WorldWideScience

Sample records for length colonized root

  1. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest.

    Science.gov (United States)

    Taylor, Benton N; Strand, Allan E; Cooper, Emily R; Beidler, Katilyn V; Schönholz, Marcos; Pritchard, Seth G

    2014-09-01

    Root systems serve important roles in carbon (C) storage and resource acquisition required for the increased photosynthesis expected in CO2-enriched atmospheres. For these reasons, understanding the changes in size, distribution and tissue chemistry of roots is central to predicting the ability of forests to capture anthropogenic CO2. We sampled 8000 cm(3) soil monoliths in a pine forest exposed to 14 years of free-air-CO2-enrichment and 6 years of nitrogen (N) fertilization to determine changes in root length, biomass, tissue C : N and mycorrhizal colonization. CO2 fumigation led to greater root length (98%) in unfertilized plots, but root biomass increases under elevated CO2 were only found for roots diameter in unfertilized plots (59%). Neither fine root [C] nor [N] was significantly affected by increased CO2. There was significantly less root biomass in N-fertilized plots (19%), but fine root [N] and [C] both increased under N fertilization (29 and 2%, respectively). Mycorrhizal root tip biomass responded positively to CO2 fumigation in unfertilized plots, but was unaffected by CO2 under N fertilization. Changes in fine root [N] and [C] call for further study of the effects of N fertilization on fine root function. Here, we show that the stimulation of pine roots by elevated CO2 persisted after 14 years of fumigation, and that trees did not rely exclusively on increased mycorrhizal associations to acquire greater amounts of required N in CO2-enriched plots. Stimulation of root systems by CO2 enrichment was seen primarily for fine root length rather than biomass. This observation indicates that studies measuring only biomass might overlook shifts in root systems that better reflect treatment effects on the potential for soil resource uptake. These results suggest an increase in fine root exploration as a primary means for acquiring additional soil resources under elevated CO2. © The Author 2014. Published by Oxford University Press. All rights reserved

  2. [Effects of fertilization on fine root diameter, root length and specific root length in Larix kaempferi plantation].

    Science.gov (United States)

    Yu, Li-zhong; Ding, Guo-quan; Shi, Jian-wei; Yu, Shui-qiang; Zhu, Jiao-jun; Zhao, Lian-fu

    2007-05-01

    With 16 years old Larix kaempfersoil plantation in the mountainous area of eastern Liaoning Province as test object, this paper studied the effects of fertilization on the fine root diameter, root length, and specific root length (SRL) of the first to fifth order roots. The results showed that with ascending root orders, the mean fine root diameter and root length increased, while the SRL decreased significantly. Among the five order roots, the first order roots were the thinnest in diameter, the shortest in length, and the highest in SRL, but the fifth order roots were in reverse. The variance coefficients for the fine root diameter, root length, and SRL increased from the first to the fifth order roots. Except for the first order roots, soil depth had no significant influence on the fine root diameter, root length and SRL. Fertilization affected the fine root diameter, root length, and SRL of the first and the second order roots significantly, hut had little effects on other order roots. N fertilization decreased the mean diameter of the first and the second order roots significantly, and N or N + P fertilization decreased the mean length of the first order roots in surface soil (0-10 cm) significantly. The SRL of the first order roots in surface soil increased significantly under N fertilization.

  3. Piriformospora indica root colonization triggers local and systemic root responses and inhibits secondary colonization of distal roots.

    Directory of Open Access Journals (Sweden)

    Lorenzo Pedrotti

    Full Text Available Piriformosporaindica is a basidiomycete fungus colonizing roots of a wide range of higher plants, including crop plants and the model plant Arabidopsis thaliana. Previous studies have shown that P. indica improves growth, and enhances systemic pathogen resistance in leaves of host plants. To investigate systemic effects within the root system, we established a hydroponic split-root cultivation system for Arabidopsis. Using quantitative real-time PCR, we show that initial P. indica colonization triggers a local, transient response of several defense-related transcripts, of which some were also induced in shoots and in distal, non-colonized roots of the same plant. Systemic effects on distal roots included the inhibition of secondary P. indica colonization. Faster and stronger induction of defense-related transcripts during secondary inoculation revealed that a P. indica pretreatment triggers root-wide priming of defense responses, which could cause the observed reduction of secondary colonization levels. Secondary P. indica colonization also induced defense responses in distant, already colonized parts of the root. Endophytic fungi therefore trigger a spatially specific response in directly colonized and in systemic root tissues of host plants.

  4. Piriformospora indica root colonization triggers local and systemic root responses and inhibits secondary colonization of distal roots.

    Science.gov (United States)

    Pedrotti, Lorenzo; Mueller, Martin J; Waller, Frank

    2013-01-01

    Piriformosporaindica is a basidiomycete fungus colonizing roots of a wide range of higher plants, including crop plants and the model plant Arabidopsis thaliana. Previous studies have shown that P. indica improves growth, and enhances systemic pathogen resistance in leaves of host plants. To investigate systemic effects within the root system, we established a hydroponic split-root cultivation system for Arabidopsis. Using quantitative real-time PCR, we show that initial P. indica colonization triggers a local, transient response of several defense-related transcripts, of which some were also induced in shoots and in distal, non-colonized roots of the same plant. Systemic effects on distal roots included the inhibition of secondary P. indica colonization. Faster and stronger induction of defense-related transcripts during secondary inoculation revealed that a P. indica pretreatment triggers root-wide priming of defense responses, which could cause the observed reduction of secondary colonization levels. Secondary P. indica colonization also induced defense responses in distant, already colonized parts of the root. Endophytic fungi therefore trigger a spatially specific response in directly colonized and in systemic root tissues of host plants.

  5. Colonization of Plant Growth Promoting Rhizobacteria (PGPR) on Two Different Root Systems

    International Nuclear Information System (INIS)

    Chaudhry, M. Z.; Naz, A. U.; Nawaz, A.; Nawaz, A.; Mukhtar, H.

    2016-01-01

    Phytohormones producing bacteria enhance the plants growth by positively affecting growth of the root. Plant growth promoting bacteria (PGPR) must colonize the plant roots to contribute to the plant's endogenous pool of phytohormones. Colonization of these plant growth promoting rhizobacteria isolated from rhizosplane and soil of different crops was evaluated on different root types to establish if the mechanism of host specificity exist. The bacteria were isolated from maize, wheat, rice, canola and cotton and phytohormone production was detected and quantified by HPLC. Bacteria were inoculated on surface sterilized seeds of different crops and seeds were germinated. After 7 days the bacteria were re-isolated from the roots and the effect of these bacteria was observed by measuring increase in root length. Bacteria isolated from one plant family (monocots) having fibrous root performed well on similar root system and failed to give significant results on other roots (tap root) of dicots. Some aggressive strains were able to colonize both root systems. The plant growth promoting activities of the bacteria were optimum on the same plant from whom roots they were isolated. The results suggest that bacteria adapt to the root they naturally inhabit and colonize the same plant root systems preferably. Although the observe trend indicate host specificity but some bacteria were aggressive colonizers which grew on all the plants used in experiment. (author)

  6. Radiographic versus electronic root canal working length determination

    Directory of Open Access Journals (Sweden)

    Lumnije Kqiku

    2011-01-01

    Conclusions: The present ex vivo study showed that electronic root canal working length determination is not superior to radiographic methods. Both methods provided a good performance in determining the root canal working length.

  7. Corridor Length and Patch Colonization by a Butterfly Junonia coenia

    Energy Technology Data Exchange (ETDEWEB)

    Nick Haddad

    2000-06-01

    Habitat corridors have been proposed to reduce patch isolation and increase population persistence in fragmented landscapes. This study tested whether patch colonization was increased by the presence and various length corridors. The specific butterfly species tested has been shown to use corridors, however, the results indicate that neither the distance between patches or the presence of a corridor influenced colonization.

  8. Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize.

    Science.gov (United States)

    Wu, Qian; Pagès, Loïc; Wu, Jie

    2016-03-01

    Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system's overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field. A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars. The basal diameter of the lateral roots (orders 1-3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm(-1)) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved - intermediate positions were associated with higher densities of laterals. The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source-sink models. © The Author 2016. Published by Oxford University Press on behalf of the Annals

  9. Changes of Root Length and Root-to-Crown Ratio after Apical Surgery

    DEFF Research Database (Denmark)

    von Arx, Thomas; Jensen, Simon S; Bornstein, Michael M

    2015-01-01

    INTRODUCTION: Apical surgery is an important treatment option for teeth with post-treatment periodontitis. Although apical surgery involves root-end resection, no morphometric data are yet available about root-end resection and its impact on the root-to-crown ratio (RCR). The present study assessed...... the length of apicectomy and calculated the loss of root length and changes of RCR after apical surgery. METHODS: In a prospective clinical study, cone-beam computed tomography scans were taken preoperatively and postoperatively. From these images, the crown and root lengths of 61 roots (54 teeth in 47....... The following parameters were assessed for all treated teeth as well as for specific tooth groups: length of root-end resection and percentage change of root length, preoperative and postoperative RCRs, and percentage change of RCR after apical surgery. RESULTS: The mean length of root-end resection was 3...

  10. Specific root length as an indicator of environmental change

    NARCIS (Netherlands)

    Ostonen, I.; Püttsepp, Ü.; Biel, C.; Alberton, O.; Bakker, M.R.; Löhmus, K.; Majdi, H.; Metcalfe, J.D.; Olsthoorn, A.F.M.; Pronk, A.A.; Vanguelova, E.; Weih, M.; Brunner, I.

    2007-01-01

    Specific root length (SRL, m g-1) is probably the most frequently measured morphological parameter of fine roots. It is believed to characterize economic aspects of the root system and to be indicative of environmental changes. The main objectives of this paper were to review and summarize the

  11. Effects of fine root length density and root biomass on soil preferential flow in forest ecosystems

    Directory of Open Access Journals (Sweden)

    Yinghu Zhang

    2015-04-01

    Full Text Available Aim of study: The study was conducted to characterize the impacts of plant roots systems (e.g., root length density and root biomass on soil preferential flow in forest ecosystems. Area of study: The study was carried out in Jiufeng National Forest Park, Beijing, China. Material and methods: The flow patterns were measured by field dye tracing experiments. Different species (Sophora japonica Linn,Platycladus orientalis Franco, Quercus dentata Thunbwere quantified in two replicates, and 12 soil depth were applied. Plant roots were sampled in the sieving methods. Root length density and root biomass were measured by WinRHIZO. Dye coverage was implied in the image analysis, and maximum depth of dye infiltration by direct measurement. Main results: Root length density and root biomass decreased with the increasing distance from soil surface, and root length density was 81.6% higher in preferential pathways than in soil matrix, and 66.7% for root biomass with respect to all experimental plots. Plant roots were densely distributed in the upper soil layers. Dye coverage was almost 100% in the upper 5-10 cm, but then decreased rapidly with soil depth. Root length density and root biomass were different from species: Platycladus orientalis Franco > Quercus dentata Thunb > Sophora japonica Linn. Research highlights: The results indicated that fine roots systems had strong effects on soil preferential flow, particularly root channels enhancing nutrition transport across soil profiles in forest dynamics.

  12. Chitosan Increases Tomato Root Colonization by Pochonia chlamydosporia and Their Combination Reduces Root-Knot Nematode Damage

    Directory of Open Access Journals (Sweden)

    Nuria Escudero

    2017-09-01

    Full Text Available The use of biological control agents could be a non-chemical alternative for management of Meloidogyne spp. [root-knot nematodes (RKN], the most damaging plant-parasitic nematodes for horticultural crops worldwide. Pochonia chlamydosporia is a fungal parasite of RKN eggs that can colonize endophytically roots of several cultivated plant species, but in field applications the fungus shows a low persistence and efficiency in RKN management. The combined use of P. chlamydosporia with an enhancer could help its ability to develop in soil and colonize roots, thereby increasing its efficiency against nematodes. Previous work has shown that chitosan enhances P. chlamydosporia sporulation and production of extracellular enzymes, as well as nematode egg parasitism in laboratory bioassays. This work shows that chitosan at low concentrations (up to 0.1 mg ml-1 do not affect the viability and germination of P. chlamydosporia chlamydospores and improves mycelial growth respect to treatments without chitosan. Tomato plants irrigated with chitosan (same dose limit increased root weight and length after 30 days. Chitosan irrigation increased dry shoot and fresh root weight of tomato plants inoculated with Meloidogyne javanica, root length when they were inoculated with P. chlamydosporia, and dry shoot weight of plants inoculated with both P. chlamydosporia and M. javanica. Chitosan irrigation significantly enhanced root colonization by P. chlamydosporia, but neither nematode infection per plant nor fungal egg parasitism was affected. Tomato plants cultivated in a mid-suppressive (29.3 ± 4.7% RKN egg infection non-sterilized clay loam soil and irrigated with chitosan had enhanced shoot growth, reduced RKN multiplication, and disease severity. Chitosan irrigation in a highly suppressive (73.7 ± 2.6% RKN egg infection sterilized-sandy loam soil reduced RKN multiplication in tomato. However, chitosan did not affect disease severity or plant growth irrespective of

  13. [Colonization of silicate bacterium strain NBT in wheat roots].

    Science.gov (United States)

    Sheng, Xiafang

    2003-11-01

    The strain NBT of silicate bacterium was labelled with streptomycin, and a stable streptomycin resistance strain NBT was obtained. Its colonization dynamics and affecting factors in wheat rhizosphere were studied in agar plates and greenhouse pots were studied by counting the method with selective medium. The results of pot culture experiment showed that strain NBT could successfully colonize in the rhizosphere of wheat. In pot cultures of sterile soil, the highest colonization level (3.4 x 10(7) cfu.g-1 root soil) was reached on 9th day after seeds sown; at 54th day, the population of strain NBT tended to stable, and decreased to 1.4 x 10(4) cfu.g-1 root soil. In pot cultures of unsterile soil, the highest colonization level (3.8 x 10(7) cfu.g-1 root soil) was reached at 9th day, and the population of strain NBT tended to a stationary state at 60th day, with the numbers being 1.4 x 10(4) cfu.g-1 root soil. Some biological and abiotic factors could greatly influence the colonization of the beneficial microorganism.

  14. Sexual dimorphism of root length on a Greek population sample.

    Science.gov (United States)

    Zorba, E; Vanna, V; Moraitis, K

    2014-04-01

    Sexual dimorphism in teeth has been an area of research for osteoarchaeologists and forensic anthropologists studying human skeletal remains. As most studies have been based on the mesiodistal and buccolingual crown measurements, sexual dimorphism from root length dimensions remains "neglected" by comparison to crown dimensions. The aim of the present study was to test the existence of sexual dimorphism in the root length of single-rooted teeth with the purpose of investigating whether maximum root length can be reliably used to determine sex. A total of 774 permanent teeth in 102 individuals (58 males and 44 females) from the Athens Collection were examined. The maximum root length of each tooth was measured on the mesial, distal, buccal, and lingual side. Almost all teeth presented a high degree of sexual dimorphism with males showing numerically higher values in root length than females. The most dimorphic teeth were the maxillary second incisors followed by maxillary canines. The percentage of sexual dimorphism reached 16.56%, with maxillary teeth showing the highest degree of dimorphism. The classification results show that the overall correctly specified group percentage ranged from 58.6% to 90.0%. The data generated from this study suggest that root length measurements offer a reliable method for determining sex and are therefore useful in osteoarchaeological studies, particularly in cases of fragmented or cremated material, but also in forensic contexts. Moreover, root length can be used to separate the remains of female and male subadult individuals with a high level of accuracy thus addressing one of the most problematic issues in human osteoarchaeology and anthropology as immature skeletons are the most difficult to sex. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Working Length Determination of Root Canal of Young Permanent ...

    African Journals Online (AJOL)

    Working length was measured by tactile method using digital radiography and electronic method using apex locator with no 15 K file. Actual working length was established by grinding of cementum and dentine from the root apex and was observed under stereomicroscope. Data was collected and statistical analysis was ...

  16. Accuracy of working length determination with root ZX apex locator ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... The purpose of this study was to clinically compare working length (WL) determination with root ZX apex locator and radiography, and then compare them with direct visualization method ex vivo. A total of 75 maxillary central and lateral incisors were selected. Working length determination was carried out.

  17. Accuracy of working length determination with root ZX apex locator ...

    African Journals Online (AJOL)

    The purpose of this study was to clinically compare working length (WL) determination with root ZX apex locator and radiography, and then compare them with direct visualization method ex vivo. A total of 75 maxillary central and lateral incisors were selected. Working length determination was carried out using radiographic ...

  18. Fine Mapping of QUICK ROOTING 1 and 2, Quantitative Trait Loci Increasing Root Length in Rice

    Directory of Open Access Journals (Sweden)

    Yuka Kitomi

    2018-02-01

    Full Text Available The volume that the root system can occupy is associated with the efficiency of water and nutrient uptake from soil. Genetic improvement of root length, which is a limiting factor for root distribution, is necessary for increasing crop production. In this report, we describe identification of two quantitative trait loci (QTLs for maximal root length, QUICK ROOTING 1 (QRO1 on chromosome 2 and QRO2 on chromosome 6, in cultivated rice (Oryza sativa L.. We measured the maximal root length in 26 lines carrying chromosome segments from the long-rooted upland rice cultivar Kinandang Patong in the genetic background of the short-rooted lowland cultivar IR64. Five lines had longer roots than IR64. By rough mapping of the target regions in BC4F2 populations, we detected putative QTLs for maximal root length on chromosomes 2, 6, and 8. To fine-map these QTLs, we used BC4F3 recombinant homozygous lines. QRO1 was mapped between markers RM5651 and RM6107, which delimit a 1.7-Mb interval on chromosome 2, and QRO2 was mapped between markers RM20495 and RM3430-1, which delimit an 884-kb interval on chromosome 6. Both QTLs may be promising gene resources for improving root system architecture in rice.

  19. Phene synergism between root hair length and basal root growth angle for phosphorus acquisition.

    Science.gov (United States)

    Miguel, Magalhaes Amade; Postma, Johannes Auke; Lynch, Jonathan Paul

    2015-04-01

    Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Compensation in Root Water Uptake Models Combined with Three-Dimensional Root Length Density Distribution

    NARCIS (Netherlands)

    Heinen, M.

    2014-01-01

    A three-dimensional root length density distribution function is introduced that made it possible to compare two empirical uptake models with a more mechanistic uptake model. Adding a compensation component to the more empirical model resulted in predictions of root water uptake distributions

  1. Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia necatrix hyphae.

    Science.gov (United States)

    Pliego, Clara; de Weert, Sandra; Lamers, Gerda; de Vicente, Antonio; Bloemberg, Guido; Cazorla, Francisco Manuel; Ramos, Cayo

    2008-12-01

    Pseudomonas alcaligenes AVO73 and Pseudomonas pseudoalcaligenes AVO110 were selected previously as efficient avocado root tip colonizers, displaying in vitro antagonism towards Rosellinia necatrix, causal agent of avocado white root rot. Despite the higher number of antagonistic properties shown in vitro by AVO73, only AVO110 demonstrated significant protection against avocado white root rot. As both strains are enhanced root colonizers, and as colonization is crucial for the most likely biocontrol mechanisms used by these strains, namely production of non-antibiotic antifungal compounds and competition for nutrients and niches, we decided to compare the interactions of the bacterial strains with avocado roots as well as with R. necatrix hyphae. The results indicate that strain AVO110 is superior in biocontrol trait swimming motility and establishes on the root tip of avocado plants faster than AVO73. Visualization studies, using Gfp-labelled derivatives of these strains, showed that AVO110, in contrast to AVO73, colonizes intercellular crevices between neighbouring plant root epidermal cells, a microhabitat of enhanced exudation. Moreover, AVO110, but not AVO73, also colonizes root wounds, described to be preferential penetration sites for R. necatrix infection. This result strongly suggests that AVO110 meets, and can attack, the pathogen on the root. Finally, when co-inoculated with the pathogen, AVO110 utilizes hyphal exudates more efficiently for proliferation than AVO73 does, and colonizes the hyphae more abundantly than AVO73. We conclude that the differences between the strains in colonization levels and strategies are likely to contribute to, and even can explain, the difference in disease-controlling abilities between the strains. This is the first report that shows that two similar bacterial strains, selected by their ability to colonize avocado root, use strongly different root colonization strategies and suggests that in addition to the total bacterial

  2. Root diversity in alpine plants: root length, tensile strength and plant age

    Science.gov (United States)

    Pohl, M.; Stroude, R.; Körner, C.; Buttler, A.; Rixen, C.

    2009-04-01

    A high diversity of plant species and functional groups is hypothesised to increase the diversity of root types and their subsequent effects for soil stability. However, even basic data on root characteristics of alpine plants are very scarce. Therefore, we determined important root characteristics of 13 plant species from different functional groups, i.e. grasses, herbs and shrubs. We excavated the whole root systems of 62 plants from a machine-graded ski slope at 2625 m a.s.l. and analysed the rooting depth, the horizontal root extension, root length and diameter. Single roots of plant species were tested for tensile strength. The age of herbs and shrubs was determined by growth-ring analysis. Root characteristics varied considerably between both plant species and functional groups. The rooting depth of different species ranged from 7.2 ± 0.97 cm to 20.5 ± 2.33 cm, but was significantly larger in the herb Geum reptans (70.8 ± 10.75 cm). The woody species Salix breviserrata reached the highest horizontal root extensions (96.8 ± 25.5 cm). Most plants had their longest roots in fine diameter classes (0.5

  3. Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize

    OpenAIRE

    Wu, Qian; Pag?s, Lo?c; Wu, Jie

    2016-01-01

    Background and Aims Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system?s overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the f...

  4. Root Colonization by Agrobacterium tumefaciens Is Reduced in cel, attB, attD, and attR Mutants

    Science.gov (United States)

    Matthysse, Ann G.; McMahan, Susan

    1998-01-01

    Root colonization by Agrobacterium tumefaciens was measured by using tomato and Arabidopsis thaliana roots dipped in a bacterial suspension and planted in soil. Wild-type bacteria showed extensive growth on tomato roots; the number of bacteria increased from 103 bacteria/cm of root length at the time of inoculation to more than 107 bacteria/cm after 10 days. The numbers of cellulose-minus and nonattaching attB, attD, and attR mutant bacteria were less than 1/10,000th the number of wild-type bacteria recovered from tomato roots. On roots of A. thaliana ecotype Landsberg erecta, the numbers of wild-type bacteria increased from about 30 to 8,000 bacteria/cm of root length after 8 days. The numbers of cellulose-minus and nonattaching mutant bacteria were 1/100th to 1/10th the number of wild-type bacteria recovered after 8 days. The attachment of A. tumefaciens to cut A. thaliana roots incubated in 0.4% sucrose and observed with a light microscope was also reduced with cel and att mutants. These results suggest that cellulose synthesis and attachment genes play a role in the ability of the bacteria to colonize roots, as well as in bacterial pathogenesis. PMID:9647796

  5. Colonization of Greek olive cultivars' root system by arbuscular mycorrhiza fungus: root morphology, growth, and mineral nutrition of olive plants

    Directory of Open Access Journals (Sweden)

    Theocharis Chatzistathis

    2013-06-01

    Full Text Available Rooted leafy cuttings of three Greek olive (Olea europaea L. cultivars (Koroneiki, Kothreiki and Chondrolia Chalkidikis were grown for six months in three soil types, in an experimental greenhouse, in order to investigate: i if their root system was colonized by arbuscular mycorrhiza fungus (AMF genus and, ii if genotypic differences concerning growth and mineral nutrition of olive plants existed. Gigaspora sp. colonized the root system of the three cultivars studied, while Glomus sp. colonized only the root system of 'Koroneiki'. Furthermore, in most cases root colonization by AMF differed among cultivars and soil types. The maximum root colonization, in all soils, was found in 'Chondrolia Chalkidikis'. In the three soils studied, the ratio shoot dry weight (SDW/ root dry weight (RDW was higher in 'Chondrolia Chalkidikis' than in the other two cultivars. Furthermore, root system morphology of the three olive cultivars was completely different, irrespectively of soil type. Leaf Mn, Fe, Zn, Ca, Mg, K and P concentrations, as well as total per plant nutrient content and nutrient use efficiency, differed among cultivars under the same soil conditions. These differences concerning root morphology, SDW/RDW, as well as nutrient uptake and use efficiency, could be possibly ascribed to the differential AMF colonization by Glomus sp. and Gigaspora sp.

  6. Ethylene Supports Colonization of Plant Roots by the Mutualistic Fungus Piriformospora indica

    Science.gov (United States)

    Khatabi, Behnam; Molitor, Alexandra; Lindermayr, Christian; Pfiffi, Stefanie; Durner, Jörg; von Wettstein, Diter; Kogel, Karl-Heinz; Schäfer, Patrick

    2012-01-01

    The mutualistic basidiomycete Piriformospora indica colonizes roots of mono- and dicotyledonous plants, and thereby improves plant health and yield. Given the capability of P. indica to colonize a broad range of hosts, it must be anticipated that the fungus has evolved efficient strategies to overcome plant immunity and to establish a proper environment for nutrient acquisition and reproduction. Global gene expression studies in barley identified various ethylene synthesis and signaling components that were differentially regulated in P. indica-colonized roots. Based on these findings we examined the impact of ethylene in the symbiotic association. The data presented here suggest that P. indica induces ethylene synthesis in barley and Arabidopsis roots during colonization. Moreover, impaired ethylene signaling resulted in reduced root colonization, Arabidopsis mutants exhibiting constitutive ethylene signaling, -synthesis or ethylene-related defense were hyper-susceptible to P. indica. Our data suggest that ethylene signaling is required for symbiotic root colonization by P. indica. PMID:22536394

  7. Sample preparation and scanning protocol for computerised analysis of root length and diameter

    NARCIS (Netherlands)

    Bouma, T.J.; Nielsen, K.F.; Koutstaal, B.P.

    2000-01-01

    Root length and diameter distribution are important characteristics to be considered when describing and comparing root systems. Root length and root-diameter distribution may be obtained in two ways: by microscopical measurements, which are laborious, or by computerised analysis, which is fast but

  8. A Root-Colonizing Pseudomonad Lessens Stress Responses in Wheat Imposed by CuO Nanoparticles

    Science.gov (United States)

    Wright, Melanie; Adams, Joshua; Yang, Kwang; McManus, Paul; Jacobson, Astrid; Gade, Aniket; McLean, Joan; Britt, David; Anderson, Anne

    2016-01-01

    Nanoparticle (NPs) containing essential metals are being considered in formulations of fertilizers to boost plant nutrition in soils with low metal bioavailability. This paper addresses whether colonization of wheat roots by the bacterium, Pseudomonas chlororaphis O6 (PcO6), protected roots from the reduced elongation caused by CuO NPs. There was a trend for slightly elongated roots when seedlings with roots colonized by PcO6 were grown with CuO NPs; the density of bacterial cells on the root surface was not altered by the NPs. Accumulations of reactive oxygen species in the plant root cells caused by CuO NPs were little affected by root colonization. However, bacterial colonization did reduce the extent of expression of an array of genes associated with plant responses to stress induced by root exposure to CuO NPs. PcO6 colonization also reduced the levels of two important chelators of Cu ions, citric and malic acids, in the rhizosphere solution; presumably because these acids were used as nutrients for bacterial growth. There was a trend for lower levels of soluble Cu in the rhizosphere solution and reduced Cu loads in the true leaves with PcO6 colonization. These studies indicate that root colonization by bacterial cells modulates plant responses to contact with CuO NPs. PMID:27776146

  9. A Root-Colonizing Pseudomonad Lessens Stress Responses in Wheat Imposed by CuO Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Melanie Wright

    Full Text Available Nanoparticle (NPs containing essential metals are being considered in formulations of fertilizers to boost plant nutrition in soils with low metal bioavailability. This paper addresses whether colonization of wheat roots by the bacterium, Pseudomonas chlororaphis O6 (PcO6, protected roots from the reduced elongation caused by CuO NPs. There was a trend for slightly elongated roots when seedlings with roots colonized by PcO6 were grown with CuO NPs; the density of bacterial cells on the root surface was not altered by the NPs. Accumulations of reactive oxygen species in the plant root cells caused by CuO NPs were little affected by root colonization. However, bacterial colonization did reduce the extent of expression of an array of genes associated with plant responses to stress induced by root exposure to CuO NPs. PcO6 colonization also reduced the levels of two important chelators of Cu ions, citric and malic acids, in the rhizosphere solution; presumably because these acids were used as nutrients for bacterial growth. There was a trend for lower levels of soluble Cu in the rhizosphere solution and reduced Cu loads in the true leaves with PcO6 colonization. These studies indicate that root colonization by bacterial cells modulates plant responses to contact with CuO NPs.

  10. The interactive effect of phosphorus and nitrogen on "in vitro" spore germination of Glomus etunicatum Becker & Gerdemann, root growth and mycorrhizal colonization

    Directory of Open Access Journals (Sweden)

    Bressan Wellington

    2001-01-01

    Full Text Available The effects of P and N amendment and its interactions on spore germination, root growth and colonized root length by Glomus etunicatum Becker & Gerdemann (INVAM S329 was studied "in vitro" in RiT - DNA transformed roots of Anthylis vulneraria sub sp. Sampaiana (Kidney vetch. Three N media concentrations (5, 10 and 50 mg/l at P constant level (2 mg/l and three P media concentrations (2, 10 and 20 mg/l at N constant level (5 mg/l were utilized as a treatment. Bécard & Fortin medium was used as a basal medium for root growth and colonized root length, and water/agar (0.8% media was the control for spore germination. Spore germination of G. etunicatum at low P level was reduced by N addition in relation to the control media, and at low N level addition of P stimulated spore germination. Total root length was stimulated by N addtion at low P level, but no significant difference (p£0.05 was observed between 10 and 50 mg/l of N. P addition at low N level media also stimulated total root growth, and a significant difference (p£0.05 was observed among P concentrations. Colonized root length by G. etunicatum increased significantly (p£0.05 with P additions at low N levels. Under low P level no significant differences was found between 10 and 50 mg/l of N. These results demonstrate that the interaction between P and N affect differently spore germination, root growth and colonized root lenght.

  11. Seasonal variation in mycorrhizal fungi colonizing roots of Allium tricoccum (wild leek) in a mature mixed hardwood forest.

    Science.gov (United States)

    Hewins, Charlotte R; Carrino-Kyker, Sarah R; Burke, David J

    2015-08-01

    The community of arbuscular mycorrhizal (AM) fungi colonizing roots of the forest herb Allium tricoccum Ait. (wild leek) was examined to assess whether colonization varied seasonally and spatially within the forest. Whole plants were collected to coincide with observed phenological stages, and the perennial tissue (i.e., the bulb) was used to analyze total C, N, and P over the growing season. AM fungal community composition, structure, and abundance were assessed in roots by terminal restriction fragment length polymorphism analysis and quantitative PCR. It was found that A. tricoccum rDNA co-amplified using the general AM primers NS31/AM1, and a new primer for qPCR was designed that discriminated against plant DNA to quantify AM colonization. Community structure of AM fungi did not vary seasonally, but did change spatially within the forest, and AM fungal communities were correlated with the presence of overstory tree species. Fungal colonization of roots, however, did change seasonally with a maximum observed in late winter and early spring following leaf emergence. Maximum AM fungal colonization was associated with declines in bulb N and P, suggesting that leaf emergence and growth were responsible for both declines in stored nutrients and increases in AM fungal colonization. Plant N and P contents increased between late summer and early spring while C contents remained unchanged. The observed increase in nutrient content during a time when A. tricoccum lacks leaves indicates that the roots or AM fungi are metabolically active and acquire nutrients during this time, despite an absence of photosynthesis and thus a direct supply of C from A. tricoccum.

  12. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species.

    Science.gov (United States)

    Guo, Dali; Xia, Mengxue; Wei, Xing; Chang, Wenjing; Liu, Ying; Wang, Zhengquan

    2008-01-01

    * Different portions of tree root systems play distinct functional roles, yet precisely how to distinguish roots of different functions within the branching fine-root system is unclear. * Here, anatomy and mycorrhizal colonization was examined by branch order in 23 Chinese temperate tree species of both angiosperms and gymnosperms forming ectomycorrhizal and arbuscular-mycorrhizal associations. * Different branch orders showed marked differences in anatomy. First-order roots exhibited primary development with an intact cortex, a high mycorrhizal colonization rate and a low stele proportion, thus serving absorptive functions. Second and third orders had both primary and secondary development. Fourth and higher orders showed mostly secondary development with no cortex or mycorrhizal colonization, and thus have limited role in absorption. Based on anatomical traits, it was estimated that c. 75% of the fine-root length was absorptive, and 68% was mycorrhizal, averaged across species. * These results showed that: order predicted differences in root anatomy in a relatively consistent manner across species; anatomical traits associated with absorption and mycorrhizal colonization occurred mainly in the first three orders; the single diameter class approach may have overestimated absorptive root length by 25% in temperate forests.

  13. Phytohormone production and colonization of canola (Brassica napus L.) roots by Pseudomonas fluorescens 6-8 under gnotobiotic conditions.

    Science.gov (United States)

    Pallai, Rajash; Hynes, Russell K; Verma, Brij; Nelson, Louise M

    2012-02-01

    Pseudomonas fluorescens 6-8, a rhizosphere isolate previously shown to enhance root elongation of canola ( Brassica napus L.), was characterized for its ability to produce indole-3-acetic acid and cytokinins in pure culture and in the rhizosphere of canola under gnotobiotic conditions in comparison with the cytokinin-producing strain P. fluorescens G20-18 and its mutant CNT2. Strain 6-8 produced isopentenyl adenosine, zeatin riboside, and dihydroxyzeatin riboside at levels similar to those of G20-18, but only very low concentrations of indole-3-acetic acid. In a gnotobiotic assay canola inoculated with 6-8 and G20-18 had higher concentrations of isopentenyl adenosine and zeatin riboside in the rhizosphere and greater root length than the noninoculated control. The ability of strain 6-8 to colonize canola roots was assessed following transformation with the green fluorescent protein and inoculation onto canola seed in a gnotobiotic assay. Higher populations of strain 6-8 were observed on the proximal region of the root closest to the seed than on the mid and distal portions 9 days after seed inoculation. The ability of P. fluorescens 6-8 to produce cytokinins, colonize the roots of canola seedlings, and enhance root elongation may contribute to its ability to survive in the rhizosphere and may benefit seedling growth.

  14. Quality of rooting environments and patterns of root colonization by arbuscular mycorrhizal fungi in strangler figs in a Mexican palmetto woodland.

    Science.gov (United States)

    Guevara, Roger; López, Juan C

    2007-10-01

    Arbuscular mycorrhizal colonization in strangler figs, spore richness, and abundance of arbuscular mycorrhizal fungi were quantified in epiphytic and ground-rooted trees in a Sabal palmetto woodland that had marked heterogeneity in rooting environments for hemiepiphytic plants. An inoculation experiment was performed to assess whether low spore density could limit mycorrhizal colonization. There was no significant difference in mycorrhizal colonization among Ficus species, but epiphytic plants in nutrient-rich rooting environments had less mycorrhizal colonization than ground-rooted plants in low-nutrient soils. However, richness and abundance of spores was low, and to some extent, this limited the mycorrhizal colonization of strangler figs. Nevertheless, our results suggest intraindividual adjusting levels of root colonization in strangler figs in accordance with mineral availability. Such responses could maximize the cost-benefit balance of arbuscular mycorrhizal interactions throughout the development of strangler figs from epiphytic young plants to ground-rooted trees.

  15. Genetic Control of Plant Root Colonization by the Biocontrol agent, Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Benjamin J.; Fletcher, Meghan; Waters, Jordan; Wetmore, Kelly; Blow, Matthew J.; Deutschbauer, Adam M.; Dangl, Jeffry L.; Visel, Axel

    2015-03-19

    Plant growth promoting rhizobacteria (PGPR) are a critical component of plant root ecosystems. PGPR promote plant growth by solubilizing inaccessible minerals, suppressing pathogenic microorganisms in the soil, and directly stimulating growth through hormone synthesis. Pseudomonas fluorescens is a well-established PGPR isolated from wheat roots that can also colonize the root system of the model plant, Arabidopsis thaliana. We have created barcoded transposon insertion mutant libraries suitable for genome-wide transposon-mediated mutagenesis followed by sequencing (TnSeq). These libraries consist of over 105 independent insertions, collectively providing loss-of-function mutants for nearly all genes in the P.fluorescens genome. Each insertion mutant can be unambiguously identified by a randomized 20 nucleotide sequence (barcode) engineered into the transposon sequence. We used these libraries in a gnotobiotic assay to examine the colonization ability of P.fluorescens on A.thaliana roots. Taking advantage of the ability to distinguish individual colonization events using barcode sequences, we assessed the timing and microbial concentration dependence of colonization of the rhizoplane niche. These data provide direct insight into the dynamics of plant root colonization in an in vivo system and define baseline parameters for the systematic identification of the bacterial genes and molecular pathways using TnSeq assays. Having determined parameters that facilitate potential colonization of roots by thousands of independent insertion mutants in a single assay, we are currently establishing a genome-wide functional map of genes required for root colonization in P.fluorescens. Importantly, the approach developed and optimized here for P.fluorescens>A.thaliana colonization will be applicable to a wide range of plant-microbe interactions, including biofuel feedstock plants and microbes known or hypothesized to impact on biofuel-relevant traits including biomass productivity

  16. Former Land Use and Host Genotype Influence the Mycorrhizal Colonization of Poplar Roots

    Directory of Open Access Journals (Sweden)

    Felicia Gherghel

    2014-12-01

    Full Text Available The present paper analyses the community structure of ectomycorrhiza (ECM and arbuscular mycorrhiza (AM fungi associated with seven different poplar clone types growing in a patch system on soil from four different former land use types, originating from spruce forest, poplar stand, grassland and cornfield. We determined the extent to which ECM and AM play a role on the studied factors (genotype, former land use type and host growth. The diversity of ECM and AM fungal communities was estimated by morphological and molecular analyses of the 18S and ITS of the rDNA genes. Fifteen ECM fungal taxa and four AM groups were distinguished in the roots of the poplars grown for 18 months on soil originating from the respective land use types. The poplar clones showed significantly different rates of shoot length and AM colonization, especially concerning the occurrence of Glomus intraradices and Scutellospora sp. Populus deltoides had significantly higher Scutellospora sp. abundance. Although ECM abundance and diversity was high, no significant differences between the different land use types was found. However, some ECM fungi like Paxillus involutus, Laccaria proxima and Laccaria tortilis showed significant preferences for specific land use types. Our findings suggest that both factors, former land use type and poplar genotype, are important determinants of mycorrhizal colonization of the host plants.

  17. Quantitative Classification of Rice (Oryza sativa L.) Root Length and Diameter Using Image Analysis.

    Science.gov (United States)

    Gu, Dongxiang; Zhen, Fengxian; Hannaway, David B; Zhu, Yan; Liu, Leilei; Cao, Weixing; Tang, Liang

    2017-01-01

    Quantitative study of root morphological characteristics of plants is helpful for understanding the relationships between their morphology and function. However, few studies and little detailed and accurate information of root characteristics were reported in fine-rooted plants like rice (Oryza sativa L.). The aims of this study were to quantitatively classify fine lateral roots (FLRs), thick lateral roots (TLRs), and nodal roots (NRs) and analyze their dynamics of mean diameter (MD), lengths and surface area percentage with growth stages in rice plant. Pot experiments were carried out during three years with three rice cultivars, three nitrogen (N) rates and three water regimes. In cultivar experiment, among the three cultivars, root length of 'Yangdao 6' was longest, while the MD of its FLR was the smallest, and the mean diameters for TLR and NR were the largest, the surface area percentage (SAP) of TLRs (SAPT) was the highest, indicating that Yangdao 6 has better nitrogen and water uptake ability. High N rate increased the length of different types of roots and increased the MD of lateral roots, decreased the SAP of FLRs (SAPF) and TLRs, but increased the SAP of NRs (SAPN). Moderate decrease of water supply increased root length and diameter, water stress increased the SAPF and SAPT, but decreased SAPN. The quantitative results indicate that rice plant tends to increase lateral roots to get more surface area for nitrogen and water uptake when available assimilates are limiting under nitrogen and water stress environments.

  18. Bacillus subtilis Early Colonization of Arabidopsis thaliana Roots Involves Multiple Chemotaxis Receptors.

    Science.gov (United States)

    Allard-Massicotte, Rosalie; Tessier, Laurence; Lécuyer, Frédéric; Lakshmanan, Venkatachalam; Lucier, Jean-François; Garneau, Daniel; Caudwell, Larissa; Vlamakis, Hera; Bais, Harsh P; Beauregard, Pascale B

    2016-11-29

    Colonization of plant roots by Bacillus subtilis is mutually beneficial to plants and bacteria. Plants can secrete up to 30% of their fixed carbon via root exudates, thereby feeding the bacteria, and in return the associated B. subtilis bacteria provide the plant with many growth-promoting traits. Formation of a biofilm on the root by matrix-producing B. subtilis is a well-established requirement for long-term colonization. However, we observed that cells start forming a biofilm only several hours after motile cells first settle on the plant. We also found that intact chemotaxis machinery is required for early root colonization by B. subtilis and for plant protection. Arabidopsis thaliana root exudates attract B. subtilis in vitro, an activity mediated by the two characterized chemoreceptors, McpB and McpC, as well as by the orphan receptor TlpC. Nonetheless, bacteria lacking these chemoreceptors are still able to colonize the root, suggesting that other chemoreceptors might also play a role in this process. These observations suggest that A. thaliana actively recruits B. subtilis through root-secreted molecules, and our results stress the important roles of B. subtilis chemoreceptors for efficient colonization of plants in natural environments. These results demonstrate a remarkable strategy adapted by beneficial rhizobacteria to utilize carbon-rich root exudates, which may facilitate rhizobacterial colonization and a mutualistic association with the host. Bacillus subtilis is a plant growth-promoting rhizobacterium that establishes robust interactions with roots. Many studies have now demonstrated that biofilm formation is required for long-term colonization. However, we observed that motile B. subtilis mediates the first contact with the roots. These cells differentiate into biofilm-producing cells only several hours after the bacteria first contact the root. Our study reveals that intact chemotaxis machinery is required for the bacteria to reach the

  19. Ergosterol content in ericaceous hair roots correlates with dark septate endophytes but not with ericoid mycorrhizal colonization

    DEFF Research Database (Denmark)

    Olsrud, Maria; Michelsen, Anders; Wallander, Håkon

    2007-01-01

    The relationship between ergosterol content in ericaceous hair roots and ericoid mycorrhizal (ErM) colonization versus dark septate endophytic (DSE) hyphal colonization was examined in a dwarf shrub-dominated subarctic mire in Northern Sweden. Ergosterol content in hair roots did not correlate...... with ErM colonization in corresponding root samples. However, a significant positive relationship was found between hair root DSE hyphal colonization and ergosterol content. This is the first study to demonstrate that ergosterol cannot be used as a colonization indicator for ErM in hair roots growing...... under natural conditions. It also suggests the possibility of using ergosterol as an estimate of DSE hyphal colonization in ericaceous dwarf shrubs. This study has implications for the interpretation of results in field studies where ergosterol was used as a sole proxy for ErM colonization....

  20. [Effect of flooding time length on mycorrhizal colonization of three AM fungi in two wetland plants].

    Science.gov (United States)

    Ma, Lei-Meng; Wang, Peng-Teng; Wang, Shu-Guang

    2014-01-01

    In order to provide information for elucidating effect of flooding on the formation and function of AM in wetland plants, three AM fungi (Glomus intraradices, Glomus versiforme, Glomus etunicatum) were used to investigate the effects of flooding time length on their colonization in cattail (Typha orientalis) and rice (Oryza sativa L. ). The results showed that the mycorrhizal colonization rate (MCR) presented downtrend with increasing flooding time length. In cattail, MCR of the fungus F3 was higher than those of fungi F1 and F2, but no significant difference in MCR was found between fungi F1 and F2. In rice, the MCRs of fungi F2 and F3 were higher than that of E1. In both plants, the proportional frequency of hyphae was the highest while the proportional frequency of arbuscules and vesicles was very low in all treatments, indicating that hyphal colonization was the main route for AM formation. The proportional frequency of hyphae in cattail increased with the flooding time length, but no significant trend was observed in rice plant. The proportional frequency of arhuscules decreased with the increase of flooding time, and was the highest in the treatment without flooding (treatment IV). The number of spores produced by AM fungi increased with increasing flooding time, and reached the highest in the treatment of long time flooding (treatment I). In the same treatment, the fungus F3 produced more spores than fungi F1 and F2. Changes in wet weight of the two plants showed that AM could increase cattail growth under flooding, hut little effect on rice growth was found. It is concluded that flooding time length significantly affected the mycorrhizal colonization rate and the proportional frequency of colonization. AM could enhance the growth of wetland plant, but this depends on the mycorrhizal dependence of host plant on AM fungi. Therefore, flooding time length should be considered in the inoculation of wetland plants with AM fungi.

  1. The effect of cutting length on the rooting and growth of subtropical ...

    African Journals Online (AJOL)

    The length of a cutting can affect both the rooting and plug colonisation of container-grown stock. Using hedges from conventional clonebanks established in the ground, four cutting length treatments (13, 10, 8 and 5 cm) were tested using five Eucalyptus grandis × E. urophylla clones. The smallest cutting length had the ...

  2. Telomere length in non-neoplastic colonic mucosa in ulcerative colitis (UC) and its relationship to the severe clinical phenotypes.

    Science.gov (United States)

    Tahara, Tomomitsu; Shibata, Tomoyuki; Okubo, Masaaki; Kawamura, Tomohiko; Sumi, Kazuya; Ishizuka, Takamitsu; Nakamura, Masakatsu; Nagasaka, Mitsuo; Nakagawa, Yoshihito; Ohmiya, Naoki; Arisawa, Tomiyasu; Hirata, Ichiro

    2015-08-01

    Telomere shortening occurs with human aging in many organs and tissues and is accelerated by rapid cell turnover and oxidative injury. To clarify the clinical importance of telomere shortening in colonic mucosa in ulcerative colitis (UC), we measured average telomere length using quantitative real-time PCR in non-neoplastic colonic mucosa in UC patients and assessed its relationship to various clinical subtypes. Relative telomere length in genomic DNA was measured in colonic biopsies obtained from rectal inflammatory mucosa from 86 UC patients as well as paired non-inflammatory proximal colonic mucosae from 10 patients. Data were correlated with various clinical phenotypes. In paired samples, average relative telomere length of rectal inflammatory mucosa was shortened compared to normal appearing proximal colon in eight out of ten cases (p = 0.01). Telomere length shortening was significantly associated with more severe Mayo endoscopic subscore (p UC, reflecting severe inflammatory state in the colonic mucosa.

  3. Root Length and Anatomy of Impacted Maxillary Canines in Patients with Unilateral Maxillary Canine Impaction

    Directory of Open Access Journals (Sweden)

    Mostfa Shahabi

    2017-09-01

    Full Text Available Introduction: Canine impaction is a common occurrence. In this study, we sought to investigate the root anatomy and length of impacted canines and lateral incisor adjacent to impacted maxillary canine. Materials and Methods: In this retrospective study, three-dimensional tomographic imaging was performed on 26 patients with unilateral maxillary canine impaction. In this study, we evaluated root length and anatomy of impacted canines, in terms of resorption intensity and curvature, with Planmeca Romexis Viewer 4.0. Furthermore, crown shape as well as root length and anatomy of the lateral incisors adjacent to impacted canines were investigated and compared with the other side on the dental arch, where canine eruption was normal. Results: Root length of impacted canines was significantly lower than that of normal canines (P=0.011. There were no significant differences between root length of lateral incisors adjacent to impacted canines and root length of lateral incisors adjacent to normal canines (P=0.221. Moreover, the resorption intensity of the adjacent lateral incisors was higher than that of the impacted canines. No significant differences were noted in root resorption intensity between the lateral incisors adjacent to the imacted canines and the lateral incisors adjacent to normal canines (P=0.36. In addition, resorption intensity was significantly higher in impacted canines than in normal canines (P=0.024. Root anatomy of impacted canines was not significantly different from that of normal canines (P=0.055. The crown shape of the lateral incisors adjacent to impacted canines was not significantly different from that of the lateral incisors adjacent to normal canines (P=0.052. Conclusion: Impaction can probably affect root length and canine resorption severity. However, root and crown shape of lateral incisors cannot always be associated with canine impaction.

  4. Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion.

    Directory of Open Access Journals (Sweden)

    Swarnalee Dutta

    Full Text Available The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs. We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430. There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE, compared to those exposed to groundnut-root exudates (GRE. In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2, in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion.

  5. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula

    DEFF Research Database (Denmark)

    Watts-Williams, Stephanie J.; Jakobsen, Iver; Cavagnaro, Timothy R.

    2015-01-01

    Two pathways exist for plant Pi uptake from soil: via root epidermal cells (direct pathway) or via associations with arbuscular mycorrhizal (AM) fungi, and the two pathways interact in a complex manner. This study investigated distal and local effects of AM colonization on direct root Pi uptake...... fungi, but with no functional mycorrhizal pathway for Pi uptake, was included to better understand effects of AM colonization per se. Colonization by AM fungi decreased expression of direct Pi transporter genes locally, but not distally in the wild type. In mtpt4 mutant plants, direct Pi transporter...... genes and the Pi starvation-induced gene Mt4 were more highly expressed than in wild-type roots. In wild-type plants, less Pi was taken up via the direct pathway by non-colonized roots when the other root half was colonized by AM fungi, compared with non-mycorrhizal plants. Colonization by AM fungi...

  6. ARBUSCULAR MYCORRHIZAL COLONIZATION OF LARREA TRIDENTATA AND AMBROSIA DUMOSA ROOTS VARIES WITH PRECIPITATION AND SEASON IN THE MOJAVE DESERT

    Energy Technology Data Exchange (ETDEWEB)

    M. E. APPLE; C. I. THEE; V. L. SMITH-LONGOZO; C. R. COGAR; C. E. WELLS; R. S. NOWAK

    2004-01-01

    The percentage of fine roots colonized by arbuscular mycorrhizal (AM) fungi varied with season and with species in the co-dominant shrubs Lurreu tridentutu and Ambrosia dumosu at a site adjacent to the Nevada Desert FACE (Free-Air CO{sub 2} Enrichment) Facility (NDFF) in the Mojave Desert. We excavated downward and outward from the shrub bases in both species to collect and examine fine roots (< 1.0 mm diameter) at monthly intervals throughout 2001 and from October 2002 to September 2003. Fungal structures became visible in cleared roots stained with trypan blue. We quantified the percent colonization of roots by AM fungi via the line intercept method. In both years and for both species, colonization was highest in fall, relatively low in spring when root growth began, increased in late spring, and decreased during summer drought periods. Increases in colonization during summer and fall reflect corresponding increases in precipitation. Spring mycorrhizal colonization is low despite peaks in soil water availability and precipitation, indicating that precipitation is not the only factor influencing mycorrhizal colonization. Because the spring decrease in mycorrhizal colonization occurs when these shrubs initiate a major flush of fine root growth, other phenological events such as competing demands for carbon by fine root initiation, early season shoot growth, and flowering may reduce carbon availability to the fungus, and hence decrease colonization. Another possibility is that root growth exceeds the rate of mycorrhizal colonization.

  7. Root Length and Anatomy of Impacted Maxillary Canines in Patients with Unilateral Maxillary Canine Impaction

    OpenAIRE

    Mostfa Shahabi; Maryam Omidkhoda; Seyedeh Haniyeh Omidi; Seyed Hosein Hoseini Zarch

    2017-01-01

    Introduction: Canine impaction is a common occurrence. In this study, we sought to investigate the root anatomy and length of impacted canines and lateral incisor adjacent to impacted maxillary canine. Materials and Methods: In this retrospective study, three-dimensional tomographic imaging was performed on 26 patients with unilateral maxillary canine impaction. In this study, we evaluated root length and anatomy of impacted canines, in terms of resorption intensity and curvature, with Planme...

  8. Plant growth promotion and root colonization by EPS producing Enterobacter sp. RZS5 under heavy metal contaminated soil.

    Science.gov (United States)

    Sayyed, R Z; Patel, P R; Shaikh, S S

    2015-02-01

    The heavy metal resistant bacterium isolated from field soil and identified as Enterobacter sp. RZS5 tolerates a high concentration (100-2000 μM) of various heavy metal ions such as Mn2+, Ni2+, Zn2+, Cu2+, CO2+ and Fe2+ when grown in such environment and produces exopolysaccharides (EPS). Here, we have demonstrated EPS production by Enterobacter sp. RZS5 during 60 h of growth in yeast extract mannitol broth (YEMB). The yield increased by two fold after the addition of 60 μM of Ca2+; 50 μM of Fe2+ and 60 μM of Mg2+ ions in YEMB, and the optimization of physico-chemical parameters. EPS was extracted with 30% (v/v) of isopropanol as against the commonly used 50% (v/v) isopropanol method. EPS-rich broth promoted seed germination, shoot height, root length, number of leaves and chlorophyll content of wheat (Triticum aestivum) seed and peanut (Arachis hypogaea) seed. The higher colony-forming unit of Enterobacter sp. in soil inoculated with EPS rich broth of Enterobacter sp. indicated the root colonizing potential and rhizosphere competence of the isolate. The FTIR spectra of the EPS extract confirmed the presence of the functional group characteristics of EPS known to exhibit a high binding affinity towards certain metal ions. This overall growth and vigour in plants along with the effective root colonization, reflected the potential of the isolate as an efficient bio-inoculant in bioremediation.

  9. Early Root Herbivory Impairs Arbuscular Mycorrhizal Fungal Colonization and Shifts Defence Allocation in Establishing Plantago lanceolata.

    Science.gov (United States)

    Bennett, Alison E; Macrae, Anna M; Moore, Ben D; Caul, Sandra; Johnson, Scott N

    2013-01-01

    Research into plant-mediated indirect interactions between arbuscular mycorrhizal (AM) fungi and insect herbivores has focussed on those between plant shoots and above-ground herbivores, despite the fact that only below-ground herbivores share the same part of the host plant as AM fungi. Using Plantago lanceolata L., we aimed to characterise how early root herbivory by the vine weevil (Otiorhynchus sulcatus F.) affected subsequent colonization by AM fungi (Glomus spp.) and determine how the two affected plant growth and defensive chemistry. We exposed four week old P. lanceolata to root herbivory and AM fungi using a 2×2 factorial design (and quantified subsequent effects on plant biomass and iridoid glycosides (IGs) concentrations. Otiorhynchus sulcatus reduced root growth by c. 64%, whereas plant growth was unaffected by AM fungi. Root herbivory reduced extent of AM fungal colonization (by c. 61%). O. sulcatus did not influence overall IG concentrations, but caused qualitative shifts in root and shoot IGs, specifically increasing the proportion of the more toxic catalpol. These changes may reflect defensive allocation in the plant against further attack. This study demonstrates that very early root herbivory during plant development can shape future patterns of AM fungal colonization and influence defensive allocation in the plant.

  10. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula.

    Science.gov (United States)

    Watts-Williams, Stephanie J; Jakobsen, Iver; Cavagnaro, Timothy R; Grønlund, Mette

    2015-07-01

    Two pathways exist for plant Pi uptake from soil: via root epidermal cells (direct pathway) or via associations with arbuscular mycorrhizal (AM) fungi, and the two pathways interact in a complex manner. This study investigated distal and local effects of AM colonization on direct root Pi uptake and root growth, at different soil P levels. Medicago truncatula was grown at three soil P levels in split-pots with or without AM fungal inoculation and where one root half grew into soil labelled with (33)P. Plant genotypes included the A17 wild type and the mtpt4 mutant. The mtpt4 mutant, colonized by AM fungi, but with no functional mycorrhizal pathway for Pi uptake, was included to better understand effects of AM colonization per se. Colonization by AM fungi decreased expression of direct Pi transporter genes locally, but not distally in the wild type. In mtpt4 mutant plants, direct Pi transporter genes and the Pi starvation-induced gene Mt4 were more highly expressed than in wild-type roots. In wild-type plants, less Pi was taken up via the direct pathway by non-colonized roots when the other root half was colonized by AM fungi, compared with non-mycorrhizal plants. Colonization by AM fungi strongly influenced root growth locally and distally, and direct root Pi uptake activity locally, but had only a weak influence on distal direct pathway activity. The responses to AM colonization in the mtpt4 mutant suggested that in the wild type, the increased P concentration of colonized roots was a major factor driving the effects of AM colonization on direct root Pi uptake. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Evaluation of Mycorrhizal Fungi, Vermicompost and Humic Acid on Essence Yield and Root Colonization of Fennel

    Directory of Open Access Journals (Sweden)

    I. Akbari

    2016-02-01

    humic acid include: h1(no application and h2 (application. Each plot had 5 rows with row spacing of 50 cm and row length of 5 m was considered. Ten grams mycorrhizal fungi were added to the soil under each seed. Humic acid was sprayed in 3 stages (vegetative, reproductive and seed filling stage according to the recommended dose (200 mg per liter. Sampling and measuring of traits were done at the end of the season and after removal of border rows. A 50 gram sample of each plot milled and then essence collected with Clevenger for three hours using water distillation. Percent of fungal colonization obtained with Gridline Intersect Method. Finally, for analysis of data and drawing shapes, MSTAT-C software and Microsoft Excel were used. Comparison of the least significant difference test (LSD was conducted at the 5% level. Results and Discussion Results of this study showed the main effects of experimental factors on seed yield, essence percent and yield were significant. Comparison of mean results showed the highest seed yield (1119.37 kg ha-1 obtained from mycorrhizal colonization. With increasing vermicompost applying, seed yield also increased. So, the greatest and lowest seed yield obtained from 8 ton ha-1 vermicompost and control plots (1315 and 1016 kg ha-1, respectively. With humic acid foliar application, seed yield increased about 18 percent. In this experiment essence percent significantly increased due to mycorrhizal colonization. Essence percent of fennel seeds showed, the highest value of essence percent (2.83% obtained from 8 ton.ha-1 vermicompost and the lowest essence was obtained from control plots (2.15%. Seed essence percent significantly increased due to humic acid foliar application compared with control plots (2.6% and 2.4% respectively. Essence yield significantly increased due to mycorrhizal inoculation (31.67 kg ha-1. Vermicompost application increased essence yield about 64 and 25 percent compared with control plots. Compared to control, humic acid

  12. Changes in root lengths of maxillary incisors during orthodontic retention period

    Directory of Open Access Journals (Sweden)

    Ravanmehr H

    2006-01-01

    Full Text Available Background and Aim: External apical root resorption is a common iatrogenic consequence of orthodontic treatment. Much controversy exists in the literature about changes in root lengths at post treatment periods. Although many practitioners believe that resorption becomes stable after active treatment, quantitative data are scarce. The purpose of this study was to determine quantitative changes in root lengths of maxillary incisors during fixed orthodontic post treatment period, and to assess if it is influenced by gender and factors related to active treatment. Materials and Methods: This was a case cross over study, performed on 80 patients (52 females and 28 males aged between 13 and 22 years. At debonding stage and beginning of retention phase of fixed orthodontic treatment, Hawley type retainer was fabricated for maxillary arch. Periapical radiographs of maxillary incisors using standard parallel technique were obtained immediately after debonding, and 3 and 7 months later. Crown and root lengths of maxillary incisors were measured using computer program. Changes in root lengths were calculated considering correction factors. Also associations between some factors and the change in root lengths during post treatment periods were assessed. These included gender, type of treatment plan (non extraction/extraction, technique (standard edgewise/straight-wire edgewise and duration of active treatment (less than 2 years/2 years and more. T-test and 4-way ANOVA were used for statistical analysis with P0.05 as the limit of significance. Results: No significant relation was found between apical root resorption of maxillary central incisors and time elapsed after treatment. Significant relation was observed between apical root resorption of maxillary lateral incisors and the length of post treatment period. No significant relation was found between root length changes of maxillary incisors during post treatment period and gender, type of treatment

  13. Relationship between genotype and soil environment during colonization of poplar roots by mycorrhizal and endophytic fungi.

    Science.gov (United States)

    Karliński, Leszek; Rudawska, Maria; Kieliszewska-Rokicka, Barbara; Leski, Tomasz

    2010-06-01

    Poplars are among the few tree genera that can develop both ectomycorrhizal (ECM) and arbuscular (AM) associations; however, variable ratios of ECM/AM in dual mycorrhizal colonizations were observed in the roots of a variety of poplar species and hybrids. The objective of our study was to analyze the effect of internal and external factors on growth and dual AM and ECM colonization of poplar roots in three 12-15-year-old common gardens in Poland. We also analyzed the abundance of nonmycorrhizal fungal endophytes in the poplar roots. The Populus clones comprised black poplars (Populus deltoides and P. deltoides x Populus nigra), balsam poplars (Populus maximowiczii x Populus trichocarpa), and a hybrid of black and balsam poplars (P. deltoides x P. trichocarpa). Of the three sites that we studied, one was located in the vicinity of a copper smelter, where soil was contaminated with copper and lead. Poplar root tip abundance, mycorrhizal colonization, and soil fungi biomass were lower at this heavily polluted site. The total mycorrhizal colonization and the ratio of ECM and AM colonization differed among the study sites and according to soil depth. The influence of Populus genotype was significantly pronounced only within the individual study sites. The contribution of nonmycorrhizal fungal endophytes differed among the poplar clones and was higher at the polluted site than at the sites free of pollution. Our results indicate that poplar fine root abundance and AM and ECM symbiosis are influenced by environmental conditions. Further studies of different site conditions are required to characterize the utility of poplars for purposes such as the phytoremediation of polluted sites.

  14. Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not fungal viability.

    Science.gov (United States)

    Vallino, Marta; Fiorilli, Valentina; Bonfante, Paola

    2014-03-01

    Rice is mostly cultivated in wetlands, where arbuscular mycorrhization (AM) is reported to decrease. The mechanisms regulating such events are largely unknown. Rice uninoculated and inoculated with Rhizophagus irregularis were grown in dry and flooded conditions, allowing also for the transfer of plants from one water regime to the other. Roots were sampled at different times, from 7 to 35 d post-inoculation (dpi). The morphological and molecular parameters (root branching, aerenchyma formation, mycorrhizal colonization, AM marker gene expression) were evaluated. Root branching was more pronounced in dry conditions, and such phenotype was enhanced by the fungus. In wetlands, the colonization level was comparable till 21 dpi, when the mycorrhization then decreased, paralleled by an increase in aerenchyma. Expression of the fungal transporters was comparable under the two conditions. The root apparatus, when shifted from one water regime to the other, rapidly adapted to the new condition, revealing a marked plasticity. The reversibility of the AM rice symbiosis was also mirrored by expression changes of plant marker genes. The results demonstrate that the water regime is the driving force that regulates AM colonization under flooding conditions, by directly influencing root architecture and anatomy, but without impacting the basic AM functionality. © 2013 John Wiley & Sons Ltd.

  15. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants.

    Directory of Open Access Journals (Sweden)

    Martina Janoušková

    Full Text Available Inoculation with arbuscular mycorrhizal fungi (AMF may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation.

  16. Gibberellin regulates infection and colonization of host roots by arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-01-01

    Arbuscular mycorrhiza (AM) is established by the entry of AM fungi into the host plant roots and the formation of symbiotic structures called arbuscules. The host plant supplies photosynthetic products to the AM fungi, which in return provide phosphate and other minerals to the host through the arbuscules. Both partners gain great advantages from this symbiotic interaction, and both regulate AM development. Our recent work revealed that gibberellic acids (GAs) are required for AM development in the legume Lotus japonicus. GA signaling interact with symbiosis signaling pathways, directing AM fungal colonization in host roots. Expression analysis showed that genes for GA biosynthesis and metabolism were induced in host roots around AM fungal hyphae, suggesting that the GA signaling changes with both location and time during AM development. The fluctuating GA concentrations sometimes positively and sometimes negatively affect the expression of AM-induced genes that regulate AM fungal infection and colonization.

  17. Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance

    OpenAIRE

    Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, ?lvaro; Takayuki, Tohge; Fernie, Alisdair R.; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar

    2013-01-01

    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, wh...

  18. A shift from arbuscular mycorrhizal to dark septate endophytic colonization in Deschampsia flexuosa roots occurs along primary successional gradient.

    Science.gov (United States)

    Huusko, K; Ruotsalainen, A L; Markkola, A M

    2017-02-01

    Soil fungal community and dominant mycorrhizal types are known to shift along with plant community changes during primary succession. However, it is not well understood how and why root fungal symbionts and colonization types vary within the plant host when the host species is able to thrive both at young and at old successional stages with different light and nutrient resource availability. We asked (i) how root fungal colonization of Deschampsia flexuosa (Poaceae) by arbuscular mycorrhizal (AM) fungi and dark septate endophytes (DSE) changes along a postglacial primary successional land uplift gradient. As neighboring vegetation may play a role in root fungal colonization, we also asked (ii) whether removal of the dominant neighbor, Empetrum nigrum ssp. hermaphroditum (Ericaceae), affects root fungal colonization of Deschampsia. We also studied whether (iii) foliar carbon (C) and nitrogen (N) concentration of Deschampsia is related to successional changes along a land uplift gradient. AM colonization decreased (-50 %), DSE colonization increased (+200 %), and foliar C declined in Deschampsia along with increasing successional age, whereas foliar N was not affected. Empetrum removal did not affect AM colonization but increased DSE sclerotial colonization especially at older successional stages. The observed decrease in foliar C coincides with an increase in canopy closure along with increasing successional age. We suggest that the shift from an AM-dominated to a DSE-dominated root fungal community in Deschampsia along a land uplift successional gradient may be related to different nutritional benefits gained through these root fungal groups.

  19. Substituting root numbers for length: Improving the use of minirhizotrons to study fine root dynamics

    Science.gov (United States)

    Tracey L. Crocker; Ron L. Hendrick; Roger W. Ruess; Kurt S. Pregitzer; Andrew J. Burton; Michael F. Allen; Jianping Shan; Lawrence A. Morris

    2003-01-01

    Minirhizotrons provide a unique way to repeatedly measure the production and fate of individual root segments, while minimizing soil disturbance and the confounding of spatial-temporal variation. However, the time associated with processing videotaped minirhizotron images limits the amount of data that can be extracted in a reasonable amount of time. We found that this...

  20. A comparison between conventional and digital radiography in root canal working length determination.

    Science.gov (United States)

    Farida, Abesi; Maryam, Ehsani; Ali, Mirzapour; Ehsan, Moudi; Sajad, Yousefi; Soraya, Khafri

    2013-01-01

    Obtaining a correct working length is necessary for successful root canal treatment. The aim of this study was to compare conventional and digital radiography in measuring root canal working length. In this in vitro study 20 mesio buccal canal from maxillary first molars with moderate and severe curvature and 20 canal form anterior teeth with mild curvature were chosen and their working length were measured with number 15 k file (Maillefer, DENTSPLY, Germany). Then for each canal five radiographies were taken, three conventional radiographies using three methods of processing: Manual, automatic, and monobath solution; in addition to two other digital radiographies using CCD and PSP receptors. Two independent observers measured working length in each technique. Finally, the mean of working length in each group was compared with real working length using a paired T-test. Also a one-way ANOVA test was used for comparing the two groups. The level of statistical significance was P radiography (P ≤ 0.001). Also there was no significant difference between conventional and digital radiography in measuring working length (P > 0.05). Therefore it was concluded that the accuracy of digital radiography is comparable with conventional radiography in measuring working length, so considering the advantages of the digital radiography, it can be used for working length determination.

  1. Selection for biocontrol bacteria antagonistic toward Rosellinia necatrix by enrichment of competitive avocado root tip colonizers.

    Science.gov (United States)

    Pliego, Clara; Cazorla, Francisco Manuel; González-Sánchez, María Angeles; Pérez-Jiménez, Rosa María; de Vicente, Antonio; Ramos, Cayo

    2007-06-01

    Biological control of soil-borne pathogens is frequently based on the application of antagonistic microorganisms selected solely for their ability to produce in vitro antifungal factors. The aim of this work was to select bacteria that efficiently colonize the roots of avocado plants and display antagonism towards Rosellinia necatrix, the causal agent of avocado white root rot. A high frequency of antagonistic strains (ten isolates, 24.4%) was obtained using a novel procedure based on the selection of competitive avocado root tip colonizers. Amplification and sequencing of the 16S rRNA gene, in combination with biochemical characterization, showed that eight and two of the selected isolates belonged to the genera Pseudomonas and Stenotrophomonas, respectively. Characterization of antifungal compounds produced by the antagonistic strains showed variable production of exoenzymes and HCN. Only one of these strains, Pseudomonas sp. AVO94, produced a compound that could be related to antifungal antibiotics. All of the ten selected strains showed twitching motility, a cell movement involved in competitive colonization of root tips. Production of N-acyl-homoserine lactones and indole-3-acetic acid was also reported for some of these isolates. Resistance to several bacterial antibiotics was tested, and three strains showing resistance to only one of them were selected for biocontrol assays. The three selected strains persisted in the rhizosphere of avocado plants at levels considered crucial for efficient biocontrol, 10(5)-10(6) colony forming units/g of root; two of them, Pseudomonas putida AVO102 and Pseudomonas pseudoalcaligenes AVO110, demonstrated significant protection of avocado plants against white root rot.

  2. Root length in the permanent teeth of women with an additional X chromosome (47,XXX females).

    Science.gov (United States)

    Lähdesmäki, Raija E; Alvesalo, Lassi J

    2010-07-01

    Previous studies have demonstrated differential effects of the X and Y chromosomes on dental development. The expression of sexual dimorphism in terms of tooth size, shape, number and developmental timing has been explained especially by Y chromosome influence. The Y chromosome promotes enamel, crown and root dentin development. The X chromosome has an effect on enamel deposition. The aim of this research is to study the influence of the extra X chromosome on the development of permanent tooth root length. The study subjects (all of whom were from the Kvantti Dental Research Project) were seven 47,XXX females, five female relatives and 51 and 52 population control men and women, respectively. Measurements were made from panoramic radiographs on available permanent teeth by a digital calliper according to established procedures. The results showed that the maxillary root lengths of the 47,XXX females were of the same magnitude as those in normal women, but the mandibular root lengths were longer in 47,XXX females than in normal men or women. Increased enamel thickness in the teeth of 47,XXX females is apparently caused by the active enamel gene in all X chromosomes having no increased influence on crown dentin formation. These results in 47,XXX females indicate an increase in root dentin development, at least in the mandible, which together with the data on crown formation reflects a continuous long-lasting effect of the X chromosome on dental development.

  3. Wheat root length and not branching is altered in the presence of neighbours, including blackgrass

    Science.gov (United States)

    Finch, Jessica A.; Guillaume, Gaëtan; French, Stephanie A.; Colaço, Renato D. D. R.; Davies, Julia M.

    2017-01-01

    The effect of neighbouring plants on crop root system architecture may directly interfere with water and nutrient acquisition, yet this important and interesting aspect of competition remains poorly understood. Here, the effect of the weed blackgrass (Alopecurus myosuroides Huds.) on wheat (Triticum aestivum L.) roots was tested, since a low density of this species (25 plants m-2) can lead to a 10% decrease in wheat yield and herbicide resistance is problematic. We used a simplified growth system based on gelled medium, to grow wheat alongside a neighbour, either another wheat plant, a blackgrass or Brachypodium dystachion individual (a model grass). A detailed analysis of wheat seminal root system architecture showed that the presence of a neighbour principally affected the root length, rather than number or diameter under a high nutrient regime. In particular, the length of first order lateral roots decreased significantly in the presence of blackgrass and Brachypodium. However, this effect was not noted when wheat plants were grown in low nutrient conditions. This suggests that wheat may be less sensitive to the presence of blackgrass when grown in low nutrient conditions. In addition, nutrient availability to the neighbour did not modulate the neighbour effect on wheat root architecture. PMID:28542446

  4. Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses.

    Science.gov (United States)

    Wilson, Gail W T; Hickman, Karen R; Williamson, Melinda M

    2012-07-01

    Soil organisms play important roles in regulating ecosystem-level processes and the association of arbuscular mycorrhizal (AM) fungi with a plant species can be a central force shaping plant species' ecology. Understanding how mycorrhizal associations are affected by plant invasions may be a critical aspect of the conservation and restoration of native ecosystems. We examined the competitive ability of old world bluestem, a non-native grass (Caucasian bluestem [Bothriochloa bladhii]), and the influence of B. bladhii competition on AM root colonization of native warm-season prairie grasses (Andropogon gerardii or Schizachyrium scoparium), using a substitutive design greenhouse competition experiment. Competition by the non-native resulted in significantly reduced biomass production and AM colonization of the native grasses. To assess plant-soil feedbacks of B. bladhii and Bothriochloa ischaemum, we conducted a second greenhouse study which examined soil alterations indirectly by assessing biomass production and AM colonization of native warm-season grasses planted into soil collected beneath Bothriochloa spp. This study was conducted using soil from four replicate prairie sites throughout Kansas and Oklahoma, USA. Our results indicate that a major mechanism in plant growth suppression following invasion by Bothriochloa spp. is the alteration in soil microbial communities. Plant growth was tightly correlated with AM root colonization demonstrating that mycorrhizae play an important role in the invasion of these systems by Bothriochloa spp. and indicating that the restoration of native AM fungal communities may be a fundamental consideration for the successful establishment of native grasses into invaded sites.

  5. A novel interaction between plant-beneficial rhizobacteria and roots: colonization induces corn resistance against the root herbivore Diabrotica speciosa.

    Directory of Open Access Journals (Sweden)

    Franciele Santos

    Full Text Available A number of soil-borne microorganisms, such as mycorrhizal fungi and rhizobacteria, establish mutualistic interactions with plants, which can indirectly affect other organisms. Knowledge of the plant-mediated effects of mutualistic microorganisms is limited to aboveground insects, whereas there is little understanding of what role beneficial soil bacteria may play in plant defense against root herbivory. Here, we establish that colonization by the beneficial rhizobacterium Azospirillum brasilense affects the host selection and performance of the insect Diabrotica speciosa. Root larvae preferentially orient toward the roots of non-inoculated plants versus inoculated roots and gain less weight when feeding on inoculated plants. As inoculation by A. brasilense induces higher emissions of (E-β-caryophyllene compared with non-inoculated plants, it is plausible that the non-preference of D. speciosa for inoculated plants is related to this sesquiterpene, which is well known to mediate belowground insect-plant interactions. To the best of our knowledge, this is the first study showing that a beneficial rhizobacterium inoculant indirectly alters belowground plant-insect interactions. The role of A. brasilense as part of an integrative pest management (IPM program for the protection of corn against the South American corn rootworm, D. speciosa, is considered.

  6. A novel interaction between plant-beneficial rhizobacteria and roots: colonization induces corn resistance against the root herbivore Diabrotica speciosa.

    Science.gov (United States)

    Santos, Franciele; Peñaflor, Maria Fernanda G V; Paré, Paul W; Sanches, Patrícia A; Kamiya, Aline C; Tonelli, Mateus; Nardi, Cristiane; Bento, José Mauricio S

    2014-01-01

    A number of soil-borne microorganisms, such as mycorrhizal fungi and rhizobacteria, establish mutualistic interactions with plants, which can indirectly affect other organisms. Knowledge of the plant-mediated effects of mutualistic microorganisms is limited to aboveground insects, whereas there is little understanding of what role beneficial soil bacteria may play in plant defense against root herbivory. Here, we establish that colonization by the beneficial rhizobacterium Azospirillum brasilense affects the host selection and performance of the insect Diabrotica speciosa. Root larvae preferentially orient toward the roots of non-inoculated plants versus inoculated roots and gain less weight when feeding on inoculated plants. As inoculation by A. brasilense induces higher emissions of (E)-β-caryophyllene compared with non-inoculated plants, it is plausible that the non-preference of D. speciosa for inoculated plants is related to this sesquiterpene, which is well known to mediate belowground insect-plant interactions. To the best of our knowledge, this is the first study showing that a beneficial rhizobacterium inoculant indirectly alters belowground plant-insect interactions. The role of A. brasilense as part of an integrative pest management (IPM) program for the protection of corn against the South American corn rootworm, D. speciosa, is considered.

  7. The accuracy of the radiographic method in root canal length measurement

    International Nuclear Information System (INIS)

    Jo, Eun Young; Park, Chang Seo

    1998-01-01

    For the successful endodontic treatment, root canal should be cleaned thoroughly by accurate mechanical and chemical canal preparation and sealed completely with canal filling material without damaging the periapical tissues. The accuracy of the root canal length measurement is a prerequisite for the success of the endodontic treatment, and the root canal length is often determined by the standard periapical radiographs and digital tactile sense. In this study, the accuracy and the clinical usefulness of Digora, an intraoral digital imaging processor and the conventional standard radiographs were compared by measuring the length from the top of the file to the root apex. 30 single rooted premolars were invested in a uniformly sized blocks and No.25 K-file was inserted into and fixed in each canal. Each block was placed in equal distance and position to satisfy the principle of the bisecting angle and paralleling techniques and Digora system's image and standard periapical radiographs were taken. Each radiograph was examined by 3 different observers by measuring the length from top of the file to the root apex and each data was compared and analyzed. The results were as follows; 1. In the bisecting angle technique, the average difference between the Digora system and standard periapical radiograph was 0.002 mm and the standard deviation was 0.341 mm which showed no statistically significant difference between the two systems (p>0.05). Also, in the paralleling technique, the average difference between these two system was 0.007 mm and the standard deviation was 0.323 mm which showed no statistically significant difference between the two systems (p>0.05). 2. In Digora system, the average difference between the bisecting angle and paralleling technique was -0.336 mm and the standard deviation was 0.472 mm which showed a statistically significant difference between the two techniques (p 0.05). In conclusion, the determination of the root canal length by using the

  8. The fate of chicory root pulp polysaccharides during fermentation in the TNO in vitro model of the colon (TIM-2)

    NARCIS (Netherlands)

    Ramasamy, U.S.; Venema, K.; Gruppen, H.; Schols, H.A.

    2014-01-01

    The aim of this study was to monitor cell wall polysaccharide (CWPs) utilization during fermentation by the human colonic microbiota in the TNO in vitro model of the colon (TIM-2). Chicory root pulp (CRP) and treated (ensiled) CRP (ECRP) containing four times more soluble pectin than CRP, were

  9. Lack of association of colonic epithelium telomere length and oxidative DNA damage in Type 2 diabetes under good metabolic control

    Directory of Open Access Journals (Sweden)

    Kennedy Hugh

    2008-10-01

    Full Text Available Abstract Background Telomeres are DNA repeat sequences necessary for DNA replication which shorten at cell division at a rate directly related to levels of oxidative stress. Critical telomere shortening predisposes to cell senescence and to epithelial malignancies. Type 2 diabetes is characterised by increased oxidative DNA damage, telomere attrition, and an increased risk of colonic malignancy. We hypothesised that the colonic mucosa in Type 2 diabetes would be characterised by increased DNA damage and telomere shortening. Methods We examined telomere length (by flow fluorescent in situ hybridization and oxidative DNA damage (flow cytometry of 8 – oxoguanosine in the colonic mucosal cells of subjects with type 2 diabetes (n = 10; mean age 62.2 years, mean HbA1c 6.9% and 22 matched control subjects. No colonic pathology was apparent in these subjects at routine gastrointestinal investigations. Results Mean colonic epithelial telomere length in the diabetes group was not significantly different from controls (10.6 [3.6] vs. 12.1 [3.4] Molecular Equivalent of Soluble Fluorochrome Units [MESF]; P = 0.5. Levels of oxidative DNA damage were similar in both T2DM and control groups (2.6 [0.6] vs. 2.5 [0.6] Mean Fluorescent Intensity [MFI]; P = 0.7. There was no significant relationship between oxidative DNA damage and telomere length in either group (both p > 0.1. Conclusion Colonic epithelium in Type 2 diabetes does not differ significantly from control colonic epithelium in oxidative DNA damage or telomere length. There is no evidence in this study for increased oxidative DNA damage or significant telomere attrition in colonic mucosa as a carcinogenic mechanism.

  10. In vitro assessment of the accuracy of extraoral periapical radiography in root length determination.

    Science.gov (United States)

    Nazeer, Muhammad Rizwan; Khan, Farhan Raza; Rahman, Munawwar

    2016-01-01

    To determine the accuracy of extra oral periapical radiography in obtaining root length by comparing it with the radiographs obtained from standard intraoral approach and extended distance intraoral approach. It was an in vitro, comparative study conducted at the dental clinics of Aga Khan University Hospital. ERC exemption was obtained for this work, ref number 3407Sur-ERC-14. We included premolars and molars of a standard phantom head mounted with metal and radiopaque teeth. Radiation was exposed using three radiographic approaches: Standard intraoral, extended length intraoral and extraoral. Since, the unit of analysis was individual root, thus, we had a total of 24 images. The images were stored in VixWin software. The length of the roots was determined using the scale function of the measuring tool inbuilt in the software. Data were analyzed using SPSS version 19.0 and GraphPad software. Pearson correlation coefficient and Bland-Altman test was applied to determine whether the tooth length readings obtained from three different approaches were correlated. P = 0.05 was taken as statistically significant. The correlation between standard intraoral and extended intraoral was 0.97; the correlation between standard intraoral and extraoral method was 0.82 while the correlation between extended intraoral and extraoral was 0.76. The results of Bland-Altman test showed that the average discrepancy between these methods is not large enough to be considered as significant. It appears that the extraoral radiographic method can be used in root length determination in subjects where intraoral radiography is not possible.

  11. In vitro assessment of the accuracy of extraoral periapical radiography in root length determination

    Science.gov (United States)

    Nazeer, Muhammad Rizwan; Khan, Farhan Raza; Rahman, Munawwar

    2016-01-01

    Objective: To determine the accuracy of extra oral periapical radiography in obtaining root length by comparing it with the radiographs obtained from standard intraoral approach and extended distance intraoral approach. Materials and Methods: It was an in vitro, comparative study conducted at the dental clinics of Aga Khan University Hospital. ERC exemption was obtained for this work, ref number 3407Sur-ERC-14. We included premolars and molars of a standard phantom head mounted with metal and radiopaque teeth. Radiation was exposed using three radiographic approaches: Standard intraoral, extended length intraoral and extraoral. Since, the unit of analysis was individual root, thus, we had a total of 24 images. The images were stored in VixWin software. The length of the roots was determined using the scale function of the measuring tool inbuilt in the software. Data were analyzed using SPSS version 19.0 and GraphPad software. Pearson correlation coefficient and Bland–Altman test was applied to determine whether the tooth length readings obtained from three different approaches were correlated. P = 0.05 was taken as statistically significant. Results: The correlation between standard intraoral and extended intraoral was 0.97; the correlation between standard intraoral and extraoral method was 0.82 while the correlation between extended intraoral and extraoral was 0.76. The results of Bland–Altman test showed that the average discrepancy between these methods is not large enough to be considered as significant. Conclusions: It appears that the extraoral radiographic method can be used in root length determination in subjects where intraoral radiography is not possible. PMID:27011737

  12. Effect of soil-spraying time on root-colonization ability of antagonistic Streptomyces griseoviridis

    Directory of Open Access Journals (Sweden)

    H. KORTEMAA

    2008-12-01

    Full Text Available The root-colonization ability of Streptomyces griseoviridis Anderson et al. was tested on turnip rape (Brassica rapa subsp. oleifera DC. and carrot (Daucus carota L. by the sand-tube method. Non-sterile sand was sprayed with a microbial suspension immediately or 7 days after the seed had been sown. Results expressed as population frequencies and densities indicated that S. griseoviridis effectively colonizes the rhizosphere when the microbe is applied immediately after sowing but less effectively when it is applied 7 days later. Detection values of S. griseoviridis were higher for turnip rape than for carrot. In sterile sand, S. griseoviridis invaribly colonized the rhizosphere of turnip rape after each of the two applications. These findings indicate that S. griseoviridis can compete with indigenous soil microbes in the rhizosphere if it is sufficiently abundant in the soil before the seed emerges. If applied later, however, it competes rather poorly. In root-free nonsterile sand, S. griseoviridis dispersed and survived well.;

  13. Resorption of lateral incisors during canine eruption: two clinical cases with focus on root length and heredity

    DEFF Research Database (Denmark)

    Zargham, Mostafa; Kjær, Inger

    2016-01-01

    Introduction: It is well-known that pressure from orthodontic appliance can provoke root resorption in dentitions with short roots. The purpose of this case report is to demonstrate two clinical cases with focus on root length in dentitions exposed due to pressure from erupting teeth...

  14. The accuracy of the radiographic method in root canal length measurement

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Eun Young; Park, Chang Seo [Dept. of Dental Radiology, College of Dentistry, Yonsei University, Seoul (Korea, Republic of)

    1998-08-15

    For the successful endodontic treatment, root canal should be cleaned thoroughly by accurate mechanical and chemical canal preparation and sealed completely with canal filling material without damaging the periapical tissues. The accuracy of the root canal length measurement is a prerequisite for the success of the endodontic treatment, and the root canal length is often determined by the standard periapical radiographs and digital tactile sense. In this study, the accuracy and the clinical usefulness of Digora, an intraoral digital imaging processor and the conventional standard radiographs were compared by measuring the length from the top of the file to the root apex. 30 single rooted premolars were invested in a uniformly sized blocks and No.25 K-file was inserted into and fixed in each canal. Each block was placed in equal distance and position to satisfy the principle of the bisecting angle and paralleling techniques and Digora system's image and standard periapical radiographs were taken. Each radiograph was examined by 3 different observers by measuring the length from top of the file to the root apex and each data was compared and analyzed. The results were as follows; 1. In the bisecting angle technique, the average difference between the Digora system and standard periapical radiograph was 0.002 mm and the standard deviation was 0.341 mm which showed no statistically significant difference between the two systems (p>0.05). Also, in the paralleling technique, the average difference between these two system was 0.007 mm and the standard deviation was 0.323 mm which showed no statistically significant difference between the two systems (p>0.05). 2. In Digora system, the average difference between the bisecting angle and paralleling technique was -0.336 mm and the standard deviation was 0.472 mm which showed a statistically significant difference between the two techniques (p<0.05). Also, 3. In Digora system and the standard periapical radiographs

  15. Polyethylene Glycol (PEG-Treated Hydroponic Culture Reduces Length and Diameter of Root Hairs of Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2015-10-01

    Full Text Available Wheat is an important cereal crop worldwide that often suffers from moisture deficits at the reproductive stage. Polyethylene glycol (PEG-treated hydroponic conditions create negative osmotic potential which is compared with moisture deficit stress. An experiment was conducted in a growth chamber to study the effects of PEG on root hair morphology and associated traits of wheat varieties. Plants of 13 wheat varieties were grown hydroponically and three different doses of PEG 6000 (w/v: 0% (control, 0.3% and 0.6% (less than −1 bar were imposed on 60 days after sowing for 20 days’ duration. A low PEG concentration was imposed to observe how initial low moisture stress might affect root hair development. PEG-treated hydroponic culture significantly decreased root hair diameter and length. Estimated surface area reduction of root hairs at the main axes of wheat plants was around nine times at the 0.6% PEG level compared to the control plants. Decrease in root hair diameter and length under PEG-induced culture decreased “potential” root surface area per unit length of main root axis. A negative association between panicle traits, length and dry weight and the main axis length of young roots indicated competition for carbon during their development. Data provides insight into how a low PEG level might alter root hair development.

  16. Growth promotion-related miRNAs in Oncidium orchid roots colonized by the endophytic fungus Piriformospora indica.

    Directory of Open Access Journals (Sweden)

    Wei Ye

    Full Text Available Piriformospora indica, an endophytic fungus of Sebacinales, colonizes the roots of a wide range of host plants and establishes various benefits for the plants. In this work, we describe miRNAs which are upregulated in Oncidium orchid roots after colonization by the fungus. Growth promotion and vigorous root development were observed in Oncidium hybrid orchid, while seedlings were colonized by P. indica. We performed a genome-wide expression profiling of small RNAs in Oncidium orchid roots either colonized or not-colonized by P. indica. After sequencing, 24,570,250 and 24744,141 clean reads were obtained from two libraries. 13,736 from 17,036,953 unique sequences showed homology to either 86 miRNA families described in 41 plant species, or to 46 potential novel miRNAs, or to 51 corresponding miRNA precursors. The predicted target genes of these miRNAs are mainly involved in auxin signal perception and transduction, transcription, development and plant defense. The expression analysis of miRNAs and target genes demonstrated the regulatory functions they may participate in. This study revealed that growth stimulation of the Oncidium orchid after colonization by P. indica includes an intricate network of miRNAs and their targets. The symbiotic function of P. indica on Oncidium orchid resembles previous findings on Chinese cabbage. This is the first study on growth regulation and development of Oncidium orchid by miRNAs induced by the symbiotic fungus P. indica.

  17. Interspecific metabolic diversity of root-colonizing endophytic fungi revealed by enzyme activity tests.

    Science.gov (United States)

    Knapp, Dániel G; Kovács, Gábor M

    2016-12-01

    Although dark septate endophytes (DSE) represent a worldwide dispersed form group of root-colonizing endophytic fungi, our knowledge on their role in ecosystem functioning is far limited. In this study, we aimed to test if functional diversity exists among DSE fungi representing different lineages of root endophytic fungal community of semiarid sandy grasslands. To address this question and to gain general information on function of DSE fungi, we adopted api-ZYM and BioLog FF assays to study those non-sporulating filamentous fungi and characterized the metabolic activity of 15 different DSE species. Although there were striking differences among the species, all of the substrates tested were utilized by the DSE fungi. When endophytes characteristic to grasses and non-grass host plants were separately considered, we found that the whole substrate repertoire was used by both groups. This might illustrate the complementary functional diversity of the communities root endophytic plant-associated fungi. The broad spectra of substrates utilized by these root endophytes illustrate the functional importance of their diversity, which can play role not only in nutrient mobilization and uptake of plants from with nutrient poor soils, but also in general plant performance and ecosystem functioning. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Contrasting impacts of defoliation on root colonization by arbuscular mycorrhizal and dark septate endophytic fungi of Medicago sativa.

    Science.gov (United States)

    Saravesi, K; Ruotsalainen, A L; Cahill, J F

    2014-05-01

    Individual plants typically interact with multiple mutualists and enemies simultaneously. Plant roots encounter both arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi, while the leaves are exposed to herbivores. AMF are usually beneficial symbionts, while the functional role of DSE is largely unknown. Leaf herbivory may have a negative effect on root symbiotic fungi due to decreased carbon availability. However, evidence for this is ambiguous and no inoculation-based experiment on joint effects of herbivory on AM and DSE has been done to date. We investigated how artificial defoliation impacts root colonization by AM (Glomus intraradices) and DSE (Phialocephala fortinii) fungi and growth of Medicago sativa host in a factorial laboratory experiment. Defoliation affected fungi differentially, causing a decrease in arbuscular colonization and a slight increase in DSE-type colonization. However, the presence of one fungal species had no effect on colonization by the other or on plant growth. Defoliation reduced plant biomass, with this effect independent of the fungal treatments. Inoculation by either fungal species reduced root/shoot ratios, with this effect independent of the defoliation treatments. These results suggest AM colonization is limited by host carbon availability, while DSE may benefit from root dieback or exudation associated with defoliation. Reductions in root allocation associated with fungal inoculation combined with a lack of effect of fungi on plant biomass suggest DSE and AMF may be functional equivalent to the plant within this study. Combined, our results indicate different controls of colonization, but no apparent functional consequences between AM and DSE association in plant roots in this experimental setup.

  19. A method to quantify infection and colonization of holm oak (Quercus ilex) roots by Phytophthora cinnamomi.

    Science.gov (United States)

    Ruiz-Gómez, Francisco J; Sánchez-Cuesta, Rafael; Navarro-Cerrillo, Rafael M; Pérez-de-Luque, Alejandro

    2012-09-13

    Phytophthora cinnamomi Rands. is an important root rot pathogen widely distributed in the north hemisphere, with a large host range. Among others diseases, it is known to be a principal factor in the decline of holm oak and cork oak, the most important tree species in the "dehesa" ecosystem of south-western Spain. Previously, the focus of studies on P. cinnamomi and holm oak have been on molecular tools for identification, functional responses of the host, together with other physiological and morphological host variables. However, a microscopic index to describe the degree of infection and colonization in the plant tissues has not yet been developed. A colonization or infection index would be a useful tool for studies that examine differences between individuals subjected to different treatments or to individuals belonging to different breeding accessions, together with their specific responses to the pathogen. This work presents a methodology based on the capture and digital treatment of microscopic images, using simple and accessible software, together with a range of variables that quantify the infection and colonization process.

  20. A method to quantify infection and colonization of holm oak (Quercus ilex roots by Phytophthora cinnamomi

    Directory of Open Access Journals (Sweden)

    Ruiz-Gómez Francisco J

    2012-09-01

    Full Text Available Abstract Phytophthora cinnamomi Rands. is an important root rot pathogen widely distributed in the north hemisphere, with a large host range. Among others diseases, it is known to be a principal factor in the decline of holm oak and cork oak, the most important tree species in the “dehesa” ecosystem of south-western Spain. Previously, the focus of studies on P. cinnamomi and holm oak have been on molecular tools for identification, functional responses of the host, together with other physiological and morphological host variables. However, a microscopic index to describe the degree of infection and colonization in the plant tissues has not yet been developed. A colonization or infection index would be a useful tool for studies that examine differences between individuals subjected to different treatments or to individuals belonging to different breeding accessions, together with their specific responses to the pathogen. This work presents a methodology based on the capture and digital treatment of microscopic images, using simple and accessible software, together with a range of variables that quantify the infection and colonization process.

  1. Transcriptional regulation of defence genes and involvement of the WRKY transcription factor in arbuscular mycorrhizal potato root colonization.

    Science.gov (United States)

    Gallou, Adrien; Declerck, Stéphane; Cranenbrouck, Sylvie

    2012-03-01

    The establishment of arbuscular mycorrhizal associations causes major changes in plant roots and affects significantly the host in term of plant nutrition and resistance against biotic and abiotic stresses. As a consequence, major changes in root transcriptome, especially in plant genes related to biotic stresses, are expected. Potato microarray analysis, followed by real-time quantitative PCR, was performed to detect the wide transcriptome changes induced during the pre-, early and late stages of potato root colonization by Glomus sp. MUCL 41833. The microarray analysis revealed 526 up-regulated and 132 down-regulated genes during the pre-stage, 272 up-regulated and 109 down-regulated genes during the early stage and 734 up-regulated and 122 down-regulated genes during the late stage of root colonization. The most important class of regulated genes was associated to plant stress and in particular to the WRKY transcription factors genes during the pre-stage of root colonization. The expression profiling clearly demonstrated a wide transcriptional change during the pre-, early and late stages of root colonization. It further suggested that the WRKY transcription factor genes are involved in the mechanisms controlling the arbuscular mycorrhizal establishment by the regulation of plant defence genes.

  2. Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi?

    Directory of Open Access Journals (Sweden)

    Joana Beatrice Meyer

    Full Text Available This study aimed to evaluate the impact of genetically modified (GM wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF. Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denaturing gradient gel electrophoresis (DGGE method to characterize the diversity of the pqqC gene, which is involved in Pseudomonas phosphate solubilization. A major result was that in the first field season Pseudomonas abundances and diversity on roots of GM pm3b lines, but also on non-GM sister lines were different from those of the parental lines and conventional wheat cultivars. This indicates a strong effect of the procedures by which these plants were created, as GM and sister lines were generated via tissue cultures and propagated in the greenhouse. Moreover, Pseudomonas population sizes and DGGE profiles varied considerably between individual GM lines with different genomic locations of the pm3b transgene. At individual time points, differences in Pseudomonas and AMF accumulation between GM and control lines were detected, but they were not consistent and much less pronounced than differences detected between young and old plants, different conventional wheat cultivars or at different locations and field seasons. Thus, we conclude that impacts of GM wheat on plant-beneficial root-colonizing microorganisms are minor and not of ecological importance. The cultivation-independent pqqC-DGGE approach proved to be a useful tool for monitoring the dynamics of Pseudomonas populations in a wheat field and even sensitive enough for detecting population responses to altered plant physiology.

  3. Investigation of fungal root colonizers of the invasive plant Vincetoxicum rossicum and co-occurring local native plants in a field and woodland area in Southern Ontario

    Directory of Open Access Journals (Sweden)

    Cindy Bongard

    2013-06-01

    Full Text Available Fungal communities forming associations with plant roots have generally been described as ranging from symbiotic to parasitic. Disruptions to these associations consequently can have significant impacts on native plant communities. We examined how invasion by Vincetoxicum rossicum, a plant native to Europe, can alter both the arbuscular mycorrhizal fungi, as well as the general fungal communities associating with native plant roots in both field and woodland sites in Southern Ontario. In two different sites in the Greater Toronto Area, we took advantage of invasion by V. rossicum and neighbouring uninvaded sites to investigate the fungal communities associating with local plant roots, including goldenrod (Solidago spp., wild red raspberry (Rubus idaeus, Canada anemone (Anemone canadensis, meadow rue (Thalictrum dioicum, and wild ginger (Asarum canadense. Fungi colonizing roots were characterized with terminal restriction fragment length polymorphism (T-RFLP analysis of amplified total fungal (TF and arbuscular mycorrhizal fungal (AMF ribosomal fragments. We saw a significant effect of the presence of this invader on the diversity of TF phylotypes colonizing native plant roots, and a composition shift of both the TF and AMF community in native roots in both sites. In native communities invaded by V. rossicum, a significant increase in richness and colonization density of TF suggests that invaders such as V. rossicum may be able to influence the composition of soil fungi available to natives, possibly via mechanisms such as increased carbon provision or antibiosis attributable to unique root exudates.

  4. Effect of four dental varnishes on the colonization of cariogenic bacteria on exposed sound root surfaces.

    Science.gov (United States)

    Ekenbäck, S B; Linder, L E; Lönnies, H

    2000-01-01

    The aim of this study was to evaluate the effect of four different dental varnishes on the colonization of mutans streptococci, total streptococci and lactobacilli on exposed sound root surfaces. Sixty-five individuals were randomly allotted to one of four groups for treatment with Cervitec((R) ) varnish containing 1% chlorhexidine and 1% thymol, a thymol varnish or one of two different fluoride varnishes, Fluor Protector and Duraphat. The varnish was applied to three buccal root surfaces in each patient at baseline and after 1 week. Dental plaque from the root surfaces was collected and analysed on four different occasions: at baseline, after 1 week, 1 month and 6 months. The Cervitec varnish caused a statistically significant reduction in the number of mutans streptococci over time. The reduction was significant at 1 week and 1 month relative to baseline. The numbers of total streptococci and lactobacilli were not significantly affected by treatment with Cervitec. No statistically significant difference over time was found for mutans streptococci, lactobacilli or total streptococci after treatment with the fluoride varnishes or the thymol varnish.

  5. Colonization of roots of cultivated Solanum lycopersicum by dark septate and other ascomycetous endophytes.

    Science.gov (United States)

    Andrade-Linares, Diana Rocio; Grosch, Rita; Franken, Philipp; Rexer, Karl-Heinz; Kost, Gerhard; Restrepo, Silvia; de Garcia, Maria Caridad Cepero; Maximova, Eugenia

    2011-01-01

    Tomato (Solanum lycopersicum L.) roots from four different crop sites in Colombia were surface sterilized and 51 fungal isolates were obtained and conserved for further analysis. Based on microscopical observations and growth characteristics, 20 fungal isolates corresponded to genus Fusarium, six presented asexual conidia different from Fusarium, eight were sterile mycelia, seven of which had dark septate hyphae and 17 did not continue to grow on plates after being recovered from conservation. Growth on different media, detailed morphological characterization and ITS region sequencing of the six sporulating and eight sterile isolates revealed that they belonged to different orders of Ascomycota and that the sterile dark septate endophytes did not correspond to the well known Phialocephala group. Interactions of nine isolates with tomato plantlets were assessed in vitro. No effect on shoot development was revealed, but three isolates caused brown spots in roots. Colonization patterns as analyzed by confocal microscopy differed among the isolates and ranged from epidermal to cortical penetration. Altogether 11 new isolates from root endophytic fungi were obtained, seven of which showed features of dark septate endophytes. Four known morphotypes were represented by five isolates, while six isolates belonged to five morphotypes of putative new unknown species.

  6. Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus

    DEFF Research Database (Denmark)

    Sebastiana, Mónica; Martins, Joana; Figueiredo, Andreia

    2017-01-01

    An increased knowledge on the real impacts of ectomycorrhizal symbiosis in forest species is needed to optimize forest sustainable productivity and thus to improve forest services and their capacity to act as carbon sinks. In this study, we investigated the response of an oak species to ectomycor......An increased knowledge on the real impacts of ectomycorrhizal symbiosis in forest species is needed to optimize forest sustainable productivity and thus to improve forest services and their capacity to act as carbon sinks. In this study, we investigated the response of an oak species...... to ectomycorrhizae formation using a proteomics approach complemented by biochemical analysis of carbohydrate levels. Comparative proteome analysis between mycorrhizal and nonmycorrhizal cork oak plants revealed no differences at the foliar level. However, the protein profile of 34 unique oak proteins was altered...... accommodation in colonized roots are also suggested by the results. The suggested improvement in root capacity to take up nutrients accompanied by an increase of root biomass without apparent changes in aboveground biomass strongly re-enforces the potential of mycorrhizal inoculation to improve cork oak forest...

  7. Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization.

    Science.gov (United States)

    Lugtenberg, B J; Kravchenko, L V; Simons, M

    1999-10-01

    The role of tomato seed and root exudate sugars as nutrients for Pseudomonas biocontrol bacteria was studied. To this end, the major exudate sugars of tomato seeds, seedlings and roots were identified and quantified using high-performance liquid chromatographic (HPLC) analysis. Glucose, fructose and maltose were present in all studied growth stages of the plant, but the ratios of these sugars were strongly dependent on the developmental stage. In order to study the putative role of exudate sugar utilization in rhizosphere colonization, two approaches were adopted. First, after co-inoculation on germinated tomato seeds, the root-colonizing ability of the efficient root-colonizing P. fluorescens strain WCS365 in a gnotobiotic quartz sand-plant nutrient solution system was compared with that of other Pseudomonas biocontrol strains. No correlation was observed between the colonizing ability of a strain and its ability to use the major exudate sugars as the only carbon and energy source. Secondly, a Tn5lacZ mutant of P. fluorescens strain WCS365, strain PCL1083, was isolated, which is impaired in its ability to grow on simple sugars, including those found in exudate. The mutation appeared to reside in zwf, which encodes glucose-6-phosphate dehydrogenase. The mutant grows as well as the parental strain on other media, including tomato root exudate. After inoculation of germinated sterile tomato seeds, the mutant cells reached the same population levels at the root tip as the wild-type strain, both alone and in competition, indicating that the ability to use exudate sugars does not play a major role in tomato root colonization, despite the fact that sugars have often been reported to represent the major exudate carbon source. This conclusion is supported by the observation that the growth of mutant PCL1083 in vitro is inhibited by glucose, a major exudate sugar, at a concentration of 0.001%, which indicates that the glucose concentration in the tomato rhizosphere is very

  8. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance.

    Science.gov (United States)

    Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, Álvaro; Tohge, Takayuki; Takayuki, Tohge; Fernie, Alisdair R; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar

    2013-03-01

    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity.

  9. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance.

    Directory of Open Access Journals (Sweden)

    Yariv Brotman

    2013-03-01

    Full Text Available Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L. plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated

  10. Growth, root colonization and nutrient status of Helianthemum sessiliflorum Desf. inoculated with a desert truffle Terfezia boudieri Chatin.

    Science.gov (United States)

    Slama, Awatef; Gorai, Mustapha; Fortas, Zohra; Boudabous, Abdellatif; Neffati, Mohamed

    2012-01-01

    This study aims to investigate the effects of inoculation using Terfezia boudieri Chatin ascospores (ectomycorrhizal fungus) on growth, root colonization and nutrient status of Helianthemum sessiliflorum Desf. seedlings grown in pots on two-soil types (gypseous and sandy loam). Mycorrhizal seedlings had significantly increased their height and leaf number compared to non-mycorrhizal ones. Regardless of mycorrhizal inoculation treatments, the plants growing on gypseous soil showed higher growth as compared to sandy loam one. It appears that inoculation with T. boudieri changed root morphology, increasing branching of first-order lateral roots of H. sessiliflorum seedlings. The highest root mycorrhizal colonization was recorded in inoculated seedlings on sandy loam soil (89%) when compared to gypseous one (52%). N, P and K concentrations in mycorrhizal seedlings were significantly improved by fungal inoculation. It can be concluded that inoculation of H. sessiliflorum with T. boudieri increased growth attributes and improved plant nutritional status.

  11. A New Suite of Plasmid Vectors for Fluorescence-Based Imaging of Root Colonizing Pseudomonads

    Directory of Open Access Journals (Sweden)

    Rosemarie Wilton

    2018-02-01

    Full Text Available In the terrestrial ecosystem, plant–microbe symbiotic associations are ecologically and economically important processes. To better understand these associations at structural and functional levels, different molecular and biochemical tools are applied. In this study, we have constructed a suite of vectors that incorporates several new elements into the rhizosphere stable, broad-host vector pME6031. The new vectors are useful for studies requiring multi-color tagging and visualization of plant-associated, Gram-negative bacterial strains such as Pseudomonas plant growth promotion and biocontrol strains. A number of genetic elements, including constitutive promoters and signal peptides that target secretion to the periplasm, have been evaluated. Several next generation fluorescent proteins, namely mTurquoise2, mNeonGreen, mRuby2, DsRed-Express2 and E2-Crimson have been incorporated into the vectors for whole cell labeling or protein tagging. Secretion of mTurquoise2 and mNeonGreen into the periplasm of Pseudomonas fluorescens SBW25 has also been demonstrated, providing a vehicle for tagging proteins in the periplasmic compartment. A higher copy number version of select plasmids has been produced by introduction of a previously described repA mutation, affording an increase in protein expression levels. The utility of these plasmids for fluorescence-based imaging is demonstrated by root colonization of Solanum lycopersicum seedlings by P. fluorescens SBW25 in a hydroponic growth system. The plasmids are stably maintained during root colonization in the absence of selective pressure for more than 2 weeks.

  12. Radiological examination in diagnosis of dolicho-sigmoid taking into consideration the colon and sigmoid length ratio in pediatric patients

    International Nuclear Information System (INIS)

    Bober, S.T.

    1993-01-01

    The aim of the study was usefulness evaluation of radiological examination in the diagnosis of dolicho sigmoid, especially establishing diagnosis criteria of pictures on contrast enema films which may be pathognomonic for dolicho sigmoid in children. An attempt has been made to establish objectively the length of sigmoid and colon to calculated the radio of their sizes in children with dolicho sigmoid syndrome and in control group. Contrast enemas were performed in 176 children. Among the examined children, in 26 cases dolicho sigmoid syndrome was found, including two cases of dolicho colon. Children with dolicho sigmoid syndrome showed various anomalies in elongated sigmoid location at its different levels. Generally, it was situated at the level of between L 1 and L 5 . The sigmoid formed often two or more abnormal loops with various bending and twisting or irregular protrusions. The coefficient or our invention concerned the ratio of colon length to the length of elongated sigmoid and on the basis of calculations made on children suffering from dolicho sigmoid syndrome the numerical values ranged from 0.7 to 1.5. The same calculations performed on the control for the proposed coefficient ranged from 2.2 to 4.2. (author). 65 refs, 15 figs, 11 tabs

  13. The validity of cone-beam computed tomography in measuring root canal length using a gold standard

    NARCIS (Netherlands)

    Liang, Y.H.; Jiang, L.; Chen, C.; Gao, X.J.; Wesselink, P.R.; Wu, M.K.; Shemesh, H.

    2013-01-01

    Introduction The distance between a coronal reference point and the major apical foramen is important for working length determination. The aim of this in vitro study was to determine the accuracy of root canal length measurements performed with cone-beam computed tomographic (CBCT) scans using a

  14. Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection

    NARCIS (Netherlands)

    Hase, S.; Pelt, J.A. van; Loon, L.C. van; Pieterse, C.M.J.

    2003-01-01

    Plants develop an enhanced defensive capacity against a broad spectrum of plant pathogens after colonization of the roots by selected strains of non-pathogenic, fluorescent Pseudomonas spp. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of

  15. Root colonization and growth promotion of sunflower (Helianthus annuus L.) by phosphate solubilizing Enterobacter sp. Fs-11

    NARCIS (Netherlands)

    Shahid, Muhammad; Hameed, Sohail; Imran, Asma; Ali, Saira; van Elsas, Jan Dirk

    An Enterobacter sp. Fs-11 was isolated from sunflower rhizosphere, identified on the basis of 16S rRNA gene sequence analysis (GeneBank accession no. GQ179978) and studied for its root colonization and growth promotion ability in sunflower. Morphologically, it was rod shaped Gram-negative, motile

  16. Proposal of a New Estimation Method of Colonization Rate of Arbuscular Mycorrhizal Fungi in the Roots ofChengiopanax sciadophylloides.

    Science.gov (United States)

    Deguchi, Seitaro; Matsuda, Yosuke; Takenaka, Chisato; Sugiura, Yuki; Ozawa, Hajime; Ogata, Yoshimune

    2017-03-01

    This study proposed a rapid method to quantify the colonization rate of arbuscular mycorrhizal fungi (AMF) in plant roots. The method involved the use of an image analysis software (WinRHIZO Pro). The colonization rate is defined as the ratio of the fungal body to the plant root area in a micrograph. Three seedlings of Chengiopanax sciadophylloides , a woody species that accumulates radiocesium, were collected from a secondary forest in the Yamakiya district of Kawamata, Fukushima Prefecture during May-September 2014. The colonization of AMF structures was examined under a light microscope, and the percentage of colonization was determined using the WinRHIZO method. The superiority of the new method was verified by comparing with a modified grid-line intersect method. The colonization of AMF was confirmed in all the seedlings, and a significant coefficient of determination ( R 2 = 0.94) was found with both the methods. The results suggested that the WinRHIZO method is reliable for estimating the colonization of AMF in C. sciadophylloides .

  17. Induction of root colonization by Piriformospora indica leads to enhanced asiaticoside production in Centella asiatica.

    Science.gov (United States)

    Satheesan, Jisha; Narayanan, Anith K; Sakunthala, Manjula

    2012-04-01

    Centella asiatica (Indian pennywort) has wide application in Indian and Chinese traditional medicines with documented evidence for wound healing and neuroprotective and anti-aging potential. Asiaticoside, a trisaccharide triterpene, is the most medicinally active compound in the plant. β-Amyrin synthase and squalene synthase have been identified as the two key genes in the triterpenoid pathway which regulate the production of asiaticoside in C. asiatica. The paper reports salient findings of our study utilizing the growth-promoting endophytic fungus Piriformospora indica to successfully colonize roots of C. asiatica in vitro cultures for investigating the effect of the mutualistic association on asiaticoside production. Co-cultivation of P. indica resulted in the rapid enhancement of root and shoot biomass of host plant, which was visible after 7 days of culture and continued up to 45 days. P. indica co-cultivation also favored the synthesis of asiaticosides, as evidenced by HPLC analysis which indicated about twofold increase (0.53% (w/w) in leaves and 0.23% (w/w) in whole plant) over control (0.33% (w/w) in leaves and 0.14% (w/w) in whole plant). Real-time PCR results confirmed the strong upregulation of squalene synthase and β-amyrin synthase transcripts in P. indica-challenged plants compared with the control. Our data demonstrate the potential use of P. indica as a means to enhance plant secondary metabolite production in planta with scope for further field evaluation. © Springer-Verlag 2011

  18. Comparison of the accuracy of conventional and digital radiography in root canal working length determination: An invitro study

    OpenAIRE

    Yaghooti Khorasani, Mohammad Mahdi; Ebrahimnejad, Hamed

    2017-01-01

    Background. Digital radiography has widespread use in endodontics. Determining a correct working length is vital for a proper endodontic therapy. The aim of this study was to compare the accuracy of conventional and digital radiographic techniques for root canal working length determination. Methods. After determining the real working lengths of 50 permanent maxillary central incisors (gold standard), the conventional (E- and F-speed films) and digital (CCD, PSP) images were obtained using th...

  19. Niche differentiation of two sympatric species of Microdochium colonizing the roots of common reed

    Directory of Open Access Journals (Sweden)

    Wirsel Stefan GR

    2011-10-01

    Full Text Available Abstract Background Fungal endophyte communities are often comprised of many species colonizing the same host. However, little is known about the causes of this diversity. On the one hand, the apparent coexistence of closely related species may be explained by the traditional niche differentiation hypothesis, which suggests that abiotic and/or biotic factors mediate partitioning. For endophytes, such factors are difficult to identify, and are therefore in most cases unknown. On the other hand, there is the neutral hypothesis, which suggests that stochastic factors may explain high species diversity. There is a need to investigate to what extent each of these hypotheses may apply to endophytes. Results The niche partitioning of two closely related fungal endophytes, Microdochium bolleyi and M. phragmitis, colonizing Phragmites australis, was investigated. The occurrences of each species were assessed using specific nested-PCR assays for 251 field samples of common reed from Lake Constance, Germany. These analyses revealed niche preferences for both fungi. From three niche factors assessed, i.e. host habitat, host organ and season, host habitat significantly differentiated the two species. M. bolleyi preferred dry habitats, whereas M. phragmitis prevailed in flooded habitats. In contrast, both species exhibited a significant preference for the same host organ, i.e. roots. Likewise the third factor, season, did not significantly distinguish the two species. Differences in carbon utilization and growth temperature could not conclusively explain the niches. The inclusion of three unrelated species of Ascomycota, which also colonize P. australis at the same locations, indicated spatio-temporal niche partitioning between all fungi. None of the species exhibited the same preferences for all three factors, i.e. host habitat, host organ, and time of the season. Conclusions The fungal species colonizing common reed investigated in this study seem to

  20. Initial root length in wheat is highly correlated with acid soil tolerance in the field

    Directory of Open Access Journals (Sweden)

    Jorge Fernando Pereira

    Full Text Available ABSTRACT: In acid soils, toxic aluminum ions inhibit plant root growth. In order to discriminate aluminum (Al tolerance, trustful screening techniques are required. In this study, 20 wheat cultivars, showing different levels of Al tolerance, were evaluated in a short-term soil experiment to access their relative root length (RRL. Moreover, the alleles of two important genes (TaALMT1 and TaMATE1B for Al tolerance in wheat were discriminated. Both of these genes encode membrane transporters responsible for the efflux of organic acids by the root apices that are thought to confer tolerance by chelating Al. Genotypes showing TaALMT1 alleles V and VI and an insertion at the TaMATE1B promoter were among the ones showing greater RRL. Mechanisms of Al tolerance, which are not associated with organic acid efflux, can be potentially present in two cultivars showing greater RRL among the ones carrying inferior TaALMT1 and TaMATE1B alleles. The RRL data were highly correlated with wheat performance in acid soil at three developmental stages, tillering (r = −0.93, p < 0.001, silking (r = −0.91, p < 0.001 and maturation (r = −0.90, p < 0.001, as well as with the classification index of aluminum toxicity in the field (r = −0.92, p < 0.001. Since the RRL was obtained after only six days of growth and it is highly correlated with plant performance in acid soil under field conditions, the short-term experiment detailed here is an efficient and rapid method for reliable screening of wheat Al tolerance.

  1. Root length and alveolar bone level of impacted canines and adjacent teeth after orthodontic traction: a long-term evaluation

    Science.gov (United States)

    da SILVA, Aldir Cordeiro; CAPISTRANO, Anderson; de ALMEIDA-PEDRIN, Renata Rodrigues; CARDOSO, Maurício de Almeida; CONTI, Ana Cláudia de Castro Ferreira; CAPELOZZA, Leopoldino

    2017-01-01

    Abstract Objective The aim of this retrospective study was to evaluate the long-term effects of orthodontic traction on root length and alveolar bone level in impacted canines and adjacent teeth. Material and Methods Sample consisted of 16 patients (nine males and seven females), mean initial age 11 years and 8 months presenting with unilaterally maxillary impacted canines, palatally displaced, treated with the same surgical and orthodontic approach. Teeth from the impacted-canine side were assigned as Group I (GI), and contralateral teeth as control, Group II (GII). The mean age of patients at the end of orthodontic treatment was 14 years and 2 months and the mean post-treatment time was 5 years and 11 months. Both contralateral erupted maxillary canines and adjacent teeth served as control. Root length and alveolar bone level (buccal and palatal) were evaluated on cone-beam computed tomography (CBCT) images. The comparison of root length and alveolar bone level changes between groups were assessed by applying paired t-test, at a significance level of 5% (p<0.05). Results There were no statistically significant differences in root length and buccal and palatal bone levels of canines and adjacent teeth among groups. Conclusions Impacted canine treatment by closed-eruption technique associated with canine crown perforation, has a minimal effect on root length and buccal and palatal alveolar bone level in both canine and adjacent teeth, demonstrating that this treatment protocol has a good long-term prognosis. PMID:28198979

  2. Comparison of the accuracy of conventional and digital radiography in root canal working length determination: An invitro study.

    Science.gov (United States)

    Yaghooti Khorasani, Mohammad Mahdi; Ebrahimnejad, Hamed

    2017-01-01

    Background. Digital radiography has widespread use in endodontics. Determining a correct working length is vital for a proper endodontic therapy. The aim of this study was to compare the accuracy of conventional and digital radiographic techniques for root canal working length determination. Methods. After determining the real working lengths of 50 permanent maxillary central incisors (gold standard), the conventional (E- and F-speed films) and digital (CCD, PSP) images were obtained using the parallel technique. The mean registered working length of each modality was compared with the other and with the gold standard using one-way ANOVA at Ptechniques (P=0.828). Conclusion. Within the limitations of this study, it was concluded that there was no difference between the measurement accuracy of CCD, PSP and conventional imaging techniques in root canal working length determination.

  3. Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil.

    Science.gov (United States)

    Zangaro, Waldemar; Rostirola, Leila Vergal; de Souza, Priscila Bochi; de Almeida Alves, Ricardo; Lescano, Luiz Eduardo Azevedo Marques; Rondina, Artur Berbel Lírio; Nogueira, Marco Antonio; Carrenho, Rosilaine

    2013-04-01

    The influence of plant functional groups and moderate seasonality on arbuscular mycorrhizal (AM) fungal status (root colonization and spore density) was investigated during 13 consecutive months in a chronosequence of succession in southern Brazil, consisting of grassland field, scrub vegetation, secondary forest and mature forest, in a region of transition from tropical to subtropical zones. AM root colonization and spore density decreased with advancing succession and were highest in early successional sites with grassland and scrub vegetation, intermediary in the secondary forest and lowest in the mature forest. They were little influenced by soil properties, but were sufficiently influenced by the fine root nutrient status and fine root traits among different functional plant groups. AM root colonization and spore density were higher during the favourable plant growth season (spring and summer) than during the less favourable plant growth season (autumn and winter). Spore density displayed significant seasonal variation at all sites, whilst root colonization displayed significant seasonal variation in grassland, scrub and secondary forest, but not in mature forest. The data suggest that (1) different plant functional groups display different relationships with AM fungi, influencing their abundance differentially; (2) plant species from early successional phases are more susceptible to AM root colonization and maintain higher AM sporulation than late successional species; (3) fine root traits and nutrient status influence these AM fungal attributes; and (4) higher AM spore production and root colonization is associated with the season of higher light incidence and temperature, abundant water in soil and higher plant metabolic activity.

  4. Effect of antifungal genes expressed in transgenic pea (Pisum sativum L.) on root colonization with Glomus intraradices.

    Science.gov (United States)

    Hassan, Fathi; Noorian, Mojgan Sharifi; Jacobsen, Hans-Jörg

    2012-01-01

    Pathogenic fungi have always been a major problem in agriculture. One of the effective methods for controlling pathogen fungi to date is the introduction of resistance genes into the genome of crops. It is interesting to find out whether the induced resistance in crops will have a negative effect on non-target organisms such as root colonization with the AM fungi.   The objective of the present research was to study the influence of producing antifungal molecules by four transgenic pea (Pisum sativum L.) lines expressing PGIP gene from raspberry, VST-stilbene synthase from vine, a hybrid of PGIP/VST and bacterial Chitinase gene (Chit30) from Streptomyces olivaceoviridis respectively on the colonization potential of Glomus intraradices. Four different experiments were done in greenhouse and climate chamber, colonization was observed in all replications. The following parameters were used for evaluation: frequency of mycorrhization, the intensity of mycorrhization, the average presence of arbuscules within the colonized areas and the presence of arbuscules in the whole root system which showed insignificant difference between transgenic and non-transgenic plants. The root/shoot ratio exhibited different values according to the experiment condition. Compared with negative non-transgenic control all transgenic lines showed the ability to establish symbiosis and the different growth parameters had insignificant effect due to mycorrhization. The results of the present study proved that the introduced pathogen resistance genes did not affect the mycorrhization allocations in pea.

  5. Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots.

    Science.gov (United States)

    Peskan-Berghöfer, Tatjana; Vilches-Barro, Amaya; Müller, Teresa M; Glawischnig, Erich; Reichelt, Michael; Gershenzon, Jonathan; Rausch, Thomas

    2015-11-01

    Root colonization by the beneficial fungus Piriformospora indica is controlled by plant innate immunity, but factors that channel this interaction into a mutualistic relationship are not known. We have explored the impact of abscisic acid (ABA) and osmotic stress on the P. indica interaction with Arabidopsis thaliana. The activation of plant innate immunity in roots was determined by measuring the concentration of the phytoalexin camalexin and expression of transcription factors regulating the biosynthesis of tryptophan-related defence metabolites. Furthermore, the impact of the fungus on the content of ABA, salicylic acid, jasmonic acid (JA) and JA-related metabolites was examined. We demonstrated that treatment with exogenous ABA or the ABA analogue pyrabactin increased fungal colonization efficiency without impairment of plant fitness. Concomitantly, ABA-deficient mutants of A. thaliana (aba1-6 and aba2-1) were less colonized, while plants exposed to moderate stress were more colonized than corresponding controls. Sustained exposure to ABA attenuated expression of transcription factors MYB51, MYB122 and WRKY33 in roots upon P. indica challenge or chitin treatment, and prevented an increase in camalexin content. The results indicate that ABA can strengthen the interaction with P. indica as a consequence of its impact on plant innate immunity. Consequently, ABA will be relevant for the establishment and outcome of the symbiosis under stress conditions. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. The Accuracy of the Digital imaging system and the frequency dependent type apex locator in root canal length measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byoung Rib; Park, Chang Seo [Dept. of Dental Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of)

    1998-08-15

    In order to achieve a successful endodontic treatment, root canals must be obturated three-dimensionally without causing any damage to apical tissues. Accurate length determination of the root canal is critical in this case. For this reason, I've used the conventional periapical radiography, Digora (digital imaging system) and Root ZX (the frequency dependent type apex locator) to measure the length of the canal and compare it with the true length obtained by cutting the tooth in half and measuring the length between the occlusal surface and the apical foramen. From the information obtained by these measurements, I was able to evaluate the accuracy and clinical usefulness of each systems, whether the thickness of files used in endodontic therapy has any effect on the measuring systems was also evaluated in an effort to simplify the treatment planning phase of endodontic treatment. 29 canals of 29 sound premolars were measured with no 15, no 20, no 25 files by 3 different dentists each using the periapical radiography, Digora and Root ZX. The measurements were then compared with the true length. The results were as follows; 1. In comparing mean discrepancies between measurements obtained by using periapical radiography (mean error : -0.449 {+-} 0.444 mm), Digora (mean error : -0.417 {+-} 0.415 mm) and Root ZX (mean error : 0.123 {+-} 0.458 mm) with true length, periapical radiography and Digora system had statistically significant differences (p<0.05) in most cases while root zx showed none (p>0.05). 2. By subtracting values obtained by using periapical radiography, Digora and Root ZX from the true length and making a distribution table of their absolute values, the following analysis was possible. In the case of periapical film, 140 out of 261 (53.6%) were clinically acceptable satisfying the margin of error of less than 0.5 mm, 151 out of 261 (53,6%) were acceptable in the Digora system while Root ZX had 197 out of 261 (75.5%) within the limits of 0.5 mm

  7. Association of Comorbidity with Anastomotic Leak, 30-day Mortality, and Length of Stay in Elective Surgery for Colonic Cancer

    DEFF Research Database (Denmark)

    Krarup, Peter-Martin; Nordholm-Carstensen, Andreas; Jørgensen, Lars Nannestad

    2015-01-01

    after resection for colonic cancer. DESIGN: This is a retrospective nationwide cohort study SETTING: : Data were obtained from the Danish Colorectal Cancer Group and the National Patient Registry. PATIENTS: Patients with colonic cancer undergoing elective resection between 2001 and 2008 were selected......BACKGROUND: Comorbidity has a negative influence on the long-term prognosis in patients with colorectal cancer, whereas its impact on the postoperative course is less clear. OBJECTIVES: The aim of this study was to investigate the influence of comorbidity on anastomotic leak and short-term outcomes....... MAIN OUTCOME MEASURES: The primary outcome was the ability of comorbidity to predict anastomotic leak. Secondary outcomes were 30-day mortality and length of stay. Comorbidity was assessed by the Charlson Comorbidity Index. Multivariable logistic regression and receiver operating characteristics curves...

  8. Differential gene expression in Rhododendron fortunei roots colonized by an ericoid mycorrhizal fungus and increased nitrogen absorption and plant growth

    Directory of Open Access Journals (Sweden)

    Xiangying Wei

    2016-10-01

    Full Text Available Ericoid mycorrhizal (ERM fungi are specifically symbiotic with plants in the family Ericaceae. Little is known thus far about their symbiotic establishment and subsequent nitrogen (N uptake at the molecular level. The present study devised a system for establishing a symbiotic relationship between Rhododendron fortunei Lindl. and an ERM fungus (Oidiodendron maius var. maius strain Om19, quantified seedling growth and N uptake, and compared transcriptome profiling between colonized and uncolonized roots using RNA-Seq. The Om19 colonization induced 16,892 genes that were differentially expressed in plant roots, of which 14,364 were upregulated and 2,528 were downregulated. These genes included those homologous to ATP-binding cassette transporters, calcium/calmodulin-dependent kinases, and symbiosis receptor-like kinases. N metabolism was particularly active in Om19-colonized roots, and 51 genes were upregulated, such as nitrate transporters, nitrate reductase, nitrite reductase, ammonium transporters, glutamine synthetase, and glutamate synthase. Transcriptome analysis also identified a series of genes involving endocytosis, Fc-gamma R-mediated phagocytosis, glycerophospholipid metabolism, and GnRH signal pathway that have not been reported previously. Their roles in the symbiosis require further investigation. The Om19 colonization significantly increased N uptake and seedling growth. Total N content and dry weight of colonized seedlings were 36.6% and 46.6% greater than control seedlings. This is the first transcriptome analysis of a species from the family Ericaceae colonized by an ERM fungus. The findings from this study will shed light on the mechanisms underlying symbiotic relationships of ericaceous species with ERM fungi and the symbiosis-resultant N uptake and plant growth.

  9. Diversity effects on root length production and loss in an experimental grassland community

    NARCIS (Netherlands)

    Mommer, L.; Padilla, F.M.; Ruijven, van J.; Caluwe, de H.; Smit-Tiekstra, A.E.; Berendse, F.; Kroon, de H.

    2015-01-01

    Advances in root ecology have revealed that root standing biomass is higher in species-rich plant communities than in species-poor communities. Currently, we do not know whether this below-ground diversity effect is the result of enhanced root production or reduced root mortality or both, which is

  10. The influence of arbuscular mycorrhizal colonization on soil-root hydraulic conductance in Agrostis stolonifera L. under two water regimes.

    Science.gov (United States)

    Gonzalez-Dugo, Victoria

    2010-08-01

    The hypothesis that mycorrhizal colonization improves the soil-root conductance in plants was experimentally tested in a growth chamber using pot cultures of Agrostis stolonifera L. colonized by Glomus intraradices. Plants were grown in 50-l pots filled with autoclaved sand/silt soil (1:1), with and without the mycorrhizal fungus. Within the mycorrhizal treatment, half of the pots remained well watered, while the other half was subjected to a progressive water deficit. Soil water potential (estimated as plant water potential measured at the end of the dark period), xylem water potential measured at the tiller base, transpiration rate, and soil water content were monitored throughout the experiment. Soil-root hydraulic conductance was estimated as the ratio between the instantaneous transpiration rate and the soil and xylem water potential difference. To obtain cultures with similar nutritional status, the P in the modified Hoagland's nutrient solution was withheld from the inoculated pots and applied only once a month. Even though there were no differences on growth or nutrient status for the mycorrhizal treatments, water transport was enhanced by the inoculum presence. Transpiration rate was maintained at lower xylem water potential values in the presence of mycorrhizae. The analysis of the relationship between soil-root hydraulic resistance and soil water content showed that mycorrhizal colonization increased soil-root hydraulic conductance as the soil dried. For these growing conditions, this effect was ascribed to the range of 6-10%.

  11. Effect of biosolids-derived triclosan and triclocarban on the colonization of plant roots by arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Prosser, R S; Lissemore, L; Shahmohamadloo, R S; Sibley, P K

    2015-03-01

    Arbuscular mycorrhizal fungi (AMF) form a symbiotic relationship with the majority of crop plants. AMF provide plants with nutrients (e.g., P), modulate the effect of metal and pathogen exposure, and increase tolerance to moisture stress. The benefits of AMF to plant growth make them important to the development of sustainable agriculture. The land application of biosolids is becoming an increasingly common practice in sustainable agriculture, as a source of nutrients. However, biosolids have been found to contain numerous pharmaceutical and personal care products including antimicrobial chemicals such as triclosan and triclocarban. The potential risks that these two compounds may pose to plant-AMF interactions are poorly understood. The current study investigated whether biosolids-derived triclosan and triclocarban affect the colonization of the roots of lettuce and corn plants by AMF. Plants were grown in soil amended with biosolids that contained increasing concentrations of triclosan (0 to 307 μg/g dw) or triclocarban (0 to 304 μg/g dw). A relationship between the concentration of triclosan or triclocarban and colonization of plants roots by AMF was not observed. The presence of biosolids did not have a significant (p>0.05) effect on percent colonization of corn roots but had a significant, positive effect (pcolonization of crop plant roots by AMF. Copyright © 2014. Published by Elsevier B.V.

  12. Depletion of soil mineral N by roots of ¤Cucumis sativus¤ L. colonized or not by arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Johansen, A.

    1999-01-01

    on depletion of the soil mineral N pool. All pots were gradually supplied with 31 mg NH4NO3-N kg(-1) dry soil from 12-19 days after planting and an additional 50 mg (NH4)(2)SO4-N kg(-1) dry soil (N-15-labelled in Experiment 1) was supplied at 21 or 22 days after planting in Experiments 1 and 2, respectively......Two experiments were conducted where Cucumis sativus were grown in uncompartmented pots either alone or in symbiosis with Glomus intraradices Schenck and Smith (Experiment 1) or Glomus sp. (Experiment 2) in order to investigate if root colonization by arbuscular mycorrhizal (AM) fungi has an effect....... Dry weight of plant parts, total root length, mycorrhizal colonization rate and soil concentration of NH4+ and NO3- were recorded at five sequential harvest events: 21, 24, 30, 35 and 42 days (Experiment 1) and 22, 25, 28, 31 and 35 days (Experiment 2) after planting. In Experiment 1, plants were also...

  13. The distribution of fine root length density for six artificial afforestation tree species in Loess Plateau of Northwest China

    Directory of Open Access Journals (Sweden)

    Shengqi Jian

    2015-04-01

    Full Text Available Aim of the study: Data about the distribution of fine root length density (FRLD is important to understand the ecophysiology of vegetation. This is particularly true when models are applied to describe ecohydrology and vegetation function. However, there is yet limited knowledge of root distributions in semi-arid regions. The aim of this study is to investigate the distribution of fine roots for six typical afforestation tree species in Loess Plateau and its relationships with soil environmental factors. Area of study: Loess Plateau (NW of China. Material and methods: We quantified the fine root length density distribution of six typical afforestation tree species by soil core method, and the soil properties also were investigated. Main results: More than 50% of fine root length was concentrated at depths between 0 and 40 cm in vertical direction. In horizontal direction, most of fine roots concentrated near the trunk. Results showed a significant negative correlation between vertical distribution of FRLD and soil water content, a positive correlation between FRLD and organic matter and total N is significant, and a negative correlation with bulk density. No relationships were found with total C and particle size distribution in any soil layer for the six tree species. Stepwise multiple linear regression confirmed that changes in different soil properties significantly affected the variation in FRLD for each tree species, total N had strong and positive relationships with FRLD. Research highlights: These measurements provide valuable data for modelling of ecosystem water use and productivity.

  14. The Accuracy of the Digital imaging system and the frequency dependent type apex locator in root canal length measurement

    International Nuclear Information System (INIS)

    Lee, Byoung Rib; Park, Chang Seo

    1998-01-01

    In order to achieve a successful endodontic treatment, root canals must be obturated three-dimensionally without causing any damage to apical tissues. Accurate length determination of the root canal is critical in this case. For this reason, I've used the conventional periapical radiography, Digora (digital imaging system) and Root ZX (the frequency dependent type apex locator) to measure the length of the canal and compare it with the true length obtained by cutting the tooth in half and measuring the length between the occlusal surface and the apical foramen. From the information obtained by these measurements, I was able to evaluate the accuracy and clinical usefulness of each systems, whether the thickness of files used in endodontic therapy has any effect on the measuring systems was also evaluated in an effort to simplify the treatment planning phase of endodontic treatment. 29 canals of 29 sound premolars were measured with no 15, no 20, no 25 files by 3 different dentists each using the periapical radiography, Digora and Root ZX. The measurements were then compared with the true length. The results were as follows ; 1. In comparing mean discrepancies between measurements obtained by using periapical radiography (mean error : -0.449 ± 0.444 mm), Digora (mean error : -0.417 ± 0.415 mm) and Root ZX (mean error : 0.123 ± 0.458 mm) with true length, periapical radiography and Digora system had statistically significant differences (p 0.05). 2. By subtracting values obtained by using periapical radiography, Digora and Root ZX from the true length and making a distribution table of their absolute values, the following analysis was possible. In the case of periapical film, 140 out of 261 (53.6%) were clinically acceptable satisfying the margin of error of less than 0.5 mm, 151 out of 261 (53,6%) were acceptable in the Digora system while Root ZX had 197 out of 261 (75.5%) within the limits of 0.5 mm margin of error. 3. In determining whether the thickness of

  15. [Influence of root canal working length on the clinical effect evaluated by periapical radiography and cone-beam computed tomography].

    Science.gov (United States)

    Zhao, Li-qin; Xu, Xin-yi

    2014-12-01

    The verification of the best length of root canal instrumentation and obturation is still controversial in endodontics. The purpose of this study was to determine the influence of root canal working length on the clinical effect evaluated by periapical radiography and cone-beam computed tomography (CBCT). A total of 503 root canal obturations were evaluated by using periapical radiography and CBCT. Distances from the radiographic apex to the tip of filling material were measured and classified as 1-2 mm, less than 1 mm, beyond apex, and at the apex. Odds ratio, confidence intervals, and Chi-square test were used for statistical analyses with SPSS 13.0 software package. Periapical radiographs showed that root canal obturations were 1-2 mm short of the apex in 88%, 89.3%, and 95% of the anterior teeth, premolars, and molars, respectively. CBCT images showed obturations had the same length in 70%, 73.7%, and 79% of anterior teeth, premolars, and molars, respectively. The frequency of AP was significantly greater in molars than in the other tooth, regardless of diagnostic tools. AP was detected more frequently when CBCT was used. AP is detected at all lengths of root canal obturation. The analysis of diagnostic methods show that AP is detected more frequently using CBCT.

  16. Inter- and intracellular colonization of Arabidopsis roots by endophytic actinobacteria and the impact of plant hormones on their antimicrobial activity.

    Science.gov (United States)

    van der Meij, Anne; Willemse, Joost; Schneijderberg, Martinus A; Geurts, René; Raaijmakers, Jos M; van Wezel, Gilles P

    2018-01-15

    Many actinobacteria live in close association with eukaryotes such as fungi, insects, animals and plants. Plant-associated actinobacteria display (endo)symbiotic, saprophytic or pathogenic life styles, and can make up a substantial part of the endophytic community. Here, we characterised endophytic actinobacteria isolated from root tissue of Arabidopsis thaliana (Arabidopsis) plants grown in soil from a natural ecosystem. Many of these actinobacteria belong to the family of Streptomycetaceae with Streptomyces olivochromogenes and Streptomyces clavifer as well represented species. When seeds of Arabidopsis were inoculated with spores of Streptomyces strain coa1, which shows high similarity to S. olivochromogenes, roots were colonised intercellularly and, unexpectedly, also intracellularly. Subsequent exposure of endophytic isolates to plant hormones typically found in root and shoot tissues of Arabidopsis led to altered antibiotic production against Escherichia coli and Bacillus subtilis. Taken together, our work reveals remarkable colonization patterns of endophytic streptomycetes with specific traits that may allow a competitive advantage inside root tissue.

  17. Utilization of Root-Colonizing Bacteria to Protect Hot-Pepper Against Tobacco Mosaic Tobamovirus

    Directory of Open Access Journals (Sweden)

    TRI ASMIRA DAMAYANTI

    2007-09-01

    Full Text Available Tobacco Mosaic Tobamovirus (TMV is one of many important viruses infecting Solanaceous plants including hot pepper in Indonesia. To accomplish and improve the effectiveness of virus management, we used root-colonizing bacteria (rhizobacteria isolated from healthy hot pepper. Eight rhizobacteria isolates were selected and their capacity in enhancing plant growth and inducing systemic resistance (ISR against TMV in greenhouse trials were evaluated. The rhizobacteria was applied as seed treatment and soil drench. Bacterized-seedling showed a better growth vigor, fitness and a milder symptom than non-bacterized control plants. The protective effect of rhizobacteria was more pronounced after challenging inoculation by TMV, especially for plants treated by isolates I-6, I-16, and I-35. However, TMV accumulation was slightly affected by bacterial treatment. The rhizobacteria might improved ISR by increasing peroxidase enzyme activity but this depends on the species. Based on whole results, isolate I-35 was the potential plant growth promotion rhizobacteria (PGPR. The I-35 was identified as Bacillus cereus based on morphological characteristics and nucleotide sequences of 16S r-RNA.

  18. Full Length Amelogenin Binds to Cell Surface LAMP-1 on Tooth Root/Periodontium Associated Cells

    Science.gov (United States)

    Zhang, Hai; Tompkins, Kevin; Garrigues, Jacques; Snead, Malcolm L.; Gibson, Carolyn W.; Somerman, Martha J.

    2010-01-01

    Objectives Lysosome-associated membrane protein-1 (LAMP-1) has been suggested to be a cell surface receptor for a specific amelogenin isoform, leucine-rich amelogenin peptide or LRAP. However, it is unclear if LAMP-1 is an amelogenin receptor for dental mesenchymal cells. The goal of this study was to determine if LAMP-1 serves as a cell surface binding site for full length amelogenin on tooth root/periodontium associated mesenchymal cells. Design Murine dental follicle cells and cementoblasts (OCCM-30) were cultured for 2 days followed by addition of full length recombinant mouse amelogenin, rp(H)M180. Dose-response (0 to 100 μg/ml) and time course (0 to 120 minutes) assays were performed to determine the optimal conditions for live cell surface binding using immuno-fluorescent microscopy. A competitive binding assay was performed to determine binding specificity by adding Emdogain (1 mg/ml) to the media. An antibody against LAMP-1 was used to detect the location of LAMP-1 on the cell surface and the pattern was compared to cell surface bound amelogenin. Both amelogenin and cell surface LAMP-1 were immuno-co-localized to compare the amount and distribution pattern. Results Maximum surface binding was achieved with 50 μg/ml of rp(H)M180 for 120 minutes. This binding was specific as demonstrated by competitive inhibition (79% lower) with the addition of Emdogain. The binding pattern for rp(H)M180 was similar to the distribution of surface LAMP-1 on dental follicle cells and cementoblasts. The high co-localization coefficient (0.92) for rp(H)M180 and LAMP-1 supports rp(H)M180 binding to cell surface LAMP-1. Conclusions The data from this study suggest that LAMP-1 can serve as a cell surface binding site for amelogenin on dental follicle cells and cementoblasts. PMID:20382373

  19. Effects of Colonization of the Roots of Domestic Rice (Oryza sativa L. cv. Amaroo) by Burkholderia pseudomallei.

    Science.gov (United States)

    Prasertsincharoen, Noppadol; Constantinoiu, Constantin; Gardiner, Christopher; Warner, Jeffrey; Elliman, Jennifer

    2015-07-01

    Burkholderia pseudomallei is a saprophytic bacterium that causes melioidosis and is often isolated from rice fields in Southeast Asia, where the infection incidence is high among rice field workers. The aim of this study was to investigate the relationship between this bacterium and rice through growth experiments where the effect of colonization of domestic rice (Oryza sativa L. cv Amaroo) roots by B. pseudomallei could be observed. When B. pseudomallei was exposed to surface-sterilized seeds, the growth of both the root and the aerosphere was retarded compared to that in controls. The organism was found to localize in the root hairs and endodermis of the plant. A biofilm formed around the root and root structures that were colonized. Growth experiments with a wild rice species (Oryza meridionalis) produced similar retardation of growth, while another domestic cultivar (O. sativa L. cv Koshihikari) did not show retarded growth. Here we report B. pseudomallei infection and inhibition of O. sativa L. cv Amaroo, which might provide insights into plant interactions with this important human pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Feeding with chicory roots reduces the amount of odorous compounds in colon and rectal contents of pigs

    OpenAIRE

    Jensen, M.T.; Hansen, L.L.

    2006-01-01

    Sixteen pigs (eight entire males and eight females) were given individually two diets, control and control added 25% chopped chicory roots for 2 months before slaughter. Samples were taken from the contents in colon and rectum and subjected to GC-MS analysis for amount of odour impact compounds. The compounds 2-pentanone, ethylbutyrate, propylpropionate, butyric acid, ethyl-2-methylbutyrate, p-cresol, indole and skatole showed a significant difference between the two treatments. The esters...

  1. Root length and alveolar bone level of impacted canines and adjacent teeth after orthodontic traction: a long-term evaluation.

    Science.gov (United States)

    Silva, Aldir Cordeiro da; Capistrano, Anderson; Almeida-Pedrin, Renata Rodrigues de; Cardoso, Maurício de Almeida; Conti, Ana Cláudia de Castro Ferreira; Capelozza, Leopoldino

    2017-01-01

    The aim of this retrospective study was to evaluate the long-term effects of orthodontic traction on root length and alveolar bone level in impacted canines and adjacent teeth. Sample consisted of 16 patients (nine males and seven females), mean initial age 11 years and 8 months presenting with unilaterally maxillary impacted canines, palatally displaced, treated with the same surgical and orthodontic approach. Teeth from the impacted-canine side were assigned as Group I (GI), and contralateral teeth as control, Group II (GII). The mean age of patients at the end of orthodontic treatment was 14 years and 2 months and the mean post-treatment time was 5 years and 11 months. Both contralateral erupted maxillary canines and adjacent teeth served as control. Root length and alveolar bone level (buccal and palatal) were evaluated on cone-beam computed tomography (CBCT) images. The comparison of root length and alveolar bone level changes between groups were assessed by applying paired t-test, at a significance level of 5% (pteeth among groups. Impacted canine treatment by closed-eruption technique associated with canine crown perforation, has a minimal effect on root length and buccal and palatal alveolar bone level in both canine and adjacent teeth, demonstrating that this treatment protocol has a good long-term prognosis.

  2. Direct and indirect influences of arbuscular mycorrhizal fungi on phosphorus uptake by two root hemiparasitic Pedicularis species: do the fungal partners matter at low colonization levels?

    Science.gov (United States)

    Li, Ai-Rong; Guan, Kai-Yun; Stonor, Rebecca; Smith, Sally E; Smith, F Andrew

    2013-10-01

    Because most parasitic plants do not form mycorrhizal associations, the nutritional roles of arbuscular mycorrhizal (AM) fungi in them have hardly been tested. Some facultative root hemiparasitic Pedicularis species form AM associations and hence are ideal for testing both direct and indirect effects of AM fungi on their nutrient acquisition. The aim of this study was to test the influence of AM inoculation on phosphorus (P) uptake by Pedicularis rex and P. tricolor. (32)P labelling was used in compartmented pots to assess the contribution of the AM pathway and the influence of AM inoculation on P uptake from a host plant into the root hemiparasites. Laboratory isolates of fungal species (Glomus mosseae and G. intraradices) and the host species (Hordeum vulgare 'Fleet') to which the two Pedicularis species showed obvious responses in haustorium formation and growth in previous studies were used. The AM colonization of both Pedicularis spp. was low (<15 % root length) and only a very small proportion of total plant P (<1 %) was delivered from the soil via the AM fungus. In a separate experiment, inoculation with AM fungi strongly interfered with P acquisition by both Pedicularis species from their host barley, almost certainly because the numbers of haustoria formed by the parasite were significantly reduced in AM plants. Roles of AM fungi in nutrient acquisition by root parasitic plants were quantitatively demonstrated for the first time. Evidence was obtained for a novel mechanism of preventing root parasitic plants from overexploiting host resources through AM fungal-induced suppression of the absorptive structures in the parasites.

  3. Azorhizobium caulinodans Transmembrane Chemoreceptor TlpA1 Involved in Host Colonization and Nodulation on Roots and Stems

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-07-01

    Full Text Available Azorhizobium caulinodans ORS571 is a motile soil bacterium that interacts symbiotically with legume host Sesbania rostrata, forming nitrogen-fixing root and stem nodules. Bacterial chemotaxis plays an important role in establishing this symbiotic relationship. To determine the contribution of chemotaxis to symbiosis in A. caulinodans ORS571-S. rostrata, we characterized the function of TlpA1 (transducer-like protein in A. caulinodans, a chemoreceptor predicted by SMART (Simple Modular Architecture Research Tool, containing two N-terminal transmembrane regions. The tlpA1 gene is located immediately upstream of the unique che gene cluster and is transcriptionally co-oriented. We found that a ΔtlpA1 mutant is severely impaired for chemotaxis to various organic acids, glycerol and proline. Furthermore, biofilm forming ability of the strain carrying the mutation is reduced under certain growth conditions. Interestingly, competitive colonization ability on S. rostrata root surfaces is impaired in the ΔtlpA1 mutant, suggesting that chemotaxis of the A. caulinodans ORS571 contributes to root colonization. We also found that TlpA1 promotes competitive nodulation not only on roots but also on stems of S. rostrata. Taken together, our data strongly suggest that TlpA1 is a transmembrane chemoreceptor involved in A. caulinodans-S. rostrata symbiosis.

  4. Antifungal genes expressed in transgenic pea (Pisum sativum L.) do not affect root colonization of arbuscular mycorrhizae fungi.

    Science.gov (United States)

    Kahlon, Jagroop Gill; Jacobsen, Hans-Jörg; Cahill, James F; Hall, Linda M

    2017-10-01

    Genetically modified crops have raised concerns about unintended consequences on non-target organisms including beneficial soil associates. Pea transformed with four antifungal genes 1-3 β glucanase, endochitinase, polygalacturonase-inhibiting proteins, and stilbene synthase is currently under field-testing for efficacy against fungal diseases in Canada. Transgenes had lower expression in the roots than leaves in greenhouse experiment. To determine the impact of disease-tolerant pea or gene products on colonization by non-target arbuscular mycorrhizae and nodulation by rhizobium, a field trial was established. Transgene insertion, as single gene or stacked genes, did not alter root colonization by arbuscular mycorrhiza fungus (AMF) or root nodulation by rhizobium inoculation in the field. We found no effect of transgenes on the plant growth and performance although, having a dual inoculant with both AMF and rhizobium yielded higher fresh weight shoot-to-root ratio in all the lines tested. This initial risk assessment of transgenic peas expressing antifungal genes showed no deleterious effect on non-target organisms.

  5. Fungi colonizing the soil and roots of tomato (Lycopersicum esculentum Mill. plants treated with biological control agents

    Directory of Open Access Journals (Sweden)

    Bożena Cwalina-Ambroziak

    2012-12-01

    Full Text Available Tomato plants, cv. Rumba Ożarowska, grown in the greenhouse of the University of Warmia and Mazury, were protected in the form of alternate spraying (twice and watering (twice with 5% aqueous extracts of the following plant species: Aloe vulgaris Lam., Achillea millefolium L., Mentha piperita L., Polygonum aviculare L., Equisetum arvense L., Juglans regia L. and Urtica dioica L. Plants not treated with the extracts served as control. After fruit harvest, samples of roots and soil were collected. The roots were disinfected and next placed on PDA medium. Soil-colonizing fungi were cultured on Martin medium. Fungi were identified microscopically after incubation. Pathogenic fungal species, Colletotrichum coccodes, Fusarium equiseti, F. oxysporum and F. poae, accounted for over 60% of all isolates obtained from the roots of tomato plants. The soil fungal community was dominated by yeast-like fungi (75.4%, whereas pathogenic fungi were present in low numbers. The applied 5% aqueous plant extracts effectively reduced the abundance of fungi, including pathogenic species, colonizing tomato plants and soil. The extract from P. aviculare showed the highest efficacy, while the extract from J. regia was least effective. Fungi showing antagonistic activity against pathogens (Paecilomyces roseum and species of the genus Trichoderma were isolated in greatest abundance from the soil and the roots of tomato plants treated with A. millefolium, M. piperita and U. dioica extracts.

  6. Preferential colonization of Solanum tuberosum L. roots by the fungus Glomus intraradices in arable soil of a potato farming area.

    Science.gov (United States)

    Cesaro, Patrizia; van Tuinen, Diederik; Copetta, Andrea; Chatagnier, Odile; Berta, Graziella; Gianinazzi, Silvio; Lingua, Guido

    2008-09-01

    The symbiosis between plant roots and arbuscular mycorrhizal (AM) fungi has been shown to affect both the diversity and productivity of agricultural communities. In this study, we characterized the AM fungal communities of Solanum tuberosum L. (potato) roots and of the bulk soil in two nearby areas of northern Italy, in order to verify if land use practices had selected any particular AM fungus with specificity to potato plants. The AM fungal large-subunit (LSU) rRNA genes were subjected to nested PCR, cloning, sequencing, and phylogenetic analyses. One hundred eighty-three LSU rRNA sequences were analyzed, and eight monophyletic ribotypes, belonging to Glomus groups A and B, were identified. AM fungal communities differed between bulk soil and potato roots, as one AM fungal ribotype, corresponding to Glomus intraradices, was much more frequent in potato roots than in soils (accounting for more than 90% of sequences from potato samples and less than 10% of sequences from soil samples). A semiquantitative heminested PCR with specific primers was used to confirm and quantify the AM fungal abundance observed by cloning. Overall results concerning the biodiversity of AM fungal communities in roots and in bulk soils from the two studied areas suggested that potato roots were preferentially colonized by one AM fungal species, G. intraradices.

  7. ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolus vulgaris).

    Science.gov (United States)

    Dimkpa, Christian O; Hansen, Trevor; Stewart, Jacob; McLean, Joan E; Britt, David W; Anderson, Anne J

    2015-05-01

    Nanoparticles (NPs) incorporated into commercial products are reactive on plants. Here, the influence of a root-associated bacterium, Pseudomonas chlororaphis O6 (PcO6) on the responses of bean (Phaseolus vulgaris) to commercial ZnO nanoparticles (NPs) was examined. ZnO NPs (250-1000 mg Zn/kg) significantly (p = 0.05) impacted root elongation after 7 days; only at 1000 mg/kg was shoot growth significantly inhibited. Zn solubilized from ZnO NPs correlated with root growth inhibition (r(2 )= 0.8709); solubility of Fe (r(2 )= 0.916) and Mn (r(2 )= 0.997), and shoot accumulation of Zn (r(2 )= 0.9095), Fe (r(2 )= 0.9422) and Mn (r(2 )= 0.789). Root ferric reductase activity diminished 31% in NP-exposed plants. Amendments with Zn ions at 6 mg/kg, corresponding to Zn solubilized from the NPs, did not replicate the responses, suggesting a nano-specific contribution of the ZnO. Neither NPs (500 mg Zn/kg) nor Zn ions affected root colonization by PcO6. Siderophore production by PcO6 increased 17% by exposure to NPs and 11% with Zn ions (18 mg/kg). PcO6 restored plant ferric reduction under NP exposure, but decreased uptake of Zn and Fe, 58 and 18%, respectively, suggesting soil bacteria could reduce plant accumulation of metals under toxic exposure levels, while negatively affecting uptake of essential elements. Collectively, these findings demonstrated that growth and balance of essential metals in bean exposed to ZnO NPs were influenced by the NPs and bacterial colonization of NP-exposed roots, indicating subtle effects of NPs in plant nutrition.

  8. A comparative evaluation of electronic and radiographic determination of root canal length in primary teeth: An in vitro study

    Directory of Open Access Journals (Sweden)

    Iyer Satishkumar Krishnan

    2012-01-01

    Full Text Available Aims: The purpose of this in vitro study was to compare the root canal length determination by Electronic apex locator (EAL (Raypex 5 and conventional radiography, and then compare them with the actual measurements obtained by direct visualization. Settings and Design: This study was conducted at the Department of Pedodontics and Preventive Dentistry, Government Dental College, Thiruvananthapuram, Kerala, India. Subjects and Methods: One hundred single rooted primary teeth extracted due to extensive caries, trauma, serial extraction or unwillingness of the parent to save the teeth were selected. The teeth were numbered and root canal length was determined using the visual, electronic and the radiographic methods. The actual, electronic and the radiographic measurements were recorded. Statistical Analysis Used: Data were analyzed using Intraclass correlation test and linear regression analysis. Results: The accuracy of EAL and radiographic methods were 92% and 72%, respectively within + 0.5 mm. Both the electronic and conventional radiographic methods showed a high correlation and agreement (ICC intraclass correlation coefficient = 0.99 and 0.98 respectively with the actual measurements. Conclusions: EALs proved to be more accurate in determining the root canal length than the radiographic method.

  9. Increased mRNA expression of a laminin-binding protein in human colon carcinoma: Complete sequence of a full-length cDNA encoding the protein

    International Nuclear Information System (INIS)

    Yow, Hsiukang; Wong, Jau Min; Chen, Hai Shiene; Lee, C.; Steele, G.D. Jr.; Chen, Lanbo

    1988-01-01

    Reliable markers to distinguish human colon carcinoma from normal colonic epithelium are needed particularly for poorly differentiated tumors where no useful marker is currently available. To search for markers the authors constructed cDNA libraries from human colon carcinoma cell lines and screened for clones that hybridize to a greater degree with mRNAs of colon carcinomas than with their normal counterparts. Here they report one such cDNA clone that hybridizes with a 1.2-kilobase (kb) mRNA, the level of which is ∼9-fold greater in colon carcinoma than in adjacent normal colonic epithelium. Blot hybridization of total RNA from a variety of human colon carcinoma cell lines shows that the level of this 1.2-kb mRNA in poorly differentiated colon carcinomas is as high as or higher than that in well-differentiated carcinomas. Molecular cloning and complete sequencing of cDNA corresponding to the full-length open reading frame of this 1.2-kb mRNA unexpectedly show it to contain all the partial cDNA sequence encoding 135 amino acid residues previously reported for a human laminin receptor. The deduced amino acid sequence suggests that this putative laminin-binding protein from human colon carcinomas consists of 295 amino acid residues with interesting features. There is an unusual C-terminal 70-amino acid segment, which is trypsin-resistant and highly negatively charged

  10. Disruption of dTDP-rhamnose biosynthesis modifies lipopolysaccharide core, exopolysaccharide production, and root colonization in Azospirillum brasilense.

    Science.gov (United States)

    Jofré, Edgardo; Lagares, Antonio; Mori, Gladys

    2004-02-16

    The interaction between Azospirillum brasilense and plants is not fully understood, although several bacterial surface components like exopolysaccharides (EPS), flagella, and capsular polysaccharides are required for attachment and colonization. While in other plant-bacteria associations (Rhizobium-legume, Pseudomonas-potato), lipopolysaccharides (LPS) play a key role in the establishment of an effective association, their role in the root colonization by Azospirillum had not been determined. In this study, we isolated a Tn5 mutant of A. brasilense Cd (EJ1) with an apparently modified LPS core structure, non-mucoid colony morphology, increased EPS production, and affected in maize root colonization. A 3790-bp region revealed the presence of three complete open reading frames designated rmlC, rmlB and rmlD. The beginning of a fourth open reading frame was found and designated rmlA. These genes are organized in a cluster which shows homology to the cluster involved in the synthesis of dTDP-rhamnose in other bacteria. Additionally, the analysis of the monosaccharide composition of LPSs showed a diminution of rhamnose compared to the wild-type strain.

  11. Dry matter and root colonization of plants by indigenous arbuscular mycorrhizal fungi with physical fractions of dry olive mill residue inoculated with saprophytic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Aranda, E.; Sampredro, I.; Diaz, R.; Garcia-Sanchez, M.; Siles, J. A.; Ocampo, J. A.; Garcia-Romera, I.

    2010-07-01

    We studied the influence of indigenous arbuscular mycorrhizal (AM) and saprobe fungi on the phytotoxicity of the physical fractions of dry olive mill residue (DOR). The physical extractions of DOR gave an aqueous (ADOR) and an exhausted (SDOR) fraction with less phytotoxicity for tomato than the original samples. The indigenous AM were able to decrease the phytotoxicity of SDOR inoculated with Trametes versicolor and Pycnoporus cinnabarinus on tomato. However, incubation of ADOR with both saprophytic fungi did not decrease its phytotoxicity in presence of the indigenous AM fungi. The percentage of root length colonized by indigenous AM strongly decreased in presence of DOR, around 80% of decrease at dose of 25 g kg-1of DOR, but the level of mycorrhization was higher in presence of ADOR or SDOR (38% and 44% of decrease respectively at the same dose). There were no relationships between the effects of the physical fractions of DOR incubated with the saprobe fungi on AM colonization and on plant dry weight of tomato. Our results suggest that the phytotoxicity of the olive residues can be eliminated by the combination of physical extraction and by saprobe fungal inoculation and the use of this agrowaste as organic amendment in agricultural soil may be possible. (Author) 33 refs.

  12. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots

    Directory of Open Access Journals (Sweden)

    Carmen eGómez-Lama Cabanás

    2014-09-01

    Full Text Available Pseudomonas fluorescens PICF7, a native olive root endophyte and effective biocontrol agent (BCA against Verticillium wilt of olive, is able to trigger a broad range of defense responses in root tissues of this woody plant. In order to elucidate whether strain PICF7 also induces systemic defense responses in above-ground organs, aerial tissues of olive plants grown under non-gnotobiotic conditions were collected at different time points after root bacterization with this endophytic BCA. A suppression subtractive hybridization (SSH cDNA library, enriched in up-regulated genes, was generated. This strategy enabled the identification of 376 ESTs (99 contigs and 277 singlets, many of them related to response to different stresses. Five ESTs, involved in defense responses, were selected to carry out time-course quantitative real-time PCR (qRT-PCR experiments aiming to: (i validate the induction of these genes, and (ii shed light on their expression pattern along time (from 1 to 15 days. Induction of olive genes potentially coding for lypoxigenase 2, catalase, 1-aminocyclopropane-1-carboxylate oxidase and phenylananine ammonia-lyase was thus confirmed at some time points. Computational analysis also revealed that different transcription factors were up-regulated in olive aerial tissues (i.e. jerf, bHLH, WRKYs, as previously reported for roots. Results confirmed that root colonization by this endophytic bacterium does not only trigger defense responses in this organ but also mount a wide array of systemic defense responses in distant tissues (stems, leaves. This sheds light on how olive plants respond to the ‘non-hostile’ colonization by a bacterial endophyte and how induced defense response can contribute to the biocontrol activity of strain PICF7.

  13. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots.

    Science.gov (United States)

    Gómez-Lama Cabanás, Carmen; Schilirò, Elisabetta; Valverde-Corredor, Antonio; Mercado-Blanco, Jesús

    2014-01-01

    Pseudomonas fluorescens PICF7, a native olive root endophyte and effective biocontrol agent (BCA) against Verticillium wilt of olive, is able to trigger a broad range of defense responses in root tissues of this woody plant. In order to elucidate whether strain PICF7 also induces systemic defense responses in above-ground organs, aerial tissues of olive plants grown under non-gnotobiotic conditions were collected at different time points after root bacterization with this endophytic BCA. A suppression subtractive hybridization (SSH) cDNA library, enriched in up-regulated genes, was generated. This strategy enabled the identification of 376 ESTs (99 contigs and 277 singlets), many of them related to response to different stresses. Five ESTs, involved in defense responses, were selected to carry out time-course quantitative real-time PCR (qRT-PCR) experiments aiming to: (1) validate the induction of these genes, and (2) shed light on their expression pattern along time (from 1 to 15 days). Induction of olive genes potentially coding for lipoxygenase 2, catalase, 1-aminocyclopropane-1-carboxylate oxidase, and phenylananine ammonia-lyase was thus confirmed at some time points. Computational analysis also revealed that different transcription factors were up-regulated in olive aerial tissues (i.e., JERF, bHLH, WRKY), as previously reported for roots. Results confirmed that root colonization by this endophytic bacterium does not only trigger defense responses in this organ but also mounts a wide array of systemic defense responses in distant tissues (stems, leaves). This sheds light on how olive plants respond to the "non-hostile" colonization by a bacterial endophyte and how induced defense response can contribute to the biocontrol activity of strain PICF7.

  14. Genetic responses induced in olive roots upon colonization by the biocontrol endophytic bacterium Pseudomonas fluorescens PICF7.

    Directory of Open Access Journals (Sweden)

    Elisabetta Schilirò

    Full Text Available Knowledge on the genetic basis underlying interactions between beneficial bacteria and woody plants is still very limited, and totally absent in the case of olive. We aimed to elucidate genetic responses taking place during the colonization of olive roots by the native endophyte Pseudomonas fluorescens PICF7, an effective biocontrol agent against Verticillium wilt of olive. Roots of olive plants grown under non-gnotobiotic conditions were collected at different time points after PICF7 inoculation. A Suppression Subtractive Hybridization cDNA library enriched in induced genes was generated. Quantitative real time PCR (qRT-PCR analysis validated the induction of selected olive genes. Computational analysis of 445 olive ESTs showed that plant defence and response to different stresses represented nearly 45% of genes induced in PICF7-colonized olive roots. Moreover, quantitative real-time PCR (qRT-PCR analysis confirmed induction of lipoxygenase, phenylpropanoid, terpenoids and plant hormones biosynthesis transcripts. Different classes of transcription factors (i.e., bHLH, WRKYs, GRAS1 were also induced. This work highlights for the first time the ability of an endophytic Pseudomonas spp. strain to mount a wide array of defence responses in an economically-relevant woody crop such as olive, helping to explain its biocontrol activity.

  15. Behavior of decabromodiphenyl ether (BDE-209) in soil: Effects of rhizosphere and mycorrhizal colonization of ryegrass roots

    Energy Technology Data Exchange (ETDEWEB)

    Wang Sen [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Zhang Shuzhen, E-mail: szzhang@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Huang, Honglin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Christie, Peter [Agri-Environment Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom)

    2011-03-15

    A rhizobox experiment was conducted to investigate degradation of decabromodiphenyl ether (BDE-209) in the rhizosphere of ryegrass and the influence of root colonization with an arbuscular mycorrhizal (AM) fungus. BDE-209 dissipation in soil varied with its proximity to the roots and was enhanced by AM inoculation. A negative correlation (P < 0.001, R{sup 2} = 0.66) was found between the residual BDE-209 concentration in soil and soil microbial biomass estimated as the total phospholipid fatty acids, suggesting a contribution of microbial degradation to BDE-209 dissipation. Twelve and twenty-four lower brominated PBDEs were detected in soil and plant samples, respectively, with a higher proportion of di- through hepta-BDE congeners in the plant tissues than in the soils, indicating the occurrence of BDE-209 debromination in the soil-plant system. AM inoculation increased the levels of lower brominated PBDEs in ryegrass. These results provide important information about the behavior of BDE-209 in the soil-plant system. - Research highlights: > BDE-209 dissipation in soil was affected by the proximity to the roots. > Microbial degradation contributes greatly to BDE-209 dissipation in the soil. > Twelve and twenty-four lower brominated PBDEs were detected in soil and plant samples. > AM inoculation increased root uptake and accumulation of BDE-209. - BDE-209 dissipation and degradation in soil were affected by both its proximity to ryegrass roots and inoculation with an AM fungus.

  16. Root colonization and growth promotion of sunflower (Helianthus annuus L.) by phosphate solubilizing Enterobacter sp. Fs-11.

    Science.gov (United States)

    Shahid, Muhammad; Hameed, Sohail; Imran, Asma; Ali, Saira; van Elsas, Jan Dirk

    2012-08-01

    An Enterobacter sp. Fs-11 was isolated from sunflower rhizosphere, identified on the basis of 16S rRNA gene sequence analysis (GeneBank accession no. GQ179978) and studied for its root colonization and growth promotion ability in sunflower. Morphologically, it was rod shaped Gram-negative, motile bacterium, producing 4.5 μg mL(-1) indole acetic acid in tryptophan-supplemented medium. It utilized 27 out of 95 substrates in BIOLOG GN2 micro plate system. It was able to convert insoluble tri-calcium phosphate to soluble phosphorus up to 43.5 μg mL(-1) with decrease in pH of the medium up to 4.5 after 10 days incubation at 28 ± 2 °C in the Pikovskaya's broth. High performance liquid chromatography of cell free supernatant showed that Fs-11 produced malic acid and gluconic acid (2.43 and 16.64 μg mL(-1), respectively) in Pikovskaya's broth. Analysis of 900 bp fragment of pyrroloquinoline quinine pqqE gene sequence showed 98 % homology with that of E. cloacae pqqE gene. Confocal laser scanning microscope revealed strong colonization of fluorescently labeled Fs-11 with sunflower roots. Sunflower inoculation with Fs-11 and its rifampicin resistant derivative in sterile sand and natural soil showed that Fs-11 colonized sunflower roots up to 30 days after transplanting in both sterile sand as well as natural soil. Moreover, Fs-11 inoculation resulted in increased plant height, fresh weight, dry weight and total phosphorus contents as compared to un-inoculated plants. The data showed that Enterobacter sp. Fs-11 is an efficient phosphate solubilizing and plant growth promoting rhizobacterium and has great potential to be used as bio-inoculant for sunflower under phosphorus deficient conditions.

  17. Comparison of digital radiography and apex locator with the conventional method in root length determination of primary teeth

    Directory of Open Access Journals (Sweden)

    I E Neena

    2011-01-01

    Full Text Available Aim: The purpose of this study was to compare the Working length in primary teeth endodontics using intra oral digital radiovisiography and apex locator with conventional method for accuracy. Materials and Methods: This in vivo study was conducted on 30 primary teeth which were indicated for pulpectomy in the patients of the age group of 5-11 years All experimental teeth had adequate remaining tooth structure for rubber dam isolation and radiographicaly visible canals. Endodontic treatment was required due to irreversible pulpitis or pulp necrosis. A standardized intraoral periapical radiograph of the tooth was taken using conventional method by paralleling technique. The distance between the source and the tooth, tooth and the films were standardized using X-ray positioning device. During the pulpectomy procedure, the working length was determined by digital radiograph and apex locator. The measurements were then compared with the conventional method of root canal measurement technique for accuracy Result: From the results obtained we can conclude that Working length determined in primary molars using digital radiography and Apex locator did not show any significant difference in the mean working length measurements when compared with the conventional radiographic method. Conclusions: Apex locator is comparable to conventional radiograph in determining the working length without radiation in the primary teeth. Intraoral digital radiography is the safest method in determining the working length with significant reduction in radiation exposure.Hence, both the techniques can be safely used as alternatives to conventional radiographic methods in determining working length in primary teeth.

  18. Comparison of digital radiography and apex locator with the conventional method in root length determination of primary teeth.

    Science.gov (United States)

    Neena, I E; Ananthraj, A; Praveen, P; Karthik, V; Rani, P

    2011-01-01

    The purpose of this study was to compare the Working length in primary teeth endodontics using intra oral digital radiovisiography and apex locator with conventional method for accuracy. This in vivo study was conducted on 30 primary teeth which were indicated for pulpectomy in the patients of the age group of 5-11 years All experimental teeth had adequate remaining tooth structure for rubber dam isolation and radiographicaly visible canals. Endodontic treatment was required due to irreversible pulpitis or pulp necrosis. A standardized intraoral periapical radiograph of the tooth was taken using conventional method by paralleling technique. The distance between the source and the tooth, tooth and the films were standardized using X-ray positioning device. During the pulpectomy procedure, the working length was determined by digital radiograph and apex locator. The measurements were then compared with the conventional method of root canal measurement technique for accuracy. From the results obtained we can conclude that Working length determined in primary molars using digital radiography and Apex locator did not show any significant difference in the mean working length measurements when compared with the conventional radiographic method. Apex locator is comparable to conventional radiograph in determining the working length without radiation in the primary teeth. Intraoral digital radiography is the safest method in determining the working length with significant reduction in radiation exposure.Hence, both the techniques can be safely used as alternatives to conventional radiographic methods in determining working length in primary teeth.

  19. Accumulation of flavonoids and phenolic compounds in olive tree roots in response to mycorrhizal colonization: A possible mechanism for regulation of defense molecules.

    Science.gov (United States)

    Mechri, Beligh; Tekaya, Meriem; Cheheb, Hechmi; Attia, Faouzi; Hammami, Mohamed

    2015-08-01

    The arbuscular mycorrhizal (AM) fungus promotes plant growth and can alter the production of primary and secondary metabolites. The aim of this work was to determine the influence of AM fungi colonization on the content of phenolic compounds, flavonoids and soluble carbohydrates in olive (Olea europaea L.) tree roots. The results revealed that mycorrhizal plants had a higher content of flavonoids and total phenols. Analysis of sugar contents showed enhanced levels of sucrose and fructose in mycorrhizal roots, while glucose amounts stayed constant. The DPPH radical-scavenging activity of the mycorrhizal root methanolic extracts was higher than that of the non- mycorrhizal root methanolic extracts. These results indicated that olive tree roots contain significant amounts of phenolic compounds, important factors for antioxidant capacity, which can be substantially modified by colonization of olive trees with AM fungi. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. The Presence of Telomere Fusion in Sporadic Colon Cancer Independently of Disease Stage, TP53/KRAS Mutation Status, Mean Telomere Length, and Telomerase Activity

    Directory of Open Access Journals (Sweden)

    Hiromi Tanaka

    2014-10-01

    Full Text Available Defects in telomere maintenance can result in telomere fusions that likely play a causative role in carcinogenesis by promoting genomic instability. However, this proposition remains to be fully understood in human colon carcinogenesis. In the present study, the temporal sequence of telomere dysfunction dynamics was delineated by analyzing telomere fusion, telomere length, telomerase activity, hotspot mutations in KRAS or BRAF, and TP53 of tissue samples obtained from 18 colon cancer patients. Our results revealed that both the deficiency of p53 and the shortening of mean telomere length were not necessary for producing telomere fusions in colon tissue. In five cases, telomere fusion was observed even in tissue adjacent to cancerous lesions, suggesting that genomic instability is initiated in pathologically non-cancerous lesions. The extent of mean telomere attrition increased with lymph node invasiveness of tumors, implying that mean telomere shortening correlates with colon cancer progression. Telomerase activity was relatively higher in most cancer tissues containing mutation(s in KRAS or BRAF and/or TP53 compared to those without these hotspot mutations, suggesting that telomerase could become fully active at the late stage of colon cancer development. Interestingly, the majority of telomere fusion junctions in colon cancer appeared to be a chromatid-type containing chromosome 7q or 12q. In sum, this meticulous correlative study not only highlights the concept that telomere fusion is present in the early stages of cancer regardless of TP53/KRAS mutation status, mean telomere length, and telomerase activity, but also provides additional insights targeting key telomere fusion junctions which may have significant implications for colon cancer diagnoses.

  1. Application of a new PCR primer for terminal restriction fragment length polymorphism analysis of the bacterial communities in plant roots.

    Science.gov (United States)

    Sakai, Masao; Matsuka, Akira; Komura, Taichi; Kanazawa, Shinjiro

    2004-10-01

    Contamination with plastid small subunit (SSU) rDNA is a major drawback when analyzing the bacterial communities of plant roots using culture-independent methods. In this study, a polymerase chain reaction (PCR) primer, 783r, was designed and tested to specifically amplify the SSU rDNA of various bacterial species without amplifying the SSU rDNA of plant plastids. To confirm how useful the community analysis of rhizobacteria is using 783r, the terminal restriction fragment length polymorphism (T-RFLP) method was performed with wheat (Triticum aestivum) and spinach (Spinacea oleracea) root samples. Using the standard T-RFLP method, a large T-RF peak of plant plastid SSU rDNA interfered with the bacterial community analysis. In contrast, the T-RFLP method using the 783r primer was able to detect the bacterial DNA while directly eliminating the influence of the plant-derived DNA extracted from the plant roots. Primer 783r might, therefore, be a useful PCR primer for the culture-independent analysis of bacterial communities in plant roots using SSU rDNA.

  2. Soil type links microbial colonization of rice roots to methane emission

    NARCIS (Netherlands)

    Conrad, R.; Klose, M.; Noll, M.; Kemnitz, D.; Bodelier, P.L.E.

    2008-01-01

    Most of the methane (CH4) emission from rice fields is derived from plant photosynthates, which are converted to CH4. Rice cluster I (RC-1) archaea colonizing the rhizosphere were found to be the methanogens responsible for this process. Hence, RC-1 methanogens seem to play a crucial role in

  3. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry

    NARCIS (Netherlands)

    Soudzilovskaia, N.A.; Douma, J.C.; Akhmetzhanova, A.A.; Bodegom, van P.M.; Cornwell, W.K.; Moens, E.J.; Treseder, K.K.; Tibbett, M.; Wang, Y.P.; Cornelissen, J.H.C.

    2015-01-01

    Aim Most vascular plants on Earth form mycorrhizae, a symbiotic relationship between plants and fungi. Despite the broad recognition of the importance of mycorrhizae for global carbon and nutrient cycling, we do not know how soil and climate variables relate to the intensity of colonization of plant

  4. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry

    NARCIS (Netherlands)

    Soudzilovskaia, N.A.; Douma, J.C.; Akhmetzhanova, A.A.; van Bodegom, P.M.; Cornwell, W.K.; Moens, E.J.; Treseder, K.K.; Tibbett, M.; Wang, Y.-P.; Cornelissen, J.H.C.

    2015-01-01

    Aim: Most vascular plants on Earth form mycorrhizae, a symbiotic relationship between plants and fungi. Despite the broad recognition of the importance of mycorrhizae for global carbon and nutrient cycling, we do not know how soil and climate variables relate to the intensity of colonization of

  5. Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest understory

    DEFF Research Database (Denmark)

    Olsrud, Maria; Carlsson, Bengt Å.; Svensson, Brita M.

    2010-01-01

    . To place the belowground results into an ecosystem context we also investigated how plant cover and nutrient concentrations in leaves responded to elevated atmospheric CO2 concentrations and warming. The ErM colonization in ericaceous dwarf shrubs increased under elevated atmospheric CO2 concentrations....... The elevated CO2 did not affect total plant cover but the plant cover was increased under warming, which might be due to increased N availability in soil. FE colonization in grass roots decreased under enhanced CO2 and under warming, which might be due to increased root growth, to which the FE fungi could...

  6. Enzymatic activities and arbuscular mycorrhizal colonization of Plantago lanceolata and Plantago major in a soil root zone under heavy metal stress.

    Science.gov (United States)

    Gucwa-Przepióra, Ewa; Nadgórska-Socha, Aleksandra; Fojcik, Barbara; Chmura, Damian

    2016-03-01

    The objectives of the present field study were to examine the soil enzyme activities in the soil root zones of Plantago lanceolata and Plantago major in different heavy metal contaminated stands. Moreover, the investigations concerned the intensity of root endophytic colonization and metal bioaccumulation in roots and shoots. The investigated Plantago species exhibited an excluder strategy, accumulating higher metal content in the roots than in the shoots. The heavy metal accumulation levels found in the two plantain species in this study were comparable to other plants suggested as phytostabilizers; therefore, the selected Plantago species may be applied in the phytostabilization of heavy metal contaminated areas. The lower level of soil enzymes (dehydrogenase, urease, acid, and alkaline phosphatase) as well as the higher bioavailability of metals in the root zone soil of the two plantain species were found in an area affected by smelting activity, where organic matter content in the soil was also the smallest. Mycorrhizal colonization on both species in the contaminated area was similar to colonization in non-contaminated stands. However, the lowest arbuscule occurrence and an absence of dark septate endophytes were found in the area affected by the smelting activity. It corresponded with the lowest plant cover observed in this stand. The assessment of enzyme activity, mycorrhizal colonization, and the chemical and physical properties of soils proved to be sensitive to differences between sites and between Plantago species.

  7. Shortened of the crown and root lengths of the mandibular permanent molar in beta major thalassemia children

    Directory of Open Access Journals (Sweden)

    Indra Primathena

    2011-07-01

    Full Text Available Beta major thalassemia is a genetically inherited blood disorder due to a genetic mutation on the polypeptide chains of hemoglobin which is manifested in the growth and development of the tooth. The objectives of the investigation were to obtain differences of the crown and root lengths of the mandibular first right side permanent molar between beta major thalassemia children and normal children group at the matching ages of 11 to 13 years old. The descriptive comparative method was used in the study and samples were selected using the purposive sampling technique. Sample numbers, which were obtained using the consecutive sampling technique, consists of 12 children of beta major thalassemia and 12 of normal children at the matching ages of 11 to 13 years. Periapical radiographs of both thalassemia and normal children were administered using the method of Seow and Lai. Data were analyzed using t-test method. The study revealed that the crown and root lengths of the mandibular first right side permanent molar of beta major thalassemia children were shorter than normal children at the ages of 11 to 13 years.

  8. Accelerated Osteogenic Orthodontics™ for retreatment of a patient with diminished root length and absence of the maxillary central incisor

    Directory of Open Access Journals (Sweden)

    Armando Montesinos F

    2015-10-01

    Full Text Available An 18-year-old female patient visited a university orthodontics department with a chief complaint of an unesthetic appearance of her teeth, including a protruded upper central incisor and unsatisfactory results from previous orthodontic treatment. Pretreatment records showed a Class II skeletal and dental relation with proclined upper and lower incisors, replacement of an absent upper left central incisor with the left upper cuspid, presence of the upper left deciduous cuspid, mild crowding, and 4 mm of overbite and overjet. The panoramic radiograph showed shortened roots of multiple teeth. Accelerated Osteogenic Orthodontics™ (AOO™ was recommended as an approach to reduce the treatment time and the risk of further root shortening. Despite being more expensive and requiring a surgical procedure, this treatment option was very attractive to the patient. The overall treatment time was 14 months. Facial balance was improved, and good occlusal relationships were achieved from the functional and esthetic perspectives. In conclusion, surgically facilitated orthodontics (specifically, AOO™ is an efficient and safe therapeutic tool for treating or retreating orthodontic patients with diminished root length.

  9. Accelerated Osteogenic Orthodontics™ for retreatment of a patient with diminished root length and absence of the maxillary central incisor.

    Science.gov (United States)

    Montesinos F, Armando; Linares T, Silvana; Pérez-Gasque B, Marisol

    2015-10-01

    An 18-year-old female patient visited a university orthodontics department with a chief complaint of an unesthetic appearance of her teeth, including a protruded upper central incisor and unsatisfactory results from previous orthodontic treatment. Pretreatment records showed a Class II skeletal and dental relation with proclined upper and lower incisors, replacement of an absent upper left central incisor with the left upper cuspid, presence of the upper left deciduous cuspid, mild crowding, and 4 mm of overbite and overjet. The panoramic radiograph showed shortened roots of multiple teeth. Accelerated Osteogenic Orthodontics™ (AOO™) was recommended as an approach to reduce the treatment time and the risk of further root shortening. Despite being more expensive and requiring a surgical procedure, this treatment option was very attractive to the patient. The overall treatment time was 14 months. Facial balance was improved, and good occlusal relationships were achieved from the functional and esthetic perspectives. In conclusion, surgically facilitated orthodontics (specifically, AOO™) is an efficient and safe therapeutic tool for treating or retreating orthodontic patients with diminished root length.

  10. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots.

    Science.gov (United States)

    Alvarez, Maricel; Huygens, Dries; Fernandez, Carlos; Gacitúa, Yessy; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Infection with ectomycorrhizal fungi can increase the ability of plants to resist drought stress through morphophysiological and biochemical mechanisms. However, the metabolism of antioxidative enzyme activities in the ectomycorrhizal symbiosis remains poorly understood. This study investigated biomass production, reactive oxygen metabolism (hydrogen peroxide and malondialdehyde concentration) and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in pure cultures of the ectomycorrhizal fungi Descolea antartica Sing. and Pisolithus tinctorius (Pers.) Coker & Couch, and non-mycorrhizal and mycorrhizal roots of Nothofagus dombeyi (Mirb.) roots under well-watered conditions and drought conditions (DC). The studied ectomycorrhizal fungi regulated their antioxidative enzyme metabolism differentially in response to drought, resulting in cellular damage in D. antartica but not in P. tinctorius. Ectomycorrhizal inoculation and water treatment had a significant effect on all parameters studied, including relative water content of the plant. As such, N. dombeyi plants in symbiosis experienced a lower oxidative stress effect than non-mycorrhizal plants under DC. Additionally, ectomycorrhizal N. dombeyi roots showed a greater antioxidant enzyme activity relative to non-mycorrhizal roots, an effect which was further expressed under DC. The association between the non-specific P. tinctorius and N. dombeyi had a more effective reactive oxygen species (ROS) metabolism than the specific D. antartica-N. dombeyi symbiosis. We conclude that the combination of effective ROS prevention and ROS detoxification by ectomycorrhizal plants resulted in reduced cellular damage and increased plant growth relative to non-mycorrhizal plants under drought.

  11. Functional Characteristics of an Endophyte Community Colonizing Rice Roots as Revealed by Metagenomic Analysis

    NARCIS (Netherlands)

    Sessitsch, A.; Hardoim, P.; Doering, J.; Weilharter, A.; Krause, A.; Woyke, T.; Mitter, B.; Hauberg-Lotte, L.; Friedrich, F.; Rahalkar, M.; Hurek, T.; Sarkar, A.; Bodrossy, L.; van Overbeek, L.; Brar, D.; van Elsas, J. D.; Reinhold-Hurek, B.

    Roots are the primary site of interaction between plants and microorganisms. To meet food demands in changing climates, improved yields and stress resistance are increasingly important, stimulating efforts to identify factors that affect plant productivity. The role of bacterial endophytes that

  12. Functional Characteristics of an Endophyte Community Colonizing Rice Roots as Revealed by Metagenomic Analysis

    NARCIS (Netherlands)

    Sessitsch, A.; Hardoim, P.R.; Doring, J.; Weilharter, A.; Krause, A.; Woyke, T.; Mitter, B.; Hauberg-Lotte, L.; Friedrich, F.; Rahalkar, M.; Hurek, T.; Sarkar, A.; Bodrossy, L.; Overbeek, van L.S.; Brar, D.; Elsas, J.D.; Reinhold-Hurek, B.

    2012-01-01

    Roots are the primary site of interaction between plants and microorganisms. To meet food demands in changing climates, improved yields and stress resistance are increasingly important, stimulating efforts to identify factors that affect plant productivity. The role of bacterial endophytes that

  13. Involvement of the Reserve Material Poly-β-Hydroxybutyrate in Azospirillum brasilense Stress Endurance and Root Colonization

    Science.gov (United States)

    Kadouri, Daniel; Jurkevitch, Edouard; Okon, Yaacov

    2003-01-01

    When grown under suboptimal conditions, rhizobacteria of the genus Azospirillum produce high levels of poly-β-hydroxybutyrate (PHB). Azospirillum brasilense strain Sp7 and a phbC (PHB synthase) mutant strain in which PHB production is impaired were evaluated for metabolic versatility, for the ability to endure various stress conditions, for survival in soil inoculants, and for the potential to promote plant growth. The carbon source utilization data were similar for the wild-type and mutant strains, but the generation time of the wild-type strain was shorter than that of the mutant strain with all carbon sources tested. The ability of the wild type to endure UV irradiation, heat, osmotic pressure, osmotic shock, and desiccation and to grow in the presence of hydrogen peroxide was greater than that of the mutant strain. The motility and cell aggregation of the mutant strain were greater than the motility and cell aggregation of the wild type. However, the wild type exhibited greater chemotactic responses towards attractants than the mutant strain exhibited. The wild-type strain exhibited better survival than the mutant strain in carrier materials used for soil inoculants, but no difference in the ability to promote plant growth was detected between the strains. In soil, the two strains colonized roots to the same extent. It appears that synthesis and utilization of PHB as a carbon and energy source by A. brasilense under stress conditions favor establishment of this bacterium and its survival in competitive environments. However, in A. brasilense, PHB production does not seem to provide an advantage in root colonization under the conditions tested. PMID:12788722

  14. Is the root-colonizing endophyte Acremonium strictum an ericoid mycorrhizal fungus?

    Science.gov (United States)

    Grunewaldt-Stöcker, Gisela; von Alten, Henning

    2016-07-01

    In previous investigations, we found that Acremonium strictum (strain DSM 100709) developed intracellular structures with similarity to mycelia of ericoid mycorrhizal fungi in the rhizodermal cells of flax plants and in hair roots of Rhododendron plantlets. A. strictum had also been isolated from roots of ericaceous salal plants and was described as an unusual ericoid mycorrhizal fungus (ERMF). As its mycorrhizal traits were doubted, we revised the hypothesis of a mycorrhizal nature of A. strictum. A successful synthesis of mycorrhiza in hair roots of inoculated ericaceous plants was a first step of evidence, followed by fluorescence microscopy with FUN(®)1 cell stain to observe the vitality of the host cells at the early infection stage. In inoculation trials with in vitro-raised mycorrhiza-free Rhododendron plants in axenic liquid culture and in greenhouse substrate culture, A. strictum was never observed in living hair root cells. As compared to the ERMF Oidiodendron maius and Rhizoscyphus ericae that invaded metabolically active host cells and established a symbiotic unit, A. strictum was only found in cells that were dead or in the process of dying and in the apoplast. In conclusion, A. strictum does not behave like a common ERMF-if it is one at all. A comparison of A. strictum isolates from ericaceous and non-ericaceous hosts could reveal further identity details to generalize or specify our findings on the symbiotic nature of A. strictum. At least, the staining method enables to discern between true mycorrhizal and other root endophytes-a tool for further studies.

  15. Uncovering genes and ploidy involved in the high diversity in root hair density, length and response to local scarce phosphate in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Markus G Stetter

    Full Text Available Plant root hairs increase the root surface to enhance the uptake of sparingly soluble and immobile nutrients, such as the essential nutrient phosphorus, from the soil. Here, root hair traits and the response to scarce local phosphorus concentration were studied in 166 accessions of Arabidopsis thaliana using split plates. Root hair density and length were correlated, but highly variable among accessions. Surprisingly, the well-known increase in root hair density under low phosphorus was mostly restricted to genotypes that had less and shorter root hairs under P sufficient conditions. By contrast, several accessions with dense and long root hairs even had lower hair density or shorter hairs in local scarce phosphorus. Furthermore, accessions with whole-genome duplications developed more dense but phosphorus-insensitive root hairs. The impact of genome duplication on root hair density was confirmed by comparing tetraploid accessions with their diploid ancestors. Genome-wide association mapping identified candidate genes potentially involved in root hair responses tp scarce local phosphate. Knock-out mutants in identified candidate genes (CYR1, At1g32360 and RLP48 were isolated and differences in root hair traits in the mutants were confirmed. The large diversity in root hair traits among accessions and the diverse response when local phosphorus is scarce is a rich resource for further functional analyses.

  16. Consequences of pre-inoculation with native arbuscular mycorrhizae on root colonization and survival of Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) seedlings after transplanting

    Science.gov (United States)

    Bill Eugene Davidson

    2015-01-01

    Inoculation of seedlings with arbuscular mycorrhizal fungi (AMF) is a common practice aimed at improving seedling establishment. The success of this practice largely depends on the ability of the inoculum to multiply and colonize the growing root system after transplanting. These events were investigated in Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush...

  17. Root colonization of bait plants by indigenous arbuscular mycorrhizal fungal communities is not a suitable indicator of agricultural land-use legacy

    Czech Academy of Sciences Publication Activity Database

    Jansa, Jan; Řezáčová, Veronika; Šmilauer, P.; Oberholzer, H.-R.; Egli, S.

    2016-01-01

    Roč. 231, SEPTEMBER (2016), s. 310-319 ISSN 0167-8809 R&D Projects: GA ČR GAP504/12/1665; GA MŠk(CZ) LK11224 Institutional support: RVO:61388971 Keywords : Arbuscular mycorrhiza * Geography * Root colonization Subject RIV: EE - Microbiology, Virology Impact factor: 4.099, year: 2016

  18. Viminaria juncea does not vary its shoot phosphorus concentration and only marginally decreases its mycorrhizal colonization and cluster-root dry weight under a wide range of phosphorus supplies.

    Science.gov (United States)

    de Campos, Mariana C R; Pearse, Stuart J; Oliveira, Rafael S; Lambers, Hans

    2013-05-01

    The Australian legume species Viminaria juncea forms both cluster roots and mycorrhizal associations. The aim of this study was to identify if these root specializations are expressed at differential supplies of phosphorus (P) and at different shoot P concentrations [P]. Seedlings were planted in sand and provided with a mycorrhizal inoculum and basal nutrients plus one of 21 P treatments, ranging from 0 to 50 mg P kg(-1) dry soil. Plants were harvested after 12 weeks, and roots, shoots and cluster roots were measured for length and fresh and dry weight. The number of cluster roots, the percentage of mycorrhizal colonization, and shoot [P] were determined. Shoot biomass accumulation increased with increasing P supply until a shoot dry weight of 3 g was reached at a P supply of approx. 27·5 mg P kg(-1) dry soil. Neither cluster-root formation nor mycorrhizal colonization was fully suppressed at the highest P supply. Most intriguingly, shoot [P] did not differ across treatments, with an average of 1·4 mg P kg(-1) shoot dry weight. The almost constant shoot [P] in V. juncea over the very wide range of P supplies is, to our knowledge, unprecedented. To maintain these stable values, this species down-regulates its growth rate when no P is supplied; conversely, it down-regulates its P-uptake capacity very tightly at the highest P supplies, when its maximum growth rate has been reached. It is proposed that the persistence of cluster roots and mycorrhizal colonization up to the highest P treatments is a consequence of its tightly controlled shoot [P]. This unusual P physiology of V. juncea is surmised to be related to the habitat of this N2-fixing species. Water and nutrients are available at a low but steady supply for most of the year, negating the need for storage of P which would be metabolically costly and be at the expense of metabolic energy and P available for symbiotic N2 fixation.

  19. Laxative Effects of Total Diterpenoids Extracted from the Roots of Euphorbia pekinensis Are Attributable to Alterations of Aquaporins in the Colon

    Directory of Open Access Journals (Sweden)

    Kuilong Wang

    2017-03-01

    Full Text Available This study was designed to evaluate the toxic effects of total diterpenoids extracted from the roots of Euphorbia pekinensis (TDEP on the mouse colon and to clarify the mechanism. Dried powdered roots of E. pekinensis were extracted with chloroform, and then the extract (6.7 g was subjected to column chromatography and preparative TLC, giving TDEP. Using the HPLC-DAD method, the purity of TDEP was determined as 85.26%. Mice were orally administered with TDEP (3.942, 19.71 and 39.42 mg/kg, after which fecal water content and colon water content were examined. Both of them increased over time after TDEP administration, accompanied by severe diarrhea. Three hours after TDEP administration, the animals were sacrificed to obtain their colons. The mRNA and protein expression levels of aquaporin 1 (AQP1, AQP3 and AQP4 in the colon were measured using real-time RT-PCR and Western blotting, respectively. TDEP significantly increased the levels of AQP3 and AQP4, but decreased that of AQP1 in dose-dependent manners. Similarly, Pekinenin C, a casbane diterpenoid, significantly increased AQP3 protein and mRNA expressions in human intestinal epithelial cells (HT-29. Histopathological examination revealed that the colon was not significantly damaged. The laxative effects of E. pekinensis were associated with the alterations of AQPs in the colon by TDEP.

  20. Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana officinalis L.

    Science.gov (United States)

    Nell, Monika; Wawrosch, Christoph; Steinkellner, Siegrid; Vierheilig, Horst; Kopp, Brigitte; Lössl, Andreas; Franz, Chlodwig; Novak, Johannes; Zitterl-Eglseer, Karin

    2010-03-01

    In some medicinal plants a specific plant-fungus association, known as arbuscular mycorrhizal (AM) symbiosis, increases the levels of secondary plant metabolites and/or plant growth. In this study, the effects of three different AM treatments on biomass and sesquiterpenic acid concentrations in two IN VITRO propagated genotypes of valerian ( VALERIANA OFFICINALIS L., Valerianaceae) were investigated. Valerenic, acetoxyvalerenic and hydroxyvalerenic acid levels were analyzed in the rhizome and in two root fractions. Two of the AM treatments significantly increased the levels of sesquiterpenic acids in the underground parts of valerian. These treatments, however, influenced the biomass of rhizomes and roots negatively. Therefore this observed increase was not accompanied by an increase in yield of sesquiterpenic acids per plant. Furthermore, one of the two genotypes had remarkably high hydroxyvalerenic acid contents and can be regarded as a hydroxyvalerenic acid chemotype. Copyright Georg Thieme Verlag KG Stuttgart New York.

  1. Striga seed-germination activity of root exudates and compounds present in stems of Striga host and nonhost (trap crop) plants is reduced due to root colonization by arbuscular mycorrhizal fungi.

    NARCIS (Netherlands)

    Lendzemo, V.W.; Kuyper, T.W.; Vierheilig, H.

    2009-01-01

    Root colonization by arbuscular mycorrhizal (AM) fungi reduces stimulation of seed germination of the plant parasite Striga (Orobanchaceae). This reduction can affect not only host plants for Striga, resulting in a lower parasite incidence, but also false hosts or trap crops, which induce suicidal

  2. Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes.

    Science.gov (United States)

    Camilios-Neto, Doumit; Bonato, Paloma; Wassem, Roseli; Tadra-Sfeir, Michelle Z; Brusamarello-Santos, Liziane C C; Valdameri, Glaucio; Donatti, Lucélia; Faoro, Helisson; Weiss, Vinicius A; Chubatsu, Leda S; Pedrosa, Fábio O; Souza, Emanuel M

    2014-05-16

    The rapid growth of the world's population demands an increase in food production that no longer can be reached by increasing amounts of nitrogenous fertilizers. Plant growth promoting bacteria (PGPB) might be an alternative to increase nitrogenous use efficiency (NUE) in important crops such wheat. Azospirillum brasilense is one of the most promising PGPB and wheat roots colonized by A. brasilense is a good model to investigate the molecular basis of plant-PGPB interaction including improvement in plant-NUE promoted by PGPB. We performed a dual RNA-Seq transcriptional profiling of wheat roots colonized by A. brasilense strain FP2. cDNA libraries from biological replicates of colonized and non-inoculated wheat roots were sequenced and mapped to wheat and A. brasilense reference sequences. The unmapped reads were assembled de novo. Overall, we identified 23,215 wheat expressed ESTs and 702 A. brasilense expressed transcripts. Bacterial colonization caused changes in the expression of 776 wheat ESTs belonging to various functional categories, ranging from transport activity to biological regulation as well as defense mechanism, production of phytohormones and phytochemicals. In addition, genes encoding proteins related to bacterial chemotaxi, biofilm formation and nitrogen fixation were highly expressed in the sub-set of A. brasilense expressed genes. PGPB colonization enhanced the expression of plant genes related to nutrient up-take, nitrogen assimilation, DNA replication and regulation of cell division, which is consistent with a higher proportion of colonized root cells in the S-phase. Our data support the use of PGPB as an alternative to improve nutrient acquisition in important crops such as wheat, enhancing plant productivity and sustainability.

  3. Differential Responses of Vanilla Accessions to Root Rot and Colonization by Fusarium oxysporum f. sp. radicis-vanillae.

    Science.gov (United States)

    Koyyappurath, Sayuj; Conéjéro, Geneviève; Dijoux, Jean Bernard; Lapeyre-Montès, Fabienne; Jade, Katia; Chiroleu, Frédéric; Gatineau, Frédéric; Verdeil, Jean Luc; Besse, Pascale; Grisoni, Michel

    2015-01-01

    Root and stem rot (RSR) disease caused by Fusarium oxysporum f. sp. radicis-vanillae (Forv) is the most damaging disease of vanilla (Vanilla planifolia and V. × tahitensis, Orchidaceae). Breeding programs aimed at developing resistant vanilla varieties are hampered by the scarcity of sources of resistance to RSR and insufficient knowledge about the histopathology of Forv. In this work we have (i) identified new genetic resources resistant to RSR including V. planifolia inbreds and vanilla relatives, (ii) thoroughly described the colonization pattern of Forv into selected vanilla accessions, confirming its necrotic non-vascular behavior in roots, and (iii) evidenced the key role played by hypodermis, and particularly lignin deposition onto hypodermal cell walls, for resistance to Forv in two highly resistant vanilla accessions. Two hundred and fifty-four vanilla accessions were evaluated in the field under natural conditions of infection and in controlled conditions using in vitro plants root-dip inoculated by the highly pathogenic isolate Fo072. For the 26 accessions evaluated in both conditions, a high correlation was observed between field evaluation and in vitro assay. The root infection process and plant response of one susceptible and two resistant accessions challenged with Fo072 were studied using wide field and multiphoton microscopy. In susceptible V. planifolia, hyphae penetrated directly into the rhizodermis in the hairy root region then invaded the cortex through the passage cells where it induced plasmolysis, but never reached the vascular region. In the case of the resistant accessions, the penetration was stopped at the hypodermal layer. Anatomical and histochemical observations coupled with spectral analysis of the hypodermis suggested the role of lignin deposition in the resistance to Forv. The thickness of lignin constitutively deposited onto outer cell walls of hypodermis was highly correlated with the level of resistance for 21 accessions

  4. Differential responses of vanilla accessions to root rot and colonization by Fusarium oxysporum f. sp. radicis-vanillae.

    Directory of Open Access Journals (Sweden)

    Sayuj eKoyyappurath

    2015-12-01

    Full Text Available Root and stem rot (RSR disease caused by Fusarium oxysporum f. sp. radicis-vanillae (Forv is the most damaging disease of vanilla (Vanilla planifolia and V. ×tahitensis, Orchidaceae. Breeding programs aimed at developing resistant vanilla varieties are hampered by the scarcity of sources of resistance to RSR and insufficient knowledge about the histopathology of Forv. In this work we have i identified new genetic resources resistant to RSR including V. planifolia inbreds and vanilla relatives, ii thoroughly described the colonization pattern of Forv into selected vanilla accessions, confirming its necrotic non-vascular behavior in roots, and iii evidenced the key role played by hypodermis, and particularly lignin deposition onto hypodermal cell walls, for resistance to Forv in two highly resistant vanilla accessions.Two hundred and fifty-four vanilla accessions were evaluated in the field under natural conditions of infection and in controlled conditions using in-vitro plants root-dip inoculated by the highly pathogenic isolate Fo072. For the 26 accessions evaluated in both conditions, a high correlation was observed between field evaluation and in-vitro assay.The root infection process and plant response of one susceptible and two resistant accessions challenged with Fo072 were studied using wide field and multiphoton microscopy. In susceptible V. planifolia, hyphae penetrated directly into the rhizodermis in the hairy root region then invaded the cortex through the passage cells where it induced plasmolysis, but never reached the vascular region. In the case of the resistant accessions, the penetration was stopped at the hypodermal layer. Anatomical and histochemical observations coupled with spectral analysis of the hypodermis suggested the role of lignin deposition in the resistance to Forv. The thickness of lignin constitutively deposited onto outer cell walls of hypodermis was highly correlated with the level of resistance for 21

  5. Direct digital radiography versus conventional radiography - assessment of visibility of file length placed in the root canal: An in vitro study

    OpenAIRE

    Vaiyapuri Ravi; Priyadarshini Lipee; Canagapalli Venkat Nakabushan Rao; Lakshminarayanan Lakshmikanthan

    2012-01-01

    Aim and Objective: To compare conventional and direct digital radiography (DDR) in working length measurement of the root canal and to assess the significance of the different enhancement modes provided by the software to visualize the file length. Materials and Methods: Access cavities were prepared in 30 extracted maxillary central incisors. Size 15 k-file was introduced into the canal till it was flush with the apical foramen. The working length was calculated as 0.5 mm less than the verni...

  6. Modeling root length density of field grown potatoes under different irrigation strategies and soil textures using artificial neural networks

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Sepaskhah, Ali Reza; Andersen, Mathias Neumann

    2014-01-01

    Root length density (RLD) is a highly wanted parameter for use in crop growth modeling but difficult to measure under field conditions. Therefore, artificial neural networks (ANNs) were implemented to predict the RLD of field grown potatoes that were subject to three irrigation strategies and three...... soil textures with different soil water status and soil densities. The objectives of the study were to test whether soil textural information, soil water status, and soil density might be used by ANN to simulate RLD at harvest. In the study 63 data pairs were divided into data sets of training (80......) of the eight input variables: soil layer intervals (D), percentages of sand (Sa), silt (Si), and clay (Cl), bulk density of soil layers (Bd), weighted soil moisture deficit during the irrigation strategies period (SMD), geometric mean particle size diameter (dg), and geometric standard deviation (σg...

  7. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species.

    Science.gov (United States)

    Liu, Bitao; Li, Hongbo; Zhu, Biao; Koide, Roger T; Eissenstat, David M; Guo, Dali

    2015-10-01

    In most cases, both roots and mycorrhizal fungi are needed for plant nutrient foraging. Frequently, the colonization of roots by arbuscular mycorrhizal (AM) fungi seems to be greater in species with thick and sparsely branched roots than in species with thin and densely branched roots. Yet, whether a complementarity exists between roots and mycorrhizal fungi across these two types of root system remains unclear. We measured traits related to nutrient foraging (root morphology, architecture and proliferation, AM colonization and extramatrical hyphal length) across 14 coexisting AM subtropical tree species following root pruning and nutrient addition treatments. After root pruning, species with thinner roots showed more root growth, but lower mycorrhizal colonization, than species with thicker roots. Under multi-nutrient (NPK) addition, root growth increased, but mycorrhizal colonization decreased significantly, whereas no significant changes were found under nitrogen or phosphate additions. Moreover, root length proliferation was mainly achieved by altering root architecture, but not root morphology. Thin-root species seem to forage nutrients mainly via roots, whereas thick-root species rely more on mycorrhizal fungi. In addition, the reliance on mycorrhizal fungi was reduced by nutrient additions across all species. These findings highlight complementary strategies for nutrient foraging across coexisting species with contrasting root traits. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.

    Science.gov (United States)

    Eissenstat, David M; Kucharski, Joshua M; Zadworny, Marcin; Adams, Thomas S; Koide, Roger T

    2015-10-01

    The identification of plant functional traits that can be linked to ecosystem processes is of wide interest, especially for predicting vegetational responses to climate change. Root diameter of the finest absorptive roots may be one plant trait that has wide significance. Do species with relatively thick absorptive roots forage in nutrient-rich patches differently from species with relatively fine absorptive roots? We measured traits related to nutrient foraging (root morphology and architecture, root proliferation, and mycorrhizal colonization) across six coexisting arbuscular mycorrhizal (AM) temperate tree species with and without nutrient addition. Root traits such as root diameter and specific root length were highly correlated with root branching intensity, with thin-root species having higher branching intensity than thick-root species. In both fertilized and unfertilized soil, species with thin absorptive roots and high branching intensity showed much greater root length and mass proliferation but lower mycorrhizal colonization than species with thick absorptive roots. Across all species, fertilization led to increased root proliferation and reduced mycorrhizal colonization. These results suggest that thin-root species forage more by root proliferation, whereas thick-root species forage more by mycorrhizal fungi. In mineral nutrient-rich patches, AM trees seem to forage more by proliferating roots than by mycorrhizal fungi. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. [Alveolar bone thickness and root length changes in the treatment of skeletal Class III patients facilitated by improved corticotomy: a cone-beam CT analysis].

    Science.gov (United States)

    Wu, Jiaqi; Jiang, Jiuhui; Xu, Li; Liang, Cheng; Li, Cuiying; Xu, Xiao

    2015-04-01

    To evaluate the alveolar bone thickness and root length changes of anterior teeth with cone-beam computed tomography (CBCT). CBCT scans were taken for 12 skeletal Class III patients who accepted the improved corticotomy (IC) procedures during pre-surgical orthodontics. The CBCT data in T1 (the maxillary dental arch was aligned and leveled) and T2 (extraction space closure) were superimposed and the alveolar bone thickness at root apex level and root length measurements were done. From T1 to T2, the buccal alveolar bone thickness for the upper lateral incisors increased from (1.89±0.83) to (2.47±1.02) mm (Pteeth of 72 was located in Grade 1, two teeth in Grade 2, one tooth in Grade 3. The improved corticotomy had the potential to increase the buccal alveolar bone thickness and the root resorption in most teeth was in Grade 1 according to Sharpe grading system.

  10. Poly-γ-Glutamic Acids Contribute to Biofilm Formation and Plant Root Colonization in Selected Environmental Isolates of Bacillus subtilis

    Science.gov (United States)

    Yu, Yiyang; Yan, Fang; Chen, Yun; Jin, Christopher; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacillus subtilis is long known to produce poly-γ-glutamic acids (γ-PGA) as one of the major secreted polymeric substances. In B. subtilis, the regulation of γ-PGA production and its physiological role are still unclear. B. subtilis is also capable of forming structurally complex multicellular communities, or biofilms, in which an extracellular matrix consisting of secreted proteins and polysaccharides holds individual cells together. Biofilms were shown to facilitate B. subtilis–plant interactions. In this study, we show that different environmental isolates of B. subtilis, all capable of forming biofilms, vary significantly in γ-PGA production. This is possibly due to differential regulation of γ-PGA biosynthesis genes. In many of those environmental isolates, γ-PGA seems to contribute to robustness and complex morphology of the colony biofilms, suggesting a role of γ-PGA in biofilm formation. Our evidence further shows that in selected B. subtilis strains, γ-PGA also plays a role in root colonization by the bacteria, pinpointing a possible function of γ-PGA in B. subtilis–plant interactions. Finally, we found that several pathways co-regulate both γ-PGA biosynthesis genes and genes for the biofilm matrix in B. subtilis, but in an opposing fashion. We discussed potential biological significance of that. PMID:27891125

  11. Effect of nicotine from tobacco root exudates on chemotaxis, growth, biocontrol efficiency, and colonization by Pseudomonas aeruginosa NXHG29.

    Science.gov (United States)

    Ma, Li; Zheng, Shuai Chao; Zhang, Ti Kun; Liu, Zi Yi; Wang, Xue Jian; Zhou, Xing Kui; Yang, Cheng Gang; Duo, Jin Ling; Mo, Ming He

    2018-02-03

    Accumulated evidence suggests that root exudates have a major role in mediating plant-microbe interactions in the rhizosphere. Here, we characterized tobacco root exudates (TREs) by GC-MS and nicotine, scopoletin, and octadecane were identified as three main components of TREs. Qualitative and quantitative chemotaxis assays revealed that Pseudomonas aeruginosa NXHG29 with antagonistic activity displayed positive chemotactic responses towards TREs and their three main components (nicotine, scopoletin, octadecane) and its enhanced chemotaxis were induced by these substances in a concentration-dependent manner. Furthermore, following GC-MS and chemotaxis analysis, nicotine was selected as the target for evaluation of the effect on NXHG29 regarding antagonism, growth, root colonization and biocontrol efficiency. Results of in vitro studies showed that nicotine as a sole carbon source could enhance growth of NXHG29 and significantly increased the antagonism of NXHG29. We also demonstrated that nicotine exerted enhancing effects on the colonization ability of NXHG29 on tobacco roots by combining CLSM observations with investigation of population level dynamics by selective dilution plating method. Results from greenhouse experiments suggested nicotine exhibited stimulatory effects on the biocontrol efficiency of NXHG29 against bacterial wilt and black shank on tobacco. The stimulatory effect of nicotine was affected by the concentration and timing of nicotine application and further supported by the results of population level of NXHG29 on tobacco roots. This is the first report on the enhancement effect of nicotine from TREs on an antagonistic bacterium for its root colonization, control of soil-borne pathogens, regarding the chemotaxis and in vitro antagonism and growth.

  12. The effects of inpatient exercise therapy on the length of hospital stay in stages I-III colon cancer patients: randomized controlled trial.

    Science.gov (United States)

    Ahn, Ki-Yong; Hur, Hyuk; Kim, Dong-Hyun; Min, Jihee; Jeong, Duck Hyoun; Chu, Sang Hui; Lee, Ji Won; Ligibel, Jennifer A; Meyerhardt, Jeffrey A; Jones, Lee W; Jeon, Justin Y; Kim, Nam Kyu

    2013-05-01

    This study aimed to examine the effects of a postsurgical, inpatient exercise program on postoperative recovery in operable colon cancer patients We conducted the randomized controlled trial with two arms: postoperative exercise vs. usual care. Patients with stages I-III colon cancer who underwent colectomy between January and December 2011 from the Colorectal Cancer Clinic, were recruited for the study. Subjects in the intervention group participated in the postoperative inpatient exercise program consisted of twice daily exercise, including stretching, core, balance, and low-intensity resistance exercises. The usual care group was not prescribed a structured exercise program. The primary endpoint was the length of hospital stay. Secondary endpoints were time to flatus, time to first liquid diet, anthropometric measurements, and physical function measurements. A total of 31 (86.1 %) patients completed the trial, with adherence to exercise interventions at 84.5 %. The mean length of hospital stay was 7.82 ± 1.07 days in the exercise group compared with 9.86 ± 2.66 days in usual care (mean difference, 2.03 days; 95 % confidence interval (CI), -3.47 to -0.60 days; p = 0.005) in per-protocol analysis. The mean time to flatus was 52.18 ± 21.55 h in the exercise group compared with 71.86 ± 29.2 h in the usual care group (mean difference, 19.69 h; 95 % CI, -38.33 to -1.04 h; p = 0.036). Low-to-moderate-intensity postsurgical exercise reduces length of hospital stay and improves bowel motility after colectomy procedure in patients with stages I-III colon cancer.

  13. Mutation in the edd gene encoding the 6-phosphogluconate dehydratase of Pseudomonas chlororaphis O6 impairs root colonization and is correlated with reduced induction of systemic resistance.

    Science.gov (United States)

    Kim, H J; Nam, H S; Anderson, A J; Yang, K Y; Cho, B H; Kim, Y C

    2007-01-01

    The primary objective of this study was to determine the role of 6-phosphogluconate dehydratase in root colonization and the induction of systemic resistance by the rhizobacterium, Pseudomonas chlororaphis O6. The edd gene encoding for 6-phosphogluconate dehydratase, which is one of the key enzymes in glucose utilization, was cloned. Transcription of the gene was higher in medium containing sugars than with organic acids. An edd mutant failed to grow on glucose but grew on organic acids. The edd mutant colonized tobacco roots at wild-type levels early after inoculation, but levels were lower by 12 days. The edd mutant failed to induce the systemic resistance in tobacco to a soft-rot pathogen at wild-type level. 6-Phosphogluconate dehydratase in P. chlororaphis O6 contributes to root colonization and induction of systemic resistance presumably as the consequence of its essential role in the Entner-Doudoroff (ED) pathway. Metabolism of sugars through the ED pathway in P. chlororaphis O6 may be important because it facilitates the production of inducers of systemic resistance including butanediol.

  14. Single and multiple resistance QTL delay symptom appearance and slow down root colonization by Aphanomyces euteiches in pea near isogenic lines.

    Science.gov (United States)

    Lavaud, C; Baviere, M; Le Roy, G; Hervé, M R; Moussart, A; Delourme, R; Pilet-Nayel, M-L

    2016-07-27

    Understanding the effects of resistance QTL on pathogen development cycle is an important issue for the creation of QTL combination strategies to durably increase disease resistance in plants. The oomycete pathogen Aphanomyces euteiches, causing root rot disease, is one of the major factors limiting the pea crop in the main producing countries. No commercial resistant varieties are currently available in Europe. Resistance alleles at seven main QTL were recently identified and introgressed into pea agronomic lines, resulting in the creation of Near Isogenic Lines (NILs) at the QTL. This study aimed to determine the effect of main A. euteiches resistance QTL in NILs on different steps of the pathogen life cycle. NILs carrying resistance alleles at main QTL in susceptible genetic backgrounds were evaluated in a destructive test under controlled conditions. The development of root rot disease severity and pathogen DNA levels in the roots was measured during ten days after inoculation. Significant effects of several resistance alleles at the two major QTL Ae-Ps7.6 and Ae-Ps4.5 were observed on symptom appearance and root colonization by A. euteiches. Some resistance alleles at three other minor-effect QTL (Ae-Ps2.2, Ae-Ps3.1 and Ae-Ps5.1) significantly decreased root colonization. The combination of resistance alleles at two or three QTL including the major QTL Ae-Ps7.6 (Ae-Ps5.1/Ae-Ps7.6 or Ae-Ps2.2/Ae-Ps3.1/Ae-Ps7.6) had an increased effect on delaying symptom appearance and/or slowing down root colonization by A. euteiches and on plant resistance levels, compared to the effects of individual or no resistance alleles. This study demonstrated the effects of single or multiple resistance QTL on delaying symptom appearance and/or slowing down colonization by A. euteiches in pea roots, using original plant material and a precise pathogen quantification method. Our findings suggest that single resistance QTL can act on multiple or specific steps of the disease development

  15. Seasonal and spatial distribution of roots and arbuscular ...

    African Journals Online (AJOL)

    Arbuscular mycorrhizal colonization (% of total roots length) was assessed after staining and observation under a compound microscope. Spores were extracted from soils by sucrose centrifugation and counted under the microscope. Root concentrations (cm per 100 g of dry soil) were greater on A. melliferathan on A. laeta ...

  16. Strain-specific quantification of root colonization by plant growth promoting rhizobacteria Bacillus firmus I-1582 and Bacillus amyloliquefaciens QST713 in non-sterile soil and field conditions

    Science.gov (United States)

    Mendis, Hajeewaka C.; Thomas, Varghese P.; Schwientek, Patrick; Salamzade, Rauf; Chien, Jung-Ting; Waidyarathne, Pramuditha; Kloepper, Joseph

    2018-01-01

    Bacillus amyloliquefaciens QST713 and B. firmus I-1582 are bacterial strains which are used as active ingredients of commercially-available soil application and seed treatment products Serenade® and VOTiVO®, respectively. These bacteria colonize plant roots promoting plant growth and offering protection against pathogens/pests. The objective of this study was to develop a qPCR protocol to quantitate the dynamics of root colonization by these two strains under field conditions. Primers and TaqMan® probes were designed based on genome comparisons of the two strains with publicly-available and unpublished bacterial genomes of the same species. An optimized qPCR protocol was developed to quantify bacterial colonization of corn roots after seed treatment. Treated corn seeds were planted in non-sterile soil in the greenhouse and grown for 28 days. Specific detection of bacteria was quantified weekly, and showed stable colonization between ~104–105 CFU/g during the experimental period for both bacteria, and the protocol detected as low as 103 CFU/g bacteria on roots. In a separate experiment, streptomycin-resistant QST713 and rifampicin-resistant I-1582 strains were used to compare dilution-plating on TSA with the newly developed qPCR method. Results also indicated that the presence of natural microflora and another inoculated strain does not affect root colonization of either one of these strains. The same qPCR protocol was used to quantitate root colonization by QST713 and I-1582 in two corn and two soybean varieties grown in the field. Both bacteria were quantitated up to two weeks after seeds were planted in the field and there were no significant differences in root colonization in either bacteria strain among varieties. Results presented here confirm that the developed qPCR protocol can be successfully used to understand dynamics of root colonization by these bacteria in plants growing in growth chamber, greenhouse and the field. PMID:29447287

  17. Strain-specific quantification of root colonization by plant growth promoting rhizobacteria Bacillus firmus I-1582 and Bacillus amyloliquefaciens QST713 in non-sterile soil and field conditions.

    Science.gov (United States)

    Mendis, Hajeewaka C; Thomas, Varghese P; Schwientek, Patrick; Salamzade, Rauf; Chien, Jung-Ting; Waidyarathne, Pramuditha; Kloepper, Joseph; De La Fuente, Leonardo

    2018-01-01

    Bacillus amyloliquefaciens QST713 and B. firmus I-1582 are bacterial strains which are used as active ingredients of commercially-available soil application and seed treatment products Serenade® and VOTiVO®, respectively. These bacteria colonize plant roots promoting plant growth and offering protection against pathogens/pests. The objective of this study was to develop a qPCR protocol to quantitate the dynamics of root colonization by these two strains under field conditions. Primers and TaqMan® probes were designed based on genome comparisons of the two strains with publicly-available and unpublished bacterial genomes of the same species. An optimized qPCR protocol was developed to quantify bacterial colonization of corn roots after seed treatment. Treated corn seeds were planted in non-sterile soil in the greenhouse and grown for 28 days. Specific detection of bacteria was quantified weekly, and showed stable colonization between ~104-105 CFU/g during the experimental period for both bacteria, and the protocol detected as low as 103 CFU/g bacteria on roots. In a separate experiment, streptomycin-resistant QST713 and rifampicin-resistant I-1582 strains were used to compare dilution-plating on TSA with the newly developed qPCR method. Results also indicated that the presence of natural microflora and another inoculated strain does not affect root colonization of either one of these strains. The same qPCR protocol was used to quantitate root colonization by QST713 and I-1582 in two corn and two soybean varieties grown in the field. Both bacteria were quantitated up to two weeks after seeds were planted in the field and there were no significant differences in root colonization in either bacteria strain among varieties. Results presented here confirm that the developed qPCR protocol can be successfully used to understand dynamics of root colonization by these bacteria in plants growing in growth chamber, greenhouse and the field.

  18. AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application.

    Science.gov (United States)

    Asensio, Dolores; Rapparini, Francesca; Peñuelas, Josep

    2012-05-01

    Previous studies have shown that root colonization by arbuscular mycorrhiza (AM) fungi enhances plant resistance to abiotic and biotic stressors and finally plant growth. However, little is known about the effect of AM on isoprenoid foliar and root content. In this study we tested whether the AM symbiosis affects carbon resource allocation to different classes of isoprenoids such as the volatile nonessential isoprenoids (monoterpenes and sesquiterpenes) and the non-volatile essential isoprenoids (abscisic acid, chlorophylls and carotenoids). By subjecting the plants to stressors such as drought and to exogenous application of JA, we wanted to test their interaction with AM symbiosis in conditions where isoprenoids usually play a role in resistance to stress and in plant defence. Root colonization by AM fungi favoured the leaf production of essential isoprenoids rather than nonessential ones, especially under drought stress conditions or after JA application. The increased carbon demand brought on by AM fungi might thus influence not only the amount of carbon allocated to isoprenoids, but also the carbon partitioning between the different classes of isoprenoids, thus explaining the not previously shown decrease of root volatile isoprenoids in AM plants. We propose that since AM fungi are a nutrient source for the plant, other carbon sinks normally necessary to increase nutrient uptake can be avoided and therefore the plant can devote more resources to synthesize essential isoprenoids for plant growth. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  19. Effects on Glomus mosseae Root Colonization by Paenibacillus polymyxa and Paenibacillus brasilensis Strains as Related to Soil P-Availability in Winter Wheat

    International Nuclear Information System (INIS)

    Arthurson, V; Granhall, U; Derlund, L; Hjort, K; Muleta, D

    2011-01-01

    Greenhouse experiments were conducted to assess the effects of inoculating winter wheat (Triticum aestivum) with plant growth promoting rhizobacteria (PGPR) of the genus Paenibacillus under phosphate P-limited soil conditions in the presence or absence of the arbuscular mycorrhizal fungus (AMF) Glomus mosseae. Four P. polymyxa strains and one P. brasilensis strain were compared at two cell concentrations (10 6 and 10 8 cells g -1 seeds) of inoculation, and surface sterilized AMF spores were added to pots. Mycorrhizal root colonization, plant growth, and plant uptake of phosphorus were analyzed. Bacterial phosphate solubilization was examined separately in vitro. Most P. polymyxa strains, isolated from wheat, had dramatic effects per se on root growth and root P-content. No treatment gave significant effect on shoot growth. AMF root colonization levels and total plant uptake of P were much stimulated by the addition of most P. polymyxa strains. The AM fungus alone and the P. brasilensis, alone or in combination with the fungus, did not affect total plant P-levels. Our results indicate that practical application of inoculation with plant host-specific rhizobacteria (i.e., P. polymyxa) could positively influence uptake of phosphorus in P-

  20. RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization.

    Science.gov (United States)

    Fiorilli, Valentina; Belmondo, Simone; Khouja, Hassine Radhouane; Abbà, Simona; Faccio, Antonella; Daghino, Stefania; Lanfranco, Luisa

    2016-08-01

    Transcriptomics and genomics data recently obtained from the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis have offered new opportunities to decipher the contribution of the fungal partner to the establishment of the symbiotic association. The large number of genes which do not show similarity to known proteins witnesses the uniqueness of this group of plant-associated fungi. In this work, we characterize a gene that was called RiPEIP1 (Preferentially Expressed In Planta). Its expression is strongly induced in the intraradical phase, including arbuscules, and follows the expression profile of the Medicago truncatula phosphate transporter MtPT4, a molecular marker of a functional symbiosis. Indeed, mtpt4 mutant plants, which exhibit low mycorrhizal colonization and an accelerated arbuscule turnover, also show a reduced RiPEIP1 mRNA abundance. To further characterize RiPEIP1, in the absence of genetic transformation protocols for AM fungi, we took advantage of two different fungal heterologous systems. When expressed as a GFP fusion in yeast cells, RiPEIP1 localizes in the endomembrane system, in particular to the endoplasmic reticulum, which is consistent with the in silico prediction of four transmembrane domains. We then generated RiPEIP1-expressing strains of the fungus Oidiodendron maius, ericoid endomycorrhizal fungus for which transformation protocols are available. Roots of Vaccinium myrtillus colonized by RiPEIP1-expressing transgenic strains showed a higher mycorrhization level compared to roots colonized by the O. maius wild-type strain, suggesting that RiPEIP1 may regulate the root colonization process.

  1. Direct digital radiography versus conventional radiography - assessment of visibility of file length placed in the root canal: An in vitro study

    Directory of Open Access Journals (Sweden)

    Vaiyapuri Ravi

    2012-01-01

    Full Text Available Aim and Objective: To compare conventional and direct digital radiography (DDR in working length measurement of the root canal and to assess the significance of the different enhancement modes provided by the software to visualize the file length. Materials and Methods: Access cavities were prepared in 30 extracted maxillary central incisors. Size 15 k-file was introduced into the canal till it was flush with the apical foramen. The working length was calculated as 0.5 mm less than the vernier caliper measured length of each file. The files were then sealed with resin at their respective lengths. Intraoral periapical radiographs and direct digital radiographs were taken. Vernier caliper was used to measure the file length in the periapical radiographs, and standard, positive conversion, and colorize modes were used with the CDR system. A multiple regression analysis was conducted to give an accurate analysis between the actual file length and the different groups. Results: There was no statistical significance between the different groups tested. The multiple regression analysis test showed that the positive and colorize modes more accurately corresponded to the actual file length. Conclusion: Both conventional radiography and DDR can be reliably used for working length determination. The positive and colorize modes enhancement features of DDR greatly improve the visual perception, leading to more accurate measurements.

  2. Direct digital radiography versus conventional radiography - assessment of visibility of file length placed in the root canal: An in vitro study.

    Science.gov (United States)

    Ravi, Vaiyapuri; Lipee, Priyadarshini; Rao, Canagapalli Venkat Nakabushan; Lakshmikanthan, Lakshminarayanan

    2012-08-01

    To compare conventional and direct digital radiography (DDR) in working length measurement of the root canal and to assess the significance of the different enhancement modes provided by the software to visualize the file length. Access cavities were prepared in 30 extracted maxillary central incisors. Size 15 k-file was introduced into the canal till it was flush with the apical foramen. The working length was calculated as 0.5 mm less than the vernier caliper measured length of each file. The files were then sealed with resin at their respective lengths. Intraoral periapical radiographs and direct digital radiographs were taken. Vernier caliper was used to measure the file length in the periapical radiographs, and standard, positive conversion, and colorize modes were used with the CDR system. A multiple regression analysis was conducted to give an accurate analysis between the actual file length and the different groups. There was no statistical significance between the different groups tested. The multiple regression analysis test showed that the positive and colorize modes more accurately corresponded to the actual file length. Both conventional radiography and DDR can be reliably used for working length determination. The positive and colorize modes enhancement features of DDR greatly improve the visual perception, leading to more accurate measurements.

  3. 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots.

    Science.gov (United States)

    Tucker, Mark L; Xue, Ping; Yang, Ronghui

    2010-01-01

    Colonization of plant roots by root knot and cyst nematodes requires a functional ethylene response pathway. However, ethylene plays many roles in root development and whether its role in nematode colonization is direct or indirect, for example lateral root initiation or root hair growth, is not known. The temporal requirement for ethylene and localized synthesis of ethylene during the life span of soybean cyst nematode (SCN) on soybean roots was further investigated. Although a significant increase in ethylene evolution was not detected from SCN-colonized roots, the concentration of the immediate precursor to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), was higher in SCN-colonized root pieces and root tips than in other parts of the root. Moreover, expression analysis of 17 ACC synthase (ACS) genes indicated that a select set of ACS genes is expressed in SCN-colonized root pieces that is clearly different from the set of genes expressed in non-colonized roots or root tips. Semi-quantitative real-time PCR indicated that ACS transcript accumulation correlates with the high concentration of ACC in root tips. In addition, an ACS-like sequence was found in the public SCN nucleotide database. Acquisition of a full-length sequence for this mRNA (accession GQ389647) and alignment with transcripts for other well-characterized ACS proteins indicated that the nematode sequence is missing a key element required for ACS activity and therefore probably is not a functional ACS. Moreover, no significant amount of ACC was found in any growth stage of SCN that was tested.

  4. Can active signals of cellphone interfere with electronic working length determination of a root canal in a dental clinic? Anin vivostudy.

    Science.gov (United States)

    Gohil, Umadevi Kiritsinh; Parekh, Vaishali V; Kinariwala, Niraj; Oza, Kaushal M; Somani, Mona C

    2017-01-01

    To evaluate the interference of active cellphones during electronic working length (EWL) determination of a root canal. Thirty patients requiring root canal treatment in the anterior teeth or premolars having single canal and mature apices were selected for this study. Working length determination was done using no. 15 K-file. Electronic apex locators ProPex Pixi and Root ZX mini were used for working length determination. Cellphones iPhone 6s and Xolo Q3000 were evaluated for their interference. The experiment was conducted in a closed room (9 feet × 9 feet). Working length was measured with no cellphone in the room, iPhone 6s in a calling mode, Xolo Q3000 in a calling mode, and Xolo Q3000 and iPhone 6s simultaneously in a calling mode. Stability of the readings was also determined for every condition. The data were statistically analyzed using one-way ANOVA and paired t -test at 0.05 level of significance. Results were not statistically significant. Within the limitations of the present study, cellphones do not interfere with the EWL determination.

  5. A rhamnose-deficient lipopolysaccharide mutant of Rhizobium sp. IRBG74 is defective in root colonization and beneficial interactions with its flooding-tolerant hosts Sesbania cannabina and wetland rice.

    Science.gov (United States)

    Mitra, Shubhajit; Mukherjee, Arijit; Wiley-Kalil, Audrey; Das, Seema; Owen, Heather; Reddy, Pallavolu M; Ané, Jean-Michel; James, Euan K; Gyaneshwar, Prasad

    2016-10-01

    Rhizobium sp. IRBG74 develops a classical nitrogen-fixing symbiosis with the aquatic legume Sesbania cannabina (Retz.). It also promotes the growth of wetland rice (Oryza sativa L.), but little is known about the rhizobial determinants important for these interactions. In this study, we analyzed the colonization of S. cannabina and rice using a strain of Rhizobium sp. IRBG74 dually marked with β-glucuronidase and the green fluorescent protein. This bacterium colonized S. cannabina by crack entry and through root hair infection under flooded and non-flooded conditions, respectively. Rhizobium sp. IRBG74 colonized the surfaces of wetland rice roots, but also entered them at the base of lateral roots. It became endophytically established within intercellular spaces in the rice cortex, and intracellularly within epidermal and hypodermal cells. A mutant of Rhizobium sp. IRBG74 altered in the synthesis of the rhamnose-containing O-antigen exhibited significant defects, not only in nodulation and symbiotic nitrogen fixation with S. cannabina, but also in rice colonization and plant growth promotion. Supplementation with purified lipopolysaccharides from the wild-type strain, but not from the mutant, restored the beneficial colonization of rice roots, but not fully effective nodulation of S. cannabina Commonalities and differences in the rhizobial colonization of the roots of wetland legume and rice hosts are discussed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Root colonization with arbuscular mycorrhizal fungi and glomalin-related soil protein (GRSP concentration in hypoxic soils in natural CO2 springs

    Directory of Open Access Journals (Sweden)

    Irena Maček

    2012-03-01

    Full Text Available Changed ratios of soil gases that lead to hypoxia are most often present in waterlogged soils, but can also appear in soils not saturated with water. In natural CO2 springs (mofettes, gases in soil air differ from those in typical soils. In this study, plant roots from the mofette area Stavešinci (Slovenia were sampled in a spatial scale and investigated for AM fungal colonization. AM fungi were found in roots from areas with high geological CO2 concentration, however mycorrhizal intensity was relatively low and no correlation between AM fungal colonization and soil pattern of CO2/O2 concentrations (up to 37% CO2 was found. The relatively high abundance of arbuscules in root cortex indicated existence of functional symbiosis at much higher CO2 concentrations than normally found in soils. In addition, concentration of two different glomalin-related soil protein fractions – EE-GRSP and TG-GRSP – was measured. No significant correlation between any of the fractions and soil gases was found, however the concentration of both fractions was significantly higher in the upper 0–5 cm, compared to the 5–10 cm layer of the soil.

  7. Effects of Hurricane-Felled Tree Trunks on Soil Carbon, Nitrogen, Microbial Biomass, and Root Length in a Wet Tropical Forest

    Directory of Open Access Journals (Sweden)

    D. Jean Lodge

    2016-11-01

    Full Text Available Decaying coarse woody debris can affect the underlying soil either by augmenting nutrients that can be exploited by tree roots, or by diminishing nutrient availability through stimulation of microbial nutrient immobilization. We analyzed C, N, microbial biomass C and root length in closely paired soil samples taken under versus 20–50 cm away from large trunks of two species felled by Hugo (1989 and Georges (1998 three times during wet and dry seasons over the two years following the study conducted by Georges. Soil microbial biomass, % C and % N were significantly higher under than away from logs felled by both hurricanes (i.e., 1989 and 1998, at all sampling times and at both depths (0–10 and 10–20 cm. Frass from wood boring beetles may contribute to early effects. Root length was greater away from logs during the dry season, and under logs in the wet season. Root length was correlated with microbial biomass C, soil N and soil moisture (R = 0.36, 0.18, and 0.27, respectively; all p values < 0.05. Microbial biomass C varied significantly among seasons but differences between positions (under vs. away were only suggestive. Microbial C was correlated with soil N (R = 0.35. Surface soil on the upslope side of the logs had significantly more N and microbial biomass, likely from accumulation of leaf litter above the logs on steep slopes. We conclude that decaying wood can provide ephemeral resources that are exploited by tree roots during some seasons.

  8. Studies on mycorrhizal inoculation on dry matter yield and root colonization of some medicinal plants grown in stress and forest soils.

    Science.gov (United States)

    Chandra, K K; Kumar, Neeraj; Chand, Gireesh

    2010-11-01

    Five medicinal plants viz. Abelmoschatus moschatus Linn., Clitoria tematea L., Plumbagozeylanica L., Psorolea corylifolia L. and Withania sominifera L. were grown in a polypot experiment in five soils representing coal mine soil, coppermine soil, fly ash, skeletal soil and forest soil with and without mycorrhizal inoculations in a completely randomized block design. Dry matter yield and mycorrhizal root colonization of plants varied both in uninoculated and inoculated conditions. The forest soil rendered highest dry matter due to higher yield of A. moschatus, P. zeylanica and P corylifolia while fly ash showed lowest dry matter without any inoculants. P. cematea were best in coalmine soil and W. sominifera in copper mine soil without mycorrhizal inoculation. The mycorrhiza was found to enhance the dry matter yield. This contributed minimum 0.19% to maximum up to 422.0% in different soils as compared to uninoculated plants. The mycorrhizal dependency was noticed maximum in plants grown in fly ash followed by coal mine soil, copper mine soil, skeletal soil and forest soil. The mycorrhizal response was increased maximum in W. sominifera due to survival in fly ash after inoculation followed by P corylifolia and P cematea. Percent root colonization in inoculated plant was increased minimum of 1.10 fold to maximum of 12.0 folds in comparison to un-inoculated plants . The native mycorrhiza fungi were also observed to colonize 4.0 to 32.0% roots in plants understudy. This study suggests that mycorrhizal inoculation increased the dry matter yield of medicinal plants in all soils under study. It also helps in survival of W. sominifera in fly ash.

  9. INFLUENCE OF pH AND TEMPERATURE ON GERMINATION ENERGY, GERMINATION, ROOT AND SEEDLINGS HYPOCOTIL LENGTH OF VARIOUS ALFALFA CULTIVARS (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Gordana Bukvić

    2008-07-01

    Full Text Available The traits of germination energy, seed germination, as well as root and hypocotyls length of domestic alfalfa cultivars (Slavonka, Stela, Vuka were investigated in a climate chamber. The experiment was set up at two pH levels of water solution (4.00 and 6.00 and temperature levels of 10°C and 20°C using rolled filter paper method. Significant difference between cultivars (p=0.01, p=0.05 was determined for germination energy, seed germination and hypocotyls length. Cultivar Slavonka had the highest average values for germination energy and seed germination, and the lowest for hypocotyls length. Cultivar Vuka had the lowest germination energy (but with the same germination as Stela and the longest hypocotyls. Seed germination as well as root and hypocotyl length significantly depended (p=0.01 on pH of water solution. The higher average values of all traits were found at pH 4.00, except for germination energy. Temperature also significantly affected on all investigated traits (p=0.01, whilst the higher values were attained at higher temperature. Interactions cultivar x pH and cultivar x temperature were significant (p=0.01 for all traits, while pH x temperature interaction was not significant only for seed germination.

  10. Consequences of inoculation with native arbuscular mycorrhizal fungi for root colonization and survival of Artemisia tridentata ssp. wyomingensis seedlings after transplanting.

    Science.gov (United States)

    Davidson, Bill E; Novak, Stephen J; Serpe, Marcelo D

    2016-08-01

    In arid environments, the propagule density of arbuscular mycorrhizal fungi (AMF) may limit the extent of the plant-AMF symbiosis. Inoculation of seedlings with AMF could alleviate this problem, but the success of this practice largely depends on the ability of the inoculum to multiply and colonize the growing root system after transplanting. These phenomena were investigated in Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) seedlings inoculated with native AMF. Seedlings were first grown in a greenhouse in soil without AMF (non-inoculated seedlings) or with AMF (inoculated seedlings). In spring and fall, 3-month-old seedlings were transplanted outdoors to 24-L pots containing soil from a sagebrush habitat (spring and fall mesocosm experiments) or to a recently burned sagebrush habitat (spring and fall field experiments). Five or 8 months after transplanting, colonization was about twofold higher in inoculated than non-inoculated seedlings, except for the spring field experiment. In the mesocosm experiments, inoculation increased survival during the summer by 24 % (p = 0.011). In the field experiments, increased AMF colonization was associated with increases in survival during cold and dry periods; 1 year after transplanting, survival of inoculated seedlings was 27 % higher than that of non-inoculated ones (p colonization and δ (13)C values was observed in the spring mesocosm experiment. In contrast, inoculation did not affect the δ (13)C values of fall transplanted seedlings that were collected the subsequent spring. The effectiveness of AMF inoculation on enhancing colonization and reducing seedling mortality varied among the different experiments, but average effects were estimated by meta-analyses. Several months after transplanting, average AMF colonization was in proportion 84 % higher in inoculated than non-inoculated seedlings (p = 0.0042), while the average risk of seedling mortality was 42 % lower in inoculated than non

  11. Spatiotemporal variation of arbuscular mycorrhizal fungal colonization in olive (Olea europaea L.) roots across a broad mesic-xeric climatic gradient in North Africa.

    Science.gov (United States)

    Meddad-Hamza, Amel; Hamza, Nabila; Neffar, Souad; Beddiar, Arifa; Gianinazzi, Silvio; Chenchouni, Haroun

    2017-04-01

    This study aims to determine the spatiotemporal dynamics of root colonization and spore density of arbuscular mycorrhizal fungi (AMF) in the rhizosphere of olive trees (Olea europaea) with different plantation ages and under different climatic areas in Algeria. Soil and root samples were seasonally collected from three olive plantations of different ages. Other samples were carried out in productive olive orchards cultivated under a climatic gradient (desertic, semi-arid, subhumid, and humid). The olive varieties analysed in this study were Blanquette, Rougette, Chemlel and the wild-olive. Spore density, mycorrhization intensity (M%), spore diversity and the most probable number (MPN) were determined. Both the intensity of mycorrhizal colonization and spore density increased with the increase of seasonal precipitation and decreased with the increase of air temperature regardless of the climatic region or olive variety. The variety Rougette had the highest mycorrhizal levels in all plantation ages and climates. Spore community was composed of the genera Rhizophagus, Funneliformis, Glomus, Septoglomus, Gigaspora, Scutellospora and Entrophospora. The genus Glomus, with four species, predominated in all climate regions. Spores of Gigaspora sp. and Scutellospora sp. were the most abundant in desertic plantations. Statistical models indicated a positive relationship between spore density and M% during spring and winter in young seedlings and old plantations. A significant positive relationship was found between MPN and spore density under different climates. For a mycotrophic species, the rhizosphere of olive trees proved to be poor in mycorrhiza in terms of mycorrhizal colonization and numbers of the infective AMF propagules. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The effect of manipulating root mean square window length and overlap on reliability, inter-individual variability, statistical significance and clinical relevance of electromyograms.

    Science.gov (United States)

    Mark Burden, Adrian; Lewis, Sandra Elizabeth; Willcox, Emma

    2014-12-01

    Numerous ways exist to process raw electromyograms (EMGs). However, the effect of altering processing methods on peak and mean EMG has seldom been investigated. The aim of this study was to investigate the effect of using different root mean square (RMS) window lengths and overlaps on the amplitude, reliability and inter-individual variability of gluteus maximus EMGs recorded during the clam exercise, and on the statistical significance and clinical relevance of amplitude differences between two exercise conditions. Mean and peak RMS of 10 repetitions from 17 participants were obtained using processing window lengths of 0.01, 0.15, 0.2, 0.25 and 1 s, with no overlap and overlaps of 25, 50 and 75% of window length. The effect of manipulating window length on reliability and inter-individual variability was greater for peak EMG (coefficient of variation [CV] window generally displaying the lowest variability. As a consequence, neither statistical significance nor clinical relevance (effect size [ES]) of mean EMG was affected by manipulation of window length. Statistical significance of peak EMG was more sensitive to changes in window length, with lower p-values generally being recorded for the 1 s window. As use of different window lengths has a greater effect on variability and statistical significance of the peak EMG, then clinicians should use the mean EMG. They should also be aware that use of different numbers of exercise repetitions and participants can have a greater effect on EMG parameters than length of processing window. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A plasma membrane zinc transporter from ¤Medicago truncatula¤ is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization

    DEFF Research Database (Denmark)

    Burleigh, S.H.; Kristensen, B.K.; Bechmann, I.E.

    2003-01-01

    , but not in leaves of M. truncatula and, in contrast to all other plant Zn transporters characterized thus far, MtZIP2 was up-regulated in roots by Zn fertilization. Expression was highest in roots exposed to a toxic level of Zn. MtZIP2 expression was also examined in the roots of M. truncatula when colonized...... by the obligate plant symbiont, arbuscular mycorrhizal (AM) fungi, since AM fungi are renowned for their ability to supply plants with mineral nutrients, including Zn. Expression was downregulated in the roots of the mycorrhizal plants and was associated with a reduced level of Zn within the host plant tissues....

  14. Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile respond differently to phosphorus inputs on a long-term experimental site.

    Science.gov (United States)

    Wang, Chao; White, Philip J; Li, Chunjian

    2017-05-01

    Effects of soil depth and plant growth stages on arbuscular mycorrhizal fungal (AMF) colonization and community structure in maize roots and their potential contribution to host plant phosphorus (P) nutrition under different P-fertilizer inputs were studied. Research was conducted on a long-term field experiment over 3 years. AMF colonization was assessed by AM colonization rate and arbuscule abundances and their potential contribution to host P nutrition by intensity of fungal alkaline phosphatase (ALP)/acid phosphatase (ACP) activities and expressions of ZmPht1;6 and ZmCCD8a in roots from the topsoil and subsoil layer at different growth stages. AMF community structure was determined by specific amplification of 18S rDNA. Increasing P inputs up to 75-100 kg ha -1  yr -1 increased shoot biomass and P content but decreased AMF colonization and interactions between AMF and roots. AM colonization rate, intensity of fungal ACP/ALP activities, and expression of ZmPht1;6 in roots from the subsoil were greater than those from topsoil at elongation and silking but not at the dough stage when plants received adequate or excessive P inputs. Neither P input nor soil depth influenced the number of AMF operational taxonomic units (OTUs) present in roots, but P-fertilizer input, in particular, influenced community composition and relative AMF abundance. In conclusion, although increasing P inputs reduce AMF colonization and influence AMF community structure, AMF can potentially contribute to plant P nutrition even in well-fertilized soils, depending on the soil layer in which roots are located and the growth stage of host plants.

  15. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    Science.gov (United States)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  16. Strain-specific quantification of root colonization by plant growth promoting rhizobacteria Bacillus firmus I-1582 and Bacillus amyloliquefaciens QST713 in non-sterile soil and field conditions.

    Directory of Open Access Journals (Sweden)

    Hajeewaka C Mendis

    Full Text Available Bacillus amyloliquefaciens QST713 and B. firmus I-1582 are bacterial strains which are used as active ingredients of commercially-available soil application and seed treatment products Serenade® and VOTiVO®, respectively. These bacteria colonize plant roots promoting plant growth and offering protection against pathogens/pests. The objective of this study was to develop a qPCR protocol to quantitate the dynamics of root colonization by these two strains under field conditions. Primers and TaqMan® probes were designed based on genome comparisons of the two strains with publicly-available and unpublished bacterial genomes of the same species. An optimized qPCR protocol was developed to quantify bacterial colonization of corn roots after seed treatment. Treated corn seeds were planted in non-sterile soil in the greenhouse and grown for 28 days. Specific detection of bacteria was quantified weekly, and showed stable colonization between ~104-105 CFU/g during the experimental period for both bacteria, and the protocol detected as low as 103 CFU/g bacteria on roots. In a separate experiment, streptomycin-resistant QST713 and rifampicin-resistant I-1582 strains were used to compare dilution-plating on TSA with the newly developed qPCR method. Results also indicated that the presence of natural microflora and another inoculated strain does not affect root colonization of either one of these strains. The same qPCR protocol was used to quantitate root colonization by QST713 and I-1582 in two corn and two soybean varieties grown in the field. Both bacteria were quantitated up to two weeks after seeds were planted in the field and there were no significant differences in root colonization in either bacteria strain among varieties. Results presented here confirm that the developed qPCR protocol can be successfully used to understand dynamics of root colonization by these bacteria in plants growing in growth chamber, greenhouse and the field.

  17. A COMPARATIVE STUDY ON THE PRECISION OF THE RADIOLOGICAL AND ELECTRONIC METHODS FOR DETERMINING ROOT CANAL WORKING LENGTHS

    Directory of Open Access Journals (Sweden)

    S. Andrian

    2012-09-01

    Full Text Available The objective of the present investigation was to compare the precision of canal working length (Ll measurements by electronic and radiological methods. Materials and method. The study was developed on a group of 122 anterior teeth of 118 patients, with ages between 23 and 58 years. The teeth were divided into 3 groups. The first one included 45 teeth, for which the working length was calculated with an electronic device (Apex Locator model iPex, NSK, Japan. In the second group of teeth (39 in all, the working length was calculated by the radiographic method of Ingle and, in the third one (38 – by the method of Bregman. When the technique of canal modeling was applied to all groups of teeth, a primary gutta percha cone (master was positioned on the canal at the exact working length calculated for each tooth in part, after which an intra-oral radiography was made and the distance between the apical end of the master cone and the apical constriction was measured. Results. In group I, 91.1% of the Ll measurements were exact, and 8.9% of them were shorter, yet remaining within the limit of 2 mm versus the apical constriction. In group II, 71.7% of Ll were correctly measured, in 5.1% of the cases the calculated length was higher and in 23.2% of them the obtained values led to sub-obturation. Out of the inexact measurements, 44.4% evidenced the tip of the master cone within the limit of 2 mm versus the apical stricture. In group III, 60.5% of the measurements gave exact results, 13.1% of them – higher and 26.4%, respectively – lower. 53.8% of the cases of over- or sub-instrumentations occurred within the limit of 2 mm versus the apical constriction. Conclusions. The method for the calculation of working length with an electronic device of apical localization appeared as the most correct one, being followed by the radiographic technique of Ingle and by the method of Bregman. Application of the electronic method showed no case of apical over

  18. Comparison of digital radiography and apex locator with the conventional method in root length determination of primary teeth

    OpenAIRE

    I E Neena; A Ananthraj; P Praveen; V Karthik; P Rani

    2011-01-01

    Aim: The purpose of this study was to compare the Working length in primary teeth endodontics using intra oral digital radiovisiography and apex locator with conventional method for accuracy. Materials and Methods: This in vivo study was conducted on 30 primary teeth which were indicated for pulpectomy in the patients of the age group of 5-11 years All experimental teeth had adequate remaining tooth structure for rubber dam isolation and radiographicaly visible canals. Endodontic treatment wa...

  19. Effects of shading on photosynthesis, plant organic nitrogen uptake and root fungal colonization in a subarctic mire ecosystem

    DEFF Research Database (Denmark)

    Olsrud, Hanna Maria Kerstin; Michelsen, Anders

    2009-01-01

    Arctic dwarf shrub ecosystems are predicted to be exposed to lower light intensity in a changing climate where mountain birch forests are expanding. We investigated how shading at 0%, 65%, and 97% affects photosynthesis, organic N uptake, C and N allocation patterns in plants, and root fungal col...

  20. Immunolocalization of hydrophobin HYDPt-1 from the ectomycorrhizal basidiomycete Pisolithus tinctorius during colonization of Eucalyptus globulus roots

    NARCIS (Netherlands)

    Tagu, D; De Bellis, R; Balestrini, R; De Vries, OMH; Piccoli, G; Stocchi, [No Value; Bonfante, P; Martin, F

    The immunolocalization of one of the hydrophobins of Pisolithus tinctorius (HYDPt-1) is reported. Hydrophobin proteins play key roles in adhesion and aggregation of fungal hyphae, and it is already known that formation of ectomycorrhizas on eucalypt roots enhances the accumulation of hydrophobin

  1. Mycorrhizal Stimulation of Leaf Gas Exchange in Relation to Root Colonization, Shoot Size, Leaf Phosphorus and Nitrogen: A Quantitative Analysis of the Literature Using Meta-Regression.

    Science.gov (United States)

    Augé, Robert M; Toler, Heather D; Saxton, Arnold M

    2016-01-01

    Arbuscular mycorrhizal (AM) symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER), stomatal conductance (g s), and transpiration rate (E) has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen:phosphorus ratio, and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of g s and E (28 and 26%, respectively). CER has been over twice as sensitive as g s and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for g s and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations.

  2. Pseudomonas fluorescens F113 Mutant with Enhanced Competitive Colonization Ability and Improved Biocontrol Activity against Fungal Root Pathogens ▿

    Science.gov (United States)

    Barahona, Emma; Navazo, Ana; Martínez-Granero, Francisco; Zea-Bonilla, Teresa; Pérez-Jiménez, Rosa María; Martín, Marta; Rivilla, Rafael

    2011-01-01

    Motility is one of the most important traits for efficient rhizosphere colonization by Pseudomonas fluorescens F113rif (F113). In this bacterium, motility is a polygenic trait that is repressed by at least three independent pathways, including the Gac posttranscriptional system, the Wsp chemotaxis-like pathway, and the SadB pathway. Here we show that the kinB gene, which encodes a signal transduction protein that together with AlgB has been implicated in alginate production, participates in swimming motility repression through the Gac pathway, acting downstream of the GacAS two-component system. Gac mutants are impaired in secondary metabolite production and are unsuitable as biocontrol agents. However, the kinB mutant and a triple mutant affected in kinB, sadB, and wspR (KSW) possess a wild-type phenotype for secondary metabolism. The KSW strain is hypermotile and more competitive for rhizosphere colonization than the wild-type strain. We have compared the biocontrol activity of KSW with those of the wild-type strain and a phenotypic variant (F113v35 [V35]) which is hypermotile and hypercompetitive but is affected in secondary metabolism since it harbors a gacS mutation. Biocontrol experiments in the Fusarium oxysporum f. sp. radicis-lycopersici/Lycopersicum esculentum (tomato) and Phytophthora cactorum/Fragaria vesca (strawberry) pathosystems have shown that the three strains possess biocontrol activity. Biocontrol activity was consistently lower for V35, indicating that the production of secondary metabolites was the most important trait for biocontrol. Strain KSW showed improved biocontrol compared with the wild-type strain, indicating that an increase in competitive colonization ability resulted in improved biocontrol and that the rational design of biocontrol agents by mutation is feasible. PMID:21685161

  3. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens.

    Science.gov (United States)

    Barahona, Emma; Navazo, Ana; Martínez-Granero, Francisco; Zea-Bonilla, Teresa; Pérez-Jiménez, Rosa María; Martín, Marta; Rivilla, Rafael

    2011-08-01

    Motility is one of the most important traits for efficient rhizosphere colonization by Pseudomonas fluorescens F113rif (F113). In this bacterium, motility is a polygenic trait that is repressed by at least three independent pathways, including the Gac posttranscriptional system, the Wsp chemotaxis-like pathway, and the SadB pathway. Here we show that the kinB gene, which encodes a signal transduction protein that together with AlgB has been implicated in alginate production, participates in swimming motility repression through the Gac pathway, acting downstream of the GacAS two-component system. Gac mutants are impaired in secondary metabolite production and are unsuitable as biocontrol agents. However, the kinB mutant and a triple mutant affected in kinB, sadB, and wspR (KSW) possess a wild-type phenotype for secondary metabolism. The KSW strain is hypermotile and more competitive for rhizosphere colonization than the wild-type strain. We have compared the biocontrol activity of KSW with those of the wild-type strain and a phenotypic variant (F113v35 [V35]) which is hypermotile and hypercompetitive but is affected in secondary metabolism since it harbors a gacS mutation. Biocontrol experiments in the Fusarium oxysporum f. sp. radicis-lycopersici/Lycopersicum esculentum (tomato) and Phytophthora cactorum/Fragaria vesca (strawberry) pathosystems have shown that the three strains possess biocontrol activity. Biocontrol activity was consistently lower for V35, indicating that the production of secondary metabolites was the most important trait for biocontrol. Strain KSW showed improved biocontrol compared with the wild-type strain, indicating that an increase in competitive colonization ability resulted in improved biocontrol and that the rational design of biocontrol agents by mutation is feasible.

  4. Correlation between heavy metal ions (copper, zinc, lead concentrations and root length of Allium cepa L. in polluted river water

    Directory of Open Access Journals (Sweden)

    Soraya Moreno Palacio

    2005-06-01

    Full Text Available The present work was performed using the common onion (Allium cepa L. as a bioindicator of toxicity of heavy metals in river water. The test waters were collected at two sampling sites: at the beginning and the end of the Toledo River. The bulbs of A. cepa L. were grown in test water with nine concentration levels of copper, zinc and lead from 0.1 to 50 ppm. In the laboratory, the influence of these test liquids on the root growth was examined during five days. For test liquids containing below 0.03-ppm dissolved Cu the root growth was reduced by 40% However, the same reduction occurred for 1-ppm dissolved Zn. For dissolved Pb, results reveal toxicity above 0.1 and 0.6 ppm at the beginning and the end of the Toledo river water, respectively.O presente trabalho foi realizado utilizando a cebola comum (Allium cepa L. como bioindicador da toxicidade de metais pesados em água de rio. As águas de teste foram coletadas em dois locais: na nascente e na foz do rio Toledo. Os bulbos de A. cepa L. foram cultivados em água de teste com nove níveis de concentração de cobre, zinco e chumbo de 0,1 a 50 ppm. Em laboratório a influência destes líquidos de teste em crescimento de raiz foi examinada durante cinco dias. Em todos os líquidos de teste o metal dissolvido contido foi medido pela técnica TXRF. Para líquidos de teste contendo 0,1-ppm de Cu dissolvido o crescimento da raiz foi reduzido em 50%. Entretanto, ocorreu a mesma redução para 1-ppm de Zn dissolvido. Para Pb dissolvido, o método do Allium teste revela toxidade acima de 0,1 e 0,5 ppm para a nascente e a foz do rio Toledo, respectivamente.

  5. Leading dimensions in absorptive root trait variation across 96 subtropical forest species.

    Science.gov (United States)

    Kong, Deliang; Ma, Chengen; Zhang, Qian; Li, Le; Chen, Xiaoyong; Zeng, Hui; Guo, Dali

    2014-08-01

    Absorptive root traits show remarkable cross-species variation, but major root trait dimensions across species have not been defined. We sampled first-order roots and measured 14 root traits for 96 angiosperm woody species from subtropical China, including root diameter, specific root length, stele diameter, cortex thickness, root vessel size and density, mycorrhizal colonization rate, root branching intensity, tissue density, and concentrations of carbon and nitrogen ([N]). Root traits differed in the degree of variation and phylogenetic conservatism, but showed predictable patterns of cross-trait coordination. Root diameter, cortex thickness and stele diameter displayed high variation across species (coefficient of variation (CV)=0.51-0.69), whereas the stele:root diameter ratio and [N] showed low variation (CVRoot diameter, cortex thickness and stele diameter showed a strong phylogenetic signal across species, whereas root branching traits did not, and these two sets of traits were segregated onto two nearly orthogonal (independent) principal component analysis (PCA) axes. Two major dimensions of root trait variation were found: a diameter-related dimension potentially integrating root construction, maintenance, and persistence with mycorrhizal colonization, and a branching architecture dimension expressing root plastic responses to the environment. These two dimensions may offer a promising path for better understanding root trait economics and root ecological strategies world-wide. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  6. Colon cancer

    Science.gov (United States)

    Colorectal cancer; Cancer - colon; Rectal cancer; Cancer - rectum; Adenocarcinoma - colon; Colon - adenocarcinoma; Colon carcinoma ... eat may play a role in getting colon cancer. Colon cancer may be linked to a high-fat, ...

  7. Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using the root hairless barley mutant

    DEFF Research Database (Denmark)

    Jakobsen, I.; Chen, B.D.; Munkvold, L.

    2005-01-01

    Comparisons between plant species or cultivars differing in root hair length have indicated a major impact of root hairs on the mycorrhizal dependency of plants with respect to phosphate (P) uptake. The current study aimed to investigate this relationship by comparing directly the mycorrhizal...... colonization structures and a radioactive tracer confirmed P transport by the extraradical mycelium. This is the first direct evaluation of the relative effectiveness of root hairs and mycorrhizas. Mycorrhizas effectively substituted root hairs in P uptake, whereas the additional P was most often used less...

  8. Possible involvement of hyphal phosphatase in phosphate efflux from intraradical hyphae isolated from mycorrhizal roots colonized by Gigaspora margarita.

    Science.gov (United States)

    Kojima, Tomoko; Saito, Masanori

    2004-06-01

    We developed a method for separating physiologically active intraradical hyphae of arbuscular mycorrhizal (AM) fungi from mycorrhizal roots, allowing the hyphae to be used for physiological and biochemical experiments. In the present study, the phosphate efflux from the intraradical hyphae in vitro was examined in relation to hyphal phosphatase activity. Onion seedlings (Allium cepa) were planted in the soil inoculated with Gigaspora margarita. Six weeks after transplanting, the intraradical hyphae were isolated from the mycorrhizal roots using plant cell-wall digestion enzymes. The hyphae were incubated briefly at 25 degrees C in a buffer solution (50 mM Tris/HCl, pH 7.4), then incubated for 2 h and gently shaken with various inhibitors. Phosphate efflux, the amount of phosphate released to the buffer, was analysed by EnzChek phosphate assay kit. Hyphal phosphatase activity was stained histochemically and the proportion of phosphatase-active arbuscules was examined for each inhibitor. Phosphate effluxes were to some degree reduced by all inhibitors used, while the phosphatase inhibitor, BeSO4, greatly reduced the efflux. The degree of inhibition in the arbuscular phosphatase by each chemical was closely correlated to the decrease in the phosphate efflux. These results suggest that hyphal phosphatase may be partially involved in the phosphate efflux process from intraradical hyphae.

  9. Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange.

    Science.gov (United States)

    Wu, Qiang-Sheng; Cao, Ming-Qin; Zou, Ying-Ning; He, Xin-hua

    2014-07-25

    To test direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability, perspex pots separated by 37-μm nylon mesh in the middle were used to form root-free hyphae and root/hyphae chambers, where trifoliate orange (Poncirus trifoliata) seedlings were colonized by Funneliformis mosseae or Paraglomus occultum in the root/hyphae chamber. Both fungal species induced significantly higher plant growth, root total length, easily-extractable glomalin-related soil protein (EE-GRSP) and total GRSP (T-GRSP), and mean weight diameter (an aggregate stability indicator). The Pearson correlation showed that root colonization or soil hyphal length significantly positively correlated with EE-GRSP, difficultly-extractable GRSP (DE-GRSP), T-GRSP, and water-stable aggregates in 2.00-4.00, 0.50-1.00, and 0.25-0.50 mm size fractions. The path analysis indicated that in the root/hyphae chamber, aggregate stability derived from a direct effect of root colonization, EE-GRSP or DE-GRSP. Meanwhile, the direct effect was stronger by EE-GRSP or DE-GRSP than by mycorrhizal colonization. In the root-free hyphae chamber, mycorrhizal-mediated aggregate stability was due to total effect but not direct effect of soil hyphal length, EE-GRSP and T-GRSP. Our results suggest that GRSP among these tested factors may be the primary contributor to aggregate stability in the citrus rhizosphere.

  10. The Phenylpropanoid Pathway and Lignin in Defense against Ganoderma boninense Colonized Root Tissues in Oil Palm (Elaeis guineensis Jacq.)

    Science.gov (United States)

    Govender, Nisha T.; Mahmood, Maziah; Seman, Idris A.; Wong, Mui-Yun

    2017-01-01

    Basal stem rot, caused by the basidiomycete fungus, Ganoderma boninense, is an economically devastating disease in Malaysia. Our study investigated the changes in lignin content and composition along with activity and expression of the phenylpropanoid pathway enzymes and genes in oil palm root tissues during G. boninense infection. We sampled control (non-inoculated) and infected (inoculated) seedlings at seven time points [1, 2, 3, 4, 8, and 12 weeks post-inoculation (wpi)] in a randomized design. The expression profiles of phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase (POD) genes were monitored at 1, 2, and 3 wpi using real-time quantitative polymerase chain reaction. Seedlings at 4, 8, and 12 wpi were screened for lignin content, lignin composition, enzyme activities (PAL, CAD, and POD), growth (weight and height), and disease severity (DS). Gene expression analysis demonstrated up-regulation of PAL, CAD, and POD genes in the infected seedlings, relative to the control seedlings at 1, 2, and 3 wpi. At 2 and 3 wpi, CAD showed highest transcript levels compared to PAL and POD. DS increased progressively throughout sampling, with 5, 34, and 69% at 4, 8, and 12 wpi, respectively. Fresh weight and height of the infected seedlings were significantly lower compared to the control seedlings at 8 and 12 wpi. Lignin content of the infected seedlings at 4 wpi was significantly higher than the control seedlings, remained elicited with no change at 8 wpi, and then collapsed with a significant reduction at 12 wpi. The nitrobenzene oxidation products of oil palm root lignin yielded both syringyl and guaiacyl monomers. Accumulation of lignin in the infected seedlings was in parallel to increased syringyl monomers, at 4 and 8 wpi. The activities of PAL and CAD enzymes in the infected seedlings at DS = 5–34% were significantly higher than the control seedlings and thereafter collapsed at DS = 69%. PMID:28861093

  11. The Phenylpropanoid Pathway and Lignin in Defense against Ganoderma boninense Colonized Root Tissues in Oil Palm (Elaeis guineensis Jacq.

    Directory of Open Access Journals (Sweden)

    Nisha T. Govender

    2017-08-01

    Full Text Available Basal stem rot, caused by the basidiomycete fungus, Ganoderma boninense, is an economically devastating disease in Malaysia. Our study investigated the changes in lignin content and composition along with activity and expression of the phenylpropanoid pathway enzymes and genes in oil palm root tissues during G. boninense infection. We sampled control (non-inoculated and infected (inoculated seedlings at seven time points [1, 2, 3, 4, 8, and 12 weeks post-inoculation (wpi] in a randomized design. The expression profiles of phenylalanine ammonia lyase (PAL, cinnamyl alcohol dehydrogenase (CAD, and peroxidase (POD genes were monitored at 1, 2, and 3 wpi using real-time quantitative polymerase chain reaction. Seedlings at 4, 8, and 12 wpi were screened for lignin content, lignin composition, enzyme activities (PAL, CAD, and POD, growth (weight and height, and disease severity (DS. Gene expression analysis demonstrated up-regulation of PAL, CAD, and POD genes in the infected seedlings, relative to the control seedlings at 1, 2, and 3 wpi. At 2 and 3 wpi, CAD showed highest transcript levels compared to PAL and POD. DS increased progressively throughout sampling, with 5, 34, and 69% at 4, 8, and 12 wpi, respectively. Fresh weight and height of the infected seedlings were significantly lower compared to the control seedlings at 8 and 12 wpi. Lignin content of the infected seedlings at 4 wpi was significantly higher than the control seedlings, remained elicited with no change at 8 wpi, and then collapsed with a significant reduction at 12 wpi. The nitrobenzene oxidation products of oil palm root lignin yielded both syringyl and guaiacyl monomers. Accumulation of lignin in the infected seedlings was in parallel to increased syringyl monomers, at 4 and 8 wpi. The activities of PAL and CAD enzymes in the infected seedlings at DS = 5–34% were significantly higher than the control seedlings and thereafter collapsed at DS = 69%.

  12. Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China.

    Science.gov (United States)

    Hu, Junli; Yang, Anna; Zhu, Anning; Wang, Junhua; Dai, Jue; Wong, Ming Hung; Lin, Xiangui

    2015-07-01

    Monitoring the effects of no-tillage (NT) in comparison with conventional tillage (CT) on soil microbes could improve our understanding of soil biochemical processes and thus help us to develop sound management strategies. The objective of this study was to compare the species composition and ecological function of soil arbuscular mycorrhizal (AM) fungi during the growth and rotation of crops under NT and CT. From late June 2009 to early June 2010, 32 topsoil (0-15 cm) samples from four individual plots per treatment (CT and NT) were collected at both the jointing and maturation stages of maize (Zea mays L.) and wheat (Triticum aestivum L.) from a long-term experimental field that was established in an Aquic Inceptisol in North China in June 2006. The AM fungal spores were isolated and identified and then used to calculate species diversity indices, including the Shannon- Wiener index (H'), Evenness (E), and Simpson's index (D). The root mycorrhizal colonization and soil alkaline phosphatase activity were also determined. A total of 34 species of AM fungi within nine genera were recorded. Compared with NT, CT negatively affected the soil AM fungal community at the maize sowing stage, leading to decreases in the average diversity indices (from 2.12, 0.79, and 0.82 to 1.79, 0.72, and 0.74 for H', E, and D, respectively), root mycorrhizal colonization (from 28% to 20%), soil alkaline phosphatase activity (from 0.24 to 0.19 mg/g/24 h) and available phosphorus concentration (from 17.4 to 10.5 mg/kg) at the maize jointing stage. However, reductions in diversity indices of H', E, and D were restored to 2.20, 0.81, and 0.84, respectively, at the maize maturation stage. CT should affect the community again at the wheat sowing stage; however, a similar restoration in the species diversity of AM fungi was completed before the wheat jointing stage, and the highest Jaccard index (0.800) for similarity in the species composition of soil AM fungi between CT and NT was recorded at

  13. Relationships between the litter colonization by saprotrophic and arbuscular mycorrhizal fungi with depth in a tropical forest.

    Science.gov (United States)

    Posada, Raúl Hernando; Madriñan, Santiago; Rivera, Emma-Lucía

    2012-07-01

    Fungal colonization of litter has been described mostly in terms of fructification succession in the decomposition process or the process of fungal ligninolysis. No studies have been conducted on litter colonization by arbuscular mycorrhizal fungi (AMF) and their relationship with the presence of saprotrophic fungi. The aim of the present study was to evaluate the relationships that exist in simultaneous leaf litter colonization by AMF and saprotrophic fungi and the relationships between rates of litter and associated root colonization by AMF at different soil depths. We selected Eugenia sp. and Syzygium sp. in a riparian tropical forest, with an abundant production of litter (O horizon), we evaluated litter and root colonization at different depths, its C:N ratios, and the edaphic physico-chemical parameters of the A horizon immediately below the litter layer. Litter colonization by saprotrophic fungi and AMF increased with depth, but the saprotrophic fungal colonization of some litter fragments decreased in the lowermost level of the litter while AMF litter colonization continued to increase. Plant roots were present only in the middle and bottom layers, but their mycorrhizal colonization did not correlate with litter colonization. The external hyphae length of AMF is abundant (ca. 20 m g(-1) sample) and, in common with sample humidity, remained constant with increasing depth. We conclude that in zones of riparian tropical forest with abundant sufficient litter accumulation and abundant AMF external hyphae, the increase in litter colonization by AMF with depth correlates to the colonization by saprotrophic fungi, but their presence in the deepest layers is independent of both litter colonization by saprotrophic fungi and root colonization by AMF. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96.

    Science.gov (United States)

    Raaijmakers, J M; Weller, D M

    2001-06-01

    The genotypic diversity that occurs in natural populations of antagonistic microorganisms provides an enormous resource for improving biological control of plant diseases. In this study, we determined the diversity of indigenous 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas spp. occurring on roots of wheat grown in a soil naturally suppressive to take-all disease of wheat. Among 101 isolates, 16 different groups were identified by random amplified polymorphic DNA (RAPD) analysis. One RAPD group made up 50% of the total population of DAPG-producing Pseudomonas spp. Both short- and long-term studies indicated that this dominant genotype, exemplified by P. fluorescens Q8r1-96, is highly adapted to the wheat rhizosphere. Q8r1-96 requires a much lower dose (only 10 to 100 CFU seed(-1) or soil(-1)) to establish high rhizosphere population densities (10(7) CFU g of root(-1)) than Q2-87 and 1M1-96, two genotypically different, DAPG-producing P. fluorescens strains. Q8r1-96 maintained a rhizosphere population density of approximately 10(5) CFU g of root(-1) after eight successive growth cycles of wheat in three different, raw virgin soils, whereas populations of Q2-87 and 1M1-96 dropped relatively quickly after five cycles and were not detectable after seven cycles. In short-term studies, strains Q8r1-96, Q2-87, and 1M1-96 did not differ in their ability to suppress take-all. After eight successive growth cycles, however, Q8r1-96 still provided control of take-all to the same level as obtained in the take-all suppressive soil, whereas Q2-87 and 1M1-96 gave no control anymore. Biochemical analyses indicated that the superior rhizosphere competence of Q8r1-96 is not related to in situ DAPG production levels. We postulate that certain rhizobacterial genotypes have evolved a preference for colonization of specific crops. By exploiting diversity of antagonistic rhizobacteria that share a common trait, biological control can be improved significantly.

  15. Fine-scale distribution of ectomycorrhizal fungi colonizing Tsuga diversifolia seedlings growing on rocks in a subalpine Abies veitchii forest.

    Science.gov (United States)

    Yoshida, Naohiro; Son, Joung A; Matsushita, Norihisa; Iwamoto, Kojiro; Hogetsu, Taizo

    2014-05-01

    Numerous species of ectomycorrhizal (ECM) fungi coexist under the forest floor. To explore the mechanisms of coexistence, we investigated the fine-scale distribution of ECM fungal species colonizing root tips in the root system of Tsuga diversifolia seedlings in a subalpine forest. ECM root tips of three seedlings growing on the flat top surface of rocks were sampled after recording their positions in the root system. After the root tips were grouped by terminal-restriction fragment length polymorphism (T-RFLP) analysis of ITS rDNA, the fungal species representing each T-RFLP group were identified using DNA sequencing. Based on the fungal species identification, the distribution of root tips colonized by each ECM fungus was mapped. Significant clustering of root tips was estimated for each fungal species by comparing actual and randomly simulated distributions. In total, the three seedlings were colonized by 40 ECM fungal species. The composition of colonizing fungal species was quite different among the seedlings. Twelve of the 15 major ECM fungal species clustered significantly within a few centimeters. Some clusters overlapped or intermingled, while others were unique. Areas with high fungal species diversity were also identified in the root system. In this report, the mechanisms underlying generation of these ECM root tip clusters in the root system are discussed.

  16. Mycorrhiza alters the profile of root hairs in trifoliate orange.

    Science.gov (United States)

    Wu, Qiang-Sheng; Liu, Chun-Yan; Zhang, De-Jian; Zou, Ying-Ning; He, Xin-Hua; Wu, Qing-Hua

    2016-04-01

    Root hairs and arbuscular mycorrhiza (AM) coexist in root systems for nutrient and water absorption, but the relation between AM and root hairs is poorly known. A pot study was performed to evaluate the effects of four different AM fungi (AMF), namely, Claroideoglomus etunicatum, Diversispora versiformis, Funneliformis mosseae, and Rhizophagus intraradices on root hair development in trifoliate orange (Poncirus trifoliata) seedlings grown in sand. Mycorrhizal seedlings showed significantly higher root hair density than non-mycorrhizal seedlings, irrespective of AMF species. AMF inoculation generally significantly decreased root hair length in the first- and second-order lateral roots but increased it in the third- and fourth-order lateral roots. AMF colonization induced diverse responses in root hair diameter of different order lateral roots. Considerably greater concentrations of phosphorus (P), nitric oxide (NO), glucose, sucrose, indole-3-acetic acid (IAA), and methyl jasmonate (MeJA) were found in roots of AM seedlings than in non-AM seedlings. Levels of P, NO, carbohydrates, IAA, and MeJA in roots were correlated with AM formation and root hair development. These results suggest that AMF could alter the profile of root hairs in trifoliate orange through modulation of physiological activities. F. mosseae, which had the greatest positive effects, could represent an efficient AM fungus for increasing fruit yields or decreasing fertilizer inputs in citrus production.

  17. Mycorrhizal Glomus spp. vary in their effects on the dynamics and turnover of fine alfalfa (Medicago sativa L.) roots

    International Nuclear Information System (INIS)

    Ren, A.; Waly, N.; Chunhui, M.; Zhang, Q.; Liu, H.; Yang, J.

    2016-01-01

    The distribution of fine roots in the soil profile has important implications related to water and nutrient uptake. The Objective of this study was to compare the effects of different arbuscular mycorrhizal fungi (AMF) on the fine root dynamics of Medicago sativa L. cv. Sanditi. We used minirhizotrons to observe changes in fine root length density (FRLD, mm/cm2) and fine root surface area density (FRSAD, mm2/cm2) during the growing season. Fine root P concentrations and turnover rate were also measured. The colonization rate of fine roots varied depending on the AMF species. Colonization rates were highest when roots were inoculated with Glomus mosseae and lowest when roots were inoculated G. intraradices. Inoculation with AMF significantly increased both FRLD and FRSAD. G. versiforme increased FRLD and FRSAD most, whereas G. mosseae had the least effect. Inoculation with AMF also decreased fine root turnover rates. Inoculation with a mixture of AMF species increased fine root turnover and P concentrations more than inoculation with a single AMF species. Fine root length density increased to a maximum on Aug. 6 and then decreased. In comparison, FRSAD exhibited two peaks during the growing season. Overall, the Results indicated that inoculation with AMF can significantly promote fine root growth and P uptake by alfalfa growing on soil with low P availability. The AMF may preserve fine root function late in the growing season. (author)

  18. Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4+ concentrations in hydroponic conditions

    Science.gov (United States)

    Tamura, Wataru; Ebitani, Takeshi; Yano, Masahiro; Sato, Tadashi; Yamaya, Tomoyuki

    2010-01-01

    Root system development is an important target for improving yield in cereal crops. Active root systems that can take up nutrients more efficiently are essential for enhancing grain yield. In this study, we attempted to identify quantitative trait loci (QTL) involved in root system development by measuring root length of rice seedlings grown in hydroponic culture. Reliable growth conditions for estimating the root length were first established to renew nutrient solutions daily and supply NH4+ as a single nitrogen source. Thirty-eight chromosome segment substitution lines derived from a cross between ‘Koshihikari’, a japonica variety, and ‘Kasalath’, an indica variety, were used to detect QTL for seminal root length of seedlings grown in 5 or 500 μM NH4+. Eight chromosomal regions were found to be involved in root elongation. Among them, the most effective QTL was detected on a ‘Kasalath’ segment of SL-218, which was localized to the long-arm of chromosome 6. The ‘Kasalath’ allele at this QTL, qRL6.1, greatly promoted root elongation under all NH4+ concentrations tested. The genetic effect of this QTL was confirmed by analysis of the near-isogenic line (NIL) qRL6.1. The seminal root length of the NIL was 13.5–21.1% longer than that of ‘Koshihikari’ under different NH4+ concentrations. Toward our goal of applying qRL6.1 in a molecular breeding program to enhance rice yield, a candidate genomic region of qRL6.1 was delimited within a 337 kb region in the ‘Nipponbare’ genome by means of progeny testing of F2 plants/F3 lines derived from a cross between SL-218 and ‘Koshihikari’. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1328-3) contains supplementary material, which is available to authorized users. PMID:20390245

  19. Mapping of a Novel Race Specific Resistance Gene to Phytophthora Root Rot of Pepper (Capsicum annuum) Using Bulked Segregant Analysis Combined with Specific Length Amplified Fragment Sequencing Strategy.

    Science.gov (United States)

    Xu, Xiaomei; Chao, Juan; Cheng, Xueli; Wang, Rui; Sun, Baojuan; Wang, Hengming; Luo, Shaobo; Xu, Xiaowan; Wu, Tingquan; Li, Ying

    2016-01-01

    Phytophthora root rot caused by Phytophthora capsici (P. capsici) is a serious limitation to pepper production in Southern China, with high temperature and humidity. Mapping PRR resistance genes can provide linked DNA markers for breeding PRR resistant varieties by molecular marker-assisted selection (MAS). Two BC1 populations and an F2 population derived from a cross between P. capsici-resistant accession, Criollo de Morelos 334 (CM334) and P. capsici-susceptible accession, New Mexico Capsicum Accession 10399 (NMCA10399) were used to investigate the genetic characteristics of PRR resistance. PRR resistance to isolate Byl4 (race 3) was controlled by a single dominant gene, PhR10, that was mapped to an interval of 16.39Mb at the end of the long arm of chromosome 10. Integration of bulked segregant analysis (BSA) and Specific Length Amplified Fragment sequencing (SLAF-seq) provided an efficient genetic mapping strategy. Ten polymorphic Simple Sequence Repeat (SSR) markers were found within this region and used to screen the genotypes of 636 BC1 plants, delimiting PhR10 to a 2.57 Mb interval between markers P52-11-21 (1.5 cM away) and P52-11-41 (1.1 cM). A total of 163 genes were annotated within this region and 31 were predicted to be associated with disease resistance. PhR10 is a novel race specific gene for PRR, and this paper describes linked SSR markers suitable for marker-assisted selection of PRR resistant varieties, also laying a foundation for cloning the resistance gene.

  20. Mapping of a Novel Race Specific Resistance Gene to Phytophthora Root Rot of Pepper (Capsicum annuum Using Bulked Segregant Analysis Combined with Specific Length Amplified Fragment Sequencing Strategy.

    Directory of Open Access Journals (Sweden)

    Xiaomei Xu

    Full Text Available Phytophthora root rot caused by Phytophthora capsici (P. capsici is a serious limitation to pepper production in Southern China, with high temperature and humidity. Mapping PRR resistance genes can provide linked DNA markers for breeding PRR resistant varieties by molecular marker-assisted selection (MAS. Two BC1 populations and an F2 population derived from a cross between P. capsici-resistant accession, Criollo de Morelos 334 (CM334 and P. capsici-susceptible accession, New Mexico Capsicum Accession 10399 (NMCA10399 were used to investigate the genetic characteristics of PRR resistance. PRR resistance to isolate Byl4 (race 3 was controlled by a single dominant gene, PhR10, that was mapped to an interval of 16.39Mb at the end of the long arm of chromosome 10. Integration of bulked segregant analysis (BSA and Specific Length Amplified Fragment sequencing (SLAF-seq provided an efficient genetic mapping strategy. Ten polymorphic Simple Sequence Repeat (SSR markers were found within this region and used to screen the genotypes of 636 BC1 plants, delimiting PhR10 to a 2.57 Mb interval between markers P52-11-21 (1.5 cM away and P52-11-41 (1.1 cM. A total of 163 genes were annotated within this region and 31 were predicted to be associated with disease resistance. PhR10 is a novel race specific gene for PRR, and this paper describes linked SSR markers suitable for marker-assisted selection of PRR resistant varieties, also laying a foundation for cloning the resistance gene.

  1. Colonic Polyps

    Science.gov (United States)

    ... Colonic polyps grow in the large intestine, or colon. Most polyps are not dangerous. However, some polyps ... member with polyps Have a family history of colon cancer Most colon polyps do not cause symptoms. ...

  2. Genetic variation in pea (Pisum sativum L.) demonstrates the importance of root but not shoot C/N ratios in the control of plant morphology and reveals a unique relationship between shoot length and nodulation intensity.

    Science.gov (United States)

    Ludidi, Ndiko N; Pellny, Till K; Kiddle, Guy; Dutilleul, Christelle; Groten, Karin; VAN Heerden, Philippus D R; Dutt, Som; Powers, Stephen J; Römer, Peter; Foyer, Christine H

    2007-10-01

    Nodule numbers are regulated through systemic auto-regulatory signals produced by shoots and roots. The relative effects of shoot and root genotype on nodule numbers together with relationships to organ biomass, carbon (C) and nitrogen (N) status, and related parameters were measured in pea (Pisum sativum) exploiting natural genetic variation in maturity and apparent nodulation intensity. Reciprocal grafting experiments between the early (Athos), intermediate (Phönix) and late (S00182) maturity phenotypes were performed and Pearson's correlation coefficients for the parameters were calculated. No significant correlations were found between shoot C/N ratios and plant morphology parameters, but the root C/N ratio showed a strong correlation with root fresh and dry weights as well as with shoot fresh weight with less significant interactions with leaf number. Hence, the root C/N ratio rather than shoot C/N had a predominant influence on plant morphology when pea plants are grown under conditions of symbiotic nitrogen supply. The only phenotypic characteristic that showed a statistically significant correlation with nodulation intensity was shoot length, which accounted for 68.5% of the variation. A strong linear relationship was demonstrated between shoot length and nodule numbers. Hence, pea nodule numbers are controlled by factors related to shoot extension, but not by shoot or root biomass accumulation, total C or total N. The relationship between shoot length and nodule numbers persisted under field conditions. These results suggest that stem height could be used as a breeding marker for the selection of pea cultivars with high nodule numbers and high seed N contents.

  3. Correlation of arbuscular mycorrhizal colonization with plant growth, nodulation, and shoot npk in legumes

    International Nuclear Information System (INIS)

    Javaid, A.; Anjum, T.; Shah, M.H.M.

    2007-01-01

    Correlation of arbuscular mycorrhizal colonization with different root and shoot growth, nodulation and shoot NPK parameters was studied in three legumes viz. Trifolium alexandrianum, Medicago polymorpha and Melilotus parviflora. The three test legume species showed different patterns of root and shoot growth, nodulation, mycorrhizal colonization and shoot N, P and K content. Different mycorrhizal structures viz. mycelium, arbuscules and vesicles showed different patters of correlation with different studied parameters. Mycelial infection showed an insignificantly positive correlation with root and shoot dry biomass and total root length. Maximum root length was however, negatively associated with mycelial infection. Both arbuscular and vesicular infections were negatively correlated with shoot dry biomass and different parameters of root growth. The association between arbuscular infection and maximum root length was significant. All the three mycorrhizal structures showed a positive correlation with number and biomass of nodules. The association between arbuscular infection and nodule number was significant. Mycelial infection was positively correlated with percentage and total shoot N and P. Similarly percentage N was also positively correlated with arbuscular and vesicular infections. By contrast, total shoot N showed a negative association with arbuscular as well as vesicular infections. Similarly both percentage and total shoot P were negatively correlated with arbuscular and vesicular infections. All the associations between mycorrhizal parameters and shoot K were negative except between vesicular infection and shoot %K. (author)

  4. PvRbohB negatively regulates Rhizophagus irregularis colonization in Phaseolus vulgaris.

    Science.gov (United States)

    Arthikala, Manoj-Kumar; Montiel, Jesús; Nava, Noreide; Santana, Olivia; Sánchez-López, Rosana; Cárdenas, Luis; Quinto, Carmen

    2013-08-01

    Plant NADPH oxidases (RBOHs) regulate the early stages of rhizobial infection in Phaseolus vulgaris and affect nodule function in Medicago truncatula. In contrast, the role of RBOHs in the plant-arbuscular mycorrhizal (AM) symbiosis and in the regulation of reactive oxygen species (ROS) production during the establishment of the AM interaction is largely unknown. In this study, we assessed the role of P. vulgaris Rboh (PvRbohB) during the symbiosis with the AM fungus, Rhizophagus irregularis. Our results indicate that the PvRbohB transcript is significantly up-regulated in the mycorrhized roots of P. vulgaris. Further, the PvRbohB promoter was found to be active during the invasion of R. irregularis. Down-regulation of PvRbohB transcription by RNAi (RNA interference) silencing resulted in diminished ROS levels in the transgenic mycorrhized roots and induced early hyphal root colonization. Interestingly, the size of appressoria increased in PvRbohB-RNAi roots (760 ± 70.1 µm) relative to controls (251 ± 73.2 µm). Finally, the overall level of mycorrhizal colonization significantly increased in PvRbohB-RNAi roots [48.1 ± 3.3% root length colonization (RLC)] compared with controls (29.4 ± 1.9% RLC). We propose that PvRbohB negatively regulates AM colonization in P. vulgaris.

  5. Automated Root Tracking with "Root System Analyzer"

    Science.gov (United States)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    identification number, the distance between branching point to the parent root base, the root length, the root radius and the nodes that belong to each individual root path. This information is relevant for the analysis of dynamic root system development as well as the parameterisation of root architecture models. Here, we show results of Root System Analyzer applied to analyse the root systems of wheat plants grown in rhizotrons. Different treatments with respect to soil moisture and apatite concentrations were used to test the effects of those conditions on root system development. Photographs of the root systems were taken at high spatial and temporal resolution and root systems are automatically tracked.

  6. Genetic association among root morphology, root quality and root yield in ashwagandha (Withania somnifera)

    OpenAIRE

    Kumar Ramesh R.; Reddy Anjaneya Prasanna L.; Subbaiah Chinna J.; Kumar Niranjana A.; Prasad Nagendra H.N.; Bhukya Balakishan

    2011-01-01

    Ashwagandha (Withania somnifera) is a dryland medicinal crop and roots are used as valuable drug in traditional systems of medicine. Morphological variants (morphotypes) and the parental populations were evaluated for root - morphometric, quality and yield traits to study genetic association among them. Root morphometric traits (root length, root diameter, number of secondary roots/ plant) and crude fiber content exhibited strong association among them and ...

  7. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability.

    Science.gov (United States)

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention.

  8. Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest.

    Science.gov (United States)

    Wurzburger, Nina; Wright, S Joseph

    2015-08-01

    Questions remain as to which soil nutrients limit primary production in tropical forests. Phosphorus (P) has long been considered the primary limiting element in lowland forests, but recent evidence demonstrates substantial heterogeneity in response to nutrient addition, highlighting a need to understand and diagnose nutrient limitation across diverse forests. Fine-root characteristics including their abundance, functional traits, and mycorrhizal symbionts can be highly responsive to changes in soil nutrients and may help to diagnose nutrient limitation. Here, we document the response of fine roots to long-term nitrogen (N), P, and potassium (K) fertilization in a lowland forest in Panama. Because this experiment has demonstrated that N and K together limit tree growth and P limits fine litter production, we hypothesized that fine roots would also respond to nutrient addition. Specifically we hypothesized that N, P, and K addition would reduce the biomass, diameter, tissue density, and mycorrhizal colonization of fine roots, and increase nutrient concentration in root tissue. Most morphological root traits responded to the single addition of K and the paired addition of N and P, with the greatest response to all three nutrients combined. The addition of N, P, and K together reduced fine-root biomass, length, and tissue density, and increased specific root length, whereas root diameter remained unchanged. Nitrogen addition did not alter root N concentration, but P and K addition increased root P and K concentration, respectively. Mycorrhizal colonization of fine roots declined with N, increased with P, and was unresponsive to K addition. Although plant species composition remains unchanged after 14 years of fertilization, fine-root characteristics responded to N, P, and K addition, providing some of the strongest stand-level responses in this experiment. Multiple soil nutrients regulate fine-root abundance, morphological and chemical traits, and their association

  9. 'Length'at Length

    Indian Academy of Sciences (India)

    Admin

    He was interested to know how `large' is the set of numbers x for which the series is convergent. Here large refers to its length. But his set is not in the class ♢. Here is another problem discussed by Borel. Consider .... have an infinite collection of pairs of new shoes and want to choose one shoe from each pair. We have an ...

  10. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    Science.gov (United States)

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  11. Plant Functional Traits Associated with Mycorrhizal Root Foraging in Arbuscular Mycorrhizal and Ectomycorrhizal Trees

    Science.gov (United States)

    Eissenstat, D. M.; Chen, W.; Cheng, L.; Liu, B.; Koide, R. T.; Guo, D.

    2016-12-01

    Root foraging for nutrient "hot spots" is a key strategy by which some plants maximize nutrient gain from their carbon investment in root and mycorrhizal hyphae. Foraging strategies may depend on costs of root construction, with thick roots generally costing more per unit length than thin roots. Investment in mycorrhizal hyphae, which are considerably thinner than roots, may represent an alternative strategy for cost-effective nutrient foraging, especially for thick-root species. Type of mycorrhiza may matter, as ectomycorrhizal (EM) fungi are more associated with longer hyphae and ability to mineralize organic matter than arbuscular mycorrhizal (AM) fungi. Among AM trees in both subtropical forests in SE China and in temperate forests in central Pennsylvania, USA, we found that tree species with thin roots proliferated their roots in soil patches enriched with mineral nutrients to a greater extent than species with thick roots. In addition, thick-root species were consistently colonized more heavily with mycorrhizal fungi than thin root species, although nutrient addition tended to diminish colonization. In a common garden in central Pennsylvania of both AM and EM tree species, we found that nutrient patches enriched with organic materials resulted in greater root and mycorrhizal fungal proliferation compared to those enriched with inorganic nutrients and that thick-root species proliferated more with their mycorrhizal fungi whereas thin-root species proliferated more with their roots. We further examined with many more species, patterns of root and mycorrhizal fungal proliferation in organic-nutrient-enriched patches. Foraging precision, or the extent that roots or mycorrhizal hyphae grew in the enriched patch relative to the unenriched patch, was related to both root thickness and type of mycorrhiza. In both AM and EM trees, thick-root species were not selective foragers of either their roots or hyphae. In thin-root species, there was strong selectivity in

  12. The novel lipopeptide Poaeamide of the endophyte Pseudomonas poae RE*1-1-14 is involved in pathogen suppression and root colonization

    NARCIS (Netherlands)

    Zachow, Christin; Jahanshah, Ghazaleh; de Bruijn, Irene; Song, Chunxu; Ianni, Federica; Pataj, Zoltán; Gerhardt, Heike; Pianet, Isabelle; Lämmerhofer, Michael; Berg, Gabriele; Gross, Harald; Raaijmakers, Jos M.

    2015-01-01

    Endophytic Pseudomonas poae strain RE*1-1-14 was originally isolated from internal root tissue of sugar beet plants and shown to suppress growth of the fungal pathogen Rhizoctonia solani both in vitro and in the field. To identify genes involved in its biocontrol activity, RE*1-1-14 random

  13. The novel lipopeptide poaeamide of the endophyte Pseudomonas poae RE*1-1-14 is involved in pathogen suppression and root colonization

    NARCIS (Netherlands)

    Zachow, C.; Jahanshah, G.; Bruijn, de I.; Song, C.; Ianni, F.; Pataj, Z.; Gerhardt, H.; Pianet, I.; Lämmerhofer, M.; Berg, G.; Gross, H.; Raaijmakers, J.M.

    2015-01-01

    Endophytic Pseudomonas poae strain RE*1-1-14 was originally isolated from internal root tissue of sugar beet plants and shown to suppress growth of the fungal pathogen Rhizoctonia solani both in vitro and in the field. To identify genes involved in its biocontrol activity, RE*1-1-14 random

  14. Colonic Diseases

    Science.gov (United States)

    ... Ulcerative colitis - ulcers of the colon and rectum Diverticulitis - inflammation or infection of pouches in the colon Irritable bowel syndrome - an uncomfortable condition causing abdominal cramping and other symptoms Treatment for colonic diseases varies greatly depending on the disease and its ...

  15. Colonización radical por endófitos fúngicos en Trithrinax campestris (Arecaceae de ecosistemas semiáridos del centro de Argentina Root colonization by fungal endophytes in Trithrinax campestris (Arecaceae from semiarid ecosystems from Central Argentine

    Directory of Open Access Journals (Sweden)

    Mónica A Lugo

    2011-12-01

    Full Text Available En ecosistemas áridos y semiáridos las raíces de las plantas suelen formar simbiosis con hongos, los que les proporcionan nutrientes y agua. Poco se conoce sobre los hongos asociados a palmeras nativas y cómo éstos podrían estar relacionados entre ellos. Se describe y cuantifica la colonización radical de los simbiontes de Trithrinax campestris en poblaciones leve y fuertemente afectadas por el fuego. T. campestris fue colonizada por hongos micorrícico-arbusculares (HMA y endófitos septados oscuros (ESO. La colonización por HMA fue del tipo intermedio entre los tipos Arum y Paris. La colonización por HMA y ESO y la producción de pelos radicales, presentó diferencias entre las poblaciones estudiadas. Los resultados sugieren que en T. campestris la relación entre hongos simbiontes/producción de pelos radicales podrían estar relacionada con su alta tolerancia al fuego y la aridez.In arid and semiarid ecosystems, roots frequently form symbiosis with fungi that provides access to nutrients and water. Knowledge regarding the study of fungal symbionts colonizing native palms roots is still scarce. We described, quantified and compared fungal colonization in roots of Trithrinax campestris from two environmental situations: population with weak-burning-signs and population with strong-burning-signs. T. campestris was colonized by arbuscular-mycorrhizal-fungi (AMF and dark-septate-endophytes (DSE. AMF colonization was an intermediate type between Arum and Paris. The AMF and DSE colonization and root hair production differed between populations. Our results suggest that in T. campestris the relation between fungal-symbionts and root-hair-production might be related to tolerance to burning and aridity.

  16. Colonização radicular de plantas cultivadas por Ralstonia solanacearum biovares 1, 2 e 3 Root colonization of cultivated plants inoculated with Ralstonia solanacearum biovar 1, 2 and 3

    Directory of Open Access Journals (Sweden)

    José Magno Martins Bringel

    2001-09-01

    Full Text Available A murcha bacteriana causada por Ralstonia solanacearum é considerada a principal doença de origem bacteriana no mundo. Centenas de espécies de plantas pertencentes a mais de 50 famílias botânicas têm sido relatadas como hospedeiras. Foi avaliada, em condições de casa de vegetação, a colonização radicular de alface, arroz, cebolinha, ervilha, pepino e soja, por seis isolados de Ralstonia solanacearum (Rs, biovares 1, 2 e 3. Estirpes dos isolados de Rs com resistência múltipla aos antibióticos estreptomicina, rifampicina e cloranfenicol foram utilizadas. A colonização foi avaliada 45 dias após a inoculação, através do plaqueamento de suspensão de trituração em meio de cultura semi-seletivo. A ervilha comportou-se como hospedeira de todos os isolados mas, apenas um isolado da biovar 3 foi patogênico a esta espécie. A soja apresentou populações elevadas de quatro isolados distribuídos entre as três biovares e o pepino, de apenas dois isolados das biovares 1 e 3. Exceto para o isolado que foi patogênico à ervilha, as plantas não apresentaram sintomas da doença, comportando-se como hospedeiras não suscetível. O arroz apresentou populações muito baixas de todos os isolados. Alface e cebolinha não hospedaram nenhum dos isolados inoculados. Os resultados mostram a capacidade de Rs colonizar e sobreviver em diferentes espécies de plantas como rizobactérias.Bacterial wilt caused by Ralstonia solanacearum is considered the main plant disease of bacterial origin in the world, where hundreds of plant species in more than 50 botanical families are host plants. Root colonization of lettuce (Lactuca sativa, rice (Oryza sativa, spring onion (Allium fistulosum, pea (Pisum sativum, cucumber (Cucumis sativus, and soybean (Glycine max by six isolates of Ralstonia solanacearum (Rs biovars 1, 2 and 3 was evaluated under greenhouse conditions. Bacterial strains resistant to streptomycin, rifampicin and chloranfenicol were used

  17. Heterobasidion annosum root and butt rot of Norway spruce, Picea abies: Colonization by the fungus and its impact on tree growth

    Energy Technology Data Exchange (ETDEWEB)

    Bendz-Hellgren, M. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    1997-12-31

    Diameter growth losses associated with decay were quantified on a nationwide scale, and volume growth losses were measured in two stands. Diameter growth losses were 8-10% during a 5-year period in the nationwide study and 23% in one of the stands, whereas in the other stand, no volume losses could be attributed to decay. The effects of stump moisture content, temperature and time elapsed between felling and inoculation on the establishment of H. annosum spore infections in stumps were investigated among stumps resulting from thinnings and clear-cuttings. Furthermore, inoculations with H. annosum conidia were made between 0 hours and 4 weeks after thinning. The incidence of stump infections was lower on clear-cut areas than in thinned stands, but high enough to warrant stump treatment on clear-cuttings. A positive relation was found between heartwood moisture content and the proportion of heartwood infected, whereas the opposite relation was found for sapwood. The establishment of new conidiospore infections decreased with time, and it appeared that stumps were no longer susceptible to infection after 3 weeks had elapsed since felling. Roots of stumps and trees on forest land or former arable land were inoculated with H. annosum treated sawdust. The growth rate of H. annosum in roots of stumps was 25 cm/year, corresponding to 2.5 to 3 times the growth rate in tree roots. Previous land use did not affect the fungal rate of spread. Also, the average initial spread rate of H. annosum in naturally infected Norway spruce stems was estimated at 30 cm/year 156 refs, 9 figs

  18. Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees.

    Science.gov (United States)

    Collins, Courtney G; Wright, S Joseph; Wurzburger, Nina

    2016-04-01

    In Neotropical forests, lianas are increasing in abundance relative to trees. This increased species richness may reflect a positive response to global change factors including increased temperature, atmospheric CO2, habitat fragmentation, and drought severity; however, questions remain as to the specific mechanisms facilitating the response. Previous work suggests that lianas may gain an ecological advantage over trees through leaf functional traits that offer a quick return on investment of resources, although it is unknown whether this pattern extends to root traits and relationships with fungal or bacterial symbionts belowground. We sampled confamilial pairs of liana and tree species and quantified morphological and chemical traits of leaves and fine roots, as well as root symbiont abundance, to determine whether functional traits associated with resource acquisition differed between the two. Compared to trees, lianas possessed higher specific leaf area, specific root length, root branching intensity, and root nitrogen (N) and phosphorus (P) concentrations, and lower leaf and root tissue density, leaf and root carbon (C), root diameter, root C:P and N:P, and mycorrhizal colonization. Our study provides new evidence that liana leaf and root traits are characterized by a rapid resource acquisition strategy relative to trees. These liana functional traits may facilitate their response to global change, raising questions about how increased liana dominance might affect ecosystem processes of Neotropical forests.

  19. Colon interposition

    International Nuclear Information System (INIS)

    Isolauri, J.; Tampere Univ. Central Hospital; Paakkala, T.; Arajaervi, P.; Markkula, H.

    1987-01-01

    Colon interposition was carried out in 12 patients with oesophageal carcinoma and on 38 patients with benign oesophageal disease an average of 71 months before the radiographic examination. Various ischaemic changes including 'jejunization', loss of haustration and stricture formation were observed in 15 cases. In 12 patients one or several diverticula were seen in the colon graft. Reflux was observed in 17 cases in supine position. Double contrast technique in the examination of interposed colon is recommended. (orig.)

  20. Community Analysis of Arbuscular Mycorrhizal Fungi in Roots of Poncirus trifoliata and Citrus reticulata Based on SSU rDNA

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2014-01-01

    Full Text Available Morphological observation of arbuscular mycorrhizal fungi (AMF species in rhizospheric soil could not accurately reflect the actual AMF colonizing status in roots, while molecular identification of indigenous AMF colonizing citrus rootstocks at present was rare in China. In our study, community of AMF colonizing trifoliate orange (Poncirus trifoliata L. Raf. and red tangerine (Citrus reticulata Blanco were analyzed based on small subunit of ribosomal DNA genes. Morphological observation showed that arbuscular mycorrhizal (AM colonization, spore density, and hyphal length did not differ significantly between two rootstocks. Phylogenetic analysis showed that 173 screened AMF sequences clustered in at least 10 discrete groups (GLO1~GLO10, all belonging to the genus of Glomus Sensu Lato. Among them, GLO1 clade (clustering with uncultured Glomus accounting for 54.43% clones was the most common in trifoliate orange roots, while GLO6 clade (clustering with Glomus intraradices accounting for 35.00% clones was the most common in red tangerine roots. Although, Shannon-Wiener indices exhibited no notable differences between both rootstocks, relative proportions of observed clades analysis revealed that composition of AMF communities colonizing two rootstocks varied severely. The results indicated that native AMF species in citrus rhizosphere had diverse colonization potential between two different rootstocks in the present orchards.

  1. Community analysis of arbuscular mycorrhizal fungi in roots of Poncirus trifoliata and Citrus reticulata based on SSU rDNA.

    Science.gov (United States)

    Wang, Peng; Wang, Yin

    2014-01-01

    Morphological observation of arbuscular mycorrhizal fungi (AMF) species in rhizospheric soil could not accurately reflect the actual AMF colonizing status in roots, while molecular identification of indigenous AMF colonizing citrus rootstocks at present was rare in China. In our study, community of AMF colonizing trifoliate orange (Poncirus trifoliata L. Raf.) and red tangerine (Citrus reticulata Blanco) were analyzed based on small subunit of ribosomal DNA genes. Morphological observation showed that arbuscular mycorrhizal (AM) colonization, spore density, and hyphal length did not differ significantly between two rootstocks. Phylogenetic analysis showed that 173 screened AMF sequences clustered in at least 10 discrete groups (GLO1~GLO10), all belonging to the genus of Glomus Sensu Lato. Among them, GLO1 clade (clustering with uncultured Glomus) accounting for 54.43% clones was the most common in trifoliate orange roots, while GLO6 clade (clustering with Glomus intraradices) accounting for 35.00% clones was the most common in red tangerine roots. Although, Shannon-Wiener indices exhibited no notable differences between both rootstocks, relative proportions of observed clades analysis revealed that composition of AMF communities colonizing two rootstocks varied severely. The results indicated that native AMF species in citrus rhizosphere had diverse colonization potential between two different rootstocks in the present orchards.

  2. The effects of fire severity on ectomycorrhizal colonization and morphometric features in Pinus pinaster Ait. seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Vásquez-Gassibe, P.; Oria-de-Rueda, J.A.; Santos-del-Blanco, L.; Martín-Pinto, P.

    2016-07-01

    Aim of study: Mycorrhizal fungi in Mediterranean forests play a key role in the complex process of recovery after wildfires. A broader understanding of an important pyrophytic species as Pinus pinaster and its fungal symbionts is thus necessary for forest restoration purposes. This study aims to assess the effects of ectomycorrhizal symbiosis on maritime pine seedlings and how fire severity affects fungal colonization ability. Area of study: Central Spain, in a Mediterranean region typically affected by wildfires dominated by Pinus pinaster, a species adapted to fire disturbance. Material and Methods: We studied P. pinaster root apexes from seedlings grown in soils collected one year after fire in undisturbed sites, sites moderately affected by fire and sites highly affected by fire. Natural ectomycorrhization was observed at the whole root system level as well as at two root vertical sections (0-10 cm and 10-20 cm). We also measured several morphometric traits (tap root length, shoot length, dry biomass of shoots and root/shoot ratio), which were used to test the influence of fire severity and soil chemistry upon them. Main results: Ectomycorrhizal colonization in undisturbed soils for total and separated root vertical sections was higher than in soils that had been affected by fire to some degree. Inversely, seedling vegetative size increased according to fire severity. Research highlights: Fire severity affected soil properties and mycorrhizal colonization one year after occurrence, thus affecting plant development. These findings can contribute to a better knowledge of the factors mediating successful establishment of P. pinaster in Mediterranean forests after wildfires. (Author)

  3. Colonic angiodysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, C.; Legmann, P.; Garnier, T.; Levesque, M.; Favriel, J.M.

    1984-11-01

    The main clinical, endoscopic and radiographic findings in thirty documented cases of colonic angiodysplasia or vacular ectasia are described. We emphasise the association with colonic diverticulosis and cardiovascular pathology, describe the histological changes, summarize the present physiopathological hypothesis, and consider the various therapeutic approaches.

  4. Colonic angiodysplasia

    International Nuclear Information System (INIS)

    Vallee, C.; Legmann, P.; Garnier, T.; Levesque, M.

    1984-01-01

    The main clinical, endoscopic and radiographic findings in thirty documented cases of colonic angiodysplasia or vacular ectasia are described. We emphasise the association with colonic diverticulosis and cardiovascular pathology, describe the histological changes, summarize the present physiopathological hypothesis, and consider the various therapeutic approaches. (orig.)

  5. Colonic locomotion

    NARCIS (Netherlands)

    Dodou, D.

    2006-01-01

    The most effective screening method for colonic cancer is colonoscopy. However, colonoscopy cannot be easily embraced by the population because of the related pain intensity. Robotic devices that pull themselves forward through the colon are a possible alternative. The main challenge for such

  6. Colonic lipoma

    International Nuclear Information System (INIS)

    Siddiqui, M.S.; Khatri, A.R.; Quraishy, M.S.; Fatima, L.; Muzaffar, S.

    2003-01-01

    Lipoma of the colon is rare and may lead to intestinal obstruct. We have presented two cases of colonic lipoma. Both were elderly females, one presented with diarrhea and the other with sub-acute intestinal obstruction. After colonoscopy surgical removal was done. Histopathology revealed lipoma. (author)

  7. Development of a high-efficient transformation system of Bacillus pumilus strain DX01 to facilitate gene isolation via gfp-tagged insertional mutagenesis and visualize bacterial colonization of rice roots.

    Science.gov (United States)

    Shen, Xinqian; Chen, Yunpeng; Liu, Tong; Hu, Xiaolu; Gu, Zhenfang

    2013-09-01

    A Tn5 transposition vector, pMOD-tet-egfp, was constructed and used for the random insertional mutagenesis of Bacillus pumilus. Various parameters were investigated to increase the transformation efficiency B. pumilus DX01 via Tn5 transposition complexes (transposome): bacterial growth phase, type of electroporation buffer, electric field strength, and recovery medium. Transformation efficiency was up to 3 × 10(4) transformants/μg of DNA under the optimized electroporation conditions, and a total of 1,467 gfp-tagged transformants were obtained. Fluorescence-activated cell sorting analysis showed that all gfp-tagged bacterial cells expressed GFP, indicating that foreign DNA has been successfully integrated into the genome of B. pumilus and expressed. Finally, flanking DNA sequences were isolated from several transformants and colonization of rice roots by B. pumilus DX01 was also studied. The method developed here will be useful for creating an insertion mutant library of gram-positive bacteria, thus facilitating their molecular genetic and cytological studies.

  8. Is there an association between root architecture and mycorrhizal growth response?

    Science.gov (United States)

    Maherali, Hafiz

    2014-10-01

    The symbiosis between arbuscular mycorrhizal (AM) fungi and plants is evolutionarily widespread. The response of plant growth to inoculation by these fungi (mycorrhizal growth response; MGR) is highly variable, ranging from positive to negative. Some of this variation is hypothesized to be associated with root structure and function. Specifically, species with a coarse root architecture, and thus a limited intrinsic capacity to absorb soil nutrients, are expected to derive the greatest growth benefit from inoculation with AM fungi. To test this hypothesis, previously published literature and phylogenetic information were combined in a meta-analysis to examine the magnitude and direction of relationships among several root architectural traits and MGR. Published studies differed in the magnitude and direction of relationships between root architecture and MGR. However, when combined, the overall relationship between MGR and allocation to roots, root diameter, root hair length and root hair density did not differ significantly from zero. These findings indicate that possessing coarse roots is not necessarily a predictor of plant growth response to AM fungal colonization. Root architecture is therefore unlikely to limit the evolution of variation in MGR. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. Genetic association among root morphology, root quality and root yield in ashwagandha (Withania somnifera

    Directory of Open Access Journals (Sweden)

    Kumar Ramesh R.

    2011-01-01

    Full Text Available Ashwagandha (Withania somnifera is a dryland medicinal crop and roots are used as valuable drug in traditional systems of medicine. Morphological variants (morphotypes and the parental populations were evaluated for root - morphometric, quality and yield traits to study genetic association among them. Root morphometric traits (root length, root diameter, number of secondary roots/ plant and crude fiber content exhibited strong association among them and showed significant positive genotypic correlation with yield. Starch-fiber ratio (SFR, determinant of brittle root texture showed strong negative association with root yield. The total alkaloid content had positive genotypic correlation with root yield. So genetic upgradation should aim at optimum balance between two divergent groups of traits i.e. root yield traits (root morphometric traits and crude fiber content and root textural quality traits (starch content and SFR to develop superior genotypes with better yield and quality.

  10. Factors affecting "in vitro" plant development and root colonization of sweet potato by Glomus etunicatum Becker & Gerd Fatores que afetam o desenvolvimento da planta e a colonização radicular "in vitro", da batata doce por Glomus etunicatum Becker & Gerd.

    Directory of Open Access Journals (Sweden)

    Wellington Bressan

    2002-01-01

    Full Text Available Nutrients media (Murashige & Skoog, Hoagland & Arnon and White's media supplemented or not with sucrose and substrates (vermiculite, agar and natrosol were tested for their effects on plant development and root colonization of micropropagated sweet potato, cv. White Star, by Glomus etunicatum Becker & Gerdemann (isolate INVAM FL S329. Addition of sucrose (3% did not affect plant development. However, hyphal growth and root colonization were depressed. Contrasting responses to media nutrient concentration were observed for plant height, root colonization, and hyphal growth. The highest concentration of nutrients in Murashige & Skoog medium improved plant development, but this medium decreased hypha growth and inhibited root colonization. Plants growing in vermiculite substrate had higher (p£0.05 development and mycorrhizal root colonization than those growing in agar or natrosol. The results indicate that colonization of micropropagated sweet potato by arbuscular mycorrhizal fungi is affected by media composition and type of substrate.Os meios de Murashige e Skoog, Hoagland, Arnon e White, suplementados ou não com sacorose, e tendo como substratos vermiculita, ágar ou natrosol foram utilizados para avaliar seus efeitos sobre o desenvolvimento da batata doce, c.v. White Star, e sua colonização por Glomus etunicatum Becker & Gerd. (isolado INVAM FL S329. A adição de sacorose (3% ao meio não afetou o desenvolvimento da planta, porém reduziu o crescimento das hifas de G. etunicatum e a colonização das raízes. A concentração de nutrientes dos meios utilizados mostrou efeitos contrastantes entre altura da planta, crescimento das hifas e colonização das raízes por G. etunicatum. A alta concentração de nutrientes no meio Murashige e Skoog estimulou o crescimento das plantas, reduziu o desenvolvimento das hifas e inibiu a colonização das raízes pelo fungo micorrízico. Plantas desenvolvidas em vermiculita mostraram maior

  11. Mixed and monospecific stands of eucalyptus and black-wattle: I - fine root length density Plantios monoespecíficos e mistos de eucalipto e acácia-negra: I - densidade do comprimento de raízes finas

    Directory of Open Access Journals (Sweden)

    Márcio Viera

    2012-10-01

    Full Text Available Fine root length density (FRLD was evaluated in mixed and monospecific stands of Eucalyptus grandis x E. urophylla and Acacia mearnsii in Southern Brazil. FRLD (≤2,0mm at 8 and 18 months after planting in the treatments: 100E (100% of eucalyptus; 100A (100% of Acacia mearnsii; 50E:50A (50% of eucalyptus + 50% of Acacia mearnsii. The findings demonstrated that the FRLD at 8 months of age have the same distribution, in the two different species, in the distribution of the different soil layers, reaching the maximum projection of 125cm from the tree trunk. For the age of 18 months after planting, it was verified that the FRLD in the monospecific stand of Acacia mearnsii was higher than in the monoculture and mixed stand of Eucalyptus grandis x E. urophylla. Therefore, no interaction, neither positive nor negative, between the root systems of Eucalyptus grandis x E. urophylla and Acacia mearnsii during the 18 months after planting was found. The higher FRLD is found at the soil layers surface, next to the tree trunk and in the planting line, followed by the diagonal and planting rows. The initial growth in length of the root system of Acacia mearnsii is more dynamic with higher density than the eucalyptus, but without interfering directly in the global growth of fine roots in mixed stands.Avaliou-se a densidade do comprimento de raízes finas (DCRF de plantios monoespecíficos e misto de Eucalyptus grandis x E. urophylla e de Acacia mearnsii na região sul do Brasil. A DCRF (≤2,0mm foi determinada aos 8 e 18 meses após o plantio nos tratamentos: 100E (100% de eucalipto; 100A (100% de Acacia mearnsii; 50E:50A (50% de eucalipto + 50% de Acacia mearnsii. A DCRF aos oito meses de idade possui o mesmo comportamento para a ocupação das diferentes camadas do solo, atingindo uma projeção máxima de 125cm de distância em relação ao tronco da árvore. Já, aos 18 meses após o plantio, verificou-se que, no cultivo monoespecífico de Acacia

  12. Root rots

    Science.gov (United States)

    Kathryn Robbins; Philip M. Wargo

    1989-01-01

    Root rots of central hardwoods are diseases caused by fungi that infect and decay woody roots and sometimes also invade the butt portion of the tree. By killing and decaying roots, root rotting fungi reduce growth, decrease tree vigor, and cause windthrow and death. The most common root diseases of central hardwoods are Armillaria root rot, lnonotus root rot, and...

  13. Colon neoplasm

    International Nuclear Information System (INIS)

    Kimura F, K.

    1991-01-01

    The main aspects of colon neoplasms are described, including several factors that predispose the disease, the occurrence, the main biomedical radiography and the evaluation after the surgery. (C.G.C.)

  14. Colonization of exopolysaccharide-producing Paenibacillus ...

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    Jul 4, 2007 ... inhibitory effect against A. niger. Growth, protein and biopolymers production of bacteria were ... bacterium colonized plant roots and were able to migrate downward with the root as it elongated. Scanning electron ...... siderophores producing Pseudomonas fluorescence on crown rot. Haggag 1577 disease ...

  15. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  16. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  17. Combined effects of thinning and decline on fine root dynamics in a Quercus robur L. forest adjoining the Italian Pre-Alps.

    Science.gov (United States)

    Mosca, E; Montecchio, L; Barion, G; Dal Cortivo, C; Vamerali, T

    2017-05-01

    Oak decline is a complex phenomenon, characterized by symptoms of canopy transparency, bark cracks and root biomass reduction. Root health status is one of the first stress indicators, and root turnover is a key process in plant adaptation to unfavourable conditions. In this study, the combined effects of decline and thinning were evaluated on fine root dynamics in an oak forest adjoining the Italian Pre-Alps by comparison of acute declining trees with non-declining trees, both with and without thinning treatment of surrounding trees. Dynamics of volumetric root length density (RLD V ) and tip density (RTD V ), root tip density per unit length of root (RTD L ), diameter, branching index (BI) and mycorrhizal colonization were monitored by soil coring over 2 years as possible descriptors of decline. At the beginning of the experiment, the relationship between canopy transparency and root status was weak, declining trees having slightly lower RLD V (-20 %) and RTD V (-11 %). After a 1 year lag, during which the parameters were almost unaffected, BI and RLD V , together with tip density, tip vitality and mycorrhizal colonization, became the descriptors most representative of both decline class and thinning. Thinning of declining trees increased RLD V (+12 %) and RTD V (+32 %), but reduced tip mycorrhizal colonization and vitality over time compared with non-thinned trees, whereas the opposite occurred in healthy trees, together with a marked decrease in branching. After thinning, there was an initial reduction in the structure of the ectomycorrhizal community, although recovery occurred about 10 months later, regardless of decline severity. Decline causes losses of fine root length, and a moderate recovery can be achieved by thinning, allowing better soil exploration by oak roots. The close correlation between root vitality and mycorrhizal colonization and their deterioration after thinning indicates that decline does not benefit from reduced root competition

  18. Genome-wide identification of bacterial plant colonization genes

    Science.gov (United States)

    Waters, Robert J.; Wetmore, Kelly M.; Mucyn, Tatiana S.; Ryan, Elizabeth M.; Wang, Gaoyan; Ul-Hasan, Sabah; McDonald, Meredith; Yoshikuni, Yasuo; Malmstrom, Rex R.; Deutschbauer, Adam M.; Dangl, Jeffery L.; Visel, Axel

    2017-01-01

    Diverse soil-resident bacteria can contribute to plant growth and health, but the molecular mechanisms enabling them to effectively colonize their plant hosts remain poorly understood. We used randomly barcoded transposon mutagenesis sequencing (RB-TnSeq) in Pseudomonas simiae, a model root-colonizing bacterium, to establish a genome-wide map of bacterial genes required for colonization of the Arabidopsis thaliana root system. We identified 115 genes (2% of all P. simiae genes) with functions that are required for maximal competitive colonization of the root system. Among the genes we identified were some with obvious colonization-related roles in motility and carbon metabolism, as well as 44 other genes that had no or vague functional predictions. Independent validation assays of individual genes confirmed colonization functions for 20 of 22 (91%) cases tested. To further characterize genes identified by our screen, we compared the functional contributions of P. simiae genes to growth in 90 distinct in vitro conditions by RB-TnSeq, highlighting specific metabolic functions associated with root colonization genes. Our analysis of bacterial genes by sequence-driven saturation mutagenesis revealed a genome-wide map of the genetic determinants of plant root colonization and offers a starting point for targeted improvement of the colonization capabilities of plant-beneficial microbes. PMID:28938018

  19. Fundamental length

    International Nuclear Information System (INIS)

    Pradhan, T.

    1975-01-01

    The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)

  20. Learning about Colon Cancer

    Science.gov (United States)

    ... What do we know about heredity and colon cancer? Colon cancer, a malignant tumor of the large intestine, ... page Additional Resources for Information on Hereditary Colon Cancer Colon and Rectal Cancer Information [cancer.gov] The most ...

  1. relative performance of root and shoot development in enset and ...

    African Journals Online (AJOL)

    jen

    diameter at the base of the cord roots (AD) and root dry weight (RW). Cord root length was measured using the line intersect method. (Tennant, 1975), while the diameter of the cord roots was measured with a Vernier Caliper. The shoot-root ratio was calculated as the ratio of leaf, pseudostem and corm dry weight over root.

  2. Unraveling the Influence of Arbuscular Mycorrhizal Colonization on Arsenic Tolerance in Medicago: Glomus mosseae is More Effective than G. intraradices, Associated with Lower Expression of Root Epidermal Pi Transporter Genes.

    Science.gov (United States)

    Christophersen, Helle M; Smith, F Andrew; Smith, Sally E

    2012-01-01

    We used medic (Medicago truncatula) to investigate effects of inoculation with two arbuscular mycorrhizal (AM) fungi and application of arsenate (AsV) and phosphate (Pi) on mechanisms underlying increased tolerance (in terms of growth) of AM plants to AsV. We tested the hypotheses that (1) inoculation with AM fungi results in down-regulation of MtPht1;1 and MtPht1;2 genes (encoding high-affinity Pi and AsV uptake systems in the direct root epidermal pathway) and up-regulation of the AM-induced MtPht1;4 (responsible for transfer of Pi from the arbuscular interface to cortical cells), and (2) these changes are involved in decreased As uptake relative to P uptake and hence increased As tolerance. We also measured expression of MtMT4, a Pi starvation-inducible gene, other genes encoding Pi uptake systems (MtPht 1;5 and MtPht1;6) and arsenate reductase (MtACR) and phytochelatin synthase (MtPCS), to gain insights into broader aspects of P transfers in AM plants and possible detoxification mechanisms. Medic responded slightly to AM colonization in terms of growth in the absence of As, but positively in terms of P uptake. Both growth and P responses in AM plants were positive when As was applied, indicating As tolerance relative to non-mycorrhizal (NM) plants. All AM plants showed high expression of MtPT4 and those inoculated with Glomus mosseae showed higher selectivity against As (shown by P/As molar ratios) and much lower expression of MtPht1;1 (and to some extent MtPht1;2) than Glomus intraradices-inoculated or NM plants. Results are consistent with increased P/As selectivity in AM plants (particularly those inoculated with G. mosseae) as a consequence of high P uptake but little or no As uptake via the AM pathway. However, the extent to which selectivity is dependent on down-regulation of direct Pi and AsV uptake through epidermal cells is still not clear. Marked up-regulation of a PCS gene and an ACR gene in AM plants may also be involved and requires further

  3. Colonization of barley (Hordeum vulgare) with Salmonella enterica and Listeria spp.

    Science.gov (United States)

    Kutter, Stefan; Hartmann, Anton; Schmid, Michael

    2006-05-01

    Colonization of barley plants by the food-borne pathogens Salmonella enterica serovar typhimurium and three Listeria spp. (L. monocytogenes, L. ivanovii, L. innocua) was investigated in a monoxenic system. Herbaspirillum sp. N3 was used as a positive control and Escherichia coli HB101 as a negative control for endophytic root colonization. Colonization of the plants was tested 1-4 weeks after inoculation by determination of CFU, specific PCR assays and fluorescence in situ hybridization (FISH) with fluorescently labelled oligonucleotide probes in combination with confocal laser scanning microscopy (CLSM). Both S. enterica strains were found as endophytic colonizers of barley roots and reached up to 2.3 x 10(6) CFU per g root fresh weight after surface sterilization. The three Listeria strains had 10-fold fewer cell numbers after surface sterilization on the roots and therefore were similar to the results of nonendophytic colonizers, such as E. coli HB101. The FISH/CSLM approach demonstrated not only high-density colonization of the root hairs and the root surface by S. enterica but also a spreading to subjacent rhizodermis layers and the inner root cortex. By contrast, the inoculated Listeria spp. colonized the root hair zone but did not colonize other parts of the root surface. Endophytic colonization of Listeria spp. was not observed. Finally, a systemic spreading of S. enterica to the plant shoot (stems and leaves) was demonstrated using a specific PCR analysis and plate count technique.

  4. Ethylene: a regulator of root architectural responses to soil phosphorus availability

    NARCIS (Netherlands)

    Borch, K.; Bouma, T.J.; Lynch, J.P.; Brown, K.M.

    1999-01-01

    The involvement of ethylene in root architectural responses to phosphorus availability was investigated in common bean (Phaseolus vulgaris L,) plants grown with sufficient and deficient phosphorus. Although phosphorus deficiency reduced root mass and lateral root number, main root length was

  5. Sugarcane root length density and distribution from root intersection counting on a trench-profile Densidade de comprimento e distribuição de raízes de cana-de-açúcar a partir da contagem de intersecção de raízes na parede do perfil

    Directory of Open Access Journals (Sweden)

    Mateus Carvalho Basilio de Azevedo

    2011-02-01

    Full Text Available Root length density (RLD is a critical feature in determining crops potential to uptake water and nutrients, but it is difficult to be measured. No standard method is currently available for assessing RLD in the soil. In this study, an in situ method used for other crops for studying root length density and distribution was tested for sugarcane (Saccharum spp.. This method involved root intersection counting (RIC on a Rhodic Eutrudox profile using grids with 0.05 x 0.05 m and modeling RLD from RIC. The results were compared to a conventional soil core-sampled method (COR (volume 0.00043 m³. At four dates of the cropping season in three tillage treatments (plowing soil, minimum tillage and direct planting, with eight soil depths divided in 0.1 m soil layer (between 0-0.6 and 1.6-1.8 m and three horizontal distances from the row (0-0.23, 0.23-0.46 and 0.46-0.69 m, COR and RIC methods presented similar RLD results. A positive relationship between COR and RIC was found (R² = 0.76. The RLD profiles considering the average of the three row distances per depth obtained using COR and RIC (mean of four dates and 12 replications were close and did not differ at each depth of 0.1 m within a total depth of 0.6 m. Total RLD between 0 and 0.6 m was 7.300 and 7.100 m m-2 for COR and RIC respectively. For time consumption, the RIC method was tenfold less time-consuming than COR and RIC can be carried out in the field with no need to remove soil samples. The RLD distribution in depth and row distance (2-D variability by RIC can be assessed in relation to the soil properties in the same soil profiles. The RIC method was suitable for studying these 2-D (depth and row distance in the soil profile relationships between soil, tillage and root distribution in the field.A densidade de comprimento de raízes (DCR é uma característica importante para determinar o potencial de absorção de água e nutrientes das plantas, mas é difícil de ser medida. Nenhum m

  6. Colonization and Maize Growth Promotion Induced by Phosphate Solubilizing Bacterial Isolates.

    Science.gov (United States)

    Li, Yongbin; Liu, Xiaomeng; Hao, Tianyi; Chen, Sanfeng

    2017-06-29

    Phosphorus (P) limits the production of maize, one of the major food crops in China. Phosphate-solubilizing bacteria (PSB) have the capacity to solubilize phosphate complexes into plant absorbable and utilizable forms by the process of acidification, chelation, and exchange reactions. In this study, six bacteria, including one Paenibacillus sp. B1 strain, four Pseudomonas sp. strains (B10, B14, SX1, and SX2) and one Sphingobium sp. SX14 strain, were those isolated from the maize rhizosphere and identified based on their 16S rRNA sequences. All strains could solubilize inorganic P (Ca₃(PO₄)₂, FePO₄ and AlPO₄), and only B1 and B10 organic P (lecithin). All strains, except of SX1, produced IAA, and SX14 and B1 showed the highest level. B1 incited the highest increase in root length and the second increase in shoot and total dry weight, shoot length, and total P and nitrogen (N), along with increased root length. In addition, by confocal laser scanning microscopy (CLSM), we found that green fluorescent protein (GFP)-labeled B1 mainly colonized root surfaces and in epidermal and cortical tissue. Importantly, B1 can survive through forming spores under adverse conditions and prolong quality guarantee period of bio-fertilizer. Therefore, it can act as a good substitute for bio-fertilizer to promote agricultural sustainability.

  7. Angiodysplasia of the colon

    Science.gov (United States)

    Vascular ectasia of the colon; Colonic arteriovenous malformation; Hemorrhage - angiodysplasia; Bleed - angiodysplasia ... Angiodysplasia of the colon is mostly related to the aging and breakdown of the blood vessels. It is more common in older adults. ...

  8. Assessment of periapical health, quality of root canal filling, and ...

    African Journals Online (AJOL)

    Sixty three teeth were found to have short root canal fillings, whereas 74 teeth had adequate root canal fillings, and the remaining 10 teeth had over extended root canal filling. A significant correlation was observed between the length of root filling and apical periodontitis (P = 0,023). Inadequately dense root canal filling was ...

  9. Genetic studies on leaf rolling and some root traits under drought ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... Root length (cm) [the length of the root from the base of the plant to the tip of the longest root], root thickness [the average diameter. (mm) of the tip portion (about 1cm from the tip) of three random secondary roots at the middle position of the root/plant], and root : shoot ratio [ratio of the root dry weight (g) to ...

  10. Rice Seed Priming with Picomolar Rutin Enhances Rhizospheric Bacillus subtilis CIM Colonization and Plant Growth.

    Directory of Open Access Journals (Sweden)

    Akanksha Singh

    Full Text Available The effect of rutin, a bioflavonoid on the growth and biofilm formation of Bacillus subtilis strain CIM was investigated. In addition to swimming, swarming, and twitching potentials of B. subtilis CIM (BS, one picomolar (1 pM of rutin was also observed to boost the biofilm forming ability of the bacterium. Bio-priming of rice seeds with BS and rutin not only augmented root and shoot lengths but also the photosynthetic pigments like chlorophyll and carotenoid. Similarly, high accumulation of phenolic and flavonoid contents was observed in the leaves. Fluorescent microscopic images revealed that BS plus rutin enhanced callose deposition in the leaves. It was also established that the least formation of reactive oxygen species in BS plus rutin treated rice plants was due to higher free radicals scavenging activity and total antioxidant potential. The results highlight chemo attractant nature of BS towards rutin, which by enhancing biofilm formation and root colonization indirectly strengthened the plants' defensive state.

  11. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed.......The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  12. Spark Length and the Van de Graaff Generator

    OpenAIRE

    Suthinand Jirakulpatana

    2007-01-01

    The maximum discharge spark length of a Van de Graaf generator as a function of belt speed was studied. It was found that the maximum spark length was proportional to the square root of the belt speed.

  13. Spark Length and the Van de Graaff Generator

    Directory of Open Access Journals (Sweden)

    Suthinand Jirakulpatana

    2007-06-01

    Full Text Available The maximum discharge spark length of a Van de Graaf generator as a function of belt speed was studied. It was found that the maximum spark length was proportional to the square root of the belt speed.

  14. Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures

    DEFF Research Database (Denmark)

    Olsson, P.A.; Bååth, E.; Jakobsen, I.

    1997-01-01

    The distribution of an arbuscular mycorrhizal (AM) fungus between soil and roots, and between mycelial and storage structures, was studied by use of the fatty acid signature 16:1 omega 5. Increasing the soil phosphorus level resulted in a decrease in the level of the fatty acid 16:1 omega 5...... in the soil and roots. A similar decrease was detected by microscopic measurements of root colonization and of the length of AM fungal hyphae in the soil. The fatty acid 16:1 omega 5 was estimated from two types of lipids, phospholipids and neutral lipids, which mainly represent membrane lipids and storage...... lipids, respectively. The numbers of spores of the AM fungus formed in the soil correlated most closely, with neutral lipid fatty acid 16:1 omega 5, whereas the hyphal length in the soil correlated most closely with phospholipid fatty acid 16:1 omega 5. The fungal neutral lipid/phospholipid ratio...

  15. Root Hairs

    Science.gov (United States)

    Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600

  16. First permanent molar mandible root development assesed by periapical radiograph

    Directory of Open Access Journals (Sweden)

    Lidya Irani Nainggolan

    2017-08-01

    As a conclusion, the mesial root length appears longer than the distal length with the root lenght varies on the age of 6-10 years old. The root development shape of 6 and 7 until 8 years old mostly shows the root already formed ¾ of root formation, then at 9 years old the root shape become complete but the apex not yet, and at 10  years  old the stage of the root shape already complete which shown by the closed of the root apex completly.

  17. Comparative response of six grapevine rootstocks to inoculation with arbuscular mycorrhizal fungi based on root traits

    Science.gov (United States)

    Pogiatzis, Antreas; Bowen, Pat; Hart, Miranda; Holland, Taylor; Klironomos, John

    2017-04-01

    Arbuscular mycorrhizal (AM) symbiosis has been proven to be essential in grapevines, sustaining plant growth especially under abiotic and biotic stressors. The mycorrhizal growth response of young grapevines varies among rootstock cultivars and the underlying mechanisms involved in this variation are unknown. We predicted that this variation in mycorrhizal response may be explained by differences in root traits among rootstocks. We analyzed the entire root system of six greenhouse-grown rootstocks (Salt Creek, 3309 Couderc, Riparia Gloire, 101-14 Millardet et de Grasset, Swarzmann, Teleki 5C), with and without AM fungal inoculation (Rhizophagus irregularis) and characterized their morphological and architectural responses. Twenty weeks after the inoculation, aboveground growth was enhanced by AM colonization. The rootstock varieties were distinctly different in their response to AM fungi, with Salt Creek receiving the highest growth benefit, while Schwarzmann and 5C Teleki receiving the lowest. Plant responsiveness to AM fungi was negatively correlated with branching intensity (fine roots per root length). Furthermore, there was evidence that mycorrhizas can influence the expression of root traits, inducing a higher branching intensity and a lower root to shoot ratio. The results of this study will help to elucidate how interactions between grapevine rootstocks and AM fungi may benefit the establishment of new vineyards.

  18. Efficacy of three conditions of radiographic interpretation for assessment root canal length Eficácia de três condições de interpretação radiográfica em odontometria

    OpenAIRE

    Mitsuru Ogata; Leonor de Castro Monteiro Loffredo; Milton Carlos Kuga; Gulnara Scaf

    2005-01-01

    OBJECTIVE: To compare the efficacy of three conditions of image interpretation for radiographic root measurements and calculating the intra-observer reproducibility of the measurements. MATERIAL AND METHODS: Thirty intra-operative periapical radiographs of maxillary central and lateral incisors were measured, in mm, from the tip of the file to the radiographic apex, using a caliper. Three separate measurements were made of the 30 radiographs. The three measurements for each tooth were average...

  19. Radiographic assessment of endodontic working length

    OpenAIRE

    Osama S Alothmani; Lara T Friedlander; Nicholas P Chandler

    2013-01-01

    The use of radiographs for working length determination is usual practice in endodontics. Exposing radiographs following the principles of the paralleling technique allows more accurate length determination compared to the bisecting-angle method. However, it has been reported that up to 28.5% of cases can have the file tip extending beyond the confines of the root canals despite an acceptable radiographic appearance. The accuracy of radiographic working length determination could be affected ...

  20. Deciphering composition and function of the root microbiome of a legume plant

    NARCIS (Netherlands)

    Hartman, Kyle; van der Heijden, Marcel G A; Roussely-Provent, Valexia; Walser, Jean-Claude; Schlaeppi, Klaus

    2017-01-01

    BACKGROUND: Diverse assemblages of microbes colonize plant roots and collectively function as a microbiome. Earlier work has characterized the root microbiomes of numerous plant species, but little information is available for legumes despite their key role in numerous ecosystems including

  1. Impact of PAHs on the development of the arbuscular mycorrhizal fungus, G. Intraradices, on the colonization of chicory and carrot grown in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Verdin, A.; Lounes-Hadj Sahraoui, A.; Fontaine, J.; Grandmougin-Ferjani, A.; Durand, R. [Universite du Littoral-Cote d' Opale, Lab. de Mycologie/Phytopathologie/Environnement, 62 - Calais (France)

    2005-07-01

    sporulation, hyphal length development. It was clearly demonstrated that G. intraradices is able to fulfill its life cycle on anthracene and benzo[a]pyrene polluted medium. In spite of a reduced development of extra-radical mycelium, a decrease of sporulation, root colonization and spore germination, we observed a tolerance of the strain G. intraradices to PAHs. The mycorrhiza improved the growth of the roots in a contaminated medium suggesting a positive contribution of G. intraradices to the PAH tolerance of the roots.

  2. Impact of PAHs on the development of the arbuscular mycorrhizal fungus, G. Intraradices, on the colonization of chicory and carrot grown in vitro

    International Nuclear Information System (INIS)

    Verdin, A.; Lounes-Hadj Sahraoui, A.; Fontaine, J.; Grandmougin-Ferjani, A.; Durand, R.

    2005-01-01

    sporulation, hyphal length development. It was clearly demonstrated that G. intraradices is able to fulfill its life cycle on anthracene and benzo[a]pyrene polluted medium. In spite of a reduced development of extra-radical mycelium, a decrease of sporulation, root colonization and spore germination, we observed a tolerance of the strain G. intraradices to PAHs. The mycorrhiza improved the growth of the roots in a contaminated medium suggesting a positive contribution of G. intraradices to the PAH tolerance of the roots

  3. Imaging of total colonic Hirschsprung disease

    Energy Technology Data Exchange (ETDEWEB)

    Stranzinger, Enno; DiPietro, Michael A.; Strouse, Peter J. [University of Michigan Health System, Section of Pediatric Radiology, Ann Arbor, MI (United States); Teitelbaum, Daniel H. [University of Michigan Health System, Section of Pediatric Surgery, Ann Arbor, MI (United States)

    2008-11-15

    Hirschsprung disease (HD) is a functional obstruction of the bowel caused by the absence of intrinsic enteric ganglion cells. The diagnosis of total colonic HD (TCHD) based on contrast enemas is difficult in newborns because radiological findings vary. To evaluate the radiographic and contrast enema findings in patients with pathologically proven TCHD. From 1966 to 2007, 17 records from a total of 31 patients with TCHD were retrospectively evaluated for diameter and shape of the colon, diameter of the small bowel, bowel wall contour, ileal reflux, abdominal calcifications, pneumoperitoneum, filling defects, transitional zones and rectosigmoid index. Three colonic patterns of TCHD were found: microcolon, question-mark-shape colon and normal caliber colon. Additional findings included spasmodic colon, ileal reflux, delayed evacuation and abdominal calcifications. Colonic transitional zones were found in eight patients with TCHD. The diagnosis of TCHD is difficult to establish by contrast enema studies. The length of the aganglionic small bowel and the age of the patient can influence the radiological findings in TCHD. The transitional zone and the rectosigmoid index can be false-positive in TCHD. The colon can appear normal. Consider TCHD if the contrast enema study is normal but the patient remains symptomatic and other causes of distal bowel obstruction have been excluded. (orig.)

  4. Imaging of total colonic Hirschsprung disease

    International Nuclear Information System (INIS)

    Stranzinger, Enno; DiPietro, Michael A.; Strouse, Peter J.; Teitelbaum, Daniel H.

    2008-01-01

    Hirschsprung disease (HD) is a functional obstruction of the bowel caused by the absence of intrinsic enteric ganglion cells. The diagnosis of total colonic HD (TCHD) based on contrast enemas is difficult in newborns because radiological findings vary. To evaluate the radiographic and contrast enema findings in patients with pathologically proven TCHD. From 1966 to 2007, 17 records from a total of 31 patients with TCHD were retrospectively evaluated for diameter and shape of the colon, diameter of the small bowel, bowel wall contour, ileal reflux, abdominal calcifications, pneumoperitoneum, filling defects, transitional zones and rectosigmoid index. Three colonic patterns of TCHD were found: microcolon, question-mark-shape colon and normal caliber colon. Additional findings included spasmodic colon, ileal reflux, delayed evacuation and abdominal calcifications. Colonic transitional zones were found in eight patients with TCHD. The diagnosis of TCHD is difficult to establish by contrast enema studies. The length of the aganglionic small bowel and the age of the patient can influence the radiological findings in TCHD. The transitional zone and the rectosigmoid index can be false-positive in TCHD. The colon can appear normal. Consider TCHD if the contrast enema study is normal but the patient remains symptomatic and other causes of distal bowel obstruction have been excluded. (orig.)

  5. Root colonization and interaction among growth promoting rhizobacteria isolates and eucalypts species Colonização de raízes e interação entre isolados de rizobactérias promotoras do crescimento de plantas e espécies de eucalipto

    Directory of Open Access Journals (Sweden)

    Reginaldo Gonçalves Mafia

    2009-02-01

    Full Text Available This work aimed to evaluate root colonization and interaction among isolates of rhizobacteria and eucalypt species. The method used to evaluate "in vitro" root colonization was able to indicate if the effect was benefic or deleterious allowing to pre-select isolates as potential growth promoter. There was interaction among isolates of rhizobacteria and Eucalyptus species for seed germinating and seedling growth. MF2 (Pseudomonas sp. was the best rhizobacteria isolate for growth promotion of E. cloeziana e E. grandis. S1 (Bacillus subtilis was the most effective for E. globulus, and Ca (Pseudomonas fulva, MF2 (Pseudomonas sp., CIIb (Stenotrophomonas maltophilia and S2 (B. subtilis were the most promising isolates for the E. urophylla.O presente trabalho teve como objetivos avaliar a colonização de raízes e a interação entre isolados de rizobactérias e espécies de eucalipto. O método de avaliação da colonização de raízes "in vitro" possibilitou determinar o efeito benéfico ou deletério, permitindo uma pré-seleção de isolados potencialmente promotores de crescimento. Constatou-se interação entre isolados de rizobactérias e espécies de Eucalyptus em relação à germinação de sementes e o crescimento de mudas. MF2 (Pseudomonas sp. foi o melhor isolado de rizobactéria para promoção de crescimento de E. cloeziana e E. grandis. Para E. globulus, destacou-se o S1 (Bacillus subtilis. Para E. urophylla, os isolados mais promissores foram Ca (Pseudomonas fulva, MF2 (Pseudomonas sp., CIIb (Stenotrophomonas maltophilia e S2 (B. subtilis.

  6. Tree root architecture: new insights from a comprehensive study on dikes

    OpenAIRE

    Vennetier, M.; Zanetti, C.; Mériaux, P.; Mary, B.

    2015-01-01

    Aims. This study aimed at disentangling the respective influence of species, environment, root size and root type in tree root architecture. Method; The root system of 106 adult trees from ten species was carefully extracted from French dikes. Root length and proximal diameter, length and diameter of root segments and branch insertion diameter were measured. Root branching and tapering rates, segment taper, classical (P) and new architectural parameters related to branching patterns were comp...

  7. Rooting, growth and sustainability of yellow Ficus ( Ficus retusa ...

    African Journals Online (AJOL)

    Rooting, growth and sustainability of yellow Ficus ( Ficus retusa 'Nitida') as affected by growth media under nursery conditions. ... Significantly (P<0.05) highest vegetative and root length was produced by plants grown on a mixture of sawdust, cow dung and topsoil (1:1:3). Root length of Ficus retusa 'Nitida' was best ...

  8. Root patterning

    NARCIS (Netherlands)

    Scheres, Ben; Laskowski, Marta

    2016-01-01

    The mechanisms that pattern lateral root primordial are essential for the elaboration of root system architecture, a trait of key importance for future crop breeding. But which are most important: periodic or local cues? In this issue of Journal of Experimental Botany (pages 1411-1420), Kircher

  9. Quantitative imaging of radial oxygen loss from Valisneria spiralis roots with a fluorescent planar optode

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chao [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Ren, Jinghua [Geological Survey of Jiangsu Province, Nanjing 210018 (China); Tang, Hao [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Xu, Di, E-mail: dxu@niglas.ac.cn [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Xie, Xianchuan, E-mail: xchxie@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydroscience Research, School of the Environment, Nanjing University, Nanjing 210093 (China)

    2016-11-01

    Oxygen (O{sub 2}) availability within the sediment–root interface is critical to the survival of macrophytes in O{sub 2}-deficient sediment; however, our knowledge of the fine-scale impact of macrophyte roots upon the spatiotemporal dynamics of O{sub 2} is relatively limited. In this study, a non-invasive imaging technology was utilized to map O{sub 2} micro-distribution around Vallisneria spiralis. Long-term imaging results gathered during a 36 day-period revealed an abundance of O{sub 2} spatiotemporal patterns ranging from 0 to 250 μmol L{sup −} {sup 1}. The root-induced O{sub 2} leakage and consequent oxygenated area were stronger in the vicinity of the basal root compared to that found in the root tip. The O{sub 2} images revealed V. spiralis exhibited radial O{sub 2} loss (ROL) along the entire root, and the O{sub 2} distribution along the root length showed a high degree of small-scale spatial heterogeneity decreasing from 80% at the basal root surface to 10% at the root tip. The oxygenated zone area around the roots increased as O{sub 2} levels increased with root growth and irradiance intensities ranging from 0 to 216 μmol photons m{sup −} {sup 2} s{sup −} {sup 1}. A weak ROL measuring < 20% air saturation around the basal root surface was maintained in darkness, which was presumably attributed to the O{sub 2} supply from overlying water via plant aerenchyma. The estimated total O{sub 2} release to the rhizosphere of V. spiralis was determined to range from 8.80 ± 7.32 to 30.34 ± 17.71 nmol m{sup −} {sup 2} s{sup −} {sup 1}, which is much higher than many other macrophyte species. This O{sub 2} release may be an important contribution to the high-capacity of V. spiralis for quickly colonizing anaerobic sediment. - Highlights: • Planar imaging method was used to map O2 micro-distribution. • Highly dynamic rhizospheric O2-spatiotemporal distribution was observed. • O{sub 2} leakage along the entire root of Vallisneria spirals were

  10. Growth and reproductive characteristics of the columnar cactus Stenocereus queretaroensis and their relationships with environmental factors and colonization by arbuscular mycorrhizae.

    Science.gov (United States)

    Pimienta-Barrios, Eulogio; Pimienta-Barrios, Enrique; Salas-Galván, Mariá Eugenia; Zañudo-Hernandez, Julia; Nobel, Park S

    2002-06-01

    Three natural populations of pitayo (Stenocereus queretaroensis (Weber) Buxbaum), a columnar arborescent cactus, were studied in their subtropical environments in western Mexico. All of the sites were characterized by shallow, nutrient-poor soils. Percentage of colonization by arbuscular mycorrhizae (AM) fungi, stem growth, fruit mass, and percentage germination were greater in S. queretaroensis at Autlan, Jalisco (AJ) than at Zacoalco de Torres, Jalisco (ZTJ) or Santa Rosa, Zacatecas (SRZ). The onset of root colonization by arbuscular mycorrhizae during the middle of the summer wet period preceded increases in stem extension rate and stem phosphorus concentration. Based on previous studies of effects of environmental factors on photosynthesis, climatic conditions were more favorable for photosynthesis at AJ than at SRZ and ZTJ, as indicated by the amount of summer rainfall, the amount of light, and the moderate air temperatures that prevailed during the fall and winter seasons. There was a significant positive correlation between stem growth and percentage of total root length colonized by arbuscules of AM fungi for S. queretaroensis at SRZ and AJ, but not at ZTJ. A negative significant correlation was observed between stem growth and maximal and minimal air temperatures at the three study sites. Stem growth was positively related to rainfall only at SRZ, and light was statistically related to stem growth only at ZTJ. Among sites, S. queretaroensis at AJ had the highest carbon gain and greatest AM colonization, creating physiological conditions that led to the highest stem growth, fruit mass and percentage of seed germination.

  11. Number, Position, Diameter and Initial Direction of Growth of Primary Roots in Musa

    OpenAIRE

    LECOMPTE, FRANCOIS; VAUCELLE, AURELIEN; PAGES, LOIC; OZIER‐LAFONTAINE, HARRY

    2002-01-01

    To understand soil colonization by a root system, information is needed on the architecture of the root system. In monocotyledons, soil exploration is mainly due to the growth of adventitious primary roots. Primary root emergence in banana was quantified in relation to shoot and corm development. Root emergence kinetics were closely related to the development of aerial organs. Root position at emergence on the corm followed an asymptotic function of corm dry weight, so that the age of each ro...

  12. Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses.

    Science.gov (United States)

    Hosseini, Fatemeh; Mosaddeghi, Mohammad Reza; Dexter, Anthony Roger

    2017-09-01

    This study was done to evaluate the effects of the root-colonizing endophytic fungus Piriformospora indica on wheat growth under combined drought and mechanical stresses. Inoculated (colonized) and non-inoculated (uncolonized) wheat (Triticum aestivum L. cv. Chamran) seedlings were planted in growth chambers filled with moist sand (at a matric suction of 20 hPa). Slight, moderate and severe mechanical stresses (i.e., penetration resistance, Q p , of 1.17, 4.17 and 5.96 MPa, respectively) were produced by a dead-load technique (i.e., placing a weight on the sand surface) in the root medium. Slight, moderate and severe drought stresses were induced using PEG 6000 solutions with osmotic potentials of 0, -0.3 and -0.5 MPa, respectively. After 30 days, plant physiological characteristics and root morphology were measured. An increase in Q p from 1.17 to 5.96 MPa led to greater leaf proline concentration and root diameter, and lower relative water content (RWC), leaf water potential (LWP), chlorophyll contents and root volume. Moreover, severe drought stress decreased root and shoot fresh weights, root volume, leaf area, RWC, LWP and chlorophyll content compared to control. Catalase (CAT) and ascorbate peroxidase (APX) activities under severe drought stress were about 1.5 and 2.9 times greater than control. Interaction of the stresses showed that mechanical stress primarily controls plant water status and physiological responses. However, endophyte presence mitigated the adverse effects of individual and combined stresses on plant growth. Colonized plants were better adapted and had greater root length and volume, RWC, LWP and chlorophyll contents under stressful conditions due to higher absorption sites for water and nutrients. Compared with uncolonized plants, colonized plants showed lower CAT activity implying that wheat inoculated with P. indica was more tolerant and experienced less oxidative damage induced by drought and/or mechanical stress. Copyright

  13. Seasonality and mycorrhizal colonization in three species of epiphytic orchids in southeast Mexico

    Directory of Open Access Journals (Sweden)

    Vincenzo Bertolini

    2014-12-01

    Full Text Available Orchids establish symbiosis with Rhizoctonia mycorrhizal fungi, forming the characteristic pelotons within the cells of the root cortex. Under natural conditions, terrestrial and epiphytic orchids have different levels of dependence upon the fungal symbiont, although various authors have mentioned that once orchid plants reach maturity the interaction becomes weaker and intermittent. Recent evidence shows that in some epiphytic orchid species mycorrhization is constant and systematic. In three species of wild orchids from southeast Mexico, we show that mycorrhization is systematically present in roots of different ages, in the wet and dry seasons. We demonstrate that the volume of the root that is colonized depends upon the quantity of rainfall and the diameter of the root, and that rainfall also determines the presence of fresh, undigested pelotons. In very thin roots, mycorrhizal colonization occupies a considerable proportion of the cortex, whereas in thicker roots the proportion of the volume of the root cortex colonized is lower.

  14. Water transport through tomato roots infected with Meloidogyne incognita.

    NARCIS (Netherlands)

    Dorhout, R.; Gommers, F.J.; Kollöffel, C.

    1991-01-01


    The effect of Meloidogyne incognita on water flow in tomato roots was investigated in rooted split-stem cuttings. Total water flow through infected root parts was significantly lower than through comparable uninfected parts. Total water uptake was correlated with total length of the root

  15. Root cortical burden influences drought tolerance in maize.

    Science.gov (United States)

    Jaramillo, Raúl E; Nord, Eric A; Chimungu, Joseph G; Brown, Kathleen M; Lynch, Jonathan P

    2013-07-01

    Root cortical aerenchyma (RCA) increases water and nutrient acquisition by reducing the metabolic costs of soil exploration. In this study the hypothesis was tested that living cortical area (LCA; transversal root cortical area minus aerenchyma area and intercellular air space) is a better predictor of root respiration, soil exploration and, therefore, drought tolerance than RCA formation or root diameter. RCA, LCA, root respiration, root length and biomass loss in response to drought were evaluated in maize (Zea mays) recombinant inbred lines grown with adequate and suboptimal irrigation in soil mesocosms. Root respiration was highly correlated with LCA. LCA was a better predictor of root respiration than either RCA or root diameter. RCA reduced respiration of large-diameter roots. Since RCA and LCA varied in different parts of the root system, the effects of RCA and LCA on root length were complex. Greater crown-root LCA was associated with reduced crown-root length relative to total root length. Reduced LCA was associated with improved drought tolerance. The results are consistent with the hypothesis that LCA is a driver of root metabolic costs and may therefore have adaptive significance for water acquisition in drying soil.

  16. MES buffer affects Arabidopsis root apex zonation and root growth by suppressing superoxide generation in root apex

    Directory of Open Access Journals (Sweden)

    Tomoko eKagenishi

    2016-02-01

    Full Text Available In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species. MES, 2-(N-morpholinoethanesulfonic acid as one of the Good’s buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v because the buffer capacity of MES ranging pH 5.5-7.0 (for Arabidopsis, pH 5.8. However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone. Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the reactive oxygen species (ROS homeostasis in root apex.

  17. MES Buffer Affects Arabidopsis Root Apex Zonation and Root Growth by Suppressing Superoxide Generation in Root Apex.

    Science.gov (United States)

    Kagenishi, Tomoko; Yokawa, Ken; Baluška, František

    2016-01-01

    In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species (ROS). MES, 2-(N-morpholino)ethanesulfonic acid as one of the Good's buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v) because the buffer capacity of MES ranging pH 5.5-7.0 (for Arabidopsis, pH 5.8). However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone, and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone). Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the ROS homeostasis in root apex.

  18. Colon diverticula - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100158.htm Colon diverticula - series—Normal anatomy To use the sharing ... to slide 6 out of 6 Overview The colon, or large intestine, is a muscular tube that ...

  19. Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana

    NARCIS (Netherlands)

    Thole, J.M.; Vermeer, J.E.M.; Zhang, Y.; Gadella, Th.W.J.; Nielsen, E.

    2008-01-01

    Polarized expansion of root hair cells in Arabidopsis thaliana is improperly controlled in root hair-defective rhd4-1 mutant plants, resulting in root hairs that are shorter and randomly form bulges along their length. Using time-lapse fluorescence microscopy in rhd4-1 root hairs, we analyzed

  20. Efeito do comprimento de estacas herbáceas de dois clones de umezeiro (Prunus mume Sieb & Zucc. no enraizamento adventício Effect of the length of herbaceous cuttings of two clones of japanese apricot (Prunus mume Sieb & Zucc. in adventicious rooting

    Directory of Open Access Journals (Sweden)

    NEWTON ALEX MAYER

    2002-08-01

    characteristics, rusticity, reduction of the plant load and compatibility with some cultivars of Prunus persica. The present study were carried out under intermitent mist inside a lathhouse, belonging to the Vegetal Department of the Faculdade de Ciências Agrárias e Veterinárias (FCAV/UNESP, Campus of Jaboticabal, São Paulo State. The objective of this study was to verify the influence of four lengths of herbaceous cuttings in the rooting of two japanese apricot clones. The vegetable material, identified as Clone 10 and Clone 15, was originating from the Genetic Improvement Program of the Instituto Agronômico de Campinas, SP. The experiment was constituted by a 2 x 4 fatorial in randomized blocks, having the factor clone 2 levels (Clone 10 and Clone 15 and the factor cuttings length 4 levels (12, 15, 18 and 25cm. For the observed results, differences was only verified among the clones in the sprouted cutting percentage and number of roots for cutting. The rooting percentage and the mortality of the cuttings were influenced by the cutting lenght, meanwhile, larger cuttings tended to present higher rooting and smaller mortality percentages. The cuttings with 12cm, although presenting few roots number for cutting, they are recommended for allow the obtention of a higher number of cuttings for main plant. There was significant effect of the interaction between the factors for number and length of roots.

  1. Root resorption

    DEFF Research Database (Denmark)

    Kjaer, Inger

    2014-01-01

    Introduction: This paper summarizes the different conditions, which have a well-known influence on the resorption of tooth roots, exemplified by trauma and orthodontic treatment. The concept of the paper is to summarize and explain symptoms and signs of importance for avoiding resorption during...... orthodontic treatment. The Hypothesis: The hypothesis in this paper is that three different tissue layers covering the root in the so-called periroot sheet can explain signs and symptoms of importance for avoiding root resorption during orthodontic treatment. These different tissue layers are; outermost......-an ectodermal tissue layer (Malassez′s epithelium), a middle layer-composed by the collagen-mesodermal tissue layer, and an innermost root-close innervation layer. Abnormalities in one of these tissue layers are thought to cause inflammatory processes in the periodontal membrane comparable to inflammatory...

  2. Licorice Root

    Science.gov (United States)

    ... T U V W X Y Z Licorice Root Share: On This Page Background How Much Do ... This fact sheet provides basic information about licorice root—common names, usefulness and safety, and resources for ...

  3. Intensidade de colonização do córtex radicular e sua relação com a absorção de fósforo pelo capim-pensacola Intensity of root cortex colonization and its relation with phosphorus uptake by pensacola grass

    Directory of Open Access Journals (Sweden)

    Danilo dos Santos Rheinheimer

    1995-01-01

    Full Text Available Em plantas micorrizadas, após a colonização do córtex radicular, as hifas fúngicas extendem-se no solo absorvendo uma maior quantidade de nutrientes, especialmente o fósforo. Este trabalho tem por objetivo avaliar a relação entre porcentagem e intensidade de colonização do córtex radicular com a absorção de fósforo. Usou-se os resultados de três experimentos desenvolvidos no Departamento de Solos da Universidade Federal de Santa Maria, no período de 1989 a 1992. No primeiro, usou-se cinco níveis de calagem representados por valores de pH (4,6; 5,0; 5,5; 6, 1 e 6,6 e duas doses de P2O5 (0 e 20mg/kg; no segundo, os mesmos valores de pH e quatro doses de P2O5 (0, 20, 50 e 70mg/kg e no terceiro, dois valores de pH (4,6 e 6,1 e três doses de P2O5, (50, 150 e 250mg/kg. Em todos os experimentos usaram-se três níveis de micorrização (solo fumigado, solo fumigado + esporos de fungos micorrízicos arbusculares (fMA nativos e solo natural e pensacola como planta hospedeira. Avaliou-se o fósforo absorvido pela parte aérea, a porcentagem e intensidade de colonização. Na avaliação da intensidade levou-se em consideração a presença de hifas internas e arbúsculos, atribuindo-se notas de 1 a 5. O córtex apresentou-se densamente colonizado pelas estruturas fúngicas em condições de solo ácido e com baixa disponibilidade de fósforo, coincidindo com as maiores absorções de fósforo. Em todos os experimentos e tratamentos a intensidade mostrou-se ser um parâmetro confiável na predição de absorção de fósforo pela pensacola.Plants colonized by mycorrhizal fungi are able to uptake more nutrients, especially phosphorus, than those without colonization due to the increase in the uptake área. The objective of this study was to evaluate the rate and the intensity of mycorrhizal colonization in Paspalum notatum roots and their correlation with P uptake. The data were obtained from three different experiment carried out in a

  4. ROOT ALLOMETRY OF TWO SUBTROPICAL PLANT COMMUNITIES OF NORTHEASTERN MEXICO

    Directory of Open Access Journals (Sweden)

    Jose de Jesus Navar Chaidez

    2009-06-01

    Full Text Available This research work aimed at the study of the root allometry in subtropical Tamaulipan thornscrub and pine forest communities of Nuevo Leon, Mexico. By excavating each individual root of each of 20 trees per plant community, we developed root allometric equations for biomass, volume, total length and diameter. Covariance analysis, ancova, was employed to determine the statistical difference of these parameters between plant communities. Results indicate that pine plant trees have larger root volumes, longer root systems and higher root basic densities than trees of Tamaulipan thornscrub forests. This piece of information is key to estimate root biomass, volume, total length and diameter of roots of trees of these plant communities at the stand scale; important environmental information.Key words: Power equations, ancova, root biomass, volume, length and diameter.

  5. Sigmoid Colon Elongation Evaluation by Volume Rendering Technique

    Directory of Open Access Journals (Sweden)

    Atilla SENAYLI

    2011-06-01

    Full Text Available Sigmoid colons have various measurements, shapes, and configurations for individuals. In this subject there are rare clinical trials to answer the question of sigmoidal colon maldevelopment predicting a risk for volvulus. Therefore, sigmoid colon measurement may be beneficial to decide for volvulus. In a study, sigmoid colon diameters were evaluated during abdominal surgeries and it was found that median length was 47 cm and median vertical mesocolon length was 13 cm. We report a 14-year-old female patient who has a sigmoidal colon measured as nearly 54 cm. We used tomographic equipments for this evaluation. We know that MRI technique was used for this purpose but, there has not been data for MRI predicting the sigmoidal volvulus. We hope that our findings by this evaluation can contribute to insufficient literature of sigmoidal elongation. [J Contemp Med 2011; 1(2.000: 71-73

  6. Unraveling Root Developmental Programs Initiated by Beneficial Pseudomonas spp. Bacteria

    NARCIS (Netherlands)

    Zamioudis, C.; Mastranesti, P.; Dhonukshe, P.; Blilou, I.; Pieterse, C.M.J.

    2013-01-01

    Plant roots are colonized by an immense number of microbes, referred to as the root microbiome. Selected strains of beneficial soil-borne bacteria can protect against abiotic stress and prime the plant immune system against a broad range of pathogens. Pseudomonas spp. rhizobacteria represent one of

  7. Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria

    NARCIS (Netherlands)

    Zamioudis, C.; Mastranesti, P.; Dhonukshe, P.; Blilou, I.; Pieterse, C.M.J.

    2013-01-01

    Plant roots are colonized by an immense number of microbes, referred to as the root microbiome. Selected strains of beneficial soil-borne bacteria can protect against abiotic stress and prime the plant immune system against a broad range of pathogens. Pseudomonas spp. rhizobacteria represent one of

  8. Inferring dispersal patterns of the generalist root fungus Armillaria mellea.

    Science.gov (United States)

    Travadon, Renaud; Smith, Matthew E; Fujiyoshi, Phillip; Douhan, Greg W; Rizzo, David M; Baumgartner, Kendra

    2012-03-01

    Investigating the dispersal of the root-pathogenic fungus Armillaria mellea is necessary to understand its population biology. Such an investigation is complicated by both its subterranean habit and the persistence of genotypes over successive host generations. As such, host colonization by resident mycelia is thought to outcompete spore infections. We evaluated the contributions of mycelium and spores to host colonization by examining a site in which hosts pre-date A. mellea. Golden Gate Park (San Francisco, CA, USA) was established in 1872 primarily on sand dunes that supported no resident mycelia. Genotypes were identified by microsatellite markers and somatic incompatibility pairings. Spatial autocorrelation analyses of kinship coefficients were used to infer spore dispersal distance. The largest genotypes measured 322 and 343 m in length, and 61 of the 90 total genotypes were recovered from only one tree. The absence of multilocus linkage disequilibrium and the high proportion of unique genotypes suggest that spore dispersal is an important part of the ecology and establishment of A. mellea in this ornamental landscape. Spatial autocorrelations indicated a significant spatial population structure consistent with limited spore dispersal. This isolation-by-distance pattern suggests that most spores disperse over a few meters, which is consistent with recent, direct estimates based on spore trapping data. No claim to original US government works. New Phytologist © 2011 New Phytologist Trust.

  9. Efficacy of three conditions of radiographic interpretation for assessment root canal length Eficácia de três condições de interpretação radiográfica em odontometria

    Directory of Open Access Journals (Sweden)

    Mitsuru Ogata

    2005-03-01

    Full Text Available OBJECTIVE: To compare the efficacy of three conditions of image interpretation for radiographic root measurements and calculating the intra-observer reproducibility of the measurements. MATERIAL AND METHODS: Thirty intra-operative periapical radiographs of maxillary central and lateral incisors were measured, in mm, from the tip of the file to the radiographic apex, using a caliper. Three separate measurements were made of the 30 radiographs. The three measurements for each tooth were averaged and the mean used for further calculations. After a 12-day period, the measurements were repeated. The three experimental viewing conditions used: 1 standard viewbox without masking of background light around the radiograph and without magnification (Visual; 2 standard viewbox with use of a magnifying lens of 2.5x and with background light masked (Magnification; and 3 viewer device that restricts room lighting and enlarges the image by a magnifying lens of 1.75x (Viewer. The mean and standard deviation of the measurements were calculated and used for descriptive analysis. Two-way analysis of variance (ANOVA was used to evaluate intra-observer and inter-method agreement of the measurements. The measurement error was estimated by Dalhberg's formula. RESULTS: The ANOVA showed no significant differences between measurement sessions, viewing methods, or interaction between observation session and method (p>0.05. The intra-observer measurement error was 0.02 mm for Visual and the Magnification methods and 0.01 mm for the Viewer. CONCLUSION: There does not seem to be any advantage in using viewbox masking or magnification for measuring the distance between the end of the endodontic file and the root apex in maxillary incisors.OBJETIVO: Comparar a eficácia de três condições de interpretação radiográfica em odontometria e avaliar a concordância intra-observador. MATERIAL E MÉTODO: Trinta radiografias periapicais de incisivos central e lateral superiores

  10. [Colonization of arbuscular mycorrhizal fungi and dark septate endophytes in Panax notoginseng].

    Science.gov (United States)

    Zhang, Zhihui; Chen, Di; Zhao, Dandan; Jin, Hang; Li, Lingfei

    2011-09-01

    Arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) colonizing Panax notoginseng in three main producing areas in Wenshan Prefecture of Yunan province were investigated. The fungal colonization of 144 roots samples including healthy and rot roots of P. notoginseng with different age were observed by means of acid fuchsin stain. The results showed that P. notoginseng was the typical arbuscular mycorrhizal plant. Although there was no significant difference in AMF and DSE colonization among three sites, the total colonization of AMF was significantly higher than that of DSE. Statistical analysis demonstrated that the fresh weight of P. notoginseng root was positively significantly correlated with the colonization of AMF, but not with the colonization of DSE. These results suggest that AMF may play more important role than DSE in improving the yield and quality of P. notoginseng. Furthermore, AMF colonization of healthy P. notoginseng was higher than that of plant with root rot, which suggested that AMF could defend P. notoginseng against root rot pathogens. AMF have great potentiality and broad prospect to control root rot of P. notoginseng.

  11. Exploration of mechanisms regulating ectomycorrhizal colonization of boron-fertilized pine. [Pisolithus tinctorius

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, H.E.; Sword, M.A.

    1991-06-01

    The ectomycorrhizal association is a naturally occurring symbiotic relationship existing between ectomycorrhizal-forming fungi and the root system of some plants, including many coniferous species. Since boron fertilization (BF) has been reported to increase fungal colonization of clover and alfalfa, the effect of BF on fungal colonization and growth of shortleaf pine was examined. Inoculation of seedlings was shown to increase growth responses in boron treated plants. BF increases root sucrose concentrations required for fungal development and improves the nutritional balance of the plant. Mycorrhizae increase auxin levels in root (possibly increasing root primordial development) while BF decreases root auxin (possibly increasing root elongation). BF reduces phenolic concentrations in the root. BF enhances mycorrhizae and root development, and results in increased tree seedling growth. 36 refs., 9 figs.

  12. Assessment of the nonoperated root after apical surgery of the other root in mandibular molars

    DEFF Research Database (Denmark)

    Kraus, Riccardo D; von Arx, Thomas; Gfeller, David

    2015-01-01

    INTRODUCTION: If a surgical approach is chosen to treat a multirooted tooth affected by persistent periapical pathosis, usually only the affected roots are operated on. The present study assessed the periapical status of the nonoperated root 5 years after apical surgery of the other root...... and radiographs 5 years after surgery were examined. The following data were collected: tooth, operated root, type and quality of the coronal restoration, marginal bone level, length and homogeneity of the root canal filling, presence of a post/screw, periapical index (PAI) of each root, and radiographic healing...... of the operated root. The presence of apical pathosis of the nonoperated root was analyzed statistically in relation to the recorded variables. RESULTS: Thirty-seven patients fulfilled the inclusion criteria. Signs of periapical pathosis in the nonoperated root 5 years after surgery (PAI ≥ 3) could be observed...

  13. CT in colon cancer

    International Nuclear Information System (INIS)

    Fujita, Nobuyuki; Hasegawa, Takashi; Kubo, Kozo; Ogawa, Hajime; Sato, Yukihiko; Tomita, Masayoshi; Hanawa, Makoto; Matsuzawa, Tohru; Nishioka, Ken

    1990-01-01

    CT pictures from 59 lesions of advanced colon cancer including rectal cancer were reviewed to evaluate a role of CT in preoperative staging diagnosis. CT findings were recorded following general rules for clinical and pathological studies on cancer of colon rectum and anus, proposed by Japanese society for cancer of colon and rectum. Tumors were detected in 90% of advanced colon cancers. Sensitivity in local extension (S factor) was 58.0%. Sensitivity in lymphonode involvement (N factor) was 50.0%. Sensitivity in final staging diagnosis, dividing colon cancer into two groups below st II and above st III, was 63.3%. Further study should be necessitated to provide useful information for preoperative staging diagnosis of colon cancer. (author)

  14. Studies on mycoflora colonizing raw keratin wastes in arable soil

    Directory of Open Access Journals (Sweden)

    Teresa Korniłłowicz

    2014-08-01

    Full Text Available The present studies showed that feathers placed in soil demonstrated the succesion of physiologically differentiated communities of micromycetes. The first colonizers were sugar fungi. The second phase of feather colonization showed the prevalence of nutritively undeveloped polyphages and "root" celulolytic fungi. The final phase of colonization was dominated by keratinophilic fungi together with microflora that involved the forms known mainly for their strong proteolytic abilities. It was found that both the Chemical structure of substrate and soil properties with its pH determined the qualitative composition of fungal flora.

  15. Root (Botany)

    Science.gov (United States)

    Robert R. Ziemer

    1981-01-01

    Plant roots can contribute significantly to the stability of steep slopes. They can anchor through the soil mass into fractures in bedrock, can cross zones of weakness to more stable soil, and can provide interlocking long fibrous binders within a weak soil mass. In deep soil, anchoring to bedrock becomes negligible, and lateral reinforcement predominates

  16. The mycorrhizal status and colonization of 26 tree species growing in urban and rural environments.

    Science.gov (United States)

    Bainard, Luke D; Klironomos, John N; Gordon, Andrew M

    2011-02-01

    Urban environments are highly disturbed and fragmented ecosystems that commonly have lower mycorrhizal fungal species richness and diversity compared to rural or natural ecosystems. In this study, we assessed whether the mycorrhizal status and colonization of trees are influenced by the overall environment (rural vs. urban) they are growing in. Soil cores were collected from the rhizosphere of trees growing in urban and rural environments around southern Ontario. Roots were extracted from the soil cores to determine whether the trees were colonized by arbuscular mycorrhizal fungi, ectomycorrhizal fungi, or both, and to quantify the percent colonization of each type of mycorrhizal fungi. All 26 tree species were colonized by arbuscular mycorrhizal fungi, and seven tree species were dually colonized by arbuscular mycorrhizal and ectomycorrhizal fungi. Overall, arbuscular mycorrhizal and ectomycorrhizal fungal colonization was significantly (p mycorrhizal fungal colonization; more research is needed to determine whether inoculating urban trees with mycorrhizal fungi would increase colonization levels and growth of the trees.

  17. Patterns of variability in the diameter of lateral roots in the banana root system.

    Science.gov (United States)

    Lecompte, François; Pagès, Loïc; Ozier-Lafontaine, Harry

    2005-09-01

    The relative importance of root system structure, plant carbon status and soil environment in the determination of lateral root diameter remains unclear, and was investigated in this study. Banana (Musa acuminata) plants were grown at various moderate levels of soil compaction in two distinct experiments, in a field experiment (FE) and in a glasshouse experiment (GE). Radiant flux density was 5 times lower in GE. The distribution of root diameter was measured for several root branching orders. Root diameters ranged between 0.09 and 0.52 mm for secondary roots and between 0.06 and 0.27 mm for tertiary roots. A relationship was found between the diameter of the parent bearing root and the median diameter of its laterals, which appears to be valid for a wide range of species. Mean lateral root diameter increased with distance to the base of the root and decreased with branching density [number of lateral roots per unit length of bearing root (cm(-1))]. Typical symptoms of low light availability were observed in GE. In this case, lateral root diameter variability was reduced. Although primary root growth was affected by soil compaction, no effects on lateral root diameter were observed.

  18. Colon cancer screening

    Science.gov (United States)

    Screening for colon cancer; Colonoscopy - screening; Sigmoidoscopy - screening; Virtual colonoscopy - screening; Fecal immunochemical test; Stool DNA test; sDNA test; Colorectal cancer - screening; Rectal ...

  19. Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant (Quercus ilex).

    Science.gov (United States)

    Bergero, R; Perotto, S; Girlanda, M; Vidano, G; Luppi, A M

    2000-10-01

    Mycorrhiza samples of neighbouring Quercus ilex and Erica arborea plants collected in a postcutting habitat were processed to see whether plants differing in mycorrhizal status harbour the same root endophytes. Three experiments were performed in parallel: (i) isolation, identification and molecular characterization of fungi from surface-sterilized roots of both plant species; (ii) re-inoculation of fungal isolates on axenic E. arborea and Q. ilex seedlings; (iii) direct inoculation of field-collected Q. ilex ectomycorrhizas onto E. arborea seedlings. About 70 and 150 fungal isolates were obtained from roots of Q. ilex and E. arborea, respectively. Among them, Oidiodendron species and five cultural morphotypes of sterile isolates formed typical ericoid mycorrhizas on E. arborea in vitro. Fungi with such mycorrhizal ability were derived from both host plants. Isolates belonging to one of these morphotypes (sd9) also exhibited an unusual pattern of colonization, with an additional extracellular hyphal net. Ericoid mycorrhizas were also readily obtained by direct inoculation of E. arborea seedlings with Q. ilex ectomycorrhizal tips. Polymerase chain-restriction fragment length polymorphism and random amplified polymorphic DNA analyses of the shared sterile morphotypes demonstrate, in the case of sd9, the occurrence of the same genet on the two host plants. These results indicate that ericoid mycorrhizal fungi associate with ectomycorrhizal roots, and the ecological significance of this finding is discussed.

  20. Selecting Populus with different adventitious root types for environmental benefits, fiber, and energy

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Jill A. Zalesny

    2009-01-01

    Primary roots from seeds, sucker roots in aspens, and adventitious roots (ARs) in poplars and their hybrids are prevalent within the genus Populus. Two AR types develop on hardwood cuttings: (i) lateral roots from either preformed or induced primordia along the length of the cutting and (ii) basal roots from callus at the base of the cutting in...

  1. Root growth of Lotus corniculatus interacts with P distribution in young sandy soil

    Directory of Open Access Journals (Sweden)

    B. Felderer

    2013-03-01

    Full Text Available Large areas of land are restored with unweathered soil substrates following mining activities in eastern Germany and elsewhere. In the initial stages of colonization of such land by vegetation, plant roots may become key agents in generating soil formation patterns by introducing gradients in chemical and physical soil properties. On the other hand, such patterns may be influenced by root growth responses to pre-existing substrate heterogeneities. In particular, the roots of many plants were found to preferentially proliferate into nutrient-rich patches. Phosphorus (P is of primary interest in this respect because its availability is often low in unweathered soils, limiting especially the growth of leguminous plants. However, leguminous plants occur frequently among the pioneer plant species on such soils, as they only depend on atmospheric nitrogen (N fixation as N source. In this study we investigated the relationship between root growth allocation of the legume Lotus corniculatus and soil P distribution on recently restored land. As test sites, the experimental Chicken Creek Catchment (CCC in eastern Germany and a nearby experimental site (ES with the same soil substrate were used. We established two experiments with constructed heterogeneity, one in the field on the experimental site and the other in a climate chamber. In addition, we conducted high-density samplings on undisturbed soil plots colonized by L. corniculatus on the ES and on the CCC. In the field experiment, we installed cylindrical ingrowth soil cores (4.5 × 10 cm with and without P fertilization around single two-month-old L. corniculatus plants. Roots showed preferential growth into the P-fertilized ingrowth-cores. Preferential root allocation was also found in the climate chamber experiment, where single L. corniculatus plants were grown in containers filled with ES soil and where a lateral portion of the containers was additionally supplied with a range of different P

  2. Root growth of Lotus corniculatus interacts with P distribution in young sandy soil

    Science.gov (United States)

    Felderer, B.; Boldt-Burisch, K. M.; Schneider, B. U.; Hüttl, R. F. J.; Schulin, R.

    2013-03-01

    Large areas of land are restored with unweathered soil substrates following mining activities in eastern Germany and elsewhere. In the initial stages of colonization of such land by vegetation, plant roots may become key agents in generating soil formation patterns by introducing gradients in chemical and physical soil properties. On the other hand, such patterns may be influenced by root growth responses to pre-existing substrate heterogeneities. In particular, the roots of many plants were found to preferentially proliferate into nutrient-rich patches. Phosphorus (P) is of primary interest in this respect because its availability is often low in unweathered soils, limiting especially the growth of leguminous plants. However, leguminous plants occur frequently among the pioneer plant species on such soils, as they only depend on atmospheric nitrogen (N) fixation as N source. In this study we investigated the relationship between root growth allocation of the legume Lotus corniculatus and soil P distribution on recently restored land. As test sites, the experimental Chicken Creek Catchment (CCC) in eastern Germany and a nearby experimental site (ES) with the same soil substrate were used. We established two experiments with constructed heterogeneity, one in the field on the experimental site and the other in a climate chamber. In addition, we conducted high-density samplings on undisturbed soil plots colonized by L. corniculatus on the ES and on the CCC. In the field experiment, we installed cylindrical ingrowth soil cores (4.5 × 10 cm) with and without P fertilization around single two-month-old L. corniculatus plants. Roots showed preferential growth into the P-fertilized ingrowth-cores. Preferential root allocation was also found in the climate chamber experiment, where single L. corniculatus plants were grown in containers filled with ES soil and where a lateral portion of the containers was additionally supplied with a range of different P concentrations. In

  3. Radiographic assessment of endodontic working length

    Directory of Open Access Journals (Sweden)

    Osama S Alothmani

    2013-01-01

    Full Text Available The use of radiographs for working length determination is usual practice in endodontics. Exposing radiographs following the principles of the paralleling technique allows more accurate length determination compared to the bisecting-angle method. However, it has been reported that up to 28.5% of cases can have the file tip extending beyond the confines of the root canals despite an acceptable radiographic appearance. The accuracy of radiographic working length determination could be affected by the location of the apical foramen, tooth type, canal curvature and superimposition of surrounding structures. Variations among observers by virtue of training and experience may also influence the accuracy of the procedure. The interpretation of radiographs could be affected by film speed and viewing conditions, with the superiority of digital imaging over conventional radiography for working length determination remaining debatable. The combination of several methods is recommended for acquiring the most accurate working length.

  4. Root disease management guidebook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Forest tree root pathogens are widespread throughout all forested ecosystems in British Columbia. This guidebook provides a background to forest root disease management (including why, where, and how to manage root disease) and describes the necessary tools for managing root disease. It includes a review of the distribution of major root diseases in the province, host susceptibility and symptomology, and root disease and stand dynamics. The tools described include disease hazard and risk assessment, stratification surveys, and treatment methods. The major root diseases covered in the guide are Armillaria root disease, laminated root rot, Tomentosus root rot, blackstain root disease, and Annosus root disease.

  5. CT Findings of Colonic Complications Associated with Colon Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Won; Shin, Hyeong Cheol; Kim, Il Young; Kim, Young Tong; Kim, Chang Jin [Cheonan Hospital, Soonchunhyang University, Cheonan (Korea, Republic of)

    2010-04-15

    A broad spectrum of colonic complications can occur in patients with colon cancer. Clinically, some of these complications can obscure the presence of underlying malignancies in the colon and these complications may require emergency surgical management. The complications of the colon that can be associated with colon cancer include obstruction, perforation, abscess formation, acute appendicitis, ischemic colitis and intussusception. Although the majority of these complications only rarely occur, familiarity with the various manifestations of colon cancer complications will facilitate making an accurate diagnosis and administering prompt management in these situations. The purpose of this pictorial essay is to review the CT appearance of the colonic complications associated with colon cancer.

  6. CT Findings of Colonic Complications Associated with Colon Cancer

    International Nuclear Information System (INIS)

    Kim, Sang Won; Shin, Hyeong Cheol; Kim, Il Young; Kim, Young Tong; Kim, Chang Jin

    2010-01-01

    A broad spectrum of colonic complications can occur in patients with colon cancer. Clinically, some of these complications can obscure the presence of underlying malignancies in the colon and these complications may require emergency surgical management. The complications of the colon that can be associated with colon cancer include obstruction, perforation, abscess formation, acute appendicitis, ischemic colitis and intussusception. Although the majority of these complications only rarely occur, familiarity with the various manifestations of colon cancer complications will facilitate making an accurate diagnosis and administering prompt management in these situations. The purpose of this pictorial essay is to review the CT appearance of the colonic complications associated with colon cancer

  7. Influence of Arbuscular Mycorrhizal Fungi and Drought Stress on Some Macro Nutrient Uptake in Three Leek Genotypes with Different Root Morphology

    Directory of Open Access Journals (Sweden)

    N. Ghasem Jokar

    2016-02-01

    and 150 mm in diameter. Leek seeds were sterilized with sodium hypochlorite (NaOCl solution (10% for 20 min. Two hundred grams of inoculum (spore, hyphae, mycorrhizal clover of root fragments and soil were placed in deep of plant root. Each pot received 10 cm-3 nutrients solution, free of P weekly. Plants equally watered for one mounth then, drought stresses were applied. Leeks were harvested 12 weeks after planting. Sub-samples of roots were taken for determination of root length were cleared in 10% (w/v KOH solution and then were stained with trypan blue and root colonization was studied using modified Phillips & Hayman. The colonized root length was determined by binocular and gridline intersect method of Tennant. Phosphorus concentrations were measured by the method of colorimetery with a spectrophotometer. Potassium and calcium concentrations were determined by flame photometer and titration with vercin (Ethylene diamine tetra acetic acid: EDTA, respectively. The statistical analysis was performed using MSTAT-C statistical software and means were compared by Duncan’s multiple range test at the significance level of P

  8. Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order based fine root morphology and biomass?

    Directory of Open Access Journals (Sweden)

    Petra eKubisch

    2015-02-01

    Full Text Available While most temperate broad-leaved tree species form ectomycorrhizal (EM symbioses, a few species have arbuscular mycorrhizas (AM. It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus and Tilia searching for principal differences between EM and AM trees. We further assessed the evidence of convergence or divergence in root traits among the six co-occurring species. Eight fine root morphological and chemical traits were investigated in root segments of the first to fourth root order in three different soil depths and the relative importance of the factors root order, tree species and soil depth for root morphology was determined. Root order was more influential than tree species while soil depth had only a small effect on root morphology All six species showed similar decreases in specific root length and specific root area from the 1st to the 4th root order, while the species patterns differed considerably in root tissue density, root N concentration, and particularly with respect to root tip abundance. Most root morphological traits were not significantly different between EM and AM species (except for specific root area that was larger in AM species, indicating that mycorrhiza type is not a key factor influencing fine root morphology in these species. The order-based root analysis detected species differences more clearly than the simple analysis of bulked fine root mass. Despite convergence in important root traits among AM and EM species, even congeneric species may differ in certain fine root morphological traits. This suggests that, in general, species identity has a larger influence on fine root morphology than mycorrhiza type.

  9. Colon and rectal cancer

    International Nuclear Information System (INIS)

    Saldombide, L.; Cordoba, A.

    2010-01-01

    This study is about the diagnosis, therapy and monitoring of colon cancer. The techniques used are the endoscopy with biopsy in the pre and post operative colon surgery, abdominal ultrasound, chest X-ray studies of hemogram as well as liver and renal function

  10. Colon cancer - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100157.htm Colon cancer - Series—Normal anatomy To use the sharing features on this page, please enable JavaScript. Go to slide 1 out of 5 Go to slide 2 out of ... to slide 5 out of 5 Overview The colon, or large intestine, is a muscular tube that ...

  11. Colon of the rat

    International Nuclear Information System (INIS)

    Lindstroem, C.G.; Rosengren, J.-E.; Fork, F.-T.

    1979-01-01

    The anatomy and radiologic appearance of the colon in rats are described on the basis of 300 animals treated with carcinogenic agents and 40 normal rats. The macroscopic and microscopic appearance of the mucosa varies in the different parts of the colon. Lymphoid plaques are normal structures. The results justify a new anatomic nomenclature. (Auth.)

  12. Understanding your colon cancer risk

    Science.gov (United States)

    Colon cancer - prevention; Colon cancer - screening ... We do not know what causes colon cancer, but we do know some of the things that may increase the risk of getting it, such as: Age. Your risk increases ...

  13. Colonization of Tomato Plants by Two Agrocin-Producing Strains of Agrobacterium tumefaciens

    OpenAIRE

    Macrae, Sharmane; Thomson, Jennifer A.; Van Staden, Johannes

    1988-01-01

    For a bacterium to be a successful biocontrol agent against crown gall disease, it must produce an effective agrocin specific for Agrobacterium tumefaciens and be able to colonize host plants efficiently. The colonization abilities of K84 and J73, successful and potential biocontrolling strains, respectively, were compared both in vivo and in vitro. Both strains produced fibrils attaching them to tomato root surfaces and had similar colonization efficiencies up to 14 days after inoculation. H...

  14. Metabolic activity of Glomus intraradices in Arum- and Paris-type arbuscular mycorrhizal colonization

    NARCIS (Netherlands)

    van Aarle, IM; Cavagnaro, TR; Smith, SE; Dickson, S

    Colonization of two plant species by Glomus intraradices was studied to investigate the two morphological types (Arum and Paris), their symbiotic interfaces and metabolic activities. Root pieces and sections were stained to observe the colonization and metabolic activity of all mycorrhizal

  15. An Act of Colonization

    DEFF Research Database (Denmark)

    Rasmussen, Anders Bo

    When Gideon Welles, U.S. Secretary of the Navy, sat down to write his diary entry on September 26, 1862, his thoughts turned once more to colonization. President Lincoln was an ardent proponent of colonization, “the government-promoted settlement of black Americans in Africa or some other location....... Croix. Thus, when the Lincoln administration seriously considered colonization plans in 1862, Danish Charge d’Affaires Waldemar Raasløff offered free transport for freedmen to the Caribbean island, where there was a “distinct lack of laborers.” As a small first step towards colonization, Denmark...... in the island of St. Croix,” and the Lincoln administration’s continued exploration of colonization arrangements in subsequent years, no further negotiations were carried out at that time and no laborers in American custody were shipped to St. Croix. This paper attempts to answer why....

  16. Locally Finite Root Supersystems

    OpenAIRE

    Yousofzadeh, Malihe

    2013-01-01

    We introduce the notion of locally finite root supersystems as a generalization of both locally finite root systems and generalized root systems. We classify irreducible locally finite root supersystems.

  17. Effects of nutrient heterogeneity and competition on root architecture of spruce seedlings: implications for an essential feature of root foraging.

    Directory of Open Access Journals (Sweden)

    Hongwei Nan

    Full Text Available BACKGROUND: We have limited understanding of root foraging responses when plants were simultaneously exposed to nutrient heterogeneity and competition, and our goal was to determine whether and how plants integrate information about nutrients and neighbors in root foraging processes. METHODOLOGY/PRINCIPAL FINDINGS: The experiment was conducted in split-containers, wherein half of the roots of spruce (Picea asperata seedlings were subjected to intraspecific root competition (the vegetated half, while the other half experienced no competition (the non-vegetated half. Experimental treatments included fertilization in the vegetated half (FV, the non-vegetated half (FNV, and both compartments (F, as well as no fertilization (NF. The root architecture indicators consisted of the number of root tips over the root surface (RTRS, the length percentage of diameter-based fine root subclasses to total fine root (SRLP, and the length percentage of each root order to total fine root (ROLP. The target plants used novel root foraging behaviors under different combinations of neighboring plant and localized fertilization. In addition, the significant increase in the RTRS of 0-0.2 mm fine roots after fertilization of the vegetated half alone and its significant decrease in fertilizer was applied throughout the plant clearly showed that plant root foraging behavior was regulated by local responses coupled with systemic control mechanisms. CONCLUSIONS/SIGNIFICANCE: We measured the root foraging ability for woody plants by means of root architecture indicators constructed by the roots possessing essential nutrient uptake ability (i.e., the first three root orders, and provided new evidence that plants integrate multiple forms of environmental information, such as nutrient status and neighboring competitors, in a non-additive manner during the root foraging process. The interplay between the responses of individual root modules (repetitive root units to localized

  18. Effects of synthetic hormone substitutes and genotypes on rooting ...

    African Journals Online (AJOL)

    The vine cuttings were sampled for rooting percentage, number of roots, root length and mini tuber initiation 21 days after treatment (DAT). The number and weight of tubers obtained from IBA and wood ash treated vines were not significantly different. The rice straw ash, IBA and neem leaves powder treated vines produced ...

  19. Salt Stress and Homobrassinosteroid Interactions during Germination in Barley Roots

    OpenAIRE

    Sevgi MARAKLI; Aslihan TEMEL; Nermin GOZUKIRMIZI

    2014-01-01

    Potential alleviation effects of Homobrassinosteroid (HBR) (0.5 and 1 µM HBR) on root germination, cell division and antioxidant system enzymes (superoxide dismutase and catalase) of barley (Hordeum vulgare L. cv. ‘Hilal’) roots grown under different salt concentrations (150 mM and 250 mM) were investigated during 48 and 72 h at dark with their controls. Salt applications decreased primary root lengths, seminal root lengths, number of roots from one seed, mitotic activity and induced mitotic ...

  20. Sonography in Colonic Diverticulitis

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Mi Yun; Choi, Byung Hun; Kim, Keum Won; Kwon, Kwi Ryun; Lim, Myung Ah; Kim, Sung Soo; Choi, Chang Ho [Sunlin Presbyterian Hospital, Pohang (Korea, Republic of)

    1996-06-15

    To evaluate the sonographic findings and the diagnostic value of colonic diverticulitis. We evaluated the sonograms of 26 patients with colonic diverticulitis retrospectively. The final diagnosis was based on the pathologic interpretation of a surgical specimen (5 cases), clinical course (21 cases), on barium enema (12 cases) and colonoscopy (1 case). Twenty-five patients had acute diverticulitis in the cecum and 1 patient in the descending colon. On sonography, an oval or short tubular focus which protruded from the colonic wall was seen in 23 patients (88%) and the longest diameter were from 0.5 cm to 3 cm (mean 1.4cm). The lesions were echogenic in 8 cases and hypoechoic in 17 cases. Segmental thickening of the colonic wall was seen in 13 patients (50%), of these, protruding focus was seen in 92%. Pericolic abscess located inposterolateral and medial portion to the colon was seen in 11 patients (42%). Infiltration in pericolic fat(50%), enlargement of pericolic lymph nodes (27%) and small pericolic fluid (8%) were also seen. Our results show that ultrasonography is useful technique in the diagnosis of colonic diverticulitis and in the differentiation from acute appendicitis

  1. Sonography in Colonic Diverticulitis

    International Nuclear Information System (INIS)

    Sohn, Mi Yun; Choi, Byung Hun; Kim, Keum Won; Kwon, Kwi Ryun; Lim, Myung Ah; Kim, Sung Soo; Choi, Chang Ho

    1996-01-01

    To evaluate the sonographic findings and the diagnostic value of colonic diverticulitis. We evaluated the sonograms of 26 patients with colonic diverticulitis retrospectively. The final diagnosis was based on the pathologic interpretation of a surgical specimen (5 cases), clinical course (21 cases), on barium enema (12 cases) and colonoscopy (1 case). Twenty-five patients had acute diverticulitis in the cecum and 1 patient in the descending colon. On sonography, an oval or short tubular focus which protruded from the colonic wall was seen in 23 patients (88%) and the longest diameter were from 0.5 cm to 3 cm (mean 1.4cm). The lesions were echogenic in 8 cases and hypoechoic in 17 cases. Segmental thickening of the colonic wall was seen in 13 patients (50%), of these, protruding focus was seen in 92%. Pericolic abscess located inposterolateral and medial portion to the colon was seen in 11 patients (42%). Infiltration in pericolic fat(50%), enlargement of pericolic lymph nodes (27%) and small pericolic fluid (8%) were also seen. Our results show that ultrasonography is useful technique in the diagnosis of colonic diverticulitis and in the differentiation from acute appendicitis

  2. Comparisons of ectomycorrhizal colonization of transgenic american chestnut with those of the wild type, a conventionally bred hybrid, and related fagaceae species.

    Science.gov (United States)

    D'Amico, Katherine M; Horton, Thomas R; Maynard, Charles A; Stehman, Stephen V; Oakes, Allison D; Powell, William A

    2015-01-01

    American chestnut (Castanea dentata [Marsh.] Borkh.) dominated the eastern forests of North America, serving as a keystone species both ecologically and economically until the introduction of the chestnut blight, Cryphonectria parasitica, functionally eradicated the species. Restoration efforts include genetic transformation utilizing genes such as oxalate oxidase to produce potentially blight-resistant chestnut trees that could be released back into the native range. However, before such a release can be undertaken, it is necessary to assess nontarget impacts. Since oxalate oxidase is meant to combat a fungal pathogen, we are particularly interested in potential impacts of this transgene on beneficial fungi. This study compares ectomycorrhizal fungal colonization on a transgenic American chestnut clone expressing enhanced blight resistance to a wild-type American chestnut, a conventionally bred American-Chinese hybrid chestnut, and other Fagaceae species. A greenhouse bioassay used soil from two field sites with different soil types and land use histories. The number of colonized root tips was counted, and fungal species were identified using morphology, restriction fragment length polymorphism (RFLP), and DNA sequencing. Results showed that total ectomycorrhizal colonization varied more by soil type than by tree species. Individual fungal species varied in their colonization rates, but there were no significant differences between colonization on transgenic and wild-type chestnuts. This study shows that the oxalate oxidase gene can increase resistance against Cryphonectria parasitica without changing the colonization rate for ectomycorrhizal species. These findings will be crucial for a potential deregulation of blight-resistant American chestnuts containing the oxalate oxidase gene. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Understanding Antegrade Colonic Enema (ACE) Surgery

    Science.gov (United States)

    ... Colonic Enema (ACE) Surgery Antegrade Colonic Enema (ACE) Surgery Antegrade colonic enema surgery (ACE) is a procedure ... Risks / Benefits What is antegrade colonic enema (ACE) surgery? Antegrade colonic enema surgery (ACE) or Malone antegrade ...

  4. Assessing colonic anatomy normal values based on air contrast enemas in children younger than 6 years.

    Science.gov (United States)

    Koppen, Ilan J N; Yacob, Desale; Di Lorenzo, Carlo; Saps, Miguel; Benninga, Marc A; Cooper, Jennifer N; Minneci, Peter C; Deans, Katherine J; Bates, D Gregory; Thompson, Benjamin P

    2017-03-01

    Contrast enemas with barium or water-soluble contrast agents are sometimes performed in children with severe intractable constipation to identify anatomical abnormalities. However there are no clear definitions for normal colonic size or abnormalities such as colonic dilation or sigmoid redundancy in children. To describe characteristics of colonic anatomy on air contrast enemas in children without constipation to provide normal values for colonic size ratios in children. We performed a retrospective chart review of children aged 0-5 years who had undergone air contrast enemas for intussusception. The primary outcome measures were the ratios of the diameters and lengths of predetermined colonic segments (lengths of rectosigmoid and descending colon; diameters of rectum, sigmoid, descending colon, transverse colon and ascending colon) in relation to the L2 vertebral body width. We included 119 children (median age 2.0 years, range 0-5 years, 68% boys). Colonic segment length ratios did not change significantly with age, although the differences for the rectosigmoid/L2 ratio were borderline significant (P = 0.05). The ratios that involved the rectal and ascending colon diameters increased significantly with age, while diameter ratios involving the other colonic segments did not. Differences by gender and race were not significant. These data can be used for reference purposes in young children undergoing contrast studies of the colon.

  5. Fine root mercury heterogeneity: metabolism of lower-order roots as an effective route for mercury removal.

    Science.gov (United States)

    Wang, Jun-Jian; Guo, Ying-Ying; Guo, Da-Li; Yin, Sen-Lu; Kong, De-Liang; Liu, Yang-Sheng; Zeng, Hui

    2012-01-17

    Fine roots are critical components for plant mercury (Hg) uptake and removal, but the patterns of Hg distribution and turnover within the heterogeneous fine root components and their potential limiting factors are poorly understood. Based on root branching structure, we studied the total Hg (THg) and its cellular partitioning in fine roots in 6 Chinese subtropical trees species and the impacts of root morphological and stoichiometric traits on Hg partitioning. The THg concentration generally decreased with increasing root order, and was higher in cortex than in stele. This concentration significantly correlated with root length, diameter, specific root length, specific root area, and nitrogen concentration, whereas its cytosolic fraction (accounting for root carbon and sulfur concentrations. The estimated Hg return flux from dead fine roots outweighed that from leaf litter, and ephemeral first-order roots that constituted 7.2-22.3% of total fine root biomass may have contributed most to this flux (39-71%, depending on tree species and environmental substrate). Our results highlight the high capacity of Hg stabilization and Hg return by lower-order roots and demonstrate that turnover of lower-order roots may be an effective strategy of detoxification in perennial tree species.

  6. Local signalling pathways regulate the Arabidopsis root developmental response to Mesorhizobium loti inoculation.

    Science.gov (United States)

    Poitout, A; Martinière, A; Kucharczyk, B; Queruel, N; Silva-Andia, J; Mashkoor, S; Gamet, L; Varoquaux, F; Paris, N; Sentenac, H; Touraine, B; Desbrosses, G

    2017-02-01

    Numerous reports have shown that various rhizobia can interact with non-host plant species, improving mineral nutrition and promoting plant growth. To further investigate the effects of such non-host interactions on root development and functions, we inoculated Arabidopsis thaliana with the model nitrogen fixing rhizobacterium Mesorhizobium loti (strain MAFF303099). In vitro, we show that root colonization by M. loti remains epiphytic and that M. loti cells preferentially grow at sites where primary and secondary roots intersect. Besides resulting in an increase in shoot biomass production, colonization leads to transient inhibition of primary root growth, strong promotion of root hair elongation and increased apoplasmic acidification in periphery cells of a sizeable part of the root system. Using auxin mutants, axr1-3 and aux1-100, we show that a plant auxin pathway plays a major role in inhibiting root growth but not in promoting root hair elongation, indicating that root developmental responses involve several distinct pathways. Finally, using a split root device, we demonstrate that root colonization by M. loti, as well as by the bona fide plant growth promoting rhizobacteria Azospirillum brasilense and Pseudomonas, affect root development via local transduction pathways restricted to the colonised regions of the root system. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Live imaging of root-bacteria interactions in a microfluidics setup.

    Science.gov (United States)

    Massalha, Hassan; Korenblum, Elisa; Malitsky, Sergey; Shapiro, Orr H; Aharoni, Asaph

    2017-04-25

    Plant roots play a dominant role in shaping the rhizosphere, the environment in which interaction with diverse microorganisms occurs. Tracking the dynamics of root-microbe interactions at high spatial resolution is currently limited because of methodological intricacy. Here, we describe a microfluidics-based approach enabling direct imaging of root-bacteria interactions in real time. The microfluidic device, which we termed tracking root interactions system (TRIS), consists of nine independent chambers that can be monitored in parallel. The principal assay reported here monitors behavior of fluorescently labeled Bacillus subtilis as it colonizes the root of Arabidopsis thaliana within the TRIS device. Our results show a distinct chemotactic behavior of B. subtilis toward a particular root segment, which we identify as the root elongation zone, followed by rapid colonization of that same segment over the first 6 h of root-bacteria interaction. Using dual inoculation experiments, we further show active exclusion of Escherichia coli cells from the root surface after B. subtilis colonization, suggesting a possible protection mechanism against root pathogens. Furthermore, we assembled a double-channel TRIS device that allows simultaneous tracking of two root systems in one chamber and performed real-time monitoring of bacterial preference between WT and mutant root genotypes. Thus, the TRIS microfluidics device provides unique insights into the microscale microbial ecology of the complex root microenvironment and is, therefore, likely to enhance the current rate of discoveries in this momentous field of research.

  8. Gamma-Aminobutyric Acid Increases the Production of Short-Chain Fatty Acids and Decreases pH Values in Mouse Colon.

    Science.gov (United States)

    Xie, Min; Chen, Hai-Hong; Nie, Shao-Ping; Yin, Jun-Yi; Xie, Ming-Yong

    2017-04-20

    Gamma-Aminobutyric acid (GABA) could regulate physiological functions in the gastrointestinal tract. The present study aimed to investigate the effect of GABA on colon health in mice. The female Kunming mice were given GABA at doses of 5, 10, 20 and 40 mg/kg/d for 14 days. Afterwards, the short-chain fatty acids (SCFAs) concentrations, pH values, colon index, colon length and weight of colonic and cecal contents were determined to evaluate the effects of GABA on colon health. The results showed that intake of GABA could increase the concentrations of acetate, propionate, butyrate and total SCFAs in colonic and cecal contents, as well as the weight of colonic and cecal contents. The colon index and length of the 40 mg/kg/d GABA-treated group were significantly higher than those of the control group ( p colonic and cecal contents was also observed. These results suggest that GABA may improve colon health.

  9. Changes of mycorrhizal colonization along moist gradient in a vineyard of Eger (Hungary

    Directory of Open Access Journals (Sweden)

    Donkó Ádám

    2014-11-01

    Full Text Available The role of mycorrhizal fungi has special importance in the case of low soil moisture because the colonization of vine roots by mycorrhiza increases water and nutrient uptake and thus aids the avoidance of biotic and abiotic stresses of grape. Our aim was to investigate in the Eger wine region the changes of mycorrhizal colonization, water potential, and yield quality and quantity of grape roots at three altitudes, along a changing soil moist gradient. Our results show that the degree of mycorrhizal colonization is higher in drier areas, which supports the water and nutrient uptake of the host plant.

  10. Plant interspecific differences in arbuscular mycorrhizal colonization as a result of soil carbon addition.

    Science.gov (United States)

    Eschen, René; Müller-Schärer, Heinz; Schaffner, Urs

    2013-01-01

    Soil nutrient availability and colonization by arbuscular mycorrhizal fungi are important and potentially interacting factors shaping vegetation composition and succession. We investigated the effect of carbon (C) addition, aimed at reducing soil nutrient availability, on arbuscular mycorrhizal colonization. Seedlings of 27 plant species with different sets of life-history traits (functional group affiliation, life history strategy and nitrophilic status) were grown in pots filled with soil from a nutrient-rich set-aside field and amended with different amounts of C. Mycorrhizal colonization was progressively reduced along the gradient of increasing C addition in 17 out of 27 species, but not in the remaining species. Grasses had lower colonization levels than forbs and legumes and the decline in AM fungal colonization was more pronounced in legumes than in other forbs and grasses. Mycorrhizal colonization did not differ between annual and perennial species, but decreased more rapidly along the gradient of increasing C addition in plants with high Ellenberg N values than in plants with low Ellenberg N values. Soil C addition not only limits plant growth through a reduction in available nutrients, but also reduces mycorrhizal colonization of plant roots. The effect of C addition on mycorrhizal colonization varies among plant functional groups, with legumes experiencing an overproportional reduction in AM fungal colonization along the gradient of increasing C addition. We therefore propose that for a better understanding of vegetation succession on set-aside fields one may consider the interrelationship between plant growth, soil nutrient availability and mycorrhizal colonization of plant roots.

  11. Laparoscopic colonic surgery in Denmark 2004-2007

    DEFF Research Database (Denmark)

    Schulze, S.; Iversen, M.G.; Bendixen, A.

    2008-01-01

    one hundred and forty-nine laparoscopic colonic resections without simultaneous stoma formation were performed in the study period. Twenty-five departments performed the procedures but only four departments performed more than 100 procedures. The median length of primary stay was 4 days (mean 7.7 days...... of laparoscopic colonic surgery but probably performed in too many low volume departments. Laparoscopic colonic surgery should be monitored and further advances secured by adjustment of perioperative care to fast-track care Udgivelsesdato: 2008/11...

  12. Root growth during molar eruption in extant great apes.

    Science.gov (United States)

    Kelley, Jay; Dean, Christopher; Ross, Sasha

    2009-01-01

    While there is gradually accumulating knowledge about molar crown formation and the timing of molar eruption in extant great apes, very little is known about root formation during the eruption process. We measured mandibular first and second molar root lengths in extant great ape osteological specimens that died while either the first or second molars were in the process of erupting. For most specimens, teeth were removed so that root lengths could be measured directly. When this was not possible, roots were measured radiographically. We were particularly interested in the variation in the lengths of first molar roots near the point of gingival emergence, so specimens were divided into early, middle and late phases of eruption based on the number of cusps that showed protein staining, with one or two cusps stained equated with immediate post-gingival emergence. For first molars at this stage, Gorilla has the longest roots, followed by Pongo and Pan. Variation in first molar mesial root lengths at this stage in Gorilla and Pan, which comprise the largest samples, is relatively low and represents no more than a few months of growth in both taxa. Knowledge of root length at first molar emergence permits an assessment of the contribution of root growth toward differences between great apes and humans in the age at first molar emergence. Root growth makes up a greater percentage of the time between birth and first molar emergence in humans than it does in any of the great apes. Copyright (c) 2009 S. Karger AG, Basel.

  13. A Case of Sigmoid Colon Tuberculosis Mimicking Colon Cancer

    OpenAIRE

    Yu, Seong-Min; Park, Jong-Hwan; Kim, Min-Dae; Lee, Hee-Ryong; Jung, Peel; Ryu, Tae-Hyun; Choi, Seung-Ho; Lee, Il-Seon

    2012-01-01

    Tuberculosis of the sigmoid colon is a rare disorder. An 80-year-old man visited Bongseng Memorial Hospital for medical examination. A colonoscopy was performed, and a lesion in the sigmoid colon that was suspected to be colon cancer was found. A biopsy was performed, and tuberculous enteritis with chronic granulomatous inflammation was diagnosed. Intestinal tuberculosis is most frequent in the ileocecal area, followed by the ascending colon, transverse colon, duodenum, stomach, and sigmoid c...

  14. Stages of Colon Cancer

    Science.gov (United States)

    ... types of surgery : Local excision or simple polypectomy . Resection and anastomosis . This is done when the tumor is too ... stage I colon cancer usually includes the following: Resection and anastomosis . Use our clinical trial search to find NCI- ...

  15. Colonic potassium handling

    DEFF Research Database (Denmark)

    Sørensen, Mads Vaarby; Matos, Joana E.; Prætorius, Helle

    2010-01-01

    regulated by hormones and adapts readily to changes in dietary K+ intake, aldosterone and multiple local paracrine agonists. In chronic renal insufficiency, colonic K+ secretion is greatly enhanced and becomes an important accessory K+ excretory pathway. During severe diarrheal diseases of different causes......, intestinal K+ losses caused by activated ion secretion may become life threatening. This topical review provides an update of the molecular mechanisms and the regulation of mammalian colonic K+ absorption and secretion. It is motivated by recent results, which have identified the K+ secretory ion channel...... in the apical membrane of distal colonic enterocytes. The directed focus therefore covers the role of the apical Ca2+ and cAMP-activated BK channel (KCa1.1) as the apparently only secretory K+ channel in the distal colon....

  16. Imaging the colon

    International Nuclear Information System (INIS)

    Kelvin, F.M.; Thompson, W.M.

    1987-01-01

    Radiographic techniques, particularly the barium enema, remain crucial in the evaluation of the colon despite the development of colonscopy. There is still controversy concerning the optimal method of performing the barium enema examination. This course includes a discussion of the respective roles of double-and single-contrast barium examinations as well as the technical aspects of their performance. The roles of other colon imaging modalities are discussed, with particular emphasis on the increasing value of CT. The various manifestations and differential diagnosis of inflammatory bowel disease, including diverticulitis, are presented. The radiologic evaluation and appearances of colorectal carcinoma and adenomatous polyps are discussed, as are some of the pitfalls in their diagnosis. The emphais of the presentation is on practical aspects of imaging the colon, and the varying appearances seen in the more common colon diseases

  17. Functional traits and root morphology of alpine plants.

    Science.gov (United States)

    Pohl, Mandy; Stroude, Raphaël; Buttler, Alexandre; Rixen, Christian

    2011-09-01

    Vegetation has long been recognized to protect the soil from erosion. Understanding species differences in root morphology and functional traits is an important step to assess which species and species mixtures may provide erosion control. Furthermore, extending classification of plant functional types towards root traits may be a useful procedure in understanding important root functions. In this study, pioneer data on traits of alpine plant species, i.e. plant height and shoot biomass, root depth, horizontal root spreading, root length, diameter, tensile strength, plant age and root biomass, from a disturbed site in the Swiss Alps are presented. The applicability of three classifications of plant functional types (PFTs), i.e. life form, growth form and root type, was examined for above- and below-ground plant traits. Plant traits differed considerably among species even of the same life form, e.g. in the case of total root length by more than two orders of magnitude. Within the same root diameter, species differed significantly in tensile strength: some species (Geum reptans and Luzula spicata) had roots more than twice as strong as those of other species. Species of different life forms provided different root functions (e.g. root depth and horizontal root spreading) that may be important for soil physical processes. All classifications of PFTs were helpful to categorize plant traits; however, the PFTs according to root type explained total root length far better than the other PFTs. The results of the study illustrate the remarkable differences between root traits of alpine plants, some of which cannot be assessed from simple morphological inspection, e.g. tensile strength. PFT classification based on root traits seems useful to categorize plant traits, even though some patterns are better explained at the individual species level.

  18. [Seasonal dynamics of quantitative and morphological traits of poplar fine roots and their differences between successive rotation plantations].

    Science.gov (United States)

    Wang, Yan-ping; Xu, Tan; Zhu, Wan-rui; Wang, Qi-tong; Liu, Meng-ling; Wang, Hua-tian; Li, Chuan-rong; Dong, Yu-feng

    2016-02-01

    Based on the fine root samples of the first and second generations of poplar (Populus x euramericana ' Neva'), this study examined the response of quantitative and morphological traits of fine roots of different orders and the difference between generations. The results showed that, the quantitative traits of fine roots, such as root length, root surface area and root biomass, presented obvious seasonal variation, and the fine root traits had obvious difference among root orders. The quantitative traits of lower-order fine roots showed significant seasonal difference, and the fine root biomass increased in the growing season and then decreased significantly. The specific root length (SRL) of higher-order roots also showed significant change with season, while the root length density (RLD) and root tissue density (RTD) changed a little. The successive rotation resulted in the significant increase of root length, root biomass, SRL and RLD of 1-2 orders in the growing season. The quantitative traits of first order root significantly positively correlated with soil temperature and moisture, and significantly negatively correlated with the soil organic matter and soil available nitrogen content. However, the quantitative traits of second order root only showed significant correlation with soil nutrient content. The seasonal dynamics of poplar fine roots and the difference between successive rotation plantations implied carbon investment change of poplar to roots. Soil nutrient deficiency induced more carbon investment into roots, and this carbon allocation pattern might affect the aboveground productivity of poplar plantation.

  19. Colon Cryptogenesis: Asymmetric Budding

    Science.gov (United States)

    Tan, Chin Wee; Hirokawa, Yumiko; Gardiner, Bruce S.; Smith, David W.; Burgess, Antony W.

    2013-01-01

    The process of crypt formation and the roles of Wnt and cell-cell adhesion signaling in cryptogenesis are not well described; but are important to the understanding of both normal and cancer colon crypt biology. A quantitative 3D-microscopy and image analysis technique is used to study the frequency, morphology and molecular topography associated with crypt formation. Measurements along the colon reveal the details of crypt formation and some key underlying biochemical signals regulating normal colon biology. Our measurements revealed an asymmetrical crypt budding process, contrary to the previously reported symmetrical fission of crypts. 3D immunofluorescence analyses reveals heterogeneity in the subcellular distribution of E-cadherin and β-catenin in distinct crypt populations. This heterogeneity was also found in asymmetrical budding crypts. Singular crypt formation (i.e. no multiple new crypts forming from one parent crypt) were observed in crypts isolated from the normal colon mucosa, suggestive of a singular constraint mechanism to prevent aberrant crypt production. The technique presented improves our understanding of cryptogenesis and suggests that excess colon crypt formation occurs when Wnt signaling is perturbed (e.g. by truncation of adenomatous polyposis coli, APC protein) in most colon cancers. PMID:24205248

  20. Colon cryptogenesis: asymmetric budding.

    Directory of Open Access Journals (Sweden)

    Chin Wee Tan

    Full Text Available The process of crypt formation and the roles of Wnt and cell-cell adhesion signaling in cryptogenesis are not well described; but are important to the understanding of both normal and cancer colon crypt biology. A quantitative 3D-microscopy and image analysis technique is used to study the frequency, morphology and molecular topography associated with crypt formation. Measurements along the colon reveal the details of crypt formation and some key underlying biochemical signals regulating normal colon biology. Our measurements revealed an asymmetrical crypt budding process, contrary to the previously reported symmetrical fission of crypts. 3D immunofluorescence analyses reveals heterogeneity in the subcellular distribution of E-cadherin and β-catenin in distinct crypt populations. This heterogeneity was also found in asymmetrical budding crypts. Singular crypt formation (i.e. no multiple new crypts forming from one parent crypt were observed in crypts isolated from the normal colon mucosa, suggestive of a singular constraint mechanism to prevent aberrant crypt production. The technique presented improves our understanding of cryptogenesis and suggests that excess colon crypt formation occurs when Wnt signaling is perturbed (e.g. by truncation of adenomatous polyposis coli, APC protein in most colon cancers.

  1. Arbuscular mycorrhizal colonization of giant sequoia (Sequoiadendron giganteum) in response to restoration practices.

    Science.gov (United States)

    Fahey, Catherine; York, Robert A; Pawlowska, Teresa E

    2012-01-01

    Interactions with soil microbiota determine the success of restoring plants to their native habitats. The goal of our study was to understand the effects of restoration practices on interactions of giant sequoia Sequoiadendron giganteum with arbuscular mycorrhizal (AM) fungi (Glomeromycota). Natural regeneration of Sequoiadendron is threatened by the absence of severe fires that create forest canopy gaps. Generating artificial canopy gaps offers an alternative tool for giant sequoia restoration. We investigated the effect of regeneration practices, including (i) sapling location within gaps, (ii) gap size and (iii) soil substrate, on AM fungal colonization of giant sequoia sapling roots in a native giant sequoia grove of the Sierra Nevada, California. We found that the extent of AM fungal root colonization was positively correlated with sapling height and light availability, which were related to the location of the sapling within the gap and the gap size. While colonization frequency by arbuscules in saplings on ash substrate was higher relative to saplings in mineral soil, the total AM fungal root colonization was similar between the substrates. A negative correlation between root colonization by Glomeromycota and non-AM fungal species indicated antagonistic interactions between different classes of root-associated fungi. Using DNA genotyping, we identified six AM fungal taxa representing genera Glomus and Ambispora present in Sequoiadendron roots. Overall, we found that AM fungal colonization of giant sequoia roots was associated with availability of plant-assimilated carbon to the fungus rather than with the AM fungal supply of mineral nutrients to the roots. We conclude that restoration practices affecting light availability and carbon assimilation alter feedbacks between sapling growth and activity of AM fungi in the roots.

  2. Arbuscular mycorrhizal colonization in soil fertilized by organic and mineral fertilizers

    Science.gov (United States)

    Dvořáčková, Helena; Záhora, Jaroslav; Mikajlo, Irina; Elbl, Jakub; Kynický, Jindřich; Hladký, Jan; Brtnický, Martin

    2017-04-01

    The level of arbuscular mycorrhizal colonization of roots represents one of the best parameters for assessing soil quality. This special type of symbiosis helps plants to obtain nutrients of the distant area which are unavailable without cooperation with arbuscular mycorrhizal fungi. For example the plant available form of phosphorus is of the most important elements in plant nutrition. This element can't move (significantly) throw the soil and it could be unachievable for root system of plant. The same situation also applies to other important nutrients and water. Colonization of individual roots by arbuscular mycorrhizal fungi has a direct effect on the enlargement of the root system but plant needs to invest sugar substance for development of fungi. It's very difficult to understand when fungi colonization represents indicator of good soil condition. And when it provides us with information "about plant stress". The main goal of our work was to compare the effect of different fertilizers application on development of arbuscular mycorrhizal colonization. We worked with organic fertilizers such as biochar from residual biomass, biochar from sewage sludge and ageing biochar and with mineral fertilizer DAM 390 (mixture of ammonium 25 %, nitrate 25 % and urea nitrogen 50 %). Effect of different types of the above fertilizers on development of arbuscular mycorrhizal colonization was tested by pot experiment with indicator plant Lactuca sativa L. The highest (P effect of modified biochar application to soil on increase in level of arbuscular mycorrhizal colonization of roots.

  3. Colonic Diverticulitis in the Elderly

    OpenAIRE

    Chien-Kuo Liu; Hsi-Hsien Hsu; She-Meng Cheng

    2009-01-01

    Diverticular disease of the colon is a disease that mainly affects the elderly and presents in 50–70% of those aged 80 years or older. The most common complication is colonic diverticulitis. Eighty percent of patients who present with colonic diverticulitis are aged 50 years and older. Diagnosis and treatment of colonic diverticulitis in the elderly is more difficult and complicated owing to more comorbid conditions. Computed tomography is recommended for diagnosis when colonic diverticulitis...

  4. Longitud de las raíces cervicales en resonancia magnética: relación con la parálisis postoperatoria de la quinta raíz cervical Medida do comprimento das raízes cervicais pela ressonância magnética: relação com a paralisia pós-operatória e a quinta raiz cervical Cervical nerve root length in magnetic resonance imaging: its relationship with postoperative fifth root palsy

    Directory of Open Access Journals (Sweden)

    Juan José Mezzadri

    2010-03-01

    Full Text Available OBJETIVO: determinar la longitud de la raíz C5. MÉTODOS: se estudiaron con resonancia magnética (Signa 1,5 T, cortes axiales de 5 mm de espesura, TR=850, TE=26, FOV=200 las columnas cervicales de 50 pacientes (29 hombres - 21 mujeres entre 26 y 68 años. Se incluyeron solo casos con cervicalgia y/o cervicobraquialgia. Se midió (en mm la longitud de las raíces cervicales tercera a séptima, derechas e izquierdas. La comparación de los promedios se realizó a través del análisis de varianza, para un nivel de significación α=0,05 con IC de 95%. Las comparaciones post-hoc se hicieron empleando el test de Bonferroni. RESULTADOS: se observó que el lado (derecho o izquierdo y el sexo (varón o mujer no tuvieron incidencia estadísticamente significativa en el valor de la longitud de las raíces (p>0,05. La raíz C5 tuvo un tamaño significativamente diferente (pOBJETIVO: determinar o comprimento da raiz C5. MÉTODOS: as colunas cervicais de 50 pacientes (29 homens - 21 mulheres, com idades entre 26 e 68 anos foram analisadas com ressonância magnética (Signa 1,5 T, cortes axiais de 5 mm de espessura, TR=850, TE=26, FOV=200. Foram incluídos casos com dor cervical e/ou cervicobraquial. O comprimento das raízes C3 a C7, à direita e esquerda, foi medido. A comparação das médias foi realizada com uma análise de variância para um nível de significação α = 0,05 com IC de 95%. As comparações post-hoc foram feitas com o teste de Bonferroni. RESULTADOS: foi observado que o lado (direito ou esquerdo e o sexo (homem ou mulher não tiveram incidência estatística significante em relação ao valor do comprimento das raízes. A raiz C5 evidenciou um tamanho significativamente diferente (pOBJECTIVE: to determine the length of the C5 root. METHODS: the cervical spines of 50 patients (29 male and 21 female, between 26 and 68 years old, were studied with magnetic resonance imaging (Signa 1.5 T, axial images with 5 mm thickness, TR=850, TE=26

  5. Spatial colonization of microbial cells on the rhizoplane.

    Science.gov (United States)

    Raynaud, Xavier; Eickhorst, Thilo; Nunan, Naoise; Kaiser, Christina; Woebken, Dagmar; Schmidt, Hannes

    2017-04-01

    The rhizoplane is the region where the root surface is in contact with soil and corresponds to the inner limit of the rhizosphere. At the rhizoplane level, plants exchange elements with the surrounding soil and the rhizoplane can therefore be considered as the region that drives nutrient movement and transformation in the rhizosphere. The rhizoplane differs in many respects from the bulk soil due to the far larger supply of substrates derived from the roots, with far greater microbial cell densities and reduced levels of diversity (Philippot et al., 2013). This is likely to result in completely different interaction profiles among microorganisms which may affect rhizosphere biogeochemistry. While the diversity of microorganisms associated with the rhizosphere and on the rhizoplane is getting increasing attention, knowledge on the spatial organisation of this diversity is still scarce. We therefore aimed at investigating the spatial arrangement of microbial rhizoplane colonization to increase our understanding of potential interaction dynamics within soil-microbe-plant interfaces. To study the spatial distribution of microbial cells on roots we cultivated rice plants in water-logged paddy soil. Root samples were taken three months after germination. After removing adhering rhizosphere soil the root samples were chemically fixed and prepared for CARD-FISH (Schmidt & Eickhorst, 2014). For hybridization, the oligonucleotide probes EUB I-III (Daims et al., 1999) were applied to cover the majority of bacteria colonizing the rhizoplane. Root segments were then subjected to confocal laser scanning microscopy where triplicate image stacks of 10 µm thickness (0.5 µm layer distance) were acquired per region of interest (ROI). ROIs were defined as distances from the root tip (0, 5, 10, 15 mm) and corresponded to the root tip, elongation zone, and zone of maturation. Image stacks were processed using ImageJ software to extract microbial cells spatial coordinates, as well as

  6. Field performance of Solanum sisymbriifolium, a trap crop for potato cyst nematodes. II. Root characteristics

    NARCIS (Netherlands)

    Timmermans, B.G.H.; Vos, J.; Stomph, T.J.; Nieuwburg, van J.G.W.; Putten, van der P.E.L.

    2007-01-01

    Hatching of potato cyst nematodes is induced by root exudates of Solanaceae, such as Solanum sisymbriifolium, and is therefore related to root length distribution of this crop. A mathematical model was derived to relate the hatching potential to root length density (RLD). A series of field

  7. Vitality and chemistry of roots of red spruce in forest floors of stands with a gradient of soil Al/Ca ratios in the northeastern United States

    Science.gov (United States)

    Philip M. Wargo; Kristiina Vogt; Daniel Vogt; Quintaniay Holifield; Joel Tilley; Gregory Lawrence; Mark David

    2003-01-01

    Number of living root tips per branch, percent dead roots, percent mycorrhizae and mycorrhizal morphotype, response of woody roots to wounding and colonization by fungi, and concentrations of starch, soluble sugars, phenols, percent C and N and C/N ratio, and Al, Ca, Fe, K, Mg, Mn, and P were measured for 2 consecutive years in roots of red spruce (Picea...

  8. Telomere length analysis.

    Science.gov (United States)

    Canela, Andrés; Klatt, Peter; Blasco, María A

    2007-01-01

    Most somatic cells of long-lived species undergo telomere shortening throughout life. Critically short telomeres trigger loss of cell viability in tissues, which has been related to alteration of tissue function and loss of regenerative capabilities in aging and aging-related diseases. Hence, telomere length is an important biomarker for aging and can be used in the prognosis of aging diseases. These facts highlight the importance of developing methods for telomere length determination that can be employed to evaluate telomere length during the human aging process. Telomere length quantification methods have improved greatly in accuracy and sensitivity since the development of the conventional telomeric Southern blot. Here, we describe the different methodologies recently developed for telomere length quantification, as well as their potential applications for human aging studies.

  9. Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica.

    Science.gov (United States)

    Jia, Shuxia; McLaughlin, Neil B; Gu, Jiacun; Li, Xingpeng; Wang, Zhengquan

    2013-06-01

    Tree roots are highly heterogeneous in form and function. Previous studies revealed that fine root respiration was related to root morphology, tissue nitrogen (N) concentration and temperature, and varied with both soil depth and season. The underlying mechanisms governing the relationship between root respiration and root morphology, chemistry and anatomy along the root branch order have not been addressed. Here, we examined these relationships of the first- to fifth-order roots for near surface roots (0-10 cm) of 22-year-old larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) plantations. Root respiration rate at 18 °C was measured by gas phase O2 electrodes across the first five branching order roots (the distal roots numbered as first order) at three times of the year. Root parameters of root diameter, specific root length (SRL), tissue N concentration, total non-structural carbohydrates (starch and soluble sugar) concentration (TNC), cortical thickness and stele diameter were also measured concurrently. With increasing root order, root diameter, TNC and the ratio of root TNC to tissue N concentration increased, while the SRL, tissue N concentration and cortical proportion decreased. Root respiration rate also monotonically decreased with increasing root order in both species. Cortical tissue (including exodermis, cortical parenchyma and endodermis) was present in the first three order roots, and cross sections of the cortex for the first-order root accounted for 68% (larch) and 86% (ash) of the total cross section of the root. Root respiration was closely related to root traits such as diameter, SRL, tissue N concentration, root TNC : tissue N ratio and stele-to-root diameter proportion among the first five orders, which explained up to 81-94% of variation in the rate of root respiration for larch and up to 83-93% for ash. These results suggest that the systematic variations of root respiration rate within tree fine root system are possibly due to the

  10. Seedling root targets

    Science.gov (United States)

    Diane L. Haase

    2011-01-01

    Roots are critical to seedling performance after outplanting. Although root quality is not as quick and simple to measure as shoot quality, target root characteristics should be included in any seedling quality assessment program. This paper provides a brief review of root characteristics most commonly targeted for operational seedling production. These are: root mass...

  11. Zero-point length from string fluctuations

    International Nuclear Information System (INIS)

    Fontanini, Michele; Spallucci, Euro; Padmanabhan, T.

    2006-01-01

    One of the leading candidates for quantum gravity, viz. string theory, has the following features incorporated in it. (i) The full spacetime is higher-dimensional, with (possibly) compact extra-dimensions; (ii) there is a natural minimal length below which the concept of continuum spacetime needs to be modified by some deeper concept. On the other hand, the existence of a minimal length (zero-point length) in four-dimensional spacetime, with obvious implications as UV regulator, has been often conjectured as a natural aftermath of any correct quantum theory of gravity. We show that one can incorporate the apparently unrelated pieces of information-zero-point length, extra-dimensions, string T-duality-in a consistent framework. This is done in terms of a modified Kaluza-Klein theory that interpolates between (high-energy) string theory and (low-energy) quantum field theory. In this model, the zero-point length in four dimensions is a 'virtual memory' of the length scale of compact extra-dimensions. Such a scale turns out to be determined by T-duality inherited from the underlying fundamental string theory. From a low energy perspective short distance infinities are cutoff by a minimal length which is proportional to the square root of the string slope, i.e., α ' . Thus, we bridge the gap between the string theory domain and the low energy arena of point-particle quantum field theory

  12. Radiographing roots and shoots

    International Nuclear Information System (INIS)

    Shariffah Noor Khamseah Al Idid

    1985-01-01

    The effect of seed orientation on germination time and on shoot and root growth patterns is studied. Neutron radiography is used to observe the development of 4 types of plants, maize, greenpea, soya bean and padi. These plants were grown in varying orientations; sand sizes, sand thicknesses, and level of water content. Radiography of the seeds and plants were obtained for time exposure ranging from 3-12 hours and at reactor thermal power level, ranging from 500-750 kilowatts. Results obtained showed that seeds planted in varying orientations need different length of time for shoot emergence. Neutron radiography is now developed to other areas of non-industrial applications in Malaysia. (A.J.)

  13. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana.

    Science.gov (United States)

    Veiga, Rita S L; Faccio, Antonella; Genre, Andrea; Pieterse, Corné M J; Bonfante, Paola; van der Heijden, Marcel G A

    2013-11-01

    The arbuscular mycorrhizal (AM) symbiosis is widespread throughout the plant kingdom and important for plant nutrition and ecosystem functioning. Nonetheless, most terrestrial ecosystems also contain a considerable number of non-mycorrhizal plants. The interaction of such non-host plants with AM fungi (AMF) is still poorly understood. Here, in three complementary experiments, we investigated whether the non-mycorrhizal plant Arabidopsis thaliana, the model organism for plant molecular biology and genetics, interacts with AMF. We grew A. thaliana alone or together with a mycorrhizal host species (either Trifolium pratense or Lolium multiflorum) in the presence or absence of the AMF Rhizophagus irregularis. Plants were grown in a dual-compartment system with a hyphal mesh separating roots of A. thaliana from roots of the host species, avoiding direct root competition. The host plants in the system ensured the presence of an active AM fungal network. AM fungal networks caused growth depressions in A. thaliana of more than 50% which were not observed in the absence of host plants. Microscopy analyses revealed that R. irregularis supported by a host plant was capable of infecting A. thaliana root tissues (up to 43% of root length colonized), but no arbuscules were observed. The results reveal high susceptibility of A. thaliana to R. irregularis, suggesting that A. thaliana is a suitable model plant to study non-host/AMF interactions and the biological basis of AM incompatibility. © 2013 John Wiley & Sons Ltd.

  14. root colonized by Glomus mosseae and Ralstonia solanacearum

    African Journals Online (AJOL)

    Yomi

    2012-03-27

    Mar 27, 2012 ... Ngakou et al., 2007), plant nutrition support (Mahmood and Rizvi, 2010), and salt stress (Shokri and Maadi,. 2009). Safir (1968) was the first to report the study on interaction of plant pathogenic fungi and species of AMF, followed by many reports confirming the reduction of disease severity as a result of ...

  15. [Differences in root developmenly of winter wheat cultivars in Huang-Huai Plain, China].

    Science.gov (United States)

    Qiu, Xin-Qiang; Gao, Yang; Li, Xin-Qiang; Huang, Ling; Duan, Ai-Wang

    2012-07-01

    Selecting one presently popularized winter wheat cultivar (Zhengmai 9023) and two cultivars (Abo and Fengchan 3) introduced in the 1950s and 1960s in Huang-Huai Plain as test materials, and by using minirhizotron technique, this paper studied the live root length, root diameter distribution, and net root growth rate of the cultivars. Fine roots with a diameter from 0.05 mm to 0.25 mm occupied the majority of the whole root system, and the fine roots with a diameter less than 0.5 mm accounted for 98% of the live root length. The average root diameter varied with plant growth, the variation range being 0.15 - 0.22 mm, and no significant difference was observe among the cultivars. The live root length was significantly positively correlated root number, suggesting that root number was the main factor for the increase of live root length. The most vigorous growth period of the roots was from reviving to jointing stage, and Abo and Fengchan 3 had a longer period increased root vitality, as compared with Zhengmai 9023. For Zhengmai 9023, its fine roots with a diameter more than 0.1 mm had an increasing proportion after jointing stage, which was helpful for improving plant resistance, root activity, and grain-filling at late growth stages.

  16. Full Length Research Article

    African Journals Online (AJOL)

    Administrator

    ABSTRACT. Rooting, nodulation and growth ability of cowpea growing under limited water supply was investigated at the Teaching and Research Farm of the Imo State University, Owerri,. Nigeria. The experiment was conducted in plastic buckets arranged in a completely Randomized Design with three replications, and ...

  17. Eficiência de índices fenotípicos de comprimento de raiz seminal na avaliação de plantas individuais de milho quanto à tolerância ao alumínio Efficiency of root length phenotypic index in the evaluation of individual maize plants for aluminum tolerance

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Martins

    1999-10-01

    Full Text Available O objetivo deste trabalho foi testar a eficiência do comprimento relativo de raiz seminal (CRRS e do comprimento líquido de raiz seminal (CLRS como indicadores fenotípicos quanto à tolerância ao alumínio na avaliação de plantas individuais de milho. Plântulas de genótipos tolerantes e suscetíveis ao Al foram submetidas a solução nutritiva contendo nível tóxico deste elemento, por um período de sete dias, após o qual, determinaram-se os valores de CRRS e CLRS. Os resultados obtidos quando se utilizaram valores médios para CRRS e CLRS mostraram que ambos os índices foram capazes de discriminar com eficiência os materiais tolerantes dos suscetíveis. Entretanto, quando foram utilizados os valores de CRRS e CLRS obtidos a partir de plantas individuais, observou-se a existência de plantas tolerantes com valores típicos de plantas suscetíveis, o que indica que a avaliação fenotípica de plantas individuais pelos dois índices está sujeita a erros significativos, principalmente na caracterização de plantas suscetíveis. Portanto, em estudos para mapeamento de "quantitative trait loci" (QTLs ligados à tolerância ao Al, nos quais utilizam-se estes índices fenotípicos, o mais apropriado é avaliar famílias F3, onde é possível obter valores médios para CRRS e CLRS e utilizar estas médias para representar os valores fenotípicos das respectivas plantas F2.The objective of this work was to verify the efficiency of the relative seminal root length (RSRL and net seminal root length (NSRL as phenotypic indexes for aluminum tolerance in individual maize plants. Seedlings of Al tolerant and susceptible genotypes were grown in nutrient solution containing toxic level of Al for a period of seven days, after which the values of RSRL and NSRL were determined. The results obtained when mean values of RSRL and NSRL were utilized showed that both indexes were able to discriminate tolerant from susceptible maize genotypes. However

  18. Rooting of yellow native Passionfruit by semi-hardwood cuttings

    Directory of Open Access Journals (Sweden)

    Celso Lopes de Albuquerque Junior

    2013-12-01

    Full Text Available The objective of this estudy was to evaluate the influence of cuttings related to their position in the branch (basal, middle and apical and presence of leaves on rooting native yellow passionfruit (Passiflora actinia. Cuttings with two nodes were prepared 80-10 cm long, and his was planted inplastic pots containing vermiculite, maintained in a greenhouse under intermittent mist for 90 days. We evaluated the percentage of rooted cuttings, number of roots, dry weight and length of roots. The statistical design was randomized blocks with 6 treatments, each treatment consisted of four replications with 12 cuttings each. We performed analysis of variance and Tukey’s test to the data interpretation. It was concluded that the presence of leaves on the basal cuttings showed the highest rooting percentage, the greater number of roots higher dry weight and greater length of roots.

  19. Recent trend of colonic diverticulosis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yae Soon; Lee, Sung Woo; Han, Chang Yul; Lee, Kwan Seh [Inje Medical College, Seoul (Korea, Republic of)

    1988-08-15

    Colonic Diverticulosis is once thought to be a rare disease in Korea compared with western countries, but the incidence has been increasing with passage of time. Authors reviewed 151 cases of colon study with new double contrast method performed from November, 1986 to March, 1987 at Paik Hospital Inje college. The results were as follow: 1. The colonic diverticulosis was found in 39 cases out of 151 colon study (25.8%). 2. Colonic Diverticulosis were located at right and transvercolon in 54% and left and sigmoid colon in 18%. 3. Increasing occurrence in younger age group predilection; 4th decade was observed.

  20. Recent trend of colonic diverticulosis

    International Nuclear Information System (INIS)

    Chung, Yae Soon; Lee, Sung Woo; Han, Chang Yul; Lee, Kwan Seh

    1988-01-01

    Colonic Diverticulosis is once thought to be a rare disease in Korea compared with western countries, but the incidence has been increasing with passage of time. Authors reviewed 151 cases of colon study with new double contrast method performed from November, 1986 to March, 1987 at Paik Hospital Inje college. The results were as follow: 1. The colonic diverticulosis was found in 39 cases out of 151 colon study (25.8%). 2. Colonic Diverticulosis were located at right and transvercolon in 54% and left and sigmoid colon in 18%. 3. Increasing occurrence in younger age group predilection; 4th decade was observed.

  1. CT findings of colonic diverticulitis

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Shigeru; Ohba, Satoru [Nagoya City Univ. (Japan). Medical School; Mizutani, Masaru [and others

    1998-11-01

    Although colonic diverticulitis has no indication for operation, but in some mistaken cases were operated with a diagnosis of acute appendicitis. We evaluated the CT findings of colonic diverticulitis about 19 cases and of asymptomatic colonic diverticula about 15 cases retrospectively. Diagnosis was confirmed of barium enema and operation. CT are complementary methods of examination that can delineated the range of thickening of the colon and the extension of inflammatory changes around the colon. We also believe that CT findings of colonic diverticulitis are useful for differentiating from a diagnosis of appendicitis. (author)

  2. CT findings of colonic diverticulitis

    International Nuclear Information System (INIS)

    Sasaki, Shigeru; Ohba, Satoru; Mizutani, Masaru

    1998-01-01

    Although colonic diverticulitis has no indication for operation, but in some mistaken cases were operated with a diagnosis of acute appendicitis. We evaluated the CT findings of colonic diverticulitis about 19 cases and of asymptomatic colonic diverticula about 15 cases retrospectively. Diagnosis was confirmed of barium enema and operation. CT are complementary methods of examination that can delineated the range of thickening of the colon and the extension of inflammatory changes around the colon. We also believe that CT findings of colonic diverticulitis are useful for differentiating from a diagnosis of appendicitis. (author)

  3. Telomere length and depression

    DEFF Research Database (Denmark)

    Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Rode, Line

    2017-01-01

    BACKGROUND: Depression has been cross-sectionally associated with short telomeres as a measure of biological age. However, the direction and nature of the association is currently unclear. AIMS: We examined whether short telomere length is associated with depression cross-sectionally as well...... as prospectively and genetically. METHOD: Telomere length and three polymorphisms, TERT, TERC and OBFC1, were measured in 67 306 individuals aged 20-100 years from the Danish general population and associated with register-based attendance at hospital for depression and purchase of antidepressant medication....... RESULTS: Attendance at hospital for depression was associated with short telomere length cross-sectionally, but not prospectively. Further, purchase of antidepressant medication was not associated with short telomere length cross-sectionally or prospectively. Mean follow-up was 7.6 years (range 0...

  4. Myofilament length dependent activation

    Energy Technology Data Exchange (ETDEWEB)

    de Tombe, Pieter P.; Mateja, Ryan D.; Tachampa, Kittipong; Mou, Younss Ait; Farman, Gerrie P.; Irving, Thomas C. (IIT); (Loyola)

    2010-05-25

    The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca{sup 2+} ions at a longer sarcomere length, commonly referred to as myofilament length-dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the 'Frank-Starling law of the heart' constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development.

  5. Upper Extremity Length Equalization

    OpenAIRE

    DeCoster, Thomas A.; Ritterbusch, John; Crawford, Mark

    1992-01-01

    Significant upper extremity length inequality is uncommon but can cause major functional problems. The ability to position and use the hand may be impaired by shortness of any of the long bones of the upper extremity. In many respects upper and lower extremity length problems are similar. They most commonly occur after injury to a growing bone and the treatment modalities utilized in the lower extremity may be applied to the upper extremity. These treatment options include epiphysiodesis, sho...

  6. Interaction of Azospirillum brasilense and Glomus intrarradix in Sugar Cane Roots.

    Science.gov (United States)

    Bellone, Carlos H; de Bellone Silvia, Carrizo

    2012-03-01

    Fifteen-day-old variety NA 56-79 sugar cane seedlings were inoculated with Azospirillum brasilense and Glomus intrarradix. This article aims at examining changes in sugar cane root seedlings inoculated with Glomus intrarradix and Azospirillum brasilense, the increase in microbial biomass and the acetylene reduction process as well. The internal root colonization was studied 20 days after inoculation using scanning and a transmission electron microscope. Both microorganisms entered the sugar cane root through the emergent lateral roots. The microorganisms were capable of coexisting both intra and intercellularly, producing changes in the cell wall, thus allowing colonization and interaction between the organisms. These changes increased the number of microorganisms inside the root as well as acetylene nitrogen reduction. Sugar cane plant biomass increased with joint-inoculation. The number of endophytic microorganisms and nitrogen fixing activity increased when they were colonized by Azospirillum and Glomus together.

  7. Anatomic investigation of the lumbosacral nerve roots and dorsal root ganglia by MRI

    International Nuclear Information System (INIS)

    Hasegawa, Toru; Fuse, Kenzo; Mikawa, Yoshihiro; Watanabe, Ryo

    1995-01-01

    The morphology of the lumbosacral nerve roots and dorsal root ganglia (DRG) was examined by using magnetic resonance imaging (MRI) in 11 healthy male volunteers aged 20-40 years. One hundred and twenty-three nerve roots (15 at the L1 level, 22 each at the L2-L5 levels, and 20 at the S1 level) were examined in terms of the position and angle of the bifurcation of the nerve roots, length of the nerve root, and the position and width of DRG. The nerve roots at the lower levels showed more cephalad position and smaller angle of bifurcation on MRI. The distance from the bifurcation of nerve roots to the cephalad edge of DRG was significantly longer in the upper root levels and was significantly shorter in the L5 roots than the S1 roots. The positions of DRG at the S1 level tended to become cephalad. DRG that was positioned toward more caudal direction was larger and more elliptic. MRI provided useful information concerning morphology and anatomical position of nerve roots and DRG, thereby allowing accurate diagnosis and the determination of surgical indications. (N.K.)

  8. Reduced mycorrhizal colonization (rmc) tomato mutant lacks expression of SymRK signaling pathway genes.

    Science.gov (United States)

    Nair, Aswathy; Bhargava, Sujata

    2012-12-01

    Comparison of the expression of 13 genes involved in arbuscular mycorrhizal (AM) symbiosis was performed in a wild type tomato (Solanum lycopersicum cv 76R) and its reduced mycorrhizal colonization mutant rmc in response to colonization with Glomus fasiculatum. Four defense-related genes were induced to a similar extent in the mutant and wild type AM colonized plants, indicating a systemic response to AM colonization. Genes related to nutrient exchange between the symbiont partners showed higher expression in the AM roots of wild type plants than the mutant plants, which correlated with their arbuscular frequency. A symbiosis receptor kinase that is involved in both nodulation and AM symbiosis was not expressed in the rmc mutant. The fact that some colonization was observed in rmc was suggestive of the existence of an alternate colonization signaling pathway for AM symbiosis in this mutant.

  9. Role of microsatellite instability in colon cancer

    Directory of Open Access Journals (Sweden)

    M. Yu. Fedyanin

    2012-01-01

    Full Text Available Coloncancer is among leading causes of cancer morbidity and mortality both inRussiaand worldwide. Development of molecular biology lead to decoding of carcinogenesis and tumor progression mechanisms. These processes require accumulation of genetic and epigenetic alterations in a tumor cell.Coloncancer carcinogenesis is characterized by mutations cumulation in genes controlling growth and differentiation of epithelial cells, which leads to their genetic instability. Microsatellite instability is a type of genetic instability characterized by deterioration of mismatch DNA repair. This leads to faster accumulation of mutations in DNA. Loss of mismatch repair mechanism can easily be diagnosed by length of DNA microsatellites. These alterations are termed microsatellite instability. They can be found both in hereditary and sporadic colon cancers. This review covers the questions of microsatellite instability, its prognostic and predictive value in colon cancer.

  10. Jasmonic acid influences mycorrhizal colonization in tomato plants by modifying the expression of genes involved in carbohydrate partitioning.

    Science.gov (United States)

    Tejeda-Sartorius, Miriam; Martínez de la Vega, Octavio; Délano-Frier, John Paul

    2008-06-01

    The role of jasmonic acid (JA) on mycorrhizal colonization by Glomus fasciculatum in tomato plants was examined using mutant plants overexpressing prosystemin (PS) or affected in the synthesis of JA (suppressor of prosystemin-mediated responses 2, spr2). The degree of mycorrhizal colonization was determined by measuring frequency (F%) and intensity (M%) of colonization and arbuscule abundance (A%). Gene expression and biochemical analyses were also performed in roots to detect changes in carbon (C) partitioning. Colonization was similar in mycorrhizal PS and wild-type roots, except for a higher A% in the former. Conversely, colonization was severely reduced in roots of spr2 mutants. No association was found between levels of expression of genes coding for systemic wound responsive proteins (or SWRPs) and other defense-related proteins in roots and mycorrhization levels in these plants. On the other hand, the degree of mycorrhizal colonization correlated with changes in the transcriptional regulation of a number of genes involved in sucrose hydrolysis and transport, cell wall invertase activity and mycorrhizal-specific fatty acid content in roots. The results obtained suggest that one of the mechanisms by which JA might operate to modulate the mycorrhization process could be through its influence on the regulation of C partitioning in the plant. The significant colonization increase observed in mycorrhizal spr2 plants supplied with exogenous methyl jasmonate supports its role as a positive regulator of the symbiosis.

  11. Isolation, identification of antagonistic rhizobacterial strains obtained from chickpea (cicer arietinum l.) field and their in-vitro evaluation against fungal root pathogens

    International Nuclear Information System (INIS)

    Shahzaman, S.; Haq, I.U.; Mukhtar, T.; Naeem, M.

    2015-01-01

    Plant growth promoting rhizobacteria (PGPR), are associated with roots, found in the rhizosphere and can directly or indirectly enhance the plant growth. In this study soil was collected from rhizosphere of chickpea fields of different areas of Rawalpindi division of Pakistan. PGPR were isolated, screened and characterized. Eight isolates of rhizobacteria (RHA, RPG, RFJ, RC, RTR, RT and RK) were isolated from Rawalpindi division and were characterized. The antagonistic activity of these PGPR isolates against root infecting fungi (Fusarium oxysporum and Verticillium spp.,) was done and production of indole acetic acid (IAA), siderophore and P-solubilization was evaluated. The isolates RHA, RPG, RFJ, RC, RRD and RT were found to be positive in producing siderophore, IAA and P-solubilization. Furthermore, most of the isolates showed antifungal activity against Fusarium oxysporum, and Verticillium spp. The rhizobacterial isolates RHA, RPG, RFJ, RC, RRD, RTR, RT and RK were used as bio-inoculants that might be beneficial for chickpea cultivation as the rhizobacterial isolates possessed the plant growth promoting characters i.e. siderophore, IAA production, phosphate solubilization. In in vitro tests, Pseudomonas sp. and Bacillus spp. inhibited the mycelial growth of the fungal root pathogens. The isolates (RHA and RPG) also significantly increased (60-70%) seed germination, shoot length, root length of the chickpea. The incidence of fungi was reduced by the colonization of RHA and RPG which enhanced the seedling vigor index and seed germination. The observations revealed that isolates RHA and RPG is quite effective to reduce the fungal root infection in greenhouse, and also increases seed yields significantly. These rhizobacterial isolates appear to be efficient yield increasing as well as effective biocontrol agent against fungal root pathogen. (author)

  12. Laparoscopic right colon resection with intracorporeal anastomosis.

    Science.gov (United States)

    Chang, Karen; Fakhoury, Mathew; Barnajian, Moshe; Tarta, Cristi; Bergamaschi, Roberto

    2013-05-01

    This study was performed to evaluate short-term clinical outcomes of laparoscopic intracorporeal ileocolic anastomosis following resection of the right colon. This was a retrospective study of selected patients who underwent laparoscopic intracorporeal ileocolic anastomosis following resection of the right colon for tumors or Crohn's disease by a single surgeon from July 2002 through June 2012. Data were retrieved from an Institutional Review Board-approved database. Study end point was postoperative adverse events, including mortality, complications, reoperations, and readmissions at 30 days. Antiperistaltic side-to-side anastomoses were fashioned laparoscopically with a 60-mm-long stapler cartridge and enterocolotomy was hand-sewn intracorporeally in two layers. Values were expressed as medians (ranges) for continuous variables. There were 243 patients (143 females) aged 61 (range = 19-96) years, with body mass index of 29 (18-43) kg/m(2) and ASA 1:2:3:4 of 52:110:77:4; 30 % had previous abdominal surgery and 38 % had a preexisting comorbidity. There were 84 ileocolic resections with ileo ascending anastomosis and 159 right colectomies with ileotransverse anastomosis. Operating time was 135 (60-220) min. Estimated blood loss was 50 (10-600) ml. Specimen extraction site incision length was 4.1 (3-4.4) cm. Conversion rate was 3 % and there was no mortality at 30 days, 15 complications (6.2 %), and 8 reoperations (3.3 %). Readmission rate was 8.7 %. Length of stay was 4 (2-32) days. Pathology confirmed Crohn's disease in 84 patients, adenocarcinoma in 152, and other tumors in 7 patients. Laparoscopic intracorporeal ileocolic anastomosis following resection of the right colon resulted in a favorable outcome in selected patients with Crohn's disease or tumors of the right colon.

  13. Mycorrhizal colonization across hydrologic gradients in restored and reference freshwater wetlands

    Science.gov (United States)

    Bauer, C.R.; Kellogg, C.H.; Bridgham, S.D.; Lamberti, G.A.

    2003-01-01

    Arbuscular mycorrhizae, which are plant root-fungal symbioses, are common associates of vascular plants. Such relationships, however, are thought to be rare in wetland plant roots, although several recent studies suggest that arbuscular mycorrhizae may be important in wetland ecosystems. Our objectives were to determine (1) the level of arbuscular mycorrhizal colonization of plant roots in three freshwater marshes and (2) the effect of restoration status, hydrologic zone, and plant species identity on mycorrhizal colonization. We quantified the percentage of plant roots colonized by mycorrhizal fungi in one reference and two restored freshwater marshes in northern Indiana, USA during summer 1999. Roots were collected from soil cores taken around dominant plant species present in each of three hydrologic zones and then stained for microscopic examination of mycorrhizal colonization. Mycorrhizae were present in each wetland, in all hydrologic zones and in all sampled plants, including Carex and Scirpus species previously thought to be non-mycorrhizal. Both restored and reference wetlands had moderate levels of mycorrhizal colonization, but no clear trends in colonization were seen with hydrologic zone, which has been hypothesized to regulate the formation of mycorrhizae in wetlands. Mycorrhizal colonization levels in the roots of individual species ranged from 3 to 90% and were particularly large in members of the Poaceae (grass) family. Our results suggest that arbuscular mycorrhizae may be widely distributed across plant species and hydrologic zones in both restored and reference freshwater marshes. Thus, future research should examine the functional role of mycorrhizal fungi in freshwater wetlands. ?? 2003, The Society of Wetland Scientists.

  14. Differential effects of ephemeral colonization by arbuscular mycorrhizal fungi in two Cuscuta species with different ecology.

    Science.gov (United States)

    Behdarvandi, Behrang; Guinel, Frédérique C; Costea, Mihai

    2015-10-01

    Seedlings of parasitic Cuscuta species are autotrophic but can survive only a short period of time, during which they must locate and attach to a suitable host. They have an ephemeral root-like organ considered not a "true" root by most studies. In the present study, two species with contrasting ecology were examined: Cuscuta gronovii, a North American riparian species, and Cuscuta campestris, an invasive dodder that thrives in disturbed habitats. The morphology, structure, and absorptive capability of their root-like organ were compared, their potential for colonization by two species of arbuscular mycorrhizal fungi (AMF) was assessed, and the effect of the AMF on seedling growth and survival was determined. The root of both species absorbed water and interacted with AMF, but the two species exhibited dissimilar growth and survival patterns depending on the colonization level of their seedlings. The extensively colonized seedlings of C. gronovii grew more and survived longer than non-colonized seedlings. In contrast, the scarce colonization of C. campestris seedlings did not increase their growth or longevity. The differential growth responses of the AMF-colonized and non-colonized Cuscuta species suggest a mycorrhizal relationship and reflect their ecology. While C. gronovii roots have retained a higher ability to interact with AMF and are likely to take advantage of fungal communities in riparian habitats, the invasive C. campestris has largely lost this ability possibly as an adaptation to disturbed ecosystems. These results indicate that dodders have a true root, even if much reduced and ephemeral, that can interact with AMF.

  15. Colonization, mouse-style

    Directory of Open Access Journals (Sweden)

    Searle Jeremy B

    2010-10-01

    Full Text Available Abstract Several recent papers, including one in BMC Evolutionary Biology, examine the colonization history of house mice. As well as background for the analysis of mouse adaptation, such studies offer a perspective on the history of movements of the humans that accidentally transported the mice. See research article: http://www.biomedcentral.com/1471-2148/10/325

  16. Root traits contributing to plant productivity under drought

    Directory of Open Access Journals (Sweden)

    Louise eComas

    2013-11-01

    Full Text Available Geneticists and breeders are positioned to breed plants with root traits that improve productivity under drought. However, a better understanding of root functional traits and how traits are related to whole plant strategies to increase crop productivity under different drought conditions is needed. Root traits associated with maintaining plant productivity under drought include small fine root diameters, long specific root length (SRL, and considerable root length density, especially at depths in soil with available water. In environments with late season water deficits, small xylem diameters in targeted seminal roots save soil water deep in the soil profile for use during crop maturation and result in improved yields. Capacity for deep root growth and large xylem diameters in deep roots may also improve root acquisition of water when ample water at depth is available. Xylem pit anatomy that makes xylem less ‘leaky’ and prone to cavitation warrants further exploration holding promise that such traits may improve plant productivity in water-limited environments without negatively impacting yield under adequate water conditions. Rapid resumption of root growth following soil rewetting may improve plant productivity under episodic drought. Genetic control of many of these traits through breeding appears feasible. Several recent reviews have covered methods for screening root traits but an appreciation for the complexity of root systems (e.g. functional differences between fine and coarse roots needs to be paired with these methods to successfully identify relevant traits for crop improvement. Screening of root traits at early stages in plant development can proxy traits at mature stages but verification is needed on a case by case basis that traits are linked to increased crop productivity under drought. Examples in lesquerella (Physaria and rice (Oryza show approaches to phenotyping of root traits and current understanding of root trait

  17. Root traits contributing to plant productivity under drought.

    Science.gov (United States)

    Comas, Louise H; Becker, Steven R; Cruz, Von Mark V; Byrne, Patrick F; Dierig, David A

    2013-11-05

    Geneticists and breeders are positioned to breed plants with root traits that improve productivity under drought. However, a better understanding of root functional traits and how traits are related to whole plant strategies to increase crop productivity under different drought conditions is needed. Root traits associated with maintaining plant productivity under drought include small fine root diameters, long specific root length, and considerable root length density, especially at depths in soil with available water. In environments with late season water deficits, small xylem diameters in targeted seminal roots save soil water deep in the soil profile for use during crop maturation and result in improved yields. Capacity for deep root growth and large xylem diameters in deep roots may also improve root acquisition of water when ample water at depth is available. Xylem pit anatomy that makes xylem less "leaky" and prone to cavitation warrants further exploration holding promise that such traits may improve plant productivity in water-limited environments without negatively impacting yield under adequate water conditions. Rapid resumption of root growth following soil rewetting may improve plant productivity under episodic drought. Genetic control of many of these traits through breeding appears feasible. Several recent reviews have covered methods for screening root traits but an appreciation for the complexity of root systems (e.g., functional differences between fine and coarse roots) needs to be paired with these methods to successfully identify relevant traits for crop improvement. Screening of root traits at early stages in plant development can proxy traits at mature stages but verification is needed on a case by case basis that traits are linked to increased crop productivity under drought. Examples in lesquerella (Physaria) and rice (Oryza) show approaches to phenotyping of root traits and current understanding of root trait genetics for breeding.

  18. Plasticity in relative growth rate after a reduction in nitrogen availability is related to root morphological and physiological responses.

    Science.gov (United States)

    Useche, Antonio; Shipley, Bill

    2010-10-01

    To maximize growth and fitness a plant must adjust its phenotype by an amount and speed that matches changes in nitrogen availability. To determine how plastic ontogenetic changes in root physiological and morphological traits interact and whether or not these responses are likely to maximize growth, ontogenetic changes in relative growth rate (RGR, proportional rate of change of plant dry mass), unit root rate (URR, rate of change of plant dry mass per unit root length or area), specific root length (SRL, root length per dry root mass), specific root area (SRA, root area per dry root mass), and other root traits before and after a decrease in nitrogen supply, were studied in ten herbaceous species. Plants of each species were grown in hydroponic culture under controlled conditions in a control treatment where the supply of nitrogen remained constant at 1 mm, and in a stress treatment where the nitrogen supply was abruptly reduced from 1 to 0·01 mm during the growth period. In the treatment series the number of bifurcations per root area and per root length, specific root area (SRA) and length (SRL), areal (URR(area)) and length-based (URR(mass)) unit root rate and RGR decreased, and root tissue density increased relative to the control. Species having greater plasticity in the percentage decrease in SRA at the end of the experiment also had smaller reductions in RGR; plasticity in SRA is therefore adaptive. In contrast, species which showed a greater reduction in URR(area) and in the number of bifurcations per root area and per root length, showed stronger reductions in RGR; plasticity in URR(area) and in the number of bifurcations per root area and per root length is therefore not adaptive. The plastic responses observed in SRA, SRL and in root tissue density constitute a set of plastic adjustments that would lead to resource conservation in response nutrient stress.

  19. Schwannoma of the Colon

    Directory of Open Access Journals (Sweden)

    Ronaldo Nonose

    2009-09-01

    Full Text Available Schwannomas are neoplasms originating from Schwann cells, which are the cells forming nerve sheaths. These neoplasms generally involve peripheral nerves. They rarely affect the gastrointestinal tract and primary colon involvement is extremely rare. The objective of the present paper was to present a case of primary schwannoma of the sigmoid colon, unassociated with von Recklinghausen disease, that was histopathologically confirmed by means of an immunohistochemical panel. The patient was a 71-year-old woman who had had rectal bleeding when evacuating, with pain and tenesmus, for 4 months. She underwent colonoscopy, which identified a raised submucous lesion of 2.8 cm in diameter, located in the sigmoid colon, 30 cm from the anal margin. During examination, loop polypectomy with lesion excision was performed. Histopathological evaluation showed that this was a tumor of stromal origin. Its resection margins were compromised by neoplasia, and colon resection by means of videolaparoscopy was indicated. Conventional histopathological examination using the hematoxylin-eosin technique suggested that the neoplasm was of mesenchymal origin. An immunohistochemical panel was run for etiological confirmation, using anti-CD34 antibodies, desmin, cytokeratins (AE1/AE3, cKit, chromogranin and S-100 protein. The panel showed intense immunoexpression of S-100 protein. Investigation of the proliferative activity rate using Ki-67 antibodies showed that there was a low rate of mitotic activity, thus confirming the diagnosis of primary benign schwannoma of the colon. The patient’s postoperative evolution was uneventful and she remains in good health, without signs of tumor recurrence, 15 months after surgical excision.

  20. External coating of colonic anastomoses

    DEFF Research Database (Denmark)

    Pommergaard, Hans-Christian; Achiam, Michael Patrick; Rosenberg, Jacob

    2012-01-01

    Colon anastomotic leakage remains both a frequent and serious complication in gastrointestinal surgery. External coating of colonic anastomoses has been proposed as a means to lower the rate of this complication. The aim of this review was to evaluate existing studies on external coating of colonic...

  1. Relativistic Length Agony Continued

    Science.gov (United States)

    Redzic, D. V.

    2014-06-01

    We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.

  2. Telomere Length and Mortality

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P

    2008-01-01

    Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...... telomeres predicted the death of the first co-twin better than the mTRFL did (mTRFL: 0.56, 95% confidence interval (CI): 0.49, 0.63; mTRFL(50): 0.59, 95% CI: 0.52, 0.66; mTRFL(25): 0.59, 95% CI: 0.52, 0.66; MTRFL: 0.60, 95% CI: 0.53, 0.67). The telomere-mortality association was stronger in years 3-4 than...

  3. computer-aided root aided root aided root aided root-locus

    African Journals Online (AJOL)

    User

    equation are the same as the poles of the close loop system. Ideally, a desired performance can be achieved a control system by adjusting the location of roots in the s-plane by varying one or mo system parameters. Root-locus Method is a line. 8023278605. AIDED ROOT. AIDED ROOT-LOCUS NUMERICAL TECHNIQUE.

  4. ROOT Reference Documentation

    CERN Document Server

    Fuakye, Eric Gyabeng

    2017-01-01

    A ROOT Reference Documentation has been implemented to generate all the lists of libraries needed for each ROOT class. Doxygen has no option to generate or add the lists of libraries for each ROOT class. Therefore shell scripting and a basic C++ program was employed to import the lists of libraries needed by each ROOT class.

  5. Number, position, diameter and initial direction of growth of primary roots in Musa.

    Science.gov (United States)

    Lecompte, Francois; Vaucelle, Aurelien; Pages, Loic; Ozier-Lafontaine, Harry

    2002-07-01

    To understand soil colonization by a root system, information is needed on the architecture of the root system. In monocotyledons, soil exploration is mainly due to the growth of adventitious primary roots. Primary root emergence in banana was quantified in relation to shoot and corm development. Root emergence kinetics were closely related to the development of aerial organs. Root position at emergence on the corm followed an asymptotic function of corm dry weight, so that the age of each root at a given time could be deduced from its position. Root diameter at emergence was related to the position of the roots on the corm, with younger roots being thicker than older ones. However, root diameters were not constant along a given root, but instead decreased with the distance to the base; roots appear to be conical in their basal and apical parts. Root growth directions at emergence were variable, but a high proportion of the primary roots emerged with a low angle to the horizontal. Further research is needed to evaluate whether these initial trajectories are conserved during root development. Results presented in this study are in good agreement with those reported for other monocotyledons such as maize and rice. They give quantitative information that will facilitate the development of models of root system architecture in banana.

  6. Effects of different tillage systems and amendments on root properties

    Science.gov (United States)

    Gao, Mengyu; Yan, Yang; Li, Na; Luo, Peiyu; Yang, Jinfeng

    2017-06-01

    The object of this study was to investigate the effect of different tillage systems and amendments on root properties. There were five treatments: maize continuous cropping, maize and peanuts rotation, peanuts continuous cropping, peanuts continuous cropping with low level of amendment and peanuts continuous cropping with high level of amendment. The results showed that maize continuous cropping increased total root length by 118.95%, projected area by 204.86%, projected area by 150.70%, total root volume by 20.66%, and average root diameter by184.53%. The amendments also improved root properties and the high level of amendment had much more better effect.

  7. Phototropism and gravitropism in lateral roots of Arabidopsis

    Science.gov (United States)

    Kiss, John Z.; Miller, Kelley M.; Ogden, Lisa A.; Roth, Kelly K.

    2002-01-01

    Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.

  8. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height.

    Science.gov (United States)

    Li, Zhaoxia; Zhang, Xinrui; Zhao, Yajie; Li, Yujie; Zhang, Guangfeng; Peng, Zhenghua; Zhang, Juren

    2018-01-01

    Maize is a globally important food, feed crop and raw material for the food and energy industry. Plant architecture optimization plays important roles in maize yield improvement. PIN-FORMED (PIN) proteins are important for regulating auxin spatiotemporal asymmetric distribution in multiple plant developmental processes. In this study, ZmPIN1a overexpression in maize increased the number of lateral roots and inhibited their elongation, forming a developed root system with longer seminal roots and denser lateral roots. ZmPIN1a overexpression reduced plant height, internode length and ear height. This modification of the maize phenotype increased the yield under high-density cultivation conditions, and the developed root system improved plant resistance to drought, lodging and a low-phosphate environment. IAA concentration, transport capacity determination and application of external IAA indicated that ZmPIN1a overexpression led to increased IAA transport from shoot to root. The increase in auxin in the root enabled the plant to allocate more carbohydrates to the roots, enhanced the growth of the root and improved plant resistance to environmental stress. These findings demonstrate that maize plant architecture can be improved by root breeding to create an ideal phenotype for further yield increases. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Patterns of root respiration rates and morphological traits in 13 tree species in a tropical forest.

    Science.gov (United States)

    Makita, Naoki; Kosugi, Yoshiko; Dannoura, Masako; Takanashi, Satoru; Niiyama, Kaoru; Kassim, Abd Rahman; Nik, Abdul Rahim

    2012-03-01

    The root systems of forest trees are composed of different diameters and heterogeneous physiological traits. However, the pattern of root respiration rates from finer and coarser roots across various tropical species remains unknown. To clarify how respiration is related to the morphological traits of roots, we evaluated specific root respiration and its relationships to mean root diameter (D) of various diameter and root tissue density (RTD; root mass per unit root volume; gcm(-3)) and specific root length (SRL; root length per unit root mass; mg(-1)) of the fine roots among and within 14 trees of 13 species from a primary tropical rainforest in the Pasoh Forest Reserve in Peninsular Malaysia. Coarse root (2-269mm) respiration rates increased with decreasing D, resulting in significant relationships between root respiration and diameter across species. A model based on a radial gradient of respiration rates of coarse roots simulated the exponential decrease in respiration with diameter. The respiration rate of fine roots (diameter roots. For fine roots, the mean respiration rates for each species increased with decreasing D. The respiration rates of fine roots declined markedly with increasing RTD and increased with increasing SRL, which explained a significant portion of the variation in the respiration among the 14 trees from 13 species examined. Our results indicate that coarse root respiration in tree species follows a basic relationship with D across species and that most of the variation in fine root respiration among species is explained by D, RTD and SRL. We found that the relationship between root respiration and morphological traits provides a quantitative basis for separating fine roots from coarse roots and that the pattern holds across different species.

  10. Full Length Research Article

    African Journals Online (AJOL)

    Administrator

    Out of the 320 male sheep examined, 87(27.2%) were infected, while 9(19.1%) of the 47 females examined were infected (Table 2). Infection varied from one abattoir to another. Age related distribution of P. cervi is shown in Table 3. Out of 356 adult sheep (>2yrs) examined, 35. Full Length Research Article. 12 ...

  11. Delirium in fast-track colonic surgery

    DEFF Research Database (Denmark)

    Kurbegovic, Sorel; Andersen, Jens; Krenk, Lene

    2015-01-01

    BACKGROUND: Postoperative delirium (PD) is a common but serious problem after major surgery with a multifactorial pathogenesis including age, pain, opioid use, sleep disturbances and the surgical stress response. These factors have been minimised by the "fast-track methodology" previously...... demonstrated to enhance recovery and reduce morbidity. METHODS: Clinical symptoms of PD were routinely collected three times daily from preoperatively until discharge in a well-defined enhanced recovery program after colonic surgery in 247 consecutive patients. RESULTS: Total median length of hospital stay...

  12. Morphological responses of barley roots to soil compaction and modified supply of oxygen

    Directory of Open Access Journals (Sweden)

    A. SIMOJOKI

    2008-12-01

    Full Text Available The morphological changes in barley roots in response to soil compaction and hypoxia were quantified by image analysis. Based on the assumption that these soil stresses increase endogenous ethylene production in plants, changes indicating higher construction costs for roots, such as decreased specific root length, were expected. The hypothesis was found to be only partly correct. Most morphological changes of barley roots were probably a reaction to increased soil mechanical impedance. Examples of this are root width, which was increased by compaction apart from in wet soil, as well as increased width and specific volume, and a decreased specific length of roots in the deepest layer of well-aerated loose soil. However, in loose moist soil hypoxia prevented root growth, but did not change root morphology. The results suggest that severe hypoxia lessens the possibilities of roots to adapt to the hypoxic soil by reducing root growth and by preventing the formation of aerenchyma. ;

  13. Sonographic Features of Colonic Diverticulitis

    International Nuclear Information System (INIS)

    Jeong, Yu Mee; Ko, Young Tae; Lim, Joo Won; Lee, Dong Ho; Yoon, Yup

    1996-01-01

    To evaluate sonographic features, location of diverticulum, and usefulness of sonography as a primary diagnostic tool. Sonographic findings of 28 patients with acute diverticulitis were reviewed. The diagnosis was made by surgery (11 patients), barium enema (20 patients), colonoscopy (3 patients), or CT (2 patients). There were 13 men and 15 women with ages ranging from 23 to 71 years old (mean, 33 years old). Sonographic abnormalities were seen in the cecum in 12 patients, both the cecum and ascending colon in seven, the ascending colon in six, the descending colon in two, and the transverse colon in one. On sonography, segmental thickening of the colonic wall was the most common finding, seen in 16 patients. The second most common finidngs were pericolic omental thickening and pericolic localized fluid collection (15 patients). Pericolic inflammatory mass of varying echogenicity (10 patients), out pouching hyper echoic foci beyond the lumen of the colon into or beyond the thickened wall (5 patients), contracture of the colon (5 patients), slightly thickened terminal ileum (1 patient), and local enlargement of ileocecal lymph node (1 patient) were also seen. Most diverticulitis occurred in the right colon. The useful sonographic findings in acute diverticulitis were echogenic foci of the diverticulum in the thickened colonic wall, focally and eccentrically thickened colonic wall, and localized omental thickening or fluid collection. In cases of pericecal fluid collection, appendicitis or colonic diverticulitis can be considered as a differential diagnosis

  14. Sonographic Features of Colonic Diverticulitis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yu Mee; Ko, Young Tae; Lim, Joo Won; Lee, Dong Ho; Yoon, Yup [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1996-06-15

    To evaluate sonographic features, location of diverticulum, and usefulness of sonography as a primary diagnostic tool. Sonographic findings of 28 patients with acute diverticulitis were reviewed. The diagnosis was made by surgery (11 patients), barium enema (20 patients), colonoscopy (3 patients), or CT (2 patients). There were 13 men and 15 women with ages ranging from 23 to 71 years old (mean, 33 years old). Sonographic abnormalities were seen in the cecum in 12 patients, both the cecum and ascending colon in seven, the ascending colon in six, the descending colon in two, and the transverse colon in one. On sonography, segmental thickening of the colonic wall was the most common finding, seen in 16 patients. The second most common finidngs were pericolic omental thickening and pericolic localized fluid collection (15 patients). Pericolic inflammatory mass of varying echogenicity (10 patients), out pouching hyper echoic foci beyond the lumen of the colon into or beyond the thickened wall (5 patients), contracture of the colon (5 patients), slightly thickened terminal ileum (1 patient), and local enlargement of ileocecal lymph node (1 patient) were also seen. Most diverticulitis occurred in the right colon. The useful sonographic findings in acute diverticulitis were echogenic foci of the diverticulum in the thickened colonic wall, focally and eccentrically thickened colonic wall, and localized omental thickening or fluid collection. In cases of pericecal fluid collection, appendicitis or colonic diverticulitis can be considered as a differential diagnosis

  15. Automatic segmentation of the colon

    Science.gov (United States)

    Wyatt, Christopher L.; Ge, Yaorong; Vining, David J.

    1999-05-01

    Virtual colonoscopy is a minimally invasive technique that enables detection of colorectal polyps and cancer. Normally, a patient's bowel is prepared with colonic lavage and gas insufflation prior to computed tomography (CT) scanning. An important step for 3D analysis of the image volume is segmentation of the colon. The high-contrast gas/tissue interface that exists in the colon lumen makes segmentation of the majority of the colon relatively easy; however, two factors inhibit automatic segmentation of the entire colon. First, the colon is not the only gas-filled organ in the data volume: lungs, small bowel, and stomach also meet this criteria. User-defined seed points placed in the colon lumen have previously been required to spatially isolate only the colon. Second, portions of the colon lumen may be obstructed by peristalsis, large masses, and/or residual feces. These complicating factors require increased user interaction during the segmentation process to isolate additional colon segments. To automate the segmentation of the colon, we have developed a method to locate seed points and segment the gas-filled lumen with no user supervision. We have also developed an automated approach to improve lumen segmentation by digitally removing residual contrast-enhanced fluid resulting from a new bowel preparation that liquefies and opacifies any residual feces.

  16. Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42.

    Science.gov (United States)

    Al-Ali, Ameen; Deravel, Jovana; Krier, François; Béchet, Max; Ongena, Marc; Jacques, Philippe

    2017-10-23

    In this work, the behavior in tomato rhizosphere of Bacillus velezensis FZB42 was analyzed taking into account the surfactin production, the use of tomato roots exudate as substrates, and the biofilm formation. B. velezensis FZB42 and B. amyloliquefaciens S499 have a similar capability to colonize tomato rhizosphere. Little difference in this colonization was observed with surfactin non producing B. velezensis FZB42 mutant strains. B. velezensis is able to grow in the presence of root exudate and used preferentially sucrose, maltose, glutamic, and malic acids as carbon sources. A mutant enable to produce exopolysaccharide (EPS - ) was constructed to demonstrate the main importance of biofilm formation on rhizosphere colonization. This mutant had completely lost its ability to form biofilm whatever the substrate present in the culture medium and was unable to efficiently colonize tomato rhizosphere.

  17. Pore morphologies of root induced biopores from single pore to network scale investigated by XRCT

    Science.gov (United States)

    Peth, Stephan; Wittig, Marlen C.; Uteau Puschmann, Daniel; Pagenkemper, Sebastian; Haas, Christoph; Holthusen, Dörthe; Horn, Rainer

    2015-04-01

    Biopores are assumed to be an important factor for nutrient acquisition by providing biologically highly active soil-root interfaces to re-colonizing roots and controlling oxygen and water flows at the pedon scale and within the rhizosphere through the formation of branching channel networks which potentially enhance microbial turnover processes. Characteristic differences in pore morphologies are to be expected depending on the genesis of biopores which, for example, can be earthworm-induced or root-induced or subsequently modified by one of the two. Our understanding of biophysical interactions between plants and soil can be significantly improved by quantifying 3D biopore architectures across scales ranging from single biopores to pedon scale pore networks and linking pore morphologies to microscale measurements of transport processes (e.g. oxygen diffusion). While a few studies in the past have investigated biopore networks on a larger scale yet little is known on the micro-morphology of root-induces biopores and their associated rhizosphere. Also little data is available on lateral transport of oxygen through the rhizosphere which will strongly influence microbial turnover processes and consequently control the release and uptake of nutrients. This paper highlights results gathered within a research unit on nutrient acquisition from the subsoil. Here we focus on X-ray microtomography (XRCT) studies ranging from large soil columns (70 cm length and 20 cm diameter) to individual biopores and its surrounding rhizosphere. Samples were collected from sites with different preceding crops (fescue, chicory, alfalfa) and various cropping durations (1-3 years). We will present an approach for quantitative image analysis combined with micro-sensor measurements of oxygen diffusion and spatial gradients of O2 partial pressures to relate pore structure with transport functions. Implications of various biopore architectures for the accessibility of nutrient resources in

  18. Colonic potassium handling

    DEFF Research Database (Denmark)

    Sørensen, Mads Vaarby; Matos, Joana E.; Prætorius, Helle

    2010-01-01

    Homeostatic control of plasma K+ is a necessary physiological function. The daily dietary K+ intake of approximately 100 mmol is excreted predominantly by the distal tubules of the kidney. About 10% of the ingested K+ is excreted via the intestine. K+ handling in both organs is specifically...... regulated by hormones and adapts readily to changes in dietary K+ intake, aldosterone and multiple local paracrine agonists. In chronic renal insufficiency, colonic K+ secretion is greatly enhanced and becomes an important accessory K+ excretory pathway. During severe diarrheal diseases of different causes......, intestinal K+ losses caused by activated ion secretion may become life threatening. This topical review provides an update of the molecular mechanisms and the regulation of mammalian colonic K+ absorption and secretion. It is motivated by recent results, which have identified the K+ secretory ion channel...

  19. [The irritable colon].

    Science.gov (United States)

    Bansky, G

    1982-02-27

    Irritable bowel syndrome is the most common gastrointestinal disorder. The motility disturbance determines the clinical presentation and two types are distinguished, i.e. spastic colon and painless diarrhea. The motor dysfunction is probably related to abnormal myoelectric activity of the colon. In contrast to healthy persons, slow electrical waves with a frequency of 3 cycles per minute predominate. Although irritable bowel syndrome is a disease of unknown etiology, psychological factors and fibre-deficient diet may be involved. The work-up should take into account the fact that irritable bowel syndrome remains a diagnosis by exclusion. The effect of current therapy on the chronic-relapsing course of this disease is only slight.

  20. Root biomass production in young birch stands planted at four spacings on two different sites

    OpenAIRE

    Johansson, Tord

    2009-01-01

    The spatial distribution of trees above ground influences on the amount of root biomass and a low root biomass might decrease the total biomass production. The amount of biomass for fractions and distribution of downy and silver birch root systems was studied including the root distribution in cardinal points. The allometric relationship between stump diameter (DSH) and stump weight and between DSH and root weight and length for the two species was quantified. The 12-year-old trees had been g...

  1. On Justification of Colonization

    OpenAIRE

    Skov, Stig; Schrøder, Ulrikke; Mortensen, Marianne; Memic, Inda; Asmussen, Pernille

    2007-01-01

    Abstract The project concerns the justification of the Spanish colonization in America during the 16th and 17th century, examined through the Spanish philosopher Francisco de Vitoria’s (1485 – 1546) Political Writings and the British philosopher John Locke’s (1632- 1704) Two Treatises of Government, in a historical as well as a philosophical context. The main problem has been the dispossession of the Indians and how the philosophers defended the occupation of the lands of America. Vitoria’...

  2. Radiographic evaluation of apical root resorption following fixed orthodontic treatment

    Directory of Open Access Journals (Sweden)

    Sina Haghanifar

    2012-01-01

    Full Text Available Background and Aims: Apical root resorption is an adverse side effect of fixed orthodontic treatment which cannot be repaired. The aim of this study was to use panoramic radiographs to compare the root resorption before and after the orthodontic treatment with standard edgewise .018 appliance.Materials and Methods: The before and after treatment panoramic views of sixty-three patients needed fixed orthodontic treatment included 1520 teeth were categorized into 3 Grades (G0: without resorption, G1: mild resorption with blunt roots or ≤ 1/4 of root length, G2: moderate to severe resorption or > 1/4 to 1/2 of root length. Relationship between root resorption and sex and treatment duration was analyzed with Mann-whitney and Spearman's correlation coefficient, respectively.Results: The findings showed that 345 teeth were categorized as Grade 1. Grade 2 of root resorption was not found in this study. The highest amount of root resorption was recorded for the mandibular lateral incisor. In both gender, the root resorption of the mandible was more than that of the maxilla. The males showed significantly higher rate of resorption than the females (P0.05.Conclusion: The mandible and male patients showed higher amount of root resorption. In addition, root resorption was not related to the treatment duration and the side of the jaws.

  3. CT of colonic diverticulitis

    International Nuclear Information System (INIS)

    Doringer, E.; Ferner, R.

    1990-01-01

    33 patients with clinically suspected diverticulitis of the colon were studied prospectively by CT. The predictive value of symptoms, such as thickening of the colonic wall (86.6%), inflammatory changes of the pericolic fatty tissue (87.5%), the presence of diverticula (73.3%) and abscess formation (100%), were examined separately and their significance was evaluated. Our study was performed mainly on clinically less severe cases of diverticulitis. True positive results by CT were reached in 20/21 cases (sensitivity = 95.2%), true negative findings in 9/12 (specificity = 75.0%). The results of CT examinations were compared with those of contrast enemas (n=24) and/or endoscopy (n=6). The number of cases was too low to achieve statistic significance; the relatively high percentage of questionably positive results shows the difficulties inherent in these methods. Our study shows that CT is a good means to demonstrate even less severe forms of colonic diverticulitis with sufficient reliability. (orig.) [de

  4. Neoplasia de colon

    Directory of Open Access Journals (Sweden)

    Alina Torreblanca Xiques

    2014-12-01

    Full Text Available El cáncer de colon es un tumor que se desarrolla por degeneración maligna de las células del intestino grueso, desde la válvula ileocecal hasta la flexura recto sigmoidea. Se presenta el caso de un paciente masculino, de 75 años, con astenia anorexia y pérdida de peso; al examen físico: mucosas hipocoloreadas, abdomen blando no doloroso a la palpación superficial ni profunda. Se palpa aumento de volumen a nivel de la fosa ilíaca derecha, fija, de consistencia dura, ruidos hidroaereos normales. Se realizaron exámenes hematológicos, radiológicos y endoscópicos para el diagnóstico. Se tuvo la confirmación diagnóstica por anatomía patológica de adenocarcinoma de colon derecho, bien diferenciado. Se aplicó tratamiento primario, consistente en una amplia resección quirúrgica del cáncer del colon y el drenaje linfático regional, posteriormente se aplicó quimioterapia. El paciente evolucionó satisfactoriamente

  5. Nodal distances for rooted phylogenetic trees.

    Science.gov (United States)

    Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente, Gabriel

    2010-08-01

    Dissimilarity measures for (possibly weighted) phylogenetic trees based on the comparison of their vectors of path lengths between pairs of taxa, have been present in the systematics literature since the early seventies. For rooted phylogenetic trees, however, these vectors can only separate non-weighted binary trees, and therefore these dissimilarity measures are metrics only on this class of rooted phylogenetic trees. In this paper we overcome this problem, by splitting in a suitable way each path length between two taxa into two lengths. We prove that the resulting splitted path lengths matrices single out arbitrary rooted phylogenetic trees with nested taxa and arcs weighted in the set of positive real numbers. This allows the definition of metrics on this general class of rooted phylogenetic trees by comparing these matrices through metrics in spaces M(n)(R) of real-valued n x n matrices. We conclude this paper by establishing some basic facts about the metrics for non-weighted phylogenetic trees defined in this way using L(p) metrics on M(n)(R), with p [epsilon] R(>0).

  6. Comparing root architectural models

    Science.gov (United States)

    Schnepf, Andrea; Javaux, Mathieu; Vanderborght, Jan

    2017-04-01

    Plant roots play an important role in several soil processes (Gregory 2006). Root architecture development determines the sites in soil where roots provide input of carbon and energy and take up water and solutes. However, root architecture is difficult to determine experimentally when grown in opaque soil. Thus, root architectural models have been widely used and been further developed into functional-structural models that are able to simulate the fate of water and solutes in the soil-root system (Dunbabin et al. 2013). Still, a systematic comparison of the different root architectural models is missing. In this work, we focus on discrete root architecture models where roots are described by connected line segments. These models differ (a) in their model concepts, such as the description of distance between branches based on a prescribed distance (inter-nodal distance) or based on a prescribed time interval. Furthermore, these models differ (b) in the implementation of the same concept, such as the time step size, the spatial discretization along the root axes or the way stochasticity of parameters such as root growth direction, growth rate, branch spacing, branching angles are treated. Based on the example of two such different root models, the root growth module of R-SWMS and RootBox, we show the impact of these differences on simulated root architecture and aggregated information computed from this detailed simulation results, taking into account the stochastic nature of those models. References Dunbabin, V.M., Postma, J.A., Schnepf, A., Pagès, L., Javaux, M., Wu, L., Leitner, D., Chen, Y.L., Rengel, Z., Diggle, A.J. Modelling root-soil interactions using three-dimensional models of root growth, architecture and function (2013) Plant and Soil, 372 (1-2), pp. 93 - 124. Gregory (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? European Journal of Soil Science 57: 2-12.

  7. Gap length distributions by PEPR

    International Nuclear Information System (INIS)

    Warszawer, T.N.

    1980-01-01

    Conditions guaranteeing exponential gap length distributions are formulated and discussed. Exponential gap length distributions of bubble chamber tracks first obtained on a CRT device are presented. Distributions of resulting average gap lengths and their velocity dependence are discussed. (orig.)

  8. Length of excitable knots

    Science.gov (United States)

    Maucher, Fabian; Sutcliffe, Paul

    2017-07-01

    In this paper, we present extensive numerical simulations of an excitable medium to study the long-term dynamics of knotted vortex strings for all torus knots up to crossing number 11. We demonstrate that FitzHugh-Nagumo evolution preserves the knot topology for all the examples presented, thereby providing a field theory approach to the study of knots. Furthermore, the evolution yields a well-defined minimal length for each knot that is comparable to the ropelength of ideal knots. We highlight the role of the medium boundary in stabilizing the length of the knot and discuss the implications beyond torus knots. We also show that there is not a unique attractor within a given knot topology.

  9. Pion nucleus scattering lengths

    International Nuclear Information System (INIS)

    Huang, W.T.; Levinson, C.A.; Banerjee, M.K.

    1971-09-01

    Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs

  10. The root system as a hydraulic architecture: principles and applications

    OpenAIRE

    Couvreur, Valentin; Meunier, Félicien; Vanderborght, Jan; Javaux, Mathieu; HYDRUS Workshop 2013

    2013-01-01

    Many hydrological models including the process of root water uptake (RWU) do not consider the dimension of root system hydraulic architecture (HA) because explicitly solving water flow in such a complex system is too time consuming. However, they might lack process understanding when basing RWU and plant water stress predictions on functions of variables such as the root length density distribution. On the basis of analytical solutions of water flow equations in a HA, we developed and validat...

  11. [Colonization of Porphyromonas endodontalis in primary and secondary endodontic infections].

    Science.gov (United States)

    Hong, Li; Hai, Ji; Yan-Yan, He; Shenghui, Yang; Benxiang, Hou

    2015-02-01

    This study aims to assess and compare the prevalence of Porphyromonas endodontalis (P. endodontalis) in root canals associated with primary and secondary endodontic infections by using 16s rDNA PCR and real-time fluorescence quantitative polymerase chain reaction (RTFQ-PCR). A total of 120 adult patients with one radiographically documented periapical lesion were included. Sixty teeth presented with primary endodontic infections and 60 with secondary endodontic infections requiring retreatment. P. endodontalis was identified by using 16s rDNA PCR techniques. The positive DNA expression of P. endodontalis in two types of infected root canals were quantitatively compared by using SYBR GREEN I RTFQ-PCR. The prevalence of P. endodontalis in the root canals with primary endodontic infections was significantly higher than that in root canals with secondary endodontic infections (P = 0.001). However, RTFQ-PCR results showed no significant difference in DNA expression quantities between the primary and secondary endodontic infections root canals (P = 0.303). P. endodontalis is more highly associated with root canals having primary endodontic infections, although P. endodontalis colonize in both root canals with primary and secondary chronic apical periodontitis.

  12. Organic acids in the rhizosphere and root characteristics of soybean ...

    African Journals Online (AJOL)

    Root characteristics associated with phosphorus (P) uptake under limiting soil-P conditions were examined in two sets of greenhouse experiments. Average diameter and length of soybean, cowpea, maize and sorghum roots were assessed after 7 weeks in three low-P soils amended with P fertilizer at 0, 3, 6, 11 and 23 mg ...

  13. Effect of Tap Root Size, Percentage Rootlets Retention and Planting ...

    African Journals Online (AJOL)

    The two-factor interaction of length of tap root and percentage of retention of rootlets also had a significant influence on tree growth, except leaf dry weight. The best biomass production was observed for non-treated stump tap root and rootlets and planting at 9 cm soil depth ensuring a gain of about 486 % of tree dry weight ...

  14. Effects of Growth Hormones on Sprouting and Rooting of Jatropha ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    length, leaf number, and rooting parameters. Results showed that growth hormone application had no significant effect on survival and sprouting behaviour of J. curcas. The untreated cuttings (control) performed better than the hormone treated cuttings. However, in term of rooting behaviours, significant effect of treatment.

  15. Length-weight and length-length relationships of freshwater wild ...

    African Journals Online (AJOL)

    Length-weight and length-length relationships of freshwater wild catfish Mystus bleekeri from Nala Daik, Sialkot, Pakistan. ... Linear regression analysis was used, first to compute the degree of relationship between length and weight and then among total (TL), standard (SL) and fork lengths (FL). LWR exhibited a highly ...

  16. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  17. Vigorous root growth is a better indicator of early nutrient uptake than root hair traits in spring wheat grown under low fertility

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Thorup-Kristensen, Kristian; Jensen, Lars Stoumann

    2016-01-01

    vigor and root hair length (RHL) and density (RHD) among spring wheat genotypes and their relationship to nutrient concentrations and uptake during early growth. Six spring wheat genotypes were grown in a soil with low nutrient availability. The root and root hair traits as well as the concentration...... concentrations in the shoots, which is assumed to be important for later plant development....

  18. Attachment of associative diazotroph alcaligenes faecalis to rice roots

    International Nuclear Information System (INIS)

    Lin Min; Fang Xuanjun; You Chongbiao

    1993-01-01

    The process of attachment of diazotroph Alcaligenes faecalis to host plant rice was studied by using 15 N-labelled bacteria and Tn5-induced mutants. A three-step attachment mechanism of A. faecalis to rice root surface is proposed on the basis of experimental data. Adsorption is the first step. The number of adsorbed bacteria reaches maximal level after 3 h of inoculation, it consists 3.7% of the total number of bacteria inoculated. Adsorbed bacteria could be removed from rice root surface quantitatively by shaking in water. Therefore, the adsorption forces are weak. Anchoring is the second step. It begins only after 9h of inoculation and reaches a maximal level (21%) after 16 h. Anchored bacteria could not be removed by shaking. Colonization is the third step. After 20 h of inoculation. part of anchored bacteria colonizes on rice root surface tightly, and it can not be removed by vortex. At this time, the pectolytic activity of bacteria appears. Chemotaxis and exopolysaccharide (EPS) play important roles in the attachment of A. faecalis to rice root surface. EPS mutants (Exo - , Exo ++ ) showed less anchoring-capability in comparison with wild type of bacterium, but they remained the adsorption capability. While chemotaxis (Che - ) mutants are defective in adsorption, but not in anchoring. Che - , Exo - mutant lost both adsorption and anchoring capabilities. A. faecalis absorbed on all part of rice root, but the anchoring and colonization of bacteria were occurred mainly on root hairs, particularly on the joint area of main root and lateral root

  19. Outcomes of colon resection in patients with metastatic colon cancer.

    Science.gov (United States)

    Moghadamyeghaneh, Zhobin; Hanna, Mark H; Hwang, Grace; Mills, Steven; Pigazzi, Alessio; Stamos, Michael J; Carmichael, Joseph C

    2016-08-01

    Patients with advanced colorectal cancer have a high incidence of postoperative complications. We sought to identify outcomes of patients who underwent resection for colon cancer by cancer stage. The National Surgical Quality Improvement Program database was used to evaluate all patients who underwent colon resection with a diagnosis of colon cancer from 2012 to 2014. Multivariate logistic regression analysis was performed to investigate patient outcomes by cancer stage. A total of 7,786 colon cancer patients who underwent colon resection were identified. Of these, 10.8% had metastasis at the time of operation. Patients with metastatic disease had significantly increased risks of perioperative morbidity (adjusted odds ratio [AOR]: 1.44, P = .01) and mortality (AOR: 3.72, P = .01). Patients with metastatic disease were significantly younger (AOR: .99, P colon cancer have metastatic disease. Postoperative morbidity and mortality are significantly higher than in patients with localized disease. Published by Elsevier Inc.

  20. Public-domain software for root image analysis

    Directory of Open Access Journals (Sweden)

    Mirian Cristina Gomes Costa

    2014-10-01

    Full Text Available In the search for high efficiency in root studies, computational systems have been developed to analyze digital images. ImageJ and Safira are public-domain systems that may be used for image analysis of washed roots. However, differences in root properties measured using ImageJ and Safira are supposed. This study compared values of root length and surface area obtained with public-domain systems with values obtained by a reference method. Root samples were collected in a banana plantation in an area of a shallower Typic Carbonatic Haplic Cambisol (CXk, and an area of a deeper Typic Haplic Ta Eutrophic Cambisol (CXve, at six depths in five replications. Root images were digitized and the systems ImageJ and Safira used to determine root length and surface area. The line-intersect method modified by Tennant was used as reference; values of root length and surface area measured with the different systems were analyzed by Pearson's correlation coefficient and compared by the confidence interval and t-test. Both systems ImageJ and Safira had positive correlation coefficients with the reference method for root length and surface area data in CXk and CXve. The correlation coefficient ranged from 0.54 to 0.80, with lowest value observed for ImageJ in the measurement of surface area of roots sampled in CXve. The IC (95 % revealed that root length measurements with Safira did not differ from that with the reference method in CXk (-77.3 to 244.0 mm. Regarding surface area measurements, Safira did not differ from the reference method for samples collected in CXk (-530.6 to 565.8 mm² as well as in CXve (-4231 to 612.1 mm². However, measurements with ImageJ were different from those obtained by the reference method, underestimating length and surface area in samples collected in CXk and CXve. Both ImageJ and Safira allow an identification of increases or decreases in root length and surface area. However, Safira results for root length and surface area are

  1. Significance of tree roots for preferential infiltration in stagnic soils

    Science.gov (United States)

    Lange, B.; Lüescher, P.; Germann, P. F.

    2009-10-01

    It is generally recognized that roots have an effect on infiltration. In this study we analysed the relation between root length distributions from Norway spruce (Picea abies (L.) Karst), silver fir (Abies alba Miller), European beech (Fagus sylvatica L.) and preferential infiltration in stagnic soils in the northern Pre-Alps in Switzerland. We conducted irrigation experiments (1 m2) and recorded water content variations with time domain reflectometry (TDR). A rivulet approach was applied to characterise preferential infiltration. Roots were sampled down to a depth of 0.5 to 1 m at the same position where the TDR-probes had been inserted and digitally measured. The basic properties of preferential infiltration, film thickness of mobile water and the contact length between soil and mobile water in the horizontal plane are closely related to root densities. An increase in root density resulted in an increase in contact length, but a decrease in film thickness. We modelled water content waves based on root densities and identified a range of root densities that lead to a maximum volume flux density and infiltration capacity. These findings provide convincing evidence that tree roots in stagnic soils represent the pore system that carries preferential infiltration. Thus, the presence of roots should improve infiltration.

  2. Significance of tree roots for preferential infiltration in stagnic soils

    Directory of Open Access Journals (Sweden)

    B. Lange

    2009-10-01

    Full Text Available It is generally recognized that roots have an effect on infiltration. In this study we analysed the relation between root length distributions from Norway spruce (Picea abies (L. Karst, silver fir (Abies alba Miller, European beech (Fagus sylvatica L. and preferential infiltration in stagnic soils in the northern Pre-Alps in Switzerland. We conducted irrigation experiments (1 m2 and recorded water content variations with time domain reflectometry (TDR. A rivulet approach was applied to characterise preferential infiltration. Roots were sampled down to a depth of 0.5 to 1 m at the same position where the TDR-probes had been inserted and digitally measured. The basic properties of preferential infiltration, film thickness of mobile water and the contact length between soil and mobile water in the horizontal plane are closely related to root densities. An increase in root density resulted in an increase in contact length, but a decrease in film thickness. We modelled water content waves based on root densities and identified a range of root densities that lead to a maximum volume flux density and infiltration capacity. These findings provide convincing evidence that tree roots in stagnic soils represent the pore system that carries preferential infiltration. Thus, the presence of roots should improve infiltration.

  3. Giant colonic volvulus due to colonic pseudo-obstruction

    OpenAIRE

    Karaman, Kerem; Tanoglu, Alpaslan; Beyazit, Yavuz; Han, Ismet

    2015-01-01

    Acute colonic pseudo-obstruction (ACPO), also known as Ogilvie’s syndrome, is a clinical syndrome characterised by gross dilation of the caecum and right hemicolon, which sometimes extends to the sigmoid colon and rectum in the absence of an anatomic lesion in the intestinal lumen. It is characterised by impaired propulsion of contents of the gastrointestinal tract, which results in a clinical picture of intestinal obstruction. A careful examination of the markedly distended colon can exclude...

  4. Outcome of Colonic Surgery in Elderly Patients with Colon Cancer

    OpenAIRE

    Hermans, E.; van Schaik, P. M.; Prins, H. A.; Ernst, M. F.; Dautzenberg, P. J. L.; Bosscha, K.

    2010-01-01

    Introduction. Colonic cancer is one of the most commonly diagnosed malignancies and most often occurs in patients aged 65 years or older. Aim. To evaluate the outcome of colonic surgery in the elderly in our hospital and to compare five-year survival rates between the younger and elderly patients. Methods. 207 consecutive patients underwent surgery for colon cancer. Patients were separated in patients younger than 75 and older than 75 years. Results. Elderly patients presented significantly m...

  5. Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues.

    Science.gov (United States)

    Compant, Stéphane; Kaplan, Hervé; Sessitsch, Angela; Nowak, Jerzy; Ait Barka, Essaïd; Clément, Christophe

    2008-01-01

    The colonization pattern of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN was determined using grapevine fruiting cuttings with emphasis on putative inflorescence colonization under nonsterile conditions. Two-week-old rooted plants harbouring flower bud initials, grown in nonsterile soil, were inoculated with PsJN:gfp2x. Plant colonization was subsequently monitored at various times after inoculation with plate counts and epifluorescence and/or confocal microscopy. Strain PsJN was chronologically detected on the root surfaces, in the endorhiza, inside grape inflorescence stalks, not inside preflower buds and flowers but rather as an endophyte inside young berries. Data demonstrated low endophytic populations of strain PsJN in inflorescence organs, i.e. grape stalks and immature berries with inconsistency among plants for bacterial colonization of inflorescences. Nevertheless, endophytic colonization of inflorescences by strain PsJN was substantial for some plants. Microscopic analysis revealed PsJN as a thriving endophyte in inflorescence organs after the colonization process. Strain PsJN was visualized colonizing the root surface, entering the endorhiza and spreading to grape inflorescence stalks, pedicels and then to immature berries through xylem vessels. In parallel to these observations, a natural microbial communities was also detected on and inside plants, demonstrating the colonization of grapevine by strain PsJN in the presence of other microorganisms.

  6. Colonization of resistant and susceptible lettuce cultivars by a green fluorescent protein-tagged isolate of Verticillium dahliae.

    Science.gov (United States)

    Vallad, G E; Subbarao, K V

    2008-08-01

    Interactions between lettuce and a green fluorescent protein (GFP)-expressing, race 1 isolate of Verticillium dahliae, were studied to determine infection and colonization of lettuce cultivars resistant and susceptible to Verticillium wilt. The roots of lettuce seedlings were inoculated with a conidial suspension of the GFP-expressing isolate. Colonization was studied with the aid of laser scanning confocal and epi-fluorescence microscopes. Few differences in the initial infection and colonization of lateral roots were observed between resistant and susceptible cultivars. Hyphal colonies formed on root tips and within the root elongation zones by 5 days, leading to the colonization of cortical tissues and penetration of vascular elements regardless of the lettuce cultivar by 2 weeks. By 8 to 10 weeks after inoculation, vascular discoloration developed within the taproot and crown regions of susceptible cultivars well in advance of V. dahliae colonization. Actual foliar wilt coincided with the colonization of the taproot and crown areas and the eruption of mycelia into surrounding cortical tissues. Advance colonization of stems, pedicels, and inflorescence, including developing capitula and mature achenes was observed. Seedborne infection was limited to the maternal tissues of the achene, including the pappus, pericarp, integument, and endosperm; but the embryo was never compromised. Resistant lettuce cultivars remained free of disease symptoms. Furthermore, V. dahliae colonization never progressed beyond infected lateral roots of resistant cultivars. Results indicated that resistance in lettuce may lie with the plant's ability to shed infected lateral roots or to inhibit the systemic progress of the fungus through vascular tissues into the taproot.

  7. Tooth Eruption without Roots

    OpenAIRE

    Wang, X.-P.

    2013-01-01

    Root development and tooth eruption are very important topics in dentistry. However, they remain among the less-studied and -understood subjects. Root development accompanies rapid tooth eruption, but roots are required for the movement of teeth into the oral cavity. It has been shown that the dental follicle and bone remodeling are essential for tooth eruption. So far, only limited genes have been associated with root formation and tooth eruption. This may be due to the diffic...

  8. Short cervical length dilemma.

    Science.gov (United States)

    Suhag, Anju; Berghella, Vincenzo

    2015-06-01

    Preterm birth (PTB) is a leading cause of neonatal morbidity and mortality. With research efforts, the rate of PTB decreased to 11.4% in 2013. Transvaginal ultrasound (TVU) cervical length (CL) screening predicts PTB. In asymptomatic singletons without prior spontaneous PTB (sPTB), TVU CL screening should be done. If the cervix is 20 mm or less, vaginal progesterone is indicated. In asymptomatic singletons with prior sPTB, serial CL screening is indicated. In multiple gestations, routine cervical screening is not indicated. In symptomatic women with preterm labor, TVU CL screening and fetal fibronectin testing is recommended. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. discouraged by queue length

    Directory of Open Access Journals (Sweden)

    P. R. Parthasarathy

    2001-01-01

    Full Text Available The transient solution is obtained analytically using continued fractions for a state-dependent birth-death queue in which potential customers are discouraged by the queue length. This queueing system is then compared with the well-known infinite server queueing system which has the same steady state solution as the model under consideration, whereas their transient solutions are different. A natural measure of speed of convergence of the mean number in the system to its stationarity is also computed.

  10. Primary length standard adjustment

    Science.gov (United States)

    Ševčík, Robert; Guttenová, Jana

    2007-04-01

    This paper deals with problems and techniques connected with primary length standard adjusting, which includes disassembling of the device and by use of the secondary laser with collimated beam and diffraction laws successively reassembling of the laser. In the reassembling process the device was enhanced with substituting the thermal grease cooling of cold finger by copper socket cooler. This improved external cooling system enables more effective cooling of molecular iodine in the cell, which allows better pressure stability of iodine vapor and easier readjustment of the system.

  11. Development of fine and coarse roots of Thuja occidentalis 'Brabant' in non-irrigated and drip irrigated field plots

    NARCIS (Netherlands)

    Pronk, A.A.; Willigen, de P.; Heuvelink, E.; Challa, H.

    2002-01-01

    Aboveground dry mass, total root dry mass and root length density of the fine roots of Thuja occidentalis `Brabant' were determined under non- and drip-irrigated field conditions. Two-dimensional diffusion parameters for dynamic root growth were estimated based on dry mass production of the fine

  12. Influences of image resolution on herbaceous root morphological parameters

    Directory of Open Access Journals (Sweden)

    ZHANG Zeyou

    2014-06-01

    Full Text Available Root images of four herbaceous species (including Plantago virginica,Solidago canadensis,Conyza canadensis and Erigeron philadelphicus were obtained by using EPSON V7000 scanner with different resolutions.Root morphological parameters including root length,diameter,volume and area were determined by using a WinRhizo root analyzing software.The results show a distinct influence of image resolution on root morphological parameter.For different herbaceous species,the optimal resolutions of root images,which would produce an acceptable precision with relative short time,vary with different species.For example,a resolution of 200 dpi was recommended for the root images of Plantago virginica and S.Canadensis, while 400 dpi for Conyza canadensis and Erigeron philadelphicus.

  13. Colonic motility and enema spreading

    International Nuclear Information System (INIS)

    Hardy, J.G.; Wood, E.; Clark, A.G.; Reynolds, J.R.; Queen's Medical Centre, Nottingham

    1986-01-01

    Radiolabelled enema solution was administered to eight healthy subjects, both in fasted and fed states. Enema spreading was monitored over a 4-h period using gamma scintigraphy and colonic motility was recorded simultaneously using a pressure sensitive radiotelemetry capsule. The rate and extent of enema dispersion were unaffected by eating. Spreading could be correlated with colonic motility and was inhibited by aboral propulsion of the colonic contents. (orig.)

  14. Vasohibin-1 suppresses colon cancer

    OpenAIRE

    Liu, Shuai; Han, Bing; Zhang, Qunyuan; Dou, Jie; Wang, Fang; Lin, Wenli; Sun, Yuping; Peng, Guangyong

    2015-01-01

    Vasohibin-1 (VASH1) is an endogenous angiogenesis inhibitor. However, the clinical relevance of VASH1 in colon cancer and its regulations on cancer angiogenesis and cancer cell biological characteristics are still unknown. Here we showed that stromal VASH1 levels were negatively correlated with tumor size, advanced clinical stage and distant metastases in colon cancer patients. Overexpression of VASH1 in colon cancer cells induced apoptosis and senescence, inhibiting cancer cell growth and co...

  15. Desirable plant root traits for protecting unstable slopes against landslides

    Science.gov (United States)

    Stokes, A.; Atger, C.; Bengough, G.; Fourcaud, T.; Sidle, R. C.

    2009-04-01

    A trait is defined as a distinct, quantitative property of organisms, usually measured at the individual level and used comparatively across species. Plant quantitative traits are extremely important for understanding the local ecology of any site. Plant height, architecture, root depth, wood density, leaf size and leaf nitrogen concentration control ecosystem processes and define habitat for other taxa. An engineer conjecturing as to how plant traits may directly influence physical processes occurring on sloping land just needs to consider how e.g. canopy architecture and litter properties influence the partitioning of rainfall among interception loss, infiltration and runoff. Plant traits not only influence abiotic processes occurring at a site, but also the habitat for animals and invertebrates. Depending on the goal of the landslide engineer, the immediate and long-term effects of plant traits in an environment must be considered if a site is to remain viable and ecologically successful. When vegetation is considered in models of slope stability, usually the only root parameters taken into consideration are tensile strength and root area ratio. Root system spatial structure is not considered, although the length, orientation and diameter of roots are recognized as being of importance. Thick roots act like soil nails on slopes, reinforcing soil in the same way that concrete is reinforced with steel rods. The spatial position of these thick roots also has an indirect effect on soil fixation in that the location of thin and fine roots will depend on the arrangement of thick roots. Thin and fine roots act in tension during failure on slopes and if they cross the slip surface, are largely responsible for reinforcing soil on slopes. Therefore, the most important trait to consider initially is rooting depth. To stabilize a slope against a shallow landslide, roots must cross the shear surface. The number and thickness of roots in this zone will therefore largely

  16. Root production method system

    Science.gov (United States)

    Wayne Lovelace

    2002-01-01

    The RPM system (Root Production Method) is a multistep production system of container tree production that places primary emphasis on the root system because the root system ultimately determines the tree's survival and performance in its outplanted environment. This particular container production system has been developed to facilitate volume production, in a...

  17. Armillaria root rot

    Science.gov (United States)

    First described on grapevines in California in the 1880s, Armillaria root rot occurs in all major grape-growing regions of the state. The causal fungus, Armillaria mellea, infects woody grapevine roots and the base of the trunk (the root collar), resulting in a slow decline and eventual death of the...

  18. Root canal irrigation

    NARCIS (Netherlands)

    van der Sluis, L.; Boutsioukis, C.; Jiang, L.M.; Macedo, R.; Verhaagen, B.; Versluis, M.; Chávez de Paz, L.E.; Sedgley, C.M.; Kishen, A.

    2015-01-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm), and their products from the root canal wall, their removal out of the root

  19. The Root Canal Biofilm

    NARCIS (Netherlands)

    van der Sluis, L.W.M.; Boutsioukis, C.; Jiang, L.M.; Macedo, R.; Verhaagen, B.; Versluis, Michel; Chávez de Paz, E.; Sedgley, C.M.; Kishen, A.

    2015-01-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm), and their products from the root canal wall, their removal out of the root

  20. Information-theoretic lengths of Jacobi polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, A; Dehesa, J S [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, Granada (Spain); Sanchez-Moreno, P, E-mail: agmartinez@ugr.e, E-mail: pablos@ugr.e, E-mail: dehesa@ugr.e [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, Granada (Spain)

    2010-07-30

    The information-theoretic lengths of the Jacobi polynomials P{sup ({alpha}, {beta})}{sub n}(x), which are information-theoretic measures (Renyi, Shannon and Fisher) of their associated Rakhmanov probability density, are investigated. They quantify the spreading of the polynomials along the orthogonality interval [- 1, 1] in a complementary but different way as the root-mean-square or standard deviation because, contrary to this measure, they do not refer to any specific point of the interval. The explicit expressions of the Fisher length are given. The Renyi lengths are found by the use of the combinatorial multivariable Bell polynomials in terms of the polynomial degree n and the parameters ({alpha}, {beta}). The Shannon length, which cannot be exactly calculated because of its logarithmic functional form, is bounded from below by using sharp upper bounds to general densities on [- 1, +1] given in terms of various expectation values; moreover, its asymptotics is also pointed out. Finally, several computational issues relative to these three quantities are carefully analyzed.

  1. Medicago truncatula Mtha1-2 mutants loose metabolic responses to mycorrhizal colonization.

    Science.gov (United States)

    Hubberten, Hans-Michael; Sieh, Daniela; Zöller, Daniela; Hoefgen, Rainer; Krajinski, Franziska

    2015-01-01

    Bidirectional nutrient transfer is one of the key features of the arbuscular mycorrhizal symbiosis. Recently we were able to identify a Medicago truncatula mutant (mtha1-2) that is defective in the uptake of phosphate from the periarbuscular space due to a lack of the energy providing proton gradient provided by the symbiosis specific proton ATPase MtHA1 In order to further characterize the impact of fungal colonization on the plant metabolic status, without the beneficial aspect of improved mineral nutrition, we performed leaf ion analyses in mutant and wildtype plants with and without fungal colonization. Although frequency of fungal colonization was unaltered, the mutant did not show a positive growth response to mycorrhizal colonization. This indicates that nutrient transfer into the plant cell fails in the truncated arbuscules due to lacking expression of a functional MtHA1 protein. The leaves of wildtype plants showed clear metabolic responses to root mycorrhizal colonization, whereas no changes of leaf metabolite levels of mycorrhizal mtha1-2 plants were detected, even though they were colonized. These results show that MtHa1 is indispensable for a functional mycorrhizal symbiosis and, moreover, suggest that fungal root colonization per se does not depend on nutrient transfer to the plant host.

  2. Caesium inhibits the colonization of Medicago truncatula by arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Wiesel, Lea; Dubchak, Sergiy; Turnau, Katarzyna; Broadley, Martin R; White, Philip J

    2015-03-01

    Contamination of soils with radioisotopes of caesium (Cs) is of concern because of their emissions of harmful β and γ radiation. Radiocaesium enters the food chain through vegetation and the intake of Cs can affect the health of organisms. Arbuscular mycorrhizal (AM) fungi form mutualistic symbioses with plants through colonization of the roots and previous studies on the influence of AM on Cs concentrations in plants have given inconsistent results. These studies did not investigate the influence of Cs on AM fungi and it is therefore not known if Cs has a direct effect on AM colonization. Here, we investigated whether Cs influences AM colonization and if this effect impacts on the influence of Rhizophagus intraradices on Cs accumulation by Medicago truncatula. M. truncatula was grown with or without R. intraradices in pots containing different concentrations of Cs. Here, we present the first evidence that colonization of plants by AM fungi can be negatively affected by increasing Cs concentrations in the soil. Mycorrhizal colonization had little effect on root or shoot Cs concentrations. In conclusion, the colonization by AM fungi is impaired by high Cs concentrations and this direct effect of soil Cs on AM colonization might explain the inconsistent results reported in literature that have shown increased, decreased or unaffected Cs concentrations in AM plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Diverticulosis in total colonic aganglionosis

    International Nuclear Information System (INIS)

    Ivancev, K.; Fork, T.; Haegerstrand, I.; Ivarsson, S.; Kullendorff, C.M.; Lund Univ.; Lund Univ.; Malmoe Allmaenna Sjukhus; Malmoe Allmaenna Sjukhus

    1985-01-01

    Two infants with total colonic aganglionosis (TCA) extending into the distal part of the ileum are described. Considerable diagnostic delay occurred with the correct diagnosis established first at 3 and 8 months, respectively. Radiologic findings compatible with TCA such as prolonged barium retention, reflux into ileum following barium enema, and foreshortening of colon were not clearly evident initially. Both patients demonstrated multiple acquired colon diverticula which increased both in number and size during the period of observation. These diverticula are probably a late manifestation of the spastic state of the anganglionic colon. Thus demonstration of diverticula supplies a strong evidence of TCA in infants with intestinal obstruction. (orig.)

  4. Diverticulosis in total colonic aganglionosis

    Energy Technology Data Exchange (ETDEWEB)

    Ivancev, K.; Fork, T.; Haegerstrand, I.; Ivarsson, S.; Kullendorff, C.M.

    Two infants with total colonic aganglionosis (TCA) extending into the distal part of the ileum are described. Considerable diagnostic delay occurred with the correct diagnosis established first at 3 and 8 months, respectively. Radiologic findings compatible with TCA such as prolonged barium retention, reflux into ileum following barium enema, and foreshortening of colon were not clearly evident initially. Both patients demonstrated multiple acquired colon diverticula which increased both in number and size during the period of observation. These diverticula are probably a late manifestation of the spastic state of the anganglionic colon. Thus demonstration of diverticula supplies a strong evidence of TCA in infants with intestinal obstruction. (orig.).

  5. Diffuse hemangioma of the colon

    International Nuclear Information System (INIS)

    Reis, J.; Caseiro-Alves, F.; Cruz, L.; Moreira, A.; Rebelo, O.

    1995-01-01

    We report two cases of diffuse hemangioma of the colon in adolescent patients. One patient had multiple phleboliths at the lower pelvis identified with plain radiographs of the abdomen. Several aspects were seen on double-contrast enema: luminal narrowing, colonic-wall thickening and submucosal colonic masses that changed in appearance with the degree of colonic distension. Angiography was inconclusive in one case. Use of CT and MR provided relevant information regarding the true extent of the disease, but MR was superior in demonstrating unequivocally the vascular nature of the lesions. (orig.)

  6. Root isoflavonoids and hairy root transformation influence key bacterial taxa in the soybean rhizosphere.

    Science.gov (United States)

    White, Laura J; Ge, Xijin; Brözel, Volker S; Subramanian, Senthil

    2017-04-01

    Rhizodeposits play a key role in shaping rhizosphere microbial communities. In soybean, isoflavonoids are a key rhizodeposit component that aid in plant defense and enable symbiotic associations with rhizobia. However, it is uncertain if and how they influence rhizosphere microbial communities. Isoflavonoid biosynthesis was silenced via RNA interference of isoflavone synthase in soybean hairy root composite plants. Rhizosphere soil fractions tightly associated with roots were isolated, and PCR amplicons from 16S rRNA gene variable regions V1-V3 and V3-V5 from these fractions were sequenced using 454. The resulting data was resolved using MOTHUR and vegan to identify bacterial taxa and evaluate changes in rhizosphere bacterial communities. The soybean rhizosphere was enriched in Proteobacteria and Bacteroidetes, and had relatively lower levels of Actinobacteria and Acidobacteria compared with bulk soil. Isoflavonoids had a small effect on bacterial community structure, and in particular on the abundance of Xanthomonads and Comamonads. The effect of hairy root transformation on rhizosphere bacterial communities was largely similar to untransformed plant roots with approximately 74% of the bacterial families displaying similar colonization underscoring the suitability of this technique to evaluate the influence of plant roots on rhizosphere bacterial communities. However, hairy root transformation had notable influence on Sphingomonads and Acidobacteria. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. MALToma of the Transverse colon, Ascending colon and Caecum: A ...

    African Journals Online (AJOL)

    TNHJOURNALPH

    RESULT. We herein report a case of a 40-year-old male with mucosa - associated lymphoid tissue. [MALT] lymphoma of the transverse colon, ascending colon and caecum. He presented with severe abdominal pains and a centrally located huge abdominal mass for which a surgical resection was done. Histologically.

  8. Chitinase activities, scab resistance, mycorrhization rates and biomass of own-rooted and grafted transgenic apple

    Directory of Open Access Journals (Sweden)

    Tina Schäfer

    2012-01-01

    Full Text Available This study investigated the impact of constitutively expressed Trichoderma atroviride genes encoding exochitinase nag70 or endochitinase ech42 in transgenic lines of the apple cultivar Pinova on the symbiosis with arbuscular mycorrhizal fungi (AMF. We compared the exo- and endochitinase activities of leaves and roots from non-transgenic Pinova and the transgenic lines T386 and T389. Local and systemic effects were examined using own-rooted trees and trees grafted onto rootstock M9. Scab susceptibility was also assessed in own-rooted and grafted trees. AMF root colonization was assessed microscopically in the roots of apple trees cultivated in pots with artificial substrate and inoculated with the AMF Glomus intraradices and Glomus mosseae. Own-rooted transgenic lines had significantly higher chitinase activities in their leaves and roots compared to non-transgenic Pinova. Both of the own-rooted transgenic lines showed significantly fewer symptoms of scab infection as well as significantly lower root colonization by AMF. Biomass production was significantly reduced in both own-rooted transgenic lines. Rootstock M9 influenced chitinase activities in the leaves of grafted scions. When grafted onto M9, the leaf chitinase activities of non-transgenic Pinova (M9/Pinova and transgenic lines (M9/T386 and M9/T389 were not as different as when grown on their own roots. M9/T386 and M9/T389 were only temporarily less infected by scab than M9/Pinova. M9/T386 and M9/T389 did not differ significantly from M9/Pinova in their root chitinase activities, AMF root colonization and biomass.

  9. Chitinase activities, scab resistance, mycorrhization rates and biomass of own-rooted and grafted transgenic apple.

    Science.gov (United States)

    Schäfer, Tina; Hanke, Magda-Viola; Flachowsky, Henryk; König, Stephan; Peil, Andreas; Kaldorf, Michael; Polle, Andrea; Buscot, François

    2012-04-01

    This study investigated the impact of constitutively expressed Trichoderma atroviride genes encoding exochitinase nag70 or endochitinase ech42 in transgenic lines of the apple cultivar Pinova on the symbiosis with arbuscular mycorrhizal fungi (AMF). We compared the exo- and endochitinase activities of leaves and roots from non-transgenic Pinova and the transgenic lines T386 and T389. Local and systemic effects were examined using own-rooted trees and trees grafted onto rootstock M9. Scab susceptibility was also assessed in own-rooted and grafted trees. AMF root colonization was assessed microscopically in the roots of apple trees cultivated in pots with artificial substrate and inoculated with the AMF Glomus intraradices and Glomus mosseae. Own-rooted transgenic lines had significantly higher chitinase activities in their leaves and roots compared to non-transgenic Pinova. Both of the own-rooted transgenic lines showed significantly fewer symptoms of scab infection as well as significantly lower root colonization by AMF. Biomass production was significantly reduced in both own-rooted transgenic lines. Rootstock M9 influenced chitinase activities in the leaves of grafted scions. When grafted onto M9, the leaf chitinase activities of non-transgenic Pinova (M9/Pinova) and transgenic lines (M9/T386 and M9/T389) were not as different as when grown on their own roots. M9/T386 and M9/T389 were only temporarily less infected by scab than M9/Pinova. M9/T386 and M9/T389 did not differ significantly from M9/Pinova in their root chitinase activities, AMF root colonization and biomass.

  10. The purB gene controls rhizosphere colonization by Pantoea agglomerans.

    Science.gov (United States)

    Chauhan, P S; Nautiyal, C S

    2010-02-01

    To isolate the rhizosphere competence-defective transposon Tn5 mutant of Pantoea agglomerans NBRISRM (SRM) and to identify the gene causing defect in its root colonization ability. From over 5000 clones containing Tn5, one mutant P. agglomerans NBRISRMT (SRMT) showing 6 log units less colonization when compared with SRM, after 30 days in sand-nonsterilized soil assay system was selected for further work to determine the effects of the mutation on rhizosphere competence. Southern hybridization analysis of restricted genomic DNA of SRMT demonstrated that the mutant had a single Tn5 insert. SRM increased in titre to about 2 x 10(8) CFU g(-1) root, compared with the indigenous bacterial population of heterotrophs of about 5 x 10(7) CFU g(-1) root. In contrast, 30 days later, the titre value of SRMT was almost undetectable at 1 x 10(2) CFU g(-1) root, demonstrating its inability to survive and colonize the rhizosphere. Sequencing of the flanking region of the Tn5 mutant revealed that Tn5 disrupted the purB gene. A defect in the colonization phenotype of the SRMT was attributed to the disruption in adenylosuccinate lyase (EC 4.3.2.2) which is encoded by the pur B gene and is required for rhizosphere colonization in P. agglomerans. Significantly less exopolysaccharide and biofilm was formed by SRMT when compared to SRM, because of the disruption of the purB gene. This work provides the first evidence for a functional role of purB gene in rhizosphere competence and root colonization by any rhizobacteria.

  11. Rooting of stem cuttings of ixora

    Directory of Open Access Journals (Sweden)

    Aline De Souza Silva

    2015-08-01

    Full Text Available The ixora is ornamental plant widely used in landscaping. In order to maximize the propagation of cuts, we evaluated the concentrations of auxin (indolbutiric acid and the presence of leaves on the rooting in cuts of Ixora coccinea L. The experiment was conducted in randomized block design, in factorial design 3x4, with three types of cuts (without leaf, with two or four leaves, four concentrations of indolbutiric acid (0, 1000, 2000 and 4000 mg L-1, with four replications and 10 cuts in each experimental unit. After 53 days of implantation the experiment, evaluated the survival(%, rooting(%, sprouting(%, formation of callus(%, number, length and biomass of roots formed. The interaction of the type of cuts with concentrations of auxin was not significant for any of the variables analyzed. The survival of cuttings was not influenced by the treatments. Cuts with two or four leaves presented rooting and length of roots above the cuttings without leaves. The application of auxin does not substitute the presence of leaf in cuts of ixora in vegetative propagation. The vegetative propagation by cut of ixora can be made without application of auxin, and the leaves must be maintained in the cuttings.

  12. Bud removal affects shoot, root, and callus development of hardwood Populus cuttings

    Science.gov (United States)

    A.H. Wiese; J.A. Zalesny; D.M. Donner; Ronald S., Jr. Zalesny

    2006-01-01

    The inadvertent removal and/or damage of buds during processing and planting of hardwood poplar (Populus spp.) cuttings are a concern because of their potential impact on shoot and root development during establishment. The objective of the current study was to test for differences in shoot dry mass, root dry mass, number of roots, length of the...

  13. Analysis of the age of Panax ginseng based on telomere length and telomerase activity.

    Science.gov (United States)

    Liang, Jiabei; Jiang, Chao; Peng, Huasheng; Shi, Qinghua; Guo, Xiang; Yuan, Yuan; Huang, Luqi

    2015-01-23

    Ginseng, which is the root of Panax ginseng (Araliaceae), has been used in Oriental medicine as a stimulant and dietary supplement for more than 7,000 years. Older ginseng plants are substantially more medically potent, but ginseng age can be simulated using unscrupulous cultivation practices. Telomeres progressively shorten with each cell division until they reach a critical length, at which point cells enter replicative senescence. However, in some cells, telomerase maintains telomere length. In this study, to determine whether telomere length reflects ginseng age and which tissue is best for such an analysis, we examined telomerase activity in the main roots, leaves, stems, secondary roots and seeds of ginseng plants of known age. Telomere length in the main root (approximately 1 cm below the rhizome) was found to be the best indicator of age. Telomeric terminal restriction fragment (TRF) lengths, which are indicators of telomere length, were determined for the main roots of plants of different ages through Southern hybridization analysis. Telomere length was shown to be positively correlated with plant age, and a simple mathematical model was formulated to describe the relationship between telomere length and age for P. ginseng.

  14. Pathogenesis of giant colonic diverticula

    International Nuclear Information System (INIS)

    Muhletaler, C.A.; Berger, J.L.; Robinette, C.L. Jr.

    1981-01-01

    The clinical, radiographic, and pathologic findings of 3 patients with giant colonic diverticula are presented. Although several theories have been proposed for the formation of these diverticula, they have not been fully documented. One of our cases illustrates the evolution of this disorder following typical colonic diverticulitis. The pathogenesis and differential diagnosis of this unusual entity are discussed. (orig.)

  15. Prehistoric human colonization of India

    Indian Academy of Sciences (India)

    Unknown

    2. Earliest human colonization of south Asia. The early human colonization of south Asia is represented largely by an abundance of stone tool assemblages. The oldest known tools ..... component among finished tools is conspicuous in the hinterland riverine ...... sativum), green gram (Vigna radiata), gram/chicken pea.

  16. Colonic Diverticulitis in the Elderly

    Directory of Open Access Journals (Sweden)

    Chien-Kuo Liu

    2009-03-01

    Full Text Available Diverticular disease of the colon is a disease that mainly affects the elderly and presents in 50–70% of those aged 80 years or older. The most common complication is colonic diverticulitis. Eighty percent of patients who present with colonic diverticulitis are aged 50 years and older. Diagnosis and treatment of colonic diverticulitis in the elderly is more difficult and complicated owing to more comorbid conditions. Computed tomography is recommended for diagnosis when colonic diverticulitis is suspected. Most patients admitted with acute colonic diverticulitis respond to conservative treatment, but 15–30% of patients require surgery. Because surgery for acute colonic diverticulitis carries significant rates of morbidity and mortality, conservative treatment is recommended in the elderly. Conservative treatment of colonic diverticulitis with antibiotics, bowel rest, possibly including parenteral alimentation, is usually applied for 1–2 weeks. In the absence of a response to conservative treatment, frequent recurrence or complications (abscesses, fistulas, bowel obstructions, and free perforations, surgery is indicated.

  17. Colonic duplication in an adult

    International Nuclear Information System (INIS)

    Baro, P.; Dario Casas, J.; Sanchez, D.

    1988-01-01

    A case of colonic duplication that was diagnosed radiologically in an adult is reported. A long duplicated segment below the normal transverse colon, with a wide anastomosis at the hepatic flexure level, was observed on barium enema. The rarity of this anomaly unassociated with other malformations is emphasized. (orig.)

  18. Colon Cleansing: Health or Hype?

    Science.gov (United States)

    ... as your microflora. “Your microflora plays a crucial role in protecting your body from infections,” Bresalier says. “It may even protect against colon cancer.” “The colon is quite remarkable because it can care for itself and keep ...

  19. Colonic perforation following endoscopic retrograde ...

    African Journals Online (AJOL)

    She developed severe upper abdominal pain after the ... non-surgical management of pancreatitis and associated complications, colonic perforation should be considered in patients who deteriorate ... To our knowledge this is the first case of a secure pre-operative diagnosis of colonic perforation due to to pancreatitis.

  20. Gas explosion during colonic surgery.

    Science.gov (United States)

    De Wilt, J H; Borel Rinkes, I H; Brouwer, K J

    1996-12-01

    Explosions of the colon as a result of the use of diathermy in the presence of gas mixtures of oxygen, hydrogen and/or methane have been previously described in the literature. This danger is present during colonoscopic polypectomy as well as during colonic surgery. The following case is presented to alert to the potential hazards of bowel gas during electrosurgery.

  1. Clonal Propagation of Khaya senegalensis: The Effects of Stem Length, Leaf Area, Auxins, Smoke Solution, and Stockplant Age

    Directory of Open Access Journals (Sweden)

    Catherine Ky-Dembele

    2011-01-01

    Full Text Available Khaya senegalensis is a multipurpose African timber species. The development of clonal propagation could improve plantation establishment, which is currently impeded by mahogany shoot borer. To examine its potential for clonal propagation, the effects of cutting length, leaf area, stockplant maturation, auxin, and smoke solution treatments were investigated. Leafy cuttings rooted well (up to 80% compared to leafless cuttings (0%. Cuttings taken from seedlings rooted well (at least 95%, but cuttings obtained from older trees rooted poorly (5% maximum. The rooting ability of cuttings collected from older trees was improved (16% maximum by pollarding. Auxin application enhanced root length and the number of roots while smoke solution did not improve cuttings' rooting ability. These results indicate that juvenile K. senegalensis is amenable to clonal propagation, but further work is required to improve the rooting of cuttings from mature trees.

  2. Influence of Root Diameter and Soil Depth on the Xylem Anatomy of Fine- to Medium-Sized Roots of Mature Beech Trees in the Top- and Subsoil.

    Science.gov (United States)

    Kirfel, Kristina; Leuschner, Christoph; Hertel, Dietrich; Schuldt, Bernhard

    2017-01-01

    Despite their importance for water uptake and transport, the xylem anatomical and hydraulic properties of tree roots have only rarely been studied in the field. We measured mean vessel diameter ( D ), vessel density (VD), relative vessel lumen area (lumen area per xylem area) and derived potential hydraulic conductivity ( K p ) in the xylem of 197 fine- to medium-diameter roots (1-10 mm) in the topsoil and subsoil (0-200 cm) of a mature European beech forest on sandy soil for examining the influence of root diameter and soil depth on xylem anatomical and derived hydraulic traits. All anatomical and functional traits showed strong dependence on root diameter and thus root age but no significant relation to soil depth. Averaged over topsoil and deep soil and variable flow path lengths in the roots, D increased linearly with root diameter from ∼50 μm in the smallest diameter class (1-2 mm) to ∼70 μm in 6-7 mm roots (corresponding to a mean root age of ∼12 years), but remained invariant in roots >7 mm. D never exceeded ∼82 μm in the 1-10 mm roots, probably in order to control the risk of frost- or drought-induced cavitation. This pattern was overlain by a high variability in xylem anatomy among similar-sized roots with K p showing a higher variance component within than between root diameter classes. With 8% of the roots exceeding average K p in their diameter class by 50-700%, we obtained evidence of the existence of 'high-conductivity roots' indicating functional differentiation among similar-sized roots. We conclude that the hydraulic properties of small to medium diameter roots of beech are mainly determined by root age, rendering root diameter a suitable predictor of hydraulic functioning, while soil depth - without referring to path length - had a negligible effect.

  3. Explant cultures of human colon

    DEFF Research Database (Denmark)

    Autrup, Herman; Barrett, L.A.; Jackson, F.E.

    1978-01-01

    Human colonic epithelium has been cultured as explants in a chemically defined medium for periods of 1 to 20 days. The viability of the explants was shown by the preservation of the ultrastructural features of the colonic epithelial cells and by active incorporation of radioactive precursors...... into cellular DNA and protein. A progressive decrease in the number of goblet cells, decrease in the depth of the crypts, and a change from a columnar to a cuboidal epithelium were observed. After 20 days in culture the colonic mucosa consisted of a single layer of cuboidal epithelial cells and a few glands....... The ability to maintain colonic mucosa in culture was subject to both intra- and interindividual variation. Cultured human colonic mucosa also activated a chemical procarcinogen, benzo[a]pyrene, into metabolites which bound to cellular DNA. A 100-fold interindividual variation in this binding was observed....

  4. Community composition of root-associated fungi in a Quercus-dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi

    Science.gov (United States)

    Toju, Hirokazu; Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S; Gilbert, Gregory S; Kadowaki, Kohmei

    2013-01-01

    In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak-dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal-root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root-associated fungal community was dominated by root-endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root-associated fungal communities of oak-dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities. PMID:23762515

  5. Do root traits affect a plant's ability to influence soil erosion?

    Science.gov (United States)

    Burak, Emma; Quinton, John; Dodd, Ian

    2017-04-01

    With the ever increasing global population the agricultural sector is put under increasing pressure. This pressure is imposed on the soil and results in wide spread degradation that ultimately decreases productivity. Soil erosion is one of the main features of this degradation. Much focus has been put on the ability of plant canopies to mitigate soil erosion but little research has assessed the impact of below ground biomass. It is understood that woody roots reinforce slopes and lateral roots are believed to support the soil surface but the impact of root hairs is completely unknown. This study used two root hairless mutants one of barley (brb) and one of maize (rth3) along with their wild types (WT) to assess the capacity of different root traits to bind soil particles to the root system, creating a physical coating called a rhizosheath. The two genotypes were grown in a clay loam and periodically harvested during vegetative development. Rhizosheath weight was used to measure the ability of the root system to effectively bind soil particles, while root length was measured to standardise the results between genotypes. Overall, rhizosheath weight increased linearly with root length. When compared to WT plants of the same age, the root length of brb was, on average, 37% greater, suggesting that they compensated for the absence of root hairs by proliferating lateral roots. However, WT plants were far superior at binding soil particles as the rhizosheath weights were 5 fold greater, when expressed per unit root length. Thus root hairs are more important in binding soil particles than lateral roots. Whether these genotypic differences in root traits affect soil erosion will be assessed using mesocosm and field trials. Keywords: Soil erosion, Roots, Barley, Rhizosheath

  6. Right colonic diverticulitis.

    Science.gov (United States)

    Lee, In Kyu

    2010-08-01

    Although right colonic diverticultis (RCD) has been reported to be a rare disease in Western countries, RCD is a common diagnosis, with an incidence per 2.9-17 case of appendicitis, in Korea. Many Western studies have reported that it is difficult to differentiate the presenting symptoms of RCD from those of appendicitis before surgery because the signs and symptoms are similar. However, performing a computed tomography scan after the application of the diagnostic criteria for RCD has increased the preoperative RCD diagnostic rate. Treatment strategies have been difficult to define for this condition due to its low preoperative diagnosis rate. However, recent reports have shown that conservative medical treatment of uncomplicated RCD can be recommended and that such treatment is effective due to the benign and self-limited natural history of RCD. Therefore, in this review, we discuss the controversies surrounding RCD management.