evidence for short density heights near critical density in laser-irradiated plasmas

    International Nuclear Information System (INIS)

    Phillion, D.W.; Lerche, R.A.; Rupert, V.C.; Haas, R.A.; Boyle, M.J.

    1976-01-01

    Experimental evidence is presented of a steepened electron density profile near critical density obtained from studying the time-integrated scattered light from targets illuminated by linearly polarized, 1.06 μ light. Both 10 μ thick disks and DT-filled glass microshells were irradiated by light focused by f/1 or f/2.5 lenses in one and two-beam experiments, respectively. From the dependence of the asymmetry of the scattered light about the beam axis upon the scattering angle, scale lengths on the order of one micron are inferred. Scale lengths have also been deduced from measurements on the polarization state of the reflected light. Both analytic and numerical results are presented to show how the polarization state varies with the incidence angle and the scale length

  16. Role of the current density profile on drift wave stability in internal transport barrier reversed magnetic shear experiments at JET and Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Fourment, C; Hoang, G T; Eriksson, L-G; Garbet, X; Litaudon, X; Tresset, G [EURATOM-CEA Association, CEA/DSM/DRFC, CEA Cadarache, 13108 St Paul-lez-Durance (France)

    2003-03-01

    The role of the current density profile on drift wave stability is investigated using a linear electrostatic gyro-kinetic code. The growth rates are shown to have a linear dependence on the normalized temperature gradients above a certain threshold. A parametric study of the threshold shows a dramatic stabilizing effect of negative magnetic shear, especially for large scale instabilities. A set of handy formulae fitting the threshold as a function of the magnetic shear and the safety factor is proposed. Analysis of reversed magnetic shear discharges with internal transport barrier (ITB) in JET shows that ion ITBs can be triggered by the negative magnetic shear in the core of the plasma. Subsequently, the increase of the ExB shearing rate allows for the expansion of the ITB, despite the increase of the linear growth rates due to the temperature gradient peaking. In the case of the electron ITB obtained in the Tore Supra LHEP mode, the central increase of the confinement is associated with the stabilization of large scale trapped electron modes by the negative magnetic shear effect, whereas the steep electron temperature gradient destabilizes the small scale electron temperature gradient modes, which prevent the electron heat transport to reach neoclassical levels.

  17. Density functional theory for polymeric systems in 2D

    International Nuclear Information System (INIS)

    Słyk, Edyta; Bryk, Paweł; Roth, Roland

    2016-01-01

    We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim’s first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys . 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT. (paper)

  18. Acoustic Measurement of the Length of Air-plasma Filament Induced by an Intense Femtosecond Laser Pulse

    Directory of Open Access Journals (Sweden)

    Wu Si-Qing

    2017-01-01

    Full Text Available The paper studies acoustic emission from air-plasma filament induced by a strong femtosecond laser pulse. Acoustic signal is detected with a sensitive directional microphone. Acoustic measurement provides a new method to determine the length of a filament. Compared with other methods, acoustic measurement is simpler, more sensitive, and with higher spatial resolution. Information of filament length is experimentally acquired through measuring acoustic pressure at different position of filament. On the basis of the relationship between acoustic signal and free-electron density in filament, profile of free-electron density is demonstrated

  19. Correlation of H-mode barrier width and neutral penetration length

    International Nuclear Information System (INIS)

    Groebner, R.J.; Mahdavi, M.A.; Leonard, A.W.

    2003-01-01

    Pedestal studies in DIII-D find a good correlation between the width of the H-mode density barrier and the neutral penetration length. These results are obtained by comparing experimental density profiles to the predictions of an analytic model for the profile, obtained from the particle continuity equations for electrons and deuterium atoms. In its range of validity (edge temperature between 40-500 eV), the analytic model quantitatively predicts the observed decrease of the width as the pedestal density increases, the observed strong increase of the gradient of the density as the pedestal density increases and the observation that L-mode and H-mode profiles with the same pedestal density have very similar shapes. The width of the density barrier, measured from the edge of the electron temperature barrier, is the lower limit for the observed width of the temperature barrier. These results support the hypothesis that particle fueling provides the dominant control for the size of the H-mode transport barrier. (author)

  20. Detecting many-body-localization lengths with cold atoms

    Science.gov (United States)

    Guo, Xuefei; Li, Xiaopeng

    2018-03-01

    Considering ultracold atoms in optical lattices, we propose experimental protocols to study many-body-localization (MBL) length and criticality in quench dynamics. Through numerical simulations with exact diagonalization, we show that in the MBL phase the perturbed density profile following a local quench remains exponentially localized in postquench dynamics. The size of this density profile after long-time-dynamics defines a localization length, which tends to diverge at the MBL-to-ergodic transition as we increase the system size. The determined localization transition point agrees with previous exact diagonalization calculations using other diagnostics. Our numerical results provide evidence for violation of the Harris-Chayes bound for the MBL criticality. The critical exponent ν can be extracted from our proposed dynamical procedure, which can then be used directly in experiments to determine whether the Harris-Chayes-bound holds for the MBL transition. These proposed protocols to detect localization criticality are justified by benchmarking to the well-established results for the noninteracting three-dimensional Anderson localization.

  1. Association between the biochemical profiles in blood and bone mineral density in Chinese Han population: findings from a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Chen HX

    2016-11-01

    Full Text Available Hong-Xia Chen,1,2,* Li-Bing Wu,3,* Zhong-Ji Meng1 1Institute of Biomedicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People’s Republic of China; 2Department of Environmental, Agricultural, & Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA; 3Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People’s Republic of China *These authors contributed equally to this work. Abstract: This study investigated the possible correlation between blood biochemical profiles and bone mineral density (BMD in the Chinese Han population. We conducted a cross-sectional analysis using participants randomly selected from the Health Screening Center of Taihe Hospital, Hubei University of Medicine, which included a total of 285 individuals, varied in ages from 31 years to 63 years. The height, weight, and body mass index (BMI of each subject were measured, as well as fasting blood glucose (FBG, triglycerides, total cholesterol, blood uric acid (UA, blood urea nitrogen, and blood creatinine. We evaluated BMD at the wrist (grams per centimeter square using a dual-energy X-ray absorptiometry scan. The mean ages of female and male groups were 45.32±8.24 years and 46.76±9.01 years, respectively. The mean age of the study population was 46.14±8.79 years, which is similar to the general population. The mean BMI values were 22.08±2.38 kg/m2 and 24.50±2.67 kg/m2 in the female and male population, respectively, representing a statistically significant difference (P<0.05. No significant differences in levels of FBG total cholesterol, or triglycerides were seen among the male and female population. Multiple linear regression analysis was performed using BMD as outcome variables and BMI, blood UA, FBG, total cholesterol, triglycerides, urea nitrogen, and blood creatinine as covariates, and the regression equation was established as Y=0

  2. Application of Thomson scattering at 1.06μm as a diagnostic for spatial profile measurements of electron temperature and density on the TCV tokamak

    International Nuclear Information System (INIS)

    Franke, S.

    1997-04-01

    The variable configuration tokamak, TCV, in operation at CRPP since the end of 1991, is a particularly challenging machine with regard to the experimental system that must provide essential information regarding properties of confined plasmas with strongly shaped, non-circular cross-sections. The importance of the energy confinement issue in a machine designed specifically for the investigation of the effect of plasma shape on confinement and stability is self-evident, as is the necessity for a diagnostic capable of providing the profiles of electron temperature and density required for evaluation of this confinement. For TCV, a comprehensive Thomson Scattering (TS) diagnostic was the natural choice, specifically owing to the resulting spatially localized and time resolved measurement. The details of the system installed on TCV, together with the results obtained from the diagnostic comprise the subject matter of this thesis. A first version of the diagnostic was equipped with only ten observation volumes. In this case, adequate spatial resolution can only be maintained if measurements are limited to plasmas located in the upper half of the highly elongated TCV vacuum vessel. The system has recently been upgraded through the addition of a further fifteen observation volumes, together with major technical improvements in the scattered light detection system. This new version now permits TS observations in all TCV plasma configurations, including equilibria produced in the lower and upper halves of the vacuum vessel and the highly elongated plasmas now routinely created. Whilst a description of the new detection system along with some results obtained using the extended set of observation volumes are included, this thesis reports principally on the hardware details of and the interpretation of data from the original, ten observation volume system. (author) figs., tabs., 75 refs

  3. Common Genetic Variation in the DKK1 Gene is Associated with Hip Axis Length but not with Bone Mineral Density and Bone Turnover Markers in Young Adult Men: Results from the Odense Androgen Study

    DEFF Research Database (Denmark)

    Piters, Elke; Balemans, Wendy; Nielsen, Torben Leo

    2010-01-01

    LRP5 was recently confirmed as an important susceptibility gene for osteoporosis. Our objective was to evaluate the effect of DKK1 polymorphisms on bone mineral density (BMD), hip geometry, and bone turnover. DKK1 is a secreted protein that binds to LRP5/6 receptors and inhibits canonical Wnt...

  4. Measurement of mass attenuation coefficients of Rhizophora spp. binderless particleboards in the 16.59-25.26 keV photon energy range and their density profile using x-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Marashdeh, M.W., E-mail: mwmarashdeh@yahoo.com [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Bauk, S. [Physics Section, P.P.P. Jarak Jauh, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Tajuddin, A.A. [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hashim, R. [Division of Bio-resource, Paper and Coatings Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2012-04-15

    The mass attenuation coefficients of Rhizophora spp. binderless particleboard with four different particle sizes (samples A, B, C and D) and natural raw Rhizophora spp. wood (sample E) were determined using single-beam photon transmission in the energy range between 16.59 and 25.26 keV. This was done by determining the attenuation of K{sub {alpha}1} X-ray fluorescent (XRF) photons from niobium, molybdenum, palladium, silver and tin targets. The results were compared with theoretical values of young-age breast (Breast 1) and water calculated using a XCOM computer program. It was found that the mass attenuation coefficient of Rhizophora spp. binderless particleboards to be close to the calculated XCOM values in water than natural Rhizophora spp. wood. Computed tomography (CT) scans were then used to determine the density profile of the samples. The CT scan results showed that the Rhizophora spp. binderless particleboard has uniform density compared to natural Rhizophora spp. wood. In general, the differences in the variability of the profile density decrease as the particle size of the pellet samples decreases. - Highlights: Black-Right-Pointing-Pointer Mass attenuation coefficients were determined by X-ray fluorescent photons. Black-Right-Pointing-Pointer Sample with smaller particle size found very close to calculated water XCOM. Black-Right-Pointing-Pointer X-ray computed tomography scanner was used to investigate the density distribution. Black-Right-Pointing-Pointer The density distribution profile is improved with the decrease in the particle size. Black-Right-Pointing-Pointer Rhizophora spp. binderless particleboard could be used as phantom material.

  5. Spin-Charge Separation in Finite Length Metallic Carbon Nanotubes

    KAUST Repository

    Zhang, Yongyou; Zhang, Qingyun; Schwingenschlö gl, Udo

    2017-01-01

    Using time-dependent density functional theory, we study the optical excitations in finite length carbon nanotubes. Evidence of spin-charge separation is given in the spacetime domain. We demonstrate that the charge density wave is due to collective

  6. Comparison of H-mode barrier width with a model of neutral penetration length

    International Nuclear Information System (INIS)

    Groebner, R.J.; Mahdavi, M.A.; Leonard, A.W.; Osborne, T.H.; Brooks, N.S.; Wolf, N.S.; Porter, G.D.; Stangeby, P.C.; Colchin, R.J.; Owen, L.W.

    2004-01-01

    Pedestal studies in DIII-D find that the width of the region of steep gradient in the H-mode density is comparable with the neutral penetration length, as computed from a simple analytic model. This model has analytic solutions for the edge plasma and neutral density profiles, which are obtained from the coupled particle continuity equations for electrons and deuterium atoms. In its range of validity (edge temperature between 40 and 500 eV), the analytic model quantitatively predicts the observed decrease in the width as the pedestal density increases and the observed strong increase in the gradient of the density as the pedestal density increases. The model successfully predicts that L-mode and H-mode profiles with the same pedestal density have gradients that differ by less than a factor of 2. The width of the density barrier, measured from the edge of the electron temperature barrier, is the lower limit for the observed width of the temperature barrier. These results support the hypothesis that particle fuelling is an important part of the physics that determines the structure of the H-mode transport barrier. (author)

  7. Ultrasonic level, temperature, and density sensor

    International Nuclear Information System (INIS)

    Rogers, S.C.; Miller, G.N.

    1982-01-01

    A sensor has been developed to measure simultaneously the level, temperature, and density of the fluid in which it is immersed. The sensor is a thin, rectangular stainless steel ribbon which acts as a waveguide and is housed in a perforated tube. The waveguide is coupled to a section of magnetostrictive magnetic-coil transducers. These tranducers are excited in an alternating sequence to interrogate the sensor with both torsional ultrasonic waves, utilizing the Wiedemann effect, and extensional ultrasonic waves, using the Joule effect. The measured torsional wave transit time is a function of the density, level, and temperature of the fluid surrounding the waveguide. The measured extensional wave transit time is a function of the temperature of the waveguide only. The sensor is divided into zones by the introduction of reflecting surfaces at measured intervals along its length. Consequently, the transit times from each reflecting surface can be analyzed to yield a temperature profile and a density profile along the length of the sensor. Improvements in acoustic wave dampener and pressure seal designs enhance the compatibility of the probe with high-temperature, high-radiation, water-steam environments and increase the likelihood of survival in such environments. Utilization of a microcomputer to automate data sampling and processing has resulted in improved resolution of the sensor

  8. Telomere length analysis.

    Science.gov (United States)

    Canela, Andrés; Klatt, Peter; Blasco, María A

    2007-01-01

    Most somatic cells of long-lived species undergo telomere shortening throughout life. Critically short telomeres trigger loss of cell viability in tissues, which has been related to alteration of tissue function and loss of regenerative capabilities in aging and aging-related diseases. Hence, telomere length is an important biomarker for aging and can be used in the prognosis of aging diseases. These facts highlight the importance of developing methods for telomere length determination that can be employed to evaluate telomere length during the human aging process. Telomere length quantification methods have improved greatly in accuracy and sensitivity since the development of the conventional telomeric Southern blot. Here, we describe the different methodologies recently developed for telomere length quantification, as well as their potential applications for human aging studies.

  9. Simulation of density measurements in plasma wakefields using photo acceleration

    CERN Document Server

    Kasim, Muhammad Firmansyah; Ceurvorst, Luke; Sadler, James; Burrows, Philip N; Trines, Raoul; Holloway, James; Wing, Matthew; Bingham, Robert; Norreys, Peter

    2015-01-01

    One obstacle in plasma accelerator development is the limitation of techniques to diagnose and measure plasma wakefield parameters. In this paper, we present a novel concept for the density measurement of a plasma wakefield using photon acceleration, supported by extensive particle in cell simulations of a laser pulse that copropagates with a wakefield. The technique can provide the perturbed electron density profile in the laser’s reference frame, averaged over the propagation length, to be accurate within 10%. We discuss the limitations that affect the measurement: small frequency changes, photon trapping, laser displacement, stimulated Raman scattering, and laser beam divergence. By considering these processes, one can determine the optimal parameters of the laser pulse and its propagation length. This new technique allows a characterization of the density perturbation within a plasma wakefield accelerator.

  10. Simulation of density measurements in plasma wakefields using photon acceleration

    Directory of Open Access Journals (Sweden)

    Muhammad Firmansyah Kasim

    2015-03-01

    Full Text Available One obstacle in plasma accelerator development is the limitation of techniques to diagnose and measure plasma wakefield parameters. In this paper, we present a novel concept for the density measurement of a plasma wakefield using photon acceleration, supported by extensive particle in cell simulations of a laser pulse that copropagates with a wakefield. The technique can provide the perturbed electron density profile in the laser’s reference frame, averaged over the propagation length, to be accurate within 10%. We discuss the limitations that affect the measurement: small frequency changes, photon trapping, laser displacement, stimulated Raman scattering, and laser beam divergence. By considering these processes, one can determine the optimal parameters of the laser pulse and its propagation length. This new technique allows a characterization of the density perturbation within a plasma wakefield accelerator.

  11. Comparison of gemfibrozil versus simvastatin in familial combined hyperlipidemia and effects on apolipoprotein-B-containing lipoproteins, low-density lipoprotein subfraction profile, and low-density lipoprotein oxidizability

    NARCIS (Netherlands)

    Bredie, S. J.; de Bruin, T. W.; Demacker, P. N.; Kastelein, J. J.; Stalenhoef, A. F.

    1995-01-01

    We evaluated in a double-blind, placebo-controlled, randomized trial of 45 well-defined patients with familial combined hyperlipidemia, the effect of gemfibrozil (1,200 mg/day) or simvastatin (20 mg/day) on apolipoprotein-B (apo-B)-containing lipoproteins, low-density lipoprotein (LDL) subfraction

  12. Telomere length and depression

    DEFF Research Database (Denmark)

    Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Rode, Line

    2017-01-01

    BACKGROUND: Depression has been cross-sectionally associated with short telomeres as a measure of biological age. However, the direction and nature of the association is currently unclear. AIMS: We examined whether short telomere length is associated with depression cross-sectionally as well...... as prospectively and genetically. METHOD: Telomere length and three polymorphisms, TERT, TERC and OBFC1, were measured in 67 306 individuals aged 20-100 years from the Danish general population and associated with register-based attendance at hospital for depression and purchase of antidepressant medication....... RESULTS: Attendance at hospital for depression was associated with short telomere length cross-sectionally, but not prospectively. Further, purchase of antidepressant medication was not associated with short telomere length cross-sectionally or prospectively. Mean follow-up was 7.6 years (range 0...

  13. Fertility desires, choice of hormone replacement and the effect of length of time since menopause on bone density in women with premature ovarian insufficiency: a review of 223 consecutive new referrals to a tertiary centre.

    Science.gov (United States)

    Mittal, Monica; Kreatsa, Maria; Narvekar, Nitish; Savvas, Michael; Hamoda, Haitham

    2014-09-01

    Premature ovarian insufficiency can have significant implications for the affected women. This review assesses the fertility desires, choice of hormone replacement, and the effect of time since menopause on the bone density of these women. This is a retrospective analysis of 223 consecutive new referrals. The average age (mean [± standard deviation]) of the women was 37.35 (± 5.88) years, with 24.1% (n = 19/79) presenting within 12 months of the onset of symptoms, most commonly, vasomotor type symptoms (n = 98/223; 43.9%). Of the women included, 58.7% (n = 131/223) took hormone replacement therapy (HRT), most commonly, an oral (n = 90/131; 68.7%) sequential preparation (n = 91/131; 69.5%), with a significant number of women >40 years of age preferring the transdermal route (n = 26/54; 48.1%; pfertility, more notable in women ≤ 40 years (n = 72/142; 50.7%; p < 0.01). Of these, 41.7% (n = 35/84) took HRT, most commonly, a sequential regimen (n = 26/35; 74.3%) with oral estradiol (n = 30/35; 85.7%); 69.5% (n = 155/223) of the women had had a bone densitometry scan performed, with 66.5% (n = 103/155) showing normal bone mineral density (BMD), but a greater likelihood of having reduced BMD the greater the time delay in presentation. No difference was seen for the three broad categories of BMD when further analysed for the cause of premature ovarian insufficiency, but a significant difference was noted for the spinal Z-scores, whereby women who underwent a surgically induced menopause were noted to have lower BMD compared with the other causes (p < 0.01). These findings can be useful in counselling women and guiding clinicians in their management of women with premature ovarian insufficiency. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. Influence of shrub cover vegetal and slope length on soil bulk density; Influencia de la cubierta vegetal arbustiva y la longitud de la ladera sobre la densidad aparente del suelo

    Energy Technology Data Exchange (ETDEWEB)

    Bienes, R.; Jimenez, R.; Ruiz, M.; Garcia-Estringana, P.; Marques, M. J.

    2009-07-01

    In arid and semiarid environments of the Mediterranean climate, the shrub species play an important role in the revegetation of abandoned lands, which enables to control the soil losses, organic material and water. In this article are compared the results obtained under different revegetation in abandoned lands in the central area of Spain. In these revegetation has been used two native shrubs: A triplex halimus (Ah) and Retama sphaerocarpa (Rs), and were analyzed the influence of these revegetation in the contents of organic material of soil and apparent density in 5 years time after planting. As control, have been considered the pieces of ground with spontaneous vegetation abandoned in the same date that the shrubs revegetation. Atriplex halimus gives to the soil a covering capable to intercept a big amount of water drops absorbing a great amount part of the kinetic energy of the rain, while provides a microclimates as a result of be able to soften the wind, the temperature and the evaporation-transpiration, which makes it efficient to control the erosion and the desertification (Le Houerou, 2000). Retama sphaerocarpa was chosen because it is a native shrub very characteristic, and, due to its symbiosis with the Bradyrhizobium, enriches the soil in nitrogen, which is taken by the nitrophilous species enhancing the spontaneous vegetal covering. (Author) 9 refs.

  15. Relationships between seismic wave-Speed, density, and electrical conductivity beneath Australia from seismology, mineralogy, and laboratory-based conductivity profiles

    DEFF Research Database (Denmark)

    Khan, A.; Koch, S.; Shankland, T. J.

    2015-01-01

    We present maps of the three-dimensional density (ρ), electrical conductivity (σ), and shear-wave speed (VS) structure of the mantle beneath Australia and surrounding ocean in the depth range of 100–800 km. These maps derived from stochastic inversion of seismic surface-wave dispersion data...... shear-wave speeds, low densities, and high conductivities. This trend appears to continue to depths well below 300 km. The slow-fast shear-wave speed distribution found here is also observed in independent seismic tomographic models of the Australian region, whereas the coupled slow-fast shear......-wave speed, low-high density, and high-low electrical conductivity distribution has not been observed previously. Toward the bottom of the upper mantle at 400 km depth marking the olivine ⃗ wadsleyite transformation (the “410–km” seismic discontinuity), the correlation between VS, ρ, and σ weakens...

  16. Density limits in Tokamaks

    International Nuclear Information System (INIS)

    Tendler, M.

    1984-06-01

    The energy loss from a tokamak plasma due to neutral hydrogen radiation and recycling is of great importance for the energy balance at the periphery. It is shown that the requirement for thermal equilibrium implies a constraint on the maximum attainable edge density. The relation to other density limits is discussed. The average plasma density is shown to be a strong function of the refuelling deposition profile. (author)

  17. Hydrogen concentration and mass density of diamondlike carbon films obtained by x-ray and neutron reflectivity

    DEFF Research Database (Denmark)

    Findeisen, E.; Feidenhans'l, R.; Vigild, Martin Etchells

    1994-01-01

    Specular reflectivity of neutrons and x rays can be used to determine the scattering length density profile of a material perpendicular to its surface. We have applied these techniques to study amorphous, diamondlike, hydrocarbon films. By the combination of these two techniques we obtain not onl...

  18. Analytic solutions for Rayleigh-Taylor growth rates in smooth density gradients

    International Nuclear Information System (INIS)

    Munro, D.H.

    1988-01-01

    The growth rate of perturbations on the shell of a laser fusion target can be estimated as √gk , where g is the shell acceleration and k is the transverse wave number of the perturbation. This formula overestimates the growth rate, and should be modified for the effects of density gradients and/or ablation of the unstable interface. The density-gradient effect is explored here analytically. With the use of variational calculus to explore all possible density profiles, the growth rate is shown to exceed √gk/(1+kL) , where L is a typical density-gradient scale length. Density profiles actually exhibiting this minimum growth rate are found

  19. Quantitative analysis of Terminal Restriction Fragment Length Polymorphism (T-RFLP microbial community profiles: peak height data showed to be more reproducible than peak area Análise quantitativa de perfis de T-RFLP de comunidades microbianas: dados de altura de picos mostraram-se mais reprodutíveis do que os de área

    Directory of Open Access Journals (Sweden)

    Roberto A. Caffaro-Filho

    2007-12-01

    Full Text Available Terminal Restriction Fragment Length Polymorphism (T-RFLP is a culture-independent fingerprinting method for microbial community analysis. Profiles generated by an automated electrophoresis system can be analysed quantitatively using either peak height or peak area data. Statistical testing demontrated that peak height data showed to be more reproducible than peak area data.Terminal Restriction Fragment Length Polymorphism (T-RFLP é um método molecular, independente de cultivo, para análise de comunidades microbianas. Perfis gerados por um sistema automatizado de eletroforese podem ser analisados quantitativamente usando dados de altura ou área dos picos. Os dados de altura mostraram-se mais reprodutíveis do que os de área.

  20. Extended fuel cycle length

    International Nuclear Information System (INIS)

    Bruyere, M.; Vallee, A.; Collette, C.

    1986-09-01

    Extended fuel cycle length and burnup are currently offered by Framatome and Fragema in order to satisfy the needs of the utilities in terms of fuel cycle cost and of overall systems cost optimization. We intend to point out the consequences of an increased fuel cycle length and burnup on reactor safety, in order to determine whether the bounding safety analyses presented in the Safety Analysis Report are applicable and to evaluate the effect on plant licensing. This paper presents the results of this examination. The first part indicates the consequences of increased fuel cycle length and burnup on the nuclear data used in the bounding accident analyses. In the second part of this paper, the required safety reanalyses are presented and the impact on the safety margins of different fuel management strategies is examined. In addition, systems modifications which can be required are indicated

  1. Modes in a non-neutral plasma of finite length, m=0,1

    International Nuclear Information System (INIS)

    Rasband, S. Neil; Spencer, Ross L.

    2003-01-01

    For realistic, cold equilibria of finite length representing a pure electron plasma confined in a cylindrical Malmberg-Penning trap, the mode spectrum for Trivelpiece-Gould, m=0, and for diocotron, m=1, modes is calculated numerically. A novel method involving finite elements is used to successfully compute eigenfrequencies and eigenfunctions for plasma equilibria shaped like pancakes, cigars, long cylinders, and all things in between. Mostly sharp-boundary density configurations are considered but also included in this study are diffuse density profiles including ones with peaks off axis leading to instabilities. In all cases the focus has been on elucidating the role of finite length in determining mode frequencies and shapes. For m=0 accurate eigenfrequencies are tabulated and their dependence on mode number and aspect ratio is computed. For m=1 it is found that the eigenfrequencies are 2% to 3% higher than given by the Fine-Driscoll formula [Phys. Plasmas 5, 601 (1998)]. The 'new modes' of Hilsabeck and O'Neil [Phys. Plasmas 8, 407 (2001)] are identified as Dubin modes. For hollow profiles finite length in cold-fluid can account for up to ∼70% of the theoretical instability growth rate

  2. Relativistic distances, sizes, lengths

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs

  3. Scale Length of the Galactic Thin Disk

    Indian Academy of Sciences (India)

    tribpo

    thin disk density scale length, hR, is rather short (2.7 ± 0.1 kpc). Key words. ... The 2MASS near infrared data provide, for the first time, deep star counts on a ... peaks allows to adjust the spatial extinction law in the model. ... probability that fi.

  4. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 2

    Science.gov (United States)

    Gnanalingam, S.; Kane, J. A.

    1975-01-01

    The D-region ion production functions are used to calculate the relationship between radio wave absorption and the flux level of X-rays in the 1-8A wavelength band. In order to bring this calculation into agreement with the empirically established relationship, it was found necessary to reduce by, a factor of about 5, the Meira nitric oxide densities below 90 km.

  5. Circulating and intraprostatic sex steroid hormonal profiles in relation to male pattern baldness and chest hair density among men diagnosed with localized prostate cancers.

    Science.gov (United States)

    Zhou, Cindy Ke; Stanczyk, Frank Z; Hafi, Muhannad; Veneroso, Carmela C; Lynch, Barlow; Falk, Roni T; Niwa, Shelley; Emanuel, Eric; Gao, Yu-Tang; Hemstreet, George P; Zolfghari, Ladan; Carroll, Peter R; Manyak, Michael J; Sesterhenn, Isabell A; Levine, Paul H; Hsing, Ann W; Cook, Michael B

    2017-12-01

    Prospective cohort studies of circulating sex steroid hormones and prostate cancer risk have not provided a consistent association, despite evidence from animal and clinical studies. However, studies using male pattern baldness as a proxy of early-life or cumulative androgen exposure have reported significant associations with aggressive and fatal prostate cancer risk. Given that androgens underlie the development of patterned hair loss and chest hair, we assessed whether these two dermatological characteristics were associated with circulating and intraprostatic concentrations of sex steroid hormones among men diagnosed with localized prostate cancer. We included 248 prostate cancer patients from the NCI Prostate Tissue Study, who answered surveys and provided a pre-treatment blood sample as well as fresh frozen adjacent normal prostate tissue. Male pattern baldness and chest hair density were assessed by trained nurses before surgery. General linear models estimated geometric means and 95% confidence intervals (95%CIs) of each hormone variable by dermatological phenotype with adjustment for potential confounding variables. Subgroup analyses were performed by Gleason score (balding status with serum testosterone, dihydrotestosterone (DHT), estradiol, and sex hormone-binding globulin (SHBG), and a weak association with elevated intraprostatic testosterone. Conversely, neither circulating nor intraprostatic sex hormones were statistically significantly associated with chest hair density. Age-adjusted correlation between binary balding status and three-level chest hair density was weak (r = 0.05). There was little evidence to suggest that Gleason score or race modified these associations. This study provides evidence that balding status assessed at a mean age of 60 years may serve as a clinical marker for circulating sex hormone concentrations. The weak-to-null associations between balding status and intraprostatic sex hormones reaffirm differences in organ

  6. Effect of tearing modes on temperature and density profiles and on the perpendicular transport in the W VII-A stellarator

    International Nuclear Information System (INIS)

    Jaenicke, R.

    1988-01-01

    In the ohmically heated W VII-A stellarator, the behaviour of which is similar to that of a medium sized tokamak, the additional shearless external rotational transform t 0 (Δt 0 /t 0 0 perpendicular,e in a one-dimensional heat transport code. In this way, the measured temperature profiles can be reproduced quite well and the energy confinement time of discharges with tearing mode activity can be predicted quantitatively. The transport model is used to investigate the explicit dependence of κ perpendicular,e on the plasma current and to study the importance of plasma current driven instabilities for the energy confinement in the W VII-A stellarator as well as in tokamaks. (author). 19 refs, 14 figs

  7. Commissioning of an electro-optic electron bunch length monitor at FLASH

    International Nuclear Information System (INIS)

    Breunlin, Jonas

    2011-03-01

    The demands on the electron beam qualities for free-electron lasers (FEL) are challenging in terms of high peak currents. At FLASH, the high-gain FEL in Hamburg, longitudinal bunch compression is performed to achieve the requested high charge densities in short bunches. The precise control of the bunch compression process requires advanced diagnostics on the longitudinal bunch profile. The bunch length monitor presented in this thesis is based on a non-destructive detection using the electro-optic effect. The focus is on a compact and reliable system for permanent bunch diagnostics. The monitor provides single-shot measurements of the longitudinal bunch profiles with lengths of a few picoseconds by spectrally encoding their charge distribution. First measurements for characterization purpose have been performed. It has been shown that the monitor is suitable for monitoring the longitudinal bunch profile behind the first bunch compressor at FLASH. Electron bunch profiles with slopes corresponding to a full width half maximum of about 1.4 ps have been detected. That is the intrinsic resolution limit of the utilized method. (orig.)

  8. Pion nucleus scattering lengths

    International Nuclear Information System (INIS)

    Huang, W.T.; Levinson, C.A.; Banerjee, M.K.

    1971-09-01

    Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs

  9. Gap length distributions by PEPR

    International Nuclear Information System (INIS)

    Warszawer, T.N.

    1980-01-01

    Conditions guaranteeing exponential gap length distributions are formulated and discussed. Exponential gap length distributions of bubble chamber tracks first obtained on a CRT device are presented. Distributions of resulting average gap lengths and their velocity dependence are discussed. (orig.)

  10. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  11. HOW TO MAKE AN ULTRA-FAINT DWARF SPHEROIDAL GALAXY: TIDAL STIRRING OF DISKY DWARFS WITH SHALLOW DARK MATTER DENSITY PROFILES

    International Nuclear Information System (INIS)

    Łokas, Ewa L.; Kazantzidis, Stelios; Mayer, Lucio

    2012-01-01

    In recent years the Sloan Digital Sky Survey has unraveled a new population of ultra-faint dwarf galaxies (UFDs) whose origin remains a puzzle in the vicinity of the Milky Way (MW). Using a suite of collisionless N-body simulations, we investigate the formation of UFDs in the context of the tidal stirring model for the formation of dwarf spheroidal galaxies in the Local Group (LG). Our simulations are designed to reproduce the tidal interactions between MW-sized host galaxies and rotationally supported dwarfs embedded in 10 9 M ☉ dark matter (DM) halos. We explore a variety of inner density slopes ρ∝r –α for the dwarf DM halos, ranging from core-like (α = 0.2) to cuspy (α = 1), and different dwarf orbital configurations. Our experiments demonstrate that UFDs can be produced via tidal stirring of disky dwarfs on relatively tight orbits, consistent with a redshift of accretion by the host galaxy of z ∼ 1, and with intermediate values for the halo inner density slopes (ρ∝r –0.6 ). The inferred slopes are in excellent agreement with those resulting from both the modeling of the rotation curves of dwarf galaxies and recent cosmological simulations of dwarf galaxy formation. Comparing the properties of observed UFDs with those of their simulated counterparts, we find remarkable similarities in terms of basic observational parameters. We conclude that tidal stirring of rotationally supported dwarfs represents a viable mechanism for the formation of UFDs in the LG environment.

  12. The control of plasma density profile in Tore Supra. Comparison of different fueling techniques; Controle du profil de densite dans le plasma de Tore Supra. Comparaison de differentes methodes d'alimentation en particules

    Energy Technology Data Exchange (ETDEWEB)

    Commaux, N

    2007-09-15

    The behaviour of a reactor-class plasma when fuelled using the existing techniques (gas puffing, supersonic molecular beam injection and pellet injection) is still very difficult to foresee. The present work has been initiated on Tore Supra in order to extrapolate the consequences of the different fuelling systems on ITER. Two main topics have been studied: the comparison of the plasma behaviour when fuelled using the different techniques at high Greenwald density fractions and the study of the homogenization following a pellet injection (main fuelling technique for ITER burning plasmas). The experiments at high Greenwald density fractions performed on Tore Supra showed that the plasma behaviour is very dependent on the fuelling method. The plasma energy confinement is following the scaling laws determined at low density when fuelled using pellet injection. which is better than for gas puffing and SMBI. both inducing a significant confinement loss. This behaviour is nor related to a transport modification: the ratio between effective diffusion and convection is similar to the pellet case. The difference between these shots is related only to the position of the matter source (at the edge for gas and close to the center for pellets). The study concerning the homogenization phenomena following a pellet injection aims mainly to study the {nabla}B-drift effect that expels the mater deposited by a pellet toward the low field side. A new phenomenon. which appears to be particularly important for the {nabla}B-drift during low field side injections. was then discovered: the influence of magnetic surfaces with an integer-valued safety factor (q). When the mater drifting toward low field side crosses an integer q surface. it experiences an important braking effect which stops the drift motion. It implies that the pellet material is mainly deposited on the last integer q surface crossed by the pellet during its injection. This study allows also to determine that the {nabla

  13. Scaling of confinement and profiles in the EXTRAP T2 reversed-field pinch

    International Nuclear Information System (INIS)

    Welander, A.

    1999-01-01

    In the Extrap T2 reversed-field pinch the diagnostic techniques for the measurement of electron density and temperature include; Thomson scattering which gives values at three radial positions in the core (r/a=0, 0.28, 0.56), Langmuir probes which give values at the edge (r/a>0.9) and interferometry which gives a line-averaged density. The empirical scaling of electron density and temperature including profile information with global plasma parameters has been studied. The density profile is subject to large variations, with an average parabolic shape when the density is low and flatter shapes when the density is increased. The change in the profile shape can be attributed to a shift in the penetration length of neutrals from the vicinity of the wall. The temperature scales roughly as I/n 1/2 where I is the plasma current and n is the density. The temperature profile is always quite flat with lower variations and there is a tendency for a flatter profile at higher temperatures. (author)

  14. Scaling of confinement and profiles in the EXTRAP T2 reversed-field pinch

    Science.gov (United States)

    Welander, A.

    1999-01-01

    In the EXTRAP T2 reversed-field pinch the diagnostic techniques for the measurement of electron density and temperature include; Thomson scattering which gives values at three radial positions in the core (r/a = 0, 0.28, 0.56), Langmuir probes which give values at the edge (r/a > 0.9) and interferometry which gives a line-averaged density. The empirical scaling of electron density and temperature including profile information with global plasma parameters has been studied. The density profile is subject to large variations, with an average parabolic shape when the density is low and flatter shapes when the density is increased. The change in the profile shape can be attributed to a shift in the penetration length of neutrals from the vicinity of the wall. The temperature scales roughly as I/n1/2 where I is the plasma current and n is the density. The temperature profile is always quite flat with lower variations and there is a tendency for a flatter profile at higher temperatures.

  15. Scrape-off layer profile modifications by convective cells

    International Nuclear Information System (INIS)

    Myra, J.R.; DIppolito, D.A.

    1996-01-01

    Convective cells (CC close-quote s) are important in understanding density profile modifications induced by ion cyclotron range of frequencies (ICRF) antennas. This has motivated the present work in which the effect of CC close-quote s on transport in the scrape-off layer is studied, in the regime where the density gradient scale length L n and the cell size L are comparable. Monte Carlo simulations show that closed cell convection acts to flatten the density profile, and that open cells enhance the particle flow to the wall, depleting the density and yielding profiles similar to those measured near ICRF antennas. A new one-dimensional, two-branch model of CC transport is shown to agree well with the simulations. The model gives rise to two characteristic scale lengths, only one of which is retained in the enhanced diffusion models that are applicable for L n >L. The two-branch model is expected to be useful in analyzing ICRF experiments. copyright 1996 American Institute of Physics

  16. High density lipoprotein structural changes and drug response in lipidomic profiles following the long-term fenofibrate therapy in the FIELD substudy.

    Directory of Open Access Journals (Sweden)

    Laxman Yetukuri

    Full Text Available In a recent FIELD study the fenofibrate therapy surprisingly failed to achieve significant benefit over placebo in the primary endpoint of coronary heart disease events. Increased levels of atherogenic homocysteine were observed in some patients assigned to fenofibrate therapy but the molecular mechanisms behind this are poorly understood. Herein we investigated HDL lipidomic profiles associated with fenofibrate treatment and the drug-induced Hcy levels in the FIELD substudy. We found that fenofibrate leads to complex HDL compositional changes including increased apoA-II, diminishment of lysophosphatidylcholines and increase of sphingomyelins. Ethanolamine plasmalogens were diminished only in a subgroup of fenofibrate-treated patients with elevated homocysteine levels. Finally we performed molecular dynamics simulations to qualitatively reconstitute HDL particles in silico. We found that increased number of apoA-II excludes neutral lipids from HDL surface and apoA-II is more deeply buried in the lipid matrix than apoA-I. In conclusion, a detailed molecular characterization of HDL may provide surrogates for predictors of drug response and thus help identify the patients who might benefit from fenofibrate treatment.

  17. Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges

    KAUST Repository

    Bilić, Ante

    2013-01-01

    Charge transport through two sets of symmetric graphene nanoribbons with zigzag shaped edges in a two-terminal device has been investigated, using density functional theory combined with the non-equilibrium Green\\'s function method. The conductance has been explored as a function of nanoribbon length, bias voltage, and the strength of terminal coupling. The set of narrower nanoribbons, in the form of thiolated linear acenes, shows an anomalous length dependence of the conductance, which at first exhibits a drop and a minimum, followed by an evident rise. The length trend is shown to arise because of a gradual transformation in the transport mechanism, which changes from being governed by a continuum of out-of-plane π type and in-plane state channels to being fully controlled by a single, increasingly more resonant, occupied π state channel. For the set of nanoribbons with a wider profile, a steady increase is observed across the whole length range, owing to the absence of the former transport mechanism. The predicted trends are confirmed by the inclusion of self-interaction correction in the calculations. For both sets of nanoribbons the replacement of the strongly coupling thiol groups by weakly bonding phenathroline has been found to cause a strong attenuation with the length and a generally low conductance. © 2013 American Institute of Physics.

  18. Simulations of the instability of the m=1 self-shielding diocotron mode in finite-length nonneutral plasmas

    International Nuclear Information System (INIS)

    Mason, Grant W.; Spencer, Ross L.

    2002-01-01

    The 'self-shielding' m=1 diocotron mode in Malmberg-Penning traps has been known for over a decade to be unstable for finite length nonneutral plasmas with hollow density profiles. Early theoretical efforts were unsuccessful in accounting for the exponential growth and/or the magnitude of the growth rate. Recent theoretical work has sought to resolve the discrepancy either as a consequence of the shape of the plasma ends or as a kinetic effect resulting from a modified distribution function as a consequence of the protocol used to form the hollow profiles in experiments. We have investigated both of these finite length mechanisms in selected test cases using a three-dimensional particle-in-cell code that allows realistic treatment of shape and kinetic effects. We find that a persistent discrepancy of a factor of 2-3 remains between simulation and experimental values of the growth rate

  19. Odd Length Contraction

    Science.gov (United States)

    Smarandache, Florentin

    2013-09-01

    Let's denote by VE the speed of the Earth and byVR the speed of the rocket. Both travel in the same direction on parallel trajectories. We consider the Earth as a moving (at a constant speed VE -VR) spacecraft of almost spherical form, whose radius is r and thus the diameter 2r, and the rocket as standing still. The non-proper length of Earth's diameter, as measured by the astronaut is: L = 2 r√{ 1 -|/VE -VR|2 c2 } rocket! Also, let's assume that the astronaut is laying down in the direction of motion. Therefore, he would also shrink, or he would die!

  20. discouraged by queue length

    Directory of Open Access Journals (Sweden)

    P. R. Parthasarathy

    2001-01-01

    Full Text Available The transient solution is obtained analytically using continued fractions for a state-dependent birth-death queue in which potential customers are discouraged by the queue length. This queueing system is then compared with the well-known infinite server queueing system which has the same steady state solution as the model under consideration, whereas their transient solutions are different. A natural measure of speed of convergence of the mean number in the system to its stationarity is also computed.

  1. Beneficial effects of young coconut juice on preserving neuronal cell density, lipid, renal and liver profiles in ovariectomized rats. A preliminary study.

    Directory of Open Access Journals (Sweden)

    Kolip Payanglee

    2017-04-01

    Full Text Available Our previous study showed that young coconut juice (YCJ at a high dose of 100 mL/kgBW had many health benefits e.g. it delayed Alzheimer’s pathologies, preserved neuronal cells, accelerated wound healing and prevented osteoporosis. However, such a large dose of YCJ over a period of time started to have unfavourable side effects e.g. the deposition of glycogen in the liver. Therefore, our aim in the present study was to investigate the lowest neuroprotective dose of YCJ that would cause the least side effects for long-term consumption by postmenopausal women, using ovariectomized (ovx rats as a model for postmenopausal women. Three lower doses of YCJ (10, 20 and 40 mL/kg body weight were applied. The results clearly showed that the OY10 group was the best dose to help to preserve neuronal cells in both the hippocampus and the prefrontal cortex with cell numbers being higher than for the ovx group at various degrees of significance in each brain region. After 10 weeks of treatment, the circulating levels of BUN, creatinine, cholesterol, triglyceride, HDL, LDL, AST, ALT, ALP, total protein, albumin, calcium and phosphorus of the OY10 group were not significantly different from those of the sham and ovx groups. This study has confirmed that feeding YCJ had beneficial effects on the serum lipid profile, and maintained liver and renal functions for up to 10 weeks after administration. YCJ consumption at 10 mL/kgBW/day for 10 weeks, however, did increase body weight and serum glucose when compared with the control groups. Therefore, supplementation with YCJ in postmenopausal women with a diabetic condition should only be allowed under supervision by a physician.

  2. Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of

  3. Negative Ion Density Fronts

    International Nuclear Information System (INIS)

    Igor Kaganovich

    2000-01-01

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas

  4. On the use of the Prandtl mixing length model in the cutting torch modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mancinelli, B [Grupo de Descargas Electricas, Departamento Ing. Electromecanica, Universidad Tecnologica Nacional, Regional Venado Tuerto, Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina); Minotti, F O; Kelly, H, E-mail: bmancinelli@arnet.com.ar [Instituto de Fisica del Plasma (CONICET), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428 Buenos Aires (Argentina)

    2011-05-01

    The Prandtl mixing length model has been used to take into account the turbulent effects in a 30 A high-energy density cutting torch model. In particular, the model requires the introduction of only one adjustable coefficient c corresponding to the length of action of the turbulence. It is shown that the c value has little effect on the plasma temperature profiles outside the nozzle (the differences being less than 10 %), but severely affects the plasma velocity distribution, with differences reaching about 100% at the middle of the nozzle-anode gap. Within the experimental uncertainties it was also found that the value c = 0.08 allows to reproduce both, the experimental data of velocity and temperature

  5. On the use of the Prandtl mixing length model in the cutting torch modeling

    International Nuclear Information System (INIS)

    Mancinelli, B; Minotti, F O; Kelly, H

    2011-01-01

    The Prandtl mixing length model has been used to take into account the turbulent effects in a 30 A high-energy density cutting torch model. In particular, the model requires the introduction of only one adjustable coefficient c corresponding to the length of action of the turbulence. It is shown that the c value has little effect on the plasma temperature profiles outside the nozzle (the differences being less than 10 %), but severely affects the plasma velocity distribution, with differences reaching about 100% at the middle of the nozzle-anode gap. Within the experimental uncertainties it was also found that the value c = 0.08 allows to reproduce both, the experimental data of velocity and temperature

  6. Bemisia tabaci MED Population Density as Affected by Rootstock-Modified Leaf Anatomy and Amino Acid Profiles in Hydroponically Grown Tomato

    Directory of Open Access Journals (Sweden)

    Katja Žanić

    2018-02-01

    Full Text Available Bemisia tabaci is one of the most devastating pests in tomato greenhouse production. Insecticide resistance management for B. tabaci requires a novel approach that maximizes non-chemical methods for pest control. The aim of this study was to test the effects of rootstocks on B. tabaci populations in hydroponically grown tomato plants. In order to contribute to the better understanding of the mechanisms defining the attractiveness of plant to the aerial pest, the effects of rootstocks on leaf anatomy and the amino acid composition of phloem sap were assessed. A two-factorial experimental design was adopted using cultivars (rootstock cultivars and Clarabella grown as either non-grafted or grafted with cultivar Clarabella as a scion. The rootstock cultivars included Arnold, Buffon, Emperador, and Maxifort. A reduction in B. tabaci density was observed using all rootstock cultivars. The number of adult individuals per leaf was 2.7–5.4 times lower on rootstock cultivars than on Clarabella. The number of large nymphs per square centimeter was at least 24% higher on non–grafted Clarabella compared with all other treatments. The leaf lamina thickness and mesophyll thickness were lower in self-grafted Clarabella than in non-grafted or in one grafted on rootstock cultivars; however, the extent of this reduction depended on the rootstock. The leaves with thinner laminae were generally less attractive to B. tabaci. Eighteen amino acids were detected in the exudates of phloem sap. In all treatments, the most abundant amino acid was γ-aminobutyric acid (GABA, followed by proline, serine, alanine, and histidine. The scion cultivar Clarabella was the most attractive to B. tabaci and had a higher content of leucine than did rootstock cultivars, and a higher content of lysine compared to Buffon and Maxifort. The features modified by rootstock such are changes in leaf anatomy can affect the attractiveness of plants to B. tabaci. Thus, the grafting of tomato

  7. Comparison of global brain gene expression profiles between inbred long-sleep and inbred short-sleep mice by high-density gene array hybridization.

    Science.gov (United States)

    Xu, Y; Ehringer, M; Yang, F; Sikela, J M

    2001-06-01

    Inbred long-sleep (ILS) and short-sleep (ISS) mice show significant central nervous system-mediated differences in sleep time for sedative dose of ethanol and are frequently used as a rodent model for ethanol sensitivity. In this study, we have used complementary DNA (cDNA) array hybridization methodology to identify genes that are differentially expressed between the brains of ILS and ISS mice. To carry out this analysis, we used both the gene discovery array (GDA) and the Mouse GEM 1 Microarray. GDA consists of 18,378 nonredundant mouse cDNA clones on a single nylon filter. Complex probes were prepared from total brain mRNA of ILS or ISS mice by using reverse transcription and 33P labeling. The labeled probes were hybridized in parallel to the gene array filters. Data from GDA experiments were analyzed with SQL-Plus and Oracle 8. The GEM microarray includes 8,730 sequence-verified clones on a glass chip. Two fluorescently labeled probes were used to hybridize a microarray simultaneously. Data from GEM experiments were analyzed by using the GEMTools software package (Incyte). Differentially expressed genes identified from each method were confirmed by relative quantitative reverse transcription-polymerase chain reaction (RT-PCR). A total of 41 genes or expressed sequence tags (ESTs) display significant expression level differences between brains of ILS and ISS mice after GDA, GEM1 hybridization, and quantitative RT-PCR confirmation. Among them, 18 clones were expressed higher in ILS mice, and 23 clones were expressed higher in ISS mice. The individual gene or EST's function and mapping information have been analyzed. This study identified 41 genes that are differentially expressed between brains of ILS and ISS mice. Some of them may have biological relevance in mediation of phenotypic variation between ILS and ISS mice for ethanol sensitivity. This study also demonstrates that parallel gene expression comparison with high-density cDNA arrays is a rapid and

  8. Information-theoretic lengths of Jacobi polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, A; Dehesa, J S [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, Granada (Spain); Sanchez-Moreno, P, E-mail: agmartinez@ugr.e, E-mail: pablos@ugr.e, E-mail: dehesa@ugr.e [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, Granada (Spain)

    2010-07-30

    The information-theoretic lengths of the Jacobi polynomials P{sup ({alpha}, {beta})}{sub n}(x), which are information-theoretic measures (Renyi, Shannon and Fisher) of their associated Rakhmanov probability density, are investigated. They quantify the spreading of the polynomials along the orthogonality interval [- 1, 1] in a complementary but different way as the root-mean-square or standard deviation because, contrary to this measure, they do not refer to any specific point of the interval. The explicit expressions of the Fisher length are given. The Renyi lengths are found by the use of the combinatorial multivariable Bell polynomials in terms of the polynomial degree n and the parameters ({alpha}, {beta}). The Shannon length, which cannot be exactly calculated because of its logarithmic functional form, is bounded from below by using sharp upper bounds to general densities on [- 1, +1] given in terms of various expectation values; moreover, its asymptotics is also pointed out. Finally, several computational issues relative to these three quantities are carefully analyzed.

  9. On the burnout in annular channels at non-uniform heat release distribution in length

    International Nuclear Information System (INIS)

    Ornatskij, A.P.; Chernobaj, V.A.; Vasil'ev, A.F.; Struts, G.V.

    1982-01-01

    The effect of axial heat release non-uniformity on the conditions of the burnout in annular channels is investigated. The investigation is carried out in annular channels with different laws of heat flux density distribution by channel length. The heat release non-uniformity coefficient was varied from 4.4 to 10, the pressure from 9.8 to 17.6 MPa, mass rate from 500 to 1700 kg (m 2 xS), liquid temperature (chemically desalted water) at the channel inlet constituted 30-300 deg C. The experiments have been performed at the test bench with a closed circulation circuit. The data obtained testify to the fact that under non-uniform heat release the influence of main operating parameters on the value of critical power is of the same character as under uniform heat release. The character of wall temperature variation by channel length before the burnout is determined by the form of heat supply temperature profile. The temperature maximum is observed in the region lying behind the cross section with maximum heat flux. The conclusion is drawn that the dominant influence on the position of the cross section in which the burnout arises is exerted by the form of heat flux density distribution by length. Independently of this distribution form the burnout developes when the vapour content near the wall reaches a limiting value

  10. Curvature profiles as initial conditions for primordial black hole formation

    International Nuclear Information System (INIS)

    Polnarev, Alexander G; Musco, Ilia

    2007-01-01

    This work is part of an ongoing research programme to study possible primordial black hole (PBH) formation during the radiation-dominated era of the early universe. Working within spherical symmetry, we specify an initial configuration in terms of a curvature profile, which represents initial conditions for the large amplitude metric perturbations, away from the homogeneous Friedmann-Robertson-Walker model, which are required for PBH formation. Using an asymptotic quasi-homogeneous solution, we relate the curvature profile with the density and velocity fields, which at an early enough time, when the length scale of the configuration is much larger than the cosmological horizon, can be treated as small perturbations of the background values. We present general analytic solutions for the density and velocity profiles. These solutions enable us to consider in a self-consistent way the formation of PBHs in a wide variety of cosmological situations with the cosmological fluid being treated as an arbitrary mixture of different components with different equations of state. We obtain the analytical solutions for the density and velocity profiles as functions of the initial time. We then use two different parametrizations for the curvature profile and follow numerically the evolution of initial configurations

  11. Road density

    Data.gov (United States)

    U.S. Environmental Protection Agency — Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More...

  12. Density functional theory and multiscale materials modeling

    Indian Academy of Sciences (India)

    One of the vital ingredients in the theoretical tools useful in materials modeling at all the length scales of interest is the concept of density. In the microscopic length scale, it is the electron density that has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids.

  13. THE SL2S GALAXY-SCALE LENS SAMPLE. IV. THE DEPENDENCE OF THE TOTAL MASS DENSITY PROFILE OF EARLY-TYPE GALAXIES ON REDSHIFT, STELLAR MASS, AND SIZE

    International Nuclear Information System (INIS)

    Sonnenfeld, Alessandro; Treu, Tommaso; Suyu, Sherry H.; Gavazzi, Raphaël; Marshall, Philip J.; Auger, Matthew W.; Nipoti, Carlo

    2013-01-01

    We present optical and near-infrared spectroscopy obtained at Keck, Very Large Telescope, and Gemini for a sample of 36 secure strong gravitational lens systems and 17 candidates identified as part of the Strong Lensing Legacy Survey. The deflectors are massive early-type galaxies in the redshift range z d = 0.2-0.8, while the lensed sources are at z s = 1-3.5. We combine these data with photometric and lensing measurements presented in the companion paper III and with lenses from the Sloan Lens Advanced Camera for Surveys and Lènses Structure and Dynamics surveys to investigate the cosmic evolution of the internal structure of massive early-type galaxies over half the age of the universe. We study the dependence of the slope of the total mass density profile, γ' (ρ(r)∝r -γ ' ), on stellar mass, size, and redshift. We find that two parameters are sufficient to determine γ' with less than 6% residual scatter. At fixed redshift, γ' depends solely on the surface stellar mass density ∂γ'/∂Σ * = 0.38 ± 0.07, i.e., galaxies with denser stars also have steeper slopes. At fixed M * and R eff , γ' depends on redshift, in the sense that galaxies at a lower redshift have steeper slopes (∂γ'/∂z = –0.31 ± 0.10). However, the mean redshift evolution of γ' for an individual galaxy is consistent with zero dγ'/dz = –0.10 ± 0.12. This result is obtained by combining our measured dependencies of γ' on z, M * ,R eff with the evolution of the R eff -M * taken from the literature, and is broadly consistent with current models of the formation and evolution of massive early-type galaxies. Detailed quantitative comparisons of our results with theory will provide qualitatively new information on the detailed physical processes at work

  14. Direct Laser Writing of Low-Density Interdigitated Foams for Plasma Drive Shaping [Direct Laser Writing of Low Density Nanostitched Foams for Plasma Drive Shaping

    International Nuclear Information System (INIS)

    Oakdale, James S.; Smith, Raymond F.; Forien, Jean-Baptiste; Smith, William L.; Ali, Suzanne J.

    2017-01-01

    Monolithic porous bulk materials have many promising applications ranging from energy storage and catalysis to high energy density physics. High resolution additive manufacturing techniques, such as direct laser writing via two photon polymerization (DLW-TPP), now enable the fabrication of highly porous microlattices with deterministic morphology control. In this work, DLW-TPP is used to print millimeter-sized foam reservoirs (down to 0.06 g cm –3 ) with tailored density-gradient profiles, where density is varied by over an order of magnitude (for instance from 0.6 to 0.06 g cm –3 ) along a length of <100 µm. Taking full advantage of this technology, however, is a multiscale materials design problem that requires detailed understanding of how the different length scales, from the molecular level to the macroscopic dimensions, affect each other. The design of these 3D-printed foams is based on the brickwork arrangement of 100 × 100 × 16 µm 3 log-pile blocks constructed from sub-micrometer scale features. A block-to-block interdigitated stitching strategy is introduced for obtaining high density uniformity at all length scales. Lastly, these materials are used to shape plasma-piston drives during ramp-compression of targets under high energy density conditions created at the OMEGA Laser Facility.

  15. Slip length crossover on a graphene surface

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zhi, E-mail: liangz3@rpi.edu [Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Keblinski, Pawel, E-mail: keplip@rpi.edu [Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-04-07

    Using equilibrium and non-equilibrium molecular dynamics simulations, we study the flow of argon fluid above the critical temperature in a planar nanochannel delimited by graphene walls. We observe that, as a function of pressure, the slip length first decreases due to the decreasing mean free path of gas molecules, reaches the minimum value when the pressure is close to the critical pressure, and then increases with further increase in pressure. We demonstrate that the slip length increase at high pressures is due to the fact that the viscosity of fluid increases much faster with pressure than the friction coefficient between the fluid and the graphene. This behavior is clearly exhibited in the case of graphene due to a very smooth potential landscape originating from a very high atomic density of graphene planes. By contrast, on surfaces with lower atomic density, such as an (100) Au surface, the slip length for high fluid pressures is essentially zero, regardless of the nature of interaction between fluid and the solid wall.

  16. Development of a heterodyne micro-wave reflectometer with ultra-fast sweeping. The study of the plasma turbulence influence on the measurements of electron density profile; Developppement d`un reflectometre micro-onde heterodyne a balayage ultra rapide. Etude de l`influence de la turbulence du plasma sur la mesure des profils de densite electronique

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, Philippe [Aix-Marseille-1 Univ., 13 - Marseille (France)

    1997-10-17

    The density profile of the fusion plasmas can be investigated by the reflectometry diagnostics. The measurement principle is based on the radar techniques which calculate the phase shift of a millimeter wave propagating into the plasma and reflected at a cut-off layer. However, this propagation is perturbed by the plasma turbulence. These phenomena affect the phase delay measurement by not well understood a process. In this work we have tried to find the mechanisms and origin of the turbulence which is responsible for the phase disturbance. We point out the role of collisionality and plasma radiation in controlling the instability and also, demonstrate that the phase delay of the probing wave is very sensitive to the plasma MHD phenomena and is less affected by the micro-turbulence. The second part of this work is the development and the use of a new heterodyne reflectometer. The principal characteristics are given. Its heterodyne detection allows the separation of phase and amplitude information from the detected signal and then to study their contribution to the mechanism of signal perturbation. The use of this reflectometer allows us to point out the following points: - a high dynamic availability, required by the large amplitude drops, often greater than 30 db; - fast sweep operation requirement to `freeze` the plasma turbulence; - multiple reflection effects which modulate the amplitude and phase of the probing wave if they are not suppressed by filtering the detected signal; - very good localisation of the measurement (of the order of millimeter). The heterodyne reflectometer developed during this work offers several advantages of different distinct reflectometry techniques (fast sweep, absolute and differential phase measurements, heterodyne detection). It could be developed to work over higher frequency range so as to measure density profile over larger radial extension with very high performances. (author) 93 refs., 101 figs., 8 tabs. 3 ills.

  17. Lung density

    DEFF Research Database (Denmark)

    Garnett, E S; Webber, C E; Coates, G

    1977-01-01

    The density of a defined volume of the human lung can be measured in vivo by a new noninvasive technique. A beam of gamma-rays is directed at the lung and, by measuring the scattered gamma-rays, lung density is calculated. The density in the lower lobe of the right lung in normal man during quiet...... breathing in the sitting position ranged from 0.25 to 0.37 g.cm-3. Subnormal values were found in patients with emphsema. In patients with pulmonary congestion and edema, lung density values ranged from 0.33 to 0.93 g.cm-3. The lung density measurement correlated well with the findings in chest radiographs...... but the lung density values were more sensitive indices. This was particularly evident in serial observations of individual patients....

  18. Local Variability in Firn Layering and Compaction Rates Using GPR Data, Depth-Density Profiles, and In-Situ Reflectors in the Dry Snow Zone Near Summit Station, Greenland

    Science.gov (United States)

    Lines, A.; Elliott, J.; Ray, L.; Albert, M. R.

    2017-12-01

    Understanding the surface mass balance (SMB) of the Greenland ice sheet is critical to evaluating its response to a changing climate. A key factor in translating satellite and airborne elevation measurements of the ice sheet to SMB is understanding natural variability of firn layer depth and the relative compaction rate of these layers. A site near Summit Station, Greenland was chosen to investigate the variation in layering across a 100m by 100m grid using a 900 MHz and a 2.6 GHz ground penetrating radar (GPR) antenna. These radargrams were ground truthed by taking depth density profiles of five 2m snow pits and five 5m firn cores within the 100m by 100m grid. Combining these measurements with the accumulation data from the nearby ICECAPS weekly bamboo forest measurements, it's possible to see how the snow deposition from individual storm events can vary over a small area. Five metal reflectors were also placed on the surface of the snow in the bounds of the grid to serve as reference reflectors for similar measurements that will be taken in the 2018 field season at Summit Station. This will assist in understanding how one year of accumulation in the dry snow zone impacts compaction and how this rate can vary over a small area.

  19. THE SL2S GALAXY-SCALE LENS SAMPLE. IV. THE DEPENDENCE OF THE TOTAL MASS DENSITY PROFILE OF EARLY-TYPE GALAXIES ON REDSHIFT, STELLAR MASS, AND SIZE

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenfeld, Alessandro; Treu, Tommaso; Suyu, Sherry H. [Physics Department, University of California, Santa Barbara, CA 93106 (United States); Gavazzi, Raphaël [Institut d' Astrophysique de Paris, UMR7095 CNRS-Université Pierre et Marie Curie, 98bis bd Arago, F-75014 Paris (France); Marshall, Philip J. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305 (United States); Auger, Matthew W. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Nipoti, Carlo, E-mail: sonnen@physics.ucsb.edu [Astronomy Department, University of Bologna, via Ranzani 1, I-40127 Bologna (Italy)

    2013-11-10

    We present optical and near-infrared spectroscopy obtained at Keck, Very Large Telescope, and Gemini for a sample of 36 secure strong gravitational lens systems and 17 candidates identified as part of the Strong Lensing Legacy Survey. The deflectors are massive early-type galaxies in the redshift range z{sub d} = 0.2-0.8, while the lensed sources are at z{sub s} = 1-3.5. We combine these data with photometric and lensing measurements presented in the companion paper III and with lenses from the Sloan Lens Advanced Camera for Surveys and Lènses Structure and Dynamics surveys to investigate the cosmic evolution of the internal structure of massive early-type galaxies over half the age of the universe. We study the dependence of the slope of the total mass density profile, γ' (ρ(r)∝r{sup -γ{sup '}}), on stellar mass, size, and redshift. We find that two parameters are sufficient to determine γ' with less than 6% residual scatter. At fixed redshift, γ' depends solely on the surface stellar mass density ∂γ'/∂Σ{sub *} = 0.38 ± 0.07, i.e., galaxies with denser stars also have steeper slopes. At fixed M{sub *} and R{sub eff}, γ' depends on redshift, in the sense that galaxies at a lower redshift have steeper slopes (∂γ'/∂z = –0.31 ± 0.10). However, the mean redshift evolution of γ' for an individual galaxy is consistent with zero dγ'/dz = –0.10 ± 0.12. This result is obtained by combining our measured dependencies of γ' on z, M{sub *},R{sub eff} with the evolution of the R{sub eff}-M{sub *} taken from the literature, and is broadly consistent with current models of the formation and evolution of massive early-type galaxies. Detailed quantitative comparisons of our results with theory will provide qualitatively new information on the detailed physical processes at work.

  20. Electron Bunch Length Diagnostic With Coherent Smith-Purcell Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, D.C.

    1997-05-12

    The authors have designed a new technique for measuring subpicosecond electron bunch lengths using coherent Smith-Purcell radiation. This new diagnostic technique involves passing the electron beam in close proximity of a grating with a period comparable to the electron bunch length. The emitted Smith-Purcell radiation will have a coherent component whose angular position and distribution are directly related to the electron bunch length and longitudinal profile, respectively. This new diagnostic technique is inherently simple, inexpensive and non-intercepting. The authors show that the new technique is also scaleable to femtosecond regime.

  1. Electron Bunch Length Diagnostic With Coherent Smith-Purcell Radiation

    International Nuclear Information System (INIS)

    Nguyen, D.C.

    1997-01-01

    The authors have designed a new technique for measuring subpicosecond electron bunch lengths using coherent Smith-Purcell radiation. This new diagnostic technique involves passing the electron beam in close proximity of a grating with a period comparable to the electron bunch length. The emitted Smith-Purcell radiation will have a coherent component whose angular position and distribution are directly related to the electron bunch length and longitudinal profile, respectively. This new diagnostic technique is inherently simple, inexpensive and non-intercepting. The authors show that the new technique is also scaleable to femtosecond regime

  2. Alpha particle density and energy distributions in tandem mirrors using Monte-Carlo techniques

    International Nuclear Information System (INIS)

    Kerns, J.A.

    1986-05-01

    We have simulated the alpha thermalization process using a Monte-Carlo technique, in which the alpha guiding center is followed between simulated collisions and Spitzer's collision model is used for the alpha-plasma interaction. Monte-Carlo techniques are used to determine the alpha radial birth position, the alpha particle position at a collision, and the angle scatter and dispersion at a collision. The plasma is modeled as a hot reacting core, surrounded by a cold halo plasma (T approx.50 eV). Alpha orbits that intersect the halo lose 90% of their energy to the halo electrons because of the halo drag, which is ten times greater than the drag in the core. The uneven drag across the alpha orbit also produces an outward, radial, guiding center drift. This drag drift is dependent on the plasma density and temperature radial profiles. We have modeled these profiles and have specifically studied a single-scale-length model, in which the density scale length (r/sub pD/) equals the temperature scale length (r/sub pT/), and a two-scale-length model, in which r/sub pD//r/sub pT/ = 1.1

  3. Inflation of the screening length induced by Bjerrum pairs.

    Science.gov (United States)

    Zwanikken, Jos; van Roij, René

    2009-10-21

    Within a modified Poisson-Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale [Formula: see text] over which electric fields are screened in electrolyte solutions, taking into account a simple association-dissociation equilibrium between free ions and Bjerrum pairs. At low densities of Bjerrum pairs, this length scale is well approximated by the Debye length [Formula: see text], with ρ(s) the free-ion density. At high densities of Bjerrum pairs, however, we find [Formula: see text], which is significantly larger than 1/κ due to the enhanced effective permittivity of the electrolyte, caused by the polarization of Bjerrum pairs. We argue that this mechanism may explain the recently observed anomalously large colloid-free zones between an oil-dispersed colloidal crystal and a colloidal monolayer at the oil-water interface.

  4. Impact of Cyclic Prefix length on OFDM system Capacity

    DEFF Research Database (Denmark)

    Rom, Christian; Sørensen, Troels Bundgaard; Mogensen, Preben Elgaard

    2005-01-01

    This paper is a study on the impact of the Cyclic Prefix (CP) length on the downlink Capacity in a base-band synchronized SISO-OFDM context. To measure this impact, the capacity, measured in bits per second per hertz, is chosen as quality parameter. The study shows how the lengthening of the CP......) the useful OFDM symbol duration, 2) the Signal to Noise Ratio (SNR) at the receiver and 3) the channel Power Delay Profile (PDP). Depending on the values of these parameters different optimum CP lengths are obtained. For a system using only one value of CP length we suggest an optimum value to be 4us...... for an OFDM symbol length of 40us and 6us for an OFDM symbol length of 80us....

  5. Low Bone Density

    Science.gov (United States)

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  6. Spin-Charge Separation in Finite Length Metallic Carbon Nanotubes

    KAUST Repository

    Zhang, Yongyou

    2017-10-17

    Using time-dependent density functional theory, we study the optical excitations in finite length carbon nanotubes. Evidence of spin-charge separation is given in the spacetime domain. We demonstrate that the charge density wave is due to collective excitations of electron singlets, while the accompanying spin density wave is due to those of electron triplets. The Tomonaga–Luttinger liquid parameter and density–density interaction are extrapolated from the first-principles excitation energies. We show that the density–density interaction increases with the length of the nanotube. The singlet and triplet excitation energies, on the other hand, decrease for increasing length of the nanotube. Their ratio is used to establish a first-principles approach for deriving the Tomonaga–Luttinger parameter (in excellent agreement with experimental data). Time evolution analysis of the charge and spin line densities evidences that the charge and spin density waves are elementary excitations of metallic carbon nanotubes. Their dynamics show no dependence on each other.

  7. The ionization length in plasmas with finite temperature ion sources

    Science.gov (United States)

    Jelić, N.; Kos, L.; Tskhakaya, D. D.; Duhovnik, J.

    2009-12-01

    The ionization length is an important quantity which up to now has been precisely determined only in plasmas which assume that the ions are born at rest, i.e., in discharges known as "cold ion-source" plasmas. Presented here are the results of our calculations of the ionization lengths in plasmas with an arbitrary ion source temperature. H