WorldWideScience

Sample records for lena river discharge

  1. Integrated hydrological and water quality model for river management: A case study on Lena River

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, André, E-mail: andrerd@gmail.com; Botelho, Cidália; Boaventura, Rui A.R.; Vilar, Vítor J.P., E-mail: vilar@fe.up.pt

    2014-07-01

    The Hydrologic Simulation Program FORTRAN (HSPF) model was used to assess the impact of wastewater discharges on the water quality of a Lis River tributary (Lena River), a 176 km{sup 2} watershed in Leiria region, Portugal. The model parameters obtained in this study, could potentially serve as reference values for the calibration of other watersheds in the area or with similar climatic characteristics, which don't have enough data for calibration. Water quality constituents modeled in this study included temperature, fecal coliforms, dissolved oxygen, biochemical oxygen demand, total suspended solids, nitrates, orthophosphates and pH. The results were found to be close to the average observed values for all parameters studied for both calibration and validation periods with percent bias values between − 26% and 23% for calibration and − 30% and 51% for validation for all parameters, with fecal coliforms showing the highest deviation. The model revealed a poor water quality in Lena River for the entire simulation period, according to the Council Directive concerning the surface water quality intended for drinking water abstraction in the Member States (75/440/EEC). Fecal coliforms, orthophosphates and nitrates were found to be 99, 82 and 46% above the limit established in the Directive. HSPF was used to predict the impact of point and nonpoint pollution sources on the water quality of Lena River. Winter and summer scenarios were also addressed to evaluate water quality in high and low flow conditions. A maximum daily load was calculated to determine the reduction needed to comply with the Council Directive 75/440/EEC. The study showed that Lena River is fairly polluted calling for awareness at behavioral change of waste management in order to prevent the escalation of these effects with especially attention to fecal coliforms. - Highlights: • An integrated hydrological and water quality model for river management is presented. • An insight into the

  2. 137Cs distribution and geochemistry of Lena River (Siberia) drainage basin lake sediments

    International Nuclear Information System (INIS)

    Johnson-Pyrtle, A.; Scott, M.R.; Laing, T.E.; Smol, J.P.

    2000-01-01

    The Lena River is the second largest river that discharges into the Arctic Ocean. It is therefore important to determine not only the direct impact its discharge has on the 137Cs concentration of the Arctic, but also the potential its drainage basin has as a 137Cs source. 137Cs surface sediment concentrations and inventory values, which range from 4.97 to 338 Bq kg -1 and 357 to 1732 Bq m -2 , respectively, were determined for the Lena River drainage basin lake samples, via gamma analysis. The average geochemical and mineralogical composition of a subset of samples was also determined using neutron activation analysis, X-ray diffraction and X-ray fluorescence spectrometry techniques. Results of these geochemical analyses allowed for the identification of key geochemical factors that influence the distribution of 137Cs in the Lena River drainage basin. 137Cs profiles indicate that Lena River drainage basin lacustrine sediments serve as a record of 137Cs fallout. Based on the downcore 137Cs, %illite, %smectite, %Al and %Mn distribution patterns, it was concluded that a small fraction of non-selectively bound 137Cs was remobilized at depth in some cores. Inconsistencies between the actual 137Cs fallout record and the 137Cs profiles determined for the lake sediments were attributed to 137Cs remobilization in subsurface sediments. In addition to establishing the agreement between the global atmospheric fallout record and the downcore 137Cs distribution patterns determined for these sediments, results indicate that 137Cs deposited during periods of maximum atmospheric release was buried and is not susceptible to surface erosion processes. However, mean 137Cs concentrations of the lacustrine surface sediments (125 Bq kg -1 ) are still significantly higher than those of the nearby Lena River estuary (11.22 Bq kg -1 ) and Laptev Sea (6.00 Bq kg -1 ). Our study suggests that the Lena River drainage basin has the potential to serve as a source of 137Cs to the adjacent Arctic

  3. Seasonal changes in particulate and dissolved organic matter composition and quality in the Lena River Delta

    Science.gov (United States)

    Mollenhauer, G.; Winterfeld, M.; Hefter, J.; Bodenstab, L.; Morgenstern, A.; Eulenburg, A.; Heim, B.; Koch, B.; Schefuss, E.; Moerth, C. M.; Rethemeyer, J.

    2016-12-01

    Arctic rivers are known to export large quantities of carbon by discharge of dissolved and particulate organic carbon (DOC, POC), and in a warming and progressively moister Arctic, these exports may increase resulting in a reduction of arctic continental carbon stocks. These rivers have highly variable discharge rates with a pronounced maximum during the spring freshet associated with highest concentrations of DOC and POC. Most studies investigating the isotopic composition and quality of carbon exported by Arctic rivers rely on samples taken in summer during base flow, which is due to the logistical challenges associated with sampling in the remote Arctic permafrost regions. Here we present a record of δ13C and Δ14C of DOC and POC collected between late May during the freshet and late August 2014 in the Lena River Delta. POC Δ14C shows an initial trend towards older values in the spring samples, which is reversed in summer, associated with a shift towards more depleted δ13C values. We interpret this aging trend as reflecting progressive thawing throughout the ice-free season, resulting in mobilization of progressively older carbon from deeper thawed layers. The summer reversal indicates admixture of aquatic organic matter. DOC Δ14C, in contrast, remains at relatively modern levels with rather constant δ13C values throughout the sampling period. We furthermore analysed the biomarker composition of Lena Delta particulate OM collected in spring and summer. From spring to summer, we observe trends in abundance of individual leaf-wax derived biomarkers indicating higher abundance of algal biomass in the summer particles. Trends in soil microbial biomarkers and compound-specific δD of leaf-wax lipids suggest a shift in sources towards higher contributions from the southern catchment in summer. DOC composition investigated with FT-ICR-MS changes from spring with higher abundances of compounds with high H/C and low O/C ratios to late summer, when fewer compounds

  4. Numerical modelling of channel processes and analysis of possible channel improvement measures on the Lena River near city Yakutsk

    Science.gov (United States)

    Krylenko, Inna; Belikov, Vitaly; Zavadskii, Aleksander; Borisova, Natalya; Golovlyov, Pavel; Rumyantsev, Alexey

    2017-04-01

    City Yakutsk (administrative, culture and industrial center of the North East of Russia) situated on the left bank of large Russian river Lena last decades has faced with many problems, concerning intensive channel processes. Most dramatic among them are sediment accumulation near main water intake structure, supplying city Yakutsk by the drinking water, and deterioration in conditions of the navigation roots to the main city ports. Hydrodynamic modelling has been chosen as the main tool for analyses of the modern tendencies in channel processes and for the evaluation of possible channel improvement measures efficiency. STREAM_2D program complex (authors V. Belikov et al.), which is based on the numerical solution of two-dimensional Saint-Venant equations on a hybrid curvilinear quadrangular and rectangular mesh and take into account sediment transport, was used for the simulations. Detailed field data about water regime of the Lena river, bathymetry of the channels and topography of the floodplains was collected for model developing. Model area has covered 75 km of the Lena river valley including branched channels and wide floodplain from Tabaga to Kangalassy gauge cites. Data of these stations were used for model boundary conditions assigning. Data of gauge station city Yakutsk as well as measured during field campaign water levels and flow velocities was taken into account for model calibration and validation. Results of modelling has demonstrated close correspondence with observed water levels and discharges distribution between channel branches for different hydrological situations. Different combinations of hydrographs of 1, 10, 50% exceedance probability was used as input for modelling of channel deformations. Simulation results has shown that in future 10 years aligning of water discharges distribution between main Lena river branches near Yakutsk is possible, that is a positive tendency from the point of view of water supply of the city. More than 15

  5. Characterisation of Fe-bearing particles and colloids in the Lena River basin, NE Russia

    Science.gov (United States)

    Hirst, Catherine; Andersson, Per S.; Shaw, Samuel; Burke, Ian T.; Kutscher, Liselott; Murphy, Melissa J.; Maximov, Trofim; Pokrovsky, Oleg S.; Mörth, Carl-Magnus; Porcelli, Don

    2017-09-01

    Rivers are significant contributors of Fe to the ocean. However, the characteristics of chemically reactive Fe remain poorly constrained, especially in large Arctic rivers, which drain landscapes highly susceptible to climate change and carbon cycle alteration. The aim of this study was a detailed characterisation (size, mineralogy, and speciation) of riverine Fe-bearing particles (>0.22 μm) and colloids (1 kDa-0.22 μm) and their association with organic carbon (OC), in the Lena River and tributaries, which drain a catchment almost entirely underlain by permafrost. Samples from the main channel and tributaries representing watersheds that span a wide range in topography and lithology were taken after the spring flood in June 2013 and summer baseflow in July 2012. Fe-bearing particles were identified, using Transmission Electron Microscopy, as large (200 nm-1 μm) aggregates of smaller (20-30 nm) spherical colloids of chemically-reactive ferrihydrite. In contrast, there were also large (500 nm-1 μm) aggregates of clay (illite) particles and smaller (100-200 nm) iron oxide particles (dominantly hematite) that contain poorly reactive Fe. TEM imaging and Scanning Transmission X-ray microscopy (STXM) indicated that the ferrihydrite is present as discrete particles within networks of amorphous particulate organic carbon (POC) and attached to the surface of primary produced organic matter and clay particles. Together, these larger particles act as the main carriers of nanoscale ferrihydrite in the Lena River basin. The chemically reactive ferrihydrite accounts for on average 70 ± 15% of the total suspended Fe in the Lena River and tributaries. These observations place important constraints on Fe and OC cycling in the Lena River catchment area and Fe-bearing particle transport to the Arctic Ocean.

  6. A time-series analysis of flood disaster around Lena river using Landsat TM/ETM+

    Science.gov (United States)

    Sakai, Toru; Hatta, Shigemi; Okumura, Makoto; Takeuchi, Wataru; Hiyama, Tetsuya; Inoue, Gen

    2010-05-01

    Landsat satellite has provided a continuous record of earth observation since 1972, gradually improving sensors (i.e. MSS, TM and ETM+). Already processed archives of Landsat image are now available free of charge from the internet. The Landsat image of 30 m spatial resolution with multiple spectral bands between 450 and 2350 nm is appropriate for detailed mapping of natural resource at wide geographical areas. However, one of the biggest concerns in the use of Landsat image is the uncertainty in the timing of acquisitions. Although detection of land cover change usually requires acquisitions before and after the change, the Landsat image is often unavailable because of the long-term intervals (16 days) and variation in atmosphere. Nearly cloud-free image is acquired at least once per year (total of 22 or 23 scenes per year). Therefore, it may be difficult to acquire appropriate images for monitoring natural disturbances caused at short-term intervals (e.g., flood, forest fire and hurricanes). Our objectives are: (1) to examine whether a time-series of Landsat image is available for monitoring a flood disaster, and (2) to evaluate the impact and timing of the flood disaster around Lena river in Siberia. A set of Landsat TM/ETM+ satellite images was used to enable acquisition of cloud-free image, although Landsat ETM+ images include failure of the Scan Line Corrector (SLC) from May 2003. The overlap area of a time series of 20 Landsat TM/ETM+ images (path 120-122, row 17) from April 2007 to August 2007 was clipped (approximately 33 km × 90 km), and the other area was excluded from the analyses. Image classification was performed on each image separately using an unsupervised ISODATA method, and each Landsat TM/ETM+ image was classified into three land cover types: (1) ice, (2) water, and (3) land. From three land cover types, the area of Lena river was estimated. The area of Lena river dramatically changed after spring breakup. The middle part of Lena river around

  7. Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion

    Directory of Open Access Journals (Sweden)

    I. P. Semiletov

    2011-09-01

    Full Text Available The Lena River integrates biogeochemical signals from its vast drainage basin, and the integrated signal reaches far out over the Arctic Ocean. Transformation of riverine organic carbon (OC into mineral carbon, and mineral carbon into the organic form in the Lena River watershed, can be considered to be quasi-steady-state processes. An increase in Lena discharge exerts opposite effects on total organic (TOC and total inorganic (TCO2 carbon: TOC concentration increases, while TCO2 concentration decreases. Significant inter-annual variability in mean values of TCO2, TOC, and their sum (total carbon, TC has been found. This variability is determined by changes in land hydrology which cause differences in the Lena River discharge. There is a negative correlation in the Lena River between TC in September and its mean discharge in August; a time shift of about one month is required for water to travel from Yakutsk to the Laptev Sea. Total carbon entering the sea with the Lena discharge is estimated to be almost 10 Tg C yr−1. The annual Lena River discharge of particulate organic carbon (POC can be as high as 0.38 Tg (moderate to high estimate. If we instead accept Lisytsin's (1994 statement that 85–95 % of total particulate matter (PM (and POC precipitates on the marginal "filter", then only about 0.03–0.04 Tg of Lena River POC reaches the Laptev Sea. The Lena's POC export would then be two orders of magnitude less than the annual input of eroded terrestrial carbon onto the shelf of the Laptev and East Siberian seas, which is estimated to be about 4 Tg. Observations support the hypothesis of a dominant role for coastal erosion (Semiletov, 1999a, b in East Siberian Arctic Shelf (ESAS sedimentation and the dynamics of the carbon/carbonate system. The Lena River is characterized by relatively high concentrations of the primary greenhouse gases, dissolved carbon dioxide (CO2 and methane (CH

  8. Carbon Stocks in Permafrost-Affected Soils of the Lena River Delta

    Science.gov (United States)

    Zubrzycki, S.; Kutzbach, L.; Grosse, G.; Desyatkin, A.; Pfeiffer, E.

    2012-12-01

    The soil organic carbon stock (SSOC) of soils in arctic permafrost regions is known to be significant but is insufficiently investigated so far. Previous SSOC studies report mainly the gravimetric carbon (C) contents and are limited to the active layer depth at the time of sampling. Since C deposits in permafrost regions are likely to become a future C source, more detailed investigations of the presently frozen likely carbon-rich sediment and soil layers are of importance. Our investigations were performed on Samoylov Island in the southern-central part of the Lena River Delta (32,000 km2) which is the largest arctic delta and the fifth largest delta worldwide. Samoylov Island is representative for the Lena River Delta's first terrace and the active floodplains. Within this study a new portable Snow-Ice-Permafrost-Research-Establishment (SIPRE) auger was used during a spring field session to obtain 1 m deep frozen soil cores (n = 29) distributed over all known soil and vegetation units. These cores are analyzed for bulk contents of nitrogen (N) and C, ice content and bulk density (BD) and to determine the SSOC including the rarely investigated currently permanently frozen layers up to 1 m depth on Samoylov Island. Our study provides evidence for high SSOC for a depth of 1 m for the investigated area ranging between 7 kg m-2 and 48 kg m-2. Considering the spatial extent of different soil units on the two geomorphological units of Samoylov Island, the area-weighted average SSOC were 29 kg m-2 (n = 22) for the first terrace and 14 kg m-2 (n = 7) for the active floodplain. For the correspondent soil units of Turbels and Orthels in circumpolar permafrost regions a mean SSOC of 27 kg m-2 (min: 0.1 kg m-2, max: 126 kg m-2) for a depth of 1 m was reported [1]. For up-scaling solely over the soil-covered areas of the Lena River Delta, we excluded all water bodies >3,600 m2 from the geomorphological units studied (first river terrace and the active floodplains) and

  9. Landscape controls and vertical variability of soil organic carbon storage in permafrost-affected soils of the Lena River Delta

    DEFF Research Database (Denmark)

    Siewert, Matthias Benjamin; Hugelius, Gustaf; Heim, Birgit

    2016-01-01

    To project the future development of the soil organic carbon (SOC) storage in permafrost environments, the spatial and vertical distribution of key soil properties and their landscape controls needs to be understood. This article reports findings from the Arctic Lena River Delta where we sampled 50...... in the permafrost. The major geomorphological units of a subregion of the Lena River Delta were mapped with a land form classification using a data-fusion approach of optical satellite imagery and digital elevation data to upscale SOC storage. Landscape mean SOC storage is estimated to 19.2 ± 2.0 kg C m− 2. Our...... results show that the geomorphological setting explains more soil variability than soil taxonomy classes or vegetation cover. The soils from the oldest, Pleistocene aged, unit of the delta store the highest amount of SOC per m2 followed by the Holocene river terrace. The Pleistocene terrace affected...

  10. Soil Organic Carbon Stocks in Arctic Deltaic Sediments: Investigations in the Lena River Delta.

    Science.gov (United States)

    Zubrzycki, S.; Kutzbach, L.; Desyatkin, A.; Pfeiffer, E.-M.

    2012-04-01

    The soil organic carbon stock (SSOC) of deltaic sediments in arctic permafrost regions is known to be significant but is insufficiently investigated so far. Previous SSOC studies were conducted mainly in the comparatively well studied Mackenzie River Delta (area: 13,000 km2) in Canada. The few studies from other arctic delta regions report only the gravimetric carbon (C) contents and are limited to the active layer depth at the time of sampling. Since C deposits in permafrost regions are likely to become a future C source, more detailed investigations of the presently frozen likely carbon-rich sediment and soil layers in other arctic delta regions are of importance. Our investigations were performed on Samoylov Island in the southern-central part of the Lena River Delta (32,000 km2) which is the largest arctic delta and the fifth largest delta worldwide. Samoylov Island is representative for the Lena River Delta's first terrace and the active floodplains. Within this study a new portable Snow-Ice-Permafrost-Research-Establishment (SIPRE) auger was used during a spring field session to obtain 1 m deep frozen soil cores (n = 37) distributed over all known soil and vegetation units. These cores are analyzed for bulk contents of nitrogen (N) and C, ice content and bulk density (BD) and to determine the SSOC including the rarely investigated currently permanently frozen layers up to 1 m depth on Samoylov Island. Our study provides evidence for high SSOC for a depth of 1 m for the investigated area ranging between 6 kg m2 and 54 kg m2. Considering the spatial extent of different soil units on the two geomorphological units of Samoylov Island, the area-weighted average SSOC were 31 kg m2 (n = 31) for the first terrace and 15 kg m2 (n = 6) for the active floodplain. For the correspondent soil units of Turbels and Orthels in circumpolar permafrost regions, Tarnocai et al. 2009 reported a mean SSOC of 27 kg m2 (min: 0.1 kg m2, max: 126 kg m2) for a depth of 1 m. For up

  11. From fresh to marine waters: characterization and fate of dissolved organic matter in the Lena River delta region, Siberia

    Directory of Open Access Journals (Sweden)

    Rafael eGonçalves-Araujo

    2015-12-01

    Full Text Available Connectivity between the terrestrial and marine environment in the Artic is changing as a result of climate change, influencing both freshwater budgets and the supply of carbon to the sea. This study characterizes the optical properties of dissolved organic matter (DOM within the Lena Delta region and evaluates the behavior of DOM across the fresh water-marine gradient. Six fluorescent components (four humic-like; one marine humic-like; one protein-like were identified by Parallel Factor Analysis (PARAFAC with a clear dominance of allochthonous humic-like signals. Colored DOM (CDOM and dissolved organic carbon (DOC were highly correlated and had their distribution coupled with hydrographical conditions. Higher DOM concentration and degree of humification were associated with the low salinity waters of the Lena River. Values decreased towards the higher salinity Laptev Sea shelf waters. Results demonstrate different responses of DOM mixing in relation to the vertical structure of the water column, as reflecting the hydrographical dynamics in the region. Two mixing curves for DOM were apparent. In surface waters above the pycnocline there was a sharper decrease in DOM concentration in relation to salinity indicating removal. In the bottom water layer the DOM decrease within salinity was less. We propose there is a removal of DOM occurring primarily at the surface layer, which is likely driven by photodegradation and flocculation.

  12. Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia - observations and modeling (Lena River Delta, Siberia)

    Science.gov (United States)

    Boike, J.; Georgi, C.; Kirilin, G.; Muster, S.; Abramova, K.; Fedorova, I.; Chetverova, A.; Grigoriev, M.; Bornemann, N.; Langer, M.

    2015-10-01

    Thermokarst lakes are typical features of the northern permafrost ecosystems, and play an important role in the thermal exchange between atmosphere and subsurface. The objective of this study is to describe the main thermal processes of the lakes and to quantify the heat exchange with the underlying sediments. The thermal regimes of five lakes located within the continuous permafrost zone of northern Siberia (Lena River Delta) were investigated using hourly water temperature and water level records covering a 3-year period (2009-2012), together with bathymetric survey data. The lakes included thermokarst lakes located on Holocene river terraces that may be connected to Lena River water during spring flooding, and a thermokarst lake located on deposits of the Pleistocene Ice Complex. Lakes were covered by ice up to 2 m thick that persisted for more than 7 months of the year, from October until about mid-June. Lake-bottom temperatures increased at the start of the ice-covered period due to upward-directed heat flux from the underlying thawed sediment. Prior to ice break-up, solar radiation effectively warmed the water beneath the ice cover and induced convective mixing. Ice break-up started at the beginning of June and lasted until the middle or end of June. Mixing occurred within the entire water column from the start of ice break-up and continued during the ice-free periods, as confirmed by the Wedderburn numbers, a quantitative measure of the balance between wind mixing and stratification that is important for describing the biogeochemical cycles of lakes. The lake thermal regime was modeled numerically using the FLake model. The model demonstrated good agreement with observations with regard to the mean lake temperature, with a good reproduction of the summer stratification during the ice-free period, but poor agreement during the ice-covered period. Modeled sensitivity to lake depth demonstrated that lakes in this climatic zone with mean depths > 5 m develop

  13. Baseline characteristics of climate, permafrost and land cover from a new permafrost observatory in the Lena River Delta, Siberia (1998–2011

    Directory of Open Access Journals (Sweden)

    J. Boike

    2013-03-01

    Full Text Available Samoylov Island is centrally located within the Lena River Delta at 72° N, 126° E and lies within the Siberian zone of continuous permafrost. The landscape on Samoylov Island consists mainly of late Holocene river terraces with polygonal tundra, ponds and lakes, and an active floodplain. The island has been the focus of numerous multidisciplinary studies since 1993, which have focused on climate, land cover, ecology, hydrology, permafrost and limnology. This paper aims to provide a framework for future studies by describing the characteristics of the island's meteorological parameters (temperature, radiation and snow cover, soil temperature, and soil moisture. The land surface characteristics have been described using high resolution aerial images in combination with data from ground-based observations. Of note is that deeper permafrost temperatures have increased between 0.3 to 1.3 °C over the last five years. However, no clear warming of air and active layer temperatures is detected since 1998, though winter air temperatures during recent years have not been as cold as in earlier years. Data related to this article are archived under: http://doi. pangaea.de/10.1594/PANGAEA.806233 .

  14. First inventory of optical lake types in the permafrost landscapes of the central Lena River Delta and central Yamal - case studies of Coloured Dissolved Organic Matter (cDOM) and turbidity regimes

    Science.gov (United States)

    Heim, Birgit; Bartsch, Annett; Dvornikov, Yuri; Leibman, Marina; Eulenburg, Antje; Morgenstern, Anne; Boike, Julia; Widhalm, Barbara; Fedorova, Irina; Chetverova, Antonina

    2015-04-01

    We provide a first satellite-based inventory of optical lake types in the permafrost landscapes of the central Lena River Delta and central Yamal using multi-sensor satellite data. Within our thematic network between our groups we seek to investigate how we may link: • multi-sensor remote sensing analysis (optical and radar) • tachymmetrical and satellite-based stereographical analysis • geochemical and hydrodynamical ground investigations in the thermokarst- and thermoerosional-influenced landscape types in the central Lena Delta and the Yamal region in Siberia. We are investigating the turbidity regimes of the lakes and the catchment characteristics (vegetation, geomorphology, topography) using satellite-derived information from optical and radar sensors. For some of the lakes in Yamal and the central Lena River Delta we were able to sample for Dissolved Organic Carbon, DOC, and coloured dissolved organic matter, cDOM (the absorbing fraction of the DOC pool). The sediment sources for turbidity spatial patterns are provided by the large subaquatic sedimentary banks and lake cliffs. The cDOM regimes influence the transparency of the different lake types. However, turbidity seems to play the dominant role in providing the water colour of thermokarst lake types.

  15. The exchange of energy, water and carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Kutzbach, L.

    2006-07-01

    The ecosystem-scale exchange fluxes of energy, water and carbon dioxide between wet arctic tundra and the atmosphere were investigated by the micrometeorological eddy covariance method. The investigation site was the centre of the Lena River Delta in Northern Siberia characterised by a polar and distinctly continental climate, very cold and ice-rich permafrost and its position at the interface between the Eurasian continent and the Arctic Ocean. The measurements were performed on the surface of a Holocene river terrace characterised by wet polygonal tundra. The soils at the site are characterised by high organic matter content, low nutrient availability and pronounced water logging. The vegetation is dominated by sedges and mosses. The fluctuations of the H{sub 2}O and CO{sub 2} concentrations were measured with a closed-path infrared gas analyser. The fast-response eddy covariance measurements were supplemented by a set of slow-response meteorological and soil-meteorological measurements. The combined datasets of the two campaigns 2003 and 2004 were used to characterise the seasonal course of the energy, water and CO{sub 2} fluxes and the underlying processes for the synthetic measurement period May 28..October 21 2004/2003 including the period of snow and soil thawing as well as the beginning of refreezing. The synthetic measurement period 2004/2003 was characterised by a long snow ablation period and a late start of the growing season. On the other hand, the growing season ended also late due to high temperatures and snow-free conditions in September. The cumulative summer energy partitioning was characterised by low net radiation, large ground heat flux, low latent heat flux and very low sensible heat flux compared to other tundra sites. These findings point out the major importance of the very cold permafrost for the summer energy budget of the tundra in Northern Siberia. (orig./SR)

  16. Monitoring Bedfast Ice and Ice Phenology in Lakes of the Lena River Delta Using TerraSAR-X Backscatter and Coherence Time Series

    Directory of Open Access Journals (Sweden)

    Sofia Antonova

    2016-11-01

    Full Text Available Thermokarst lakes and ponds are major elements of permafrost landscapes, occupying up to 40% of the land area in some Arctic regions. Shallow lakes freeze to the bed, thus preventing permafrost thaw underneath them and limiting the length of the period with greenhouse gas production in the unfrozen lake sediments. Radar remote sensing permits to distinguish lakes with bedfast ice due to the difference in backscatter intensities from bedfast and floating ice. This study investigates the potential of a unique time series of three-year repeat-pass TerraSAR-X (TSX imagery with high temporal (11 days and spatial (10 m resolution for monitoring bedfast ice as well as ice phenology of lakes in the zone of continuous permafrost in the Lena River Delta, Siberia. TSX backscatter intensity is shown to be an excellent tool for monitoring floating versus bedfast lake ice as well as ice phenology. TSX-derived timing of ice grounding and the ice growth model CLIMo are used to retrieve the ice thicknesses of the bedfast ice at points where in situ ice thickness measurements were available. Comparison shows good agreement in the year of field measurements. Additionally, for the first time, an 11-day sequential interferometric coherence time series is analyzed as a supplementary approach for the bedfast ice monitoring. The coherence time series detects most of the ice grounding as well as spring snow/ice melt onset. Overall, the results show the great value of TSX time series for monitoring Arctic lake ice and provide a basis for various applications: for instance, derivation of shallow lakes bathymetry, evaluation of winter water resources and locating fish winter habitat as well as estimation of taliks extent in permafrost.

  17. Trends of river discharges in Slovenia

    International Nuclear Information System (INIS)

    Ulaga, F; Kobold, M; Frantar, P

    2008-01-01

    Trends of river discharges are very important in recognition of climate changes and also in water management. In last years droughts and floods are more and more frequent, therefore monitoring and investigating of hydrological situation became one of the guidance scientific approach. In analysis of mean annual discharges made in Agency of the Republic of Slovenia for the Environment in last years, statistical significance trend was find out only by rivers of northwest alpine region [1] [2] [3]. In recent research of time changing discharges, presumption of generally decreasing of water quantity all over Slovenia was confirmed. Our basic conclusion - in Slovenia it is well recognized decreasing of water quantity in long period of observation. This fact and also worsening of water quality became alarming problems of our future, especially in dry months of the year.

  18. Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior

    NARCIS (Netherlands)

    Bröder, Lisa; Tesi, Tommaso; Salvadó, Joan A.; Semiletov, Igor P.; Dudarev, Oleg V.; Gustafsson, Orjan

    2016-01-01

    Ongoing global warming in high latitudes may cause an increasing supply of permafrost-derived organic carbon through both river discharge and coastal erosion to the Arctic shelves. Mobilized permafrost carbon can be either buried in sediments, transported to the deep sea or degraded to CO2 and

  19. Biomarker and carbon isotope constraints (δ13C, Δ14C) on sources and cycling of particulate organic matter discharged by large Siberian rivers draining permafrost areas

    International Nuclear Information System (INIS)

    Winterfeld, Maria

    2014-08-01

    Circumpolar permafrost soils store about half of the global soil organic carbon pool. These huge amounts of organic matter (OM) could accumulate due to low temperatures and water saturated soil conditions over the course of millennia. Currently most of this OM remains frozen and therefore does not take part in the active carbon cycle, making permafrost soils a globally important carbon sink. Over the last decades mean annual air temperatures in the Arctic increased stronger than the global mean and this trend is projected to continue. As a result the permafrost carbon pool is under climate pressure possibly creating a positive climate feedback due to the thaw-induced release of greenhouse gases to the atmosphere. Arctic warming will lead to increased annual permafrost thaw depths and Arctic river runoff likely resulting in enhanced mobilization and export of old, previously frozen soil-derived OM. Consequently, the great arctic rivers play an important role in global biogeochemical cycles by connecting the large permafrost carbon pool of their hinterlands with the arctic shelf seas and the Arctic Ocean. The first part of this thesis deals with particulate organic matter (POM) from the Lena Delta and adjacent Buor Khaya Bay. The Lena River in central Siberia is one of the major pathways translocating terrestrial OM from its southernmost reaches near Lake Baikal to the coastal zone of the Laptev Sea. The permafrost soils from the Lena catchment area store huge amounts of pre-aged OM, which is expected to be remobilized due to climate warming. To characterize the composition and vegetation sources of OM discharged by the Lena River, the lignin phenol and carbon isotopic composition (δ 13 C and Δ 14 C) in total suspended matter (TSM) from surface waters, surface sediments from the Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex) were analyzed. The lignin compositions of these samples are

  20. Sewage discharges and nutrient levels in Marimba River, Zimbabwe ...

    African Journals Online (AJOL)

    Sewage discharges and nutrient levels in Marimba River, Zimbabwe. ... Population distribution, land-use, industrial activity, urban agricultural ... River, one of the major inflow rivers into the Lake Chivero, Harare city\\'s main water supply source.

  1. Potential relationships between the river discharge and the precipitation in the Jinsha River basin, China

    Science.gov (United States)

    Wang, Gaoxu; Zeng, Xiaofan; Zhao, Na; He, Qifang; Bai, Yiran; Zhang, Ruoyu

    2018-02-01

    The relationships between the river discharge and the precipitation in the Jinsha River basin are discussed in this study. In addition, the future precipitation trend from 2011-2050 and its potential influence on the river discharge are analysed by applying the CCLM-modelled precipitation. According to the observed river discharge and precipitation, the annual river discharge at the two main hydrological stations displays good correlations with the annual precipitation in the Jinsha River basin. The predicted future precipitation tends to change similarly as the change that occurred during the observation period, whereas the monthly distributions over a year could be more uneven, which is unfavourable for water resources management.

  2. H-ADCP discharge monitoring of a large tropical river

    NARCIS (Netherlands)

    Hidayat, H.; Sassi, M.G.; Vermeulen, B.

    2012-01-01

    River flow can be continuously monitored through velocity measurements with an acoustic Doppler current profiler, deployed horizontally at a river bank (H-ADCP). This approach was adopted to obtain continuous discharge estimates at two cross-sections in the River Mahakam, i.e. at an upstream station

  3. Chemistry of groundwater discharge inferred from longitudinal river sampling

    Science.gov (United States)

    Batlle-Aguilar, J.; Harrington, G. A.; Leblanc, M.; Welch, C.; Cook, P. G.

    2014-02-01

    We present an approach for identifying groundwater discharge chemistry and quantifying spatially distributed groundwater discharge into rivers based on longitudinal synoptic sampling and flow gauging of a river. The method is demonstrated using a 450 km reach of a tropical river in Australia. Results obtained from sampling for environmental tracers, major ions, and selected trace element chemistry were used to calibrate a steady state one-dimensional advective transport model of tracer distribution along the river. The model closely reproduced river discharge and environmental tracer and chemistry composition along the study length. It provided a detailed longitudinal profile of groundwater inflow chemistry and discharge rates, revealing that regional fractured mudstones in the central part of the catchment contributed up to 40% of all groundwater discharge. Detailed analysis of model calibration errors and modeled/measured groundwater ion ratios elucidated that groundwater discharging in the top of the catchment is a mixture of local groundwater and bank storage return flow, making the method potentially useful to differentiate between local and regional sourced groundwater discharge. As the error in tracer concentration induced by a flow event applies equally to any conservative tracer, we show that major ion ratios can still be resolved with minimal error when river samples are collected during transient flow conditions. The ability of the method to infer groundwater inflow chemistry from longitudinal river sampling is particularly attractive in remote areas where access to groundwater is limited or not possible, and for identification of actual fluxes of salts and/or specific contaminant sources.

  4. Modelling the combined impact of radionuclide discharges reaching rivers

    International Nuclear Information System (INIS)

    Hilton, J.; Small, S.; Hornby, D.; Scarlett, P.; Harvey, M.; Simmonds, J.; Bexon, A.; Jones, A.

    2003-01-01

    The Agency currently authorises direct and indirect (via sewerage systems) discharges of liquid radioactive wastes to rivers from nuclear sites and other registered users of radioactivity. Discharges are normally authorised on a site-by-site basis, taking into account the radiological assessment. Radiological assessments are normally made using dilution models to estimate radionuclide activities in the effluents themselves and in the receiving rivers. These data are then combined with information on habits and dose factor information to give a dose assessment for individuals exposed to the discharge. For each site the highest radiological impact is expected immediately downstream of the disposal point where concentrations of radionuclides and resulting doses are highest. The concentration and doses are expected to decline with increasing distance downstream of the disposal point. However, if discharges are made into the river from other establishments higher up the catchment, the total dose may be higher. Recent Environment Agency research projects provided evidence of the potential radiological significance of multiple discharges to a single river. In the light of these studies, the Agency require a robust modelling tool to assist in the assessment of the effects of combined discharges to river systems. The aim of this R and D project was to develop and test modelling tools that could be used to make assessments of the impact of multiple radiological discharge into river systems and to trial them on the upper Thames river system

  5. Biomarker and carbon isotope constraints (δ{sup 13}C, Δ{sup 14}C) on sources and cycling of particulate organic matter discharged by large Siberian rivers draining permafrost areas

    Energy Technology Data Exchange (ETDEWEB)

    Winterfeld, Maria

    2014-08-15

    Circumpolar permafrost soils store about half of the global soil organic carbon pool. These huge amounts of organic matter (OM) could accumulate due to low temperatures and water saturated soil conditions over the course of millennia. Currently most of this OM remains frozen and therefore does not take part in the active carbon cycle, making permafrost soils a globally important carbon sink. Over the last decades mean annual air temperatures in the Arctic increased stronger than the global mean and this trend is projected to continue. As a result the permafrost carbon pool is under climate pressure possibly creating a positive climate feedback due to the thaw-induced release of greenhouse gases to the atmosphere. Arctic warming will lead to increased annual permafrost thaw depths and Arctic river runoff likely resulting in enhanced mobilization and export of old, previously frozen soil-derived OM. Consequently, the great arctic rivers play an important role in global biogeochemical cycles by connecting the large permafrost carbon pool of their hinterlands with the arctic shelf seas and the Arctic Ocean. The first part of this thesis deals with particulate organic matter (POM) from the Lena Delta and adjacent Buor Khaya Bay. The Lena River in central Siberia is one of the major pathways translocating terrestrial OM from its southernmost reaches near Lake Baikal to the coastal zone of the Laptev Sea. The permafrost soils from the Lena catchment area store huge amounts of pre-aged OM, which is expected to be remobilized due to climate warming. To characterize the composition and vegetation sources of OM discharged by the Lena River, the lignin phenol and carbon isotopic composition (δ{sup 13}C and Δ{sup 14}C) in total suspended matter (TSM) from surface waters, surface sediments from the Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex) were analyzed. The lignin compositions of these samples are

  6. Discharge estimation in a backwater affected meandering river

    Directory of Open Access Journals (Sweden)

    H. Hidayat

    2011-08-01

    Full Text Available Variable effects of backwaters complicate the development of rating curves at hydrometric measurement stations. In areas influenced by backwater, single-parameter rating curve techniques are often inapplicable. To overcome this, several authors have advocated the use of an additional downstream level gauge to estimate the longitudinal surface level gradient, but this is cumbersome in a lowland meandering river with considerable transverse surface level gradients. Recent developments allow river flow to be continuously monitored through velocity measurements with an acoustic Doppler current profiler (H-ADCP, deployed horizontally at a river bank. This approach was adopted to obtain continuous discharge estimates at a cross-section in the River Mahakam at a station located about 300 km upstream of the river mouth in the Mahakam delta. The discharge station represents an area influenced by variable backwater effects from lakes, tributaries and floodplain ponds, and by tides. We applied both the standard index velocity method and a recently developed methodology to obtain a continuous time-series of discharge from the H-ADCP data. Measurements with a boat-mounted ADCP were used for calibration and validation of the model to translate H-ADCP velocity to discharge. As a comparison with conventional discharge estimation techniques, a stage-discharge relation using Jones formula was developed. The discharge rate at the station exceeded 3250 m3 s−1. Discharge series from a traditional stage-discharge relation did not capture the overall discharge dynamics, as inferred from H-ADCP data. For a specific river stage, the discharge range could be as high as 2000 m3 s−1, which is far beyond what could be explained from kinematic wave dynamics. Backwater effects from lakes were shown to be significant, whereas interaction of the river flow with tides may impact discharge variation in the fortnightly frequency band

  7. Exploring SWOT discharge algorithm accuracy on the Sacramento River

    Science.gov (United States)

    Durand, M. T.; Yoon, Y.; Rodriguez, E.; Minear, J. T.; Andreadis, K.; Pavelsky, T. M.; Alsdorf, D. E.; Smith, L. C.; Bales, J. D.

    2012-12-01

    Scheduled for launch in 2019, the Surface Water and Ocean Topography (SWOT) satellite mission will utilize a Ka-band radar interferometer to measure river heights, widths, and slopes, globally, as well as characterize storage change in lakes and ocean surface dynamics with a spatial resolution ranging from 10 - 70 m, with temporal revisits on the order of a week. A discharge algorithm has been formulated to solve the inverse problem of characterizing river bathymetry and the roughness coefficient from SWOT observations. The algorithm uses a Bayesian Markov Chain estimation approach, treats rivers as sets of interconnected reaches (typically 5 km - 10 km in length), and produces best estimates of river bathymetry, roughness coefficient, and discharge, given SWOT observables. AirSWOT (the airborne version of SWOT) consists of a radar interferometer similar to SWOT, but mounted aboard an aircraft. AirSWOT spatial resolution will range from 1 - 35 m. In early 2013, AirSWOT will perform several flights over the Sacramento River, capturing river height, width, and slope at several different flow conditions. The Sacramento River presents an excellent target given that the river includes some stretches heavily affected by management (diversions, bypasses, etc.). AirSWOT measurements will be used to validate SWOT observation performance, but are also a unique opportunity for testing and demonstrating the capabilities and limitations of the discharge algorithm. This study uses HEC-RAS simulations of the Sacramento River to first, characterize expected discharge algorithm accuracy on the Sacramento River, and second to explore the required AirSWOT measurements needed to perform a successful inverse with the discharge algorithm. We focus on several specific research questions affecting algorithm performance: 1) To what extent do lateral inflows confound algorithm performance? We examine the ~100 km stretch of river from Colusa, CA to the Yolo Bypass, and investigate how the

  8. Effective Discharge and Annual Sediment Yield on Brazos River

    Science.gov (United States)

    Rouhnia, M.; Salehi, M.; Keyvani, A.; Ma, F.; Strom, K. B.; Raphelt, N.

    2012-12-01

    Geometry of an alluvial river alters dynamically over the time due to the sediment mobilization on the banks and bottom of the river channel in various flow rates. Many researchers tried to define a single representative discharge for these morphological processes such as "bank-full discharge", "effective discharge" and "channel forming discharge". Effective discharge is the flow rate in which, the most sediment load is being carried by water, in a long term period. This project is aimed to develop effective discharge estimates for six gaging stations along the Brazos River from Waco, TX to Rosharon, TX. The project was performed with cooperation of the In-stream Flow Team of the Texas Water Development Board (TWDB). Project objectives are listed as: 1) developing "Flow Duration Curves" for six stations based on mean-daily discharge by downloading the required, additional data from U.S Geological Survey website, 2) developing "Rating Curves" for six gaging stations after sampling and field measurements in three different flow conditions, 3) developing a smooth shaped "Sediment Yield Histogram" with a well distinguished peak as effective discharge. The effective discharge was calculated using two methods of manually and automatic bin selection. The automatic method is based on kernel density approximation. Cross-sectional geometry measurements, particle size distributions and water field samples were processed in the laboratory to obtain the suspended sediment concentration associated with flow rate. Rating curves showed acceptable trends, as the greater flow rate we experienced, the more sediment were carried by water.

  9. Influence of Climate Change on River Discharge in Austria

    Directory of Open Access Journals (Sweden)

    Robert A. Goler

    2016-10-01

    Full Text Available The effect of climate change on the river discharge characteristics in four catchment basins within Austria is investigated using a hydrological model. Input for the model are daily climate data generated from three regional climate models (RCMs over the time period 1951–2100 using the A1B emission scenario. Due to the complex terrain of the basins, the climate data has been downscaled to a resolution of 1km×1km$1\\,\\text{km}\\times1\\,\\text{km}$. The hydrological model includes processes such as meltwater from snow and glaciers; surface, subsurface, and groundwater flows; and evapotranspiration. The modelling results show that, although only one RCM exhibits a significant reduction in the mean annual discharge towards the end of the 21st century, all RCMs exhibit significant changes in the seasonal distribution of the discharge. In particular, for basins whose discharge is dependent on water stored as snow, there will be a shift in the time of maximum river discharge to earlier in the year as the snow and ice melt earlier. During the winter months the discharge is forecasted to be higher than at present, which would lead to the number of days of low discharge being reduced. However, the earlier snow melt means that the available water for the summer months will be reduced, leading to lower discharges than present, and thus an increase in the number of low discharge days.

  10. Comparison of different sensors for river discharge estimation from space

    Science.gov (United States)

    Tarpanelli, Angelica; Brocca, Luca; Barbetta, Silvia; Moramarco, Tommaso

    2013-04-01

    River discharge is an important quantity of the hydrologic cycle and it is essential for both scientific and operational applications related to water resources management and flood risk prevention. The absence of flow measurements along the natural channels and, sometimes, the inaccessibility to remote areas contribute to make the discharge estimation difficult. In recent years, the availability of remote sensing data is steadily increasing and the great potential of satellite sensors to be used for discharge estimation has been already demonstrated. In particular, recent advances in radar altimetry technology have improved the accuracy in the monitoring of water height of large rivers and lakes located in ungauged or poorly gauged inland regions. Additionally, although not specifically dedicated sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS) have also the potential to provide river discharge estimates. In this context, this study uses data provided by MODIS onboard AQUA satellite and by altimetry onboard ERS-2 and ENVISAT satellites for discharge estimation along Po River (North Italy) where in-situ observations are available from January 2002 to December 2010. The MODIS-derive discharge is obtained exploiting the different behavior of water and land in the Near Infrared (NIR) portion of the electromagnetic spectrum (MODIS channel 2). The ratio of reflectance values between two pixels located within and outside the river increases with the presence of the water and, hence, with discharge (or velocity). In a previous study, a regional relationship between the reflectance ratio and the flow velocity is derived by using MODIS data at four river reaches along the Po River. Altimetry-derived water levels are firstly compared with in-situ observed water levels in order to verify their accuracy. Successively, discharge is estimated from velocity (MODIS) and water level (altimeter) data by using simplified hydraulic relationships that incorporate

  11. Flood discharge measurement of a mountain river – Nanshih River in Taiwan

    Directory of Open Access Journals (Sweden)

    Y.-C. Chen

    2013-05-01

    Full Text Available This study proposes a more efficient method of flood discharge measurement in mountain rivers that accounts for personal safety, accuracy, and reliability. Because it is based on the relationships between mean and maximum velocities and between cross-sectional area and gauge height, the proposed method utilizes a flood discharge measurement system composed of an acoustic Doppler profiler and crane system to measure velocity distributions, cross-sectional area, and water depths. The flood discharge measurement system can be used to accurately and quickly measure flood data that is difficult to be collected by the conventional instruments. The measured data is then used to calibrate the parameters of the proposed method for estimating mean velocity and cross-sectional area. Then these observed discharge and gauge height can be used to establish the water stage–discharge rating curve. Therefor continuous and real-time estimations of flood discharge of a mountain river can become possible. The measurement method and system is applied to the Nanshih River at the Lansheng Bridge. Once the method is established, flood discharge of the Nanshih River could be efficiently estimated using maximum velocity and the water stage. Results of measured and estimated discharges of the Nanshih River at the Lansheng Bridge differed only slightly from each other, demonstrating the efficiency and accuracy of the proposed method.

  12. Estimating extreme river discharges in Europe through a Bayesian network

    Science.gov (United States)

    Paprotny, Dominik; Morales-Nápoles, Oswaldo

    2017-06-01

    Large-scale hydrological modelling of flood hazards requires adequate extreme discharge data. In practise, models based on physics are applied alongside those utilizing only statistical analysis. The former require enormous computational power, while the latter are mostly limited in accuracy and spatial coverage. In this paper we introduce an alternate, statistical approach based on Bayesian networks (BNs), a graphical model for dependent random variables. We use a non-parametric BN to describe the joint distribution of extreme discharges in European rivers and variables representing the geographical characteristics of their catchments. Annual maxima of daily discharges from more than 1800 river gauges (stations with catchment areas ranging from 1.4 to 807 000 km2) were collected, together with information on terrain, land use and local climate. The (conditional) correlations between the variables are modelled through copulas, with the dependency structure defined in the network. The results show that using this method, mean annual maxima and return periods of discharges could be estimated with an accuracy similar to existing studies using physical models for Europe and better than a comparable global statistical model. Performance of the model varies slightly between regions of Europe, but is consistent between different time periods, and remains the same in a split-sample validation. Though discharge prediction under climate change is not the main scope of this paper, the BN was applied to a large domain covering all sizes of rivers in the continent both for present and future climate, as an example. Results show substantial variation in the influence of climate change on river discharges. The model can be used to provide quick estimates of extreme discharges at any location for the purpose of obtaining input information for hydraulic modelling.

  13. Sediment discharge division at two tidally influenced river bifurcations

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Vermeulen, B.; Hidayat, H.

    2013-01-01

    [1] We characterize and quantify the sediment discharge division at two tidally influenced river bifurcations in response to mean flow and secondary circulation by employing a boat-mounted acoustic Doppler current profiler (ADCP), to survey transects at bifurcating branches during a semidiurnal

  14. Discharge data from 50 selected rivers for GCM validation

    International Nuclear Information System (INIS)

    Duemenil, L.; Isele, K.; Liebscher, H.J.; Schroeder, U.; Schumacher, M.; Wilke, K.

    1993-01-01

    This Technical Report refers to a joint project between GRDC Koblenz and MPI Hamburg. The Global Runoff Data Centre operates under the auspieces of WMO at the Federal Institute of Hydrology (Bundesanstalt fuer Gewaesserkunde) in Koblenz. River discharge data of the 50 largest rivers provide an independent data source for the validation of the hydrological cycle in general circulation models. This type of data is particularly valuable, because in some cases the available time series are exceptionally long. The data are presented as time series of annual average discharge (averaged over the period for which data is available, see below for caveats) and as annual cycles of monthly mean discharge averaged over the length of the time series available. (orig./KW)

  15. Benchmarking wide swath altimetry-based river discharge estimation algorithms for the Ganges river system

    Science.gov (United States)

    Bonnema, Matthew G.; Sikder, Safat; Hossain, Faisal; Durand, Michael; Gleason, Colin J.; Bjerklie, David M.

    2016-04-01

    The objective of this study is to compare the effectiveness of three algorithms that estimate discharge from remotely sensed observables (river width, water surface height, and water surface slope) in anticipation of the forthcoming NASA/CNES Surface Water and Ocean Topography (SWOT) mission. SWOT promises to provide these measurements simultaneously, and the river discharge algorithms included here are designed to work with these data. Two algorithms were built around Manning's equation, the Metropolis Manning (MetroMan) method, and the Mean Flow and Geomorphology (MFG) method, and one approach uses hydraulic geometry to estimate discharge, the at-many-stations hydraulic geometry (AMHG) method. A well-calibrated and ground-truthed hydrodynamic model of the Ganges river system (HEC-RAS) was used as reference for three rivers from the Ganges River Delta: the main stem of Ganges, the Arial-Khan, and the Mohananda Rivers. The high seasonal variability of these rivers due to the Monsoon presented a unique opportunity to thoroughly assess the discharge algorithms in light of typical monsoon regime rivers. It was found that the MFG method provides the most accurate discharge estimations in most cases, with an average relative root-mean-squared error (RRMSE) across all three reaches of 35.5%. It is followed closely by the Metropolis Manning algorithm, with an average RRMSE of 51.5%. However, the MFG method's reliance on knowledge of prior river discharge limits its application on ungauged rivers. In terms of input data requirement at ungauged regions with no prior records, the Metropolis Manning algorithm provides a more practical alternative over a region that is lacking in historical observations as the algorithm requires less ancillary data. The AMHG algorithm, while requiring the least prior river data, provided the least accurate discharge measurements with an average wet and dry season RRMSE of 79.8% and 119.1%, respectively, across all rivers studied. This poor

  16. Observation with the low energy neutral analyser (LENA) on ASDEX. Pt. 1

    International Nuclear Information System (INIS)

    Verbeek, H.

    1991-02-01

    This report is a compilation of the observation with the Low Energy Neutral Particle Analyzers (LENA) at ASDEX during Ohmic discharges. The dependence of the energy distributions, the integrated fluxes, and their mean energies on various plasma parameters is documented. Connections and correlations with other edge and divertor diagnostics are discussed. (orig.)

  17. Short-term variability of Johor River discharge based on wavelet analysis

    Science.gov (United States)

    Ahmad, N.; Kamaruddin, S. A.; Heryansyah, A.

    2015-02-01

    River discharge provides a direct measure of water quantity and availability of water for specific uses. It also provides the basis for understanding river basin processes and is essential for interpreting and understanding river flow characteristics. This study investigates the temporal variability of river discharge records of Johor River. Wavelet analysis of discharge records for 30 years was carried out to characterize the river flow variability. Our results indicate that Johor River discharge data shows a significant short-term variability of between 0.6 to 2.5 years.

  18. Some specifics considering the urban territories river discharge determination

    Directory of Open Access Journals (Sweden)

    Chilikova-Lubomirova Mila

    2018-01-01

    Full Text Available Urban territories are specific territories with a significant anthropogenic influence on the natural environment. As a result most of the existing natural conditions have been modified. Parts of them cover the natural forms of river beds and floodplains. Concerning to the humans safety, comfort and needs, while keeping ecosystems healthy function, different artificial structures also have been created. The process is connected to the well understanding and good quality data obtaining about the existing conditions and river flow behaviour, that are interconnected and relevant to the river discharge determination and its variations description – key issue for the entire river structures project, water extremes mitigation and maintaining a healthy state of the ecosystems. For the purpose various contact measurements and monitoring procedures are implemented. To clarify the process this material aims to present some specifics connected to the urban territories river discharge determination and the possibility for related monitoring networks creation. It is focused on the most used methods, their specifics and possible challenges for practical application. Main specifics connected to the related decision support systems creation and implementations are also presented. Main purpose is such state of the art dissemination, in help of decision makers and professionals in the area.

  19. Uncertainty in river discharge observations: a quantitative analysis

    Directory of Open Access Journals (Sweden)

    G. Di Baldassarre

    2009-06-01

    Full Text Available This study proposes a framework for analysing and quantifying the uncertainty of river flow data. Such uncertainty is often considered to be negligible with respect to other approximations affecting hydrological studies. Actually, given that river discharge data are usually obtained by means of the so-called rating curve method, a number of different sources of error affect the derived observations. These include: errors in measurements of river stage and discharge utilised to parameterise the rating curve, interpolation and extrapolation error of the rating curve, presence of unsteady flow conditions, and seasonal variations of the state of the vegetation (i.e. roughness. This study aims at analysing these sources of uncertainty using an original methodology. The novelty of the proposed framework lies in the estimation of rating curve uncertainty, which is based on hydraulic simulations. These latter are carried out on a reach of the Po River (Italy by means of a one-dimensional (1-D hydraulic model code (HEC-RAS. The results of the study show that errors in river flow data are indeed far from negligible.

  20. Runoff, discharge and flood occurrence in a poorly gauged tropical basin : the Mahakam River, Kalimantan

    NARCIS (Netherlands)

    Hidayat, H.

    2013-01-01

    Tidal rivers and lowland wetlands present a transition region where the interests of hydrologists and physical oceanographers overlap. Physical oceanographers tend to simplify river hydrology, by often assuming a constant river discharge when studying estuarine dynamics. Hydrologists, in turn,

  1. Observations on the spatial variability of the Prut river discharges

    Directory of Open Access Journals (Sweden)

    Emil-Andrei BRICIU

    2011-06-01

    Full Text Available Liquid and solid discharges of the Prut River were analysed based on measurementsperformed in 7 points from the Romanian national network of water monitoring during aperiod of 30 years. The analyses were performed on flows for the period after theconstruction of the Stânca-Costeşti dam and show the influence of the dam for the entireanalysed time. The analysis from upstream to downstream of the spatial variability of thePrut River annual discharges showed their steady increase downstream and then adecrease in the sector next to Oancea station. A statistical minority of the annualdischarges showed a continuous increase of them until the flowing of Prut into Danube.Knowing that the lower basin of the river is characterized by a low amount of rainfall anda higher evapo(transpiration than the remaining basin, the decreasing flows to the rivermouth is explicable; but the increasing flows to the river mouth cannot be justified, underthese conditions of water balance, than by certain climatological parameters of thermodynamicalnature which generate, with increased frequency, more intense and rich rainfall, with a torrential character. The analyses on couples of three months showed thatthe Oancea flows are higher than the upstream stations (opposite than usual in yearswhen the flows of the upstream hydrometrical stations are lower than the multiannualaverage and that supports the mentioned pluviometrical character. A plausible cause for"Oancea phenomenon" is the increase and the decrease of the sunspots number, whosecycles are relatively well fold on the increase and decrease of annual average flow atOancea hydrometrical station. The strongest increased discharges of the Prut River overthe discharges at the upstream stations occur from May to July (MJJ, the months with thehighest amount of rainfall. Seasonal analysis of MJJ and other couples of 3 monthsshowed that there are also growing flows at Prisăcani station relative to the adjacentstations, but

  2. Dissemination of satellite-based river discharge and flood data

    Science.gov (United States)

    Kettner, A. J.; Brakenridge, G. R.; van Praag, E.; de Groeve, T.; Slayback, D. A.; Cohen, S.

    2014-12-01

    In collaboration with NASA Goddard Spaceflight Center and the European Commission Joint Research Centre, the Dartmouth Flood Observatory (DFO) daily measures and distributes: 1) river discharges, and 2) near real-time flood extents with a global coverage. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations', and observed time series cover 1998 to the present. The advantages over in-situ gauged discharges are: a) easy access to remote or due to political reasons isolated locations, b) relatively low maintenance costs to maintain a continuous observational record, and c) the capability to obtain measurements during floods, hazardous conditions that often impair or destroy in-situ stations. Two MODIS instruments aboard the NASA Terra and Aqua satellites provide global flood extent coverage at a spatial resolution of 250m. Cloud cover hampers flood extent detection; therefore we ingest 6 images (the Terra and Aqua images of each day, for three days), in combination with a cloud shadow filter, to provide daily global flood extent updates. The Flood Observatory has always made it a high priority to visualize and share its data and products through its website. Recent collaborative efforts with e.g. GeoSUR have enhanced accessibility of DFO data. A web map service has been implemented to automatically disseminate geo-referenced flood extent products into client-side GIS software. For example, for Latin America and the Caribbean region, the GeoSUR portal now displays current flood extent maps, which can be integrated and visualized with other relevant geographical data. Furthermore, the flood state of satellite-observed river discharge sites are displayed through the portal as well. Additional efforts include implementing Open Geospatial Consortium (OGC) standards to incorporate Water Markup Language (WaterML) data exchange mechanisms to further facilitate the distribution of the satellite

  3. Discharge measurements of the River Rufiji (Tanzania) using artificial tritium

    International Nuclear Information System (INIS)

    Dincer, T.; Florkowski, T.; Salamba, S.

    1984-01-01

    The use of chemical or radioactive tracers for measuring stream flow is now the established method for discharges up to about 200 m 3 /s. For larger flows and higher suspended load the chemical tracers and also gamma-emitting radioactive tracers become cumbersome if not impossible to use when good accuracy is required. Tritiated water proved to be a good and safe tracer, provided care is taken in handling (no contamination of samples) and the experiments are adequately planned (good estimation of mixing lengths, water velocity and sampling duration). The paper describes discharge measurements performed in 1982 and 1983 in the river Rufiji (Tanzania). Flow rates up to 2000 m 3 /s have been measured, with estimated errors varying between 2 and 4%. Because of high river turbulence in the measurement section, good mixing has been observed over a distance of 7 km (this is much shorter than the distance recommended by various formulae for calculating the mixing length). The problem of selecting the mixing length is discussed and recommendations are given for planning future experiments. Sample contamination as experienced during the first phase of measurements in the river Rufiji is also treated. It is concluded that, technically and economically, the tritium tracer method is feasible for calibrating rating curves (water stage/flow relationship) in turbulent large rivers, also in remote areas. (author)

  4. The Graded Alluvial River: Variable Flow and the Dominant Discharge

    Science.gov (United States)

    Blom, A.; Arkesteijn, L.; Viparelli, E.

    2016-12-01

    We derive analytical formulations for the graded or equilibrium longitudinal profile of a mixed-sediment alluvial river under variable flow. The formulations are applicable to reaches upstream from the backwater zone. The model is based on the conservation equations for the mass of two distinct sediment modes, sand and gravel, at the bed surface to account for the effects of grain size selective transport and abrasion of gravel particles. The effects of a variable flow rate are included by (a) treating the flow as a continuously changing yet steady water discharge (i.e. here termed an alternating steady discharge) and (b) assuming the time scale of changes in channel slope and bed surface texture to be much larger than the one of changes in flow rate. The equations are simplified realizing that at equilibrium the river profile finds itself in a dynamic steady state with oscillations around constant mean values of channel slope and bed surface texture. A generalized sediment transport relation representing the stochastic nature of sediment transport allows for explicit or analytical solutions to the streamwise decrease of both the channel slope and the bed surface mean grain size under variable flow for reaches unaffected by backwater effects. This modelling approach also provides a definition of a channel-forming or dominant water discharge, i.e., that steady water discharge that is equivalent in its effect on the equilibrium channel slope to the full hydrograph.

  5. Daily Discharge Estimation in Talar River Using Lazy Learning Model

    Directory of Open Access Journals (Sweden)

    Zahra Abdollahi

    2017-03-01

    Full Text Available Introduction: River discharge as one of the most important hydrology factors has a vital role in physical, ecological, social and economic processes. So, accurate and reliable prediction and estimation of river discharge have been widely considered by many researchers in different fields such as surface water management, design of hydraulic structures, flood control and ecological studies in spetialand temporal scale. Therefore, in last decades different techniques for short-term and long-term estimation of hourly, daily, monthly and annual discharge have been developed for many years. However, short-term estimation models are less sophisticated and more accurate.Various global and local algorithms have been widely used to estimate hydrologic variables. The current study effort to use Lazy Learning approach to evaluate the adequacy of input data in order to follow the variation of discharge and also simulate next-day discharge in Talar River in KasilianBasinwhere is located in north of Iran with an area of 66.75 km2. Lazy learning is a local linear modelling approach in which generalization beyond the training data is delayed until a query is made to the system, as opposed to in eager learning, where the system tries to generalize the training data before receiving queries Materials and Methods: The current study was conducted in Kasilian Basin, where is located in north of Iran with an area of 66.75 km2. The main river of this basin joins to Talar River near Valicbon village and then exit from the watershed. Hydrometric station located near Valicbon village is equipped with Parshall flume and Limnogragh which can record river discharge of about 20 cubic meters per second.In this study, daily data of discharge recorded in Valicbon station related to 2002 to 2012 was used to estimate the discharge of 19 September 2012. The mean annual discharge of considered river was also calculated by using available data about 0.441 cubic meters per second. To

  6. GRACE-based estimates of water discharge over the Yellow River basin

    Directory of Open Access Journals (Sweden)

    Qiong Li

    2016-05-01

    Full Text Available As critical component of hydrologic cycle, basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles. Combining GRACE gravity field models with ET from GLDAS models and precipitation from GPCP, discharge of the Yellow River basin are estimated from the water balance equation. While comparing the results with discharge from GLDAS model and in situ measurements, the results reveal that discharge from Mosaic and CLM GLDAS model can partially represent the river discharge and the discharge estimation from water balance equation could reflect the discharge from precipitation over the Yellow River basin.

  7. Studying neutrino properties in the future LENA experiment

    International Nuclear Information System (INIS)

    Wurm, Michael

    2013-01-01

    LENA (Low Energy Neutrino Astronomy) is a next-generation neutrino detector based on 50 kt of liquid scintillator. The low detection threshold, the good energy resolution and the potent background discrimination inherent to liquid scintillator make LENA a versatile observatory for astrophysical and terrestrial neutrinos. The present contribution highlights LENA's capabilities for studying neutrino properties based on both natural and artificial sources

  8. Climate Change on Discharge and Sedimentation of River Awara, Nigeria

    Directory of Open Access Journals (Sweden)

    Philipa O. Idogho

    2014-07-01

    Full Text Available The dynamics of variation in effect of climate change on discharges and sedimentation mechanism of River Awara is investigated using 14-year data of rainfall (mm, discharges (m 3 /s, temperature ( 0 c and sediment load (t. Surface runoff (mm was computed using Water Balance Equation and some other empirical iteration based on the observed rainfall and temperature over a period of time. Analysis of Paired Sample reveals the relationship between tested hydrological variables: Rainfall-Runoff; Runoff-Sediment load; and DischargeSediment load are significant at 0.95 level of confidence interval. Logarithm calibration curve further illustrates that Rainfall-Runoff and Runoff-Sediment have coefficient values (R 2 of 0.996 and 0.822 respectively. Analytical iteration shows that the intensity and duration of precipitation determine the magnitude of river, generation of surface runoff and sedimentation rate. Increase in rainfall depth by 100 mm within the 14-year has resulted to serious erodobility and erositivity around River Awara. Cumulative average sediment load ratio of 0.46 has significantly reduced the reservoir capacity of the river by 10%. 78% of total annual surface runoff is lost to ocean; since reservoir capacity has been silted up which in turns reduces the volume of water that could be held for storage, treatment and distribution for its intended purposes. Comparative physics-based output indicates that temperature increase of 0.7 0 c between 1997 and 2004, due to internal processes of the Earth and some human activities. It is however projected that temperature will rise by 0.9 0 c by the end of 2015. Projected rise in temperature will adversely affect hydrological cycle and complicate already scarce-water resources due to intensive evapotranspiration, infiltration and reduction in stream flow. Holistic integration using bottom-up mechanism needs to be applied to address this constraint. Dredging of river Awara is very important to enhance

  9. Estimating Discharge in Low-Order Rivers With High-Resolution Aerial Imagery

    OpenAIRE

    King, Tyler V.; Neilson, Bethany T.; Rasmussen, Mitchell T.

    2018-01-01

    Remote sensing of river discharge promises to augment in situ gauging stations, but the majority of research in this field focuses on large rivers (>50 m wide). We present a method for estimating volumetric river discharge in low-order (wide) rivers from remotely sensed data by coupling high-resolution imagery with one-dimensional hydraulic modeling at so-called virtual gauging stations. These locations were identified as locations where the river contracted under low flows, exposing a substa...

  10. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    Science.gov (United States)

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  11. Defining the formative discharge for alternate bars in alluvial rivers

    Science.gov (United States)

    Redolfi, M.; Carlin, M.; Tubino, M.; Adami, L.; Zolezzi, G.

    2017-12-01

    We investigate the properties of alternate bars in long straight reaches of channelized streams subject to an unsteady, irregular flow regime. To this aim we propose a novel integration of a statistical approach with the analytical perturbation model of Tubino (1991) which predicts the evolution of bar properties (namely amplitude and wavelength) as consequence of a flood. The outcomes of our integrated modelling approach are probability distribution of the bar properties, which depend essentially on two ingredients: (i) the statistical properties of the flow regime (duration, frequency and magnitude of the flood events, and (ii) the reach-averaged hydro-geomorphic characteristics of the channel (bed material, channel gradient and width). This allows to define a "bar-forming" discharge value as the flow value which would reproduce the most likely bar properties in a river reach under unsteady flow. Alternate bars are often migrating downstream and growing or declining during flood events. The timescale of bar growth and migration is often comparable with the duration of the floods: consequently, bar properties such as height and wavelength do not respond instantaneously to discharge variations (i.e. quasi-equilibrium response) but may depend on previous flood events. Theoretical results are compared with observations in three Alpine, channelized gravel bed rivers with encouraging outcomes.png" class="documentimage" >

  12. Comment on Origin of Groundwater Discharge at Fall River Springs

    Energy Technology Data Exchange (ETDEWEB)

    Rose, T

    2006-10-20

    I'm writing at the request of the Pit River Tribe to offer my professional opinion as a geochemist regarding the origin of groundwater discharge at the Fall River Springs, Shasta Co., California. In 1997, I conducted a study of the large volume cold springs associated with the Cascade Volcanoes in northern California, in collaboration with one of my colleagues. This work was published as a Lawrence Livermore National Laboratory report (Davisson and Rose, 1997). The Fall River Springs emerge from the distal end of the Giant Crater Lava Field, a laterally extensive basalt flow that stretches from the southern flank of Medicine Lake Volcano southward for a distance of 40 km. Both Medicine Lake Volcano and the Giant Crater Lava Field have virtually no surface water drainages. Precipitation that falls in these areas is inferred to seep into fractures in the rock, where it is carried down gradient under the force of gravity. Mean annual precipitation rates on Medicine Lake Volcano and the Giant Crater Lava field are adequate to account for the {approx}1200 ft{sup 3}/sec discharge of the Fall River Springs. To evaluate the origin of the springs using geochemical methods, water samples were collected from the Fall River Springs and the Medicine Lake highlands and analyzed for oxygen and hydrogen isotope ratios. The isotope ratios measured for a groundwater sample are diagnostic of the average composition of the precipitation from which the water was derived. The isotope ratios of rain and snow also vary systematically with elevation, such that groundwater derived from recharge at higher elevations can be distinguished from that which originated at lower elevations. The stable isotope data for the Fall River Springs are consistent with groundwater recharge on the Medicine Lake Volcano and adjacent lava field. Mass balance calculations suggest that approximately half of the Fall River Springs flow is derived from the volcanic edifice. Rose and Davisson (1996) showed

  13. Hurricane Mitch: Peak Discharge for Selected River Reachesin Honduras

    Science.gov (United States)

    Smith, Mark E.; Phillips, Jeffrey V.; Spahr, Norman E.

    2002-01-01

    Hurricane Mitch began as a tropical depression in the Caribbean Sea on 22 October 1998. By 26 October, Mitch had strengthened to a Category 5 storm as defined by the Saffir-Simpson Hurricane Scale (National Climate Data Center, 1999a), and on 27 October was threatening the northern coast of Honduras (fig. 1). After making landfall 2 days later (29 October), the storm drifted south and west across Honduras, wreaking destruction throughout the country before reaching the Guatemalan border on 31 October. According to the National Climate Data Center of the National Oceanic and Atmospheric Administration (National Climate Data Center, 1999b), Hurricane Mitch ranks among the five strongest storms on record in the Atlantic Basin in terms of its sustained winds, barometric pressure, and duration. Hurricane Mitch also was one of the worst Atlantic storms in terms of loss of life and property. The regionwide death toll was estimated to be more than 9,000; thousands of people were reported missing. Economic losses in the region were more than $7.5 billion (U.S. Agency for International Development, 1999). Honduras suffered the most widespread devastation during the storm. More than 5,000 deaths, and economic losses of more than $4 billion, were reported by the Government of Honduras. Honduran officials estimated that Hurricane Mitch destroyed 50 years of economic development. In addition to the human and economic losses, intense flooding and landslides scarred the Honduran landscape - hydrologic and geomorphologic processes throughout the country likely will be affected for many years. As part of the U.S. Government's response to the disaster, the U.S. Geological Survey (USGS) conducted post-flood measurements of peak discharge at 16 river sites throughout Honduras (fig. 2). Such measurements, termed 'indirect' measurements, are used to determine peak flows when direct measurements (using current meters or dye studies, for example) cannot be made. Indirect measurements of

  14. Methane distribution and oxidation around the Lena Delta in summer 2013

    Science.gov (United States)

    Bussmann, Ingeborg; Hackbusch, Steffen; Schaal, Patrick; Wichels, Antje

    2017-11-01

    The Lena River is one of the largest Russian rivers draining into the Laptev Sea. The predicted increases in global temperatures are expected to cause the permafrost areas surrounding the Lena Delta to melt at increasing rates. This melting will result in high amounts of methane reaching the waters of the Lena and the adjacent Laptev Sea. The only biological sink that can lower methane concentrations within this system is methane oxidation by methanotrophic bacteria. However, the polar estuary of the Lena River, due to its strong fluctuations in salinity and temperature, is a challenging environment for bacteria. We determined the activity and abundance of aerobic methanotrophic bacteria by a tracer method and by the quantitative polymerase chain reaction. We described the methanotrophic population with a molecular fingerprinting method (monooxygenase intergenic spacer analysis), as well as the methane distribution (via a headspace method) and other abiotic parameters, in the Lena Delta in September 2013. The median methane concentrations were 22 nmol L-1 for riverine water (salinity (S) 20). The Lena River was not the source of methane in surface water, and the methane concentrations of the bottom water were mainly influenced by the methane concentration in surface sediments. However, the bacterial populations of the riverine and polar waters showed similar methane oxidation rates (0.419 and 0.400 nmol L-1 d-1), despite a higher relative abundance of methanotrophs and a higher estimated diversity in the riverine water than in the polar water. The methane turnover times ranged from 167 days in mixed water and 91 days in riverine water to only 36 days in polar water. The environmental parameters influencing the methane oxidation rate and the methanotrophic population also differed between the water masses. We postulate the presence of a riverine methanotrophic population that is limited by sub-optimal temperatures and substrate concentrations and a polar

  15. Modelling the fate of the Tijuana River discharge plume

    Science.gov (United States)

    van Ormondt, M.; Terrill, E.; Hibler, L. F.; van Dongeren, A. R.

    2010-12-01

    After rainfall events, the Tijuana River discharges excess runoff into the ocean in a highly turbid plume. The runoff waters contain large suspended solids concentrations, as well as high levels of toxic contaminants, bacteria, and hepatitis and enteroviruses. Public health hazards posed by the effluent often result in beach closures for several kilometers northward along the U.S. shoreline. A Delft3D model has been set up to predict the fate of the Tijuana River plume. The model takes into account the effects of tides, wind, waves, salinity, and temperature stratification. Heat exchange with the atmosphere is also included. The model consists of a relatively coarse outer domain and a high-resolution surf zone domain that are coupled with Domain Decomposition. The offshore boundary conditions are obtained from the larger NCOM SoCal model (operated by the US Navy) that spans the entire Southern California Bight. A number of discharge events are investigated, in which model results are validated against a wide range of field measurements in the San Diego Bight. These include HF Radar surface currents, REMUS tracks, drifter deployments, satellite imagery, as well as current and temperature profile measurements at a number of locations. The model is able to reproduce the observed current and temperature patterns reasonably well. Under calm conditions, the model results suggest that the hydrodynamics in the San Diego Bight are largely governed by internal waves. During rainfall events, which are typically accompanied by strong winds and high waves, wind and wave driven currents become dominant. An analysis will be made of what conditions determine the trapping and mixing of the plume inside the surfzone and/or the propagation of the plume through the breakers and onto the coastal shelf. The model is now also running in operational mode. Three day forecasts are made every 24 hours. This study was funded by the Office of Naval Research.

  16. Predictability of current and future multi-river discharges: Ganges, Brahmaputra, Yangtze, Blue Nile, and Murray-Darling rivers

    Science.gov (United States)

    Jian, Jun

    2007-12-01

    Determining river discharge is of critical importance to many societies as they struggle with fresh water supply and risk of flooding. In Bangladesh, floods occur almost every year but with sufficient irregularity to have adverse social and economical consequences. Important goals are to predict the discharge to be used for the optimization of agricultural practices, disaster mitigation and water resource management. The aim of this study is to determine the predictability of river discharge in a number of major rivers on time scale varying from weeks to a century. We investigated predictability considering relationship between SST and discharge. Next, we consider IPCC model projections of river discharge while the models are statistically adjusted against observed discharges. In this study, we consider five rivers, the Ganges, the Brahmaputra, the Yangtze, the Blue Nile, and the Murray-Darling Rivers. On seasonal time scales, statistically significant correlations are found between mean monthly equatorial Pacific sea surface temperature (SST) and the summer Ganges discharge with lead times of 2-3 months due to oscillations of the El Nino-Southern Oscillation (ENSO) phenomena. In addition, there are strong correlations in the southwest and northeast Pacific. These, too, appear to be tied to the ENSO cycle. The Brahmaputra discharge, on the other hand, shows somewhat weaker relationships with tropical SST. Strong lagged correlations relationships are found with SST in the Bay of Bengal but these are the result of very warm SSTs and exceptional Brahmaputra discharge during the summer of 1998. When this year is removed from the time series, relationships weaken everywhere except in the northwestern Pacific for the June discharge and in areas of the central Pacific straddling the equator for the July discharge. The relationships are relative strong, but they are persistent from month to month and suggest that two different and sequential factors influence Brahmaputra

  17. Estimating Discharge in Low-Order Rivers With High-Resolution Aerial Imagery

    Science.gov (United States)

    King, Tyler V.; Neilson, Bethany T.; Rasmussen, Mitchell T.

    2018-02-01

    Remote sensing of river discharge promises to augment in situ gauging stations, but the majority of research in this field focuses on large rivers (>50 m wide). We present a method for estimating volumetric river discharge in low-order (standard deviation of 6%). Sensitivity analyses were conducted to determine the influence of inundated channel bathymetry and roughness parameters on estimated discharge. Comparison of synthetic rating curves produced through sensitivity analyses show that reasonable ranges of parameter values result in mean percent errors in predicted discharges of 12%-27%.

  18. Weak Learner Method for Estimating River Discharges using Remotely Sensed Data: Central Congo River as a Testbed

    Science.gov (United States)

    Kim, D.; Lee, H.; Yu, H.; Beighley, E.; Durand, M. T.; Alsdorf, D. E.; Hwang, E.

    2017-12-01

    River discharge is a prerequisite for an understanding of flood hazard and water resource management, yet we have poor knowledge of it, especially over remote basins. Previous studies have successfully used a classic hydraulic geometry, at-many-stations hydraulic geometry (AMHG), and Manning's equation to estimate the river discharge. Theoretical bases of these empirical methods were introduced by Leopold and Maddock (1953) and Manning (1889), and those have been long used in the field of hydrology, water resources, and geomorphology. However, the methods to estimate the river discharge from remotely sensed data essentially require bathymetric information of the river or are not applicable to braided rivers. Furthermore, the methods used in the previous studies adopted assumptions of river conditions to be steady and uniform. Consequently, those methods have limitations in estimating the river discharge in complex and unsteady flow in nature. In this study, we developed a novel approach to estimating river discharges by applying the weak learner method (here termed WLQ), which is one of the ensemble methods using multiple classifiers, to the remotely sensed measurements of water levels from Envisat altimetry, effective river widths from PALSAR images, and multi-temporal surface water slopes over a part of the mainstem Congo. Compared with the methods used in the previous studies, the root mean square error (RMSE) decreased from 5,089 m3s-1 to 3,701 m3s-1, and the relative RMSE (RRMSE) improved from 12% to 8%. It is expected that our method can provide improved estimates of river discharges in complex and unsteady flow conditions based on the data-driven prediction model by machine learning (i.e. WLQ), even when the bathymetric data is not available or in case of the braided rivers. Moreover, it is also expected that the WLQ can be applied to the measurements of river levels, slopes and widths from the future Surface Water Ocean Topography (SWOT) mission to be

  19. Hydrology of the Po River: looking for changing patterns in river discharge

    Directory of Open Access Journals (Sweden)

    A. Montanari

    2012-10-01

    Full Text Available Scientists and public administrators are devoting increasing attention to the Po River, in Italy, in view of concerns related to the impact of increasing urbanisation and exploitation of water resources. A better understanding of the hydrological regime of the river is necessary to improve water resources management and flood protection. In particular, the analysis of the effects of hydrological and climatic change is crucial for planning sustainable development and economic growth. An extremely interesting issue is to inspect to what extent river flows can be naturally affected by the occurrence of long periods of water abundance or scarcity, which can be erroneously interpreted as irreversible changes due to human impact. In fact, drought and flood periods alternatively occurred in the recent past in the form of long-term fluctuations. This paper presents advanced graphical and analytical methods to gain a better understanding of the temporal distribution of the Po River discharge. In particular, we present an analysis of river flow variability and persistence properties, to gain a better understanding of natural patterns, and in particular long-term changes, which may affect the future flood risk and availability of water resources.

  20. Mapping mean annual and monthly river discharges: geostatistical developments for incorporating river network dependencies

    International Nuclear Information System (INIS)

    Sauquet, Eric

    2004-01-01

    Regional hydrology is one topic that shows real improvement in partly due to new statistical development and computation facilities. Nevertheless theoretical difficulties for mapping river regime characteristics or recover these features at un gauged location remain because of the nature of the variable under study: river flows are related to a specific area that is defined by the drainage basin, are spatially organised by the river network with upstream-downstream dependencies. Estimations of hydrological descriptors are required for studying links with ecological processes at different spatial scale, from local site where biological or/and water quality data are available to large scale for sustainable development purposes. This presentation aims at describing a method for runoff pattern along the main river network. The approach dedicated to mean annual runoff is based on geostatistical interpolation procedures to which a constraint of water budget has been added. Expansion in Empirical Orthogonal Function has been considered in combination with kriging for interpolating mean monthly discharges. The methodologies are implemented within a Geographical Information System and illustrated by two study cases (two large basins in France). River flow regime descriptors are estimated for basins of more than 50km 2 . Opportunities of collaboration with a partition of France into hydro-eco regions derived from geology and climate considerations is discussed. (Author)

  1. Hydrology of the Po River: looking for changing patterns in river discharge

    Science.gov (United States)

    Montanari, A.

    2012-05-01

    Scientists and public administrators are devoting increasing attention to the Po River, in Italy, in view of concerns related to the impact of increasing urbanisation and exploitation of water resources. A better understanding of the hydrological regime of the river is necessary to improve water resources management and flood protection. In particular, the analysis of the effects of hydrological and climatic change is crucial for planning sustainable development and economic growth. An extremely interesting issue is to inspect to what extent river flows can be naturally affected by the occurrence of long periods of water abundance or scarcity, which can be erroneously interpreted as irreversible changes due to human impact. In fact, drought and flood periods alternatively occurred in the recent past in the form of long term cycles. This paper presents advanced graphical and analytical methods to gain a better understanding of the temporal distribution of the Po River discharge. In particular, we present an analysis of river flow variability and memory properties to better understand natural patterns and in particular long term changes, which may affect the future flood risk and availability of water resources.

  2. Impact of beaver ponds on river discharge and sediment deposition along the Chevral River, Ardennes, Belgium

    Science.gov (United States)

    Nyssen, Jan; Frankl, Amaury; Pontzeele, Jolien; De Visscher, Maarten; Billi, Paolo

    2013-04-01

    With the recovery of the European beaver (Castor fiber) and their capacity to engineer fluvial landscapes, questions arise as to how they influence river discharge and sediment transport. The Chevral river (Ardennes, Belgium) contains two beaver dam sequences which appeared in 2004 and count now about 30 dams. Flow discharges and sediment fluxes were measured at the in- and outflow of each dam sequence. Volumes of sediment deposited behind the dams were measured. Between 2004 and 2011, peak flows were topped off, and the magnitude of extreme events decreased. 1710 m³ of sediment were deposited behind the beaver dams, with an average sediment thickness of 25 cm. The thickness of the sediment layer is related to the area of the beaver ponds. Along the stream, beaver pond sediment thickness displayed a sinusoidal deposition pattern, in which ponds with thick sediment layers were preceded by a series of ponds with thinner sediment layers. A downstream textural coarsening in the dam sequences was also observed, probably due to dam failures subsequent to surges. Differences in sediment flux between the in- and outflow at the beaver pond sequence were related to the river hydrograph, with deposition taking place during the rising limbs and slight erosion during the falling limbs. The seven-year-old sequences have filtered 190 tons of sediment out of the Chevral river, which is of the same order of magnitude as the 374 tons measured in pond deposits, with the difference between the values corresponding to beaver excavations (60 tons), inflow from small tributaries, and runoff from the valley flanks. Hydrogeomorphic effects of C. fiber and C. canadensis activity are similar in magnitude. The detailed analysis of changes to hydrology in beaver pond sequences confirms the potential of beavers to contribute to river and wetland restoration and catchment management.

  3. Dominant discharge – an outline of theory and a case study from the Raba river

    Directory of Open Access Journals (Sweden)

    Wiktoria Czech

    2016-06-01

    Full Text Available Designing hydraulic structures engineers has only theoretical flows, calculated using formulas based on statistics. Knowledge of the dominant discharge could help determine designers who are interested in changes of the morphology of river channels, especially in terms of sediment transport. It was observed that the designing of a stable channel in the river is possible when defining characteristic of flow in the river which is the most frequently present in the river and in the same time it carries the sediment. That is the dominant discharge. It is this movement can represent both the hydraulic system and the geometry of the river cross-sections. The dominant discharge (also called river shaping channel discharge is considered by many authors as a discharge that transports the largest amount of sediment, it takes a long time and has an impact on the formation of the shape of the river bed. Observations of Wolman and Miller showed that low but frequent flows of water might be responsible for new shape of the river channel, erosion of the riverbed, sediment deposition and consequently changes in river morphology. The paper presents Wolman method for dominant discharge use for the Raba River for chosen gauge cross section. Along in the paper we discuss the obtained results and the consequences of using dominant discharge for the practice. In six cross sections on the Raba River, Qdd was calculated values, which range from 31 m3 • s–1 (for the section in Rabka to 395 m3 • s–1 (in Proszówki. These flows occur every two years (for the upper sections of the river, and every four years (for cross-sections located in the lower section of the river.

  4. An Evaluation of the Importance of Self- Purification Capacity of Rivers in Developing Effluent Discharge Standards

    International Nuclear Information System (INIS)

    Asheg Moalla, M.; Malek Mohammadi, B.; Torabian, A.

    2016-01-01

    In current effluent discharge standards of the most countries such as Iran, self-purification capacity of rivers have not been considered. These standards developed a similar effluent discharge standard for all of the rivers without considering hydrological and hydraulic conditions of rivers. In this paper in order to show the importance of self-purification capacity and differences between the rivers, in developing effluent discharge standard, two rivers- Gheshlagh River in Kurdistan and Sabzkooh River in Chaharmahal Bakhtiari- as samples were selected., and with applying Qual2kw model, current Iran effluent discharge standards were used to simulate the state of each river. The simulation showed that compliance with this standard maintain an appropriate qualitative condition of Gheshlagh River but in Sabzkoh River, due to the large number of pollution sources, these standards not only does not help to maintain the water quality but will have a very negative impact on water quality. Then Using simulation of river quality, the authorized appropriate limit based on self-purification capacity and the number and type of pollutants were estimated and showed that to develop accurate and efficient standards the self-purification capacity, the number of pollution sources, the amount of waste load and other different conditions of rivers also should be considered.

  5. How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam?

    Science.gov (United States)

    Guo, Leicheng; Su, Ni; Zhu, Chunyan; He, Qing

    2018-05-01

    Streamflow and sediment loads undergo remarkable changes in worldwide rivers in response to climatic changes and human interferences. Understanding their variability and the causes is of vital importance regarding river management. With respect to the Changjiang River (CJR), one of the largest river systems on earth, we provide a comprehensive overview of its hydrological regime changes by analyzing long time series of river discharges and sediment loads data at multiple gauge stations in the basin downstream of Three Gorges Dam (TGD). We find profound river discharge reduction during flood peaks and in the wet-to-dry transition period, and slightly increased discharges in the dry season. Sediment loads have reduced progressively since 1980s owing to sediment yield reduction and dams in the upper basin, with notably accelerated reduction since the start of TGD operation in 2003. Channel degradation occurs in downstream river, leading to considerable river stage drop. Lowered river stages have caused a 'draining effect' on lakes by fostering lake outflows following TGD impoundments. The altered river-lake interplay hastens low water occurrence inside the lakes which can worsen the drought given shrinking lake sizes in long-term. Moreover, lake sedimentation has decreased since 2002 with less sediment trapped in and more sediment flushed out of the lakes. These hydrological changes have broad impacts on river flood and drought occurrences, water security, fluvial ecosystem, and delta safety.

  6. Operational river discharge forecasting in poorly gauged basins: the Kavango River basin case study

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Jensen, Iris Hedegaard; Guzinski, R.

    2015-01-01

    in Africa. We present an operational probabilistic forecasting approach which uses public-domain climate forcing data and a hydrologic-hydrodynamic model which is entirely based on open-source software. Data assimilation techniques are used to inform the forecasts with the latest available observations......Operational probabilistic forecasts of river discharge are essential for effective water resources management. Many studies have addressed this topic using different approaches ranging from purely statistical black-box approaches to physically based and distributed modeling schemes employing data...... assimilation techniques. However, few studies have attempted to develop operational probabilistic forecasting approaches for large and poorly gauged river basins. The objective of this study is to develop open-source software tools to support hydrologic forecasting and integrated water resources management...

  7. A Summer View of Russia's Lena Delta and Olenek

    Science.gov (United States)

    2004-01-01

    These views of the Russian Arctic were acquired by NASA's Multi-angle Imaging SpectroRadiometer (MISR) instrument on July 11, 2004, when the brief arctic summer had transformed the frozen tundra and the thousands of lakes, channels, and rivers of the Lena Delta into a fertile wetland, and when the usual blanket of thick snow had melted from the vast plains and taiga forests. This set of three images cover an area in the northern part of the Eastern Siberian Sakha Republic. The Olenek River wends northeast from the bottom of the images to the upper left, and the top portions of the images are dominated by the delta into which the mighty Lena River empties when it reaches the Laptev Sea. At left is a natural color image from MISR's nadir (vertical-viewing) camera, in which the rivers appear murky due to the presence of sediment, and photosynthetically-active vegetation appears green. The center image is also from MISR's nadir camera, but is a false color view in which the predominant red color is due to the brightness of vegetation at near-infrared wavelengths. The most photosynthetically active parts of this area are the Lena Delta, in the lower half of the image, and throughout the great stretch of land that curves across the Olenek River and extends northeast beyond the relatively barren ranges of the Volyoi mountains (the pale tan-colored area to the right of image center). The right-hand image is a multi-angle false-color view made from the red band data of the 60o backward, nadir, and 60o forward cameras, displayed as red, green and blue, respectively. Water appears blue in this image because sun glitter makes smooth, wet surfaces look brighter at the forward camera's view angle. Much of the landscape and many low clouds appear purple since these surfaces are both forward and backward scattering, and clouds that are further from the surface appear in a different spot for each view angle, creating a rainbow-like appearance. However, the vegetated region that is

  8. Seasonal forecasting of discharge for the Raccoon River, Iowa

    Science.gov (United States)

    Slater, Louise; Villarini, Gabriele; Bradley, Allen; Vecchi, Gabriel

    2016-04-01

    The state of Iowa (central United States) is regularly afflicted by severe natural hazards such as the 2008/2013 floods and the 2012 drought. To improve preparedness for these catastrophic events and allow Iowans to make more informed decisions about the most suitable water management strategies, we have developed a framework for medium to long range probabilistic seasonal streamflow forecasting for the Raccoon River at Van Meter, a 8900-km2 catchment located in central-western Iowa. Our flow forecasts use statistical models to predict seasonal discharge for low to high flows, with lead forecasting times ranging from one to ten months. Historical measurements of daily discharge are obtained from the U.S. Geological Survey (USGS) at the Van Meter stream gage, and used to compute quantile time series from minimum to maximum seasonal flow. The model is forced with basin-averaged total seasonal precipitation records from the PRISM Climate Group and annual row crop production acreage from the U.S. Department of Agriculture's National Agricultural Statistics Services database. For the forecasts, we use corn and soybean production from the previous year (persistence forecast) as a proxy for the impacts of agricultural practices on streamflow. The monthly precipitation forecasts are provided by eight Global Climate Models (GCMs) from the North American Multi-Model Ensemble (NMME), with lead times ranging from 0.5 to 11.5 months, and a resolution of 1 decimal degree. Additionally, precipitation from the month preceding each season is used to characterize antecedent soil moisture conditions. The accuracy of our modelled (1927-2015) and forecasted (2001-2015) discharge values is assessed by comparison with the observed USGS data. We explore the sensitivity of forecast skill over the full range of lead times, flow quantiles, forecast seasons, and with each GCM. Forecast skill is also examined using different formulations of the statistical models, as well as NMME forecast

  9. Interoperability challenges in river discharge modelling: A cross domain application scenario

    Science.gov (United States)

    Santoro, Mattia; Andres, Volker; Jirka, Simon; Koike, Toshio; Looser, Ulrich; Nativi, Stefano; Pappenberger, Florian; Schlummer, Manuela; Strauch, Adrian; Utech, Michael; Zsoter, Ervin

    2018-06-01

    River discharge is a critical water cycle variable, as it integrates all the processes (e.g. runoff and evapotranspiration) occurring within a river basin and provides a hydrological output variable that can be readily measured. Its prediction is of invaluable help for many water-related tasks including water resources assessment and management, flood protection, and disaster mitigation. Observations of river discharge are important to calibrate and validate hydrological or coupled land, atmosphere and ocean models. This requires using datasets from different scientific domains (Water, Weather, etc.). Typically, such datasets are provided using different technological solutions. This complicates the integration of new hydrological data sources into application systems. Therefore, a considerable effort is often spent on data access issues instead of the actual scientific question. This paper describes the work performed to address multidisciplinary interoperability challenges related to river discharge modeling and validation. This includes definition and standardization of domain specific interoperability standards for hydrological data sharing and their support in global frameworks such as the Global Earth Observation System of Systems (GEOSS). The research was developed in the context of the EU FP7-funded project GEOWOW (GEOSS Interoperability for Weather, Ocean and Water), which implemented a "River Discharge" application scenario. This scenario demonstrates the combination of river discharge observations data from the Global Runoff Data Centre (GRDC) database and model outputs produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) predicting river discharge based on weather forecast information in the context of the GEOSS.

  10. Changes in river discharge and hydrograph separation in the upper basins of Yangtze and Yellow Rivers on the Tibetan Plateau

    Science.gov (United States)

    Ding, Y.

    2017-12-01

    Systematic changes of river discharge and the concentration-discharge relation were explored to elucidate the response of river discharge to climate change as well as the connectivity of hydrologic and hydrochemical processes using hydrological data during 1956-2015 and chemical data during 2013-2015 at Yanshiping (YSP, 4,538 km2), Tuotuohe (TTH, 15,924 km2) and Zhimenda (ZMD, 137,704 km2) gauging sections in the upper basin of Yangtze River (UBYA), and at Huangheyan (HHY, 20,930 km2), Jimai (JM, 45,019 km2), Jungong (JG, 98,414 km2) and Tangnaihai (TNH, 121,972 km2) gauging sections in the upper basin of Yellow River (UBYE) on the Tibetan Plateau (TP). Results showed that annual discharge in UBYA presents a decreasing trend from 1950s to late 1970s and exhibits an increasing trend since 1970s due to increased temperature and precipitation. However, discharge in UBYE increases from 1950s to 1980s and decrease since late 1980s due to increased temperature and decreased precipitation. Snow/ice meltwater may play an important role on changes in river discharge from the most upper catchments, particularly for periods with increasing temperature, where snow cover, glaciers and frozen soils are widely distributed. Concentration/flux-discharge in discharge was dominated by a well-defined power law relation, with R2 values lower on rising than falling limbs. This finding has important implications for efforts to estimate annual concentrations and export of major solutes from similar catchments in cold regions where only river discharge is available. Concentrations of conservative solutes in discharge resulted from mixing of two end-members at the most upper gauging sections (YSP, TTH and HHY), and three end-members at the lower gauging sections (ZMD, JM, JG and TNH), with relatively constant solute concentrations in end-members. Relationship between the fractional contributions of meltwater and/or precipitation and groundwater and river discharge followed the same relation

  11. Remote Sensing and River Discharge Forecasting for Major Rivers in South Asia (Invited)

    Science.gov (United States)

    Webster, P. J.; Hopson, T. M.; Hirpa, F. A.; Brakenridge, G. R.; De-Groeve, T.; Shrestha, K.; Gebremichael, M.; Restrepo, P. J.

    2013-12-01

    The South Asia is a flashpoint for natural disasters particularly flooding of the Indus, Ganges, and Brahmaputra has profound societal impacts for the region and globally. The 2007 Brahmaputra floods affecting India and Bangladesh, the 2008 avulsion of the Kosi River in India, the 2010 flooding of the Indus River in Pakistan and the 2013 Uttarakhand exemplify disasters on scales almost inconceivable elsewhere. Their frequent occurrence of floods combined with large and rapidly growing populations, high levels of poverty and low resilience, exacerbate the impact of the hazards. Mitigation of these devastating hazards are compounded by limited flood forecast capability, lack of rain/gauge measuring stations and forecast use within and outside the country, and transboundary data sharing on natural hazards. Here, we demonstrate the utility of remotely-derived hydrologic and weather products in producing skillful flood forecasting information without reliance on vulnerable in situ data sources. Over the last decade a forecast system has been providing operational probabilistic forecasts of severe flooding of the Brahmaputra and Ganges Rivers in Bangldesh was developed (Hopson and Webster 2010). The system utilizes ECMWF weather forecast uncertainty information and ensemble weather forecasts, rain gauge and satellite-derived precipitation estimates, together with the limited near-real-time river stage observations from Bangladesh. This system has been expanded to Pakistan and has successfully forecast the 2010-2012 flooding (Shrestha and Webster 2013). To overcome the in situ hydrological data problem, recent efforts in parallel with the numerical modeling have utilized microwave satellite remote sensing of river widths to generate operational discharge advective-based forecasts for the Ganges and Brahmaputra. More than twenty remotely locations upstream of Bangldesh were used to produce stand-alone river flow nowcasts and forecasts at 1-15 days lead time. showing that

  12. Global River Discharge and Water Temperature under Climate Change

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P.

    2013-01-01

    Climate change will affect hydrologic and thermal regimes of rivers, having a direct impact on freshwater ecosystems and human water use. Here we assess the impact of climate change on global river flows and river water temperatures, and identify regions that might become more critical for

  13. Variability in temperature, precipitation and river discharge in the Baltic States

    Energy Technology Data Exchange (ETDEWEB)

    Kriauciuniene, J.; Meilutyte-Barauskiene, D.; Sarauskiene, D. (Lithuanian Energy Inst., Kaunas (Lithuania), Lab. of Hydrology); Reihan, A. (Tallinn Univ. of Technology (Estonia), Inst. of Environmental Engineering); Koltsova, T.; Lizuma, L. (Latvian Hydrometeorological Agency, Riga (LV))

    2012-07-01

    The climate change impact on water resources is observed in all the Baltic States. These processes became more evident in the last decades. Although the territory of the Baltic States (Lithuania, Latvia, Estonia) is not large (175000 km2), the climatic differences are quite considerable. We performed a regionalization of the territory of the Baltic States depending on the conditions of river runoff formation which can be defined according to percentages of the river feeding sources (precipitation, snowmelt, groundwater). Long-term series of temperature (40 stations), precipitation (59 stations) and river discharge (77 stations) were used to compose ten regional series. This paper addresses: (1) variability in long-term regional series of temperature, precipitation and river discharge over a long period (1922-2007); (2) changes in regional series, comparing the periods 1991-2007 and 1931-1960 with the reference period (1961-1990), and (3) the impact of temperature and precipitation changes on regional river discharge. (orig.)

  14. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia.

    Science.gov (United States)

    van der Wulp, Simon A; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J

    2016-09-30

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377m(3)s(-1) entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174tons and 14 to 60tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Instream biological assessment of NPDES point source discharges at the Savannah River Site, 1997-1998

    International Nuclear Information System (INIS)

    Specht, W.L.

    2000-01-01

    The Savannah River Site currently has 33 permitted NPDES outfalls that have been permitted by the South Carolina Department of Health an Environmental Control to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams

  16. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China.

    Science.gov (United States)

    Zhao, Yifei; Zou, Xinqing; Liu, Qing; Yao, Yulong; Li, Yali; Wu, Xiaowei; Wang, Chenglong; Yu, Wenwen; Wang, Teng

    2017-12-31

    The water discharge and sediment load of rivers are changing substantially under the impacts of climate change and human activities, becoming a hot issue in hydro-environmental research. In this study, the water discharge and sediment load in the mainstream and seven tributaries of the Yangtze River were investigated by using long-term hydro-meteorological data from 1953 to 2013. The non-parametric Mann-Kendall test and double mass curve (DMC) were used to detect trends and abrupt change-points in water discharge and sediment load and to quantify the effects of climate change and human activities on water discharge and sediment load. The results are as follows: (1) the water discharge showed a non-significant decreasing trend at most stations except Hukou station. Among these, water discharge at Dongting Lake and the Min River basin shows a significant decreasing trend with average rates of -13.93×10 8 m 3 /year and -1.8×10 8 m 3 /year (PYangtze River. (2) No significant abrupt change-points were detected in the time series of water discharge for all hydrological stations. In contrast, significant abrupt change-points were detected in sediment load, most of these changes appeared in the late 1980s. (3) The water discharge was mainly influenced by precipitation in the Yangtze River basin, whereas sediment load was mainly affected by climate change and human activities; the relative contribution ratios of human activities were above 70% for the Yangtze River. (4) The decrease of sediment load has directly impacted the lower Yangtze River and the delta region. These results will provide a reference for better resource management in the Yangtze River Basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Instream biological assessment of NPDES point source discharges at the Savannah River Site, 1997-1998

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    2000-02-28

    The Savannah River Site currently has 33 permitted NPDES outfalls that have been permitted by the South Carolina Department of Health an Environmental Control to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams.

  18. The critical role of the routing scheme in simulating peak river discharge in global hydrological models

    Science.gov (United States)

    Zhao, F.; Veldkamp, T.; Frieler, K.; Schewe, J.; Ostberg, S.; Willner, S. N.; Schauberger, B.; Gosling, S.; Mueller Schmied, H.; Portmann, F. T.; Leng, G.; Huang, M.; Liu, X.; Tang, Q.; Hanasaki, N.; Biemans, H.; Gerten, D.; Satoh, Y.; Pokhrel, Y. N.; Stacke, T.; Ciais, P.; Chang, J.; Ducharne, A.; Guimberteau, M.; Wada, Y.; Kim, H.; Yamazaki, D.

    2017-12-01

    Global hydrological models (GHMs) have been applied to assess global flood hazards, but their capacity to capture the timing and amplitude of peak river discharge—which is crucial in flood simulations—has traditionally not been the focus of examination. Here we evaluate to what degree the choice of river routing scheme affects simulations of peak discharge and may help to provide better agreement with observations. To this end we use runoff and discharge simulations of nine GHMs forced by observational climate data (1971-2010) within the ISIMIP2a project. The runoff simulations were used as input for the global river routing model CaMa-Flood. The simulated daily discharge was compared to the discharge generated by each GHM using its native river routing scheme. For each GHM both versions of simulated discharge were compared to monthly and daily discharge observations from 1701 GRDC stations as a benchmark. CaMa-Flood routing shows a general reduction of peak river discharge and a delay of about two to three weeks in its occurrence, likely induced by the buffering capacity of floodplain reservoirs. For a majority of river basins, discharge produced by CaMa-Flood resulted in a better agreement with observations. In particular, maximum daily discharge was adjusted, with a multi-model averaged reduction in bias over about 2/3 of the analysed basin area. The increase in agreement was obtained in both managed and near-natural basins. Overall, this study demonstrates the importance of routing scheme choice in peak discharge simulation, where CaMa-Flood routing accounts for floodplain storage and backwater effects that are not represented in most GHMs. Our study provides important hints that an explicit parameterisation of these processes may be essential in future impact studies.

  19. [Characteristics and loads of key sources of pollutions discharged into Beishi River, Changzhou City].

    Science.gov (United States)

    Li, Chun-Ping; Jiang, Jian-Guo; Chen, Ai-Mei; Wu, Jia-Ling; Fan, Xiu-Juan; Ye, Bin

    2010-11-01

    Choosing the Beishi river, Changzhou City as the study area, the sewage generation, pollutants characteristics and sewage discharge in catchment area of Beishi river were conducted, detailed investigated and monitored. After using pollution coefficients, the yearly loads of all sources of pollutions were calculated to determine the highest sewage. The results showed that: except pH, the high concentration of SS, COD, BOD5, ammonia nitrogen, TN and TP discharged from MSW collecting houses, MSW transfer stations, public toilets and dining in Changzhou city far exceeded the "Integrated Wastewater Discharge Standard" (GB 8978-1996) and "Effluent Discharged into the City Sewer Water Quality Standards" (CJ 3082-1999). Among which: the highest concentration of COD discharged from MSW transfer stations was up to 51 700 mg/L, while the ammonia nitrogen and TN were as high as 1 616 mg/L and 2 044 mg/L in the toilet wastewater. In addition to this, the ratio of wastewater discharged directly into the river through storm water pipe network was higher from MSW houses, MSW transfer stations, public toilets, dining and other waste in Changzhou city. The 125.2 t/a of COD and 40.53 t/a of BOD5 were the two highest concentrations of various sources of pollution. The highest annual polluting loads discharged into Beishi river is dining, followed by the sanitation facilities. Therefore, cutting pollution control of food and sanitation facilities along the river is particularly urgent.

  20. Modeling the influence of river discharge on salt intrusion and residual circulation in Danshuei River estuary, Taiwan

    Science.gov (United States)

    Liu, W.-C.; Chen, W.-B.; Cheng, R.T.; Hsu, M.-H.; Kuo, A.Y.

    2007-01-01

    A 3-D, time-dependent, baroclinic, hydrodynamic and salinity model was implemented and applied to the Danshuei River estuarine system and the adjacent coastal sea in Taiwan. The model forcing functions consist of tidal elevations along the open boundaries and freshwater inflows from the main stream and major tributaries in the Danshuei River estuarine system. The bottom friction coefficient was adjusted to achieve model calibration and verification in model simulations of barotropic and baroclinic flows. The turbulent diffusivities were ascertained through comparison of simulated salinity time series with observations. The model simulation results are in qualitative agreement with the available field data. The validated model was then used to investigate the influence of freshwater discharge on residual current and salinity intrusion under different freshwater inflow condition in the Danshuei River estuarine system. The model results reveal that the characteristic two-layered estuarine circulation prevails most of the time at Kuan-Du station near the river mouth. Comparing the estuarine circulation under low- and mean flow conditions, the circulation strengthens during low-flow period and its strength decreases at moderate river discharge. The river discharge is a dominating factor affecting the salinity intrusion in the estuarine system. A correlation between the distance of salt intrusion and freshwater discharge has been established allowing prediction of salt intrusion for different inflow conditions. ?? 2007 Elsevier Ltd. All rights reserved.

  1. Discharge and other hydraulic measurements for characterizing the hydraulics of Lower Congo River

    Science.gov (United States)

    Oberg, Kevin; Shelton, John M.; Gardiner, Ned; Jackson, P. Ryan

    2009-01-01

    The first direct measurements of discharge of the Lower Congo River below Malebo Pool and upstream from Kinganga, Democratic Republic of Congo (DRC) were made in July 2008 using acoustic Doppler current profilers, differential GPS, and echo sounders. These measurements were made in support of research that is attempting to understand the distribution of fish species in the Lower Congo River and reasons for separation of species within this large river. Analyses of these measurements show that the maximum depth in the Lower Congo River was in excess of 200 m and maximum water velocities were greater than 4 m/s. The discharge measured near Luozi, DRC was 35,800 m3/s, and decreased slightly beginning midway through the study. Local bedrock controls seem to have a large effect on the flow in the river, even in reaches without waterfalls and rapids. Dramatic changes in bed topography are evident in transects across the river.

  2. Continuous measurements of discharge from a horizontal acoustic Doppler current profiler in a tidal river

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Buschman, F.A.; Vermeulen, B.

    2009-01-01

    Acoustic Doppler current profilers (ADCPs) can be mounted horizontally at a river bank, yielding single-depth horizontal array observations of velocity across the river. This paper presents a semideterministic, semistochastic method to obtain continuous measurements of discharge from horizontal ADCP

  3. Operational river discharge forecasting in poorly gauged basins: the Kavango River Basin case study

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Jensen, Iris Hedegaard; Guzinski, R.

    2014-01-01

    to support integrated water resources management in Africa and to facilitate the use of satellite earth observation data in water management. We present an operational probabilistic forecasting approach which uses public-domain climate forcing data and a hydrologic–hydrodynamic model which is entirely based......Operational probabilistic forecasts of river discharge are essential for effective water resources management. Many studies have addressed this topic using different approaches ranging from purely statistical black-box approaches to physically-based and distributed modelling schemes employing data...... on open-source software. Data assimilation techniques are used to inform the forecasts with the latest available observations. Forecasts are produced in real time for lead times of 0 to 7 days. The operational probabilistic forecasts are evaluated using a selection of performance statistics and indicators...

  4. Large-scale hydrological model river storage and discharge correction using a satellite altimetry-based discharge product

    Science.gov (United States)

    Emery, Charlotte Marie; Paris, Adrien; Biancamaria, Sylvain; Boone, Aaron; Calmant, Stéphane; Garambois, Pierre-André; Santos da Silva, Joecila

    2018-04-01

    Land surface models (LSMs) are widely used to study the continental part of the water cycle. However, even though their accuracy is increasing, inherent model uncertainties can not be avoided. In the meantime, remotely sensed observations of the continental water cycle variables such as soil moisture, lakes and river elevations are more frequent and accurate. Therefore, those two different types of information can be combined, using data assimilation techniques to reduce a model's uncertainties in its state variables or/and in its input parameters. The objective of this study is to present a data assimilation platform that assimilates into the large-scale ISBA-CTRIP LSM a punctual river discharge product, derived from ENVISAT nadir altimeter water elevation measurements and rating curves, over the whole Amazon basin. To deal with the scale difference between the model and the observation, the study also presents an initial development for a localization treatment that allows one to limit the impact of observations to areas close to the observation and in the same hydrological network. This assimilation platform is based on the ensemble Kalman filter and can correct either the CTRIP river water storage or the discharge. Root mean square error (RMSE) compared to gauge discharges is globally reduced until 21 % and at Óbidos, near the outlet, RMSE is reduced by up to 52 % compared to ENVISAT-based discharge. Finally, it is shown that localization improves results along the main tributaries.

  5. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    OpenAIRE

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. ...

  6. Reconstruction of GeV Neutrino Events in LENA

    International Nuclear Information System (INIS)

    Moellenberg, R.; Feilitzsch, F. von; Goeger-Neff, M.; Hellgartner, D.; Lewke, T.; Meindl, Q.; Oberauer, L.; Potzel, W.; Tippmann, M.; Winter, J.; Wurm, M.; Peltoniemi, J.

    2011-01-01

    LENA (Low Energy Neutrino Astronomy) is a proposed next generation liquid-scintillator detector with about 50 kt target mass. Besides the detection of solar neutrinos, geoneutrinos, supernova neutrinos and the search for the proton decay, LENA could also be used as the far detector of a next generation neutrino beam. The present contribution outlines the status of the Monte Carlo studies towards the reconstruction of GeV neutrinos in LENA. Both the tracking capabilities at a few hundred MeV, most interesting for a beta beam, and above 1 GeV for a superbeam experiment are presented.

  7. Sensitivity of SWOT discharge algorithm to measurement errors: Testing on the Sacramento River

    Science.gov (United States)

    Durand, Micheal; Andreadis, Konstantinos; Yoon, Yeosang; Rodriguez, Ernesto

    2013-04-01

    Scheduled for launch in 2019, the Surface Water and Ocean Topography (SWOT) satellite mission will utilize a Ka-band radar interferometer to measure river heights, widths, and slopes, globally, as well as characterize storage change in lakes and ocean surface dynamics with a spatial resolution ranging from 10 - 70 m, with temporal revisits on the order of a week. A discharge algorithm has been formulated to solve the inverse problem of characterizing river bathymetry and the roughness coefficient from SWOT observations. The algorithm uses a Bayesian Markov Chain estimation approach, treats rivers as sets of interconnected reaches (typically 5 km - 10 km in length), and produces best estimates of river bathymetry, roughness coefficient, and discharge, given SWOT observables. AirSWOT (the airborne version of SWOT) consists of a radar interferometer similar to SWOT, but mounted aboard an aircraft. AirSWOT spatial resolution will range from 1 - 35 m. In early 2013, AirSWOT will perform several flights over the Sacramento River, capturing river height, width, and slope at several different flow conditions. The Sacramento River presents an excellent target given that the river includes some stretches heavily affected by management (diversions, bypasses, etc.). AirSWOT measurements will be used to validate SWOT observation performance, but are also a unique opportunity for testing and demonstrating the capabilities and limitations of the discharge algorithm. This study uses HEC-RAS simulations of the Sacramento River to first, characterize expected discharge algorithm accuracy on the Sacramento River, and second to explore the required AirSWOT measurements needed to perform a successful inverse with the discharge algorithm. We focus on the sensitivity of the algorithm accuracy to the uncertainty in AirSWOT measurements of height, width, and slope.

  8. Response of bankfull discharge of the Inner Mongolia Yellow River ...

    Indian Academy of Sciences (India)

    the flood and sediment transport capacity of a river channel. It is based on the ...... Eng. 39 680–687 (in Chinese). Wu B S and Zhang Y F 2007 Law of along-course chang- ... load in the Lower Yellow River; Geomorphology 100(3–4). 366–376.

  9. Wastewater discharge impact on drinking water sources along the Yangtze River (China).

    Science.gov (United States)

    Wang, Zhuomin; Shao, Dongguo; Westerhoff, Paul

    2017-12-01

    Unplanned indirect (de facto) wastewater reuse occurs when wastewater is discharged into surface waters upstream of potable drinking water treatment plant intakes. This paper aims to predict percentages and trends of de facto reuse throughout the Yangtze River watershed in order to understand the relative contribution of wastewater discharges into the river and its tributaries towards averting water scarcity concerns. The Yangtze River is the third longest in the world and supports more than 1/15 of the world's population, yet the importance of wastewater on the river remains ill-defined. Municipal wastewater produced in the Yangtze River Basin increased by 41% between 1998 and 2014, from 2580m 3 /s to 3646m 3 /s. Under low flow conditions in the Yangtze River near Shanghai, treated wastewater contributions to river flows increased from 8% in 1998 to 14% in 2014. The highest levels of de facto reuse appeared along a major tributary (Han River) of the Yangtze River, where de facto reuse can exceed 20%. While this initial analysis of de facto reuse used water supply and wastewater data from 110 cities in the basin and 11 gauging stations with >50years of historic streamflow data, the outcome was limited by the lack of gauging stations at more locations (i.e., data had to be predicted using digital elevation mapping) and lack of precise geospatial location of drinking water intakes or wastewater discharges. This limited the predictive capability of the model relative to larger datasets available in other countries (e.g., USA). This assessment is the first analysis of de facto wastewater reuse in the Yangtze River Basin. It will help identify sections of the river at higher risk for wastewater-related pollutants due to presence of-and reliance on-wastewater discharge that could be the focus of field studies and model predictions of higher spatial and temporal resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia

    International Nuclear Information System (INIS)

    Wulp, Simon A. van der; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J.

    2016-01-01

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377 m 3 s −1 entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174 tons and 14 to 60 tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. - Highlights: • Full overview of river discharges, nutrient flux and nutrient levels in Jakarta Bay • Important overview of nutrient flux from individual rivers • Simulations identify the principal drivers of water circulation and nutrient gradient. • Nutrient dispersion model includes the local effects of the Java Sea current system.

  11. LENA Conversion Foils Using Single-Layer Graphene, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Our key innovation will be the use of single-layer graphene as LENA conversion foils, with appropriate microgrids and nanogrids to support the foils. Phase I...

  12. Development of a low energy neutral analyzer (LENA). Final report

    International Nuclear Information System (INIS)

    Curtis, C.C.; Fan, C.Y.; Hsieh, K.C.; McCullen, J.D.

    1986-05-01

    A low energy neutral particle analyzer (LENA) has been developed at the University of Arizona to detect particles originating in the edge plasma of fusion reactors. LENA was designed to perform energy analysis and measure flux levels of neutrals having energies between 5 and 50 eV (with possible extension to 500 eV neutrals), and do this with 1 to 10 ms time resolution. The instrument uses hot filaments to produce a 10 mA diffusion electron beam which ionizes incoming neutrals in a nearly field free region so that their velocity distribution is nearly undisturbed. The resultant ions are energy analyzed in a hyperbolic electrostatic analyzer, and detected by an MCP detector. LENA has been installed and operated on the ALCATOR C tokamak at the MIT Plasma Fusion Center. Results to date are discussed. At present, the LENA exhibits excessive sensitivity to the extremely high ultraviolet photon flux emanating from the plasma. Measures to correct this are suggested

  13. Discharge estimation from planform characters of the Shedhi River ...

    Indian Academy of Sciences (India)

    Department of Geology, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India. In the absence of ... studies were made in the bedrock Deccan rivers and recently in the ... at shallow depths of 2–4 m and granites, limestones.

  14. Evaluation of precipitation and river discharge variations over ...

    Indian Academy of Sciences (India)

    Corresponding author. e-mail: zarenistanak@gmail.com. This study ... discharge series was observed in January and February, accounting for seven and four trends respectively. ...... in April due to snowmelt contribution (figure 11).

  15. The impact of climate change on river discharges in Eastern Romania

    Science.gov (United States)

    Croitoru, Adina-Eliza; Minea, Ionut

    2014-05-01

    Climate changes imply many changes in different socioeconomic and environmental fields. Among the most important impacts are changes in water resources. Long- and mid-term river discharge flow analysis is essential for the effective management of water resources. In this work, the changes in two climatic parameters (temperature and precipitation) and river discharges and the connections between precipitation and river discharges were investigated. Seasonal and annual climatic and hydrological data collected at six weather stations and 17 hydrological stations were employed. The data sets cover 57 years (1950-2006). The modified Mann-Kendall test was used to calculate trends, and the Bravais-Pearson correlation index was chosen to detect the connections between precipitation and river discharge data series. The main findings are as follows: A general increase was identified in all the three parameters. The air temperature data series showed the highest frequency of statistically significant slopes, mainly in annual and spring series. All data series, except the series for winter, showed an increase in precipitation; in winter, a significant decrease in precipitation was observed at most of the stations. The increase in precipitation is reflected in the upward trends of the river discharge flows, as verified by the good Bravais-Pearson correlations, mainly for annual, summer, and autumn series

  16. The impact of climate changes on rivers discharge in Eastern Romania

    Science.gov (United States)

    Croitoru, Adina-Eliza; Minea, Ionus

    2015-05-01

    Climate changes imply many changes in different socioeconomic and environmental fields. Among the most important impacts are changes in water resources. Long- and mid-term river discharge flow analysis is essential for the effective management of water resources. In this work, the changes in temperature, precipitation, and river discharges as well as the connections between precipitation and river discharges were investigated. Seasonal and annual climatic and hydrological data collected at 6 weather stations and 17 hydrological stations were employed. The data sets cover 57 years (1950-2006). The modified Mann-Kendall test and Sen's slope were used to calculate trends and their slopes, whereas the Bravais-Pearson correlation index was chosen to detect the connections between precipitation and river discharge data series. The main findings are as follows: a general increase was identified in all the three variables; the air temperature data series showed the highest frequency of statistically significant slopes, mainly in annual and spring series; all data series, except the series for winter, showed an increase in precipitation, and in winter, a significant decrease in precipitation was observed at most of the stations. The increase in precipitation is reflected in the upward trends of the river discharge flows, as verified by the good Bravais-Pearson correlations, mainly for annual, summer, and autumn series.

  17. Groundwater Discharges to Rivers in the Western Canadian Oil Sands Region

    Science.gov (United States)

    Ellis, J.; Jasechko, S.

    2016-12-01

    Groundwater discharges into rivers impacts the movement and fate of nutrients and contaminants in the environment. Understanding groundwater-surface water interactions is especially important in the western Canadian oil sands, where groundwater contamination risks are elevated and baseline water chemistry data is lacking, leading to substantial uncertainties about anthropogenic influences on local river quality. High salinity groundwater springs sourced from deep aquifers, comprised of Pleistocene-aged glacial meltwater, are known to discharge into many rivers in the oil sands. Understanding connections between deep aquifers and surficial waterways is important in order to determine natural inputs into these rivers and to assess the potential for injected wastewater or oil extraction fluids to enter surface waters. While these springs have been identified, their spatial distribution along rivers has not been fully characterized. Here we present river chemistry data collected along a number of major river corridors in the Canadian oil sands region. We show that saline groundwater springs vary spatially along the course of these rivers and tend to be concentrated where the rivers incise Devonian- or Cretaceous-aged aquifers along an evaporite dissolution front. Our results suggest that water sourced from Devonian aquifers may travel through bitumen-bearing Cretaceous units and discharge into local rivers, implying a strong groundwater-surface water connection in specialized locations. These findings indicate that oil sands process-affected waters that are injected at depth have the potential to move through these aquifers and reach the rivers at the surface at some time in the future. Groundwater-surface water interactions remain key to understanding the risks oil sands activities pose to aquatic ecosystems and downstream communities.

  18. Methane distribution and oxidation around the Lena Delta in summer 2013

    Directory of Open Access Journals (Sweden)

    I. Bussmann

    2017-11-01

    Full Text Available The Lena River is one of the largest Russian rivers draining into the Laptev Sea. The predicted increases in global temperatures are expected to cause the permafrost areas surrounding the Lena Delta to melt at increasing rates. This melting will result in high amounts of methane reaching the waters of the Lena and the adjacent Laptev Sea. The only biological sink that can lower methane concentrations within this system is methane oxidation by methanotrophic bacteria. However, the polar estuary of the Lena River, due to its strong fluctuations in salinity and temperature, is a challenging environment for bacteria. We determined the activity and abundance of aerobic methanotrophic bacteria by a tracer method and by the quantitative polymerase chain reaction. We described the methanotrophic population with a molecular fingerprinting method (monooxygenase intergenic spacer analysis, as well as the methane distribution (via a headspace method and other abiotic parameters, in the Lena Delta in September 2013. The median methane concentrations were 22 nmol L−1 for riverine water (salinity (S  < 5, 19 nmol L−1 for mixed water (5 < S < 20 and 28 nmol L−1 for polar water (S > 20. The Lena River was not the source of methane in surface water, and the methane concentrations of the bottom water were mainly influenced by the methane concentration in surface sediments. However, the bacterial populations of the riverine and polar waters showed similar methane oxidation rates (0.419 and 0.400 nmol L−1 d−1, despite a higher relative abundance of methanotrophs and a higher estimated diversity in the riverine water than in the polar water. The methane turnover times ranged from 167 days in mixed water and 91 days in riverine water to only 36 days in polar water. The environmental parameters influencing the methane oxidation rate and the methanotrophic population also differed between the water masses. We

  19. Prerequisites for Accurate Monitoring of River Discharge Based on Fixed-Location Velocity Measurements

    Science.gov (United States)

    Kästner, K.; Hoitink, A. J. F.; Torfs, P. J. J. F.; Vermeulen, B.; Ningsih, N. S.; Pramulya, M.

    2018-02-01

    River discharge has to be monitored reliably for effective water management. As river discharge cannot be measured directly, it is usually inferred from the water level. This practice is unreliable at places where the relation between water level and flow velocity is ambiguous. In such a case, the continuous measurement of the flow velocity can improve the discharge prediction. The emergence of horizontal acoustic Doppler current profilers (HADCPs) has made it possible to continuously measure the flow velocity. However, the profiling range of HADCPs is limited, so that a single instrument can only partially cover a wide cross section. The total discharge still has to be determined with a model. While the limitations of rating curves are well understood, there is not yet a comprehensive theory to assess the accuracy of discharge predicted from velocity measurements. Such a theory is necessary to discriminate which factors influence the measurements, and to improve instrument deployment as well as discharge prediction. This paper presents a generic method to assess the uncertainty of discharge predicted from range-limited velocity profiles. The theory shows that a major source of error is the variation of the ratio between the local and cross-section-averaged velocity. This variation is large near the banks, where HADCPs are usually deployed and can limit the advantage gained from the velocity measurement. We apply our theory at two gauging stations situated in the Kapuas River, Indonesia. We find that at one of the two stations the index velocity does not outperform a simple rating curve.

  20. Proglacial river stage, discharge, and temperature datasets from the Akuliarusiarsuup Kuua River northern tributary, Southwest Greenland, 2008–2011

    Directory of Open Access Journals (Sweden)

    A. K. Rennermalm

    2012-05-01

    Full Text Available Pressing scientific questions concerning the Greenland ice sheet's climatic sensitivity, hydrology, and contributions to current and future sea level rise require hydrological datasets to resolve. While direct observations of ice sheet meltwater losses can be obtained in terrestrial rivers draining the ice sheet and from lake levels, few such datasets exist. We present a new hydrologic dataset from previously unmonitored sites in the vicinity of Kangerlussuaq, Southwest Greenland. This dataset contains measurements of river stage and discharge for three sites along the Akuliarusiarsuup Kuua (Watson River's northern tributary, with 30 min temporal resolution between June 2008 and July 2011. Additional data of water temperature, air pressure, and lake stage are also provided. Flow velocity and depth measurements were collected at sites with incised bedrock or structurally reinforced channels to maximize data quality. However, like most proglacial rivers, high turbulence and bedload transport introduce considerable uncertainty to the derived discharge estimates. Eleven propagating error sources were quantified, and reveal that largest uncertainties are associated with flow depth observations. Mean discharge uncertainties (approximately the 68% confidence interval are two to four times larger (±19% to ±43% than previously published estimates for Greenland rivers. Despite these uncertainties, this dataset offers a rare collection of direct measurements of ice sheet runoff to the global ocean and is freely available for scientific use at http://dx.doi.org/10.1594/PANGAEA.762818.

  1. Biogeochemical transport in the Loxahatchee River estuary, FL: The role of submarine groundwater discharge

    Science.gov (United States)

    Swarzenski, P.; Orem, B.; McPherson, B.; Baskaran, M.; Wan, Y.

    2005-05-01

    The distributions of dissolved organic carbon (DOC), silica, select trace elements (Mn, Fe, Ba, Sr, Co, V,) and a suite of naturally-occurring radionuclides in the U/Th decay series (222Rn, 223,224,226,228Ra, 238U) were studied during high and low discharge conditions in the Loxahatchee River estuary, Florida. The zero-salinity endmember of this still relatively pristine estuary may reflect not only river-borne constituents, but also those advected during active groundwater/surface-water discharge. During low discharge conditions, with the notable exception of Co, trace metals indicate nearly conservative mixing from a salinity of ~12 through the estuary (This statement contracdicts with what is said in p. 7). In contrast, of the trace metals studied, only Sr, Fe, U and V exhibited conservative estuarine mixing during high discharge. Dissolved organic carbon and Si concentrations were highest at zero salinities, and generally decreased with an increase in salinity during both discharge regimes, indicating removal of land-derived dissolved organic matter and silica in the estuary. Suspended particulate matter (SPM) concentrations were generally lowest ( 28 dpm L-1) at the freshwater endmember of the estuary, and appear to identify regions of the river most influenced by active submarine groundwater discharge (where is the data that show this?). Activities of four naturally-occurring isotopes of Ra (223,224,226,228Ra) in this estuary and select adjacent shallow groundwater wells indicate mean estuarine water mass residence times of less than 1 day; values in close agreement to those calculated by tidal prism and tidal period. A radium-based model for estimating submarine groundwater discharge to the Loxahatchee River estuary yielded an average of 1.03 V 3.84 x 105 m3 day-1, depending on river discharge stage as well as slight variations in the particular Ra models used. Such calculated flux estimates are in close agreement with results obtained from a 2-day

  2. Impact of oil shale mine water discharges on phytoplankton community of Purtse catchment rivers

    International Nuclear Information System (INIS)

    Raetsep, A.; Rull, E.; Liblik, V.

    2002-01-01

    The multivariate relationship between phytoplankton abundance and different factors both natural and generated by oil shale mining in the Purtse catchment rivers (Purtse, Kohtla, and Ojamaa) in Augusts 1996-2000 was studied. Impact of oil shale mine water discharges, causing the input of sulfates and chlorides into the rivers, on phytoplankton abundance in river water was characterized by significant negative linear correlation. The amount of annual precipitation influenced positively the characteristics of phytoplankton abundance in river water. The complex of linear regression formulas was derived for characterising phytoplankton abundance in the lower course of the Purtse River using meteorological, hydrological and hydrogeological as well as geochemical data of water circulation. Closing the Sompa, Tammiku and Kohtla mines in 2000-2001 decreased essentially anthropogenic stress on ecological condition of the Purtse catchment rivers. (author)

  3. Prediction of mean monthly river discharges in Colombia through Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    A. M. Carmona

    2015-04-01

    Full Text Available The hydro-climatology of Colombia exhibits strong natural variability at a broad range of time scales including: inter-decadal, decadal, inter-annual, annual, intra-annual, intra-seasonal, and diurnal. Diverse applied sectors rely on quantitative predictions of river discharges for operational purposes including hydropower generation, agriculture, human health, fluvial navigation, territorial planning and management, risk preparedness and mitigation, among others. Various methodologies have been used to predict monthly mean river discharges that are based on "Predictive Analytics", an area of statistical analysis that studies the extraction of information from historical data to infer future trends and patterns. Our study couples the Empirical Mode Decomposition (EMD with traditional methods, e.g. Autoregressive Model of Order 1 (AR1 and Neural Networks (NN, to predict mean monthly river discharges in Colombia, South America. The EMD allows us to decompose the historical time series of river discharges into a finite number of intrinsic mode functions (IMF that capture the different oscillatory modes of different frequencies associated with the inherent time scales coexisting simultaneously in the signal (Huang et al. 1998, Huang and Wu 2008, Rao and Hsu, 2008. Our predictive method states that it is easier and simpler to predict each IMF at a time and then add them up together to obtain the predicted river discharge for a certain month, than predicting the full signal. This method is applied to 10 series of monthly mean river discharges in Colombia, using calibration periods of more than 25 years, and validation periods of about 12 years. Predictions are performed for time horizons spanning from 1 to 12 months. Our results show that predictions obtained through the traditional methods improve when the EMD is used as a previous step, since errors decrease by up to 13% when the AR1 model is used, and by up to 18% when using Neural Networks is

  4. Environmental characterization to assess potential impacts of thermal discharge to the Columbia River

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Dauble, D.D.; Page, T.L.; Greager, E.M.

    1990-01-01

    Laboratory and field studies were conducted to assess the potential impact of the N-Reactor thermal plume on fish from the Hanford Reach of the Columbia River. Discharge water temperatures were measured over a range of river flows and reactor operating conditions. Data were mathematically modeled to define spatial and thermal characteristics of the plume. Four species of Columbia River fish were exposed to thermal conditions expected in the plume. Exposed fish were subjected to predators and disease organisms to test for secondary effects from thermal stress. Spatial and temporal distribution of anadromous fish in the river near N-Reactor were also evaluated to define location relative to the plume. Potential thermal exposures were insufficient to kill or injure fish during operation of N-Reactor. These studies demonstrate that characterization of hydrological conditions and thermal tolerance can adequately assess potential impacts of a thermal discharge to fish

  5. Correlating pattern of river discharge with degree of urbanization in ...

    African Journals Online (AJOL)

    The study examined the hydrological response pattern of urbanized streams to landuse in sub-catchment areas of River Asa in Ilorin, Nigeria. Data for the study were collected directly from the field over a period of one hydrological year. Rainfall data were collected in each basin using a standard rain gauge of 20cm orifice ...

  6. Theoretical investigation on discharge-induced river-bank erosion

    NARCIS (Netherlands)

    Mosselman, E.

    1989-01-01

    Bank erosion is incorporated in one-dimensional and two-dimensional horizontal models for river morphology. The banks are assumed to consist of a fraction of cohesive material, which becomes washload after being eroded, and a fraction of granular material, with the same properties as the material of

  7. Revising time series of the Elbe river discharge for flood frequency determination at gauge Dresden

    Directory of Open Access Journals (Sweden)

    S. Bartl

    2009-11-01

    Full Text Available The German research programme RIsk MAnagment of eXtreme flood events has accomplished the improvement of regional hazard assessment for the large rivers in Germany. Here we focused on the Elbe river at its gauge Dresden, which belongs to the oldest gauges in Europe with officially available daily discharge time series beginning on 1 January 1890. The project on the one hand aimed to extend and to revise the existing time series, and on the other hand to examine the variability of the Elbe river discharge conditions on a greater time scale. Therefore one major task were the historical searches and the examination of the retrieved documents and the contained information. After analysing this information the development of the river course and the discharge conditions were discussed. Using the provided knowledge, in an other subproject, a historical hydraulic model was established. Its results then again were used here. A further purpose was the determining of flood frequency based on all pre-processed data. The obtained knowledge about historical changes was also used to get an idea about possible future variations under climate change conditions. Especially variations in the runoff characteristic of the Elbe river over the course of the year were analysed. It succeeded to obtain a much longer discharge time series which contain fewer errors and uncertainties. Hence an optimized regional hazard assessment was realised.

  8. Revising time series of the Elbe river discharge for flood frequency determination at gauge Dresden

    Science.gov (United States)

    Bartl, S.; Schümberg, S.; Deutsch, M.

    2009-11-01

    The German research programme RIsk MAnagment of eXtreme flood events has accomplished the improvement of regional hazard assessment for the large rivers in Germany. Here we focused on the Elbe river at its gauge Dresden, which belongs to the oldest gauges in Europe with officially available daily discharge time series beginning on 1 January 1890. The project on the one hand aimed to extend and to revise the existing time series, and on the other hand to examine the variability of the Elbe river discharge conditions on a greater time scale. Therefore one major task were the historical searches and the examination of the retrieved documents and the contained information. After analysing this information the development of the river course and the discharge conditions were discussed. Using the provided knowledge, in an other subproject, a historical hydraulic model was established. Its results then again were used here. A further purpose was the determining of flood frequency based on all pre-processed data. The obtained knowledge about historical changes was also used to get an idea about possible future variations under climate change conditions. Especially variations in the runoff characteristic of the Elbe river over the course of the year were analysed. It succeeded to obtain a much longer discharge time series which contain fewer errors and uncertainties. Hence an optimized regional hazard assessment was realised.

  9. Untangling Trends and Drivers of Changing River Discharge Along Florida's Gulf Coast

    Science.gov (United States)

    Glodzik, K.; Kaplan, D. A.; Klarenberg, G.

    2017-12-01

    Along the relatively undeveloped Big Bend coastline of Florida, discharge in many rivers and springs is decreasing. The causes are unclear, though they likely include a combination of groundwater extraction for water supply, climate variability, and altered land use. Saltwater intrusion from altered freshwater influence and sea level rise is causing transformative ecosystem impacts along this flat coastline, including coastal forest die-off and oyster reef collapse. A key uncertainty for understanding river discharge change is predicting discharge from rainfall, since Florida's karstic bedrock stores large amounts of groundwater, which has a long residence time. This study uses Dynamic Factor Analysis (DFA), a multivariate data reduction technique for time series, to find common trends in flow and reveal hydrologic variables affecting flow in eight Big Bend rivers since 1965. The DFA uses annual river flows as response time series, and climate data (annual rainfall and evapotranspiration by watershed) and climatic indices (El Niño Southern Oscillation [ENSO] Index and North Atlantic Oscillation [NAO] Index) as candidate explanatory variables. Significant explanatory variables (one evapotranspiration and three rainfall time series) explained roughly 50% of discharge variation across rivers. Significant trends (representing unexplained variation) were shared among rivers, with geographical grouping of five northern rivers and three southern rivers, along with a strong downward trend affecting six out of eight systems. ENSO and NAO had no significant impact. Advancing knowledge of these dynamics is necessary for forecasting how altered rainfall and temperatures from climate change may impact flows. Improved forecasting is especially important given Florida's reliance on groundwater extraction to support its growing population.

  10. A licence to discharge cooling waters in tidal rivers, examplified by the 'Nuclear Power Station Unterweser'

    International Nuclear Information System (INIS)

    Kunz, H.

    1976-01-01

    Illustrated by the example of the lower Weser, aspects for automatic control, supervision measurements, and measurements for the securing of evidence, all in connection with cooling water discharges, are presented. The particularities of tidal rivers and the conditions for measuring systems resulting therefrom are explained. The cooling water discharge of the Kernkraftwerk Unterweser has been assigned an extensive measurement system for the automatic compilation of hydrologic data. The measurement systems design, the measurement stations, and the central station are described. (orig.) [de

  11. Stochastic structure of annual discharges of large European rivers

    Directory of Open Access Journals (Sweden)

    Stojković Milan

    2015-03-01

    Full Text Available Water resource has become a guarantee for sustainable development on both local and global scales. Exploiting water resources involves development of hydrological models for water management planning. In this paper we present a new stochastic model for generation of mean annul flows. The model is based on historical characteristics of time series of annual flows and consists of the trend component, long-term periodic component and stochastic component. The rest of specified components are model errors which are represented as a random time series. The random time series is generated by the single bootstrap model (SBM. Stochastic ensemble of error terms at the single hydrological station is formed using the SBM method. The ultimate stochastic model gives solutions of annual flows and presents a useful tool for integrated river basin planning and water management studies. The model is applied for ten large European rivers with long observed period. Validation of model results suggests that the stochastic flows simulated by the model can be used for hydrological simulations in river basins.

  12. Integrating lateral contributions along river reaches to improve SWOT discharge estimates

    Science.gov (United States)

    Beighley, E.; Zhao, Y.; Feng, D.; Fisher, C. K.; Raoufi, R.; Durand, M. T.; David, C. H.; Lee, H.; Boone, A. A.; Cretaux, J. F.

    2016-12-01

    Understanding the potential impacts of climate and land cover change at continental to global scales with a sufficient resolution for community scale planning and management requires an improved representation of the hydrologic cycle that is possible based on existing measurement networks and current Earth system models. The Surface Water and Ocean Topography (SWOT) mission, scheduled to launch in 2021, has the potential to address this challenge by providing measurements of water surface elevation, slope and extent for rivers wider than roughly 50-100 meters at a temporal sampling frequency ranging from days to weeks. The global uniformity and space/time resolution of the proposed SWOT measurements will enable hydrologic discovery, model advancements and new applications addressing the above challenges that are not currently possible or likely even conceivable. One derived data product planned for the SWOT mission is river discharge. Although there are several discharge algorithms that perform well for a range of conditions, this effort is focused on the MetroMan discharge algorithm. For example, in MetroMan, lateral inflow assumptions have been shown to impact performance. Here, the role of lateral inflows on discharge estimate performance is investigated. Preliminary results are presented for the Ohio River Basin. Lateral inflows are quantified for SWOT-observable river reaches using surface and subsurface runoff from North American Land Data Assimilation System (NLDAS) and lateral routing in the Hillslope River Routing (HRR) model. Frequency distributions for the fraction of reach-averaged discharge resulting from lateral inflow are presented. Future efforts will integrate lateral inflow characteristics into the MetroMan discharge algorithm and quantify the potential value of SWOT measurement in flood insurance applications.

  13. Use of a Smartphone for Collecting Data on River Discharge and Communication of Flood Risk.

    Science.gov (United States)

    Pena-Haro, S.; Lüthi, B.; Philippe, T.

    2015-12-01

    Although many developed countries have well-established systems for river monitoring and flood early warning systems, the population affected in developing countries by flood events is unsettled. Even more, future climate development is likely to increase the intensity and frequency of extreme weather events and therefore bigger impacts on the population can be expected.There are different types of flood forecasting systems, some are based on hydrologic models fed with rainfall predictions and observed river levels. Flood hazard maps are also used to increase preparedness in case of an extreme event, however these maps are static since they do not incorporate daily changing conditions on river stages. However, and especially in developing countries, data on river stages are scarce. Some of the reasons are that traditional fixed monitoring systems do not scale in terms of costs, repair is difficult as well as operation and maintenance, in addition vandalism poses additional challenges. Therefore there is a need of cheaper and easy-to-use systems for collecting information on river stage and discharge. We have developed a mobile device application for determining the water stage and discharge of open-channels (e.g. rivers, artificial channels, irrigation furrows). Via image processing the water level and surface velocity are measured, combining this information with priori knowledge on the channel geometry the discharge is estimated. River stage and discharge measurement via smart phones provides a non-intrusive, accurate and cost-effective monitoring method. No permanent installations, which can be flooded away, are needed. The only requirement is that the field of view contains two reference markers with known scale and with known position relative to the channel geometry, therefore operation and maintenance costs are very low. The other advantage of using smartphones, is that the data collected can be immediately sent via SMS to a central database. This

  14. Experimental effect of flow depth on ratio discharge in lateral intakes in river bend

    International Nuclear Information System (INIS)

    Masjedi, A; Foroushani, E P

    2012-01-01

    Open-channel dividing flow is characterized by the inflow and outflow discharges, the upstream and downstream water depths, and the recirculation flow in the branch channel. In general, diversion flow can be categorized as natural and artificial flow. Natural flow diversion usually occurs as braiding or cut-off in bend rivers, while artificial flow is man-made to divert flow by lateral intake channels for water supply. This study presents the results of a laboratory research into effect intake flow depth on ratio discharge in lateral intakes in 180 degree bend. Investigation on lateral intake and determination of intake flow depth is among the most important issues in lateral intake on ratio discharge with model intake flow depth were measured in a laboratory flume under clear-water. Experiments were conducted for various intake flow depths and with different discharges. It was found that by increasing the flow depth at 180 degree flume bend, ratio discharge increases.

  15. Impact of precipitation and land biophysical variables on the simulated discharge of European and Mediterranean rivers

    Science.gov (United States)

    Szczypta, C.; Decharme, B.; Carrer, D.; Calvet, J.-C.; Lafont, S.; Somot, S.; Faroux, S.; Martin, E.

    2012-09-01

    This study investigates the impact on river discharge simulations of errors in the precipitation forcing, together with changes in the representation of vegetation variables and of plant transpiration. The most recent European Centre for Medium-Range Weather Forecasts reanalysis (ERA-Interim) is used to drive the Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways (ISBA-TRIP) continental hydrological system over Europe and the Mediterranean basin over the 1991-2008 period. As ERA-Interim tends to underestimate precipitation, a number of precipitation corrections are proposed. In particular, the monthly Global Precipitation Climatology Centre (GPCC) precipitation product is used to bias-correct the 3-hourly ERA-Interim estimates. This correction markedly improves the match between the ISBA-TRIP simulations and the river discharge observations from the Global Runoff Data Centre (GRDC), at 150 gauging stations. The impact on TRIP river discharge simulations of various representations of the evapotranspiration in the ISBA land surface model is investigated as well: ISBA is used together with its upgraded carbon flux version (ISBA-A-gs). The latter is either driven by the satellite-derived climatology of the Leaf Area Index (LAI) used by ISBA, or performs prognostic LAI simulations. The ISBA-A-gs model, with or without dynamically simulated LAI, allows a better representation of river discharge at low water levels. On the other hand, ISBA-A-gs does not perform as well as the original ISBA model at springtime.

  16. Emerging and Conventional Contaminants in River Waters Discharging into the Black Sea along the Ukrainian Coast

    Science.gov (United States)

    The major rivers of Ukraine, including the Dnieper, Dniester, Southern Bug and Danube, discharge approximately 8500 m3/s of freshwater into the northern and western portions of the Black Sea. As one of the largest countries in Europe, Ukraine also has one of the largest human po...

  17. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    Science.gov (United States)

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. The formation of a salt plug in response to changes in river discharge was investigated using a conductivity-temperature-depth (CTD) recorder during spring and neap tides in the dry and wet seasons in 2014. An exportation of saline water from the Shibsa River Estuary (SRE) to the PRE through the Chunkhuri Channel occurred during the dry season, and a salt plug was created and persisted from December to June near Chalna in the PRE. A discharge-induced, relatively high water level in the PRE during the wet season exerted hydrostatic pressure towards the SRE from the PRE and thereby prevented the intrusion of salt water from the SRE to the PRE. PMID:27255892

  18. Application for 3d Scene Understanding in Detecting Discharge of Domesticwaste Along Complex Urban Rivers

    Science.gov (United States)

    Ninsalam, Y.; Qin, R.; Rekittke, J.

    2016-06-01

    In our study we use 3D scene understanding to detect the discharge of domestic solid waste along an urban river. Solid waste found along the Ciliwung River in the neighbourhoods of Bukit Duri and Kampung Melayu may be attributed to households. This is in part due to inadequate municipal waste infrastructure and services which has caused those living along the river to rely upon it for waste disposal. However, there has been little research to understand the prevalence of household waste along the river. Our aim is to develop a methodology that deploys a low cost sensor to identify point source discharge of solid waste using image classification methods. To demonstrate this we describe the following five-step method: 1) a strip of GoPro images are captured photogrammetrically and processed for dense point cloud generation; 2) depth for each image is generated through a backward projection of the point clouds; 3) a supervised image classification method based on Random Forest classifier is applied on the view dependent red, green, blue and depth (RGB-D) data; 4) point discharge locations of solid waste can then be mapped by projecting the classified images to the 3D point clouds; 5) then the landscape elements are classified into five types, such as vegetation, human settlement, soil, water and solid waste. While this work is still ongoing, the initial results have demonstrated that it is possible to perform quantitative studies that may help reveal and estimate the amount of waste present along the river bank.

  19. An Efficient Method for Mapping High-Resolution Global River Discharge Based on the Algorithms of Drainage Network Extraction

    Directory of Open Access Journals (Sweden)

    Jiaye Li

    2018-04-01

    Full Text Available River discharge, which represents the accumulation of surface water flowing into rivers and ultimately into the ocean or other water bodies, may have great impacts on water quality and the living organisms in rivers. However, the global knowledge of river discharge is still poor and worth exploring. This study proposes an efficient method for mapping high-resolution global river discharge based on the algorithms of drainage network extraction. Using the existing global runoff map and digital elevation model (DEM data as inputs, this method consists of three steps. First, the pixels of the runoff map and the DEM data are resampled into the same resolution (i.e., 0.01-degree. Second, the flow direction of each pixel of the DEM data (identified by the optimal flow path method used in drainage network extraction is determined and then applied to the corresponding pixel of the runoff map. Third, the river discharge of each pixel of the runoff map is calculated by summing the runoffs of all the pixels in the upstream of this pixel, similar to the upslope area accumulation step in drainage network extraction. Finally, a 0.01-degree global map of the mean annual river discharge is obtained. Moreover, a 0.5-degree global map of the mean annual river discharge is produced to display the results with a more intuitive perception. Compared against the existing global river discharge databases, the 0.01-degree map is of a generally high accuracy for the selected river basins, especially for the Amazon River basin with the lowest relative error (RE of 0.3% and the Yangtze River basin within the RE range of ±6.0%. However, it is noted that the results of the Congo and Zambezi River basins are not satisfactory, with RE values over 90%, and it is inferred that there may be some accuracy problems with the runoff map in these river basins.

  20. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    International Nuclear Information System (INIS)

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992

  1. q-triplet for Brazos River discharge: The edge of chaos?

    Science.gov (United States)

    Stosic, Tatijana; Stosic, Borko; Singh, Vijay P.

    2018-04-01

    We study the daily discharge data of Brazos River in Texas, USA, from 1900 to 2017, in terms of concepts drawn from the non-extensive statistics recently introduced by Tsallis. We find that the Brazos River discharge indeed follows non-extensive statistics regarding equilibrium, relaxation and sensitivity. Besides being the first such finding of a full-fledged q-triplet in hydrological data with possible future impact on water resources management, the fact that all three Tsallis q-triplet values are remarkably close to those of the logistic map at the onset of chaos opens up new questions towards a deeper understanding of the Brazos River dynamics, that may prove relevant for hydrological research in a more general sense.

  2. Concentration of elements in suspended matter discharges to Lerma River, Mexico

    International Nuclear Information System (INIS)

    Avila-Perez, P.; Tejeda, S.; Carapia, L.; Barcelo-Quintal, I.; Martinez, T.

    2011-01-01

    The S, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn and Pb concentration and the elemental composition of particles in suspended matter from principal discharges to Lerma River, have been evaluated. The elemental concentration in suspended matter has been obtained by Energy Dispersive X-Ray Fluorescence Spectrometry. The elemental composition of particles has been obtained by means of Energy Dispersive X-Ray Spectrometry (EDS). The results show that K, Ca, Ti, Mn and Fe are mainly from natural origin in the Upper Course of the Lerma River (UCLR), where the principal contributions probably come from dragging of soils and sediments in the rainy season and Cr, Cu, Zn and Pb are mainly from anthropogenic origin where the principal contributions come from urban and industrial untreated discharge. The application of Energy Dispersive X-Ray Spectrometry plus Scanning Electron Microscopy is useful in the characterization of suspended matter in natural, anthropogenic and mixed water discharges. (author)

  3. LenaWin 1.0, user's guide

    International Nuclear Information System (INIS)

    Baeverstam, U.

    1992-08-01

    Lena W in is a program for dispersion and dose calculations, mainly connected to accidents in nuclear facilities. Besides that, it may, however, also be used for other kinds of releases. It is designed to be used both for training purpose, and in real situations. Great care has therefore been taken to ensure a simple and quick handling of the program, also in difficult situations. The program is a true Windows application, and works with version 3.0 and higher of Microsoft Windows. It was developed at the Swedish Radiation Protection Institute (SSI) during 1991-1992, and is used by the institute in its regular work. Lena W in is part in a larger system to handle accidental situations. An important part of this system is a database and a database handler to manage all kinds of measured data after a release. Lena W in has functions to display data taken from this database on maps

  4. Discharge, water quality, and native fish abundance in the Virgin River, Utah, Nevada, and Arizona, in support of Pah Tempe Springs discharge remediation efforts

    Science.gov (United States)

    Miller, Matthew P.; Lambert, Patrick M.; Hardy, Thomas B.

    2014-01-01

    Pah Tempe Springs discharge hot, saline, low dissolved-oxygen water to the Virgin River in southwestern Utah, which is transported downstream to Lake Mead and the Colorado River. The dissolved salts in the Virgin River negatively influence the suitability of this water for downstream agricultural, municipal, and industrial use. Therefore, various remediation scenarios to remove the salt load discharged from Pah Tempe Springs to the Virgin River are being considered. One concern about this load removal is the potential to impact the ecology of the Virgin River. Specifically, information is needed regarding possible impacts of Pah Tempe Springs remediation scenarios on the abundance, distribution, and survival of native fish in the Virgin River. Future efforts that aim to quantitatively assess how various remediation scenarios to reduce the load of dissolved salts from Pah Tempe Springs into the Virgin River may influence the abundance, distribution, and survival of native fish will require data on discharge, water quality, and native fish abundance. This report contains organized accessible discharge, water quality, and native fish abundance data sets from the Virgin River, documents the compilation of these data, and discusses approaches for quantifying relations between abiotic physical and chemical conditions, and fish abundance.

  5. Estimating Total Discharge in the Yangtze River Basin Using Satellite-Based Observations

    Directory of Open Access Journals (Sweden)

    Samuel A. Andam‑Akorful

    2013-07-01

    Full Text Available The measurement of total basin discharge along coastal regions is necessary for understanding the hydrological and oceanographic issues related to the water and energy cycles. However, only the observed streamflow (gauge-based observation is used to estimate the total fluxes from the river basin to the ocean, neglecting the portion of discharge that infiltrates to underground and directly discharges into the ocean. Hence, the aim of this study is to assess the total discharge of the Yangtze River (Chang Jiang basin. In this study, we explore the potential response of total discharge to changes in precipitation (from the Tropical Rainfall Measuring Mission—TRMM, evaporation (from four versions of the Global Land Data Assimilation—GLDAS, namely, CLM, Mosaic, Noah and VIC, and water-storage changes (from the Gravity Recovery and Climate Experiment—GRACE by using the terrestrial water budget method. This method has been validated by comparison with the observed streamflow, and shows an agreement with a root mean square error (RMSE of 14.30 mm/month for GRACE-based discharge and 20.98 mm/month for that derived from precipitation minus evaporation (P − E. This improvement of approximately 32% indicates that monthly terrestrial water-storage changes, as estimated by GRACE, cannot be considered negligible over Yangtze basin. The results for the proposed method are more accurate than the results previously reported in the literature.

  6. Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.

    2014-01-01

    The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

  7. The role of discharge variation in scaling of drainage area and food chain length in rivers

    Science.gov (United States)

    Sabo, John L.; Finlay, Jacques C.; Kennedy, Theodore A.; Post, David M.

    2010-01-01

    Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

  8. Streambed scour of salmon spawning habitat in a regulated river influenced by management of peak discharge

    Science.gov (United States)

    Gendaszek, Andrew S.; Burton, Karl D.; Magirl, Christopher S.; Konrad, Christopher P.

    2017-01-01

    In the Pacific Northwest of the United States, salmon eggs incubating within streambed gravels are susceptible to scour during floods. The threat to egg-to-fry survival by streambed scour is mitigated, in part, by the adaptation of salmon to bury their eggs below the typical depth of scour. In regulated rivers globally, we suggest that water managers consider the effect of dam operations on scour and its impacts on species dependent on benthic habitats.We instrumented salmon-spawning habitat with accelerometer scour monitors (ASMs) at 73 locations in 11 reaches of the Cedar River in western Washington State of the United States from Autumn 2013 through the Spring of 2014. The timing of scour was related to the discharge measured at a nearby gage and compared to previously published ASM data at 26 locations in two reaches of the Cedar River collected between Autumn 2010 and Spring 2011.Thirteen percent of the recovered ASMs recorded scour during a peak-discharge event in March 2014 (2-to 3-year recurrence interval) compared to 71% of the recovered ASMs during a higher peak-discharge event in January 2011 (10-year recurrence interval). Of the 23 locations where ASMs recorded scour during the 2011 and 2014 deployments, 35% had scour when the discharge was ≤87.3 m3/s (3,082 ft3/s) (2-year recurrence interval discharge) with 13% recording scour at or below the 62.3 m3/s (2,200 ft3/s) operational threshold for peak-discharge management during the incubation of salmon eggs.Scour to the depth of salmon egg pockets was limited during peak discharges with frequent (1.25-year or less) recurrence intervals, which managers can regulate through dam operations on the Cedar River. Pairing novel measurements of the timing of streambed scour with discharge data allows the development of peak-discharge management strategies that protect salmon eggs incubating within streambed gravels during floods.

  9. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Science.gov (United States)

    Fernández-Nóvoa, D; Gómez-Gesteira, M; Mendes, R; deCastro, M; Vaz, N; Dias, J M

    2017-01-01

    The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward) winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward) winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  10. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Directory of Open Access Journals (Sweden)

    D Fernández-Nóvoa

    Full Text Available The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  11. River Discharge Estimation by Using Altimetry Data and Simplified Flood Routing Modeling

    Directory of Open Access Journals (Sweden)

    Tommaso Moramarco

    2013-08-01

    Full Text Available A methodology to estimate the discharge along rivers, even poorly gauged ones, taking advantage of water level measurements derived from satellite altimetry is proposed. The procedure is based on the application of the Rating Curve Model (RCM, a simple method allowing for the estimation of the flow conditions in a river section using only water levels recorded at that site and the discharges observed at another upstream section. The European Remote-Sensing Satellite 2, ERS-2, and the Environmental Satellite, ENVISAT, altimetry data are used to provide time series of water levels needed for the application of RCM. In order to evaluate the usefulness of the approach, the results are compared with the ones obtained by applying an empirical formula that allows discharge estimation from remotely sensed hydraulic information. To test the proposed procedure, the 236 km-reach of the Po River is investigated, for which five in situ stations and four satellite tracks are available. Results show that RCM is able to appropriately represent the discharge, and its performance is better than the empirical formula, although this latter does not require upstream hydrometric data. Given its simple formal structure, the proposed approach can be conveniently utilized in ungauged sites where only the survey of the cross-section is needed.

  12. Characterization and Fate of Dissolved Organic Matter in the Lena Delta Region, Siberia

    Science.gov (United States)

    Goncalves-Araujo, R.; Stedmon, C. A.; Heim, B.; Dubinenkov, I.; Kraberg, A.; Moiseev, D.; Bracher, A.

    2016-02-01

    Connectivity between the terrestrial and marine environment in the Artic is changing as a result of climate change, influencing both freshwater budgets and the supply of carbon to the sea. This study characterizes the optical properties of dissolved organic matter (DOM) within the Lena Delta region and evaluates the behavior of DOM across the fresh water-marine gradient. Six fluorescent components (four humic-like; one marine humic-like; one protein-like) were identified by Parallel Factor Analysis (PARAFAC) with a clear dominance of allochthonous humic-like signals. Colored DOM (CDOM) and dissolved organic carbon (DOC) were highly correlated and had their distribution coupled with hydrographical conditions. Higher DOM concentration and degree of humification were associated with the low salinity waters of the Lena River. Values decreased towards the higher salinity Laptev Sea shelf waters. Results demonstrate different responses of DOM mixing in relation to the vertical structure of the water column, as reflecting the hydrographical dynamics in the region. Two mixing curves for DOM were apparent. In surface waters above the pycnocline there was a sharper decrease in DOM concentration in relation to salinity indicating removal. In the bottom water layer the DOM decrease within salinity was less. We propose there is a removal of DOM occurring primarily at the surface layer, which is likely driven by photodegradation and flocculation.

  13. Satellite remote sensing of river inundation area, stage, and discharge: a review

    Science.gov (United States)

    Smith, Laurence C.

    1997-08-01

    The growing availability of multi-temporal satellite data has increased opportunities for monitoring large rivers from space. A variety of passive and active sensors operating in the visible and microwave range are currently operating, or planned, which can estimate inundation area and delineate flood boundaries. Radar altimeters show great promise for directly measuring stage variation in large rivers. It also appears to be possible to obtain estimates of river discharge from space, using ground measurements and satellite data to construct empirical curves that relate water surface area to discharge. Extrapolation of these curves to ungauged sites may be possible for the special case of braided rivers.Where clouds, trees and floating vegetation do not obscure the water surface, high-resolution visible/infrared sensors provide good delineation of inundated areas. Synthetic aperture radar (SAR) sensors can penetrate clouds and can also detect standing water through emergent aquatic plants and forest canopies. However, multiple frequencies and polarizations are required for optimal discrimination of various inundated vegetation cover types. Existing single-polarization, fixed-frequency SARs are not sufficient for mapping inundation area in all riverine environments. In the absence of a space-borne multi-parameter SAR, a synergistic approach using single-frequency, fixed-polarization SAR and visible/infrared data will provide the best results over densely vegetated river floodplains.

  14. Evaluation of seepage and discharge uncertainty in the middle Snake River, southwestern Idaho

    Science.gov (United States)

    Wood, Molly S.; Williams, Marshall L.; Evetts, David M.; Vidmar, Peter J.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the State of Idaho, Idaho Power Company, and the Idaho Department of Water Resources, evaluated seasonal seepage gains and losses in selected reaches of the middle Snake River, Idaho, during November 2012 and July 2013, and uncertainty in measured and computed discharge at four Idaho Power Company streamgages. Results from this investigation will be used by resource managers in developing a protocol to calculate and report Adjusted Average Daily Flow at the Idaho Power Company streamgage on the Snake River below Swan Falls Dam, near Murphy, Idaho, which is the measurement point for distributing water to owners of hydropower and minimum flow water rights in the middle Snake River. The evaluated reaches of the Snake River were from King Hill to Murphy, Idaho, for the seepage studies and downstream of Lower Salmon Falls Dam to Murphy, Idaho, for evaluations of discharge uncertainty. Computed seepage was greater than cumulative measurement uncertainty for subreaches along the middle Snake River during November 2012, the non-irrigation season, but not during July 2013, the irrigation season. During the November 2012 seepage study, the subreach between King Hill and C J Strike Dam had a meaningful (greater than cumulative measurement uncertainty) seepage gain of 415 cubic feet per second (ft3/s), and the subreach between Loveridge Bridge and C J Strike Dam had a meaningful seepage gain of 217 ft3/s. The meaningful seepage gain measured in the November 2012 seepage study was expected on the basis of several small seeps and springs present along the subreach, regional groundwater table contour maps, and results of regional groundwater flow model simulations. Computed seepage along the subreach from C J Strike Dam to Murphy was less than cumulative measurement uncertainty during November 2012 and July 2013; therefore, seepage cannot be quantified with certainty along this subreach. For the uncertainty evaluation, average

  15. Evaluation of the depth-integration method of measuring water discharge in large rivers

    Science.gov (United States)

    Moody, J.A.; Troutman, B.M.

    1992-01-01

    The depth-integration method oor measuring water discharge makes a continuos measurement of the water velocity from the water surface to the bottom at 20 to 40 locations or verticals across a river. It is especially practical for large rivers where river traffic makes it impractical to use boats attached to taglines strung across the river or to use current meters suspended from bridges. This method has the additional advantage over the standard two- and eight-tenths method in that a discharge-weighted suspended-sediment sample can be collected at the same time. When this method is used in large rivers such as the Missouri, Mississippi and Ohio, a microwave navigation system is used to determine the ship's position at each vertical sampling location across the river, and to make accurate velocity corrections to compensate for shift drift. An essential feature is a hydraulic winch that can lower and raise the current meter at a constant transit velocity so that the velocities at all depths are measured for equal lengths of time. Field calibration measurements show that: (1) the mean velocity measured on the upcast (bottom to surface) is within 1% of the standard mean velocity determined by 9-11 point measurements; (2) if the transit velocity is less than 25% of the mean velocity, then average error in the mean velocity is 4% or less. The major source of bias error is a result of mounting the current meter above a sounding weight and sometimes above a suspended-sediment sampling bottle, which prevents measurement of the velocity all the way to the bottom. The measured mean velocity is slightly larger than the true mean velocity. This bias error in the discharge is largest in shallow water (approximately 8% for the Missouri River at Hermann, MO, where the mean depth was 4.3 m) and smallest in deeper water (approximately 3% for the Mississippi River at Vickbsurg, MS, where the mean depth was 14.5 m). The major source of random error in the discharge is the natural

  16. Overview of the issues surrounding thermal discharges in the Des Plaines River

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    This review effort was undertaken to clarify and, if possible, quantify the issues surrounding the thermal input into the lower Des Plaines River from the Commonwealth Edison Joliet Electrical Generation Facility. The central issue is whether or not a reduction of the thermal discharge from the facility would produce beneficial environmental effects. This issue is clouded due to the fact of a number of environmental problems. These problems include: the river water quality, sediment quality, and barge traffic impacts. These variables, coupled with the uncertain future stream volume and conflicting data, prevent any simplistic conclusions from being drawn. Thus, any short-term study can only result in an overview of the situation.

  17. Low energy neutrino astronomy and particle physics with LENA

    Energy Technology Data Exchange (ETDEWEB)

    Marrodan Undagoitia, Teresa [Physik-Department E15, TU-Muenchen, Garching (Germany); Physik-Institut, Universitaet Zuerich (Switzerland); Feilitzsch, Franz von; Goeger-Neff, Marianne; Oberauer, Lothar; Potzel, Walter; Todor, Sebastian; Winter, Juergen; Wurm, Michael [Physik-Department E15, TU-Muenchen, Garching (Germany)

    2009-07-01

    LENA is proposed to be a large-volume liquid-scintillation detector for neutrino astronomy and for the search for proton decay. In the current design, it is planned as a vertical cylinder of 30m diameter and 100m height. The detection medium consists of 50 kt organic liquid scintillator, the emitted light of which is detected by about 15000 photomultipliers. In this talk the main physics topics of LENA are presented together with calculations and Monte Carlo simulations to demonstrate the capabilities of the detector. Key goals of this project are for example the measurement of solar, supernovae and geo-neutrinos, as well as to extend the search for proton decay beyond the current lifetime limits. LENA is part of an European design study, LAGUNA, which evaluates the feasibility of an underground location for a large detector. Three detector concepts have been proposed, a megaton water-Cherenkov, a 100 kt liquid-argon TPC and the LENA detector. The status of the engineering studies for different locations is reported.

  18. Impacts of Columbia River discharge on salmonid habitat: 2. Changes in shallow-water habitat

    Science.gov (United States)

    Kukulka, Tobias; Jay, David A.

    2003-09-01

    This is the second part of an investigation that analyzes human alteration of shallow-water habitat (SWH) available to juvenile salmonids in the tidal Lower Columbia River. Part 2 develops a one-dimensional, subtidal river stage model that explains ˜90% of the stage variance in the tidal river. This model and the tidal model developed in part 1 [, 2003] uncouple the nonlinear interaction of river tides and river stage by referring both to external forcing by river discharge, ocean tides, and atmospheric pressure. Applying the two models, daily high-water levels were predicted for a reach from rkm-50 to rkm-90 during 1974 to 1998, the period of contemporary management. Predicted water levels were related to the bathymetry and topography to determine the changes in shallow-water habitat area (SWHA) caused by flood control dikes and altered flow management. Model results suggest that diking and a >40% reduction of peak flows have reduced SWHA by ˜62% during the crucial spring freshet period during which juvenile salmon use of SWHA is maximal. Taken individually, diking and flow cycle alteration reduced spring freshet SWHA by 52% and 29%, respectively. SWHA has been both displaced to lower elevations and modified in its character because tidal range has increased. Our models of these processes are economical for the very long simulations (seasons to centuries) needed to understand historic changes and climate impacts on SWH. Through analysis of the nonlinear processes controlling surface elevation in a tidal river, we have identified some of the mechanisms that link freshwater discharge to SWH and salmonid survival.

  19. The constructional design of cooling water discharge structures on German rivers

    International Nuclear Information System (INIS)

    Geldner, P.; Zimmermann, C.

    1975-11-01

    The present compilation of structures for discharging cooling water from power stations into rivers is an attempt to make evident developments in the constructional design of such structures and to give reasons for special structure shapes. A complete collection of all structures built in Germany, however, is difficult to realize because of the large number of power stations. For conventionally heated power stations therefore only a selection was made, while nuclear power stations in operation or under construction could almost completely be taken into account. For want of sufficient quantities of water for river water cooling, projected power stations are now almost exclusively designed for closed-circuit cooling so that the required discharge structures for elutrition water from the cooling towers as well as for the emergency and secondary cooling circuits have to be designed only for small amounts of water. (orig./HP) [de

  20. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    Science.gov (United States)

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  1. Methods to estimate annual mean spring discharge to the Snake River between Milner Dam and King Hill, Idaho

    Science.gov (United States)

    Kjelstrom, L.C.

    1995-01-01

    Many individual springs and groups of springs discharge water from volcanic rocks that form the north canyon wall of the Snake River between Milner Dam and King Hill. Previous estimates of annual mean discharge from these springs have been used to understand the hydrology of the eastern part of the Snake River Plain. Four methods that were used in previous studies or developed to estimate annual mean discharge since 1902 were (1) water-budget analysis of the Snake River; (2) correlation of water-budget estimates with discharge from 10 index springs; (3) determination of the combined discharge from individual springs or groups of springs by using annual discharge measurements of 8 springs, gaging-station records of 4 springs and 3 sites on the Malad River, and regression equations developed from 5 of the measured springs; and (4) a single regression equation that correlates gaging-station records of 2 springs with historical water-budget estimates. Comparisons made among the four methods of estimating annual mean spring discharges from 1951 to 1959 and 1963 to 1980 indicated that differences were about equivalent to a measurement error of 2 to 3 percent. The method that best demonstrates the response of annual mean spring discharge to changes in ground-water recharge and discharge is method 3, which combines the measurements and regression estimates of discharge from individual springs.

  2. An automated system to simulate the River discharge in Kyushu Island using the H08 model

    Science.gov (United States)

    Maji, A.; Jeon, J.; Seto, S.

    2015-12-01

    Kyushu Island is located in southwestern part of Japan, and it is often affected by typhoons and a Baiu front. There have been severe water-related disasters recorded in Kyushu Island. On the other hand, because of high population density and for crop growth, water resource is an important issue of Kyushu Island.The simulation of river discharge is important for water resource management and early warning of water-related disasters. This study attempts to apply H08 model to simulate river discharge in Kyushu Island. Geospatial meteorological and topographical data were obtained from Japanese Ministry of Land, Infrastructure, Transport and Tourism (MLIT) and Automated Meteorological Data Acquisition System (AMeDAS) of Japan Meteorological Agency (JMA). The number of the observation stations of AMeDAS is limited and is not quite satisfactory for the application of water resources models in Kyushu. It is necessary to spatially interpolate the point data to produce grid dataset. Meteorological grid dataset is produced by considering elevation dependence. Solar radiation is estimated from hourly sunshine duration by a conventional formula. We successfully improved the accuracy of interpolated data just by considering elevation dependence and found out that the bias is related to geographical location. The rain/snow classification is done by H08 model and is validated by comparing estimated and observed snow rate. The estimates tend to be larger than the corresponding observed values. A system to automatically produce daily meteorological grid dataset is being constructed.The geospatial river network data were produced by ArcGIS and they were utilized in the H08 model to simulate the river discharge. Firstly, this research is to compare simulated and measured specific discharge, which is the ratio of discharge to watershed area. Significant error between simulated and measured data were seen in some rivers. Secondly, the outputs by the coupled model including crop growth

  3. Simulation of chlorinated water discharges from power plants on estuaries and rivers

    International Nuclear Information System (INIS)

    Eraslan, A.H.; Lietzke, M.H.; Fischer, S.K.; Kalmaz, E.V.

    1977-01-01

    The fast-transient (tidal-transient) one-dimensional discrete-element chemical transport model and its associated computer code CHMONE were applied to study the effects of chlorinated water discharges from power plants on tidal estuaries and controlled rivers. The mathematical model has the capability to predict simultaneously the hydrodynamic, thermal, and chemical composition of water as one-dimensional time-dependent distributions

  4. Discharge and Nitrogen Transfer Modelling in the Berze River: A HYPE Setup and Calibration

    Directory of Open Access Journals (Sweden)

    Veinbergs Arturs

    2017-05-01

    Full Text Available This study is focused on water quality and quantity modelling in the Berze River basin located in the Zemgale region of Latvia. The contributing basin area of 872 km2 is furthermore divided into 15 sub-basins designated according to the characteristics of hydrological network and water sampling programme. The river basin of interest is a spatially complex system with agricultural land and forests as two predominant land use types. Complexity of the system reflects in the discharge intensity and diffuse pollution of nitrogen compounds into the water bodies of the river basin. The presence of urban area has an impact as the load from the existing wastewater treatment plants consist up to 76 % of the total nitrogen load in the Berze River basin. Representative data sets of land cover, agricultural field data base for crop distribution analysis, estimation of crop management, soil type map, digital elevation model, drainage conditions, network of water bodies and point sources were used for the modelling procedures. The semi-distributed hydro chemical model HYPE has a setup to simulate discharge and nitrogen transfer. In order to make the model more robust and appropriate for the current study the data sets previously stated were classified by unifying similar spatially located polygons. The data layers were overlaid and 53 hydrological response units (SLCs were created. Agricultural land consists of 48 SLCs with the details of soils, drainage conditions, crop types, and land management practices. Manual calibration procedure was applied to improve the performance of discharge simulation. Simulated discharge values showed good agreement with the observed values with the Nash-Sutcliffe efficiency of 0.82 and bias of −6.6 %. Manual calibration of parameters related to nitrogen leakage simulation was applied to test the most sensitive parameters.

  5. Discharge and Nitrogen Transfer Modelling in the Berze River: A HYPE Setup and Calibration

    Science.gov (United States)

    Veinbergs, Arturs; Lagzdins, Ainis; Jansons, Viesturs; Abramenko, Kaspars; Sudars, Ritvars

    2017-05-01

    This study is focused on water quality and quantity modelling in the Berze River basin located in the Zemgale region of Latvia. The contributing basin area of 872 km2 is furthermore divided into 15 sub-basins designated according to the characteristics of hydrological network and water sampling programme. The river basin of interest is a spatially complex system with agricultural land and forests as two predominant land use types. Complexity of the system reflects in the discharge intensity and diffuse pollution of nitrogen compounds into the water bodies of the river basin. The presence of urban area has an impact as the load from the existing wastewater treatment plants consist up to 76 % of the total nitrogen load in the Berze River basin. Representative data sets of land cover, agricultural field data base for crop distribution analysis, estimation of crop management, soil type map, digital elevation model, drainage conditions, network of water bodies and point sources were used for the modelling procedures. The semi-distributed hydro chemical model HYPE has a setup to simulate discharge and nitrogen transfer. In order to make the model more robust and appropriate for the current study the data sets previously stated were classified by unifying similar spatially located polygons. The data layers were overlaid and 53 hydrological response units (SLCs) were created. Agricultural land consists of 48 SLCs with the details of soils, drainage conditions, crop types, and land management practices. Manual calibration procedure was applied to improve the performance of discharge simulation. Simulated discharge values showed good agreement with the observed values with the Nash-Sutcliffe efficiency of 0.82 and bias of -6.6 %. Manual calibration of parameters related to nitrogen leakage simulation was applied to test the most sensitive parameters.

  6. APPLICATION FOR 3D SCENE UNDERSTANDING IN DETECTING DISCHARGE OF DOMESTICWASTE ALONG COMPLEX URBAN RIVERS

    Directory of Open Access Journals (Sweden)

    Y. Ninsalam

    2016-06-01

    Full Text Available In our study we use 3D scene understanding to detect the discharge of domestic solid waste along an urban river. Solid waste found along the Ciliwung River in the neighbourhoods of Bukit Duri and Kampung Melayu may be attributed to households. This is in part due to inadequate municipal waste infrastructure and services which has caused those living along the river to rely upon it for waste disposal. However, there has been little research to understand the prevalence of household waste along the river. Our aim is to develop a methodology that deploys a low cost sensor to identify point source discharge of solid waste using image classification methods. To demonstrate this we describe the following five-step method: 1 a strip of GoPro images are captured photogrammetrically and processed for dense point cloud generation; 2 depth for each image is generated through a backward projection of the point clouds; 3 a supervised image classification method based on Random Forest classifier is applied on the view dependent red, green, blue and depth (RGB-D data; 4 point discharge locations of solid waste can then be mapped by projecting the classified images to the 3D point clouds; 5 then the landscape elements are classified into five types, such as vegetation, human settlement, soil, water and solid waste. While this work is still ongoing, the initial results have demonstrated that it is possible to perform quantitative studies that may help reveal and estimate the amount of waste present along the river bank.

  7. Simulation and Modelling of Climate Change Effects on River Awara Flow Discharge using WEAP Model

    Directory of Open Access Journals (Sweden)

    Oyati E.N.

    2017-11-01

    Full Text Available Modelling of stream flow and discharge of river Awara under changed climate conditions using CLIMGEN for stochastic weather generation and WEAP model was used to simulate reserviour storage volume, water demand and river discharges at high spatial resolution (0.5°×0.5°, total 66,420 grid cells. Results of CLM-Based flow measurement shows a linear regression with R 2 = 0.99 for IFPRI-MNP- IGSM_WRS calibration. Sensitivity simulation of ambient long-term shows an increase in temperature with 0.5 o c thus the results of the studies generally show that annual runoff and river discharges could largely decrease. The projection of water demand 150 million m 3 by 2020 against the reservoir storage volume 60 million m 3 and decrease in rainfall depth by -5.7 mm. The output of the combined models used in this study is veritable to create robust water management system under different climate change scenarios.

  8. Assessment of the Relationship between Andean Ice Core Precipitation Indicators and Amazon River Discharge

    Science.gov (United States)

    Johnson, N.; Alsdorf, D.; Thompson, L.; Mosley-Thompson, E.; Melack, J.

    2006-12-01

    Prior to the last 100 years, there is a significant lack of hydrologic knowledge for the Amazon Basin. A 100- year record of discharge from the city of Manaus, located at the confluence of the Solimoes and Negro rivers, is the most complete record for the basin. Inundated wetlands play a key role in carbon out-gassing to the atmosphere whereas discharge from the Amazon River contributes about 20% of the total freshwater flux delivered to the world's oceans. As discharge (Q) and inundation are directly related to precipitation, we are developing a method to extend our understanding of Q and inundation into the 19^{th} century. Using proxy data preserved in Andean glaciers and ice caps and recovered from ice cores, annually resolved histories of δ^{18)O and mass accumulation are available. The latter is a proxy for local precipitation amount whereas δ18O is influenced by continental scale processes (i.e., evaporation, convection) as well as by temperature and hence, by varying climate regimes. We have correlated the accumulation and δ18O records from Core 1 drilled on the Quelccaya ice-cap in the southern Andes of Peru with the Manaus discharge data. As ice core annual layers correspond to the thermal year (in Peru, July to June of the following year) and the discharge records are kept daily (January to December), we averaged 365 days of Q data seeking the optimal correlation for each start and end date. The best statistical relationship between δ18O and Q (r = -0.41, p = < 0.001) is attained when Q is averaged from March 16 to March 15 of the following year. We also correlated 23 years of ENSO events, which are linked to both Amazon River discharge and ice core δ18O (r = -0.60, p = < 0.001). These linear relationships are used to create Amazon discharge for the 20^{th} century and to extrapolate Q into the 19^{th} century. Previously developed relationships between Q and mainstem inundated area are then used to estimate inundated area along the main Amazon

  9. Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    A. D. Wickert

    2016-11-01

    Full Text Available Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins – the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.

  10. Sensitivity Modeling and Evaluation of Evapotranspiration Effects on Flow Discharge of River Owena in Nigeria

    Directory of Open Access Journals (Sweden)

    P.O Idogho

    2015-07-01

    Full Text Available Analysis of discharges, precipitation and temperature and some other meteorological-hydrological variables from 1996-2011 at the section of Owena River Basin. The evaluation, correlations, and the relationship between precipitation and discharge time series indicate a strong relationship. Minimum discharge values of 0.8 m 3 /s and 1.2 m 3 /s were observed in January and December and these values correspond to rainfall depth of 1.4 mm and 8.2 mm respectively. The average annual rainfall, river discharge were computed as 1,306.7 mm, 1,165 m 3 /s and mean temperature and evaporation of 31.1 oC and 4.6 mm. Evapotranspiration computation using pan evaporation model overestimated the evapotranspiration values by 0.5 mm and 0.21 mm over IHACRES and CROPWAT model for the total period of 15-year. Integration of the simulation outputs would be veritable in creating realistic-robust water management system for domestic and agricultural applications.

  11. Impact of Leachate Discharge from Cipayung Landfill on Water Quality of Pesanggrahan River, Indonesia

    Science.gov (United States)

    Noerfitriyani, Eki; Hartono, Djoko M.; Moersidik, Setyo S.; Gusniani, Irma

    2018-03-01

    The landfill operation can cause environmental problems due to solid waste decomposition in the form of leachate. The evaluation of environmental impacts related with solid waste landfilling is needed to ensure that leachate discharge to water bodies does not exceed the standard limit to prevent contamination of the environment. This study aims to analyze the impact of leachate discharge from Cipayung Landfill on water quality of Pesanggrahan River. The data were analyzed based on leachate samples taken from influent and effluent treatment unit, and river water samples taken from upstream, stream at leachate discharge, and downstream. All samples were taken three times under rainy season condition from April to May 2017. The results show the average leachate quality temperature is 34,81 °C, TSS 72.33 mg/L, pH 7.83, BOD 3,959.63 mg/L, COD 6,860 mg/L, TN 373.33 mg/L, Hg 0.0016 mg/L. The BOD5/COD ratio 0.58 indicated that leachate characteristics was biodegradable and resemble intermediate landfill due to the mixing of young leachate and old leachate. The effluent of leachate treatment plant exceeds the leachate standard limit for BOD, COD, and TN parameters. Statistical results from independent T-test showed significant differences (p<0,05) between upstream and downstream influenced with leachate discharge for DO parameter.

  12. Historical trends in precipitation and stream discharge at the Skjern River catchment, Denmark

    DEFF Research Database (Denmark)

    Karlsson, Ida Bjørnholt; Sonnenborg, Torben Obel; Jensen, Karsten Høgh

    2014-01-01

    for undercatch. The degree of change in the climatic variables is examined using the non-parametric Mann–Kendall test. During the last 133 yr the area has experienced a significant change in precipitation of 26% and a temperature change of 1.4°C, leading to increases in river discharge of 52% and groundwater...... outside the calibration period. The results showed a reduced model fit, especially for recent time periods (after the 1980s), and not all hydrological changes could be explained. This might indicate that hydrological models cannot be expected to predict climate change impacts on discharge as accurately...... in the future, compared to the performance under present conditions, where they can be calibrated. The (simulated) stream discharge was subsequently analysed using high flow and drought indices based on the threshold method. The extreme signal was found to depend highly on the period chosen as reference...

  13. Sediment discharge of the rivers of Catalonia, NE Spain, and the influence of human impacts

    Science.gov (United States)

    Liquete, Camino; Canals, Miquel; Ludwig, Wolfgang; Arnau, Pedro

    2009-03-01

    SummaryThe environmental and anthropogenic factors controlling sediment delivery to the sea are numerous, intricate and usually difficult to quantify. Mediterranean watersheds are historically amongst the most heavily impacted by human activities in the world. This study analyzes some of these factors for nine river systems from Catalonia, NE Spain, that open into the Northwestern Mediterranean Sea, and discusses the results obtained from sediment yield models and sediment concentration data series. General models indicate that the natural suspended sediment yield by individual Catalan rivers ranged within a fork from 94 to 621 t km -2 yr -1. Such a sediment yield would be noticeably reduced (moving the fork to 7-148 t km -2 yr -1) because of lithological factors and direct anthropogenic and, possibly, climatic impacts. Damming, water extraction and urbanization appear as the most important direct anthropogenic impacts in Catalonia. Water discharge and sediment concentration measurements by basin authorities provide much lower sediment yield estimations, from 0.4 to 19.8 t km -2 yr -1, which is probably due to the lack of measured sediment loads during flood events, as it is the case in many other Mediterranean rivers. The Catalan watersheds have some of the smallest runoff values amongst Mediterranean rivers. Of the nine river systems studied, water discharge tends to decrease in two and to increase in one. The other six river systems do not show any clear tendency. Related to climatic parameters, temperature raised in all the watersheds between 1961 and 1990, while precipitation did not show significant trends.

  14. Tracking groundwater discharge to a large river using tracers and geophysics.

    Science.gov (United States)

    Harrington, Glenn A; Gardner, W Payton; Munday, Tim J

    2014-01-01

    Few studies have investigated large reaches of rivers in which multiple sources of groundwater are responsible for maintaining baseflow. This paper builds upon previous work undertaken along the Fitzroy River, one of the largest perennial river systems in north-western Australia. Synoptic regional-scale sampling of both river water and groundwater for a suite of environmental tracers ((4) He, (87) Sr/(86) Sr, (222) Rn and major ions), and subsequent modeling of tracer behavior in the river, has enabled definition and quantification of groundwater input from at least three different sources. We show unambiguous evidence of both shallow "local" groundwater, possibly recharged to alluvial aquifers beneath the adjacent floodplain during recent high-flow events, and old "regional" groundwater introduced via artesian flow from deep confined aquifers. We also invoke hyporheic exchange and either bank return flow or parafluvial flow to account for background (222) Rn activities and anomalous chloride trends along river reaches where there is no evidence of the local or regional groundwater inputs. Vertical conductivity sections acquired through an airborne electromagnetic (AEM) survey provide insights to the architecture of the aquifers associated with these sources and general groundwater quality characteristics. These data indicate fresh groundwater from about 300 m below ground preferentially discharging to the river, at locations consistent with those inferred from tracer data. The results demonstrate how sampling rivers for multiple environmental tracers of different types-including stable and radioactive isotopes, dissolved gases and major ions-can significantly improve conceptualization of groundwater-surface water interaction processes, particularly when coupled with geophysical techniques in complex hydrogeological settings. © 2013, National Ground Water Association.

  15. The effect of land use change to maximum and minimum discharge in Cikapundung River Basin

    Science.gov (United States)

    Kuntoro, Arno Adi; Putro, Anton Winarto; Kusuma, M. Syahril B.; Natasaputra, Suardi

    2017-11-01

    Land use change are become issues for many river basin in the world, including Cikapundung River Basin in West Java. Cikapundung River is one of the main water sources of Bandung City water supply system. In the other hand, as one of the tributaries of Citarum River, Cikapundung also contributes to flooding in the Southern part of Bandung. Therefore, it is important to analyze the effect of land use change on Cikapundung river discharge, to maintain the reliability of water supply system and to minimize flooding in Bandung Basin. Land use map of Cikapundung River in 2009 shows that residential area (49.7%) and mixed farming (42.6%), are the most dominant land use type, while dry agriculture (19.4%) and forest (21.8%) cover the rest. The effect of land use change in Cikapundung River Basin is simulated by using Hydrological Simulation Program FORTRAN (HSPF) through 3 land use change scenarios: extreme, optimum, and existing. By using the calibrated parameters, simulation of the extreme land use change scenario with the decrease of forest area by 77.7% and increase of developed area by 57.0% from the existing condition resulted in increase of Qmax/Qmin ratio from 5.24 to 6.10. Meanwhile, simulation of the optimum land use change scenario with the expansion of forest area by 75.26% from the existing condition resulted in decrease of Qmax/Qmin ratio from 5.24 to 4.14. Although Qmax/Qmin ratio of Cikapundung is still relatively small, but the simulation shows the important of water resources analysis in providing river health indicator, as input for land use planning.

  16. Simulated long-term changes in river discharge and soil moisture due to global warming

    Science.gov (United States)

    Manabe, S.; Milly, P.C.D.; Wetherald, R.

    2004-01-01

    By use of a coupled ocean atmosphere-land model, this study explores the changes of water availability, as measured by river discharge and soil moisture, that could occur by the middle of the 21st century in response to combined increases of greenhouse gases and sulphate aerosols based upon the "IS92a" scenario. In addition, it presents the simulated change in water availability that might be realized in a few centuries in response to a quadrupling of CO2 concentration in the atmosphere. Averaging the results over extended periods, the radiatively forced changes, which are very similar between the two sets of experiments, were successfully extracted. The analysis indicates that the discharges from Arctic rivers such as the Mackenzie and Ob' increase by up to 20% (of the pre-Industrial Period level) by the middle of the 21st century and by up to 40% or more in a few centuries. In the tropics, the discharges from the Amazonas and Ganga-Brahmaputra rivers increase substantially. However, the percentage changes in runoff from other tropical and many mid-latitude rivers are smaller, with both positive and negative signs. For soil moisture, the results of this study indicate reductions during much of the year in many semiarid regions of the world, such as the southwestern region of North America, the northeastern region of China, the Mediterranean coast of Europe, and the grasslands of Australia and Africa. As a percentage, the reduction is particularly large during the dry season. From middle to high latitudes of the Northern Hemisphere, soil moisture decreases in summer but increases in winter.

  17. Dependency of high coastal water level and river discharge at the global scale

    Science.gov (United States)

    Ward, P.; Couasnon, A.; Haigh, I. D.; Muis, S.; Veldkamp, T.; Winsemius, H.; Wahl, T.

    2017-12-01

    It is widely recognized that floods cause huge socioeconomic impacts. From 1980-2013, global flood losses exceeded $1 trillion, with 220,000 fatalities. These impacts are particularly hard felt in low-lying densely populated deltas and estuaries, whose location at the coast-land interface makes them naturally prone to flooding. When river and coastal floods coincide, their impacts in these deltas and estuaries are often worse than when they occur in isolation. Such floods are examples of so-called `compound events'. In this contribution, we present the first global scale analysis of the statistical dependency of high coastal water levels (and the storm surge component alone) and river discharge. We show that there is statistical dependency between these components at more than half of the stations examined. We also show time-lags in the highest correlation between peak discharges and coastal water levels. Finally, we assess the probability of the simultaneous occurrence of design discharge and design coastal water levels, assuming both independence and statistical dependence. For those stations where we identified statistical dependency, the probability is between 1 and 5 times greater, when the dependence structure is accounted for. This information is essential for understanding the likelihood of compound flood events occurring at locations around the world as well as for accurate flood risk assessments and effective flood risk management. The research was carried out by analysing the statistical dependency between observed coastal water levels (and the storm surge component) from GESLA-2 and river discharge using gauged data from GRDC stations all around the world. The dependence structure was examined using copula functions.

  18. Climate induced variability of suspended matter and nutrient in the discharge of Kali river, central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Raghavan, B.R.; Chauhan, O.S.

    to understand the influence of the SWM precipitation on estuarine and coastal processes. The seasonal discharge data of the river is obtained during 2004, which was a normal monsoon year. We find high nutrient load in the rivers, specially in the estuarine...

  19. Modelling the effects of spatial and temporal resolution of rainfall and basin model on extreme river discharge

    NARCIS (Netherlands)

    Booij, Martijn J.

    2002-01-01

    Important characteristics of an appropriate river basin model, intended to study the effect of climate change on basin response, are the spatial and temporal resolution of the model and the rainfall input. The effects of input and model resolution on extreme discharge of a large river basin are

  20. Discharge estimation from H-ADCP measurements in a tidal river subject to sidewall effects and a mobile bed

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Vermeulen, B.; Hidayat, H.

    2011-01-01

    Horizontal acoustic Doppler current profilers (H-ADCPs) can be employed to estimate river discharge based on water level measurements and flow velocity array data across a river transect. A new method is presented that accounts for the dip in velocity near the water surface, which is caused by

  1. Discharge and sediment loads at the Kings River Experimental Forest in the Southern Sierra Nevada of California

    Science.gov (United States)

    S.M. Eagan; C.T. Hunsaker; C.R. Dolanc; M.E. Lynch; C.R. Johnson

    2007-01-01

    The Kings River Experimental Watershed (KREW) is now in its third year of data collection on eight small perennial watersheds. We are collecting meteorology, stream discharge, sediment load, water chemistry, shallow soil water chemistry, vegetation, macro-invertebrate, stream microclimate, and air quality data. This paper primarily examines discharge and sediment data...

  2. Groundwater Discharge to Upper Barataria Basin Driven by Mississippi River Stage

    Science.gov (United States)

    Cable, J. E.; Kim, J.; Johannesson, K. H.; Kolker, A.; Telfeyan, K.; Breaux, A.

    2017-12-01

    Groundwater flow into deltaic wetlands occurs despite the heterogeneous and anisotropic depositional environment of deltas. Along the Mississippi River this groundwater flow is augmented by the vast alluvial aquifer and the levees which confine the river to a zone much more narrow than the historical floodplain. The effect of the levees has been to force the river stage to as much as 10 m above the adjacent back-levee wetlands. Consequently, the head difference created by higher river stages can drive groundwater flow into these wetlands, especially during flood seasons. We measured Rn-222 in the surface waters of a bayou draining a bottomland hardwood swamp in the lower Mississippi River valley over a 14-month period. With a half-life of 3.83 days and its conservative geochemical behavior, Rn-222 is a well-known tracer for groundwater inputs in both fresh and marine environments. Transects from the mouth to the headwaters of the bayou were monitored for Rn-222 in real-time using Rad-7s on a semi-monthly basis. We found that Rn-222 decreased exponentially from the swamp at the headwaters to the mouth of the bayou. Using a mass balance approach, we calculated groundwater inputs to the bayou headwaters and compared these discharge estimates to variations in Mississippi River stage. Groundwater inputs to the Barataria Basin, Louisiana, represent a significant fraction of the freshwater budget of the basin. The flow appears to occur through the sandy Point Bar Aquifer that lies adjacent to the river and underlies many of the freshwater swamps of the Basin. Tracer measurements throughout the Basin in these swamp areas appear to confirm our hypothesis about the outlet for groundwater in this deltaic environment.

  3. Simulation of relationship between river discharge and sediment yield in the semi-arid river watersheds

    Science.gov (United States)

    Khaleghi, Mohammad Reza; Varvani, Javad

    2018-02-01

    Complex and variable nature of the river sediment yield caused many problems in estimating the long-term sediment yield and problems input into the reservoirs. Sediment Rating Curves (SRCs) are generally used to estimate the suspended sediment load of the rivers and drainage watersheds. Since the regression equations of the SRCs are obtained by logarithmic retransformation and have a little independent variable in this equation, they also overestimate or underestimate the true sediment load of the rivers. To evaluate the bias correction factors in Kalshor and Kashafroud watersheds, seven hydrometric stations of this region with suitable upstream watershed and spatial distribution were selected. Investigation of the accuracy index (ratio of estimated sediment yield to observed sediment yield) and the precision index of different bias correction factors of FAO, Quasi-Maximum Likelihood Estimator (QMLE), Smearing, and Minimum-Variance Unbiased Estimator (MVUE) with LSD test showed that FAO coefficient increases the estimated error in all of the stations. Application of MVUE in linear and mean load rating curves has not statistically meaningful effects. QMLE and smearing factors increased the estimated error in mean load rating curve, but that does not have any effect on linear rating curve estimation.

  4. The effect of Congo River freshwater discharge on Eastern Equatorial Atlantic climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Materia, Stefano [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Gualdi, Silvio; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Terray, Laurent [Sciences de l' Univers au CERFACS, URA1875 CERFACS/CNRS, Toulouse (France)

    2012-11-15

    The surface ocean explains a considerable part of the inter-annual Tropical Atlantic variability. The present work makes use of observational datasets to investigate the effect of freshwater flow on sea surface salinity (SSS) and temperature (SST) in the Gulf of Guinea. In particular, the Congo River discharges a huge amount of freshwater into the ocean, affecting SSS in the Eastern Equatorial Atlantic (EEA) and stratifying the surface layers. The hypothesis is that an excess of river runoff emphasize stratification, influencing the ocean temperature. In fact, our findings show that SSTs in the Gulf of Guinea are warmer in summers following an anomalously high Congo spring discharge. Vice versa, when the river discharges low freshwater, a cold anomaly appears in the Gulf. The response of SST is not linear: temperature anomalies are considerable and long-lasting in the event of large freshwater flow, while in dry years they are less remarkable, although still significant. An excess of freshwater seems able to form a barrier layer, which inhibits vertical mixing and the entrainment of the cold thermocline water into the surface. Other processes may contribute to SST variability, among which the net input of atmospheric freshwater falling over EEA. Likewise the case of continental runoff from Congo River, warm anomalies occur after anomalously rainy seasons and low temperatures follow dry seasons, confirming the effect of freshwater on SST. However, the two sources of freshwater anomaly are not in phase, so that it is possible to split between atypical SST following continental freshwater anomalies and rainfall anomalies. Also, variations in air-sea fluxes can produce heating and cooling of the Gulf of Guinea. Nevertheless, atypical SSTs cannot be ascribed to fluxes, since the temperature variation induced by them is not sufficient to explain the SST anomalies appearing in the Gulf after anomalous peak discharges. The interaction processes between river runoff, sea

  5. Estimating discharge from the Godavari river using ENVISAT, Jason-2, and SARAL/AltiKa radar altimeters

    Digital Repository Service at National Institute of Oceanography (India)

    Sridevi, T.; Sharma, Rashmi; Mehra, P.; Prasad, K.V.S.R.

    ://www.legos.obs-mip.fr/soa/hydrologie/hydroweb), U.S. Department of Agriculture's Foreign Agricultural Service (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir), and European Space Agency and De Montfort University River and Lake Project (http... has been established between river heights and in-situ discharge with high correlation and from Fig. 7, it was already observed a good correlation between the altimetry river heights and in-situ heights, the comparison could therefore be extended...

  6. Punctuated Sediment Discharge during Early Pliocene Birth of the Colorado River: Evidence from Regional Stratigraphy, Sedimentology, and Paleontology

    Science.gov (United States)

    Dorsey, Rebecca J.; O'Connell, Brennan; McDougall, Kristin; Homan, Mindy B.

    2018-01-01

    The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at 5.4-5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough. These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on punctuated sediment

  7. Metal discharges by Sinaloa Rivers to the coastal zone of NW Mexico.

    Science.gov (United States)

    Frías-Espericueta, M G; Mejía-Cruz, R; Osuna López, I; Muy-Rangel, M D; Rubio-Carrasco, W; Aguilar-Juárez, M; Voltolina, D

    2014-02-01

    The aim of this work was to survey the discharges of dissolved and particulate Cd, Cu, Fe, Mn, Pb and Zn of the eight main rivers of Sinaloa State to the Mexican coastal environment. Zn was the most abundant dissolved metal and Fe was the most abundant particulate (8.02-16.90 and 51.8-1,140.3 μg/L, respectively). Only particulate Mn had significantly (p = 0.028) higher values in summer-fall (rainy season), whereas the significantly (p = 0.036) higher values of dissolved Zn were observed in winter and spring. The highest annual total discharges to Sinaloa coastal waters were those of the rivers San Lorenzo and Piaxtla (>2 × 10(3) m.t.) and the lowest those of rivers Baluarte and El Fuerte (349 and 119 m.t., respectively). Pb concentrations may become of concern, because they are higher than the value recommended for the welfare of aquatic communities of natural waters.

  8. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes

    Science.gov (United States)

    Yang, S. L.; Xu, K. H.; Milliman, J. D.; Yang, H. F.; Wu, C. S.

    2015-01-01

    The increasing impact of both climatic change and human activities on global river systems necessitates an increasing need to identify and quantify the various drivers and their impacts on fluvial water and sediment discharge. Here we show that mean Yangtze River water discharge of the first decade after the closing of the Three Gorges Dam (TGD) (2003–2012) was 67 km3/yr (7%) lower than that of the previous 50 years (1950–2002), and 126 km3/yr less compared to the relatively wet period of pre-TGD decade (1993–2002). Most (60–70%) of the decline can be attributed to decreased precipitation, the remainder resulting from construction of reservoirs, improved water-soil conservation and increased water consumption. Mean sediment flux decreased by 71% between 1950–1968 and the post-TGD decade, about half of which occurred prior to the pre-TGD decade. Approximately 30% of the total decline and 65% of the decline since 2003 can be attributed to the TGD, 5% and 14% of these declines to precipitation change, and the remaining to other dams and soil conservation within the drainage basin. These findings highlight the degree to which changes in riverine water and sediment discharge can be related with multiple environmental and anthropogenic factors. PMID:26206169

  9. Identifying Groundwater Discharge in the Merced River Basin, California Using Radon-222

    Science.gov (United States)

    Shaw, G. D.; Hudson, G. B.; Moran, J.; Conklin, M.

    2004-12-01

    Groundwater flow in fractured granite of the Sierra Nevada is poorly characterized, in particular, contributions of mountain block recharge are not known. Using a combination of water quality and isotopic analyses, groundwater inputs to the Upper Merced River were characterized. Between November 2003 and July 2004, monthly water quality samples were taken from Happy Isles to the inlet of Lake McClure, a 75 km reach. These samples demonstrated the expected dilution due to snowmelt in the spring. In the fall, the spatial profile matched the geology with anion concentrations increasing downstream of the transition from the Sierra Nevada batholith to the country rock, suggesting significant groundwater inputs. From July 19 to 21, 2004, radon-222 and other noble gases (He, Ne, Ar, Kr and Xe abundances and 3He/4He ratio) were measured along a 37 km reach of the Merced River, extending from the top of Yosemite Valley to the confluence of the South Fork of the Merced River. All radon samples were extracted into mineral oil immediately in the field and counted using liquid scintillation; noble gas samples were collected in copper tubes. Radon-222 activity varied from about 1 to 100 pCi/L (at collection time) indicating significant, spatially variable groundwater discharge into the Merced River. Two one-mile reaches of the Merced River were sampled for 222Rn on a fine scale. Large fracture sets in these two locations and previous temperature measurements suggested that groundwater discharge was higher relative to other locations along the river. Radon-222 activity was low upstream and downstream of large fractures observed in the bedrock; whereas, 222Rn activity was high at large fracture zones. Degassing is rapid downstream of fractures where no groundwater discharge is observed. For a representative groundwater end-member, radon-222 activity measured in Fern Spring, Yosemite Valley was about 1200 pCi/L. Excess 4He from U and Th decay is observed in samples with elevated

  10. River Discharge and Local Scale Habitat Influence LIFE Score Macroinvertebrate LIFE Scores

    DEFF Research Database (Denmark)

    Dunbar, Michael J.; Pedersen, Morten Lauge; Cadman, Dan

    2010-01-01

    Midlands of the U.K., we describe how local-scale habitat features (indexed through River Habitat Survey or Danish Habitat Quality Survey) and changing river flow (discharge) influence the response of a macroinvertebrate community index. The approach has broad applicability in developing regional flow...... Invertebrate index for Flow Evaluation (LIFE), an average of abundance-weighted flow groups which indicate the microhabitat preferences of each taxon for higher velocities and clean gravel/cobble substrata or slow/still velocities and finer substrata. 3. For the Danish fauna, the LIFE score responded to three...... of the channel (negative). In both cases, LIFE responded negatively to features associated with historical channel modification. We suggest that there are several mechanisms for these relationships, including the narrower tolerances of taxa preferring high velocity habitat; these taxa are also continually...

  11. Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach.

    Science.gov (United States)

    Freitas, Juliana G; Rivett, Michael O; Roche, Rachel S; Durrant Neé Cleverly, Megan; Walker, Caroline; Tellam, John H

    2015-02-01

    The typically elevated natural attenuation capacity of riverbed-hyporheic zones is expected to decrease chlorinated hydrocarbon (CHC) groundwater plume discharges to river receptors through dechlorination reactions. The aim of this study was to assess physico-chemical processes controlling field-scale variation in riverbed-hyporheic zone dechlorination of a TCE groundwater plume discharge to an urban river reach. The 50-m long pool-riffle-glide reach of the River Tame in Birmingham (UK) studied is a heterogeneous high energy river environment. The shallow riverbed was instrumented with a detailed network of multilevel samplers. Freeze coring revealed a geologically heterogeneous and poorly sorted riverbed. A chlorine number reduction approach provided a quantitative indicator of CHC dechlorination. Three sub-reaches of contrasting behaviour were identified. Greatest dechlorination occurred in the riffle sub-reach that was characterised by hyporheic zone flows, moderate sulphate concentrations and pH, anaerobic conditions, low iron, but elevated manganese concentrations with evidence of sulphate reduction. Transient hyporheic zone flows allowing input to varying riverbed depths of organic matter are anticipated to be a key control. The glide sub-reach displayed negligible dechlorination attributed to the predominant groundwater baseflow discharge condition, absence of hyporheic zone, transition to more oxic conditions and elevated sulphate concentrations expected to locally inhibit dechlorination. The tail-of-pool-riffle sub-reach exhibited patchy dechlorination that was attributed to sub-reach complexities including significant flow bypass of a low permeability, high organic matter, silty unit of high dechlorination potential. A process-based conceptual model of reach-scale dechlorination variability was developed. Key findings of practitioner relevance were: riverbed-hyporheic zone CHC dechlorination may provide only a partial, somewhat patchy barrier to CHC

  12. Impact modelling of water resources development and climate scenarios on Zambezi River discharge

    Directory of Open Access Journals (Sweden)

    Harald Kling

    2014-07-01

    New hydrological insights for the region: Comparisons between historical and future scenarios show that the biggest changes have already occurred. Construction of Kariba and CahoraBassa dams in the mid 1900s altered the seasonality and flow duration curves. Future irrigation development will cause decreases of a similar magnitude to those caused by current reservoir evaporation losses. The discharge is highly sensitive to small precipitation changes and the two climate models used give different signs for future precipitation change, suggestive of large uncertainty. The river basin model and database are available as anopen-online Decision Support System to facilitate impact assessments of additional climate or development scenarios.

  13. Instream Biological Assessment of NPDES Point Source Discharges at the Savannah River Site, 2000

    International Nuclear Information System (INIS)

    Specht, W.L.

    2001-01-01

    The Savannah River Site (SRS) currently has 31 NPDES outfalls that have been permitted by the South Carolina Department of Health and Environmental Control (SCDHEC) to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams. These studies were designed to detect biological impacts due to point source discharges. Sampling was initially conducted between November 1997 and July 1998 and was repeated in the summer and fall of 2000. A total of 18 locations were sampled (Table 1, Figure 1). Sampling locations for fish and macroinvertebrates were generally the same. However, different locations were sampled for fish (Road A-2) and macroinvertebrates (Road C) in the lower portion of Upper Three Runs, to avoid interference with ongoing fisheries studies at Road C. Also, fish were sampled in Fourmile Branch at Road 4 rather than at Road F because the stream at Road F was too narrow and shallow to support many fish. Sampling locations and parameters are detailed in Sections 2 and 3 of this report. In general, sampling locations were selected that would permit comparisons upstream and downstream of NPDES outfalls. In instances where this approach was not feasible because effluents discharge into the headwaters of a stream, appropriate unimpacted reference were used for comparison purposes. This report summarizes the results of the sampling that was conducted in 2000 and also compares these data to the data that were collected in 1997 and 1998

  14. Quantifying uncertainty in the impacts of climate change on river discharge in sub-catchments of the Yangtze and Yellow River Basins, China

    Directory of Open Access Journals (Sweden)

    H. Xu

    2011-01-01

    Full Text Available Quantitative evaluations of the impacts of climate change on water resources are primarily constrained by uncertainty in climate projections from GCMs. In this study we assess uncertainty in the impacts of climate change on river discharge in two catchments of the Yangtze and Yellow River Basins that feature contrasting climate regimes (humid and semi-arid. Specifically we quantify uncertainty associated with GCM structure from a subset of CMIP3 AR4 GCMs (HadCM3, HadGEM1, CCSM3.0, IPSL, ECHAM5, CSIRO, CGCM3.1, SRES emissions scenarios (A1B, A2, B1, B2 and prescribed increases in global mean air temperature (1 °C to 6 °C. Climate projections, applied to semi-distributed hydrological models (SWAT 2005 in both catchments, indicate trends toward warmer and wetter conditions. For prescribed warming scenarios of 1 °C to 6 °C, linear increases in mean annual river discharge, relative to baseline (1961–1990, for the River Xiangxi and River Huangfuchuan are +9% and 11% per +1 °C respectively. Intra-annual changes include increases in flood (Q05 discharges for both rivers as well as a shift in the timing of flood discharges from summer to autumn and a rise (24 to 93% in dry season (Q95 discharge for the River Xiangxi. Differences in projections of mean annual river discharge between SRES emission scenarios using HadCM3 are comparatively minor for the River Xiangxi (13 to 17% rise from baseline but substantial (73 to 121% for the River Huangfuchuan. With one minor exception of a slight (−2% decrease in river discharge projected using HadGEM1 for the River Xiangxi, mean annual river discharge is projected to increase in both catchments under both the SRES A1B emission scenario and 2° rise in global mean air temperature using all AR4 GCMs on the CMIP3 subset. For the River Xiangxi, there is substantial uncertainty associated with GCM structure in the magnitude of the rise in flood (Q05 discharges (−1 to 41% under SRES A1B and −3 to 41% under 2

  15. Value of river discharge data for global-scale hydrological modeling

    Directory of Open Access Journals (Sweden)

    M. Hunger

    2008-05-01

    Full Text Available This paper investigates the value of observed river discharge data for global-scale hydrological modeling of a number of flow characteristics that are e.g. required for assessing water resources, flood risk and habitat alteration of aquatic ecosystems. An improved version of the WaterGAP Global Hydrology Model (WGHM was tuned against measured discharge using either the 724-station dataset (V1 against which former model versions were tuned or an extended dataset (V2 of 1235 stations. WGHM is tuned by adjusting one model parameter (γ that affects runoff generation from land areas in order to fit simulated and observed long-term average discharge at tuning stations. In basins where γ does not suffice to tune the model, two correction factors are applied successively: the areal correction factor corrects local runoff in a basin and the station correction factor adjusts discharge directly the gauge. Using station correction is unfavorable, as it makes discharge discontinuous at the gauge and inconsistent with runoff in the upstream basin. The study results are as follows. (1 Comparing V2 to V1, the global land area covered by tuning basins increases by 5% and the area where the model can be tuned by only adjusting γ increases by 8%. However, the area where a station correction factor (and not only an areal correction factor has to be applied more than doubles. (2 The value of additional discharge information for representing the spatial distribution of long-term average discharge (and thus renewable water resources with WGHM is high, particularly for river basins outside of the V1 tuning area and in regions where the refined dataset provides a significant subdivision of formerly extended tuning basins (average V2 basin size less than half the V1 basin size. If the additional discharge information were not used for tuning, simulated long-term average discharge would differ from the observed one by a factor of, on average, 1.8 in the formerly

  16. Flood Discharge Analysis with Nakayasu Method Using Combination of HEC-RAS Method on Deli River in Medan City

    Science.gov (United States)

    Harahap, Rumilla; Jeumpa, Kemala; Hadibroto, Bambang

    2018-03-01

    The problem in this research is how in the rainy season the water does not overflow, does not occur flood and during the dry season does not occur drought so it can adjust the condition or existence of Deli river which is around Medan city. Deli River floods often occur, either caused by a smaller capacity than the existing discharge, lack of maintenance and drainage and disposal systems that do not fit with the environment, resulting in flood subscriptions every year. The purpose of this research is to know flood discharge at Deli river as Flood control in Medan city. This research is analyzed on several methods such as log Pearson, Gumbel and hydrograph unit, while HEC-RAS method is modeling conducted in analyzing the water profile of the Deli River. Furthermore, the calculation of the periodic flood discharge using the Nakayasu Method. Calculation result at Deli River return period flood discharge 2 years with an area of 14.8 km2 annual flood hydrograph the total is 26.79 m3/sec on the hours at the 4th time. Return period flood discharge 5 years with an area of 14.8 km2 annual flood hydrograph the total is 73,44 m3/sec. While 25 annual return period total flood hydrograph is 146.50 m3/sec. With flood analysis can reduce and minimize the risk of losses and land can be mapped if in the area there is flooding.

  17. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    Science.gov (United States)

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.

  18. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments

    KAUST Repository

    Li, Dong

    2015-09-24

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction–modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants. © 2015, Springer Science+Business Media New York.

  19. A stochastic conflict resolution model for trading pollutant discharge permits in river systems.

    Science.gov (United States)

    Niksokhan, Mohammad Hossein; Kerachian, Reza; Amin, Pedram

    2009-07-01

    This paper presents an efficient methodology for developing pollutant discharge permit trading in river systems considering the conflict of interests of involving decision-makers and the stakeholders. In this methodology, a trade-off curve between objectives is developed using a powerful and recently developed multi-objective genetic algorithm technique known as the Nondominated Sorting Genetic Algorithm-II (NSGA-II). The best non-dominated solution on the trade-off curve is defined using the Young conflict resolution theory, which considers the utility functions of decision makers and stakeholders of the system. These utility functions are related to the total treatment cost and a fuzzy risk of violating the water quality standards. The fuzzy risk is evaluated using the Monte Carlo analysis. Finally, an optimization model provides the trading discharge permit policies. The practical utility of the proposed methodology in decision-making is illustrated through a realistic example of the Zarjub River in the northern part of Iran.

  20. The role of periodically varying discharge on river plume structure and transport

    Science.gov (United States)

    Yuan, Yeping; Horner-Devine, Alexander R.; Avener, Margaret; Bevan, Shaun

    2018-04-01

    We present results from laboratory experiments that simulate the effects of periodically varying discharge on buoyant coastal plumes. Freshwater is discharged into a two meter diameter tank filled with saltwater on a rotating table. The mean inflow rate, tank rotation period and density of the ambient salt water are varied to simulate a range of inflow Froude and Rossby numbers. The amplitude and the period of the inflow modulation are varied across a range that simulates variability due to tides and storms. Using the optical thickness method, we measure the width and depth of the plume, plume volume and freshwater retention rate in the plume. With constant discharge, freshwater is retained in a growing anticyclonic bulge circulation near the river mouth, as observed in previous studies. When the discharge is varied, the bulge geometry oscillates between a circular plume structure that extends mainly in the offshore direction, and a compressed plume structure that extends mainly in the alongshore direction. The oscillations result in periodic variations in the width and depth of the bulge and the incidence angle formed where the bulge flow re-attaches with the coastal wall. The oscillations are more pronounced for longer modulation periods, but are relatively insensitive to the modulation amplitude. A phase difference between the time varying transport within the bulge and bulge geometry determines the fraction of the bulge flow discharged into the coastal current. As a result, the modulation period determines the variations in amount of freshwater that returns to the bulge. Freshwater retention in the bulge is increased in longer modulation periods and more pronounced for larger modulation amplitudes.

  1. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities

    International Nuclear Information System (INIS)

    Zou Shichun; Xu Weihai; Zhang Ruijie; Tang Jianhui; Chen Yingjun; Zhang Gan

    2011-01-01

    The presence of 21 antibiotics in six different groups was investigated in coastal water of the Bohai Bay. Meantime, to illuminate the potential effects caused by the river discharge and aquaculture activities, wastewater from three breeding plants and surface water from six rivers flowing into the Bohai Bay were also analyzed for the selected antibiotics. The result revealed that measured antibiotics in the North Bobai Bay were generally higher than those in the South, highlighting the remarkable effects of high density of human activities on the exposure of antibiotics in environment. The antibiotics found in the six rivers were generally higher than those in the Bohai Bay reflecting the important antibiotics source of river discharge. This study reveals that the high consumption of some antibiotics in aquaculture activities may pose high ecological risk to the bay. - Highlights: → Some antibiotics were ubiquitous with high concentration in the Bohai bay, North China. → The antibiotics were mainly from the six rivers discharge around the Bay. → Antibiotics are commonly used in aquaculture activities around the Bay. → Aquaculture was suggested to be an important antibiotics source in the Bay. - River discharge and aquaculture were suggested to be important sources for antibiotics occurred in the coastal water of the Bohai Bay, North China.

  2. Post-processing of multi-model ensemble river discharge forecasts using censored EMOS

    Science.gov (United States)

    Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian

    2014-05-01

    When forecasting water levels and river discharge, ensemble weather forecasts are used as meteorological input to hydrologic process models. As hydrologic models are imperfect and the input ensembles tend to be biased and underdispersed, the output ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, statistical post-processing is required in order to achieve calibrated and sharp predictions. Standard post-processing methods such as Ensemble Model Output Statistics (EMOS) that have their origins in meteorological forecasting are now increasingly being used in hydrologic applications. Here we consider two sub-catchments of River Rhine, for which the forecasting system of the Federal Institute of Hydrology (BfG) uses runoff data that are censored below predefined thresholds. To address this methodological challenge, we develop a censored EMOS method that is tailored to such data. The censored EMOS forecast distribution can be understood as a mixture of a point mass at the censoring threshold and a continuous part based on a truncated normal distribution. Parameter estimates of the censored EMOS model are obtained by minimizing the Continuous Ranked Probability Score (CRPS) over the training dataset. Model fitting on Box-Cox transformed data allows us to take account of the positive skewness of river discharge distributions. In order to achieve realistic forecast scenarios over an entire range of lead-times, there is a need for multivariate extensions. To this end, we smooth the marginal parameter estimates over lead-times. In order to obtain realistic scenarios of discharge evolution over time, the marginal distributions have to be linked with each other. To this end, the multivariate dependence structure can either be adopted from the raw ensemble like in Ensemble Copula Coupling (ECC), or be estimated from observations in a training period. The censored EMOS model has been applied to multi-model ensemble forecasts issued on a

  3. Nutrient input through submarine groundwater discharge in two major Chinese estuaries: the Pearl River Estuary and the Changjiang River Estuary

    Science.gov (United States)

    Liu, Jianan; Du, Jinzhou; Wu, Ying; Liu, Sumei

    2018-04-01

    In this study, we used a 224Ra mass balance model to evaluate the importance of submarine groundwater discharge (SGD) for the budgets of biogenic elements in two major Chinese estuaries: the Pearl River Estuary (PRE) and the Changjiang River Estuary (CRE). The apparent water age in the PRE was estimated to be 4.8 ± 1.1 days in the dry season and 1.8 ± 0.6 days in the wet season using a physical model based on the tidal prism. In the dry season, the water age in the CRE was estimated to be 11.7 ± 3.0 days using the 224Ra/223Ra activities ratios apparent age model. By applying the 224Ra mass balance model, we obtained calculations of the SGD flow in the PRE of (4.5-10) × 108 m3 d-1 (0.23-0.50 m3 m-2 d-1) and (1.2-2.7) × 108 m3 d-1 (0.06-0.14 m3 m-2 d-1) in the dry season and wet season, respectively, and the estimated SGD flux was (4.6-11) × 109 m3 d-1 (0.18-0.45 m3 m-2 d-1) in the dry season of the CRE. In comparison with the nutrient fluxes from the rivers, the SGD-derived nutrient fluxes may play a vital role in controlling the nutrient budgets and stoichiometry in the study areas. The large amount of dissolved inorganic nitrogen and phosphorus fluxes together with high N: P ratios into the PRE and CRE would potentially contribute to eutrophication and the occurrence of red tides along the adjacent waters.

  4. Discharge prediction in the Upper Senegal River using remote sensing data

    Science.gov (United States)

    Ceccarini, Iacopo; Raso, Luciano; Steele-Dunne, Susan; Hrachowitz, Markus; Nijzink, Remko; Bodian, Ansoumana; Claps, Pierluigi

    2017-04-01

    The Upper Senegal River, West Africa, is a poorly gauged basin. Nevertheless, discharge predictions are required in this river for the optimal operation of the downstream Manantali reservoir, flood forecasting, development plans for the entire basin and studies for adaptation to climate change. Despite the need for reliable discharge predictions, currently available rainfall-runoff models for this basin provide only poor performances, particularly during extreme regimes, both low-flow and high-flow. In this research we develop a rainfall-runoff model that combines remote-sensing input data and a-priori knowledge on catchment physical characteristics. This semi-distributed model, is based on conceptual numerical descriptions of hydrological processes at the catchment scale. Because of the lack of reliable input data from ground observations, we use the Tropical Rainfall Measuring Mission (TRMM) remote-sensing data for precipitation and the Global Land Evaporation Amsterdam Model (GLEAM) for the terrestrial potential evaporation. The model parameters are selected by a combination of calibration, by match of observed output and considering a large set of hydrological signatures, as well as a-priori knowledge on the catchment. The Generalized Likelihood Uncertainty Estimation (GLUE) method was used to choose the most likely range in which the parameter sets belong. Analysis of different experiments enhances our understanding on the added value of distributed remote-sensing data and a-priori information in rainfall-runoff modelling. Results of this research will be used for decision making at different scales, contributing to a rational use of water resources in this river.

  5. Locating Ground-Water Discharge in the Hanford Reach of the Columbia River

    International Nuclear Information System (INIS)

    Lee, D.R.; Geist, D.R.; Saldi, K.; Hartwig, D.; Cooper, T.

    1997-01-01

    A bottom-contacting probe for measuring electrical conductivity at the sediment-water interface was used to scan the bed of the Columbia River adjacent to the Hanford Site in southeast Washington State during a 10-day investigation. Four river-sections, each about a kilometer in length, were scanned for variations in electrical conductivity. The probe was towed along the riverbed at a speed of 1 m/s and is position was recorded using a Global Positioning System. The bottom tows revealed several areas of elevated electrical conductivity. Where these anomalies were relatively easy to access, piezometers were driven into the riverbed and porewater electrical conductivity ranged from 111 to 150 uS/cm. The piezometers, placed in electrical conductivity ''hotspots'' yielded chemical or isotopic data consistent with previous analyses of water taken from monitoring wells and visible shoreline seeps. Tritium, nitrate, and chromium exceeded water quality standards in some porewaters. The highest tritium and nitrate levels were found near the Old Hanford Townsite at 120,000 pCi/L (+ 5,880 pCi/L total propagated analytical uncertainty) and ug/L (+ 5,880 ug/L), respectively. The maximum chromium (total and hexavalent) levels were found near 100-H reactor area where unfiltered porewater total chromium was 1,900 ug/L (+ 798 ug/L) and hexavalent chromium was 20 ug/L. The electrical conductivity probe provided rapid, cost-effective reconnaissance for ground-water discharge areas when used in combination with conventional piezometers. It may be possible to obtain quantitative estimates of both natural and contaminated ground-water discharge in the Hanford Reach with more extensive surveys of river bottom

  6. Population dynamics of the migratory fish Prochilodus lineatus in a neotropical river: the relationships with river discharge, flood pulse, El Niño and fluvial megafan behaviour

    Directory of Open Access Journals (Sweden)

    Marinke J. M. Stassen

    Full Text Available The relative importance of flood pulse dynamics and megafan behaviour for the Sábalo (Prochilodus lineatus catches in the neotropical Pilcomayo River is studied. The Sábalo catches can mainly be explained by decreased river discharges in the preceding years resulting in smaller inundated areas during rainy season floods and thereby in a decreased area of feeding grounds for the fishes. The decreased river discharges and the related decline of Sábalo catches in the 1990's can be linked to the 90-95 El Niño event. In 2007 the Sábalo catches were comparable to the catches before the "El Niño" event. The connectivity (continuity between the main river and flood plain areas, which is influenced by sedimentation processes, is also of great importance and very probably plays a more important role since the late 1990's.

  7. Metagenomic exploration reveals a marked change in the river resistome and mobilome after treated wastewater discharges.

    Science.gov (United States)

    Lekunberri, Itziar; Balcázar, José Luis; Borrego, Carles M

    2018-03-01

    Mobile genetic elements (MGEs) are key agents in the spread of antibiotic resistance genes (ARGs) across environments. Here we used metagenomics to compare the river resistome (collection of all ARGs) and mobilome (e.g., integrases, transposases, integron integrases and insertion sequence common region "ISCR" elements) between samples collected upstream (n = 6) and downstream (n = 6) of an urban wastewater treatment plant (UWWTP). In comparison to upstream metagenomes, downstream metagenomes showed a drastic increase in the abundance of ARGs, as well as markers of MGEs, particularly integron integrases and ISCR elements. These changes were accompanied by a concomitant prevalence of 16S rRNA gene signatures of bacteria affiliated to families encompassing well-known human and animal pathogens. Our results confirm that chronic discharges of treated wastewater severely impact the river resistome affecting not only the abundance and diversity of ARGs but also their potential spread by enriching the river mobilome in a wide variety of MGEs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Simulations with a hydrological model for the river Rhine for the present (1960–1989 and a projected future (2070–2099 climate are discussed. The hydrological model (RhineFlow is driven by meteorological data from a 90-years (ensemble of three 30-years simulation with the HadRM3H regional climate model for both present-day and future climate (A2 emission scenario. Simulation of present-day discharges is realistic provided that (1 the HadRM3H temperature and precipitation are corrected for biases, and (2 the potential evapotranspiration is derived from temperature only. Different methods are used to simulate discharges for the future climate: one is based on the direct model output of the future climate run (direct approach, while the other is based on perturbation of the present-day HadRM3H time series (delta approach. Both methods predict a similar response in the mean annual discharge, an increase of 30% in winter and a decrease of 40% in summer. However, predictions of extreme flows differ significantly, with increases of 10% in flows with a return period of 100 years in the direct approach and approximately 30% in the delta approach. A bootstrap method is used to estimate the uncertainties related to the sample size (number of years simulated in predicting changes in extreme flows.

  9. Relating river discharge and water temperature to the recruitment of age‐0 White Sturgeon (Acipenser transmontanus Richardson, 1836) in the Columbia River using over‐dispersed catch data

    Science.gov (United States)

    Counihan, Timothy D.; Chapman, Colin G.

    2018-01-01

    The goals were to (i) determine if river discharge and water temperature during various early life history stages were predictors of age‐0 White Sturgeon, Acipenser transmontanus, recruitment, and (ii) provide an example of how over‐dispersed catch data, including data with many zero observations, can be used to better understand the effects of regulated rivers on the productivity of depressed sturgeon populations. An information theoretic approach was used to develop and select negative binomial and zero‐inflated negative binomial models that model the relation of age‐0 White Sturgeon survey data from three contiguous Columbia River reservoirs to river discharge and water temperature during spawning, egg incubation, larval, and post‐larval phases. Age‐0 White Sturgeon were collected with small mesh gill nets in The Dalles and John Day reservoirs from 1997 to 2014 and a bottom trawl in Bonneville Reservoir from 1989 to 2006. Results suggest that seasonal river discharge was positively correlated with age‐0 recruitment; notably that discharge, 16 June–31 July was positively correlated to age‐0 recruitment in all three reservoirs. The best approximating models for two of the three reservoirs also suggest that seasonal water temperature may be a determinant of age‐0 recruitment. Our research demonstrates how over‐dispersed catch data can be used to better understand the effects of environmental conditions on sturgeon populations caused by the construction and operation of dams.

  10. A Concise Protocol for the Validation of Language ENvironment Analysis (LENA) Conversational Turn Counts in Vietnamese

    Science.gov (United States)

    Ganek, Hillary V.; Eriks-Brophy, Alice

    2018-01-01

    The aim of this study was to present a protocol for the validation of the Language ENvironment Analysis (LENA) System's conversational turn count (CTC) for Vietnamese speakers. Ten families of children aged between 22 and 42 months, recruited near Ho Chi Minh City, participated in this project. Each child wore the LENA audio recorder for a full…

  11. Small river plumes off the northeastern coast of the Black Sea under average climatic and flooding discharge conditions

    Directory of Open Access Journals (Sweden)

    A. Osadchiev

    2017-06-01

    Full Text Available This study focuses on the impact of discharges of small rivers on the delivery and fate of fluvial water and suspended matter at the northeastern part of the Black Sea under different local precipitation conditions. Several dozens of mountainous rivers flow into the sea at the study region, and most of them, except for several of the largest, have little annual runoff and affect adjacent coastal waters to a limited extent under average climatic conditions. However, the discharges of these small rivers are characterized by a quick response to precipitation events and can significantly increase during and shortly after heavy rains, which are frequent in the considered area. The delivery and fate of fluvial water and terrigenous sediments at the study region, under average climatic and rain-induced flooding conditions, were explored and compared using in situ data, satellite imagery, and numerical modeling. It was shown that the point-source spread of continental discharge dominated by several large rivers under average climatic conditions can change to the line-source discharge from numerous small rivers situated along the coast in response to heavy rains. The intense line-source runoff of water and suspended sediments forms a geostrophic alongshore current of turbid and freshened water, which induces the intense transport of suspended and dissolved constituents discharged with river waters in a northwestern direction. This process significantly influences water quality and causes active sediment load at large segments of the narrow shelf at the northeastern part of the Black Sea compared to average climatic discharge conditions.

  12. Small river plumes off the northeastern coast of the Black Sea under average climatic and flooding discharge conditions

    Science.gov (United States)

    Osadchiev, Alexander; Korshenko, Evgeniya

    2017-06-01

    This study focuses on the impact of discharges of small rivers on the delivery and fate of fluvial water and suspended matter at the northeastern part of the Black Sea under different local precipitation conditions. Several dozens of mountainous rivers flow into the sea at the study region, and most of them, except for several of the largest, have little annual runoff and affect adjacent coastal waters to a limited extent under average climatic conditions. However, the discharges of these small rivers are characterized by a quick response to precipitation events and can significantly increase during and shortly after heavy rains, which are frequent in the considered area. The delivery and fate of fluvial water and terrigenous sediments at the study region, under average climatic and rain-induced flooding conditions, were explored and compared using in situ data, satellite imagery, and numerical modeling. It was shown that the point-source spread of continental discharge dominated by several large rivers under average climatic conditions can change to the line-source discharge from numerous small rivers situated along the coast in response to heavy rains. The intense line-source runoff of water and suspended sediments forms a geostrophic alongshore current of turbid and freshened water, which induces the intense transport of suspended and dissolved constituents discharged with river waters in a northwestern direction. This process significantly influences water quality and causes active sediment load at large segments of the narrow shelf at the northeastern part of the Black Sea compared to average climatic discharge conditions.

  13. Small river plumes near the north-eastern coast of the Black Sea under climatic mean and flooding discharge conditions

    Science.gov (United States)

    Osadchiev, Alexander; Korshenko, Evgeniya

    2017-04-01

    The study is focused on the impact of discharge from small rivers on propagation and final location of fluvial waters and suspended matter at the north-eastern part of the Black Sea under different local precipitation conditions. Several dozens of mountainous rivers inflow into the sea at the studied region and most of them, except the several largest of them, have small annual runoff and limitedly affect adjacent coastal waters under climatic mean conditions. However, discharges of these small rivers are characterized by quick response to precipitation events and can dramatically increase during and shortly after heavy rains, which are frequent in the area under consideration. Propagation and final location of fluvial waters and terrigenous sediments at the studied region under climatic mean and rain-induced flooding conditions were explored and compared using in situ data, satellite imagery and numerical modelling. It was shown that the point-source spread of continental discharge dominated by several large rivers during climatic mean conditions can change to the line-source discharge from numerous small rivers situated along the coast in response to heavy rains. Intense line-source runoff of water and suspended sediments form a geostrophic alongshore current of turbid and freshened water, which induces intense transport of suspended and dissolved constituents discharged with river waters in a north-western direction. This process significantly influences water quality and causes active sediment load at large segments of narrow shelf at the north-eastern part of the Black Sea as compared to climatic mean discharge conditions.

  14. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: impacts of river discharge and aquaculture activities.

    Science.gov (United States)

    Zou, Shichun; Xu, Weihai; Zhang, Ruijie; Tang, Jianhui; Chen, Yingjun; Zhang, Gan

    2011-10-01

    The presence of 21 antibiotics in six different groups was investigated in coastal water of the Bohai Bay. Meantime, to illuminate the potential effects caused by the river discharge and aquaculture activities, wastewater from three breeding plants and surface water from six rivers flowing into the Bohai Bay were also analyzed for the selected antibiotics. The result revealed that measured antibiotics in the North Bobai Bay were generally higher than those in the South, highlighting the remarkable effects of high density of human activities on the exposure of antibiotics in environment. The antibiotics found in the six rivers were generally higher than those in the Bohai Bay reflecting the important antibiotics source of river discharge. This study reveals that the high consumption of some antibiotics in aquaculture activities may pose high ecological risk to the bay. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Niger River Discharge and the Connection to the West African Monsoon Over the Last 25 kyr

    Science.gov (United States)

    Patten, J.; Marcantonio, F.; Slowey, N. C.; Schmidt, M. W.; Parker, A. O.; Thomas, D. J.

    2016-12-01

    The intensity of the West African monsoon is directly tied to the shifting of the Inter-Tropical Convergence Zone and global-scale climate variability. As the West African monsoon varies through time, it affects the precipitation that occurs within the Niger River basin and the Niger River's discharge into the eastern equatorial Atlantic Ocean. The accumulation of marine sediments on the continental slope offshore of the Niger Delta reflects these processes. We seek to better understand how related environmental processes have varied as climate and sea level changed during the latter part of the last glacial-interglacial cycle. Here we present results from our ongoing investigation of sediments collected offshore of the Niger Delta that reflect such changes. The concentrations of 230Th, 232Th, and 234U in the sediments have been measured and combined with ages from radiocarbon dates and planktonic foraminiferal δ18O stratigraphies to estimate how the rate of sediment accumulation has varied through time. This record is considered together with measurements of sediment CaCO3 content and grain-size distribution to better understand the relative importance of environmental processes that control the flux of sediments and thorium to the seafloor - scavenging by particles settling through the water column versus the transport of sediments downslope by turbidity flows. We present xs230Th-derived 232Th fluxes that we suggest approximate the amount of fine-grained detrital material delivered from the Niger River to our sites. We anticipate that the importance of these competing processes will vary as climate/sea-level change influences the flux of sediments from the Niger River and the transport of these sediments to the slope.

  16. Concentration-discharge relationships under the microscope: high frequency measurement in rivers

    Science.gov (United States)

    Floury, P.; Gaillardet, J.; Bouchez, J.; Tallec, G.; Gayer, E.; Ansart, P.; Blanchouin, A.

    2017-12-01

    Concentration-discharge relationships (C-Q) of river water is a powerful tool to track the coupling between water flow and chemical reactions in the Critical Zone. C-Q have been extensively studied the last two decades. We present a new C-Q data series recorded at 40-minutes frequency by a prototype called River Lab (RL) (Floury et al., 2017). Confined in a bungalow next to the river, the RL performs an of all major dissolved species (Na+, K+, Mg2+, Ca2+, Cl-, SO42-, NO3-) using ion chromatographs, through continuous sampling and filtration of the river water. The RL was deployed in 2015 in the Orgeval hydrological Observatory (OZCAR French Research Infrastructure), an agricultural watershed underlain by carbonates, France. We present five major flood events recorded over one hydrological year. We present the C-Q for each of the flood events. We observe i) element-specific C-Q ii) C-Q loops, the size and the excentricity of which decrease with the intensity of the flood. The most reproducible C-Q patterns are observed for Na+, Mg2+, Ca2+, Cl-, SO42-, whereas K+ and NO3- present a more erratic behaviour. We discuss the chemostatic behaviour of species concentrations using a fitting by a power law function. It is likely that C-Q will depend on the time during a single flood event and also over the year. The chemostatic behaviour of each species change over the year and also during a single flood event. We focus our interpretations on the recession of each flood event, where precipitation and evapotrapiration can be considered as negligible. We propose a "grey box" aproach such as already developed from stream flow (Kirchner, 2009) but here extended to solute fluxes. Floury et al. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-12, 2017. Kirchner. Water Ressources Research, VOL. 45, W02429, doi:10.1029/2008WR006912, 2009.

  17. Changing Snow Cover and Stream Discharge in the Western United States - Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Barton, Jonathan S.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack has important implications for the management of water resources. We studied ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover products, 40 years of stream discharge and meteorological station data and 30 years of snow-water equivalent (SWE) SNOw Telemetry (SNOTEL) data in the Wind River Range (WRR), Wyoming. Results show increasing air temperatures for.the 40-year study period. Discharge from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades. Changes in streamflow may be related to increasing air temperatures which are probably contributing to a reduction in snow cover, although no trend of either increasingly lower streamflow or earlier snowmelt was observed within the decade of the 2000s. And SWE on 1 April does not show an expected downward trend from 1980 to 2009. The extent of snow cover derived from the lowest-elevation zone of the WRR study area is strongly correlated (r=0.91) with stream discharge on 1 May during the decade of the 2000s. The strong relationship between snow cover and streamflow indicates that MODIS snow-cover maps can be used to improve management of water resources in the drought-prone western U.S.

  18. Discharge of perfluorinated compounds from rivers and their influence on the coastal seas of Hyogo prefecture, Japan

    International Nuclear Information System (INIS)

    Takemine, Shusuke; Matsumura, Chisato; Yamamoto, Katsuya; Suzuki, Motoharu; Tsurukawa, Masahiro; Imaishi, Hiromasa; Nakano, Takeshi; Kondo, Akira

    2014-01-01

    The aim of this study was to investigate 12 perfluorinated compounds (PFCs) including perfluorinated carboxylates (C4–C12) and perfluorinated alkyl sulfonates (C4, C6, and C8) in river and seawater samples to determine contamination levels in the aquatic environment of Hyogo prefecture, Japan. High levels of perfluorohexanoic acid (PFHxA; 2300–16,000 ng/L) were detected in the Samondogawa River at Tatsumi Bridge downstream of a PFC production facility; this location also had the highest mass flow rate of PFCs (3900–29,000 kg/y). Widespread contamination of coastal waters was confirmed with PFHxA as the dominant compound. Perfluorooctanoic acid was also prevalent in coastal waters. The concentration of PFHxA in coastal seawater and the distance from the mouth of the Samondogawa River were inversely related. This discharge of high concentrations of PFHxA from the Samondogawa River may have affected concentrations of PFCs in Osaka Bay. -- Highlights: • High perfluorohexanoic acid concentration was detected in the Samondogawa River. • The mass flow rate of PFCs in this river section was 3900–29,000 kg/y. • Perfluorohexanoic acid was the dominant compound at all seawater sampling sites. • Perfluorohexanoic acid from the Samondogawa River may have affected Osaka Bay. -- Discharge of perfluorohexanoic acid from the Samondogawa River may have affected Osaka Bay

  19. B, As, and F contamination of river water due to wastewater discharge of the Yangbajing geothermal power plant, Tibet, China

    Science.gov (United States)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2008-11-01

    Thermal waters from the Yangbajing geothermal field, Tibet, contain high concentrations of B, As, and F, up to 119, 5.7 and 19.6 mg/L, respectively. In this paper, the distribution of B, As, and F in the aquatic environment at Yangbajing was surveyed. The results show that most river water samples collected downstream of the Zangbo River have comparatively higher concentrations of B, As, and F (up to 3.82, 0.27 and 1.85 mg/L, respectively), indicating that the wastewater discharge of the geothermal power plant at Yangbajing has resulted in B, As, and F contamination in the river. Although the concentrations of B, As, and F of the Zangbo river waters decline downstream of the wastewater discharge site due to dilution effect and sorption onto bottom sediments, the sample from the conjunction of the Zangbo River and the Yangbajing River has higher contents of B, As, and F as compared with their predicted values obtained using our regression analysis models. The differences between actual and calculated contents of B, As, and F can be attributed to the contribution from upstream of the Yangbajing River. Water quality deterioration of the river has induced health problems among dwellers living in and downstream of Yangbajing. Effective measures, such as decontamination of wastewater and reinjection into the geothermal field, should be taken to protect the environment at Yangbajing.

  20. A water availability and low-flow analysis of the Tagliamento River discharge in Italy under changing climate conditions

    Directory of Open Access Journals (Sweden)

    L. N. Gunawardhana

    2012-03-01

    Full Text Available This study estimated the effects of projected variations in precipitation and temperature on snowfall-snowmelt processes and subsequent river discharge variations in the Tagliamento River in Italy. A lumped-parameter, non-linear, rainfall-runoff model with 10 general circulation model (GCM scenarios was used. Spatial and temporal changes in snow cover were assessed using 15 high-quality Landsat images. The 7Q10 low-flow probability distribution approximated by the Log-Pearson type III distribution function was used to examine river discharge variations with respect to climate extremes in the future. On average, the results obtained for 10 scenarios indicate a consistent warming rate for all time periods, which may increase the maximum and minimum temperatures by 2.3 °C (0.6–3.7 °C and 2.7 °C (1.0–4.0 °C, respectively, by the end of the 21st century compared to the present climate. Consequently, the exponential rate of frost day decrease for 1 °C winter warming in lower-elevation areas is approximately three-fold (262% higher than that in higher-elevation areas, revealing that snowfall in lower-elevation areas will be more vulnerable under a changing climate. In spite of the relatively minor changes in annual precipitation (−17.4 ~ 1.7% compared to the average of the baseline (1991–2010 period, snowfall will likely decrease by 48–67% during the 2080–2099 time period. The mean river discharges are projected to decrease in all seasons, except winter. The low-flow analysis indicated that while the magnitude of the minimum river discharge will increase (e.g. a 25% increase in the 7Q10 estimations for the winter season in the 2080–2099 time period, the number of annual average low-flow events will also increase (e.g. 16 and 15 more days during the spring and summer seasons, respectively, in the 2080–2099 time period compared to the average during the baseline period, leading to a future with a highly variable river discharge

  1. Satellite Derived Water Quality Observations Are Related to River Discharge and Nitrogen Loads in Pensacola Bay, Florida

    OpenAIRE

    John C. Lehrter; John C. Lehrter; Chengfeng Le

    2017-01-01

    Relationships between satellite-derived water quality variables and river discharges, concentrations and loads of nutrients, organic carbon, and sediments were investigated over a 9-year period (2003–2011) in Pensacola Bay, Florida, USA. These analyses were conducted to better understand which river forcing factors were the primary drivers of estuarine variability in several water quality variables. Remote sensing reflectance time-series data were retrieved from the MEdium Resolution Imaging ...

  2. The role of effective discharge in the ocean delivery of particulate organic carbon by small, mountainous river systems

    Science.gov (United States)

    Wheatcroft, R.A.; Goni, M.A.; Hatten, J.A.; Pasternack, G.B.; Warrick, J.A.

    2010-01-01

    Recent research has shown that small, mountainous river systems (SMRS) account for a significant fraction of the global flux of sediment and particulate organic carbon (POC) to the ocean. The enormous number of SMRS precludes intensive studies of the sort conducted on large systems, necessitating development of a conceptual framework that permits cross-system comparison and scaling up. Herein, we introduce the geomorphic concept of effective discharge to the problem of source-to-sink POC transport. This idea recognizes that transport effectiveness is the product of discharge frequency and magnitude, wherein the latter is quantified as a power-law relationship between discharge and load (the 'rating curve'). An analytical solution for effective discharge (Qe) identifies two key variables: the standard deviation of the natural logarithm of discharge (??q), and the rating exponent of constituent i (bi Data from selected SMRS are used to show that for a given river Qe-POC transport in SMRS should exploit the conceptual framework provided herein and seek to identify how constituent-specific effective discharges vary between rivers and respond to perturbations. ?? 2010, by the American Society of Limnology and Oceanography, Inc.

  3. Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology

    Science.gov (United States)

    Dorsey, Rebecca J.; O’Connell, Brennan; McDougall-Reid, Kristin; Homan, Mindy B.

    2018-01-01

    The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between ~ 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at ~ 5.4–5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between ~ 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between ~ 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at ~ 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough.These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on

  4. Impact of climate change and anthropogenic activities on stream flow and sediment discharge in the Wei River basin, China

    Directory of Open Access Journals (Sweden)

    P. Gao

    2013-03-01

    Full Text Available Reduced stream flow and increased sediment discharge are a major concern in the Yellow River basin of China, which supplies water for agriculture, industry and the growing populations located along the river. Similar concerns exist in the Wei River basin, which is the largest tributary of the Yellow River basin and comprises the highly eroded Loess Plateau. Better understanding of the drivers of stream flow and sediment discharge dynamics in the Wei River basin is needed for development of effective management strategies for the region and entire Yellow River basin. In this regard we analysed long-term trends for water and sediment discharge during the flood season in the Wei River basin, China. Stream flow and sediment discharge data for 1932 to 2008 from existing hydrological stations located in two subcatchments and at two points in the Wei River were analysed. Precipitation and air temperature data were analysed from corresponding meteorological stations. We identified change-points or transition years for the trends by the Pettitt method and, using double mass curves, we diagnosed whether they were caused by precipitation changes, human intervention, or both. We found significant decreasing trends for stream flow and sediment discharge during the flood season in both subcatchments and in the Wei River itself. Change-point analyses further revealed that transition years existed and that rapid decline in stream flow began in 1968 (P P P P P < 0.05, respectively. The impact of precipitation or human activity on the reduction amount after the transition years was estimated by double mass curves of precipitation vs. stream flow (sediment. For reductions in stream flow and sediment discharge, the contribution rate of human activity was found to be 82.80 and 95.56%, respectively, and was significantly stronger than the contribution rate of precipitation. This evidence clearly suggests that, in the absence of significant decreases in precipitation

  5. Cytotoxicity, Genotoxicity, and Phytotoxicity of Tannery Effluent Discharged into Palar River Basin, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    Suki Roy

    2015-01-01

    Full Text Available Ambur, a town located on the banks of Palar River, is considered one of the most polluted areas in India and occupied by hundreds of tanneries and leather product units. The present study was designed to evaluate the toxic effect of discharged tannery effluent (TE on model agricultural crops, ecofriendly microorganisms, and human blood cells. The phytotoxic effects of TE tested on Allium cepa and Lemna minor revealed inhibition of root growth and significant reduction in number of fronds, protein, and chlorophyll content. Moreover, TE induced chlorosis and tissue necrosis in Nostoc muscorum at low concentration (10%. TE has also negative impact on ecofriendly microorganisms, Bacillus thuringiensis, Rhizobium etli, and Aspergillus terreus which play an important role in the nutrition of plant growth. The genotoxicity of TE was investigated in human leukocytes which showed interference with normal mitotic division with subsequent cell lysis. It also intervened with the normal replication process and induced micronucleus formation in the healthy leukocyte. 5% concentration of TE has been revealed to be toxic to erythrocytes. From this study TE found in the Palar River of Ambur has adverse effects on all the three levels of organisms in ecosystem even at lower concentrations.

  6. Cytotoxicity, Genotoxicity, and Phytotoxicity of Tannery Effluent Discharged into Palar River Basin, Tamil Nadu, India

    Science.gov (United States)

    Roy, Suki; Nagarchi, Lubbnaz; Das, Ishita; Mangalam Achuthananthan, Jayasri; Krishnamurthy, Suthindhiran

    2015-01-01

    Ambur, a town located on the banks of Palar River, is considered one of the most polluted areas in India and occupied by hundreds of tanneries and leather product units. The present study was designed to evaluate the toxic effect of discharged tannery effluent (TE) on model agricultural crops, ecofriendly microorganisms, and human blood cells. The phytotoxic effects of TE tested on Allium cepa and Lemna minor revealed inhibition of root growth and significant reduction in number of fronds, protein, and chlorophyll content. Moreover, TE induced chlorosis and tissue necrosis in Nostoc muscorum at low concentration (10%). TE has also negative impact on ecofriendly microorganisms, Bacillus thuringiensis, Rhizobium etli, and Aspergillus terreus which play an important role in the nutrition of plant growth. The genotoxicity of TE was investigated in human leukocytes which showed interference with normal mitotic division with subsequent cell lysis. It also intervened with the normal replication process and induced micronucleus formation in the healthy leukocyte. 5% concentration of TE has been revealed to be toxic to erythrocytes. From this study TE found in the Palar River of Ambur has adverse effects on all the three levels of organisms in ecosystem even at lower concentrations. PMID:26839546

  7. Tracking stormwater discharge plumes and water quality of the Tijuana River with multispectral aerial imagery

    Science.gov (United States)

    Svejkovsky, Jan; Nezlin, Nikolay P.; Mustain, Neomi M.; Kum, Jamie B.

    2010-04-01

    Spatial-temporal characteristics and environmental factors regulating the behavior of stormwater runoff from the Tijuana River in southern California were analyzed utilizing very high resolution aerial imagery, and time-coincident environmental and bacterial sampling data. Thirty nine multispectral aerial images with 2.1-m spatial resolution were collected after major rainstorms during 2003-2008. Utilizing differences in color reflectance characteristics, the ocean surface was classified into non-plume waters and three components of the runoff plume reflecting differences in age and suspended sediment concentrations. Tijuana River discharge rate was the primary factor regulating the size of the freshest plume component and its shorelong extensions to the north and south. Wave direction was found to affect the shorelong distribution of the shoreline-connected fresh plume components much more strongly than wind direction. Wave-driven sediment resuspension also significantly contributed to the size of the oldest plume component. Surf zone bacterial samples collected near the time of each image acquisition were used to evaluate the contamination characteristics of each plume component. The bacterial contamination of the freshest plume waters was very high (100% of surf zone samples exceeded California standards), but the oldest plume areas were heterogeneous, including both polluted and clean waters. The aerial imagery archive allowed study of river runoff characteristics on a plume component level, not previously done with coarser satellite images. Our findings suggest that high resolution imaging can quickly identify the spatial extents of the most polluted runoff but cannot be relied upon to always identify the entire polluted area. Our results also indicate that wave-driven transport is important in distributing the most contaminated plume areas along the shoreline.

  8. Predicting the Future Contribution of Himalayan Debris-covered Glaciers to River Discharge: Advances and Challenges

    Science.gov (United States)

    Quincey, D. J.; Hubbard, B. P.; Klaar, M. J.; Miles, E.; Miles, K.; Rowan, A. V.; King, O.; Watson, C. S.

    2017-12-01

    The glaciers and snowfields of the Himalaya are the ultimate source for the many rivers that flow across the Asian subcontinent, but they are diminishing rapidly in the face of sustained climatic change. Predictions of how future river discharge may vary through space and time are hampered by two major knowledge gaps. First, simulations of glacier mass loss in high Asia are severely limited by data availability and assumptions made in the parameterisation of glacier models. Consequently, projections of glacier change vary widely; in Nepal for example, recent estimates of volumetric ice loss by AD2100 have ranged between 8% and 99%. A second major gap in knowledge lies in the coupling between glaciers and downstream areas, and specifically in quantifying the relative contributions of different sources to river flow. Although it is clear that ice and snow melt dominates flow for considerable distances downstream, how this contribution interacts with groundwater supplies with increasing distance from its source remains poorly understood. This presentation will review recent work that closes some of the knowledge gaps in understanding debris-covered glacier behaviour including new results from drilling work on the Khumbu Glacier in Nepal. Additionally, it will report on the outputs from an interdisciplinary study in the Annapurna region of Nepal, which is focussing specifically on disaggregating the relative contributions to flow using isotope-based hydrograph separations. It will finish by exploring the most likely drivers of future changes to water supply, including an evaluation of the impact of glacial lake development, and by identifying the main challenges for future related research.

  9. Long Range River Discharge Forecasting Using the Gravity Recovery and Climate Experiment (GRACE) Satellite to Predict Conditions for Endemic Cholera

    Science.gov (United States)

    Jutla, A.; Akanda, A. S.; Colwell, R. R.

    2014-12-01

    Prediction of conditions of an impending disease outbreak remains a challenge but is achievable if the associated and appropriate large scale hydroclimatic process can be estimated in advance. Outbreaks of diarrheal diseases such as cholera, are related to episodic seasonal variability in river discharge in the regions where water and sanitation infrastructure are inadequate and insufficient. However, forecasting river discharge, few months in advance, remains elusive where cholera outbreaks are frequent, probably due to non-availability of geophysical data as well as transboundary water stresses. Here, we show that satellite derived water storage from Gravity Recovery and Climate Experiment Forecasting (GRACE) sensors can provide reliable estimates on river discharge atleast two months in advance over regional scales. Bayesian regression models predicted flooding and drought conditions, a prerequisite for cholera outbreaks, in Bengal Delta with an overall accuracy of 70% for upto 60 days in advance without using any other ancillary ground based data. Forecasting of river discharge will have significant impacts on planning and designing intervention strategies for potential cholera outbreaks in the coastal regions where the disease remain endemic and often fatal.

  10. Thermal pollution of rivers and reservoirs by discharges of heated water from thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Makarov, I.

    1974-12-01

    The problems are discussed of the thermal pollution of rivers and water reservoirs by discharges of heated water from thermal and nuclear power plants. The problems concerned are quantitative and qualitative changes in biocenoses, the disturbance or extinction of flora and fauna, physiological changes in organisms and changes in the hydrochemical regime. (Z.M.)

  11. The Effects of Urbanization and Flood Control on Sediment Discharge of a Southern California River, Evidence of a Dilution Effect

    Science.gov (United States)

    Warrick, J. A.; Orzech, K. M.; Rubin, D. M.

    2004-12-01

    The southern California landscape has undergone dramatic urbanization and population growth during the past 60 years and currently supports almost 20 million inhabitants. During this time, rivers of the region have been altered with damming, channel straightening and hardening, and water transfer engineering. These changes have drastically altered water and sediment discharge from most of the region's drainage basins. Here we focus on changes in sediment discharge from the largest watershed of southern California, the Santa Ana River. Order-of-magnitude drops in the suspended sediment rating curves (the relationship between suspended sediment concentration and instantaneous river discharge) are observed between 1967 and 2001, long after the construction of a major flood control dam in 1941. These sediment concentration decreases do not, however, represent alteration of the total sediment flux from the basin (a common interpretation of sediment rating curves), but rather a dilution of suspended sediment by increases (approx. 4x) in stormwater discharge associated with urbanization. Increases in peak and total stormwater discharge are consistent with runoff patterns from urbanizing landscapes, supporting our hypothesis that the diluting water originated from stormwater runoff generated in urban areas both up- and downstream of dams. Our dilution hypothesis is further supported with water and sediment budgets, dilution calculations, and suspended and bed grain size information.

  12. Influence of river discharge on abundance and dissemination of heterotrophic, indicator and pathogenic bacteria along the East Coast of India.

    Science.gov (United States)

    Prasad, V R; Srinivas, T N R; Sarma, V V S S

    2015-06-15

    In order to examine the influence of discharge from different rivers from peninsular India and urban sewage on intensity and dissemination of heterotrophic, indicator and pathogenic bacteria, a study was carried out during peak discharge period along coastal Bay of Bengal. The coastal Bay received freshwater inputs from the river Ganges while Godavari and Krishna contributed to the south. Contrasting difference in salinity, temperature, nutrients and organic matter was observed between north and south east coast of India. The highest heterotrophic, indicator and pathogenic bacterial abundance was observed in the central coastal Bay that received urban sewage from the major city. Intensity and dissemination of heterotrophic, indicator and pathogenic bacteria displayed linear relation with magnitude of discharge. The coliform load was observed up to 100km from the coast suggesting that marine waters were polluted during the monsoon season and its impact on the ecosystem needs further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Assessment of Estimation Methods ForStage-Discharge Rating Curve in Rippled Bed Rivers

    Directory of Open Access Journals (Sweden)

    P. Maleki

    2016-02-01

    Full Text Available Introduction: Interactionbetweenwater flow characteristics andthe bed erodibilityplays an important role in sediment transport process. In order to reach stability, rivers with deposition or bottom erosion make a different bed form in the riverbed. One way to identify thebehavior of therivers is to study the structure and formation of bed forms within them. Ripples are the smallest of the bed forms. The longitudinal cross section of ripples are usually not symmetrical. The upstream face is long and has a gentle slope, and the downstream face is short and steep. The height of ripples is usually between 0.5 cm and 2 cm; the height ripple is not more than 5 cm. The wave lengths normally do not exceed 30cm, and they are usually within the range of 1 cm to 15 cm. Their occurrence is the result of the unstable viscous layer near the boundary. They can form in both shallow and deep water.With an increase of the flow velocity, the plan form of the ripples gradually develops form straight line to curves and then to a pattern like fish scales, symmetrical or unsymmetrical, as shown in Fig 1. Figure1-The patterndevelopment oftheripple Raudkivi (1966 was the first person that, the flow structure over ripples was investigated experimentally.Hethenestablishseveraldifferent conditionsonthemovingsandbedinanlaboratorychannelconsisted of a rectangular cross-section with base width of 70cm, wasable toform arow ofripples , he wassucceed toform arow ofripples.JafariMianaei and Keshavarzi(2008,studied the turbulentflow betweentwoartificialripples for investigate the change of kinetic energyandshearstress on overripples. The stage- discharge rating curve is one of the most important tools in the hydraulic studies. In alluvial rivers,bed rippled are formed and significantly affect the stage- discharge rating curve. In this research, the effects of two different type of ripples (parallel and flakeshape onthe hydraulic characteristicsof flow were experimentally studied

  14. The predicted impacts to the groundwater and Columbia River from ammoniated water discharges to the 216-A-36B crib

    International Nuclear Information System (INIS)

    Buelt, J.L.; Conbere, W.; Freshley, M.D.; Hicks, R.J.; Kuhn, W.L.; Lamar, D.A.; Serne, R.J.; Smoot, J.L.

    1988-03-01

    Impact from past and potential future discharges of ammoniated water to the 216-A-36B crib have on groundwater and river concentrations of hazardous chemical constitutents are studied. Until August 1987, the 216-A-36B crib, located in the 200-East Area of the Hanford Site, accepted ammoniated water discharges. Although this study addresses known hazardous chemical constituents associated with such discharges, the primary concern is the discharge of NH 4 OH because of its microbiological conversion to NO 2 /sup /minus// and NO 3 /sup /minus//. As a result of fuel decladding operations, material balance calculations indicate that NH 4 OH has been discharged to the 216-A-36B crib in amounts that exceed reportable quantities under the Comprehensive Environmental Response, Compensation and Liability Act of 1980. Although flow to the crib is relatively constant, the estimated NH 4 OH discharge varies from negligible to a maximum of 10,000 g-molesh. Because these discharges are intermittent, the concentration delivered to the groundwater is a function of soil sorption, microbiological conversion rates of NH 4 + to NO 2 /sup /minus// and NO 3 /sup /minus//, and groundwater dispersion. This report provides results based on the assumptions of maximum, nominal, and discountinued NH 4 OH discharges to the crib. Consequently, the results show maximum and realistic estimates of NH 4 + , NO 2 /sup /minus// and NO 3 /sup /minus// concentrations in the groundwater

  15. Investigation of Submarine Groundwater Discharge along the Tidal Reach of the Caloosahatchee River, Southwest Florida

    Science.gov (United States)

    Reich, Christopher D.

    2010-01-01

    The tidal reach of the Caloosahatchee River is an estuarine habitat that supports a diverse assemblage of biota including aquatic vegetation, shellfish, and finfish. The system has been highly modified by anthropogenic activity over the last 150 years (South Florida Water Management District (SFWMD), 2009). For example, the river was channelized and connected to Lake Okeechobee in 1881 (via canal C-43). Subsequently, three control structures (spillway and locks) were installed for flood protection (S-77 and S-78 in the 1930s) and for saltwater-intrusion prevention (S-79, W.P. Franklin Lock and Dam in 1966). The emplacement of these structures and their impact to natural water flow have been blamed for water-quality problems downstream within the estuary (Flaig and Capece, 1998; SFWMD, 2009). Doering and Chamberlain (1999) found that the operation of these control structures caused large and often rapid variations in salinity during various times of the year. Variable salinities could have deleterious impacts on the health of organisms in the Caloosahatchee River estuary. Flow restriction along the Caloosahatchee has also been linked to surface-water eutrophication problems (Doering and Chamberlain, 1999; SFWMD, 2009) and bottom-sediment contamination (Fernandez and others, 1999). Sources of nutrients (nitrogen and phosphorous) that cause eutrophication are primarily from residential sources and agriculture, though wastewater-treatment-plant discharges can also play a major role (SFWMD, 2009). The pathway for many of these nutrients is by land runoff and direct discharge from stormwater drains. An often overlooked source of nutrients and other chemical constituents is from submarine groundwater discharge (SGD). SGD can be either a diffuse or point source (for example, submarine springs) of nutrients and other chemical constituents to coastal waters (Valiela and others, 1990; Swarzenski and others, 2001; 2006; 2007; 2008). SGD can be composed of either fresh or

  16. Identification of significant pressures and assessment of wastewater discharge on Krivaja River water quality

    Directory of Open Access Journals (Sweden)

    Pešić Vesna Z.

    2017-01-01

    Full Text Available One of the key stages of the process of preparing management plans for the river basin is the analysis of pressures and impacts, as well as the risk assessment of failing to achieve the environmental objectives. DPSIR framework (Driving Forces-Pressure-State-Impact-Response was developed by the European Agency for the environmental protection, and makes the conceptual basis for the pressures and impacts analysis, taking into account the complexity of the interactions in the environment and represents the tool for their analysis. Impact assessment of the water body requires some quantitative information to describe the condition of the water body and/or the pressures that act on it. The aim of the study was to determine the effect of wastewater discharge on Krivaja watercourse. Impact assessment is carried out based on data of polluters’ wastewater and monitoring information for water in Krivaja. For each site at which sampling was performed, the specific risk quotients for surface water were calculated, as the ratio of the each pollutant concentration in surface water at the sampling point and environmental quality standards for pollutants, as well as their sum that represents the risk index. In order to have the integrated perceive of processes in the Krivaja River, taking into account cumulative effects from point sources, the concept of total maximum daily load was applied, using which the pollution amount, that can be discharged daily in a water body without degrading his prescribed/required quality, was calculated. Comparison of emitted loads from pollution point sources with maximum allowable ones was performed. Wastewaters of different polluters located on Krivaja are, due to insufficient treatment, very loaded with organic matter and nutrients. Krivaja receives daily 1332 m3 of wastewater, 999 kg COD, 722 kg BOD, 144 kg of nitrogen, 4.3 kg of phosphorus and 627 kg of suspended solids. Of the total wastewater volume, the majority (69

  17. Downscaling climate projections for the Peruvian coastal Chancay-Huaral Basin to support river discharge modeling with WEAP

    Directory of Open Access Journals (Sweden)

    Taru Olsson

    2017-10-01

    New hydrological insights for the region: On average, GCMs indicate increased annual mean temperatures by 3.1 °C (RCP4.5 and by 4.3 °C (RCP8.5 and precipitation sum by 20% (RCP4.5 and by 28% (RCP8.5. With increasing total precipitation, river discharges are also found to increase, but the variability among the GCMs is considerable. The largest increases in monthly discharge are projected to occur in the wet season (November − April − with up to 31% increase of December multi-model mean. Despite the larger annual discharge for the mean multi-model result, discharges in the dry season may decrease according to some GCMs, showing the need for an adapted future water management.

  18. Antibiotic Resistance Gene Abundances Associated with Waste Discharges to the Almendares River near Havana, Cuba

    Science.gov (United States)

    2010-01-01

    Considerable debate exists over the primary cause of increased antibiotic resistance (AR) worldwide. Evidence suggests increasing AR results from overuse of antibiotics in medicine and therapeutic and nontherapeutic applications in agriculture. However, pollution also can influence environmental AR, particularly associated with heavy metal, pharmaceutical, and other waste releases, although the relative scale of the “pollution” contribution is poorly defined, which restricts targeted mitigation efforts. The question is “where to study and quantify AR from pollution versus other causes to best understand the pollution effect”. One useful site is Cuba because industrial pollution broadly exists; antibiotics are used sparingly in medicine and agriculture; and multiresistant bacterial infections are increasing in clinical settings without explanation. Within this context, we quantified 13 antibiotic resistance genes (ARG; indicators of AR potential), 6 heavy metals, 3 antibiotics, and 17 other organic pollutants at 8 locations along the Almendares River in western Havana at sites bracketing known waste discharge points, including a large solid waste landfill and various pharmaceutical factories. Significant correlations (p < 0.05) were found between sediment ARG levels, especially for tetracyclines and β-lactams (e.g., tet(M), tet(O), tet(Q), tet(W), blaOXA), and sediment Cu and water column ampicillin levels in the river. Further, sediment ARG levels increased by up to 3 orders of magnitude downstream of the pharmaceutical factories and were highest where human population densities also were high. Although explicit links are not shown, results suggest that pollution has increased background AR levels in a setting where other causes of AR are less prevalent. PMID:21133405

  19. Biomass production in the Lower Mississippi River Basin: Mitigating associated nutrient and sediment discharge to the Gulf of Mexico.

    Science.gov (United States)

    Ha, Miae; Zhang, Zhonglong; Wu, May

    2018-04-24

    A watershed model was developed using the Soil and Water Assessment Tool (SWAT) that simulates nitrogen, phosphorus, and sediment loadings in the Lower Mississippi River Basin (LMRB). The LMRB SWAT model was calibrated and validated using 21 years of observed flow, sediment, and water-quality data. The baseline model results indicate that agricultural lands within the Lower Mississippi River Basin (LMRB) are the dominant sources of nitrogen and phosphorus discharging into the Gulf of Mexico. The model was further used to evaluate the impact of biomass production, in the presence of riparian buffers in the LMRB, on suspended-sediment and nutrient loading discharge from the Mississippi River into the Gulf of Mexico. The interplay among land use, riparian buffers, crop type, land slope, water quality, and hydrology were anlyzed at various scales. Implementing a riparian buffer in the dominant agricultural region within the LMRB could reduce suspended sediment, nitrogen, and phosphorus loadings at the regional scale by up to 65%, 38%, and 39%, respectively. Implementation of this land management practice can reduce the suspended-sediment content and improve the water quality of the discharge from the LMRB into the Gulf of Mexico and support the potential production of bioenergy and bio-products within the Mississippi River Basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Use of an ADCP to compute suspended-sediment discharge in the tidal Hudson River, New York

    Science.gov (United States)

    Wall, Gary R.; Nystrom, Elizabeth A.; Litten, Simon

    2006-01-01

    Acoustic Doppler current profilers (ADCPs) can provide data needed for computation of suspended-sediment discharge in complex river systems, such as tidal rivers, in which conventional methods of collecting time-series data on suspended-sediment concentration (SSC) and water discharge are not feasible. Although ADCPs are not designed to measure SSC, ADCP data can be used as a surrogate under certain environmental conditions. However, the software for such computation is limited, and considerable post-processing is needed to correct and normalize ADCP data for this use. This report documents the sampling design and computational procedure used to calibrate ADCP measures of echo intensity to SSC and water velocity to discharge in the computation of suspended-sediment discharge at the study site on the Hudson River near Poughkeepsie, New York. The methods and procedures described may prove useful to others doing similar work in different locations; however, they are specific to this study site and may have limited applicability elsewhere.

  1. Assessing the contribution of the main aquifer of Loire basin to the river discharge during low flow

    International Nuclear Information System (INIS)

    Monteil, C.

    2011-01-01

    The evolution of the Loire river low flows is a key issue for various uses such as water supply, irrigation or industrial needs. Power production is a major activity in the Loire basin with four nuclear power plants using the river water for the cooling system. To estimate the evolution of long term in-stream low flow distribution, it is necessary to have a good estimate of the contribution of a complex aquifer system to the river discharge. Three main overlaying aquifer units covering an area of 38000 km 2 are considered: Beauce Limestones (Oligocene), Chalks (Seno-Turonian) and Sands (Cenomanian). A distributed hydrogeological model (Eau-Dyssee) is implemented with the coupling of five modules: surface water budget, watershed routing, river routing, unsaturated zone transfer, and groundwater flow. The model is calibrated over a 10-yr period, validated over another 10-yr period, and then a test simulation is run over 35 years. A hybrid fitting methodology, based on an automated inverse method and a trial-error one, has been developed for the fitting of the Beauce aquifer unit. The other units are calibrated by trial and error. The fitted model simulates properly both discharges and piezometric heads over the whole domain, with a global RMSE between simulated and observed piezometric heads of 2.86 m, and all Nash efficiency at the Loire discharge gauging stations over 0.9. The fitted model has then been used to quantify the hydro-system mass balance at different time scales. Mean aquifer contribution to Loire river discharge during low flow between 1975 and 2008 is estimated at 15 m 3 /s. First results of simulations under four different climate change projections indicate an averaged decrease of these contributions reaching 8 to 50% in 2100. (author)

  2. Dissolved organic matter composition of winter flow in the Yukon River basin: Implications of permafrost thaw and increased groundwater discharge

    Science.gov (United States)

    O'Donnell, Jonathan A.; Aiken, George R.; Walvoord, Michelle Ann; Butler, Kenna D.

    2012-01-01

    Groundwater discharge to rivers has increased in recent decades across the circumpolar region and has been attributed to thawing permafrost in arctic and subarctic watersheds. Permafrost-driven changes in groundwater discharge will alter the flux of dissolved organic carbon (DOC) in rivers, yet little is known about the chemical composition and reactivity of dissolved organic matter (DOM) of groundwater in permafrost settings. Here, we characterize DOM composition of winter flow in 60 rivers and streams of the Yukon River basin to evaluate the biogeochemical consequences of enhanced groundwater discharge associated with permafrost thaw. DOC concentration of winter flow averaged 3.9 ± 0.5 mg C L−1, yet was highly variable across basins (ranging from 20 mg C L−1). In comparison to the summer-autumn period, DOM composition of winter flow had lower aromaticity (as indicated by specific ultraviolet absorbance at 254 nm, or SUVA254), lower hydrophobic acid content, and a higher proportion of hydrophilic compounds (HPI). Fluorescence spectroscopy and parallel factor analysis indicated enrichment of protein-like fluorophores in some, but not all, winter flow samples. The ratio of DOC to dissolved organic nitrogen, an indicator of DOM biodegradability, was positively correlated with SUVA254 and negatively correlated with the percentage of protein-like compounds. Using a simple two-pool mixing model, we evaluate possible changes in DOM during the summer-autumn period across a range of conditions reflecting possible increases in groundwater discharge. Across three watersheds, we consistently observed decreases in DOC concentration and SUVA254 and increases in HPI with increasing groundwater discharge. Spatial patterns in DOM composition of winter flow appear to reflect differences in the relative contributions of groundwater from suprapermafrost and subpermafrost aquifers across watersheds. Our findings call for more explicit consideration of DOC loss and stabilization

  3. Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various sources of bathymetric information

    Science.gov (United States)

    Legleiter, Carl; Kinzel, Paul J.; Nelson, Jonathan M.

    2017-01-01

    Although river discharge is a fundamental hydrologic quantity, conventional methods of streamgaging are impractical, expensive, and potentially dangerous in remote locations. This study evaluated the potential for measuring discharge via various forms of remote sensing, primarily thermal imaging of flow velocities but also spectrally-based depth retrieval from passive optical image data. We acquired thermal image time series from bridges spanning five streams in Alaska and observed strong agreement between velocities measured in situ and those inferred by Particle Image Velocimetry (PIV), which quantified advection of thermal features by the flow. The resulting surface velocities were converted to depth-averaged velocities by applying site-specific, calibrated velocity indices. Field spectra from three clear-flowing streams provided strong relationships between depth and reflectance, suggesting that, under favorable conditions, spectrally-based bathymetric mapping could complement thermal PIV in a hybrid approach to remote sensing of river discharge; this strategy would not be applicable to larger, more turbid rivers, however. A more flexible and efficient alternative might involve inferring depth from thermal data based on relationships between depth and integral length scales of turbulent fluctuations in temperature, captured as variations in image brightness. We observed moderately strong correlations for a site-aggregated data set that reduced station-to-station variability but encompassed a broad range of depths. Discharges calculated using thermal PIV-derived velocities were within 15% of in situ measurements when combined with depths measured directly in the field or estimated from field spectra and within 40% when the depth information also was derived from thermal images. The results of this initial, proof-of-concept investigation suggest that remote sensing techniques could facilitate measurement of river discharge.

  4. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    Directory of Open Access Journals (Sweden)

    H. Lauri

    2012-12-01

    Full Text Available The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekong within next 20–30 yr. We downscaled the output of five general circulation models (GCMs that were found to perform well in the Mekong region. For the simulation of reservoir operation, we used an optimisation approach to estimate the operation of multiple reservoirs, including both existing and planned hydropower reservoirs. For the hydrological assessment, we used a distributed hydrological model, VMod, with a grid resolution of 5 km × 5 km. In terms of climate change's impact on hydrology, we found a high variation in the discharge results depending on which of the GCMs is used as input. The simulated change in discharge at Kratie (Cambodia between the baseline (1982–1992 and projected time period (2032–2042 ranges from −11% to +15% for the wet season and −10% to +13% for the dry season. Our analysis also shows that the changes in discharge due to planned reservoir operations are clearly larger than those simulated due to climate change: 25–160% higher dry season flows and 5–24% lower flood peaks in Kratie. The projected cumulative impacts follow rather closely the reservoir operation impacts, with an envelope around them induced by the different GCMs. Our results thus indicate that within the coming 20–30 yr, the operation of planned hydropower reservoirs is likely to have a larger impact on the Mekong hydrograph than the impacts of climate change, particularly during the dry season. On the other hand, climate change will

  5. Traveltime and dispersion data, including associated discharge and water-surface elevation data, Kanawha River West Virginia, 1991

    Science.gov (United States)

    Wiley, J.B.

    1993-01-01

    This report presents results of a study by the U.S. Geological Survey, in cooperation with the Virginia Environmental Endowment, Marshall University Research Corporation, and the West Virginia Depart- ment of Environmental Protection, to evaluate traveltime of a soluble dye on the Kanawha River. The Kanawha River originates in south-central West Virginia and flows northwestward to the Ohio River. Knowledge of traveltime and dispersion of a soluble dye could help river managers mitigate effects of an accidental spill. Traveltime and dispersion data were collected from June 20 through July 4, 1991, when river discharges decreased from June 24 through July 3, 1991. Daily mean discharges decreased from 5,540 ft 3/s on June 24 to 2,790 ft3/s on July 2 at Kanawha Falls and from 5,680 ft3/s on June 24 to 3,000 ft3/s on July 2 at Charleston. Water-surface elevations in regulated pools indicated a loss of water storage during the period. A spill at Gauley Bridge under similar streamflow conditions of this study is estimated to take 15 days to move beyond Winfield Dam. Estimated time of passage (elapsed time at a particular location) at Marmet Dam and Winfield Dam is approximately 2.5 days and 5.5 days, respectively. The spill is estimated to spend 12 days in the Winfield pool.

  6. Optimization and Modeling of Extreme Freshwater Discharge from Japanese First-Class River Basins to Coastal Oceans

    Science.gov (United States)

    Kuroki, R.; Yamashiki, Y. A.; Varlamov, S.; Miyazawa, Y.; Gupta, H. V.; Racault, M.; Troselj, J.

    2017-12-01

    We estimated the effects of extreme fluvial outflow events from river mouths on the salinity distribution in the Japanese coastal zones. Targeted extreme event was a typhoon from 06/09/2015 to 12/09/2015, and we generated a set of hourly simulated river outflow data of all Japanese first-class rivers from these basins to the Pacific Ocean and the Sea of Japan during the period by using our model "Cell Distributed Runoff Model Version 3.1.1 (CDRMV3.1.1)". The model simulated fresh water discharges for the case of the typhoon passage over Japan. We used these data with a coupled hydrological-oceanographic model JCOPE-T, developed by Japan Agency for Marine-earth Science and Technology (JAMSTEC), for estimation of the circulation and salinity distribution in Japanese coastal zones. By using the model, the coastal oceanic circulation was reproduced adequately, which was verified by satellite remote sensing. In addition to this, we have successfully optimized 5 parameters, soil roughness coefficient, river roughness coefficient, effective porosity, saturated hydraulic conductivity, and effective rainfall by using Shuffled Complex Evolution method developed by University of Arizona (SCE-UA method), that is one of the optimization method for hydrological model. Increasing accuracy of peak discharge prediction of extreme typhoon events on river mouths is essential for continental-oceanic mutual interaction.

  7. Recharge and discharge areas of the Floridan Aquifer in the St. Johns River Water Management District and vicinity, Florida

    Science.gov (United States)

    Phelps, G.G.

    1984-01-01

    The Floridan aquifer is the principal source of most of the freshwater used in the St. Johns River Water Management District. An important step in managing water resources is the delineation of recharge and discharge areas. Geohydrologic factors to be considered when delineating recharge and discharge areas include: altitude and configuration of the potentiometric surface; direction and magnitude of the gradient between the water table and the potentiometric surface; and thickness and permeability of the overlying sediments. Recharge to the aquifer comes almost entirely from rainfall within the Water Management District. Significant recharge occurs where the aquifer is at or very near land surface, and where the overlying sediments are very permeable sand so that recharge takes place downward leakage. Recharge also occurs through sinkholes, sinkhole lakes, and other lakes that have a good connection to the aquifer. Major recharge areas are delineated on the map. Discharge occurs in areas of artesian flow (where the potentiometric surface is above land surface), primarily by diffuse upward leakage and by discharge from springs. Fifty-five springs, with total discharge of about 1,600 million gallons per day, are in the Water Management District. Areas of discharge and the location of springs are shown on the map. In 1980, total pumpage in the Water Management District was about 1,000 million gallons per day. Under predevelopment conditions, discharge by springs and upward leakage approximately balanced recharged. Additional discharge by pumpage may or may not be balanced by decreased spring discharge of increased downward leakage. Examination of long-term water level trends can indicate if recharge and discharge balance. Graphs of rainfall, water levels, and municipal pumpage for Jacksonville, Orlando, and Daytona Beach are shown on the map. (USGS)

  8. A Data-driven Approach for Forecasting Next-day River Discharge

    Science.gov (United States)

    Sharif, H. O.; Billah, K. S.

    2017-12-01

    This study focuses on evaluating the performance of the Soil and Water Assessment Tool (SWAT) eco-hydrological model, a simple Auto-Regressive with eXogenous input (ARX) model, and a Gene expression programming (GEP)-based model in one-day-ahead forecasting of discharge of a subtropical basin (the upper Kentucky River Basin). The three models were calibrated with daily flow at the US Geological Survey (USGS) stream gauging station not affected by flow regulation for the period of 2002-2005. The calibrated models were then validated at the same gauging station as well as another USGS gauge 88 km downstream for the period of 2008-2010. The results suggest that simple models outperform a sophisticated hydrological model with GEP having the advantage of being able to generate functional relationships that allow scientific investigation of the complex nonlinear interrelationships among input variables. Unlike SWAT, GEP, and to some extent, ARX are less sensitive to the length of the calibration time series and do not require a spin-up period.

  9. The influence of Congo River discharges in the surface and deep layers of the Gulf of Guinea

    OpenAIRE

    Vangriesheim, A.; Pierre, C.; Aminot, A.; Metzl, N.; Baurand, François; Caprais, J. C.

    2009-01-01

    The main feature of the Congo-Angola margin in the Gulf of Guinea is the Congo (ex-Zaire) deep-sea fan composed of a submarine canyon directly connected to the Congo River, a channel and a [sediment] lobe area. During the multi-disciplinary programme called BIOZAIRE conducted by Ifremer from 2000 to 2005, two CTD-O2 sections with discrete water column samples were performed (BIOZAIRE3 cruise: 2003-2004) to study the influence of the Congo River discharges, both in the surface layer and in the...

  10. Satellite Derived Water Quality Observations Are Related to River Discharge and Nitrogen Loads in Pensacola Bay, Florida

    Directory of Open Access Journals (Sweden)

    John C. Lehrter

    2017-09-01

    Full Text Available Relationships between satellite-derived water quality variables and river discharges, concentrations and loads of nutrients, organic carbon, and sediments were investigated over a 9-year period (2003–2011 in Pensacola Bay, Florida, USA. These analyses were conducted to better understand which river forcing factors were the primary drivers of estuarine variability in several water quality variables. Remote sensing reflectance time-series data were retrieved from the MEdium Resolution Imaging Spectrometer (MERIS and used to calculate monthly and annual estuarine time-series of chlorophyll a (Chla, colored dissolved organic matter (CDOM, and total suspended sediments (TSS. Monthly MERIS Chla varied from 2.0 mg m−3 in the lower region of the bay to 17.2 mg m−3 in the upper bay. MERIS CDOM and TSS exhibited similar patterns with ranges of 0.51–2.67 (m−1 and 0.11–8.9 (g m−3. Variations in the MERIS-derived monthly and annual Chla, CDOM, and TSS time-series were significantly related to monthly and annual river discharge and loads of nitrogen, organic carbon, and suspended sediments from the Escambia and Yellow rivers. Multiple regression models based on river loads (independent variables and MERIS Chla, CDOM, or TSS (dependent variables explained significant fractions of the variability (up to 62% at monthly and annual scales. The most significant independent variables in the regressions were river nitrogen loads, which were associated with increased MERIS Chla, CDOM, and TSS concentrations, and river suspended sediment loads, which were associated with decreased concentrations. In contrast, MERIS water quality variations were not significantly related to river total phosphorus loads. The spatially synoptic, nine-year satellite record expanded upon the spatial extent of past field studies to reveal previously unseen system-wide responses to river discharge and loading variation. The results indicated that variations in Pensacola Bay Chla

  11. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    Science.gov (United States)

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  12. The impact of the Cyanamid Canada Co. discharges to benthic invertebrates in the Welland River in Niagara falls, Canada.

    Science.gov (United States)

    Dickman, M; Rygiel, G

    1993-06-01

    : In 1986, the International Joint Commission (IJC) recommended that the Niagara River watershed should be declared an Area of Concern (AOC). This IJC recommendation was ratified by the 4 signatories of the Great Lakes Water Quality Agreement. In order to delist an AOC, it is necessary to locate any areas of impairment within the watershed and carry out remediation projects that permit uses that were previously impaired. To this end we attempted to determine whether or not the sediments at 7 study sites near the Cyanamid Canada (Chemical) Co. were contaminated at levels that would result in the impairment of the natural biota which inhabit the watershed.The Cyanamid Canada (Chemical) Co. discharges ammonia wastes, cyanide, arsenic and a variety of heavy metals into treatment systems which ultimately discharge to the Welland River, the major Canadian tributary to the Niagara River. This portion of the Welland River near the factory was designated a Provincially significant (Class one) wetlands by the Ontario Ministry of Natural Resources. In 1986, the mean discharge to a creek from Cyanamid Canada Co. was 27,342 m(3) per day (MOE, 1987). Similar discharge volumes occurred in 1989. In 1991, the total discharge was 25,000 m(3) per day (MOE, 1991).The majority of the benthic invertebrates collected from the study area were pollution tolerant taxa (e.g., sludge worms constituted 68% of all the organisms collected). The lowest chironomid densities were observed at stations 1, 2, and 4, which were the only stations situated close to Cyanamid's discharge pipes. The absence, of clams and mayflies which burrow to greater depths than do chironomids and sludge worms, probably reflects the inability of the deeper dwelling burrowers to tolerate the contaminants which we recorded at these 3 stations. The absence of all crustaceans from these same 3 stations (stations 1, 2 and 4) when coupled with their low biotic diversity and the elevated heavy metal concentrations in the

  13. Developing a methodology for real-time trading of water withdrawal and waste load discharge permits in rivers.

    Science.gov (United States)

    Soltani, Maryam; Kerachian, Reza

    2018-04-15

    In this paper, a new methodology is proposed for the real-time trading of water withdrawal and waste load discharge permits in agricultural areas along the rivers. Total Dissolved Solids (TDS) is chosen as an indicator of river water quality and the TDS load that agricultural water users discharge to the river are controlled by storing a part of return flows in some evaporation ponds. Available surface water withdrawal and waste load discharge permits are determined using a non-linear multi-objective optimization model. Total available permits are then fairly reallocated among agricultural water users, proportional to their arable lands. Water users can trade their water withdrawal and waste load discharge permits simultaneously, in a bilateral, step by step framework, which takes advantage of differences in their water use efficiencies and agricultural return flow rates. A trade that would take place at each time step results in either more benefit or less diverted return flow. The Nucleolus cooperative game is used to redistribute the benefits generated through trades in different time steps. The proposed methodology is applied to PayePol region in the Karkheh River catchment, southwest Iran. Predicting that 1922.7 Million Cubic Meters (MCM) of annual flow is available to agricultural lands at the beginning of the cultivation year, the real-time optimization model estimates the total annual benefit to reach 46.07 million US Dollars (USD), which requires 6.31 MCM of return flow to be diverted to the evaporation ponds. Fair reallocation of the permits, changes these values to 35.38 million USD and 13.69 MCM, respectively. Results illustrate the effectiveness of the proposed methodology in the real-time water and waste load allocation and simultaneous trading of permits. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Interacting effects of discharge and channel morphology on transport of semibuoyant fish eggs in large, altered river systems.

    Directory of Open Access Journals (Sweden)

    Thomas A Worthington

    Full Text Available Habitat fragmentation and flow regulation are significant factors related to the decline and extinction of freshwater biota. Pelagic-broadcast spawning cyprinids require moving water and some length of unfragmented stream to complete their life cycle. However, it is unknown how discharge and habitat features interact at multiple spatial scales to alter the transport of semi-buoyant fish eggs. Our objective was to assess the relationship between downstream drift of semi-buoyant egg surrogates (gellan beads and discharge and habitat complexity. We quantified transport time of a known quantity of beads using 2-3 sampling devices at each of seven locations on the North Canadian and Canadian rivers. Transport time was assessed based on median capture time (time at which 50% of beads were captured and sampling period (time period when 2.5% and 97.5% of beads were captured. Habitat complexity was assessed by calculating width∶depth ratios at each site, and several habitat metrics determined using analyses of aerial photographs. Median time of egg capture was negatively correlated to site discharge. The temporal extent of the sampling period at each site was negatively correlated to both site discharge and habitat-patch dispersion. Our results highlight the role of discharge in driving transport times, but also indicate that higher dispersion of habitat patches relates to increased retention of beads within the river. These results could be used to target restoration activities or prioritize water use to create and maintain habitat complexity within large, fragmented river systems.

  15. Effect of water flux and sediment discharge of the Yangtze River on PAHs sedimentation in the estuary.

    Science.gov (United States)

    Li, Rufeng; Feng, Chenghong; Wang, Dongxin; He, Maozhi; Hu, Lijuan; Shen, Zhenyao

    2016-12-01

    Historical distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) and their carriers (i.e., organic matter and mineral particles) in the sediment cores of the Yangtze Estuary were investigated, with emphasis laid on the role of the Yangtze River. Grain size component of sediments (clay, silt, and sand) and organic carbon (black carbon and total organic carbon) in the sediment cores were markedly affected by water flux and sediment discharge of the Yangtze River. Qualitative and quantitative analysis results showed that sands and black carbon acted as the main carriers of PAHs. The sedimentation of two-ring to three-ring PAHs in the estuary had significant correlations with water flux and sediment discharge of the Yangtze River. The relative lower level of the four-ring and five-ring to six-ring PAHs concentrations appeared around the year 2003 and remained for the following several years. This time period accorded well with the water impoundment time of the Three Gorges Reservoir. The decreased level of two-ring to three-ring PAHs occurred in the year 1994, and the peak points around the year 2009 indicated that PAHs sedimentation in the estuary also had close relationship to severe drought and flood in the catchments. The findings presented in this paper could provide references for assessing the impacts of water flux and sediment discharge on the historical deposition of PAHs and their carriers in the Yangtze Estuary.

  16. Human activity and climate variability impacts on sediment discharge and runoff in the Yellow River of China

    Science.gov (United States)

    He, Yi; Wang, Fei; Mu, Xingmin; Guo, Lanqin; Gao, Peng; Zhao, Guangju

    2017-07-01

    We analyze the variability of sediment discharge and runoff in the Hekou-Longmen segment in the middle reaches of the Yellow River, China. Our analysis is based on Normalized Difference Vegetation Index (NDVI), sediment discharge, runoff, and monthly meteorological data (1961-2010). The climate conditions are controlled via monthly regional average precipitation and potential evapotranspiration (ET0) that are calculated with the Penman-Monteith method. Data regarding water and soil conservation infrastructure and their effects were investigated as causal factors of runoff and sediment discharge changes. The results indicated the following conclusions: (1) The sediment concentration, sediment discharge, and annual runoff, varied considerably during the study period and all of these factors exhibited larger coefficients of variation than ET0 and precipitation. (2) Sediment discharge, annual runoff, and sediment concentration significantly declined over the study period in a linear fashion. This was accompanied by an increase in ET0 and decline in precipitation that were not significant. (3) Within paired years with similar precipitation and potential evapotranspiration conditions (SPEC), all pairs showed a decline in runoff, sediment discharge, and sediment concentration. (4) Human impacts in this region were markedly high as indicated by NDVI, and soil and water measurements, and especially the soil and water conservation infrastructure resulting in an approximately 312 Mt year-1 of sediment deposition during 1960-1999.

  17. FLOODPLAIN PLANNING BASED ON STATISTICAL ANALYSIS OF TILPARA BARRAGE DISCHARGE: A CASE STUDY ON MAYURAKSHI RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Vibhash Chandra Jha

    2012-10-01

    Full Text Available Floods in the West Bengal are responsible for colossal loss of human life, crops, and property. In recent years, various measures of flood control and management have been adopted. However, flooding in such rivers like Brahmani profoundly challenges flood-hazard management, because of the inadequacy of conventional data and high spatio-temporal variability of floods. To understand flood hazards and environmental change it is imperative that engineers and hydrologists utilize historical and paleoflood records to improve risk analyses as well as to estimate probable maximum flood on rivers such as these in a highly flood-prone region(Parkar,2000. The flood frequency analysis, probable peak discharge analysis, its return period analysis and floodplain zoning based on ancillary data will help better management of flood in the Mayurakshi River basin situated in the districts of Birbhum and Murshidabad.

  18. Effects of uranium mining discharges on water quality in the Puerco River basin, Arizona and New Mexico

    Science.gov (United States)

    Van Metre, P.C.; Gray, J.R.

    1992-01-01

    From 1967 until 1986, uranium mine dewatering increased dissolved gross alpha, gross beta, uranium and radium activities and dissolved selenium and molybdenum concentrations in the Puerco River as indicated by time trends, areal patterns involving distance from the mines and stream discharge. Additionally, increased dissolved uranium concentrations were identified in groundwater under the Puerco River from where mine discharges entered the river to approximately the Arizona-New Mexico State line about 65 km downstream. Total mass of uranium and gross alpha activity released to the Puerco River by mine dewatering were estimated as 560 Mg (560 × 106 g) and 260 Ci, respectively. In comparison, a uranium mill tailings pond spill on 16 July 1979, released an estimated 1.5 Mg of uranium and 46 Ci of gross alpha activity. Mass balance calculations for alluvial ground water indicate that most of the uranium released did not remain in solution. Sorption of uranium on sediments and uptake of uranium by plants probably removed the uranium from solution.

  19. Responses of macroinvertebrate community metrics to a wastewater discharge in the Upper Blue River of Kansas and Missouri, USA

    Science.gov (United States)

    Poulton, Barry C.; Graham, Jennifer L.; Rasmussen, Teresa J.; Stone, Mandy L.

    2015-01-01

    The Blue River Main wastewater treatment facility (WWTF) discharges into the upper Blue River (725 km2), and is recently upgraded to implement biological nutrient removal. We measured biotic condition upstream and downstream of the discharge utilizing the macroinvertebrate protocol developed for Kansas streams. We examined responses of 34 metrics to determine the best indicators for discriminating site differences and for predicting biological condition. Significant differences between sites upstream and downstream of the discharge were identified for 15 metrics in April and 12 metrics in August. Upstream biotic condition scores were significantly greater than scores at both downstream sites in April (p = 0.02), and in August the most downstream site was classified as non-biologically supporting. Thirteen EPT taxa (Ephemeroptera, Plecoptera, Trichoptera) considered intolerant of degraded stream quality were absent at one or both downstream sites. Increases in tolerance metrics and filtering macroinvertebrates, and a decline in ratio of scrapers to filterers all indicated effects of increased nutrient enrichment. Stepwise regressions identified several significant models containing a suite of metrics with low redundancy (R2 = 0.90 - 0.99). Based on the rapid decline in biological condition downstream of the discharge, the level of nutrient removal resulting from the facility upgrade (10% - 20%) was not enough to mitigate negative effects on macroinvertebrate communities.

  20. The influence of Savannah River discharge and changing SRS cooling water requirements on the potential entrainment of ichthyoplankton at the SRS Savannah River intakes

    International Nuclear Information System (INIS)

    Paller, M.H.

    1992-08-01

    Entrainment (i.e., withdrawal of fish larvae and eggs in cooling water) at the SRS Savannah River intakes is greatest when periods of high river water usage coincide with low river dischargeduring the spawning season. American shad and striped bass are the two species of greatest concern because of their recreational and/or commercial importance and because they produce drifting eggs and larvae vulnerable to entrainment. In the mid-reaches of the Savannah River, American shad and striped bass spawn primarily during April and May. An analysis of Savannah River discharge during April and May 1973--1989 indicated the potential for entrainment of 4--18% of the American shad and striped bass larvae and eggs that drifted past the SRS. This analysis assumed the concurrent operation of L-, K-, and P-Reactors. Additional scenarios investigated were: (1) shutting down L- and P-Reactors, and operating K-Reactor with a recycle cooling tower; and (2) shutting down L- and P-Reactors, eliminating minimum flows to Steel Creek, and operating K-Reactor with a recycle cooling tower. The former scenario reduced potential entrainment to 0.7--3.3%, and the latter scenario reduced potential entrainment to 0.20.8%. Thus, the currently favored scenario of operating K-Reactor with a cooling tower and not operating L- and P-Reactors represents a significant lessening of the impact of SRS operations

  1. The effects of precipitation, river discharge, land use and coastal circulation on water quality in coastal Maine.

    Science.gov (United States)

    Tilburg, Charles E; Jordan, Linda M; Carlson, Amy E; Zeeman, Stephan I; Yund, Philip O

    2015-07-01

    Faecal pollution in stormwater, wastewater and direct run-off can carry zoonotic pathogens to streams, rivers and the ocean, reduce water quality, and affect both recreational and commercial fishing areas of the coastal ocean. Typically, the closure of beaches and commercial fishing areas is governed by the testing for the presence of faecal bacteria, which requires an 18-24 h period for sample incubation. As water quality can change during this testing period, the need for accurate and timely predictions of coastal water quality has become acute. In this study, we: (i) examine the relationship between water quality, precipitation and river discharge at several locations within the Gulf of Maine, and (ii) use multiple linear regression models based on readily obtainable hydrometeorological measurements to predict water quality events at five coastal locations. Analysis of a 12 year dataset revealed that high river discharge and/or precipitation events can lead to reduced water quality; however, the use of only these two parameters to predict water quality can result in a number of errors. Analysis of a higher frequency, 2 year study using multiple linear regression models revealed that precipitation, salinity, river discharge, winds, seasonality and coastal circulation correlate with variations in water quality. Although there has been extensive development of regression models for freshwater, this is one of the first attempts to create a mechanistic model to predict water quality in coastal marine waters. Model performance is similar to that of efforts in other regions, which have incorporated models into water resource managers' decisions, indicating that the use of a mechanistic model in coastal Maine is feasible.

  2. Contribution of groundwater to the discharge and quality of surface flow: example of the Garonne river upstream of its confluence with the Tarn river

    International Nuclear Information System (INIS)

    Danneville, L.

    1998-01-01

    Very few studies have been made of the contribution of groundwater to the discharge and quality of surface flow at regional scale, such as that of the catchment area of the Garonne river upstream of its confluence with the Tarn river (15.000 km 2 ). Three main types of groundwater reservoir exist in the area: karstic aquifers, alluvial aquifers, and colluvial and local aquifers that are still poorly understood. The contribution from the karstic aquifers to surface flow varies seasonally depending on the nature, hydraulic behaviour and elevation of the karst. Minor exchange occurs between the alluvial aquifers and rivers, mainly during flooding. The Garonne river, which has an average flow of 199 m 3 /s, is mainly replenished by the Salat and Ariege tributaries, regardless of the season. Study of the low-water stage using Maillet's formula has given a good estimate of the groundwater storage of certain tributaries, and the role played by the groundwater is demonstrated by correlation and spectrum analysis of discharge time series. For example, during 1985, the main storage was shown to be in the river basins of Ariege (142 million m 3 ), Salat (111 million m 3 ) and Ger (21 million m 3 ). The Ger, which is the smallest tributary, has the highest specific storage (224 I/m 2 ) and presents an important buffer effect related to numerous karstic springs. The total groundwater storage of the entire recharge area is estimated at 2.1-2.9 billion m 3 for 1993. It is the largest water storage of the basin, greater than the snow cover (371 million m 3 ) and the artificial storage for electric power plants, discharge buffering and irrigation. The groundwater contribution to the total flow of the Garonne river at the Portet gauging station has been estimated at 46-60% of total discharge in 1993 by extrapolating the low-water stage from the residual hydrograph (hydrograph without the influence of dam reservoirs and snow cover), Direct runoff is estimated at 34-48% and the snow

  3. Potential water-quality effects of coal-bed methane production water discharged along the upper Tongue River, Wyoming and Montana

    Science.gov (United States)

    Kinsey, Stacy M.; Nimick, David A.

    2011-01-01

    Water quality in the upper Tongue River from Monarch, Wyoming, downstream to just upstream from the Tongue River Reservoir in Montana potentially could be affected by discharge of coal-bed methane (CBM) production water (hereinafter referred to as CBM discharge). CBM discharge typically contains high concentrations of sodium and other ions that could increase dissolved-solids (salt) concentrations, specific conductance (SC), and sodium-adsorption ratio (SAR) in the river. Increased inputs of sodium and other ions have the potential to alter the river's suitability for agricultural irrigation and aquatic ecosystems. Data from two large tributaries, Goose Creek and Prairie Dog Creek, indicate that these tributaries were large contributors to the increase in SC and SAR in the Tongue River. However, water-quality data were not available for most of the smaller inflows, such as small tributaries, irrigation-return flows, and CBM discharges. Thus, effects of these inflows on the water quality of the Tongue River were not well documented. Effects of these small inflows might be subtle and difficult to determine without more extensive data collection to describe spatial patterns. Therefore, synoptic water-quality sampling trips were conducted in September 2005 and April 2006 to provide a spatially detailed profile of the downstream changes in water quality in this reach of the Tongue River. The purpose of this report is to describe these downstream changes in water quality and to estimate the potential water-quality effects of CBM discharge in the upper Tongue River. Specific conductance of the Tongue River through the study reach increased from 420 to 625 microsiemens per centimeter (.μS/cm; or 49 percent) in the downstream direction in September 2005 and from 373 to 543 .μS/cm (46 percent) in April 2006. Large increases (12 to 24 percent) were measured immediately downstream from Goose Creek and Prairie Dog Creek during both sampling trips. Increases attributed to

  4. Effects of coal-mine discharges on the quality of the Stonycreek River and its tributaries, Somerset and Cambria counties, Pennsylvania

    Science.gov (United States)

    Williams, Donald R.; Sams, James I.; Mulkerrin, Mary E.

    1996-01-01

    This report describes the results of a study by the U.S. Geological Survey, done in cooperation with the Somerset Conservation District, to locate and sample abandoned coal-mine discharges in the Stonycreek River Basin, to prioritize the mine discharges for remediation, and to determine the effects of the mine discharges on water quality of the Stonycreek River and its major tributaries. From October 1991 through November 1994, 270 abandoned coal-mine discharges were located and sampled. Discharges from 193 mines exceeded U.S. Environmental Protection Agency effluent standards for pH, discharges from 122 mines exceeded effluent standards for total-iron concentration, and discharges from 141 mines exceeded effluent standards for total-manganese concentration. Discharges from 94 mines exceeded effluent standards for all three constituents. Only 40 mine discharges met effluent standards for pH and concentrations of total iron and total manganese.A prioritization index (PI) was developed to rank the mine discharges with respect to their loading capacity on the receiving stream. The PI lists the most severe mine discharges in a descending order for the Stonycreek River Basin and for subbasins that include the Shade Creek, Paint Creek, Wells Creek, Quemahoning Creek, Oven Run, and Pokeytown Run Basins.Passive-treatment systems that include aerobic wetlands, compost wetlands, and anoxic limestone drains (ALD's) are planned to remediate the abandoned mine discharges. The successive alkalinity-producing-system treatment combines ALD technology with the sulfate reduction mechanism of the compost wetland to effectively remediate mine discharge. The water quality and flow of each mine discharge will determine which treatment system or combination of treatment systems would be necessary for remediation.A network of 37 surface-water sampling sites was established to determine stream-water quality during base flow. A series of illustrations show how water quality in the mainstem

  5. A proposal of conceptual model for Pertuso Spring discharge evaluation in the Upper Valley of Aniene River

    Directory of Open Access Journals (Sweden)

    Giuseppe Sappa

    2016-10-01

    Full Text Available The Upper Aniene River basin is part of a large karst aquifer, which interacts with the river, and represents the most important water resource in the southeast part of Latium Region, Central Italy, used for drinking, agriculture and hydroelectric supplies. This work provides hydrogeochemical data and their interpretations for 1 spring and 2 cross section of Aniene River, monitored from July 2014 to December 2015, in the Upper Valley of Aniene River, to identify flow paths and hydrogeochemical processes governing groundwater-surface water interactions in this region. These activities deal with the Environmental Monitoring Plan made for the catchment work project of the Pertuso Spring, in the Upper Valley of Aniene River, which is going to be exploited to supply an important drinking water network in the South part of Rome district. Discharge measurements and hydrogeochemical data were analyzed to develop a conceptual model of aquifer-river interaction, with the aim of achieving proper management and protection of this important hydrogeological system. All groundwater samples are characterized as Ca-HCO3 type. Geochemical modeling and saturation index computation of the water samples show that groundwater and surface water chemistry in the study area was evolved through the interaction with carbonate minerals. All groundwater samples were undersaturated with respect to calcite and dolomite, however some of the Aniene River samples were saturated with respect to dolomite. The analysis of Mg2+/Ca2+ ratios indicates that the dissolution of carbonate minerals is important for groundwater and surface water chemistry, depending on the hydrological processes, which control the groundwater residence time and chemical equilibria in the aquifer.

  6. The influence of flow discharge variations on the morphodynamics of a diffluence-confluence unit on the Mekong River

    Science.gov (United States)

    Hackney, Christopher; Darby, Stephen; Parsons, Daniel; Leyland, Julian; Aalto, Rolf; Nicholas, Andrew; Best, Jim

    2017-04-01

    Bifurcations represent key morphological nodes within the channel networks of anabranching and braided fluvial channels, playing an important role in controlling local bed morphology, the routing of sediment and water, and defining the stability of the downstream reaches. Herein, we detail field observations of the three-dimensional flow structure, bed morphological changes and partitioning of both flow discharge and suspended sediment through a large diffluence-confluence unit on the Mekong River, Cambodia, across a range of flow stages (from 13,500 m3 s-1 to 27,000 m3 s-1) over the monsoonal flood-pulse cycle. We show that the discharge asymmetry (a measure of the disparity between discharges distributed down the left and right branches of the bifurcation) varies with flow discharge and that the influence of upstream curvature-induced cross-stream water surface slope and bed morphological changes are first-order controls in modulating the asymmetry in bifurcation discharge. Flow discharge is shown to play a key role in defining the morphodynamics of the diffluence-confluence unit downstream of the bifurcation. Our data show that during high flows (Q 27,000 m3 s-1), the downstream island complex acts as a net sink of suspended sediment (with 2600 kg s-1 being deposited between the diffluence and confluence), whereas during lower flows, on both the rising and falling limbs of the flood wave, the sediment balance is in quasi-equilibrium. We propose, therefore, that the long term stability of the bifurcation, as well as the larger channel planform and morphology of the diffluence-confluence unit, is therefore controlled by annual monsoonal flood pulses and the associated variations in discharge.

  7. Using the Language Environment Analysis (LENA) system in preschool classrooms with children with autism spectrum disorders.

    Science.gov (United States)

    Dykstra, Jessica R; Sabatos-Devito, Maura G; Irvin, Dwight W; Boyd, Brian A; Hume, Kara A; Odom, Sam L

    2013-09-01

    This study describes the language environment of preschool programs serving children with autism spectrum disorders (ASDs) and examines relationships between child characteristics and an automated measure of adult and child language in the classroom. The Language Environment Analysis (LENA) system was used with 40 children with ASD to collect data on adult and child language. Standardized assessments were administered to obtain language, cognitive, and autism severity scores for participants. With a mean of over 5 hours of recording across two days several months apart, there was a mean of 3.6 child vocalizations per minute, 1.0 conversational turns (in which either the adult or child respond to the other within 5 seconds) per minute, and 29.2 adult words per minute. Two of the three LENA variables were significantly correlated with language age-equivalents. Cognitive age-equivalents were also significantly correlated with two LENA variables. Autism Diagnostic Observation Schedule severity scores and LENA variables were not significantly correlated. Implications for using the LENA system with children with ASD in the school environment are discussed.

  8. Spatial-Temporal Variations of Chlorophyll-a in the Adjacent Sea Area of the Yangtze River Estuary Influenced by Yangtze River Discharge

    Science.gov (United States)

    Wang, Ying; Jiang, Hong; Jin, Jiaxin; Zhang, Xiuying; Lu, Xuehe; Wang, Yueqi

    2015-01-01

    Carrying abundant nutrition, terrigenous freshwater has a great impact on the spatial and temporal heterogeneity of phytoplankton in coastal waters. The present study analyzed the spatial-temporal variations of Chlorophyll-a (Chl-a) concentration under the influence of discharge from the Yangtze River, based on remotely sensed Chl-a concentrations. The study area was initially zoned to quantitatively investigate the spatial variation patterns of Chl-a. Then, the temporal variation of Chl-a in each zone was simulated by a sinusoidal curve model. The results showed that in the inshore waters, the terrigenous discharge was the predominant driving force determining the pattern of Chl-a, which brings the risk of red tide disasters; while in the open sea areas, Chl-a was mainly affected by meteorological factors. Furthermore, a diversity of spatial and temporal variations of Chl-a existed based on the degree of influences from discharge. The diluted water extended from inshore to the east of Jeju Island. This process affected the Chl-a concentration flowing through the area, and had a potential impact on the marine environment. The Chl-a from September to November showed an obvious response to the discharge from July to September with a lag of 1 to 2 months. PMID:26006121

  9. Preliminary Analysis of the Role of Wetlands and Rivers in the Groundwater Discharge of the Guarani Aquifer System in NE Argentina

    International Nuclear Information System (INIS)

    Vives, L.; Rodriguez, L.; Manzano, M.; Valladares, A.; Agarwaal, P.; Araguas, L.

    2011-01-01

    The Guarani Aquifer System (GAS) is a transboundary aquifer occupying parts of Brazil, Uruguay, Paraguay and Argentina, covering some 1200000 km''2. The location and magnitude of recharge and the magnitude of regional discharges are uncertain. Regional groundwater flow modeling suggests that some discharge may occur through selected reaches of the Parana and Uruguay rivers and their tributaries, and perhaps, through the Ibera wetland system within Argentina. Preliminary findings of hydrochemical and isotopic sampling and analysis from surface water and groundwater in the Southern GAS region, studying the role of rivers and wetlands in the aquifer discharge and revising the conceptual model, are presented.

  10. A prototype of radar-drone system for measuring the surface flow velocity at river sites and discharge estimation

    Science.gov (United States)

    Moramarco, Tommaso; Alimenti, Federico; Zucco, Graziano; Barbetta, Silvia; Tarpanelli, Angelica; Brocca, Luca; Mezzanotte, Paolo; Rosselli, Luca; Orecchini, Giulia; Virili, Marco; Valigi, Paolo; Ciarfuglia, Thomas; Pagnottelli, Stefano

    2015-04-01

    Discharge estimation at a river site depends on local hydraulic conditions identified by recording water levels. In fact, stage monitoring is straightforward and relatively inexpensive compared with the cost necessary to carry out flow velocity measurements which are, however, limited to low flows and constrained by the accessibility of the site. In this context the mean flow velocity is hard to estimate for high flow, affecting de-facto the reliability of discharge assessment for extreme events. On the other hand, the surface flow velocity can be easily monitored by using radar sensors allowing to achieve a good estimate of discharge by exploiting the entropy theory applied to rivers hydraulic (Chiu,1987). Recently, a growing interest towards the use of Unmanned Aerial Vehicle (UVA), henceforth drone, for topographic applications is observed and considering their capability drones may be of a considerable interest for the hydrological monitoring and in particular for streamflow measurements. With this aim, for the first time, a miniaturized Doppler radar sensor, operating at 24 GHz, will be mounted on a drone to measure the surface flow velocity in rivers. The sensor is constituted by a single-board circuit (i.e. is a fully planar circuits - no waveguides) with the antenna on one side and the front-end electronic on the other side (Alimenti et al., 2007). The antenna has a half-power beam width of less than 10 degrees in the elevation plane and a gain of 13 dBi. The radar is equipped with a monolithic oscillator and transmits a power of about 4 mW at 24 GHz. The sensor is mounted with an inclination of 45 degrees with respect to the drone flying plane and such an angle is considered in recovering the surface speed of the water. The drone is a quadricopter that has more than 30 min, flying time before recharging the battery. Furthermore its flying plan can be scheduled with a suitable software and is executed thanks to the on-board sensors (GPS, accelerometers

  11. Emerging and Conventional Contaminants Discharging into the Dnieper River, Kyiv, Ukraine.

    Science.gov (United States)

    The Dnieper River runs through the center of Ukraine from Belarus and Russia in the north and heads south emptying into the Black Sea. Along the way, the Dnieper River passes by several large Ukrainian cities including Chornobyl, the capital Kyiv, Dnipropetrovsk, and Kherson, an...

  12. Seiche-induced unsteady flows in the Huron-Erie Corridor: Spectral analysis of oscillations in stage and discharge in the St. Clair and Detroit Rivers

    Science.gov (United States)

    Jackson, P. Ryan; Contantinescu, G.; Garcia, M.; Hanes, D.

    2016-01-01

    Animations of highly dynamic water-surface profiles through the St. Clair and Detroit Rivers have identified transient disturbances propagating from Lakes Huron and Erie into the St. Clair and Detroit Rivers, respectively. To determine any relation to seiche and tidal oscillations on Lakes Huron and Erie, a spectral analysis was performed on stage and discharge data from the Huron-Erie Corridor. There is excellent agreement between the observed oscillations in stage and discharge in the St. Clair and Detroit Rivers and the documented frequencies of oscillations in Lakes Huron and Erie. The fundamental seiche, some higher-order seiche modes, and the semidiurnal tide from Lakes Huron and Erie are evident in the stage and discharge records at gages along the St. Clair and Detroit Rivers, respectively. Lake St. Clair appears to act as a damper in the system. If not accounted for, these oscillations may complicate monitoring, modeling, and restoration of this system.

  13. Late Holocene (~ 2 ka) East Asian Monsoon variations inferred from river discharge and climate interrelationships in the Pearl River Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Nan, Q.; Li, T.; Chen, J.; Nigam, R.

    A sediment core from the Pearl River Estuary (PRE) was analyzed for grain size and organic geochemistry parameters (TOC and δ13Corg). The results showed that high mean grain-size value and increased sand content were correlated...

  14. Tritium concentrations in flow from selected springs that discharge to the Snake River, Twin Falls-Hagerman area, Idaho

    International Nuclear Information System (INIS)

    Mann, L.J.

    1989-01-01

    Concern has been expressed that some of the approximately 30,900 curies of tritium disposed to the Snake River Plain aquifer from 1952 to 1988 at the INEL (idaho National Engineering Laboratory) have migrated to springs discharging to the Snake River in the Twin Falls-Hagerman area. To document tritium concentrations in springflow, 17 springs were sampled in November 1988 and 19 springs were sampled in March 1989. Tritium concentrations were less than the minimum detectable concentration of 0.5 pCi/mL (picocuries/mL) in November 1988 and less than the minimum detectable concentration of 0.2 pCi/mL in March 1989 the minimum detectable concentration was smaller in March 1989. The maximum contaminant level of tritium in drinking water as established by the US Environmental Protection Agency is 20 pCi/mL. US Environmental Protection Agency sample analyses indicate that the tritium concentration has decreased in the Snake River near Buhl since the 1970's. In 1974-79, tritium concentrations were less than 0.3 ± 0.2 pCi/mL in 3 of 20 samples; in 1983-88, 17 of 23 samples contaminated less than 0.3 ± 0.2 pCi/mL of tritium; the minimum detectable concentration is 0.2 pCi/mL. On the basis of decreasing tritium concentrations in the Snake River, their correlation to cessation of atmospheric weapons tests tritium concentrations in springflow less than the minimum detectable concentration, and the distribution of tritium in groundwater at the INEL, aqueous disposal of tritium at the INEL has had no measurable effect on tritium concentrations in springflow from the Snake River Plain aquifer and in the Snake River near Buhl. 15 refs., 2 figs., 3 tabs

  15. Biological effects of simulated discharge plume entrainment at Indian Point Nuclear Power Station, Hudson River estuary, USA

    International Nuclear Information System (INIS)

    Lanza, G.R.; Lauer, G.J.; Ginn, T.C.; Storm, P.C.; Zubarik, L.; New York Univ., N.Y.

    1975-01-01

    Laboratory and field simulations of the discharge plume entrainment of phytoplankton, zooplankton and fish were carried out at the Indian Point Nuclear Station, Hudson River estuary, USA. Phytoplankton assemblages studied on two dates produced different response patterns measured as photosynthetic activity. Chlorophyll-a levels did not change following simulated entrainment. Possible explanations for the differences are discussed. The two abundant copepods Acartia tonsa and Eurytemorta affinis appear to tolerate exposure to discharge plume ΔT without adverse effects. Copepods subjected to plume entrainment may suffer considerable mortality during periods of condenser chlorination. In general, the amphipod Gammarus spp. did not appear to suffer significant mortality during simulated entrainment. Juvenile striped bass, Morone saxatilis, were not affected by simulated plume transit before and during plant condenser chlorination; however, a simulated ''worst possible case'' plume ΔT produced statistically significant moralities. (author)

  16. Evaluating the Thermal Pollution Caused by Wastewaters Discharged from a Chain of Coal-Fired Power Plants along a River

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2015-05-01

    Full Text Available Reliable and safe operation of a coal-fired power plant is strongly linked to freshwater resources, and environmental problems related to water sources and wastewater discharge are challenges for power station operation. In this study, an evaluation on the basis of a wastewater thermal pollution vector is reported for the environmental impact of residual water generated and discharged in the Jiu River during the operation of thermoelectric units of the Rovinari, Turceni and Craiova coal-fired power plants in Romania. Wastewater thermal pollutant vector Plane Projection is applied for assessing the water temperature evolution in the water flow lane created downstream of each power plant wastewater outlet channel. Simulation on the basis of an Electricity of France model, and testing validation of the results for thermoelectric units of 330 MW of these power plants are presented.

  17. Monitoring and assessment of radionuclide discharges from Temelín Nuclear Power Plant into the Vltava River (Czech Republic).

    Science.gov (United States)

    Hanslík, Eduard; Ivanovová, Diana; Juranová, Eva; Simonek, Pavel; Jedináková-Krízová, Vĕra

    2009-02-01

    The paper summarizes impacts of the Temelín Nuclear Power Plant (NPP) on the Vltava and Labe River basins. The study is based on the results of long-term monitoring carried out before the plant operation (1989-2000), and subsequently during the plant operation (2001-2005). In the first period, the main objective was to determine background radionuclide levels remaining in the environment after global fallout and due to the Chernobyl accident. A decrease in the concentrations of (90)Sr, (134)Cs and (137)Cs, which was observed before the plant operation, continued also during the subsequent period. Apart from tritium, the results of the observation did not indicate any impacts of the plant on the concentrations of activation and fission products in the hydrosphere. The annual average tritium concentrations in the Vltava River were in agreement with predicted values. The maximum annual average tritium concentration (13.5 Bq L(-1)) was observed in 2004 downstream from the wastewater discharge in the Vltava River at Solenice. Estimated radiation doses for adults due to intakes of river water as drinking water contaminated by tritium are below 0.1 microSv y(-1).

  18. Low energy neutrino astrophysics with the large liquid-scintillator detector LENA

    International Nuclear Information System (INIS)

    Wurm, M.; Feilitzsch, F. von; Goeger-Neff, M.; Undagoitia, T. Marrodan; Oberauer, L.; Potzel, W.; Winter, J.

    2007-01-01

    The large-volume liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) will cover a broad field of physics. Apart from the detection of terrestrial and artificial neutrinos, and the search for proton decay, important contributions can be made to the astrophysics of stars by high-precision spectroscopy of low-energetic solar neutrinos and by the observation of neutrinos emitted by a galactic supernova. Moreover, the detection of the diffuse supernova neutrino background in LENA will offer the opportunity of studying both supernova core-collapse models and the supernova rate on cosmological timescales (z e events in an almost background-free energy window from ∼10 to 25 MeV. The search for such rare low-energetic events takes advantage of the high energy resolution and excellent background rejection possible in the LENA detector

  19. Simulations and developments of the Low Energy Neutron detector Array LENA

    International Nuclear Information System (INIS)

    Langer, C.; Algora, A.; Couture, A.; Csatlós, M.; Gulyás, J.; Heil, M.; Krasznahorkay, A.; O'Donnell, J.M.; Plag, R.; Reifarth, R.; Stuhl, L.; Sonnabend, K.; Tornyi, T.; Tovesson, F.

    2011-01-01

    Prototypes of the Low Energy Neutron detector Array (LENA) have been tested and compared with detailed GEANT simulations. LENA will consist of plastic scintillation bars with the dimensions 1000×45×10 mm 3 . The tests have been performed with γ-ray sources and neutrons originating from the neutron-induced fission of 235 U. The simulations agreed very well with the measured response and were therefore used to simulate the response to mono-energetic neutrons with different detection thresholds. LENA will be used to detect low-energy neutrons from (p,n)-type reactions with low momentum transfer foreseen at the R 3 B and EXL setups at FAIR, Darmstadt.

  20. Operating experience and maintenance at the TRIGA Mark II LENA reactor

    International Nuclear Information System (INIS)

    Cingoli, F.; Altieri, S.; Lana, F.; Rosti, G.; Alloni, L.; Meloni, S.

    1988-01-01

    The last two years at the Trigs Mark II LENA plant were characterized by the running of the n-n-bar oscillation NADIR experiment. Consequently reactor operation was positively affected and the running hours rose again above 1000 hours per year. The LENA team was also deeply involved in the procedures for the renewal of the reactor operation license. The new requirements set by the Nuclear Energy Licensing Authority (ENEA for Italy) most of which concerning radiation protection and environmental impact, have been already fulfilled. In some cases the installation of new apparatus is underway

  1. Numerical Coupling of River Discharge to Shelf/Slope Sedimentation Models

    National Research Council Canada - National Science Library

    Syvitski, James

    1997-01-01

    Scientific objectives of this project are: (1) Develop a nested set of models to study the interactions of sedimentation processes on the shelf, including the effects of river supply, plume transport and initial deposition of sediments; (2...

  2. Hydraulic Evaluation of Discharge Over Submerged Rock Wing Dams on the Upper Mississippi River

    National Research Council Canada - National Science Library

    Hendrickson, Jon

    1999-01-01

    .... This analysis was part of a study, done through the Corps of Engineers' Land Management System, to determine the impacts of zebra mussels on water quality and ecological conditions in the Upper Mississippi River (UMR). Wing dams...

  3. A simple groundwater scheme in the TRIP river routing model: global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges

    Directory of Open Access Journals (Sweden)

    J.-P. Vergnes

    2012-10-01

    Full Text Available Groundwater is a non-negligible component of the global hydrological cycle, and its interaction with overlying unsaturated zones can influence water and energy fluxes between the land surface and the atmosphere. Despite its importance, groundwater is not yet represented in most climate models. In this paper, the simple groundwater scheme implemented in the Total Runoff Integrating Pathways (TRIP river routing model is applied in off-line mode at global scale using a 0.5° model resolution. The simulated river discharges are evaluated against a large dataset of about 3500 gauging stations compiled from the Global Data Runoff Center (GRDC and other sources, while the terrestrial water storage (TWS variations derived from the Gravity Recovery and Climate Experiment (GRACE satellite mission help to evaluate the simulated TWS. The forcing fields (surface runoff and deep drainage come from an independent simulation of the Interactions between Soil-Biosphere-Atmosphere (ISBA land surface model covering the period from 1950 to 2008. Results show that groundwater improves the efficiency scores for about 70% of the gauging stations and deteriorates them for 15%. The simulated TWS are also in better agreement with the GRACE estimates. These results are mainly explained by the lag introduced by the low-frequency variations of groundwater, which tend to shift and smooth the simulated river discharges and TWS. A sensitivity study on the global precipitation forcing used in ISBA to produce the forcing fields is also proposed. It shows that the groundwater scheme is not influenced by the uncertainties in precipitation data.

  4. Groundwater discharge to the Mississippi River and groundwater balances for the Interstate 94 Corridor surficial aquifer, Clearwater to Elk River, Minnesota, 2012–14

    Science.gov (United States)

    Smith, Erik A.; Lorenz, David L.; Kessler, Erich W.; Berg, Andrew M.; Sanocki, Chris A.

    2017-12-13

    The Interstate 94 Corridor has been identified as 1 of 16 Minnesota groundwater areas of concern because of its limited available groundwater resources. The U.S. Geological Survey, in cooperation with the Minnesota Department of Natural Resources, completed six seasonal and annual groundwater balances for parts of the Interstate 94 Corridor surficial aquifer to better understand its long-term (next several decades) sustainability. A high-precision Mississippi River groundwater discharge measurement of 5.23 cubic feet per second per mile was completed at low-flow conditions to better inform these groundwater balances. The recharge calculation methods RISE program and Soil-Water-Balance model were used to inform the groundwater balances. For the RISE-derived recharge estimates, the range was from 3.30 to 11.91 inches per year; for the SWB-derived recharge estimates, the range was from 5.23 to 17.06 inches per year.Calculated groundwater discharges ranged from 1.45 to 5.06 cubic feet per second per mile, a ratio of 27.7 to 96.4 percent of the measured groundwater discharge. Ratios of groundwater pumping to total recharge ranged from 8.6 to 97.2 percent, with the longer-term groundwater balances ranging from 12.9 to 19 percent. Overall, this study focused on the surficial aquifer system and its interactions with the Mississippi River. During the study period (October 1, 2012, through November 30, 2014), six synoptic measurements, along with continuous groundwater hydrographs, rainfall records, and a compilation of the pertinent irrigation data, establishes the framework for future groundwater modeling efforts.

  5. Natural 222Rn and 220Rn indicate the impact of the Water–Sediment Regulation Scheme (WSRS) on submarine groundwater discharge in the Yellow River estuary, China

    International Nuclear Information System (INIS)

    Xu, Bochao; Xia, Dong; Burnett, William C.; Dimova, Natasha T.; Wang, Houjie; Zhang, Longjun; Gao, Maosheng; Jiang, Xueyan; Yu, Zhigang

    2014-01-01

    Highlights: • 220 Rn and 222 Rn were combined to locate intensive SGD sites. • Influence of WSRS to SGD was found for the first time. • SGD was a dominant nutrient pathway in the Yellow River estuary. - Abstract: Submarine groundwater discharge (SGD) in estuaries brings important influences to coastal ecosystems. In this study, we observed significant SGD in the Yellow River estuary, including a fresh component, during the Water–Sediment Regulation Scheme (WSRS) period. We used the 222 Rn and 220 Rn isotope pair to locate sites of significant SGD within the study area. Three apparent SGD locations were found during a non-WSRS period, one of which became much more pronounced, according to the remarkably elevated radon levels, during the WSRS. Increased river discharge (from 245 m 3 s −1 to 3560 m 3 s −1 ) and the elevated river water level (from 11 m to 13 m) during the WSRS led to a higher hydraulic head, enhancing groundwater discharge in the estuary. Our results suggest that high river discharge (>3000 m 3 s −1 ) might be necessary for elevated fresh submarine groundwater discharging (FSGD). Vertical profiles of salinity, DO and turbidity anomalies along the benthic boundary layer also indicated significant FSGD in the estuary during the WSRS. Nutrient concentrations had positive correlations with 222 Rn during a 24-h observation, which indicates that SGD is a dominant nutrient pathway in this area

  6. Fates of dissolved and particulate materials from the Mississippi river immediately after discharge into the northern Gulf of Mexico, USA, during a period of low wind stress

    Science.gov (United States)

    Dagg, M. J.; Bianchi, T.; McKee, B.; Powell, R.

    2008-07-01

    In June 2003, we conducted a two-part field exercise to examine biogeochemical characteristics of water in the lower Mississippi river during the 4 days prior to discharge and in the Mississippi river plume over 2 days after discharge. Here we describe the fates of materials immediately after their discharge through Southwest Pass of the Mississippi delta into the northern Gulf of Mexico. Changes in surface water properties immediately after discharge were much larger and more rapid than changes prior to discharge. Total suspended matter (TSM) declined, probably due to sinking, dissolved macronutrients were rapidly diminished by mixing and biological uptake, and phytoplankton populations increased dramatically, and then declined. This decline appeared to begin at salinities of approximately 10 and was nearly complete by 15. A large increase in dissolved organic carbon (DOC) occurred over approximately the same salinity range. Weak winds (releasing large amounts of DOC. Macronutrients from the river were utilized by the river phytoplankton community in the extensive freshwater lens. This contrasted with the more typical situation in which river nutrients stimulate a marine phytoplankton bloom at salinities in the mid-20s. We concluded that the direct effects of dissolved and particulate bio-reactive materials discharged by the Mississippi river were spatially restricted at this time to low-salinity water, at least as surface phenomena. After being transported through the lower river essentially unaltered, these materials were biogeochemically processed within days and tens of km. More generally, the mixing rate of plume water with receiving oceanic water has profound effects on the food web structure and biogeochemical cycling in the plume.

  7. Increasing Mississippi river discharge throughout the twenty-first century influenced by changes in climate, land use and atmospheric CO2

    Science.gov (United States)

    Tao, B.; Tian, H.; Ren, W.; Yang, J.; Yang, Q.; He, R.; Cai, W. J.; Lohrenz, S. E.

    2014-12-01

    Previous studies have demonstrated that changes in temperature and precipitation (hereafter climate change) would influence river discharge, but the relative importance of climate change, land use, and elevated atmospheric CO2 have not yet been fully investigated. Here we examined how river discharge in the Mississippi River basin in the 21st century might be influenced by these factors using the Dynamic Land Ecosystem Model driven by atmospheric CO2, downscaled GCMs climate and land use scenarios. Our results suggest that river discharge would be substantially enhanced (10.7-59.8%) by the 2090s compared to the recent decade (2000s), though large discrepancies exist among different climate, atmospheric CO2, and land use change scenarios. Our factorial analyses further indicate that the combined effects of land use change and human-induced atmospheric CO2 elevation on river discharge would outweigh climate change effect under the high emission scenario (A2) of Intergovernmental Panel for Climate Change. Our study offers the first attempt to project potential changes in river discharge in response to multiple future environmental changes. It demonstrates the importance of land use change and atmospheric CO2 concentrations in projecting future changes in hydrologic processes. The projected increase river discharge implies that riverine fluxes of carbon, nutrients and pesticide from the MRB to the coastal regions would increase in the future, and thus may influence the states of ocean acidification and hypoxia and deteriorate ocean water quality. Further efforts will also be needed to account for additional environmental factors (such as nitrogen deposition, tropospheric ozone pollution, dam construction, etc.) in projecting changes in the hydrological cycle.

  8. Effects of heated discharge on fish and invertebrates of White River at Petersburg, Indiana. Report of investigation No. 6

    International Nuclear Information System (INIS)

    Whitaker, J.O. Jr.; Schlueter, R.A.; Proffitt, M.A.

    1973-12-01

    This report is based upon data gathered from June, 1971 through October, 1972, as part of continuing studies initiated to determine the effects of heated water on aquatic resources of the White River at Petersburg, Indiana. The heated effluent is discharged into the river by an electric generating station. Emphasis was placed on the distribution and abundance of smaller fish and invertebrates. A primary concern was to determine if the heated water affected the food habits, external parasites, or reproduction of the fishes. Sampling was continued through the winter to determine effects of heated discharge during the colder parts of the year. Results showed that differences can be found between heated and unheated water. However, the differences are rather minor and it is not always clear that they relate to temperature. Some may relate to other habitat factors. Other than in the effluent canal itself, where populations of organisms are much depressed, no evidence of major harmful effects caused by heated water were found

  9. Development of Joint Climate and Discharge Projections for the International Rhine River Basin - the CHR RheinBlick2050 Project

    Science.gov (United States)

    Görgen, K.; Pfister, L.

    2008-12-01

    The anticipated climate change will lead to modified hydro-meteorological regimes that influence discharge behaviour and hydraulics of rivers. This has variable impacts on managed (anthropogenic) and unmanaged (natural) systems, depending on their sensitivity and vulnerability (ecology, economy, infrastructure, transport, energy production, water management, etc.). Decision makers in these contexts need adequate adaptation strategies to minimize adverse effects of climate change, i.e. an improved knowledge on the potential impacts including uncertainties means an extension of the informed options open to users. The goal of the highly applied study presented here is the development of joint, consistent climate and discharge projections for the international Rhine River catchments (Switzerland, France, Germany, Netherlands) in order to assess future changes of hydro-meteorological regimes in the meso- and macroscale Rhine River catchments and to derive and improve the understanding of such impacts on hydrologic and hydraulic processes. The RheinBlick2050 project is an international effort initiated by the International Commission for the Hydrology of the Rhine Basin (CHR) in close cooperation with the International Commission for the Protection of the Rhine. The core experiment design foresees a data-synthesis, multi-model approach where (transient) (bias- corrected) regional climate change projections are used as forcing data for existing calibrated hydrological (and hydraulic) models at a daily temporal resolution over mesoscale catchments of the Rhine River. Mainly for validation purposes, hydro-meteorological observations from national weather services are compiled into a new consistent 5 km x 5 km reference dataset from 1961 to 2005. RCM data are mainly used from the ENSEMBLES project and other existing dynamical downscaling model runs to derive probabilistic ensembles and thereby also access uncertainties on a regional scale. A benchmarking is helping to

  10. Low energy neutrino astronomy with the large liquid-scintillation detector LENA

    International Nuclear Information System (INIS)

    Undagoitia, T Marrodan; Feilitzsch, F von; Goeger-Neff, M; Hochmuth, K A; Oberauer, L; Potzel, W; Wurm, M

    2006-01-01

    The detection of low energy neutrinos in a large liquid scintillation detector may provide further important information on astrophysical processes as supernova physics, solar physics and elementary particle physics as well as geophysics. In this contribution, a new project for Low Energy Neutrino Astronomy (LENA) consisting of a 50 kt scintillation detector is presented

  11. Examining the spatial and temporal variation of groundwater inflows to a valley-to-floodplain river using 222Rn, geochemistry and river discharge: the Ovens River, southeast Australia

    Science.gov (United States)

    Yu, M. C. L.; Cartwright, I.; Braden, J. L.; de Bree, S. T.

    2013-12-01

    Radon (222Rn) and major ion geochemistry were used to define and quantify the catchment-scale groundwater-surface water interactions along the Ovens River in the southeast Murray-Darling Basin, Victoria, Australia, between September 2009 and October 2011. The Ovens River is characterized by the transition from a single channel within a mountain valley in the upper catchment to a multi-channel meandering river on flat alluvial plains in the lower catchment. Overall, the Ovens River is dominated by gaining reaches, receiving groundwater from both alluvial and basement aquifers. The distribution of gaining and losing reaches is governed by catchment morphology and lithology. In the upper catchment, rapid groundwater recharge through the permeable aquifers increases the water table. The rising water table, referred to as hydraulic loading, increases the hydraulic head gradient toward the river and hence causes high baseflow to the river during wet (high flow) periods. In the lower catchment, lower rainfall and finer-gained sediments reduce the magnitude and variability of hydraulic gradient between the aquifer and the river, producing lower but more constant groundwater inflows. The water table in the lower reaches has a shallow gradient, and small changes in river height or groundwater level can result in fluctuating gaining and losing behaviour. The middle catchment represents a transition in river-aquifer interactions from the upper to the lower catchment. High baseflow in some parts of the middle and lower catchments is caused by groundwater flowing over basement highs. Mass balance calculations based on 222Rn activities indicate that groundwater inflows are 2 to 17% of total flow with higher inflows occurring during high flow periods. In comparison to 222Rn activities, estimates of groundwater inflows from Cl concentrations are higher by up to 2000% in the upper and middle catchment but lower by 50 to 100% in the lower catchment. The high baseflow estimates using

  12. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    NARCIS (Netherlands)

    Lauri, H.; de Moel, H.; Ward, P.J.; Räsänen, T.A.; Keskinen, M.; Kummu, M.S.

    2012-01-01

    The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected

  13. Water balance versus land surface model in the simulation of Rhine river discharges

    NARCIS (Netherlands)

    Hurkmans, R.T.W.L.; Moel, de H.; Aerts, J.C.J.H.; Troch, P.A.

    2008-01-01

    Accurate streamflow simulations in large river basins are crucial to predict timing and magnitude of floods and droughts and to assess the hydrological impacts of climate change. Water balance models have been used frequently for these purposes. Compared to water balance models, however, land

  14. influence of effluent discharge and runoffs into ikpoba river on its

    African Journals Online (AJOL)

    INAYA

    2013-07-02

    Jul 2, 2013 ... *PRODUCTION ENGINEERING DEPARTMENT, UNIVERSITY OF BENIN ... Chemical analyses of samples of the river water collected at predetermined sampling ... natural rills by flood and eventually into the ... and numerical methods to analyze the sample .... the correlation matrix as applied in this study.

  15. Effects of River Discharge and Land Use and Land Cover (LULC) on Water Quality Dynamics in Migina Catchment, Rwanda

    Science.gov (United States)

    Uwimana, Abias; van Dam, Anne; Gettel, Gretchen; Bigirimana, Bonfils; Irvine, Kenneth

    2017-09-01

    Agricultural intensification may accelerate the loss of wetlands, increasing the concentrations of nutrients and sediments in downstream water bodies. The objective of this study was to assess the effects of land use and land cover and river discharge on water quality in the Migina catchment, southern Rwanda. Rainfall, discharge and water quality (total nitrogen, total phosphorus, total suspended solids, dissolved oxygen, conductivity, pH, and temperature) were measured in different periods from May 2009 to June 2013. In 2011, measurements were done at the outlets of 3 sub-catchments (Munyazi, Mukura and Akagera). Between May 2012 and May 2013 the measurements were done in 16 reaches of Munyazi dominated by rice, vegetables, grass/forest or ponds/reservoirs. Water quality was also measured during two rainfall events. Results showed seasonal trends in water quality associated with high water flows and farming activities. Across all sites, the total suspended solids related positively to discharge, increasing 2-8 times during high flow periods. Conductivity, temperature, dissolved oxygen, and pH decreased with increasing discharge, while total nitrogen and total phosphorus did not show a clear pattern. The total suspended solids concentrations were consistently higher downstream of reaches dominated by rice and vegetable farming. For total nitrogen and total phosphorus results were mixed, but suggesting higher concentration of total nitrogen and total phosphorus during the dry and early rainy (and farming) season, and then wash out during the rainy season, with subsequent dilution at the end of the rains. Rice and vegetable farming generate the transport of sediment as opposed to ponds/reservoir and grass/forest.

  16. River discharge estimation from synthetic SWOT-type observations using variational data assimilation and the full Saint-Venant hydraulic model

    Science.gov (United States)

    Oubanas, Hind; Gejadze, Igor; Malaterre, Pierre-Olivier; Mercier, Franck

    2018-04-01

    The upcoming Surface Water and Ocean Topography satellite mission, to be launched in 2021, will measure river water surface elevation, slope and width, with an unprecedented level of accuracy for a remote sensing tool. This work investigates the river discharge estimation from synthetic SWOT observations, in the presence of strong uncertainties in the model inputs, i.e. the river bathymetry and bed roughness. The estimation problem is solved by a novel variant of the standard variational data assimilation, the '4D-Var' method, involving the full Saint-Venant 1.5D-network hydraulic model SIC2. The assimilation scheme simultaneously estimates the discharge, bed elevation and bed roughness coefficient and is designed to assimilate both satellite and in situ measurements. The method is tested on a 50 km-long reach of the Garonne River during a five-month period of the year 2010, characterized by multiple flooding events. First, the impact of the sampling frequency on discharge estimation is investigated. Secondly, discharge as well as the spatially distributed bed elevation and bed roughness coefficient are determined simultaneously. Results demonstrate feasibility and efficiency of the chosen combination of the estimation method and of the hydraulic model. Assimilation of the SWOT data results into an accurate estimation of the discharge at observation times, and a local improvement in the bed level and bed roughness coefficient. However, the latter estimates are not generally usable for different independent experiments.

  17. Monitoring Water Levels and Discharges Using Radar Altimetry in an Ungauged River Basin: The Case of the Ogooué

    Directory of Open Access Journals (Sweden)

    Sakaros Bogning

    2018-02-01

    Full Text Available Radar altimetry is now commonly used for the monitoring of water levels in large river basins. In this study, an altimetry-based network of virtual stations was defined in the quasi ungauged Ogooué river basin, located in Gabon, Central Africa, using data from seven altimetry missions (Jason-2 and 3, ERS-2, ENVISAT, Cryosat-2, SARAL, Sentinel-3A from 1995 to 2017. The performance of the five latter altimetry missions to retrieve water stages and discharges was assessed through comparisons against gauge station records. All missions exhibited a good agreement with gauge records, but the most recent missions showed an increase of data availability (only 6 virtual stations (VS with ERS-2 compared to 16 VS for ENVISAT and SARAL and accuracy (RMSE lower than 1.05, 0.48 and 0.33 and R² higher than 0.55, 0.83 and 0.91 for ERS-2, ENVISAT and SARAL respectively. The concept of VS is extended to the case of drifting orbits using the data from Cryosat-2 in several close locations. Good agreement was also found with the gauge station in Lambaréné (RMSE = 0.25 m and R2 = 0.96. Very good results were obtained using only one year and a half of Sentinel-3 data (RMSE < 0.41 m and R2 > 0.89. The combination of data from all the radar altimetry missions near Lamabréné resulted in a long-term (May 1995 to August 2017 and significantly improved water-level time series (R² = 0.96 and RMSE = 0.38 m. The increase in data sampling in the river basin leads to a better water level peak to peak characterization and hence to a more accurate annual discharge over the common observation period with only a 1.4 m3·s−1 difference (i.e., 0.03% between the altimetry-based and the in situ mean annual discharge.

  18. Forecasting the Amount of Waste-Sewage Water Discharged into the Yangtze River Basin Based on the Optimal Fractional Order Grey Model.

    Science.gov (United States)

    Li, Shuliang; Meng, Wei; Xie, Yufeng

    2017-12-23

    With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something aboutwater security of roughly one-third of China's population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM(1,1)(DWSGM(1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of "r" by using particle swarm optimization(PSO)algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM(1,1)model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM(1,1)grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system.

  19. Quantity and quality of ground-water discharge to the South Platte River, Denver to Fort Lupton, Colorado, August 1992 through July 1993

    Science.gov (United States)

    McMahon, P.B.; Lull, K.J.; Dennehy, K.F.; Collins, J.A.

    1995-01-01

    Water-quality studies conducted by the Metro Wastewater Reclamation District have indicated that during low flow in segments of the South Platte River between Denver and Fort Lupton, concentrations of dissolved oxygen are less than minimum concen- trations set by the State of Colorado. Low dissolved-oxygen concentrations are observed in two reaches of the river-they are about 3.3 to 6.4 miles and 17 to 25 miles downstream from the Metro Waste- water Reclamation District effluent outfalls. Concentrations of dissolved oxygen recover between these two reaches. Studies conducted by the U.S. Geological Survey have indicated that ground-water discharge to the river may contribute to these low dissolved-oxygen concentrations. As a result, an assessment was made of the quantity and quality of ground-water discharge to the South Platte River from Denver to Fort Lupton. Measurements of surface- water and ground-water discharge and collections of surface water and ground water for water-quality analyses were made from August 1992 through January 1993 and in May and July 1993. The quantity of ground-water discharge to the South Platte River was determined indirectly by mass balance of surface-water inflows and outflows and directly by instantaneous measurements of ground-water discharge across the sediment/water interface in the river channel. The quality of surface water and ground water was determined by sampling and analysis of water from the river and monitoring wells screened in the alluvial aquifer adjacent to the river and by sampling and analysis of water from piezometers screened in sediments underlying the river channel. The ground-water flow system was subdivided into a large-area and a small-area flow system. The precise boundaries of the two flow systems are not known. However, the large-area flow system is considered to incorporate all alluvial sediments in hydrologic connection with the South Platte River. The small- area flow system is considered to incorporate

  20. People of the ancient rainforest: late Pleistocene foragers at the Batadomba-lena rockshelter, Sri Lanka.

    Science.gov (United States)

    Perera, Nimal; Kourampas, Nikos; Simpson, Ian A; Deraniyagala, Siran U; Bulbeck, David; Kamminga, Johan; Perera, Jude; Fuller, Dorian Q; Szabó, Katherine; Oliveira, Nuno V

    2011-09-01

    Batadomba-lena, a rockshelter in the rainforest of southwestern Sri Lanka, has yielded some of the earliest evidence of Homo sapiens in South Asia. H. sapiens foragers were present at Batadomba-lena from ca. 36,000 cal BP to the terminal Pleistocene and Holocene. Human occupation was sporadic before the global Last Glacial Maximum (LGM). Batadomba-lena's Late Pleistocene inhabitants foraged for a broad spectrum of plant and mainly arboreal animal resources (monkeys, squirrels and abundant rainforest snails), derived from a landscape that retained equatorial rainforest cover through periods of pronounced regional aridity during the LGM. Juxtaposed hearths, palaeofloors with habitation debris, postholes, excavated pits, and animal and plant remains, including abundant Canarium nutshells, reflect intensive habitation of the rockshelter in times of monsoon intensification and biome reorganisation after ca. 16,000 cal BP. This period corresponds with further broadening of the economic spectrum, evidenced though increased contribution of squirrels, freshwater snails and Canarium nuts in the diet of the rockshelter occupants. Microliths are more abundant and morphologically diverse in the earliest, pre-LGM layer and decline markedly during intensified rockshelter use on the wane of the LGM. We propose that changing toolkits and subsistence base reflect changing foraging practices, from shorter-lived visits of highly mobile foraging bands in the period before the LGM, to intensified use of Batadomba-lena and intense foraging for diverse resources around the site during and, especially, following the LGM. Traces of ochre, marine shell beads and other objects from an 80 km-distant shore, and, possibly burials reflect symbolic practices from the outset of human presence at the rockshelter. Evidence for differentiated use of space (individual hearths, possible habitation structures) is present in LGM and terminal Pleistocene layers. The record of Batadomba-lena demonstrates

  1. SEASONAL DISCHARGE REGIME OF THE RIVERS IN THE TRANSYLVANIAN SUBCARPATHIANS AND THE ADJACENT MOUNTAINOUS SPACE BETWEEN TÂRNAVA MARE AND NIRAJ

    Directory of Open Access Journals (Sweden)

    VICTOR SOROCOVSCHI

    2015-05-01

    Full Text Available Seasonal discharge regime of the rivers in the Transylvanian Subcarpathians and the adjacent mountainous space between Târnava Mare and Niraj. The studied region is situated in the North-East of the Transylvanian Depression and includes two distinct units: the Transylvanian Subcarpathians and the Moldavo-Transylvanian Carpathians, comprised between the valleys of Târnava Mare and Niraj. The study is based upon the processing and interpretation of data coming from 13 hydrometric stations. In order to emphasize the particuliarities of the seasonal discharge regime, we took into account three periods (1950-1967, 1950-2009 and 1970-2009. The characteristics of the geographic coating from the studied area, especially the climatic and geomorphic ones, are clearly reflected in the discharge regime of river waters. Thus, on all rivers, spring discharge is predominant, and winter and autumn are the seasons with the lowest weight of the multiannual average volume. We have underlined the particuliarities of the three subtypes of seasonal regime and we have defined the limits of the corresponding display areas. The variation of the seasonal discharge on a multiannual level was outlined with the help of variation coefficients. Likewise, we also determined the discharge tendencies for the three studied intervals. The analysis carried out has revealed the fact that the rhythmic structure of the hydric system reflects the local characteristics of the supplying sources, of geological, as well as morphological and morphometrical conditions of the relief.

  2. Discharge controls on the sediment and dissolved nutrient transport flux of the lowermost Mississippi River: Implications for export to the ocean and for delta restoration

    Science.gov (United States)

    Allison, Mead A.; Pratt, Thad C.

    2017-12-01

    Lagrangian longitudinal surveys and fixed station data are utilized from the lowermost Mississippi River reach in Louisiana at high and low discharge in 2012-2013 to examine the changing stream power, sediment transport capacity, and nitrate conveyance in this backwater reach of the river. Nitrate appears to remain conservative through the backwater reach at higher discharges (>15,000 m3/s), thus, nitrate levels supplied from the catchment are those exported to the Gulf of Mexico, fueling coastal hypoxia. At lower discharges, interaction with fine sediments and organic matter stored on the bed due to estuarine and tidal processes, likely elevates nitrate levels prior to entering the Gulf: a further 1-2 week long spike in nitrate concentrations is associated with the remobilization of this sediments during the rising discharge phase of the Mississippi. Backwater characteristics are clearly observed in the study reach starting at river kilometer 703 (Vicksburg) in both longitudinal study periods. Stream power at the lowermost station is only 16% of that at Vicksburg in the high discharge survey, and 0.6% at low flow. The high-to-low discharge study differential in unit stream power at a station increases between Vicksburg and the lowermost station from a factor of 3 to 47-50 times. At high discharge, ∼30% of this energy loss can be ascribed to the removal of water to the Atchafalaya at Old River Control. Suspended sediment flux decreases downstream in the studied reach in both studies: the lowermost station has 75% of the flux at Vicksburg in the high discharge study, and 0.9% in the low discharge study. The high discharge values, given that this study was conducted during the highest rising hydrograph of the water year, are augmented by sediment resuspended from the bed that was deposited in the previous low discharge phase. Examination of this first detailed field observation studies of the backwater phenomenon in a major river, shows that observed suspended

  3. Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools: implications for controlling of urban domestic sewage discharge.

    Science.gov (United States)

    Zhao, Jian-Liang; Zhang, Qian-Qian; Chen, Feng; Wang, Li; Ying, Guang-Guo; Liu, You-Sheng; Yang, Bin; Zhou, Li-Jun; Liu, Shan; Su, Hao-Chang; Zhang, Rui-Quan

    2013-01-01

    Triclosan (TCS) and triclocarban (TCC) are two commonly used personal care products. They may enter into aquatic environments after consumption and pose potential risks to aquatic organisms. We investigated the occurrence and fate of TCS and TCC in five large rivers (the Liao River, Hai River, Yellow River, Zhujiang River and Dongjiang River) in China, and compared the monitoring data with the predicted results from Level III fugacity modeling. TCS and TCC were detected in the five large rivers with the detection frequencies of 100% or close to 100% in surface water and sediments of almost every river. TCS and TCC were found at concentrations of up to 478 ng/L and 338 ng/L in surface water, and up to 1329 ng/g and 2723 ng/g in sediments. Cluster analysis indicated that the sites with higher concentrations were usually located in or near urban area. Meanwhile, principal component analysis also suggested that the mass inventories of TCS and TCC in water and sediment were significantly influenced by the factors such as the total or untreated urban domestic sewage discharge at river basin scale. The concentrations and mass inventories from the fugacity modeling were found at the same order of magnitude with the measured values, suggesting that the fugacity modeling can provide a useful tool for evaluating the fate of TCS and TCC in riverine environments. Both monitoring and modeling results indicated that the majority of mass inventories of TCS and TCC were stored into sediment, which could be a potential pollution source for river water. The wide presence of TCS and TCC in these large rivers of China implies that better controlling of urban domestic sewage discharge is needed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. High CO2 emissions from the tropical Godavari estuary (India) associated with monsoon river discharges

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Kumar, N.A.; Prasad, V.R.; Venkataramana, V.; Appalanaidu, S.; Sridevi, B.; Kumar, B.S.K.; Bharati, M.D.; Subbaiah, C.V.; Acharyya, T.; Rao, G.D.; Viswanadham, R.; Gawade, L.; Manjary, D.T.; Kumar, P.P.; Rajeev, K.; Reddy, N.P.C.; Sarma, V.V.; Kumar, M.D.; Sadhuram, Y.; Murty, T.V.R.

    ). Air-water flux of CO 2 was estimated following Wanninkhof (1992) using measured wind speed. 3. Results and discussion The dam controlled freshwater discharge into the Godavari estuary was maximal in August (Fig. 2a). There was virtually... bacterioplankton. Appl. Environ. Microbiol.52,1298-1303. Lewis, E., and D.W.R. Wallace (1998). Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon dioxide information analysis center, Oak Ridge National Laboratory, U.S. Department of Energy...

  5. Examining the Utility of Coral Ba/Ca as a Paleo-Proxy for Interannual River Discharge Variability Along the Pacific Coast of Panamá

    Science.gov (United States)

    Brenner, L. D.; Linsley, B. K.; Dunbar, R. B.

    2016-02-01

    Climate along the Pacific coast of Panamá is largely dictated by seasonal N/S shifts in the Intertropical Convergence zone (ITCZ) and the consequent oscillations in precipitation. During the Panamanian wet season (May-Nov.) river discharge (Q) reaches its maximum and serves as a potential source of trace elements, such as Ba, to reefs. Near shore corals can record the waterborne trace metal history in their aragonite skeletons, which can then be exploited as a paleo-proxy for river discharge. We present two high-resolution Ba/Ca records from nearby Porites corals in the Gulf of Chiriquí, Panamá in an effort to better understand the long-term discharge and precipitation history of the region. Both corals record similar annual average Ba/Ca values throughout the time series' (R=0.55) suggesting that they are faithfully recording water column Ba levels at a large scale. A monthly composite average of both coral Ba/Ca records is positively correlated to an average of all available river discharge data (n= 5) (R=0.42). While instrumental data are relatively sparse and discontinuous, there is a significant relationship between the two variables producing a Ba/Ca-discharge relationship where Q (m3/s)= Ba/Ca(μmol/mol)×49.97(μmol/mol)(m3/s)-1-190.85. The Ba/Ca peaks correspond to the annual minima in our paired near-monthly resolved coral δ18O measurements, further supporting that maximum Q in the Gulf is concurrent with the annual salinity minima and precipitation maximum. Coral Ba/Ca in the Gulf of Chiriquí indicates that annual average river Q into the Gulf has varied from 50 to 133 m3/s over from 1966 to 1983. As inferred from our Ba/Ca data, interannual variability of river Q accounts for 25% of total variance (after removing the seasonal cycle) and a long-term secular trend of increasing river Q accounts for 30%. Our Porites coral Ba/Ca records from the Pacific side of Panamá provide an opportunity to supplement the limited instrumental river discharge data

  6. Ecotoxicological water assessment of an estuarine river from the Brazilian Northeast, potentially affected by industrial wastewater discharge.

    Science.gov (United States)

    de Melo Gurgel, Piatã; Navoni, Julio Alejandro; de Morais Ferreira, Douglisnilson; do Amaral, Viviane Souza

    2016-12-01

    Water pollution generated by industrial effluents discharge is a threat to the maintenance of aquatic ecosystems and human development. The Jundiai River estuarine, located in Northeast Brazil, receives an industrial pretreated effluent load from the city of Macaíba/RN/Brazil. The present study aimed to assess the water quality of this water reservoir through i) physicochemical characterization, ii) quantification of metal concentration and iii) by an ecotoxicological assessment carried out using Mysidopsis juniae and Pomacea lineata. The study was performed throughout the period comprising May to September 2014. Physicochemical variables such as chloride, total solids and electrical conductivity presented values in the waste discharge point, significantly different with those located out of the waste releasing point. Apart from that, metal concentration showed variable behavior throughout the monitored period. Levels of Al, Fe, Cu, Cd, Cr, Ni, Pb and Ag were over the considered guidelines. Both natural and anthropogenic sources seem to be involved in the resulting environmental scenario. A reduction in the fecundity rate (using Mysidopsis juniae) along with an increase in mortality rate (in both species) was observed ratifying the presence of toxic substances in this water reservoir. Moreover, a correlation analysis stated an association of the aforementioned toxicological effects with the delivery of industrial waste products. The ecotoxicological assessment performed highlighted the presence of toxic substance/s in water from the Jundiai River. Especially as a consequence of industrial activity, a fact that might threaten the bioma and, therefore, the human health of the population settled in the studied region. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Impacts and Policy Implications of Metals Effluent Discharge into Rivers within Industrial Zones: A Sub-Saharan Perspective from Ethiopia

    Science.gov (United States)

    Zinabu, E.; Kelderman, P.; van der Kwast, J.; Irvine, K.

    2018-04-01

    Kombolcha, a city in Ethiopia, exemplifies the challenges and problems of the sub-Saharan countries where industrialization is growing fast but monitoring resources are poor and information on pollution unknown. This study monitored metals Cr, Cu, Zn, and Pb concentrations in five factories' effluents, and in the effluent mixing zones of two rivers receiving discharges during the rainy seasons of 2013 and 2014. The results indicate that median concentrations of Cr in the tannery effluents and Zn in the steel processing effluents were as high as 26,600 and 155,750 µg/L, respectively, much exceeding both the USEPA and Ethiopian emission guidelines. Cu concentrations were low in all effluents. Pb concentrations were high in the tannery effluent, but did not exceed emission guidelines. As expected, no metal emission guidelines were exceeded for the brewery, textile and meat processing effluents. Median Cr and Zn concentrations in the Leyole river in the effluent mixing zones downstream of the tannery and steel processing plant increased by factors of 52 (2660 compared with 51 µg Cr/L) and 5 (520 compared with 110 µg Zn/L), respectively, compared with stations further upstream. This poses substantial ecological risks downstream. Comparison with emission guidelines indicates poor environmental management by industries and regulating institutions. Despite appropriate legislation, no clear measures have yet been taken to control industrial discharges, with apparent mismatch between environmental enforcement and investment policies. Effluent management, treatment technologies and operational capacity of environmental institutions were identified as key improvement areas to adopt progressive sustainable development.

  8. Study on quality of effluent discharge by the Tiruppur textile dyeing units and its impact on river Noyyal, Tamil Nadu (India).

    Science.gov (United States)

    Rajkumar, A Samuel; Nagan, S

    2010-10-01

    In Tiruppur, 729 textile dyeing units are under operation and these units generate 96.1 MLD of wastewater. The untreated effluent was discharged into the Noyyal River till 1997. After the issuance of directions by Tamil Nadu Pollution Control Board (TNPCB) in 1997, these units have installed 8 common effluent treatment plants (CETP) consisting of physical, chemical and biological treatment units. Some of the units have installed individual ETP (IETP). The treated effluent was finally discharged into the river. The dyeing units use sodium chloride in the dyeing process for efficient fixing of dye in the fabric efficiently. This contributes high total dissolved solids (TDS) and chlorides in the effluent. CETPs and IETPs failed to meet discharge standards of TDS and chlorides and thereby significantly affected the river water quality. TDS level in the river water was in the range of 900 - 6600 mg/L, and chloride was in the range of 230 - 2700 mg/L. Orathupalayam dam is located across Noyyal river at 32 km down stream of Tiruppur. The pollutants carried by the river were accumulated in the dam. TDS in the dam water was in the range of 4250 - 7900 mg/L and chloride was in the range of 1600 - 2700 mg/L. The dam sediments contain heavy metals of chromium, copper, zinc and lead. In 2006, the High Court has directed the dyeing units to install zero liquid discharge (ZLD) plant and to stop discharging of effluent into the river. Accordingly, the industries have installed and commissioned the ZLD plant consisting of RO plant and reject management system in 2010. The effluent after secondary treatment from the CETP is further treated in RO plant. The RO permeate is reused by the member units. The RO reject is concentrated in multiple effect evaporator (MEE)/ mechanical vacuum re-compressor (MVR). The concentrate is crystallized and centrifuged to recover salt. The salt recovered is reused. The liquid separated from the centrifuge is sent to solar evaporation pan. The salt

  9. River discharge as a major driving force on spatial and temporal variations in zooplankton biomass and community structure in the Godavari estuary India.

    Science.gov (United States)

    Venkataramana, V; Sarma, V V S S; Matta Reddy, Alavala

    2017-08-28

    Variability in horizontal zooplankton biomass distribution was investigated over 13 months in the Godavari estuary, along with physical (river discharge, temperature, salinity), chemical (nutrients, particulate organic matter), biological (phytoplankton biomass), and geological (suspended matter) properties to examine the influencing factors on their spatial and temporal variabilities. The entire estuary was filled with freshwater during peak discharge period and salinity near zero, increased to ~ 34 psu during dry period with relatively high nutrient levels during former than the latter period. Due to low flushing time ( 500 mg L -1 ) during peak discharge period, picoplankton (cyanophyceae) contributed significantly to the phytoplankton biomass (Chl-a) whereas microplankton and nanoplankton (bacillariophyceae, and chlorophyceae) during moderate and mostly microplankton during dry period. Zooplankton biomass was the lowest during peak discharge period and increased during moderate followed by dry period. The zooplankton abundance was controlled by dead organic matter during peak discharge period, while both phytoplankton biomass and dead organic matter during moderate discharge and mostly phytoplankton biomass during dry period. This study suggests that significant modification of physico-chemical properties by river discharge led to changes in phytoplankton composition and dead organic matter concentrations that alters biomass, abundance, and composition of zooplankton in the Godavari estuary.

  10. Biogeochemical alteration of dissolved organic material in the Cape Fear River Estuary as a function of freshwater discharge

    Science.gov (United States)

    Dixon, Jennifer L.; Helms, John R.; Kieber, Robert J.; Avery, G. Brooks

    2014-08-01

    This study presents the first extensive examination of the controls on optical properties of chromophoric dissolved organic matter (CDOM) within the Cape Fear River Estuary (CFRE) utilizing spectral slope ratios (SR). The application of SUVA254 values, absorption spectral slopes (S) and SR values has presented a distinct opportunity to observe compositional changes in CDOM in the CFRE that was not possible using bulk DOC and aCDOM(350) values alone. By comparing estuarine trends in CDOM spectral shape during both normal and historically low flow conditions, we found that diagenetic processing of CDOM in the CFRE is controlled primarily by riverine discharge rates. These findings suggest that the chromophoric fraction of DOM is altered during estuarine transport under low flow regimes but reaches the coastal ocean relatively unaltered under higher flow conditions. This highlights the tendency for autochthonous sources of DOC to offset photochemical losses and indicates that in situ DOC production can significantly contribute to the overall carbon load if discharge is low or sufficient biogeochemical alteration of the terrestrial DOM end-member occurs. This provides new insight into the usefulness of these optical properties into understanding the cycling, fate and transport of CDOM to the coastal ocean. SR values provide a simple but potentially powerful tool in understanding the flux, transport and impact of terrestrially derived organic material deposited in the coastal ocean.

  11. Operational verification of a framework for the probabilistic nowcasting of river discharge in small and medium size basins

    Directory of Open Access Journals (Sweden)

    F. Silvestro

    2012-03-01

    Full Text Available Forecasting river discharge is a very important issue for the prediction and monitoring of ground effects related to severe precipitation events. The meteorological forecast systems are unable to predict precipitation on small spatial (few km and temporal (hourly scales. For these reasons the issuing of reliable flood forecasts is not feasible in those regions where the basin's response to rainfall events is very fast and can generate flash floods. This problem can be tackled by using rainfall nowcasting techniques based on radar observations coupled with hydrological modeling. These procedures allow the forecasting of future streamflow with a few hours' notice. However, to account for the short-term uncertainties in the evolution of fine scale precipitation field, a probabilistic approach to rainfall nowcasting is needed. These uncertainties are then propagated from rainfall to runoff through a distributed hydrological model producing a set of equi-probable discharge scenarios to be used for the flood nowcasting with time horizons of a few hours. Such a hydrological nowcasting system is presented here and applied to some case studies. A first evaluation of its applicability in an operational context is provided and the opportunity of using the results quantitatively is discussed.

  12. Implication of two in-stream processes in the fate of nutrients discharged by sewage system into a temporary river.

    Science.gov (United States)

    David, Arthur; Perrin, Jean-Louis; Rosain, David; Rodier, Claire; Picot, Bernadette; Tournoud, Marie-George

    2011-10-01

    The aim of this study was to better understand the fate of nutrients discharged by sewage treatment plants into an intermittent Mediterranean river, during a low-flow period. Many pollutants stored in the riverbed during the low-flow period can be transferred to the downstream environments during flood events. The study focused on two processes that affect the fate and the transport of nutrients, a physical process (retention in the riverbed sediments) and a biological process (denitrification). A spatial campaign was carried out during a low-flow period to characterize the nutrient contents of both water and sediments in the Vène River. The results showed high nutrient concentrations in the water column downstream of the treated wastewater disposal (up to 13,315 μg N/L for ammonium and 2,901 μg P/L for total phosphorus). Nutrient concentrations decreased rapidly downstream of the disposal whereas nutrient contents in the sediments increased (up to 1,898 and 784 μg/g for total phosphorus and Kjeldahl nitrogen, respectively). According to an in situ experiment using sediment boxes placed in the riverbed for 85 days, we estimated that the proportion of nutrients trapped in the sediments represents 25% (respectively 10%) of phosphorus (respectively nitrogen) loads lost from the water column. In parallel, laboratory tests indicated that denitrification occurred in the Vène River, and we estimated that denitrification likely coupled to nitrification processes during the 85 days of the experiment was significantly involved in the removal of nitrogen loads (up to 38%) from the water column and was greater than accumulation processes.

  13. Simulating the daily discharge of the Mandovi River, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Suprit, K.; Shankar, D.; Venugopal, V.; Bhatkar, N.V.

    in the Northern Indian Ocean. J. Clim. 20, 3249–3268. 27. Neteler, M. & Mitasova, H. (2002) Open Source GIS: A GRASS GIS Approach. Kluwer Academic Publishers: Dordrecht. 28. Pai, D. S. & Nair, M. R. (2009) Summer monsoon onset over Kerala: New definition...) and to derive the basin geometry (SKS04). Owing to its coarse resolution, the GLOBE DEM failed to resolve the narrow river valley in the Mandovi basin. Therefore, SKS04 developed a tool based on GRASS GIS (Neteler and Mitasova, 2002) to edit the DEM manually...

  14. Synergistic and singular effects of river discharge and lunar illumination on dam passage of upstream migrant yellow-phase American eels

    Science.gov (United States)

    Welsh, Stuart A.; Aldinger, Joni L.; Braham, Melissa A.; Zimmerman, Jennifer L.

    2016-01-01

    Monitoring of dam passage can be useful for management and conservation assessments of American eel, particularly if passage counts can be examined over multiple years. During a 7-year study (2007–2013) of upstream migration of American eels within the lower Shenandoah River (Potomac River drainage), we counted and measured American eels at the Millville Dam eel pass, where annual study periods were determined by the timing of the eel pass installation during spring or summer and removal during fall. Daily American eel counts were analysed with negative binomial regression models, with and without a year (YR) effect, and with the following time-varying environmental covariates: river discharge of the Shenandoah River at Millville (RDM) and of the Potomac River at Point of Rocks, lunar illumination (LI), water temperature, and cloud cover. A total of 17 161 yellow-phase American eels used the pass during the seven annual periods, and length measurements were obtained from 9213 individuals (mean = 294 mm TL, s.e. = 0.49, range 183–594 mm). Data on passage counts of American eels supported an additive-effects model (YR + LI + RDM) where parameter estimates were positive for river discharge (β = 7.3, s.e. = 0.01) and negative for LI (β = −1.9, s.e. = 0.34). Interestingly, RDM and LI acted synergistically and singularly as correlates of upstream migration of American eels, but the highest daily counts and multiple-day passage events were associated with increased RDM. Annual installation of the eel pass during late spring or summer prevented an early spring assessment, a period with higher RDM relative to those values obtained during sampling periods. Because increases in river discharge are climatically controlled events, upstream migration events of American eels within the Potomac River drainage are likely linked to the influence of climate variability on flow regime.

  15. Weighted Regressions on Time, Discharge, and Season (WRTDS), with an application to Chesapeake Bay River inputs

    Science.gov (United States)

    Hirsch, Robert M.; Moyer, Douglas; Archfield, Stacey A.

    2010-01-01

    A new approach to the analysis of long-term surface water-quality data is proposed and implemented. The goal of this approach is to increase the amount of information that is extracted from the types of rich water-quality datasets that now exist. The method is formulated to allow for maximum flexibility in representations of the long-term trend, seasonal components, and discharge-related components of the behavior of the water-quality variable of interest. It is designed to provide internally consistent estimates of the actual history of concentrations and fluxes as well as histories that eliminate the influence of year-to-year variations in streamflow. The method employs the use of weighted regressions of concentrations on time, discharge, and season. Finally, the method is designed to be useful as a diagnostic tool regarding the kinds of changes that are taking place in the watershed related to point sources, groundwater sources, and surface-water nonpoint sources. The method is applied to datasets for the nine large tributaries of Chesapeake Bay from 1978 to 2008. The results show a wide range of patterns of change in total phosphorus and in dissolved nitrate plus nitrite. These results should prove useful in further examination of the causes of changes, or lack of changes, and may help inform decisions about future actions to reduce nutrient enrichment in the Chesapeake Bay and its watershed.

  16. A conceptual model of the trophodynamical response to river discharge in a large marine ecosystem

    Science.gov (United States)

    Skreslet, Stig

    1997-08-01

    Year-class strength in North-East Arctic cod ( Gadus morhua), which inhabit the Barents Sea, and commercial landings of juveniles from this population, have been positively correlated with Norwegian meltwater discharge one and three years in advance, respectively. A conceptual model is developed, by empirical data used to investigate how the freshwater signal may be transmitted with time and in space through the food-web. It assumes that interannual variation in discharged volume of meltwater during summer forces planktonic primary production in neritic fronts. The strength of this impulse is transmitted from one organismic system to another, along the north Norwegian shelf, being advected by Calanus finmarchicus, a herbivorous copepod. The population system of this copepod interacts with the survival and growth of juvenile NE Arctic cod, and causes the cod stock size to fluctuate with the strength of the signal. By migration and advection within their respective population systems, NE Arctic cod and C. finmarchicus possibly transmit the freshwater signal on extensive time and space scales, from the Norwegian shelf to distant parts of the Arctic Mediterranean Ecocystem that contains both population systems. Continued empirical research and numerical modelling is needed to develop this theory.

  17. Modeling river total bed material load discharge using artificial intelligence approaches (based on conceptual inputs)

    Science.gov (United States)

    Roushangar, Kiyoumars; Mehrabani, Fatemeh Vojoudi; Shiri, Jalal

    2014-06-01

    This study presents Artificial Intelligence (AI)-based modeling of total bed material load through developing the accuracy level of the predictions of traditional models. Gene expression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS)-based models were developed and validated for estimations. Sediment data from Qotur River (Northwestern Iran) were used for developing and validation of the applied techniques. In order to assess the applied techniques in relation to traditional models, stream power-based and shear stress-based physical models were also applied in the studied case. The obtained results reveal that developed AI-based models using minimum number of dominant factors, give more accurate results than the other applied models. Nonetheless, it was revealed that k-fold test is a practical but high-cost technique for complete scanning of applied data and avoiding the over-fitting.

  18. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia

    Science.gov (United States)

    Poveda, GermáN.; Jaramillo, Alvaro; Gil, Marta MaríA.; Quiceno, Natalia; Mantilla, Ricardo I.

    2001-08-01

    An analysis of hydrologic variability in Colombia shows different seasonal effects associated with El Niño/Southern Oscillation (ENSO) phenomenon. Spectral and cross-correlation analyses are developed between climatic indices of the tropical Pacific Ocean and the annual cycle of Colombia's hydrology: precipitation, river flows, soil moisture, and the Normalized Difference Vegetation Index (NDVI). Our findings indicate stronger anomalies during December-February and weaker during March-May. The effects of ENSO are stronger for streamflow than for precipitation, owing to concomitant effects on soil moisture and evapotranspiration. We studied time variability of 10-day average volumetric soil moisture, collected at the tropical Andes of central Colombia at depths of 20 and 40 cm, in coffee growing areas characterized by shading vegetation ("shaded coffee"), forest, and sunlit coffee. The annual and interannual variability of soil moisture are highly intertwined for the period 1997-1999, during strong El Niño and La Niña events. Soil moisture exhibited greater negative anomalies during 1997-1998 El Niño, being strongest during the two dry seasons that normally occur in central Colombia. Soil moisture deficits were more drastic at zones covered by sunlit coffee than at those covered by forest and shaded coffee. Soil moisture responds to wetter than normal precipitation conditions during La Niña 1998-1999, reaching maximum levels throughout that period. The probability density function of soil moisture records is highly skewed and exhibits different kinds of multimodality depending upon land cover type. NDVI exhibits strong negative anomalies throughout the year during El Niños, in particular during September-November (year 0) and June-August (year 0). The strong negative relation between NDVI and El Niño has enormous implications for carbon, water, and energy budgets over the region, including the tropical Andes and Amazon River basin.

  19. A new handling tool for irradiated samples at the LENA plant

    International Nuclear Information System (INIS)

    Alloni, L.; Venturelli, A.

    1988-01-01

    The handling of neutron irradiated samples at the LENA plant has been so far carried out manually, thus exposing reactor and health physics operators and reactor users to radiation doses. It was then decided to develop an automatic system operated from the reactor console. The system was divided in two sections: one taking care of sample insertion and extraction and the other of the storage of irradiated samples. This paper describes the design and the installation of the storage section. It allows a fast removal of the irradiated samples from the reactor top and their storage in lead pits at the ground level. The extraction of irradiated samples comes out to be quite simplified and radiation doses to operators and users are strongly reduced. All work from design to construction has been carried out by the personnel of the electronic group of the LENA plant

  20. INTERSTELLAR NEUTRAL ATOMS AT 1 AU OBSERVED BY THE IMAGE/LENA IMAGER

    International Nuclear Information System (INIS)

    Fuselier, S. A.; Ghielmetti, A. G.; Wurz, P.

    2009-01-01

    Observations from the Imager for Magnetopause to Aurora: Global Exploration (IMAGE) Low Energy Neutral Atom (LENA) imager from 2005 are used to investigate characteristics of interstellar neutrals in the inner solar system. The LENA imager detected an interstellar neutral signal starting in 2004 December and extending to early 2005 April. Using the orientation of the field of view of the imager and the date of the loss of the interstellar neutral signal, it is concluded that the signal is consistent with a relatively compact (several degrees wide in ecliptic latitude and longitude) source of neutral helium and/or energetic (>150 eV) hydrogen originating from the solar apex direction. Observations later in 2005 are used to distinguish the composition and conclude that the relatively compact source likely contains some energetic hydrogen (in addition to the helium).

  1. The low energy neutral particle analyzer (LENA) at W7-AS

    International Nuclear Information System (INIS)

    Verbeek, H.; Schiavi, A.

    1994-10-01

    A detailed documentation of the experimental arrangement of the Low Energy Neutral particle Analyzer (LENA) at W7-AS is given. The diagnostic was routinely measuring CX-fluxes and energy distributions during the period from 1992 to 94. Some typical results are reported and a phenomenological discussion of the reaction of the CX-fluxes and spectra to the variation of various plasma parameters is presented. The comparison with H α -signals indicate whether variations of the CX-fluxes are due to changes of the wall recycling or due to alterations of the plasma profiles. T i profiles near the edge can be determined from the LENA-spectra when the neutral atom density is simulated by the EIRENE code. For the latter to the thesis of Heinrich (1994) is referred. (orig.)

  2. California coast nearshore processes study. [nearshore currents, sediment transport, estuaries, and river discharge

    Science.gov (United States)

    Pirie, D. M.; Steller, D. D. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Large scale sediment plumes from intermittent streams and rivers form detectable seasonal patterns on ERTS-1 imagery. The ocean current systems, as plotted from three California coast ERTS mosaics, were identified. Offshore patterns of sediment in areas such as the Santa Barbara Channel are traceable. These patterns extend offshore to heretofore unanticipated ranges as shown on the ERTS-1 imagery. Flying spot scanner enhancements of NASA tapes resulted in details of subtle and often invisible (to the eye) nearshore features. The suspended sediments off San Francisco and in Monterey Bay are emphasized in detail. These are areas of extremely changeable offshore sediment transport patterns. Computer generated contouring of radiance levels resulted in maps that can be used in determining surface and nearsurface suspended sediment distribution. Tentative calibrations of ERTS-1 spectral brightness against sediment load have been made using shipboard measurements. Information from the combined enhancement and interpretation techniques is applicable to operational coastal engineering programs.

  3. The Mekong River plume fuels nitrogen fixation and determines phytoplankton species distribution in the South China Sea during low- and high-discharge season

    DEFF Research Database (Denmark)

    Grosse, Julia; Bombar, Deniz; Doan, Hai Nhu

    2010-01-01

    ) for the adjacent sea and creates different salinity and nutrient gradients over different seasons. River water (salinity 0), mesohaline waters (salinity 14-32), a transition zone with salinities between 32 and 33.5, and marine waters (salinity above 33.5) were sampled at different spatial resolutions in both......The influence of the Mekong River (South China Sea) on N2 fixation and phytoplankton distribution was investigated during the lowest- and highest-discharge seasons (April 2007 and September 2008, respectively). The river plays an essential role in providing nutrients (nitrate, phosphate, silicate...... cruises. High N2 fixation rates were measured during both seasons, with rates of up to 5.05 nmol N L-1 h -1 in surface waters under nitrogen-replete conditions, increasing to 22.77 nmol N L-1 h-1 in nitrogen-limited waters. Asymbiotic diatoms were found only close to the river mouth, and symbiotic diatoms...

  4. Changes in the world rivers' discharge projected from an updated high resolution dataset of current and future climate zones

    Science.gov (United States)

    Santini, Monia; di Paola, Arianna

    2015-12-01

    In this paper, an updated global map of the current climate zoning and of its projections, according to the Köppen-Geiger classification, is first provided. The map at high horizontal resolution (0.5° × 0.5°), representative of the current (i.e. 1961-2005) conditions, is based on the Climate Research Unit dataset holding gridded series of historical observed temperature and precipitation, while projected conditions rely on the simulated series, for the same variables, by the General Circulation Model CMCC-CM. Modeled variables were corrected for their bias and then projections of climate zoning were generated for the medium term (2006-2050) and long term (2056-2100) future periods, under RCP 4.5 and RCP 8.5 emission scenarios. Results show that Equatorial and Arid climates will spread at the expenses of Snow and Polar climates, with the Warm Temperate experiencing more moderate increase. Maps of climate zones are valuable for a wide range of studies on climate change and its impacts, especially those regarding the water cycle that is strongly regulated by the combined conditions of precipitation and temperature. As example of large scale hydrological applications, in this work we tested and implemented a spatial statistical procedure, the geographically weighted regression among climate zones' surface and mean annual discharge (MAD) at hydrographic basin level, to quantify likely changes in MAD for the main world rivers monitored through the Global Runoff Data Center database. The selected river basins are representative of more than half of both global superficial freshwater resources and world's land area. Globally, a decrease in MAD is projected both in the medium term and long term, while spatial differences highlight how some areas require efforts to avoid consequences of amplified water scarcity, while other areas call for strategies to take the opportunity from the expected increase in water availability. Also the fluctuations of trends between the

  5. An Integration of Ground-Penetrating Radar, Remote Sensing, and Discharge Records of the Modern Kicking Horse River, BC

    Science.gov (United States)

    Cyples, N.; Ielpi, A.; Dirszowsky, R.

    2017-12-01

    The Kicking Horse River is a gravel-bed stream originating from glacial meltwater supplied by the Wapta Icefields in south-eastern British Columbia. An alluvial tract extends for 7 km through Field, BC, where the trunk channel undergoes diurnal and seasonal fluctuations in flow as a result of varying glacial-meltwater supply and runoff recharge. Prior studies erected the Kicking Horse River as a reference for proximal braided systems, and documented bar formation and sediment distribution patterns from ground observations. However, a consistent model of planform evolution and related stratigraphic signature is lacking. Specific objectives of this study are to examine the morphodynamic evolution and stratigraphic signature of channel-bar complexes using high-resolution satellite imagery, sedimentologic and discharge observations, and ground-penetrating radar (GPR). Remote sensing highlights rates of lateral channel migration of as much as 270 meters over eight years ( 34 meters/year), and demonstrates how flood stages are associated with stepwise episodes of channel braiding and anabranching. GPR analysis aided in the identification of five distinct radar facies, including: discontinuous, inclined, planar, trough-shaped, and mounded reflectors, which were respectively related to specific architectural elements and fluvial processes responsible for bar evolution. Across-stream GPR transects demonstrated higher heterogeneity in facies distribution, while downstream-oriented transects yielded a more monotonous distribution in radar facies. Notably, large-scale inclined reflectors related to step-wise bar accretion are depicted only in downstream-oriented transects, while discontinuous reflectors related to bedform stacking appear to be dominant in along-stream transects. Integration of sedimentological data with remote sensing, gauging records, and GPR analysis allows for high-resolution modelling of stepwise changes in alluvial morphology. Conceptual models stemming

  6. Angina - discharge

    Science.gov (United States)

    Chest pain - discharge; Stable angina - discharge; Chronic angina - discharge; Variant angina - discharge; Angina pectoris - discharge; Accelerating angina - discharge; New-onset angina - discharge; Angina-unstable - discharge; ...

  7. Groundwater Discharge of Legacy Nitrogen to River Networks: Linking Regional Groundwater Models to Streambed Groundwater-Surface Water Exchange and Nitrogen Processing

    Science.gov (United States)

    Barclay, J. R.; Helton, A. M.; Briggs, M. A.; Starn, J. J.; Hunt, A.

    2017-12-01

    Despite years of management, excess nitrogen (N) is a pervasive problem in many aquatic ecosystems. More than half of surface water in the United States is derived from groundwater, and widespread N contamination in aquifers from decades of watershed N inputs suggest legacy N discharging from groundwater may contribute to contemporary N pollution problems in surface waters. Legacy N loads to streams and rivers are controlled by both regional scale flow paths and fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients that occur at stream bed interfaces. Adequately incorporating these disparate scales is a challenge, but it is essential to understanding legacy N transport and making informed management decisions. We developed a regional groundwater flow model for the Farmington River, a HUC-8 basin that drains to the Long Island Sound, a coastal estuary that suffers from elevated N loads despite decades of management, to understand broad patterns of regional transport. To evaluate and refine the regional model, we used thermal infrared imagery paired with vertical temperature profiling to estimate groundwater discharge at the streambed interface. We also analyzed discharging groundwater for multiple N species to quantify fine scale patterns of N loading and transformation via denitrification at the streambed interface. Integrating regional and local estimates of groundwater discharge of legacy N to river networks should improve our ability to predict spatiotemporal patterns of legacy N loading to and transformation within surface waters.

  8. Extracting Prior Distributions from a Large Dataset of In-Situ Measurements to Support SWOT-based Estimation of River Discharge

    Science.gov (United States)

    Hagemann, M.; Gleason, C. J.

    2017-12-01

    The upcoming (2021) Surface Water and Ocean Topography (SWOT) NASA satellite mission aims, in part, to estimate discharge on major rivers worldwide using reach-scale measurements of stream width, slope, and height. Current formalizations of channel and floodplain hydraulics are insufficient to fully constrain this problem mathematically, resulting in an infinitely large solution set for any set of satellite observations. Recent work has reformulated this problem in a Bayesian statistical setting, in which the likelihood distributions derive directly from hydraulic flow-law equations. When coupled with prior distributions on unknown flow-law parameters, this formulation probabilistically constrains the parameter space, and results in a computationally tractable description of discharge. Using a curated dataset of over 200,000 in-situ acoustic Doppler current profiler (ADCP) discharge measurements from over 10,000 USGS gaging stations throughout the United States, we developed empirical prior distributions for flow-law parameters that are not observable by SWOT, but that are required in order to estimate discharge. This analysis quantified prior uncertainties on quantities including cross-sectional area, at-a-station hydraulic geometry width exponent, and discharge variability, that are dependent on SWOT-observable variables including reach-scale statistics of width and height. When compared against discharge estimation approaches that do not use this prior information, the Bayesian approach using ADCP-derived priors demonstrated consistently improved performance across a range of performance metrics. This Bayesian approach formally transfers information from in-situ gaging stations to remote-sensed estimation of discharge, in which the desired quantities are not directly observable. Further investigation using large in-situ datasets is therefore a promising way forward in improving satellite-based estimates of river discharge.

  9. Rare Earth Element Behavior During Incongruent Weathering and Varying Discharge Conditions in Silicate Dominated River Systems: The Australian Victorian Alps

    Science.gov (United States)

    Hagedorn, K. B.; Cartwright, I.

    2008-12-01

    The distribution of rare earth elements (REE) and trace elements was measured by ICP-MS on fresh, slightly weathered and weathered granite and surface water samples from a network of 11 pristine rivers draining the Australian Victorian Alps during (i) high and (ii) low discharge conditions. River water REE concentrations are largely derived from atmospheric precipitation (rain, snow), as indicated by similar Chondrite normalized REE patterns (higher LREE over HREE; negative Ce anomalies, positive Eu anomalies) and similar total REE concentrations during both dry and wet seasons. Calculations based on the covariance between REE and Cl concentrations and oxygen and hydrogen isotopes indicate precipitation input coupled with subsequent evaporation may account for 30% o 100% of dissolved REE in stream waters. The dissolved contribution to the granitic substratum to stream water comes mainly from the transformation of plagioclase to smectite, kaolinite and gibbsite and minor apatite dissolution. However, since most REE of the regional granite are present in accessory minerals (titanite, zircon, etc.) they do not significantly contribute to the river REE pool. REE concentrations drop sharply downstream as a result of dilution and chemical attenuation. A trend of downstream enrichment of the heavier REE is due to selective partitioning of the lighter REE (as both free REE or REECO3 complexes) to hydrous oxides of suspended Al which, in turn, is controlled by a downstream increase of pH to values > 6.1 (for free REE) and > 7.3 (for REECO3 complexes). Although most circumneutral waters were supersaturated with REE phosphate compounds, precipitation of LnPO4 is not believed to have been a dominant process because the predicted phosphate fractionation pattern is inconsistent with the observed trends. Negative saturation indices of hydrous ferric oxides also militate against surface complexation onto goethite. Instead, REE attenuation most likely resulted from adsorption onto

  10. Supporting inland waterway transport on German waterways by operational forecasting services - water-levels, discharges, river ice

    Science.gov (United States)

    Meißner, Dennis; Klein, Bastian; Ionita, Monica; Hemri, Stephan; Rademacher, Silke

    2017-04-01

    Inland waterway transport (IWT) is an important commercial sector significantly vulnerable to hydrological impacts. River ice and floods limit the availability of the waterway network and may cause considerable damages to waterway infrastructure. Low flows significantly affect IWT's operation efficiency usually several months a year due to the close correlation of (low) water levels / water depths and (high) transport costs. Therefore "navigation-related" hydrological forecasts focussing on the specific requirements of water-bound transport (relevant forecast locations, target parameters, skill characteristics etc.) play a major role in order to mitigate IWT's vulnerability to hydro-meteorological impacts. In light of continuing transport growth within the European Union, hydrological forecasts for the waterways are essential to stimulate the use of the free capacity IWT still offers more consequently. An overview of the current operational and pre-operational forecasting systems for the German waterways predicting water levels, discharges and river ice thickness on various time-scales will be presented. While short-term (deterministic) forecasts have a long tradition in navigation-related forecasting, (probabilistic) forecasting services offering extended lead-times are not yet well-established and are still subject to current research and development activities (e.g. within the EU-projects EUPORIAS and IMPREX). The focus is on improving technical aspects as well as on exploring adequate ways of disseminating and communicating probabilistic forecast information. For the German stretch of the River Rhine, one of the most frequented inland waterways worldwide, the existing deterministic forecast scheme has been extended by ensemble forecasts combined with statistical post-processing modules applying EMOS (Ensemble Model Output Statistics) and ECC (Ensemble Copula Coupling) in order to generate water level predictions up to 10 days and to estimate its predictive

  11. Comparing sulfur and oxygen isotope variability of sulfate in the Mississippi River during high and low discharge from 2009-2011

    Science.gov (United States)

    Killingsworth, B.; Kohl, I. E.; Bao, H.

    2011-12-01

    S and O isotope compositions of ocean and river sulfate, SO42-, reflect Earth surface processes and can thus be used to understand the Earth's dynamic past. It has been estimated that riverine SO42- is 22% evaporite (SO42-riv-evap), 11% oxidative weathering (SO42-riv-ow), and 54% atmospheric and agricultural pollution [1]. Two parameters are poorly constrained: 1) the ratio of SO42-riv-evap to SO42-riv-ow, and 2) the extent of human influence on SO42- flux. Furthermore, for isotopic modeling, natural riverine SO42- O and S isotope compositions, δ18OSO4-riv and δ34SSO4-riv, have large measured ranges (e.g. δ18OSO4-riv from -2% to +7% [2]) that are based on limited empirical data with variable and unconstrained influence from human activities. In the lower Mississippi River Basin (MRB) we have sampled river water SO42- biweekly since 2009. Our isotope dataset is used in conjunction with US Geological Survey and US Army Corps of Engineers SO42- concentration and river discharge data. In comparison to MRB low discharge periods, the periods of annual high water discharge are characterized by 1) a doubling in water discharge 2) a concomitant high MRB SO42- flux (>1100 kg/s) 3) an average SO42- concentration at 85% of the low discharge concentrations and 4) a more constrained variability of SO42- isotope composition. The δ18OSO4-riv ranges from +3.2% to +5.5% at high discharge and from +2.6% to +8.8% at low discharge. The δ34SSO4-riv ranges from -4.3% to -0.4 at high discharge and from -6.3% to -0.2% at low discharge. Atmospheric SO42- is estimated from 2009 National Atmospheric Deposition Program maps to contribute only ~10% of total MRB SO42-. We conclude that during annual high discharge a large river basin such as the MRB is less sensitive to variable sub-basin input and that average MRB SO42- isotope composition is best represented by a δ18OSO4-riv value of ~+4.0% and δ34SSO4-riv value of ~-3.0%. MRB SO42- concentration during high discharge is diluted less

  12. The Effect of Mississippi River Discharge on the Concentration and Composition of Particulate Matter along the Texas-Louisiana Shelf during Summers 2012 and 2013

    Science.gov (United States)

    Richardson, M. J.; Zuck, N.; Gardner, W. D.

    2016-02-01

    Flow from the Mississippi-Atchafalaya River System generally peaks during the spring freshet, discharging nutrient-rich fresh water and sediment into the northern Gulf of Mexico. The peak discharge varies year to year as a result of varying drought or flood conditions in the Mississippi watershed. When compared to an 8-year climatological average, summer 2012 is characterized by low discharge into the northern Gulf of Mexico, whereas summer 2013 is characterized by average discharge conditions. Water samples were collected during four cruises during June and August of 2012 and 2013 to assess the changes in concentration and composition of bulk particulate matter. While no consistent relationship between particulate matter composition and hypoxia was observed, there are several statistically significant seasonal and inter-annual changes in the concentration and composition of particulate matter associated with varying river discharge. There is also evidence that some sub-pycnocline turbidity and chlorophyll-a may be due to in situ primary productivity, rather than settled plankton containing chlorophyll-a.

  13. Late winter coccolithophore bloom off central Portugal in response to river discharge and upwelling

    Science.gov (United States)

    Guerreiro, Catarina; Oliveira, Anabela; de Stigter, Henko; Cachão, Mário; Sá, Carolina; Borges, Carlos; Cros, Lluϊsa; Santos, Ana; Fortuño, José-Manuel; Rodrigues, Aurora

    2013-05-01

    Coccolithophore communities collected during late winter (9-19 March of 2010) over the central Portuguese margin showed a major change in species abundance and composition within a few days' time, closely related to the highly transient meteorological and oceanographic conditions. Particularly favourable conditions for coccolithophore growth resulted from late winter continental runoff combined with northerly winds prevailing over the shelf, under clear sky conditions. A nutrient-rich Buoyant Plume (BP) resulting from intense river water runoff prior to and during the start of the cruise, was observed to spread out over the denser winter mixed layer water beneath, and extend equatorwards and offshore under influence of Ekman superficial dynamics. Stabilization of buoyancy, settling of suspended sediment from the BP and the prevailing clear sky conditions in the transition to the 2nd leg of the cruise resulted in optimum conditions for coccolithophores to develop, at the expense of nutrient availability in the superficial sunlit layer. Within a few days, coccolithophore cell densities and associated phytoplankton biomass more than tripled, reaching maximum values of 145,000 cells/l and ~13 µg/l Chl-a, respectively. Often considered as a uniform functional group of calcifying phytoplankton thriving in low-turbulence, low-nutrients and high-light environments, results presented in this study clearly show that coccolithophore life strategies are much more diverse than expected. The increase of cell densities was mainly due to the bloom of Emiliania huxleyi and Gephyrocapsa oceanica in the coastal region west off Cape Carvoeiro, together with other opportunistic phytoplankton genera (Chaetoceros s.l., Thalassiosira s.l and Skeletonema s.l.). This confirms their role as early succession r-selected taxa, capable of rapid growth within nutrient-rich environments. On the contrary, Syracosphaera spp. and Ophiaster spp. displayed the characteristics of K-selected species

  14. Mixing zones studies of the waste water discharge from the Consolidated Paper Company into the Wisconsin River at Wisconsin Rapids, Wisconsin

    Science.gov (United States)

    Hoopes, J. A.; Wu, D. S.; Ganatra, R.

    1973-01-01

    Effluent concentration distributions from the waste water discharge of the Kraft Division Mill, Consolidated Paper Company, into the Wisconsin River at Wisconsin Rapids, Wisconsin, is investigated. Effluent concentrations were determined from measurements of the temperature distribution, using temperature as a tracer. Measurements of the velocity distribution in the vicinity of the outfall were also made. Due to limitations in the extent of the field observations, the analysis and comparison of the measurements is limited to the region within about 300 feet from the outfall. Effects of outfall submergence, of buoyancy and momentum of the effluent and of the pattern and magnitude of river currents on these characteristics are considered.

  15. Human induced discharge diversion in a tropical delta and its environmental implications: The Patía River, Colombia

    Science.gov (United States)

    Restrepo, Juan D.; Kettner, Albert

    2012-03-01

    SummaryThe Patía River, the number one in terms of sediment yield ˜1500 t km-2 yr-1 draining the western South America, has the most extensive and well developed delta on the Pacific coast, measuring 1700 km2. During the Holocene, nature forced the Patía delta to the south; however, a major water diversion, starting in 1972, diverted the Patía flow to the Sanguianga River, the latter, a small stream draining internal lakes from the Pacific lowlands. This human induced discharge diversion shifted the active delta plain back to the north and changed the northern estuarine system into an active delta plain. Overall, major environmental consequences of this discharge diversion in terms of morphological changes along the delta coast and distributary channels, are evidenced by: (1) coastal retreat along the abandoned delta lobe; 63% of the southern shoreline is retreating at maximum rates of 7 m yr-1, with a corresponding coastal land loss of 106 m yr-1; (2) transgressive barrier islands with exposed peat soils in the surf zone; (3) abandonment of former active distributaries in the southern delta plain with associated closing of inlets and formation of ebb tidal deltas; (4) breaching events on barrier islands; and (5) distributary channel accretion in the northern delta plain by morphological processes such as sedimentation (also in crevasses), overbank flow, increasing width of levees, interdistributary channel fill, and colonization of pioneer mangrove. The Sanguianga Mangrove National Park (SMNP), the largest mangrove reserve in Colombia, measuring 800 km2, lies in this former estuary, where major hydrologic and sedimentation changes are occurring. Observed environmental changes in the SMNP, include (1) seaward advance of the sub-aqueous delta front at the Sanquianga inlet evidenced by an increase in tidal flat area from 5.4 Mm2 in 1986 to 14 Mm2 in 2001; (2) freshening conditions in the Sanguianga distributary channel, a hydrologic change that has shifted the

  16. Quantifying the anthropogenic and climatic contributions to changes in water discharge and sediment load into the sea: A case study of the Yangtze River, China.

    Science.gov (United States)

    Zhao, Yifei; Zou, Xinqing; Gao, Jianhua; Xu, Xinwanghao; Wang, Chenglong; Tang, Dehao; Wang, Teng; Wu, Xiaowei

    2015-12-01

    Based on data from the Datong hydrological station and 147 meteorological stations, the influences of climate change and human activities on temporal changes in water discharge and sediment load were examined in the Yangtze River basin from 1953 to 2010. The Mann-Kendall test, abrupt change test (Mann-Kendall and cumulative anomaly test), and Morlet wavelet method were employed to analyze the water discharge and sediment load data measured at the Datong hydrological station. The results indicated that the annual mean precipitation and water discharge exhibited decreasing trends of -0.0064 mm/10 yr and -1.41×10(8) m3/yr, respectively, and that the water sediment load showed a significant decreasing trend of -46.5×10(6) t/yr. Meanwhile, an abrupt change in the water discharge occurred in 2003. The sediment load also exhibited an abrupt change in 1985. From 1970 to 2010, the climate change and human activities contributed 72% and 28%, respectively, to the water discharge reduction. The human-induced decrease in the sediment load was 914.03×10(6) t/yr during the 1970s and 3301.79×10(6) t/yr during the 2000s. The contribution from human activities also increased from 71% to 92%, especially in the 1990s, when the value increased to 92%. Climate change and human activities contributed 14% and 86%, respectively, to the sediment load reduction. Inter-annual variations in water discharge and sediment load were affected by climate oscillations and human activities. The effect of human activities on the sediment load was considerably greater than those on water discharge in the Yangtze River basin. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Discovery and characterization of submarine groundwater discharge in the Siberian Arctic seas: a case study in the Buor-Khaya Gulf, Laptev Sea

    Science.gov (United States)

    Charkin, Alexander N.; Rutgers van der Loeff, Michiel; Shakhova, Natalia E.; Gustafsson, Örjan; Dudarev, Oleg V.; Cherepnev, Maxim S.; Salyuk, Anatoly N.; Koshurnikov, Andrey V.; Spivak, Eduard A.; Gunar, Alexey Y.; Ruban, Alexey S.; Semiletov, Igor P.

    2017-10-01

    It has been suggested that increasing terrestrial water discharge to the Arctic Ocean may partly occur as submarine groundwater discharge (SGD), yet there are no direct observations of this phenomenon in the Arctic shelf seas. This study tests the hypothesis that SGD does exist in the Siberian Arctic Shelf seas, but its dynamics may be largely controlled by complicated geocryological conditions such as permafrost. The field-observational approach in the southeastern Laptev Sea used a combination of hydrological (temperature, salinity), geological (bottom sediment drilling, geoelectric surveys), and geochemical (224Ra, 223Ra, 228Ra, and 226Ra) techniques. Active SGD was documented in the vicinity of the Lena River delta with two different operational modes. In the first system, groundwater discharges through tectonogenic permafrost talik zones was registered in both winter and summer. The second SGD mechanism was cryogenic squeezing out of brine and water-soluble salts detected on the periphery of ice hummocks in the winter. The proposed mechanisms of groundwater transport and discharge in the Arctic land-shelf system is elaborated. Through salinity vs. 224Ra and 224Ra / 223Ra diagrams, the three main SGD-influenced water masses were identified and their end-member composition was constrained. Based on simple mass-balance box models, discharge rates at sites in the submarine permafrost talik zone were 1. 7 × 106 m3 d-1 or 19.9 m3 s-1, which is much higher than the April discharge of the Yana River. Further studies should apply these techniques on a broader scale with the objective of elucidating the relative importance of the SGD transport vector relative to surface freshwater discharge for both water balance and aquatic components such as dissolved organic carbon, carbon dioxide, methane, and nutrients.

  18. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976-2013): Dominant roles of riverine discharge and sediment grain size

    Science.gov (United States)

    Wu, Xiao; Bi, Naishuang; Xu, Jingping; Nittrouer, Jeffrey A.; Yang, Zuosheng; Saito, Yoshiki; Wang, Houjie

    2017-09-01

    The presently active Yellow River (Huanghe) delta lobe has been formed since 1976 when the river was artificially diverted. The process and driving forces of morphological evolution of the present delta lobe still remain unclear. Here we examined the stepwise morphological evolution of the active Yellow River delta lobe including both the subaerial and the subaqueous components, and illustrated the critical roles of riverine discharge and sediment grain size in dominating the deltaic evolution. The critical sediment loads for maintaining the delta stability were also calculated from water discharge and sediment load measured at station Lijin, the last gauging station approximately 100 km upstream from the river mouth. The results indicated that the development of active delta lobe including both subaerial and subaqueous components has experienced four sequential stages. During the first stage (1976-1981) after the channel migration, the unchannelized river flow enhanced deposition within the channel and floodplain between Lijin station and the river mouth. Therefore, the critical sediment supply calculated by the river inputs obtained from station Lijin was the highest. However, the actual sediment load at this stage (0.84 Gt/yr) was more than twice of the critical sediment load ( 0.35 Gt/yr) for sustaining the active subaerial area, which favored a rapid seaward progradation of the Yellow River subaerial delta. During the second stage (1981-1996), the engineering-facilitated channelized river flow and the increase in median grain size of suspended sediment delivered to the sea resulted in the critical sediment load for keeping the delta stability deceasing to 0.29 Gt/yr. The active delta lobe still gradually prograded seaward at an accretion rate of 11.9 km2/yr at this stage as the annual sediment load at Lijin station was 0.55 Gt/yr. From 1996 to 2002, the critical sediment load further decreased to 0.15 Gt/yr with the sediment grain size increased to 22.5

  19. SEASONAL DISCHARGE REGIME OF THE RIVERS IN THE TRANSYLVANIAN SUBCARPATHIANS AND THE ADJACENT MOUNTAINOUS SPACE BETWEEN TÂRNAVA MARE AND NIRAJ

    OpenAIRE

    VICTOR SOROCOVSCHI; DANIEL RADULY; CSABA HORVATH

    2015-01-01

    Seasonal discharge regime of the rivers in the Transylvanian Subcarpathians and the adjacent mountainous space between Târnava Mare and Niraj. The studied region is situated in the North-East of the Transylvanian Depression and includes two distinct units: the Transylvanian Subcarpathians and the Moldavo-Transylvanian Carpathians, comprised between the valleys of Târnava Mare and Niraj. The study is based upon the processing and interpretation of data coming from 13 hydrometric stations. In o...

  20. Tonle Sap Lake Water Storage Change Over 24 Years From Satellite Observation and Its Link With Mekong River Discharge and Climate Events

    Science.gov (United States)

    Biancamaria, S.; Frappart, F.; Normandin, C.; Blarel, F.; Bourrel, L.; Aumont, M.; Azema, P.; Vu, P. L.; Lubac, B.; Darrozes, J.

    2017-12-01

    The Tonle Sap lake is the largest freshwater lake in Southeast Asia and is located within the Mekong basin (mainly in Cambodia). It is one of he most productive ecosystem of the world and provide two thirds of Cambodia fish catch. It also plays a unique role on the Mekong basin hydrological cycle: during the monsoon period, the Mekong river partially flows to the lake, whereas during the dry season, the lake flows to the Mekong delta. It is therefore crucial to monitor and take into account this lake to estimate Mekong discharge to the ocean. However, in situ measurements of lake level and river discharge are very sparse (especially during the last decades) and computing lake storage variation from in situ data only is difficult due to the huge annual variation of lake area. That's why, satellite data (nadir radar altimetry and visible imagery) have been used to study its volume variation and its relationship with climate events and Mekong river discharge. Multi-mission altimetry data have been extracted (Topex, ERS-2, ENVISAT, Jason-1, Jason-2, Saral and Jason-3, using CTOH data extraction tools) to derive a lake water level from1993 to 2016, which varies from 3 m to 12 m. Lake area have been computed from MODIS data from 2000 to 2016 and varies from 3,400 km2 to 11,800 km2. These dataset clearly shows a relationship between lake water level and area, which has been used to estimate lake water volume change from 1995 to 2016, with a minimum in 2015 and a maximum in 2011. Lake's droughts and floods can be observed during moderate and strong El Nino/La Nina events, enhanced by the Pacific Decadal Oscillation. Besides, comparison with in situ discharge at the outlet of the Mekong basin (over 1995/2000 time period) shows that lake water level is 20 days time lagged and increases/decreases after Mekong discharge at its outlet. This time lag results of Mekong river partially flowing to the lake. Finally, high correlation between lake level and outlet discharge allows to

  1. Assessment of the discharge regime and water budget of Belo Vrelo (source of the Tolišnica River, central Serbia

    Directory of Open Access Journals (Sweden)

    Čokorilo-Ilić Marina

    2014-01-01

    Full Text Available A sufficiently long spring discharge regime monitoring data set allows for a large number of analyses, to better understand the process of transformation of precipitation into a discharge hydrograph. It is also possible to determine dynamic groundwater volumes in a karst spring catchment area, the water budget equation parameters and the like. It should be noted that a sufficiently long data set is deemed to be a continuous spring discharge time series of more than 30 years. Such time series are rare in Serbia. They are generally much shorter (less than 15 years, and the respective catchment areas therefore fall into the “ungauged” category. In order to extend existing karst spring discharge time series, we developed a model whose outputs, apart from mean monthly spring discharges, include daily real evapotranspiration rates, catchment size and dynamic volume variation during the analytical period. So far the model has solely been used to assess the discharge regime and water budget of karst springs. The present paper aims to demonstrate that the model also yields good results in the case of springs that drain aquifers developed in marbles. Belo Vrelo (“White Spring”, source of the Tolišnica River, which drains marbles and marbleized limestones and dolomites of Čemerno Mountain, was selected for the present case study. [OI-176022

  2. Modeling river discharge and sediment transport in the Wax Lake-Atchafalaya basin with remote sensing parametrization.

    Science.gov (United States)

    Simard, M.; Liu, K.; Denbina, M. W.; Jensen, D.; Rodriguez, E.; Liao, T. H.; Christensen, A.; Jones, C. E.; Twilley, R.; Lamb, M. P.; Thomas, N. A.

    2017-12-01

    Our goal is to estimate the fluxes of water and sediments throughout the Wax Lake-Atchafalaya basin. This was achieved by parametrization of a set of 1D (HEC-RAS) and 2D (DELFT3D) hydrology models with state of the art remote sensing measurements of water surface elevation, water surface slope and total suspended sediment (TSS) concentrations. The model implementations are spatially explicit, simulating river currents, lateral flows to distributaries and marshes, and spatial variations of sediment concentrations. Three remote sensing instruments were flown simultaneously to collect data over the Wax Lake-Atchafalaya basin, and along with in situ field data. A Riegl Lidar was used to measure water surface elevation and slope, while the UAVSAR L-band radar collected data in repeat-pass interferometric mode to measure water level change within adjacent marshes and islands. These data were collected several times as the tide rose and fell. AVRIS-NG instruments measured water surface reflectance spectra, used to estimate TSS. Bathymetry was obtained from sonar transects and water level changes were recorded by 19 water level pressure transducers. We used several Acoustic Doppler Current Profiler (ADCP) transects to estimate river discharge. The remotely sensed measurements of water surface slope were small ( 1cm/km) and varied slightly along the channel, especially at the confluence with bayous and the intra-coastal waterway. The slope also underwent significant changes during the tidal cycle. Lateral fluxes to island marshes were mainly observed by UAVSAR close to the distributaries. The extensive remote sensing measurements showed significant disparity with the hydrology model outputs. Observed variations in water surface slopes were unmatched by the model and tidal wave propagation was much faster than gauge measurements. The slope variations were compensated for in the models by tuning local lateral fluxes, bathymetry and riverbed friction. Overall, the simpler 1D

  3. INFLUENCE OF EXTREME DISCHARGE ON RESTORATION WORKS IN MOUNTAIN RIVER – A CASE STUDY OF THE KRZCZONÓWKA RIVER (SOUTHERN POLAND

    Directory of Open Access Journals (Sweden)

    Anna Lenar-Matyas

    2015-06-01

    Full Text Available The research was conducted on the Krzczonówka River channel, one of the gravel-bedded, regulated mountain river in Polish Carpathians. The main morphological and ecological problem of the river was lack of sediment and channel downcutting. The area is currently associated with an on-going project called “the Upper Raba River Spawning Grounds”. Lowering of an existing debris dam on Krzczonówka River is a part of the project. In 2013 twelve artificial riffles have been created by heaping up stones at points within the segment of the river channel below the debris dam. The riffles are to introduce variety to the longitudinal profile of the river and to reduce the river’s slope. Consequently, these are to decrease sediment transport and to prevent further deepening of the river channel. Post-project monitoring of river restoration works is conducted to determine channel changes and development. In May, 2014, extreme flooding occurred, which caused unexpected changes in channel development. This paper describes maintenance work performed in the riverbed of the Krzczonówka River. Observations and calculations concerning changes in conditions of water flow and sediment transport are also presented. The main purpose is to characterize the influence of an extreme flow event on morphology and functioning of the recently restored gravel-bed river.

  4. Impact of river discharge on the coastal water pH and pCO2 levels during the Indian Ocean Dipole (IOD) years in the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Paul, Y.S.; Vani, D.G.; Murty, V.S.N.

    > levels in the coastal western BoB. It could be envisioned that the enhanced acidity in the coastal waters due to variations in river discharge and phases of IOD may significantly modify the coastal ecosystem that requires careful evaluation...

  5. Oedipus in Brooklyn: reading Freud on women, watching Lena Dunham's girls.

    Science.gov (United States)

    Buchberg, Lisa

    2014-01-01

    Through an examination of Freud's Lecture 33, "Femininity" (1933), and "Mourning and Melancholia" (1917), the author proposes a reading of Freud's description of the girl becoming a woman. Female development is retold as a melancholic narrative-one in which the girl's entrance into the positive Oedipus is founded on unconscious grievance and unmourned loss of the early relationship with her mother. Castration and penis envy are reconceived as melancholic markers-the manifest content of the subjectivity of refusal, loss, and imagined repair of the early maternal relationship. Lena Dunham's HBO television series Girls is analyzed as an illustration of these theoretical understandings. © 2014 The Psychoanalytic Quarterly, Inc.

  6. Modeling discharge and water quality in a temporary river basin using SWAT model: A case-study on the Ardila river

    OpenAIRE

    Durão, Anabela; Serafim, António; Brito, David; Morais, Manuela

    2012-01-01

    Temporary rivers have a hydrologic variability, which are characterized by long drought periods and short floods events, that influences water quality. Analysis of river flow generated in the Ardila river basin (temporary regime) using precipitation data (from 1931 to 2003) from a weather station, located within the basin, at the Portuguese side (which represents only 22% of the study area) showed a discrepancy between the modeled and observed runoff since 1981. It was also revealed a satisfa...

  7. Up-to-date concentrations of long-lived artificial radionuclides in the Tom and Ob rivers in the area influenced by discharges from Siberian chemical combine

    International Nuclear Information System (INIS)

    Nikitin, A.I.; Kryshev, I.I.; Bashkirov, N.I.; Valetova, N.K.; Dunaev, G.E.; Kabanov, A.I.; Katrich, I.Yu; Krutovsky, A.O.; Nikitin, V.A.; Petrenko, G.I.; Polukhina, A.M.; Selivanova, G.V.; Shkuro, V.N.

    2012-01-01

    The Siberian Chemical Combine (SCC) is located in Seversk (formerly known as Tomsk-7) in the Tomsk Region of the Russian Federation. The main contribution of radionuclides in the SCC process water discharged into the Tom River was from the single-pass reactors, now removed from service (the last SCC reactor was shutdown on June 5, 2008). The data on the concentrations of 90 Sr, 137 Cs, 239,240 Pu and other artificial radionuclides in water, bottom sediments and flood-plain soils of the Tom and Ob rivers from Tomsk to the confluence of the rivers, are presented and discussed. The results of measurements carried out after shutdown of the last SCC single-pass reactor indicated no radiologically significant consequences of SCC activities for the studied water environment compartments. Contemporary activity concentrations of long-lived artificial radionuclides 3 H, 90 Sr, 137 Cs and 239,240 Pu in river water were below the intervention levels established by current regulations of the Russian Federation for these radionuclides. The results of 3 H analysis in water from the Tom and Samuska rivers demonstrated no inflow of contaminated formation water to surface water from the sites where liquid radioactive wastes of the SCC were injected below the surface. However, the density of flood-plain soil contamination by long-lived 137 Cs in the area influenced by SCC liquid discharges was higher than regional technogenic background. There were local flood-plain areas contaminated not only by 137 Cs, but also other gamma-emitters, such as 60 Co and 152 Eu.

  8. Characterization of mean transit time at large springs in the Upper Colorado River Basin, USA: A tool for assessing groundwater discharge vulnerability

    Science.gov (United States)

    Solder, John; Stolp, Bernard J.; Heilweil, Victor M.; Susong, David D.

    2016-01-01

    Environmental tracers (noble gases, tritium, industrial gases, stable isotopes, and radio-carbon) and hydrogeology were interpreted to determine groundwater transit-time distribution and calculate mean transit time (MTT) with lumped parameter modeling at 19 large springs distributed throughout the Upper Colorado River Basin (UCRB), USA. The predictive value of the MTT to evaluate the pattern and timing of groundwater response to hydraulic stress (i.e., vulnerability) is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the springs range from 10 to 15,000 years and 90 % of the cumulative discharge-weighted travel-time distribution falls within the range of 2−10,000 years. Historical variability in discharge was assessed as the ratio of 10–90 % flow-exceedance (R 10/90%) and ranged from 2.8 to 1.1 for select springs with available discharge data. The lag-time (i.e., delay in discharge response to drought conditions) was determined by cross-correlation analysis and ranged from 0.5 to 6 years for the same select springs. Springs with shorter MTTs (<80 years) statistically correlate with larger discharge variations and faster responses to drought, indicating MTT can be used for estimating the relative magnitude and timing of groundwater response. Results indicate that groundwater discharge to streams in the UCRB will likely respond on the order of years to climate variation and increasing groundwater withdrawals.

  9. The impact of major earthquakes and subsequent sewage discharges on the microbial quality of water and sediments in an urban river.

    Science.gov (United States)

    Devane, Megan L; Moriarty, Elaine M; Wood, David; Webster-Brown, Jenny; Gilpin, Brent J

    2014-07-01

    A series of large earthquakes struck the city of Christchurch, New Zealand in 2010-2011. Major damage sustained by the sewerage infrastructure required direct discharge of up to 38,000 m(3)/day of raw sewage into the Avon River of Christchurch for approximately six months. This allowed evaluation of the relationship between concentrations of indicator microorganisms (Escherichia coli, Clostridium perfringens and F-RNA phage) and pathogens (Campylobacter, Giardia and Cryptosporidium) in recreational water and sediment both during and post-cessation of sewage discharges. Giardia was the pathogen found most frequently in river water and sediment, although Campylobacter was found at higher levels in water samples. E. coli levels in water above 550 CFU/100 mL were associated with increased likelihood of detection of Campylobacter, Giardia and Cryptosporidium, supporting the use of E. coli as a reliable indicator for public health risk. The strength of the correlation of microbial indicators with pathogen detection in water decreased in the following order: E. coli>F-RNA phage>C. perfringens. All the microorganisms assayed in this study could be recovered from sediments. C. perfringens was observed to accumulate in sediments, which may have confounded its usefulness as an indicator of fresh sewage discharge. F-RNA phage, however, did not appear to accumulate in sediment and in conjunction with E. coli, may have potential as an indicator of recent human sewage discharge in freshwater. There is evidence to support the low-level persistence of Cryptosporidium and Giardia, but not Campylobacter, in river sediments after cessation of sewage discharges. In the event of disturbances of the sediment, it is highly probable that there could be re-mobilisation of microorganisms beyond the sediment-water exchange processes occurring under base flow conditions. Re-suspension events do, therefore, increase the potential risk to human health for those who participate in recreational

  10. Food and feeding of juvenile chinook salmon in the central Columbia River in relation to thermal discharges and other environmental features

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.D. [Pacific Northwest Labs., Richland, WA (United States). Ecosystems Dept.

    1970-08-01

    The relationship of thermal discharges from operating Hanford reactors to food and feeding of juvenile chinook salmon (Oncorhynchus tshawytscha) in the central Columbia River, Washington was studied in 1968 and 1969. The primary objectives were to (1) evaluate the food composition and feeding activities of the fish and (2) determine if heated effluents influenced their welfare. Environmental conditions (seasonal changes in river temperatures and flow volumes) in relation to thermal requirements of young chinook are detailed. Data on food organisms utilized by the fish in 1968 and 1969 are presented, whereas analyses for possible thermal effects are based on the more extensive 1969 data. No consistent differences attributable to thermal increments were evident. The lack of detectable effects apparently results from the fact that the main discharge plumes occur in midriver and the effluents are well mixed before reaching inshore feeding areas. The transient nature of fish at each sampling site and the availability of food organisms in the river drift are ecological factors affecting critical thermal evaluation.

  11. Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA

    International Nuclear Information System (INIS)

    Wurm, Michael; Feilitzsch, F V; Goeger-Neff, M; Lewke, T; Undagoitia, T Marrodan; Oberauer, L; Potzel, W; Todor, S; Winter, J

    2008-01-01

    The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R and D activities.

  12. Microdosimetric measurements in the thermal neutron irradiation facility of LENA reactor

    International Nuclear Information System (INIS)

    Colautti, P.; Moro, D.; Chiriotti, S.; Conte, V.; Evangelista, L.; Altieri, S.; Bortolussi, S.; Protti, N.; Postuma, I.

    2014-01-01

    A twin TEPC with electric-field guard tubes has been constructed to be used to characterize the BNCT field of the irradiation facility of LENA reactor. One of the two mini TEPC was doped with 50 ppm of 10 B in order to simulate the BNC events occurring in BNCT. By properly processing the two microdosimetric spectra, the gamma, neutron and BNC spectral components can be derived with good precision (∼6%). However, direct measurements of 10 B in some doped plastic samples, which were used for constructing the cathode walls, point out the scarce accuracy of the nominal 10 B concentration value. The influence of the Boral ® door, which closes the irradiation channel, has been measured. The gamma dose increases significantly (+51%) when the Boral ® door is closed. The crypt-cell-regeneration weighting function has been used to measure the quality, namely the RBE µ value, of the radiation field in different conditions. The measured RBE µ values are only partially consistent with the RBE values of other BNCT facilities. - Highlights: • A counter with two mini TEPCs, both equipped with electrical-field guard tubes, has been constructed. • The microdosimetric spectrum of the LENA-reactor irradiation vane has been studied. • The radiation-field quality (RBE) assessment confirms that the D n /D tot ratio is not an accurate parameter to characterize the BNCT radiation field

  13. Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, Michael; Feilitzsch, F V; Goeger-Neff, M; Lewke, T; Undagoitia, T Marrodan; Oberauer, L; Potzel, W; Todor, S; Winter, J [E15 Chair for Astroparticle Physics, Technische Universitat Miinchen, Physik Department, James-Franck-Str., D-85748 Garching (Germany)

    2008-11-01

    The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R and D activities.

  14. Metal concentrations and pathological responses of wild native fish exposed to sewage discharge in a Mediterranean river

    Energy Technology Data Exchange (ETDEWEB)

    Maceda-Veiga, Alberto, E-mail: albertomaceda@gmail.com [Department of Animal Biology (Vertebrates) and Biodiversity Research Institute (IRBio), University of Barcelona, E-08028 Barcelona (Spain); Monroy, Mario; Navarro, Elisenda [Department of Animal Biology (Vertebrates) and Biodiversity Research Institute (IRBio), University of Barcelona, E-08028 Barcelona (Spain); Viscor, Ginés [Department of Animal Physiology (Faculty of Biology), University of Barcelona, E-08028 Barcelona (Spain); Sostoa, Adolfo de [Department of Animal Biology (Vertebrates) and Biodiversity Research Institute (IRBio), University of Barcelona, E-08028 Barcelona (Spain)

    2013-04-01

    The requirements of the Water Framework Directive suggest the need for further research to test and develop sensitive tools that will allow freshwater managers to detect impacts on fish communities. Diagnostic refinement often encompasses the use of lethal diagnostic tools that are incompatible with the conservation of native ichthyofauna. Here we determine the metal concentration and the pathological response of Squalius laietanus exposed to sewage discharges in the Ripoll river (north-eastern Spain), and compare these findings with our previous studies on Barbus meridionalis using lethal and non-lethal diagnostic tools. Metals concentrations (Zn, Cu, Pb, Hg, Fe, Cd and Ni) were determined in liver and muscle. A complete blood cell profile (haematocrit, haemoglobin, differential leukocyte count, erythrocytic nuclear abnormalities, erythrocytes in division and the development stage of erythrocytes) was used as a non-lethal diagnostic tool to determine early warning signs of disease in these two fish species. As the reference range for these haematological variables is lacking, liver histology, calculation of body condition (CF) and organosomatic indices (HSI and GSI) were employed to support the findings of the blood analyses. Compared to our previous results on B. meridionalis, S. laietanus appeared to have fewer pathological responses than B. meridionalis under the environmental conditions measured and the fish size range examined in this study. Both species showed a similar bioaccumulation pattern, but B. meridionalis stored high Hg and Cu concentrations in muscle and liver, respectively. Hg, Cu and Pb concentrations in fish tissues exceeded the thresholds of European and Spanish legislation. Our findings pinpoint the potential suitability of the blood variables determined in the health diagnoses of these species. Further research will be necessary to establish the natural variability of these and other haematological variables to convert haematology into a

  15. Metal concentrations and pathological responses of wild native fish exposed to sewage discharge in a Mediterranean river

    International Nuclear Information System (INIS)

    Maceda-Veiga, Alberto; Monroy, Mario; Navarro, Elisenda; Viscor, Ginés; Sostoa, Adolfo de

    2013-01-01

    The requirements of the Water Framework Directive suggest the need for further research to test and develop sensitive tools that will allow freshwater managers to detect impacts on fish communities. Diagnostic refinement often encompasses the use of lethal diagnostic tools that are incompatible with the conservation of native ichthyofauna. Here we determine the metal concentration and the pathological response of Squalius laietanus exposed to sewage discharges in the Ripoll river (north-eastern Spain), and compare these findings with our previous studies on Barbus meridionalis using lethal and non-lethal diagnostic tools. Metals concentrations (Zn, Cu, Pb, Hg, Fe, Cd and Ni) were determined in liver and muscle. A complete blood cell profile (haematocrit, haemoglobin, differential leukocyte count, erythrocytic nuclear abnormalities, erythrocytes in division and the development stage of erythrocytes) was used as a non-lethal diagnostic tool to determine early warning signs of disease in these two fish species. As the reference range for these haematological variables is lacking, liver histology, calculation of body condition (CF) and organosomatic indices (HSI and GSI) were employed to support the findings of the blood analyses. Compared to our previous results on B. meridionalis, S. laietanus appeared to have fewer pathological responses than B. meridionalis under the environmental conditions measured and the fish size range examined in this study. Both species showed a similar bioaccumulation pattern, but B. meridionalis stored high Hg and Cu concentrations in muscle and liver, respectively. Hg, Cu and Pb concentrations in fish tissues exceeded the thresholds of European and Spanish legislation. Our findings pinpoint the potential suitability of the blood variables determined in the health diagnoses of these species. Further research will be necessary to establish the natural variability of these and other haematological variables to convert haematology into a

  16. Examination of Direct Discharge Measurement Data and Historic Daily Data for Selected Gages on the Middle Mississippi River, 1861-2008

    Science.gov (United States)

    Huizinga, Richard J.

    2009-01-01

    An examination of data from two continuous stage and discharge streamgages and one continuous stage-only gage on the Middle Mississippi River was made to determine stage-discharge relation changes through time and to investigate cause-and-effect mechanisms through evaluation of hydraulic geometry, channel elevation and water-surface elevation data. Data from discrete, direct measurements at the streamgages at St. Louis, Missouri, and Chester, Illinois, during the period of operation by the U.S. Geological Survey from 1933 to 2008 were examined for changes with time. Daily stage values from the streamgages at St. Louis (1861-2008) and Chester (1891-2008) and the stage-only gage at Cape Girardeau, Missouri (1896-2008), throughout the historic period of record also were examined for changes with time. Stage and discharge from measurements and stage-discharge relations at the streamgages at St. Louis and Chester indicate that stage for a given discharge has changed with time at both locations. An apparent increase in stage for a given discharge at increased flows (greater than flood stage) likely is caused by the raising of levees on the flood plains, and a decrease in stage for a given discharge at low flows (less than one-half flood stage) likely is caused by a combination of dikes in the channel that deepen the channel thalweg at the end of the dikes, and reduced sediment flux into the Middle Mississippi River. Since the 1960s at St. Louis, Missouri, the stage-discharge relations indicated no change or a decrease in stage for a given discharge for all discharges, whereas at Chester, Illinois, the stage-discharge relations indicate increasing stage for a given discharge above bankfull because of sediment infilling of the overflow channel. Top width and average velocity from measurements at a given discharge for the streamgage at St. Louis, Missouri, were relatively constant through time, with the only substantial change in top width resulting from the change in

  17. Ecology of common bully (Gobiomorphus cotidianus) in the Tarawera and Rangitiki rivers : isolation by inland distance or anthropogenic discharge?

    International Nuclear Information System (INIS)

    Bleackley, N.A.; Landman, M.J.; Ling, N.

    2009-01-01

    Previous research has identified distinct genetic, life-history and reproductive differences between populations of common bully (Gobiomorphus cotidianus) upstream and downstream of a pulp and paper mill outfall on the Tarawera River in the Bay of Plenty, New Zealand. This study investigated the distribution of common bully in the Tarawera River by examining fish collected from upstream (37 km inland) and downstream (20 km inland) locations and comparing them to fish from similar inland locations (40 km and 17 km inland, respectively) in the nearby Rangitaiki River. Reproductive divergence was observed between upstream and downstream sites of both rivers by differing annual trends in gonadosomatic index. Stable carbon and nitrogen isotopes confirmed residency at each sampling site and otolith microchemistry demonstrated different life-history strategies between upstream and downstream populations. Diadromous recruits dominated in both downstream river populations, with a general disappearance of diadromy upstream. A mixture of diadromous and non-diadromous fish were found in the upstream Rangitaiki River, whereas diadromous recruits were absent in the upstream Tarawera River. A reduction in oculoscapular canal structures also coincided with loss of diadromy in fish from both rivers. A behavioural study to determine whether pulp and paper mill effluent may deter fish migration within the Tarawera River demonstrated a strong avoidance of effluent, but only at concentrations (>25%) greater than those that naturally occur in the river (<15%). The results of this study suggest that combinations of influences coupled with inland distance are likely to be responsible for the isolation of common bully subpopulations within the Tarawera River. (author). 51 refs., 5 figs., 1 tab.

  18. Basal Resources in Backwaters of the Colorado River Below Glen Canyon Dam-Effects of Discharge Regimes and Comparison with Mainstem Depositional Environments

    Science.gov (United States)

    Behn, Katherine E.; Kennedy, Theodore A.; Hall, Robert O.

    2010-01-01

    Eight species of fish were native to the Colorado River before the closure of Glen Canyon Dam, but only four of these native species are currently present. A variety of factors are responsible for the loss of native fish species and the limited distribution and abundance of those that remain. These factors include cold and constant water temperatures, predation and competition with nonnative fish species, and food limitation. Backwaters are areas of stagnant flow in a return-current channel and are thought to be critical rearing habitat for juvenile native fish. Backwaters can be warmer than the main channel and may support higher rates of food production. Glen Canyon Dam is a peaking hydropower facility and, as a result, has subdaily variation in discharge because of changes in demand for power. Stable daily discharges may improve the quality of nearshore rearing habitats such as backwaters by increasing warming, stabilizing the substrate, and increasing food production. To evaluate whether backwaters have greater available food resources than main-channel habitats, and how resource availability in backwaters is affected by stable flow regimes, we quantified water-column and benthic food resources in backwaters seasonally for 1 year using both standing (organic matter concentration/density; chlorophyll a concentration/density; zooplankton concentration; benthic invertebrate density and biomass) and process measurements (chamber estimates of ecosystem metabolism). We compared backwater resource measurements with comparable data from main-channel habitats, and compared backwater data collected during stable discharge with data collected when there was subdaily variation in discharge. Rates of primary production in backwaters (mean gross primary production of 1.7 g O2/m2/d) and the main channel (mean gross primary production of 2.0 g O2/m2/d) were similar. Benthic organic matter standing stock (presented as ash-free dry mass-AFDM) was seven times higher in backwaters

  19. Preliminary Analysis of the Role of Wetlands and Rivers in the Groundwater Discharge of the Guarani Aquifer System in NE Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Vives, L., E-mail: lvives@faa.unicen.edu.ar [Instituto de Hidrologia de Llanuras, Universidad Nacional del Centro de la Provincia de Buenos Aires, Azul (Argentina); Rodriguez, L. [Centro de Estudios Hidroambientales, Facultad de Ingenieria y Ciencias Hidricas, Universidad Nacional del Litoral, Santa Fe (Argentina); Manzano, M. [Escuela de Ingenieria de Caminos y de Minas, Universidad Politecnica de Cartagena, Cartagena (Spain); Valladares, A. [Subsecretaria de Recursos Hidricos (Argentina); Aggarwal, P. K.; Araguas Araguas, L. [International Atomic Energy Angency, Vienna (Austria)

    2013-07-15

    The Guarani Aquifer System (GAS) is the largest aquifer in South America. Previous regional hydrochemical and isotopic studies suggested that discharge may occur at wetlands and reaches of the Parana and Uruguay Rivers. Preliminary findings of a project aimed at verifying the discharge hypothesis on the southern GAS region are presented. The hydrochemical- isotopic composition of 17 samples from surface and groundwater in that area were analysed. Some waters showed chemical facies and isotopic (stable isotope and carbon-14) signatures similar to the formerly identified as GAS+pre-GAS formations. Admixtures between modern and GAS+pre-GAS waters were found at depths between less than 100 m and 200 m. A 96 m deep well located near the Ibera lagoon showed chemical and isotopic composition indicating presence of GAS waters. The hydraulic gradient favours upward flow near the wetlands, but surface waters seem to originate from local recharge. Investigations continue, incorporating {sup 222}Rn and new sampling sites. (author)

  20. Bioassessment of the Effluents Discharged from Two Export Oriented Industrial Zones Located in Kelani River Basin, Sri Lanka Using Erythrocytic Responses of the Fish, Nile Tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Hemachandra, C K; Pathiratne, A

    2017-10-01

    Complex effluents originating from diverse industrial processes in industrial zones could pose cytotoxic/genotoxic hazards to biota in the receiving ecosystems which cannot be revealed by conventional monitoring methods. This study assessed potential cytotoxicity/genotoxicity of treated effluents of two industrial zones which are discharged into Kelani river, Sri Lanka combining erythrocytic abnormality tests and comet assay of the tropical model fish, Nile tilapia. Exposure of fish to the effluents induced erythrocytic DNA damage and deformed erythrocytes with serrated membranes, vacuolations, nuclear buds and micronuclei showing cytotoxic/genotoxic hazards in all cases. Occasional exceedance of industrial effluent discharge regulatory limits was noted for color and lead which may have contributed to the observed cytotoxicity/genotoxicity of effluents. The results demonstrate that fish erythrocytic responses could be used as effective bioanalytical tools for cytotoxic/genotoxic hazard assessments of complex effluents of industrial zones for optimization of the waste treatment process in order to reduce biological impacts.

  1. Mobile platform for fish migration upstream from the discharge sill situated near Dacia bridge on Crișul Repede River

    Directory of Open Access Journals (Sweden)

    Răzvan VOICU

    2016-06-01

    Full Text Available Longitudinal connectivity represent the way in which organisms move the energy and material exchanges located throughout the water. Fragmentation the longitudinal connectivity of watercourses caused by dams or other hydrotechnical constructions represent a major impact on sediment transport, hydrological regime, downstream moving and biota migration. The hydromorphological elements (river continuity, as well as chemical, biological, physicochemical elements characterize the ecological status of rivers. Migratory fish species: nase (Chondrostoma nasus - protected by Bern Convention - Appendix III, barbel (Barbus barbus - rare species, protected Habitats Directive (Annex V, annex 4A of Low nr.462 and Red List of RBDD and Freshwater bream (Abramis brama - protected by Bern Convention (Appendix III are blocked by the hydrotechnical constructions (discharge sills, dams located across the watercourse Crișul Repede River. One of the important think of this system is the gravitational fall of water. This solution will lead to the restoration of the longitudinal connection of the Crișul Repede River in the Oradea City, near Dacia Bridge. Romania is part of the European Union and it has the obligation to implement the provisions of the Water Framework Directive 2000/60/EC, transposed into Romanian legislation by the Water Law 107/1996 as supplemented and amended (Act 310/2004.

  2. Alteration of Water Pollution Level with the Seasonal Changes in Mean Daily Discharge in Three Main Rivers around Dhaka City, Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Saiful Islam

    2015-06-01

    Full Text Available A study based on the physicochemical parameters and dissolved metals levels from three main rivers around Dhaka City, Bangladesh, was conducted in order to determine the present pollution status and their alteration trends with the seasonal change of discharge amount. The water samples were collected from the rivers Buriganga, Turag, and Shitalakkhya during both dry and monsoon seasons. Physicochemical analyses revealed that most of the water quality parameters exceeded the recommended levels set by the Department of Environment (DoE, Bangladesh, during both the dry and monsoon seasons. A very strong positive correlation was found between biochemical oxygen demand (BOD and chemical oxygen demand (COD in all sampling points. Both BOD and COD values had a strong negative correlation with dissolved oxygen (DO in the Shitalakkhya River. Most of the dissolved metals concentrations in the water samples were similar. However, the concentrations of different physicochemical properties varied with the seasons. The dry season had significantly higher contamination loads, which were decreased during the monsoon season. Anthropogenic activities, as well as the variation in river water flow during different seasons were the main reasons for this high degree of water pollution.

  3. Purification of discharges into rivers from Hunosa's coal washeries. Depuracion de vertidos a cauces publicos, de los lavaderos de carbon de Hunosa

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Valcacce, J.A. (HUNOSA, Mieres (Spain))

    1992-04-01

    HUNOSA is currently facing the problem of pollution by its coal washeries which were designed, built and approved at a time when environmental regulations did not restrict discharge into rivers. A complete study has been carried out on the five washeries in question and the most viable solution both operationally and financially has been implemented. The solutions employed include concentration of the washeries in one area, as is the case of Modesta and Carrocera, to the use of mixed systems of dry cutting and subsequent processing by settling and filtration in the remainder of the washeries. 5 figs., 2 tabs.

  4. Fresh Water River discharges as observed by SMOS in the Arabian Sea and the Bay of Bengal

    Science.gov (United States)

    Olmedo, Estrella; Ballabrera-Poy, Joaquim; Turiel, Antonio

    2017-04-01

    The Bay of Bengal (BoB) and the Arabian Sea (AS) are two peculiar regions in the Indian Ocean exhibiting a wide range of Sea Surface Salinity (SSS) values. In the BoB, the strong summer monsoon rainfall and the continental run-offs into these semi-enclosed basins result in an intense dilution of the surface seawater in the northern part of the Bay, thereby inducing some of the lowest SSS water masses found in the tropical belt. In the AS, because of the intense variability associated with the monsoon cycle, water mass structure in the upper layers of the AS shows enormous variability in the space and time. As such, the role of the salinity in these regions is crucial in the ocean dynamics of these regions. After more than 7 years in orbit, the Soil Moisture and Ocean Salinity (SMOS) mission [1] continues to provide a series of salinity data that could be used to monitor the SSS variations in these climatically relevant regions, provided that systematic errors due to land contamination are reduced. Recently-developed algorithms for SSS retrieval [2] have improved the filtering criteria and the mitigation of the systematic bias, providing coherent SSS retrievals close to the land masses. In this work we have analyzed the SSS in 2-degree boxes located at the mouth of the main rivers in the BoB: Ganges-Brahmaputra, Irrawady, Mahanadi, Godovari; and in the AS: Indus. We have first tried to validate the SMOS salinity retrievals with in situ measurements. Since there is few available in situ data, we have also compared the climatological SSS behavior derived from SMOS with the ones provided by the World Ocean Atlas [3]. We have also compared the SMOS SSS data with historical data of discharges [4] and [5], ocean currents from the Ocean Surface Current Analyses Real-time (OSCAR) [6], Sea Surface Temperature from Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) [7],[8] and [9] and Chlorophyll data [10]. The conclusion of this work is that, when the proper

  5. Nitrogen and phosphorus transport between Fourleague Bay, LA, and the Gulf of Mexico: The role of winter cold fronts and Atchafalaya River discharge

    Science.gov (United States)

    Perez, B.C.; Day, J.W.; Justic, D.; Twilley, R.R.

    2003-01-01

    Nutrient fluxes were measured between Fourleague Bay, a shallow Louisiana estuary, and the Gulf of Mexico every 3 h between February 1 and April 30, 1994 to determine how high velocity winds associated with cold fronts and peak Atchafalaya River discharge influenced transport. Net water fluxes were ebb-dominated throughout the study because of wind forcing and high volumes of water entering the northern Bay from the Atchafalaya River. Flushing time of the Bay averaged winds with approximately 56% of the volume of the Bay exported to the Gulf in 1 day during the strongest flushing event. Higher nitrate + nitrite (NO2+ NO3), total nitrogen (TN), and total phosphorus (TP) concentrations were indicative of Atchafalaya River input and fluxes were greater when influenced by high velocity northerly winds associated with frontal passage. Net exports of NO2 + NO3, TN, and TP were 43.5, 98.5, and 13.6 g s-1, respectively, for the 89-day study. An average of 10.6 g s-1 of ammonium (NH4) was exported to the Gulf over the study; however, concentrations were lower when associated with riverine influence and wind-driven exports suggesting the importance of biological processes. Phosphate (PO4) fluxes were nearly balanced over the study with fairly stable concentrations indicating a well-buffered system. The results indicate that the high energy subsidy provided by natural pulsing events such as atmospheric cold fronts and seasonal river discharge are efficient mechanisms of nutrient delivery to adjacent wetlands and nearshore coastal ecosystems and are important in maintaining coastal sustainability. ?? 2003 Elsevier Ltd. All rights reserved.

  6. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina)

    Science.gov (United States)

    Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.

    2014-01-01

    Multiple techniques, including thermal infrared aerial remote sensing, geophysical and geological data, geochemical characterization and radium isotopes, were used to evaluate the role of groundwater as a source of dissolved nutrients, carbon, and trace gases to the Okatee River estuary, South Carolina. Thermal infrared aerial remote sensing surveys illustrated the presence of multiple submarine groundwater discharge sites in Okatee headwaters. Significant relationships were observed between groundwater geochemical constituents and 226Ra activity in groundwater with higher 226Ra activity correlated to higher concentrations of organics, dissolved inorganic carbon, nutrients, and trace gases to the Okatee system. A system-level radium mass balance confirmed a substantial submarine groundwater discharge contribution of these constituents to the Okatee River. Diffusive benthic flux measurements and potential denitrification rate assays tracked the fate of constituents in creek bank sediments. Diffusive benthic fluxes were substantially lower than calculated radium-based submarine groundwater discharge inputs, showing that advection of groundwater-derived nutrients dominated fluxes in the system. While a considerable potential for denitrification in tidal creek bank sediments was noted, in situ denitrification rates were nitrate-limited, making intertidal sediments an inefficient nitrogen sink in this system. Groundwater geochemical data indicated significant differences in groundwater chemical composition and radium activity ratios between the eastern and western sides of the river; these likely arose from the distinct hydrological regimes observed in each area. Groundwater from the western side of the Okatee headwaters was characterized by higher concentrations of dissolved organic and inorganic carbon, dissolved organic nitrogen, inorganic nutrients and reduced metabolites and trace gases, i.e. methane and nitrous oxide, than groundwater from the eastern side

  7. The influence of large-scale climatic patterns on precipitation, temperature, and discharge in Czech river basins

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav

    2013-01-01

    Roč. 61, č. 4 (2013), s. 278-285 ISSN 0042-790X R&D Projects: GA AV ČR IAA300600901 Institutional support: RVO:67985874 Keywords : macro-scale climatic patterns * cidlina river * Blanice river * hydrometeorology Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.231, year: 2013 http://147.213.145.2/vc/vc1.asp

  8. Antibiotic contamination in a typical developing city in south China: occurrence and ecological risks in the Yongjiang River impacted by tributary discharge and anthropogenic activities.

    Science.gov (United States)

    Xue, Baoming; Zhang, Ruijie; Wang, Yinghui; Liu, Xiang; Li, Jun; Zhang, Gan

    2013-06-01

    The occurrence and distribution of ten selected antibiotics from three groups (sulfonamides, macrolides, and trimethoprim) were investigated in the Yongjiang River, which flows through Nanning City, a typical developing city in China. The study also assessed the ecological risks and the potential effects caused by discharge from tributaries and anthropogenic activities. Concentrations of most of the antibiotics were elevated along the section of the river in the urban area, highlighting the significant impact of high population density and human activities on the presence of antibiotics in the environment. The concentrations in the tributaries (ranged from not detected to 1336ngL(-1)) were generally higher than those in the main stream (ranged from not detected to 78.8ngL(-1)), but both areas contained the same predominant antibiotics, revealing the importance of tributary discharge as a source of antibiotic pollution. A risk assessment for the surface water contamination revealed that sulfamethoxazole and erythromycin posed high ecological risks to the most sensitive aquatic organisms (Synechococcus leopoliensis and Pseudokirchneriella subcapitata, respectively) in the midstream and some tributaries. Most of the selected antibiotics presented high ecological risks (risk quotients up to 95) in the sediments. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Extraits de Pobeg kumaniki / La Pousse de mûrier sauvage de Lena Eltang

    Directory of Open Access Journals (Sweden)

    Lena Eltang

    2012-06-01

    Full Text Available PrésentationLena Eltang (1964, Leningrad, journaliste et traductrice, s’est fait connaître en tant que poète dès 2003 grâce à la parution de ses recueils de poèmes Jantarnyj skaz (La légende d’ambre, 2003 et Drugie vozmožnosti (Autres possibilités, 2004. Son premier roman, Pobeg kumaniki (La pousse de mûrier sauvage, 2006 nous plonge dans une aventure mystico-ésotérique, où un historien, Oscar Theo Forge, est persuadé d’avoir retrouvé six artéfacts indispensables au Grand œuvre lors de fo...

  10. The Chernobyl nuclear accident: environmental radioactivity monitoring at the LENA site

    International Nuclear Information System (INIS)

    Genova, N.; Meloni, S.; Rosti, G.; Caramella Crespi, V.

    1986-01-01

    Air pumping and filtration stations nearby the LENA site, routinely active for air radioactivity monitoring, were alerted on April 28, 1986 to look for fission products coming from U.S.S.R. after the Chernobyl accident according to weather forecast. Air filters were submitted to direct gamma ray spectrometry and fission products detected. After May 1st 1986, when the maximum radionuclide concentration in air was observed, an environmental radioactivity monitoring program was started. Several matrices such as milk, soil, grass, vegetables, tap and rain water, were systematically analyzed. At the moment the program is still active but only air, milk, vegetables and meat are periodically analyzed by gamma ray spectrometry. Results, distributions and correlations are presented and discussed. (author)

  11. Detection of supernova neutrinos in the liquid-scintillator experiment LENA

    International Nuclear Information System (INIS)

    Winter, Jurgen Michael Albrecht

    2014-01-01

    The LENA project (Low-Energy Neutrino Astronomy) is a planned large-volume liquid-scintillator detector. The good energy resolution, low-energy threshold, and its large mass allow to perform real-time spectroscopy of low-energy neutrinos with high statistics. This is especially beneficial for the observation of rare events such as a galactic core-collapse supernova. In a liquid scintillator, interactions by different particle types cause different scintillation light pulse shapes. They can be used to identify proton recoils induced by neutrino-proton scattering from supernova neutrinos or by cosmogenic knock-out neutrons. In order to evaluate the performance of the detector, a precise characterization of the liquid scintillator is necessary. In the course of this work, an experiment has been set up at the Maier-Leibnitz-Laboratorium in Garching in order to determine the pulse shape of proton and electron recoils in different liquid-scintillator mixtures. Neutrons produced via 11 B(p,n) 11 C or an americiumberyllium source were used to induce proton recoils. Compton scattering of simultaneously emitted γs provided information on the electron recoils. A time-of-flight measurement allows for an easy identification of neutron and γ induced events and thus effective background reduction. The tail-to-total and the Gatti method are used in order to determine the energy-dependent discrimination power of proton and electron recoils in liquid scintillator. Combining both methods, a proton recoil identification efficiency of (99.70±0.05)% can be achieved between 1-1.5 MeV, while suppressing 99% of the γ induced recoils for the probable liquid scintillator mixture for LENA, linear alkylbenzene (LAB) as solvent and 3 g/l 2,5-diphenyloxazole (PPO) and 20mg/l 1,4-bis-(o-methylstyryl)-benzole (bisMSB) as fluors. Moreover, the decay constants τ i and the respective amplitudes n i are determined for various liquid scintillator mixtures. It can be observed that the decay times

  12. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Science.gov (United States)

    Stubbins, Aron; Spencer, Robert; Mann, Paul; Holmes, R.; McClelland, James; Niggemann, Jutta; Dittmar, Thorsten

    2015-10-01

    Wildfires have produced black carbon (BC) since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC). The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon) were analyzed for dissolved organic carbon (DOC), colored dissolved organic matter (CDOM), and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254). Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  13. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Directory of Open Access Journals (Sweden)

    Aron eStubbins

    2015-10-01

    Full Text Available Wildfires have produced black carbon (BC since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC. The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon were analyzed for dissolved organic carbon (DOC, colored dissolved organic matter (CDOM, and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254. Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  14. Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins worldwide—a synthesis

    Science.gov (United States)

    Krysanova, Valentina; Vetter, Tobias; Eisner, Stephanie; Huang, Shaochun; Pechlivanidis, Ilias; Strauch, Michael; Gelfan, Alexander; Kumar, Rohini; Aich, Valentin; Arheimer, Berit; Chamorro, Alejandro; van Griensven, Ann; Kundu, Dipangkar; Lobanova, Anastasia; Mishra, Vimal; Plötner, Stefan; Reinhardt, Julia; Seidou, Ousmane; Wang, Xiaoyan; Wortmann, Michel; Zeng, Xiaofan; Hattermann, Fred F.

    2017-10-01

    An intercomparison of climate change impacts projected by nine regional-scale hydrological models for 12 large river basins on all continents was performed, and sources of uncertainty were quantified in the framework of the ISIMIP project. The models ECOMAG, HBV, HYMOD, HYPE, mHM, SWAT, SWIM, VIC and WaterGAP3 were applied in the following basins: Rhine and Tagus in Europe, Niger and Blue Nile in Africa, Ganges, Lena, Upper Yellow and Upper Yangtze in Asia, Upper Mississippi, MacKenzie and Upper Amazon in America, and Darling in Australia. The model calibration and validation was done using WATCH climate data for the period 1971-2000. The results, evaluated with 14 criteria, are mostly satisfactory, except for the low flow. Climate change impacts were analyzed using projections from five global climate models under four representative concentration pathways. Trends in the period 2070-2099 in relation to the reference period 1975-2004 were evaluated for three variables: the long-term mean annual flow and high and low flow percentiles Q 10 and Q 90, as well as for flows in three months high- and low-flow periods denoted as HF and LF. For three river basins: the Lena, MacKenzie and Tagus strong trends in all five variables were found (except for Q 10 in the MacKenzie); trends with moderate certainty for three to five variables were confirmed for the Rhine, Ganges and Upper Mississippi; and increases in HF and LF were found for the Upper Amazon, Upper Yangtze and Upper Yellow. The analysis of projected streamflow seasonality demonstrated increasing streamflow volumes during the high-flow period in four basins influenced by monsoonal precipitation (Ganges, Upper Amazon, Upper Yangtze and Upper Yellow), an amplification of the snowmelt flood peaks in the Lena and MacKenzie, and a substantial decrease of discharge in the Tagus (all months). The overall average fractions of uncertainty for the annual mean flow projections in the multi-model ensemble applied for all basins

  15. Can hydrocarbons in coastal sediments be related to terrestrial flux? A case study of Godavari river discharge (Bay of Bengal)

    Digital Repository Service at National Institute of Oceanography (India)

    Rayaprolu, K.; GopalaKrishna, V.V.J.; Naik, B.G.; Mahalakshmi, G.; Rengarajan, R.; Mazumdar, A; Sarma, N.S.

    A sediment core aged ~250 years and deposition rate of ~2.4 mm yr-1 raised from the coastal region receiving inputs from the Godavari river was examined for n-alkanes The carbon preference index (CPI) of shortchain hydrocarbons (SHC...

  16. Intensified oxygen minimum zone on the western shelf of Bay of Bengal during summer monsoon: Influence of river discharge

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Krishna, M.S.; Viswanadham, R.; Rao, G.D.; Rao, V.D.; Sridevi, B.; Kumar, B.S.K.; Prasad, V.R.; Subbaiah, Ch.V.; Acharyya, T.; Bandopadhyay, D.

    monsoon 2001. Deep Sea Res. II, 50, 881–896. McAullife, C. (1971). GC Determination of solutes by multiple phase equilibration. Chemical Technology, 1, 46-50. Milliman, J.D., and R.H. Meade (1983). World-wide delivery of river sediment...

  17. Insights into hydrologic and hydrochemical processes based on concentration-discharge and end-member mixing analyses in the mid-Merced River Basin, Sierra Nevada, California

    Science.gov (United States)

    Liu, Fengjing; Conklin, Martha H.; Shaw, Glenn D.

    2017-01-01

    Both concentration-discharge relation and end-member mixing analysis were explored to elucidate the connectivity of hydrologic and hydrochemical processes using chemical data collected during 2006-2008 at Happy Isles (468 km2), Pohono Bridge (833 km2), and Briceburg (1873 km2) in the snowmelt-fed mid-Merced River basin, augmented by chemical data collected by the USGS during 1990-2014 at Happy Isles. Concentration-discharge (C-Q) in streamflow was dominated by a well-defined power law relation, with the magnitude of exponent (0.02-0.6) and R2 values (p lower on rising than falling limbs. Concentrations of conservative solutes in streamflow resulted from mixing of two end-members at Happy Isles and Pohono Bridge and three at Briceburg, with relatively constant solute concentrations in end-members. The fractional contribution of groundwater was higher on rising than falling limbs at all basin scales. The relationship between the fractional contributions of subsurface flow and groundwater and streamflow (F-Q) followed the same relation as C-Q as a result of end-member mixing. The F-Q relation was used as a simple model to simulate subsurface flow and groundwater discharges to Happy Isles from 1990 to 2014 and was successfully validated by solute concentrations measured by the USGS. It was also demonstrated that the consistency of F-Q and C-Q relations is applicable to other catchments where end-members and the C-Q relationships are well defined, suggesting hydrologic and hydrochemical processes are strongly coupled and mutually predictable. Combining concentration-discharge and end-member mixing analyses could be used as a diagnostic tool to understand streamflow generation and hydrochemical controls in catchment hydrologic studies.

  18. Geology and assessment of undiscovered oil and gas resources of the Lena-Vilyui Basin Province, 2008

    Science.gov (United States)

    Klett, Timothy; Pitman, Janet K.; Moore, T.E.; Gautier, D.L.

    2017-11-22

    The U.S. Geological Survey (USGS) recently assessed the potential for undiscovered oil and gas resources of the Lena-Vilyui Basin Province, north of the Arctic Circle, as part of the Circum-Arctic Resource Appraisal program. The province is in the Russian Federation and is situated between the Verkhoyansk fold-and-thrust belt and the Siberian craton. The one assessment unit (AU) defined for this study—the Northern Priverkhoyansk Foredeep AU—was assessed for undiscovered, technically recoverable resources. The estimated mean volumes of undiscovered resources for the Northern Priverkhoyansk Foredeep in the Lena-Vilyui Basin Province are ~400 million barrels of crude oil, 1.3 trillion cubic feet of natural gas, and 40 million barrels of natural-gas liquids, practically all (99.49 percent) of which is north of the Arctic Circle.

  19. Response of River Discharge to Changing Climate Over the Past Millennium in the Upper Mackenzie Basin: Implications for Water Resource Management

    Science.gov (United States)

    Wolfe, B. B.; Hall, R. I.; Edwards, T. W.; Jarvis, S. R.; Sinnatamby, R. N.; Yi, Y.; Johnston, J. W.

    2009-05-01

    Runoff generated from high elevations is the primary source of freshwater for western North America, yet this critical resource is managed on the basis of short instrumental records that encompass an insufficient range of climatic conditions. Like other streams that drain this part of the continent and flow across the northern Great Plains, where seasonal and extended intervals of water deficit are a natural element of the landscape, the Peace and Athabasca rivers provide water that is crucial for societal needs. Climate variability and rapidly increasing industrial development are, however, raising concerns over the future availability of water resources for continued economic growth in these watersheds and to maintain the integrity of aquatic ecosystems, including the Peace-Athabasca Delta (PAD). This is particularly acute for the Athabasca River because the Alberta oil sands industry remains dependent on its water for bitumen extraction. Here we report the effects of climate change over the past 1000 years on river discharge in the upper Mackenzie River system based on paleoenvironmental information from the PAD and Lake Athabasca. The delta landscape responds to hydroclimatic changes with marked variability, capturing systematic changes in ice-jam flood frequency and perched basin water balance. Lake Athabasca level appears to directly monitor overall water availability with the highest levels occurring in concert with maximum glacier extent during the Little Ice Age, and the lowest during the 11th century prior to medieval glacier expansion. Recent climate-driven hydrological change appears to be on a trajectory to even lower levels as high-elevation snow and glacier meltwater contributions both continue to decline. The temporal perspective offered by these paleohydrological reconstructions indicates that climatic changes over the past millennium have led to characteristic responses in the quantity and seasonality of streamflow generated from the hydrographic

  20. Effects of the Changiang river discharge on the change in ocean and atmosphere over the East Asian region

    Science.gov (United States)

    Kim, M. H.; Lim, Y. J.; Kang, H. S.; Kim, B. J.; Cho, C.

    2017-12-01

    This study investigates the effects of freshwater from the Changiang river basin over the East Asian region for summer season. To do this, we simulated global seasonal forecasting system (GloSea5) of KMA (Korea Meteorology Administration). GloSea5 consists of atmosphere, ocean, sea ice and land model. Also, it has river routing model (TRIP), which links between land and ocean using freshwater. It is very important component in long-term forecast because of be able to change the air-sea interaction. To improve more the freshwater performance over the East Asian region, we realistically modified the river mouth, direction and storage around Changiang river basin of TRIP in GloSea5. Here, the comparison study among the no freshwater forcing experiment to ocean model (TRIP-OFF), the operated original file based freshwater coupled experiment (TRIP-ON) and the improved one (TRIP-MODI) has been carried out and the results are evaluated against the reanalysis data. As a result, the amount of fresh water to the Yellow Sea increase in TRIP-ON experiment and it attributes to the improvement of bias and RMSE of local SST over the East Asia. The implementation of the realistic river related ancillary files (TRIP-MODI) improves the abnormal salinity distribution around the Changjiang river gate and its related SST reduces cold bias about 0.37˚C for July over the East Sea. Warm SST over this region is caused by barrier layer (BL). Freshwater flux and salinity changes can create a pronounced salinity-induced mixed layer (ML) above the top of the thermocline. The layer between the base of the ML and the top of the thermocline is called a barrier layer (BL), because it isolates the warm surface water from cold deep water. In addition, the improved fresh water forcing can lead to the change in the local volume transport from the Kuroshio to the Strait of Korea and Changed the transport and SST over the Straits of Korea have correlation 0.57 at 95% confidence level. For the

  1. Contamination of settling ponds and rivers as a result of discharge of radium-bearing waters from Polish coal mines.

    Science.gov (United States)

    Chalupnik, S; Michalik, B; Wysocka, M; Skubacz, K; Mielnikow, A

    2001-01-01

    Saline waters from underground coal mines in Poland often contain natural radioactive isotopes, mainly 226Ra from the uranium decay series and 228Ra from the thorium series. Approximately 40% of the total amount of radium remains underground as radioactive deposits, but 225 MBq of 226Ra and 400 MBq of 228Ra are released daily into the rivers along with the other mine effluents from all Polish coal mines. Technical measures such as inducing the precipitation of radium in gobs, decreasing the amount of meteoric inflow water into underground workings, etc. have been undertaken in several coal mines, and as a result of these measures, the total amount of radium released to the surface waters has diminished by about 60% during the last 5-6 years. Mine water can have a severe impact on the natural environment, mainly due to its salinity. However, associated high levels of radium concentration in river waters, bottom sediments and vegetation have also been observed. Sometimes radium concentrations in rivers exceed 0.7 kBq/m3, which is the permitted level for waste waters under Polish law. The extensive investigations described here were carried out for all coal mines and on this basis the total radium balance in the effluents has been calculated. Measurements in the vicinity of mine settling ponds and in rivers have given us an opportunity to study radium behaviour in river waters and to assess the degree of contamination. Solid waste materials with enhanced natural radioactivity have been produced in huge amounts in the power and coal industries in Poland. As a result of the combustion of coal in power plants, low-radioactive waste materials are produced, with 226Ra concentration seldom exceeding a few hundreds of Bq/kg. A different situation is observed in coal mines, where, as a result of precipitation of radium from radium-bearing waters, highly radioactive deposits are formed. Sometimes the radioactivity of such materials is extremely high; precipitates from coal

  2. Stages and Discharges of the Mississippi River and Tributaries and Other Watersheds in the New Orleans District for 1979.

    Science.gov (United States)

    1979-03-01

    SINNIN465 2 14 28 50 92 34 69 33 36 PINK SLUFF 35 37 0 v 41 so KAMA G4165MVILLS 3 4 45 48 Ir 49 MONROE. 4 $141ampowal Cxsf GENERAL LOCATION MAP N .,g...AND a4. .~.Tfz ~ ~ 9 N. f .".*-9*-.- . ..| 270 DAILY STAGES FOR 1979 CALCASIEU RIVER SALT WATER BARRIER CHANNEL AT LAKE CHARLES, LA. ( FLOY . W

  3. The effects of wastewater effluent and river discharge on benthic heterotrophic production, organic biomass and respiration in marine coastal sediments

    International Nuclear Information System (INIS)

    Burd, B.; Macdonald, T.; Bertold, S.

    2013-01-01

    Highlights: • High river particulate flux results in low sediment P/B due to large burrowers. • Sewage deposition results in high P/B from biomass depletion and bacterial increase. • Heterotrophic production was 56% of oxidized OC flux with 35% growth efficiency. • Production was correlated with organic/inorganic flux – biomass was not. • δ 15 N patterns illustrate feeding strategies of key taxa near the outfall. -- Abstract: We examine effects of high river particulate flux and municipal wastewater effluent on heterotrophic organic carbon cycling in coastal subtidal sediments. Heterotrophic production was a predictable (r 2 = 0.95) proportion (56%) of oxidized OC flux and strongly correlated with organic/inorganic flux. Consistent growth efficiencies (36%) occurred at all stations. Organic biomass was correlated with total, OC and buried OC fluxes, but not oxidized OC flux. Near the river, production was modest and biomass high, resulting in low P/B. Outfall deposition resulted in depleted biomass and high bacterial production, resulting in the highest P/B. These patterns explain why this region is production “saturated”. The δ 15 N in outfall effluent, sediments and dominant taxa provided insight into where, and which types of organisms feed directly on fresh outfall particulates, on older, refractory material buried in sediments, or utilize chemosynthetic symbiotic bacteria. Results are discussed in the context of declining bottom oxygen conditions along the coast

  4. Case Study: Effect of Climatic Characterization on River Discharge in an Alpine-Prealpine Catchment of the Spanish Pyrenees Using the SWAT Model

    Directory of Open Access Journals (Sweden)

    Leticia Palazón

    2016-10-01

    Full Text Available The new challenges in assessment of water resources demand new approaches and tools, such as the use of hydrologic models, which could serve to assist managers in the prediction, planning and management of catchment water supplies in view of increased demand of water for irrigation and climatic change. Good characterization of the spatial patterns of climate variables is of paramount importance in hydrological modelling. This is especially so when modelling mountain environments which are characterized by strong altitudinal climate gradients. However, very often there is a poor distribution of climatic stations in these areas, which in many cases, results in under representation of high altitude areas with respect to climatic data. This results in the poor performance of the models. In the present study, the Soil and Water Assessment Tool (SWAT model was applied to the Barasona reservoir catchment in the Central Spanish Pyrenees in order to assess the influence of different climatic characterizations in the monthly river discharges. Four simulations with different input data were assessed, using only the available climate data (A1; the former plus one synthetic dataset at a higher altitude (B1; and both plus the altitudinal climate gradient (A2 and B2. The model’s performance was evaluated against the river discharges for the representative periods of 2003–2005 and 1994–1996 by means of commonly used statistical measures. The best results were obtained using the altitudinal climate gradient alone (scenario A2. This study provided insight into the importance of taking into account the sources and the spatial distribution of weather data in modelling water resources in mountainous catchments.

  5. Ground water investigations in connection with planned energy wells in the Lena area, Melhus centre

    International Nuclear Information System (INIS)

    Storroe, Gaute

    2000-01-01

    In March 2000 the Norwegian Geologic Survey (NGU) was requested to carry out ground water investigations in the Lena area at Melhus centre by the firms E-Tek AS and Statoil. The background for the investigations was the plans of exploiting ground heat connected to a housing project lead by Selmer Bolig AS. The aim of the project was to document the possibilities for extracting ground heat from loose soil well(s) in the selected construction area. The needed amount of water is in the size of 50 m 3 /hour (14l/s). In addition the conditions of currents, ground water quality and possibilities for refiltering of the ground water was to be mapped. In conclusion it may be said that it most likely will be possible to meet the stipulated water requirements (50 m 3 /hour) by establishing a full scale production well within the construction area. The ground water currents in the Lena area run from north to south. The ground water surface is relatively flat with an incline of 0.1 - 0.2 % (1-2 mm/m). The possibilities for refiltering pumped water seem to be good. The conditions should be mapped more closely through refiltering tests. All of the collected ground water samples exceed the limiting values stipulated by the drinking water regulations as to alkalinity, sulphate, calcium, potassium and manganese. The tests from Obs2 and from the ''municipal well'' exceed the limits for chloride and sodium as well. This indicates that unwanted precipitations of both chalk and manganese may occur. Large quantities of sea salts (chloride and sodium) may also have a corrosive effect. Through calculations using the Ryznar's Stability Index (RSI) it is evident that the tests from Obs1 and Obs2 are in the limiting area between ''problem free water'' and ''corrosive water'', while the water from the municipal well must be characterised as very corrosive. According to information from the managing personnel there have not been registered problems with precipitations or corrosion in heat

  6. Coexisting sea-based and land-based sources of contamination by PAHs in the continental shelf sediments of Coatzacoalcos River discharge area (Gulf of Mexico).

    Science.gov (United States)

    Ruiz-Fernández, Ana Carolina; Portela, Julián Mauricio Betancourt; Sericano, José Luis; Sanchez-Cabeza, Joan-Albert; Espinosa, Luisa Fernanda; Cardoso-Mohedano, José Gilberto; Pérez-Bernal, Libia Hascibe; Tinoco, Jesús Antonio Garay

    2016-02-01

    The oldest refinery and the major petrochemical complexes of Mexico are located in the lower reach of the Coatzacoalcos River, considered the most polluted coastal area of Mexico. A (210)Pb-dated sediment core, from the continental shelf of the Coatzacoalcos River, was studied to assess the contamination impact by the oil industry in the southern Gulf of Mexico. The sedimentary record showed the prevalence of petrogenic PAHs between 1950s and 1970s, a period during which waste discharges from the oil industry were not regulated. Later on, sediments exhibited higher contents of pyrogenic PAHs, attributed to the incineration of petrochemical industry wastes and recurrent wildfires in open dumpsites at the nearby swamps. The total concentration of the 16 EPA-priority PAHs indicated low levels of contamination (1000 ng g(-1)) during the late 1970s, most likely due to the major oil spill produced by the blowout of the Ixtoc-I offshore oil rig in deep waters of the southwestern Gulf of Mexico. Most of the PAH congeners did not show defined temporal trends but, according to a Factor Analysis, apparently have a common origin, probably waste released from the nearby oil industry. The only exceptions were the pyrogenic benzo(b)fluoranthene and benzo(a)pyrene, and the biogenic perylene, that showed increasing concentration trends with time, which we attributed to erosional input of contaminated soil from the catchment area. Our study confirmed chronic oil contamination in the Coatzacoalcos River coastal area from land based sources for more than 60 years (since 1950s). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Concentration-Discharge Relationships, Nested Reaction Fronts, and the Balance of Oxidative and Acid-Base Weathering Fluxes in an Alpine Catchment, East River, Colorado

    Science.gov (United States)

    Winnick, M.; Carroll, R. W. H.; Williams, K. H.; Maxwell, R. M.; Maher, K.

    2016-12-01

    Although important for solute production and transport, the varied interactions between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the headwaters of the East River, CO, a high-elevation shale-dominated catchment system in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with well-defined clockwise hysteresis, indicating the mobilization and depletion of DOC in the upper soil horizons and highlighting the importance of shallow flowpaths through the snowmelt period. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both carbonic acid and sulfuric acid derived from oxidation of pyrite in the shale bedrock. Sulfuric acid weathering in the deep subsurface dominates during base flow conditions when waters have infiltrated below the hypothesized pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during the snowmelt period as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This increase in CO2(aq) at the expense of HCO3- results in outgassing of CO2 when waters equilibrate to surface conditions, and reduces the export of carbon and alkalinity from the East River by roughly 33% annually. Future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering therefore have the capacity to substantially alter the cycling of carbon in the East River catchment. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.

  8. Impact of the river Liffey discharge on nutrient and chlorophyll concentrations in the Liffey estuary and Dublin Bay (Irish Sea)

    Science.gov (United States)

    O'Higgins, T. G.; Wilson, J. G.

    2005-08-01

    Temperature, salinity, nutrients (total oxidised nitrogen (TON), ammonium (NH 4) and orthophosphate (PO 4)) and chlorophyll a were monitored in the Liffey estuary and Dublin Bay from June 2000 to June 2003. Four groups of sites were defined comprising the upper estuary (Gp. I), the outer estuary (Gp. III) with a small set (Gp. II) of sites between Groups I and III heavily influenced by the sewage treatment works outflow, and the Bay proper (Gp. IV). Riverine inputs of TON and PO 4 were calculated at an average of 826 t N y -1 and 31 t P y -1, respectively, and were largely controlled by flow rate. The sewage treatment works were identified as a major source of PO 4 and NH 4 to the system. Mixing in the upper estuary of nutrient limited saline waters with hypernutrified river water regularly (i.e. annually) produced relatively high concentrations of chlorophyll a (>10 mg chl a m -3), and also sporadic blooms with extremely high chlorophyll a values (max. 121.6 mg chl a m -3). These latter phytoplankton blooms occurred in high salinity waters and were due to mixing of nutrient limited saline waters and nutrient rich river waters. The mean annual flux of phytoplankton carbon from the river Liffey was calculated at 23.5 t C y -1, of which half was accumulated or remineralised in the estuary and did not enter the Bay. In the Bay proper (Gp. IV) summer nutrient concentrations dropped below detection limits, and chlorophyll a concentrations followed the classic pattern with a spring bloom maximum of 5.5 mg chl a m -3. This pattern in nutrients and chlorophyll a came from the advection of waters into the Bay from an offshore source. Overall while there was considerable evidence for eutrophication in the estuary, the bay itself showed little biological response to nutrient loading.

  9. Export of dissolved inorganic nutrients to the northern Indian Ocean from the Indian monsoonal rivers during discharge period

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, M.S.; Prasad, M.H.K.; Rao, D.B.; Viswanadham, R.; Sarma, V.V.S.S.; Reddy, N.P.C.

    salinity stratification (Varkey et al., 1996) that suppresses vertical mixing resulting in low biological production (Prasannakumar et al., 2002). Major and medium-sized monsoonal rivers draining into the Bay of Bengal and the Arabian Sea were shown...-containing synthetic fertilizers such as di-ammonium phosphate (DAP) in the SW region (mean 17.1 kg hectare-1) than the other regions of the Indian 8    subcontinent (22.1 kg hectare-1) suggest a strong influence of P leaching from soils in addition...

  10. 'Global change' impact of inter-annual variation in water discharge as a driving factor to dredging and spoil disposal in the river Rhine system and of turbidity in the Wadden Sea

    NARCIS (Netherlands)

    de Jonge, V.N.; de Jong, D.J.

    2002-01-01

    Between 1970 to 2000, the annual mean suspended matter (SPM) concentrations in the Vlie and Marsdiep tidal inlets of the Wadden Sea varied over five times. The present paper examines the possible relationship between SPM in the Wadden Sea and changing river Rhine discharges and dredging operations.

  11. The effects of wastewater effluent and river discharge on benthic heterotrophic production, organic biomass and respiration in marine coastal sediments.

    Science.gov (United States)

    Burd, B; Macdonald, T; Bertold, S

    2013-09-15

    We examine effects of high river particulate flux and municipal wastewater effluent on heterotrophic organic carbon cycling in coastal subtidal sediments. Heterotrophic production was a predictable (r(2)=0.95) proportion (56%) of oxidized OC flux and strongly correlated with organic/inorganic flux. Consistent growth efficiencies (36%) occurred at all stations. Organic biomass was correlated with total, OC and buried OC fluxes, but not oxidized OC flux. Near the river, production was modest and biomass high, resulting in low P/B. Outfall deposition resulted in depleted biomass and high bacterial production, resulting in the highest P/B. These patterns explain why this region is production "saturated". The δ(15)N in outfall effluent, sediments and dominant taxa provided insight into where, and which types of organisms feed directly on fresh outfall particulates, on older, refractory material buried in sediments, or utilize chemosynthetic symbiotic bacteria. Results are discussed in the context of declining bottom oxygen conditions along the coast. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Water uptake by two river red gum ( Eucalyptus camaldulensis) clones in a discharge site plantation in the Western Australian wheatbelt

    Science.gov (United States)

    Marshall, John K.; Morgan, Anne L.; Akilan, Kandia; Farrell, Richard C. C.; Bell, David T.

    1997-12-01

    The heat-pulse technique was used to estimate year-long water uptake in a discharge zone plantation of 9-year-old clonal Eucalyptus camaldulensis Dehnh. near Wubin, Western Australia. Water uptake matched rainfall closely during weter months but exceeded rainfall as the dry season progressed. Average annual water uptake (1148 mm) exceeded rainfall (432 mm) by about 2.7 fold and approached 56% of pan evaporation for the area. The data suggest that at least 37% (i.e. ( {1}/{2.7}) × 100 ) of the lower catchment discharge zone should be planted to prevent the rise of groundwater. Water uptake varied with soil environment, season and genotype. Upslope trees used more water than did downslope trees. Water uptake was higher in E. camaldulensis clone M80 than in clone M66 until late spring. The difference reversed as summer progressed. Both clones, however, have the potential to dry out the landscape when potential evapotranspiration exceeds rainfall. This variation in water uptake within the species indicates the potential for manipulating plantation uptake by matching tree characteristics to site characteristics. Controlled experiments on the heat-pulse technique indicated accuracy errors of approximately 10%. This, combined with the ability to obtain long-term, continuous data and the superior logistics of use of the heat-pulse technique, suggests that results obtained by it would be much more reliable than those achieved by the ventilated chamber technique.

  13. Research in the fields of radiochemistry and activation analysis using the LENA TRIGA nuclear plant

    International Nuclear Information System (INIS)

    Maxia, V.; Meloni, S.; Stella, R.; Brandone, A.

    1972-01-01

    In the past two years most of the research effort at the Radiochemistry Laboratory and National Research Council Centre for Radiochemistry and Activation Analysis has been devoted to research and development of activation analysis using the TRIGA Mark II LENA reactor of the University of Pavia. Pile neutrons have been used both in steady state and pulse mode, in the determination of oxygen in non ferrous materials. Neutron activation has been applied to the determination of some atmospheric particulate pollutants. Another field, in which activation analysis has been applied, is forensic research. Methods have been developed for the determination of antimony, barium and copper in gunpowder residues. By using inorganic materials such as molybdenum dibromide, zinc ferrocyanide and cadmium metal in granular form it was possible to set up simple chemical procedures in the activation analysis of trace amounts of noble metals in metallic matrices (high purity nickel and copper), geochemical materials (rocks and meteorites) and biological materials (orchard leaves). Neutron activation analysis was also used to investigate on the extraction of the platinum group metals from iodide and thiocyanate solutions at low concentrations

  14. Organic matter composition and stabilization in a polygonal tundra soil of the Lena Delta

    Directory of Open Access Journals (Sweden)

    S. Höfle

    2013-05-01

    Full Text Available This study investigated soil organic matter (OM composition of differently stabilized soil OM fractions in the active layer of a polygonal tundra soil in the Lena Delta, Russia, by applying density and particle size fractionation combined with qualitative OM analysis using solid state 13C nuclear magnetic resonance spectroscopy, and lipid analysis combined with 14C analysis. Bulk soil OM was mainly composed of plant-derived, little-decomposed material with surprisingly high and strongly increasing apparent 14C ages with active layer depth suggesting slow microbial OM transformation in cold climate. Most soil organic carbon was stored in clay and fine-silt fractions (n-alkane and n-fatty acid compounds and low alkyl/O-alkyl C ratios. Organo-mineral associations, which are suggested to be a key mechanism of OM stabilization in temperate soils, seem to be less important in the active layer as the mainly plant-derived clay- and fine-silt-sized OM was surprisingly "young", with 14C contents similar to the bulk soil values. Furthermore, these fractions contained less organic carbon compared to density fractionated OM occluded in soil aggregates – a further important OM stabilization mechanism in temperate soils restricting accessibility of microorganisms. This process seems to be important at greater active layer depth where particulate OM, occluded in soil aggregates, was "older" than free particulate OM.

  15. Concentration-Discharge relationships in a mine-impacted catchment, New River, Tennessee: Comparison across spatial and temporal scales using time-series analysis

    Science.gov (United States)

    Murphy, J.; Hornberger, G. M.

    2009-12-01

    Concentration-discharge (c-Q) relationships are useful in indentifying physical and chemical processes affecting stream water chemistry. Frequently used as a diagnostic tool, c-Q relationships can be used to infer particular mixing patterns that may occur in a catchment. However, much work has shown c-Q relationships are highly variable and often inconclusive, suggesting the catchment behavior they indicate cannot be readily recognized without supporting knowledge of system dynamics. For example, drainage area and location, in addition to changes in land use over time, affect many processes in catchments including flow routing and solute concentrations. The effect of spatial and temporal scales on c-Q relationships are explored using recursive time-series analysis of historic and recent water quality data. The New River encompasses 400 square miles of remote land on the Cumberland Plateau in middle Tennessee and is a major component of the headwaters of the Cumberland River. Current and historic coal mining, oil and gas extraction, and timber harvesting have impaired water quality in the watershed. Historically, the highest magnitude of degradation probably occurred during the mid-1900s with severe acid mine drainage throughout the watershed. In 1975, 56% of all coal mined in Tennessee was derived from the New River watershed. Over the past three decades most of the New River system has rebounded though some small tributaries still experience acid mine drainage and elevated metal loads. Sediment, in terms of quantity and sorption of metals, is currently considered the largest pollutant by many. Water pH is circum-neutral in the system and coal-mining pollution is best identified by elevated specific conductance and sulfate concentration. A combination of historic and recently collected water quality data were obtained for the Indian Fork, a small 4 square mile upland catchment in the New River watershed, and the New River main-stem, approximately 25 miles

  16. Constraining frequency–magnitude–area relationships for rainfall and flood discharges using radar-derived precipitation estimates: example applications in the Upper and Lower Colorado River basins, USA

    Directory of Open Access Journals (Sweden)

    C. A. Orem

    2016-11-01

    Full Text Available Flood-envelope curves (FECs are useful for constraining the upper limit of possible flood discharges within drainage basins in a particular hydroclimatic region. Their usefulness, however, is limited by their lack of a well-defined recurrence interval. In this study we use radar-derived precipitation estimates to develop an alternative to the FEC method, i.e., the frequency–magnitude–area-curve (FMAC method that incorporates recurrence intervals. The FMAC method is demonstrated in two well-studied US drainage basins, i.e., the Upper and Lower Colorado River basins (UCRB and LCRB, respectively, using Stage III Next-Generation-Radar (NEXRAD gridded products and the diffusion-wave flow-routing algorithm. The FMAC method can be applied worldwide using any radar-derived precipitation estimates. In the FMAC method, idealized basins of similar contributing area are grouped together for frequency–magnitude analysis of precipitation intensity. These data are then routed through the idealized drainage basins of different contributing areas, using contributing-area-specific estimates for channel slope and channel width. Our results show that FMACs of precipitation discharge are power-law functions of contributing area with an average exponent of 0.82 ± 0.06 for recurrence intervals from 10 to 500 years. We compare our FMACs to published FECs and find that for wet antecedent-moisture conditions, the 500-year FMAC of flood discharge in the UCRB is on par with the US FEC for contributing areas of  ∼ 102 to 103 km2. FMACs of flood discharge for the LCRB exceed the published FEC for the LCRB for contributing areas in the range of  ∼ 103 to 104 km2. The FMAC method retains the power of the FEC method for constraining flood hazards in basins that are ungauged or have short flood records, yet it has the added advantage that it includes recurrence-interval information necessary for estimating event probabilities.

  17. Quantifying the Behavioral Response of Spawning Chum Salmon to Elevated Discharges from Bonneville Dam, Columbia River : Annual Report 2005-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F.; Haskell, Craig A.; Kock, Tobias J.

    2008-12-01

    In unimpounded rivers, Pacific salmon (Oncorhynchus spp.) typically spawn under relatively stable stream flows, with exceptions occurring during periodic precipitation events. In contrast, hydroelectric development has often resulted in an artificial hydrograph characterized by rapid changes in discharge and tailwater elevation that occur on a daily, or even an hourly basis, due to power generation (Cushman 1985; Moog 1993). Consequently, populations of Pacific salmon that are known to spawn in main-stem habitats below hydroelectric dams face the risks of changing habitat suitability, potential redd dewatering, and uncertain spawning success (Hamilton and Buell 1976; Chapman et al. 1986; Dauble et al. 1999; Garland et al. 2003; Connor and Pflug 2004; McMichael et al. 2005). Although the direct effects of a variable hydrograph, such as redd dewatering are apparent, specific effects on spawning behavior remain largely unexplored. Chum salmon (O. keta) that spawn below Bonneville Dam on the Columbia River are particularly vulnerable to the effects of water level fluctuations. Although chum salmon generally spawn in smaller tributaries (Johnson et al. 1997), many fish spawn in main-stem habitats below Bonneville Dam near Ives Island (Tomaro et al. 2007; Figure 1). The primary spawning area near Ives Island is shallow and sensitive to changes in water level caused by hydroelectric power generation at Bonneville Dam. In the past, fluctuating water levels have dewatered redds and changed the amount of available spawning habitat (Garland et al. 2003). To minimize these effects, fishery managers attempt to maintain a stable tailwater elevation at Bonneville Dam of 3.5 m (above mean sea level) during spawning, which ensures adequate water is provided to the primary chum salmon spawning area below the mouth of Hamilton Creek (Figure 1). Given the uncertainty of winter precipitation and water supply, this strategy has been effective at restricting spawning to a specific

  18. Tritium, stable istopes, and nitrogen in flow from selected springs that discharge to the Snake River, Twin Falls-Hagerman area, Idaho, 1990-93

    International Nuclear Information System (INIS)

    Mann, L.J.; Low, W.H.

    1994-01-01

    In 1990-93, tritium concentrations in water from 19 springs along the north side of the Snake River near Twin Falls and Hagerman ranged from 9.2±0.6 to 78.4±5.1 picocuries per liter (pCi/L). The springs were placed into three categories on the basis of their locations and tritium concentrations: Category I springs are the farthest upstream and contained from 52.8±3.2 to 78.4±5.1 pCi/L of tritium; Category II springs are downstream from those in Category I and contained from 9.2±0.6 to 18.5±1.2 pCi/L; and Category III springs are the farthest downstream and contained from 28.3±1.9 to 47.7±3.2 pCi/L. Differences in tritium concentrations in Category I, II, and III springs are a function of the ground-water flow regimes and land uses in and hydraulically upgradient from each category of springs. A comparatively large part of the water from the Category I springs is from excess applied-irrigation water which has been diverted from the Snake River. A large part of the recharge for Category II springs originates as many as 140 miles upgradient from the springs. Tritium concentrations in Category III springs indicate that the proportion of recharge from excess applied-irrigation water is intermediate to proportions for Category I and II springs. Tritium concentrations in precipitation and in the Snake River were relatively large in the 1950's and 1960's owing to atmospheric testing of nuclear weapons. Conversely, tritium concentrations in ground water with a residence time of several tens to a few hundred years, as occurs in the Snake River Plain aquifer hydraulically upgradient from the Category II springs, are comparatively small because of the 12.4-year half-life of tritium. The conclusion that recharge from excess applied-irrigation water from the Snake River has affected tritium in the Snake River Plain aquifer is supported by differences in the deuterium ( 2 H) and oxygen-18 ( 18 O) ratios of water. These ratios indicate that water discharged by the springs

  19. Autumn CO2 chemistry in the Japan Sea and the impact of discharges from the Changjiang River

    Science.gov (United States)

    Kosugi, Naohiro; Sasano, Daisuke; Ishii, Masao; Enyo, Kazutaka; Saito, Shu

    2016-08-01

    We made comprehensive surface water CO2 chemistry observations in the Japan Sea during each autumn from 2010 to 2014. The partial pressure of CO2 (pCO2) in surface water, 312-329 μatm, was 10-30 μatm lower in the Japan Sea than in the same latitude range of the western North Pacific adjacent to Japan. According to the sensitivity analysis of pCO2, the lower pCO2 in the Japan Sea was primarily attributable to a large seasonal decrease of pCO2 associated with strong cooling in autumn, particularly in the northern Japan Sea. In contrast, the lower pCO2 in relatively warm, freshwater in the southern Japan Sea was attributable to not only the thermodynamic effect of the temperature changes but also high total alkalinity. This alkalinity had its origin in Changjiang River and was transported by Changjiang diluted water (CDW) which seasonally runs into the Japan Sea from the East China Sea. The input of total alkalinity through CDW also elevated the saturation state of calcium carbonate minerals and mitigated the effects of anthropogenic ocean acidification, at least during autumn. These biogeochemical impacts of CDW in the Japan Sea last until November, although the inflow from the East China Sea to the Japan Sea almost ceases by the end of September. The long duration of the high saturation state of calcium carbonate benefits calcareous marine organisms.

  20. Comparison of Two Methods for Estimating Discharge and Nutrient Loads From Tidally Affected Reaches of the Myakka and Peace Rivers, West-Central Florida

    National Research Council Canada - National Science Library

    Levesque, Victor A; Hammett, K. M

    1997-01-01

    .... Water discharge and nutrient enrichment have been identified as significant concerns in the estuary, and consequently, it is important to accurately estimate the magnitude of discharges and nutrient...

  1. Pravice iz invalidskega zavarovanja - neskladnost 2. in 3. odstavka 66. člena ZPIZ-1 z Ustavo Republike Slovenije

    OpenAIRE

    Bele, Primož

    2012-01-01

    Republika Slovenija je socialna država, kar je navedeno v drugem členu Ustave Republike Slovenije1. Upoštevajoč navedeno, prvi odstavek 50. člena Ustave RS zagotavlja državljanom pravico do socialne varnosti, pod pogoji, ki jih določa zakon. Naveden člen Ustave RS obvezuje državo, da z zakonom uredi obvezna socialna zavarovanja, torej tudi invalidsko zavarovanje. Država je dolžna zagotoviti delovanje invalidskega zavarovanja, kar je storila z zakonom o pokojninskem in invalidsk...

  2. Suspended sediment propagation in a long river reach: spatial and temporal dynamics of the Suspended Sediment Concentration-Water Discharge diagram for several hydrological events in the Northern French Alps.

    Science.gov (United States)

    Antoine, Germain; Jodeau, Magali; Camenen, Benoit; Esteves, Michel

    2014-05-01

    The relative propagation of water and suspended sediment is a key parameter to understand the suspended sediment transfers at the catchment scale. Several studies have shown the interest of performing detailed investigations of both temporal suspended sediment concentration (SSC) and water discharge signals. Most of them used temporal data from one measurement site, and classified hydrological events by studying the SSC curve as a function of water discharge (SSC-WD diagrams). Theoretical interpretations of these curves have been used to estimate the different sources of suspended sediment supply from sub-catchments, to evaluate the effect of seasons on the dynamics of suspended sediment, or to highlight the effect of a critical change at the catchment scale. However, few studies have focused on the signal propagation along the river channel. In this study, we analyze sampled data from a very well instrumented river reach in the Northern French Alps: the Arc-Isère River system. This gravel-bed river system is characterized by large concentrations of fines sediments, coming from the highly erodible mountains around. To control the hydraulic, sedimentary and chemical parameters from the catchment head, several gauging stations have been established since 2006. The continuous data measured at 4 gauging stations along 120 km of river have been analyzed to estimate the spatial and temporal dynamics of both SSC and water discharge. More precisely, about 40 major hydrological events have been sampled statistically between 2006 and 2012 from the data set and are analyzed in details. The study shows that the mean value of the propagation velocity is equal to 2 m/s and 3 m/s respectively for the SSC signal and the water discharge. These different propagation velocities imply that the suspended sediment mass is not only transported by the advection of the water at the river scale. The dispersion, erosion or deposition processes, and also the suspended sediment and discharge

  3. Impacts of the Anomalous Mississippi River Discharge and Diversions on Phytoplankton Blooming in the Northeastern Gulf of Mexico in August 2010

    Science.gov (United States)

    O'Connor, Brendan Sean

    On April 20, 2010 a tragic explosion aboard the Deepwater Horizon (DWH) drilling rig marked the beginning of one of the worst environmental disasters in history. For 87 days oil and gas were released into the Gulf of Mexico. In August 2010, anomalous phytoplankton activity was identified in the Northeastern Gulf of Mexico, using the Fluorescence Line Height (FLH) ocean color product. The FLH anomaly was bound by approximately 30--28° North and 90--86° West and there was a suggestion that this anomaly may have occurred due to the presence of oil. This study was designed to examine alternative explanations and to determine what influence the Mississippi River and the freshwater diversions, employed in the response efforts, may have had on the development of the FLH anomaly. The combination of the anomalously high flow rate in the Mississippi River observed in June-August 2010, the use of freshwater diversions, and three severe storms increased the flow of water through the adjoining marshes. We propose that these conditions reduced the residence time of water and nutrients on the wetlands, and likely mobilized nutrients leading to increased fresh water and nutrients being discharge to the coasts around the Mississippi Delta. Salinity contour maps created from data collected by ships operating in the Northeastern Gulf of Mexico showed that the 31 isohaline was upwards of 250km east of the Mississippi River Birds Foot Delta in August 2010. The American Seas (AmSeas) numerical circulation model was used to examine the dispersal and distribution of water parcels from the Mississippi River and freshwater diversions. Two virtual particle seeding locations were used to trace particles to obtain a measure of the percentage of particles entering a Region of Interest (ROI) located in the center of the FLH anomaly, i.e. 150 km east of the Mississippi Delta. All environmental data examined suggest that the eastward dispersal of the Mississippi River water including that

  4. Pancreatitis - discharge

    Science.gov (United States)

    Chronic pancreatitis - discharge; Pancreatitis - chronic - discharge; Pancreatic insufficiency - discharge; Acute pancreatitis - discharge ... You were in the hospital because you have pancreatitis. This is a swelling of the pancreas. You ...

  5. Heart pacemaker - discharge

    Science.gov (United States)

    Cardiac pacemaker implantation - discharge; Artificial pacemaker - discharge; Permanent pacemaker - discharge; Internal pacemaker - discharge; Cardiac resynchronization therapy - discharge; CRT - discharge; ...

  6. A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C

    NARCIS (Netherlands)

    Gosling, S.N.; Zaherpour, J.J.; Mount, N.J.; Hattermann, F.F.; Dankers, R.; Arheimer, B.; Breuer, L.; Ding, J.; Haddeland, I.; Kumar, R.; Kundu, D.; Liu, J.; van Griensven, A.; Veldkamp, T.I.E.; Vetter, T.; Wang, X.; Zhang, X.

    2017-01-01

    We present one of the first climate change impact assessments on river runoff that utilises an ensemble of global hydrological models (Glob-HMs) and an ensemble of catchment-scale hydrological models (Cat-HMs), across multiple catchments: the upper Amazon, Darling, Ganges, Lena, upper Mississippi,

  7. Operation experience and maintenance at the TRIGA Mark II L.E.N.A. reactor

    International Nuclear Information System (INIS)

    Gngoli, F.; Berzero, A.; Lana, F.; Rosti, G.; Meloni, S.

    2008-01-01

    The TRIGA Mark II reactor of the University of Pavia was operated in the last two years on a routine basis, mostly for neutron activation analysis purposes. Moreover the reactor was completely shutdown in the first six months of this year to allow the dismantling of the NADIR experimental setup. The paper presents: - Reactor operation from July 1990 to June 1992; - Reactor users in the time period January 1990 - December 1991; - Specific activities of some radionuclides in the filling materials; - Specific activity of some radionuclides in thermal column materials. Operations related to dismantling of NADIR experimental facility are described. Finally the new thermal column configuration is presented. Starting from the end inside the reactor tank, a graphite layer (35 cm thick) was positioned, followed by a bismuth layer (10 cm thick) to reduce gamma-ray intensity. The old graphite rods were then positioned leaving in the central part, on the equatorial plane of the thermal column, a cavity whose vertical section has 40 cm width and 20 cm height. The bottom of the cavity, towards to the reactor tank, has been lined with additional layers of graphite (10 cm), bismuth (10 cm) and again graphite (1 cm). The new configuration allowed new experiments to be performed. The cavity in the central part has been created to allow the irradiation of large biological samples such as experimental animal and human livers. This is a peculiar step in a neutron capture boron therapy project to be carried out at the University of Pavia. In order to avoid an implemented 41 Ar production in the void space between shutters and the thermal column outer end, the external surface of the thermal column has been coated with boral sheets. The neutron flux profile, both thermal and epithermal, and cadmium ratio for gold are shown. The flux distribution appears to be adequate to proceed with the neutron capture boron therapy experiment. The LENA Health Physics Service has checked all phases of

  8. Effects of increased discharge on spawning and age-0 recruitment of rainbow trout in the Colorado River at Lees Ferry, Arizona

    Science.gov (United States)

    Avery, Luke A.; Korman, Josh; Persons, William R.

    2015-01-01

    Negative interactions of Rainbow Trout Oncorhynchus mykiss with endangered Humpback Chub Gila cypha pose challenges to the operation of Glen Canyon Dam (GCD) to manage for both species in the Colorado River. Operations to enhance the Rainbow Trout tailwater fishery may lead to an increase in downstream movement of the trout to areas where they are likely to interact with Humpback Chub. We evaluated the effects of dam operations on age-0 Rainbow Trout in the tailwater fishery to inform managers about how GCD operations could benefit a tailwater fishery for Rainbow Trout; although this could affect a Humpback Chub population farther downstream. A near year-long increase in discharge at GCD in 2011 enabled us to evaluate whether high and stable flows led to increased spawning and production of age-0 Rainbow Trout compared with other years. Rainbow Trout spawning was monitored by fitting a model to observed redd counts to estimate the number of redds created over a spawning season. Data collected during electrofishing trips in July–September and November were used to acquire age-0 trout population and mortality rate estimates. We found that high and stable flows in 2011 resulted in 3,062 redds (1.7 times the mean of all survey years) and a population estimate of 686,000 age-0 Rainbow Trout (second highest on record). Despite high initial abundance, mortality remained low through the year (0.0043%/d) resulting in significant recruitment with a record high November population estimate of 214,000 age-0 Rainbow Trout. Recent monitoring indicates this recruitment event was followed by an increase in downstream migration, which may lead to increased interactions with downstream populations of Humpback Chub. Consequently, while our results indicate that manipulating flow at GCD can be used to manage Rainbow Trout spawning and recruitment, fisheries managers should use flow manipulation in moderation to minimize downstream migration in order to reduce negative

  9. Nipple Discharge

    Science.gov (United States)

    ... any unexpected nipple discharge evaluated by a doctor. Nipple discharge in men under any circumstances could be a problem and needs further evaluation. One or both breasts may produce a nipple discharge, either spontaneously or when you squeeze your ...

  10. The impact of industries on surface water quality of River Ona and ...

    African Journals Online (AJOL)

    Samples of water from two rivers (River Ona and River Alaro) in Oluyole ... were higher in the industrial zones than those found in the upstream of both rivers. ... Key words: River Ona, River Alaro, industrial discharges, surface water quality.

  11. Reconstruction of peak water levels, peak discharges and long-term occurrence of extreme- as well as smaller pre-instrumental flood events of river Aare, Limmat, Reuss, Rhine and Saane in Switzerland. Part I

    Science.gov (United States)

    Wetter, Oliver; Tuttenuj, Daniel

    2016-04-01

    Part I: Dr. Oliver Wetter. (Oeschger Centre for Climate Change Research, University of Bern, Switzerland) Part II: PhD student Daniel Tuttenuj (Oeschger Centre of Climate Change Research, University of Bern, Switzerland) The methodology developed by Wetter et al. (2011) combines different documentary and instrumental sources, retaining relevant information for the reconstruction of extreme pre-instrumental flood events. These include hydrological measurements (gauges), historic river profiles (cross and longitudinal profiles), flood marks, historic city maps, documentary flood evidence (reports in chronicles and newspapers) as well as paintings and drawings. It has been shown that extreme river Rhine flood events of the pre-instrumental period can be reconstructed in terms of peak discharges for the last 750 years by applying this methodology to the site of Basel. Pfister & Wetter (2011) furthermore demonstrated that this methodology is also principally transferable to other locations and rivers. Institutional documentary evidence has not been systematically analysed in the context of historical hydrology in Switzerland so far. The term institutional documentary evidence generally outlines sources that were produced by governments or other (public) bodies including the church, hospitals, and the office of the bridge master. Institutional bodies were typically not directly interested in describing climate or hydrological events but they were obliged to document their activities, especially if they generated financial costs (bookkeeping), and in doing so they often indirectly recorded climatologic or hydrological events. The books of weekly expenditures of Basel ("Wochenausgabenbücher der Stadt Basel") were first analysed by Fouquet (1999). He found recurring records of wage expenditures for a squad of craftsmen that was called up onto the bridge with the task of preventing the bridge from being damaged by fishing out drifting logs from the flood waters. Fouquet

  12. Reconstruction of peak water levels, peak discharges and long-term occurrence of extreme- as well as smaller pre-instrumental flood events of river Aare, Limmat, Reuss, Rhine and Saane in Switzerland. Part II.

    Science.gov (United States)

    Tuttenuj, Daniel; Wetter, Oliver

    2016-04-01

    The methodology developed by Wetter et al. (2011) combines different documentary and instrumental sources, retaining relevant information for the reconstruction of extreme pre-instrumental flood events. These include hydrological measurements (gauges), historic river profiles (cross and longitudinal profiles), flood marks, historic city maps, documentary flood evidence (reports in chronicles and newspapers) as well as paintings and drawings. It has been shown that extreme river Rhine flood events of the pre-instrumental period can be reconstructed in terms of peak discharges for the last 750 years by applying this methodology to the site of Basel. Pfister & Wetter (2011) furthermore demonstrated that this methodology is also principally transferable to other locations and rivers in Switzerland. Institutional documentary evidence has not been systematically analysed in the context of historical hydrology in Switzerland so far. The term institutional documentary evidence generally outlines sources that were produced by governments or other (public) bodies including the church, hospitals, and the office of the bridge master. Institutional bodies were typically not directly interested in describing climate or hydrological events but they were obliged to document their activities, especially if they generated financial costs (bookkeeping), and in doing so they often indirectly recorded climatologic or hydrological events. The books of weekly expenditures of Basel ("Wochenausgabenbücher der Stadt Basel") were first analysed by Fouquet (1999). He found recurring records of wage expenditures for a squad of craftsmen that was called up onto the bridge with the task of preventing the bridge from being damaged by fishing out drifting logs from the flood waters. Fouquet systematically analysed the period from 1446-1542 and could prove a large number of pre-instrumental flood events of river Rhine, Birs, Birsig and Wiese in Basel. All in all the weekly led account books

  13. Plan of study to determine if the isotopic ratios [delta]15 N and [delta]18 O can reveal the sources of nitrate discharged by the Mississippi River into the Gulf of Mexico

    Science.gov (United States)

    Battaglin, William A.; Kendall, Carol; Goolsby, Donald A.; Boyer, Laurie L.

    1997-01-01

    Nitrate and other nutrients discharged from the Mississippi River basin are suspected of causing a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. The hypoxic zone may have an adverse effect on aquatic life and commercial fisheries. Commercial fertilizers are the dominant source of nitrogen input to the Mississippi basin. Other nitrogen sources include animal waste, fixation of atmospheric nitrogen by legumes, precipitation, domestic and industrial effluent, and the soil. The inputs of nitrogen from most of these sources to the Mississippi basin can be estimated and the outputs in surface water can be measured. However, nitrogen from each source is affected differently by physical, chemical, and biological processes that control nitrogen cycling in terrestrial and aquatic systems. Hence, the relative contributions from the various sources of nitrogen to nitrate load in the Mississippi River are unknown because the different sources may not contribute proportionally to their inputs in the basin. It may be possible to determine the relative contributions of the major sources of nitrate in river water using the stable isotopic ratios d15N and d18O of the nitrate ion. A few researchers have used the d15N and/or d18O isotope ratios to determine sources of nitrate in ground water, headwater catchments, and small rivers, but little is known about the isotopic composition of nitrate in larger rivers. The objective of this study is to measure the isotopic composition of nitrate and suspended organic matter in the Mississippi River and its major tributaries, in discharge to the Gulf of Mexico, and in streamflow from smaller watersheds that have distinct sources of nitrogen (row crops, animal wastes, and urban effluents) or are minimally impacted by man (undeveloped). Samples from seven sites on the Mississippi River and its tributaries and from 17 sites in smaller watersheds within the Mississippi River basin will be analyzed for d15N and

  14. The anatomy of effective discharge: the dynamics of coarse sediment transport revealed using continuous bedload monitoring in a gravel-bed river during a very wet year

    OpenAIRE

    Downs, Peter W.; Soar, Philip J.; Taylor, Alex

    2015-01-01

    Indirect, passive approaches for monitoring coarse bedload transport could allow cheaper, safer, higher-resolution, longer-term data that revolutionises bedload understanding and informs river management. Here, insights provided by seismic impact plates in a downstream reach of a flashy gravel-bed river (River Avon, Devon, UK) are explored in the context of plate performance. Monitoring of a centrally-situated plate (IP1) during an extremely wet 12-month period demonstrated that impacts were ...

  15. Shoulder replacement - discharge

    Science.gov (United States)

    Total shoulder arthroplasty - discharge; Endoprosthetic shoulder replacement - discharge; Partial shoulder replacement - discharge; Partial shoulder arthroplasty - discharge; Replacement - shoulder - discharge; Arthroplasty - shoulder - discharge

  16. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of the upper Blue River, Johnson County, Kansas and Jackson County, Missouri, January 2003 through March 2009

    Science.gov (United States)

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Poulton, Barry C.

    2010-01-01

    The Johnson County Blue River Main Wastewater Treatment Facility discharges into the upper Blue River near the border between Johnson County, Kansas and Jackson County, Missouri. During 2005 through 2007 the wastewater treatment facility underwent upgrades to increase capacity and include biological nutrient removal. The effects of wastewater effluent on environmental and biological conditions of the upper Blue River were assessed by comparing an upstream site to two sites located downstream from the wastewater treatment facility. Environmental conditions were evaluated using previously and newly collected discrete and continuous data, and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This evaluation is useful for understanding the potential effects of wastewater effluent on water quality, biological community structure, and ecosystem function. In addition, this information can be used to help achieve National Pollution Discharge Elimination System (NPDES) wastewater effluent permit requirements after additional studies are conducted. The effects of wastewater effluent on the water-quality conditions of the upper Blue River were most evident during below-normal and normal streamflows (about 75 percent of the time), when wastewater effluent contributed more than 20 percent to total streamflow. The largest difference in water-quality conditions between the upstream and downstream sites was in nutrient concentrations. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 4 to 15 times larger than at the upstream site, even after upgrades to the wastewater treatment facility were completed. However, total nitrogen concentrations decreased in wastewater effluent and at the downstream site following wastewater treatment facility upgrades. Similar decreases in total phosphorus were not observed, likely because the biological

  17. Topological track reconstruction in liquid scintillator and LENA as a far-detector in an LBNO experiment

    International Nuclear Information System (INIS)

    Lorenz, Sebastian

    2016-12-01

    Unsegmented liquid scintillator (LSc) neutrino detectors have proven to be successful instruments of neutrino physics. They usually measure terrestrial and astrophysical low-energy (LE) neutrinos and antineutrinos with energies up to some tens of MeV. Designs for next-generation detectors based on this technology intend to use several tens of kilotons of LSc. Two examples are the Low Energy Neutrino Astronomy (LENA) project with 50 kt considered in Europe and the Jiangmen Underground Neutrino Observatory (JUNO) with 20 kt already under construction in China. A key factor to reach the scientific goals of these projects, e.g., the determination of the neutrino mass ordering (MO) in the case of JUNO, will be the efficient rejection of background from radioisotopes produced by cosmogenic muons. This requires accurate reconstructions of extended muon event topologies in the LSc volume.The first part of this work is about the implementation of a novel, iterative track reconstruction procedure for unsegmented LSc detectors and a basic evaluation of its performance with the LENA detector simulation. The ultimate goal of the new method is to reconstruct the spatial number density distribution of optical photon emissions. This will give access to a charged particle's differential energy loss dE/dx in LSc and resolve details of an event's topology, e.g., induced particle showers. Visual comparisons of reconstruction outcomes with Monte Carlo (MC) truths already provide evidence for this capability. First quantitative results were extracted from the 3D reconstruction data of fully-contained muons in the kinetic energy range from 1 to 10 GeV: Despite some well understood systematic effects in the current method to find start and end point of a track, resolutions < or similar 25 cm lateral to the reconstructed track were ascertained for these spots. The determined angular resolution of ∝1.4 at 1 GeV improves to ∝0.3 with rising muon energy. With the current analysis method

  18. Topological track reconstruction in liquid scintillator and LENA as a far-detector in an LBNO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Sebastian

    2016-12-15

    Unsegmented liquid scintillator (LSc) neutrino detectors have proven to be successful instruments of neutrino physics. They usually measure terrestrial and astrophysical low-energy (LE) neutrinos and antineutrinos with energies up to some tens of MeV. Designs for next-generation detectors based on this technology intend to use several tens of kilotons of LSc. Two examples are the Low Energy Neutrino Astronomy (LENA) project with 50 kt considered in Europe and the Jiangmen Underground Neutrino Observatory (JUNO) with 20 kt already under construction in China. A key factor to reach the scientific goals of these projects, e.g., the determination of the neutrino mass ordering (MO) in the case of JUNO, will be the efficient rejection of background from radioisotopes produced by cosmogenic muons. This requires accurate reconstructions of extended muon event topologies in the LSc volume.The first part of this work is about the implementation of a novel, iterative track reconstruction procedure for unsegmented LSc detectors and a basic evaluation of its performance with the LENA detector simulation. The ultimate goal of the new method is to reconstruct the spatial number density distribution of optical photon emissions. This will give access to a charged particle's differential energy loss dE/dx in LSc and resolve details of an event's topology, e.g., induced particle showers. Visual comparisons of reconstruction outcomes with Monte Carlo (MC) truths already provide evidence for this capability. First quantitative results were extracted from the 3D reconstruction data of fully-contained muons in the kinetic energy range from 1 to 10 GeV: Despite some well understood systematic effects in the current method to find start and end point of a track, resolutions

  19. Investigations of effects of thermal discharges in Rhine river waters. Part of a coordinated programme on the physical and biological effects of cooling systems and thermal discharges at nuclear power plants

    International Nuclear Information System (INIS)

    Schikarski, W.

    1978-12-01

    The report envisages two aspects of cooling systems: heat exchange between water and atmosphere; cooling tower plume modelling. The author gives the estimated ''cooling capacity'' of German rivers and estuaries and describes a station at Rheinhausen, measuring directly the heat exchange between the river Rhine and the atmosphere. The influence of meteorological and topographical parameters is discussed and the total incertainty in extrapolating formular is assessed. A number of field studies have been carried out to measure plume behaviour of cooling towers and to provide the data basis for comparison of existing models. The average plume rise is well predicted. The experimental programme carried out in Germany since 1973 is described. The one dimensional models TOWER and SAUNA.S are in agreement with experimental results except for short plumes. The last plume model WALKURE shows considerable improvement. It is specially suited for the calculations of the cooling tower plume behaviour under influence of temperature and humidity stratifications in the ambient atmosphere

  20. River flow controls on tides an tide-mean water level profiles in a tidel freshwater river

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.

    2013-01-01

    [1] Tidal rivers feature oscillatory and steady gradients in the water surface, controlled by interactions between river flow and tides. The river discharge attenuates the tidal motion, and tidal motion increases tidal-mean friction in the river, which may act as a barrier to the river discharge.

  1. Using Remote Sensing and High-Resolution Digital Elevation Models to Identify Potential Erosional Hotspots Along River Channels During High Discharge Storm Events

    Science.gov (United States)

    Orland, E. D.; Amidon, W. H.

    2017-12-01

    As global warming intensifies, large precipitation events and associated floods are becoming increasingly common. Channel adjustments during floods can occur by both erosion and deposition of sediment, often damaging infrastructure in the process. There is thus a need for predictive models that can help managers identify river reaches that are most prone to adjustment during storms. Because rivers in post-glacial landscapes often flow over a mixture of bedrock and alluvial substrates, the identification of bedrock vs. alluvial channel reaches is an important first step in predicting vulnerability to channel adjustment during flood events, especially because bedrock channels are unlikely to adjust significantly, even during floods. This study develops a semi-automated approach to predicting channel substrate using a high-resolution LiDAR-derived digital elevation model (DEM). The study area is the Middlebury River in Middlebury, VT-a well-studied watershed with a wide variety of channel substrates, including reaches with documented channel adjustments during recent flooding events. Multiple metrics were considered for reference—such as channel width and drainage area—but the study utilized channel slope as a key parameter for identifying morphological variations within the Middlebury River. Using data extracted from the DEM, a power law was fit to selected slope and drainage area values for each branch in order to model idealized slope-drainage area relationships, which were then compared with measured slope-drainage area relationships. Differences in measured slope minus predicted slope (called delta-slope) are shown to help predict river channel substrate. Compared with field observations, higher delta-slope values correlate with more stable, boulder rich channels or bedrock gorges; conversely the lowest delta-slope values correlate with flat, sediment rich alluvial channels. The delta-slope metric thus serves as a reliable first-order predictor of channel

  2. NIPPLE DISCHARGE

    Directory of Open Access Journals (Sweden)

    T. N. Bukharova

    2008-01-01

    Full Text Available According to the data available in the literature, as high as 50% of women have benign breast tumors frequently accompanied by nip- ple discharge. Nipple discharge may be serous, bloody, purulent, and colostric. The most common causes are breast abscess, injury, drugs, prolactinoma, intraductal pappiloma, ductal ectasia, intraductal cancer (not more than 10%.

  3. Neutralidade pseudo-inscrita: a doméstica Lena, a dona de casa Alice e a intelectual Gertrude têm uma só incompreensão do valor Pseudo-inscribed neutrality: the servant Lena, the housewife Alice and the intellectual Gertrude all misconceive the notion of value

    Directory of Open Access Journals (Sweden)

    Fernando Meneghel

    2004-08-01

    Full Text Available Uma leitura do tratamento dispensado pelo feminismo ao trabalho doméstico, preocupada com a relação entre o trabalho doméstico e a infra-estrutura que este proporciona à produção intelectual burguesa. Esta leitura, que busca desestabilizar os valores negativos regularmente agregados à subserviência doméstica, tem como base de análise as obras literobiográficas Autobiografia de Alice B. Toklas e Autobiografia de todo mundo, e o conto A Gentil Lena, todos de Gertrude Stein.This paper presents a reading of the way in which feminism treats the issue of houseswok, especially the relationship between domestic labor and its basis for bourgeois intellectual production. Through an examination of three of Getrude Stein's works - The Authobiography of Alice B. Toklas, Everybody's Biography, and The Gentle Lena - this reading seeks to destabilize the negative values usually attributed to domestic labor.

  4. Study of discharge coefficients of the flapper gates in the Tiete River movable dam; Estudo dos coeficientes de vazao das comportas tipo basculante (CLAPET) da barragem movel do Rio Tiete

    Energy Technology Data Exchange (ETDEWEB)

    Lucca, Yvone de Faria Lemos de [Universidade de Sao Paulo (CTH/DAEE/USP), SP (Brazil). Departamento de Aguas e Energia Eletrica. Centro Tecnologico de Hidraulica e Recursos Hidricos; Souza, Podalyro Amaral de [Universidade de Sao Paulo (EP/USP), SP (Brazil). Escola Politecnica. Dept. de Aguas e Energia Eletrica], E-mail: podalyro@usp.br

    2011-04-15

    This article refers to the study of discharge coefficients of the flapper gates in the Tiete River Movable Dam. This dam is made of a reinforced concrete structure with nine flapper gates, which can be operated independently from each other, opening angle from zero to 70 degree. This type of dam structure produces complex flow conditions due to the several opening combinations which make this study very challenging. This paper presents the development of a mathematical model that can estimate the coefficient flow taking into account all major variables present in this dam structure, like the angle of operation of each gate, the approaching flow velocity, the concrete column between gates, the downed outflow effects and the presence of a completely closed gate between two in operation. (author)

  5. Water withdrawals, wastewater discharge, and water consumption in the Apalachicola-Chattahoochee-Flint River Basin, 2005, and water-use trends, 1970-2005

    Science.gov (United States)

    Marella, Richard L.; Fanning, Julia L.

    2011-01-01

    The Apalachicola-Chattahoochee-Flint (ACF) River Basin covers about 20,500 square miles that drains parts of Alabama, Florida, and Georgia. The basin extends from its headwaters northern Georgia to the Gulf of Mexico. Population in the basin was estimated to be 3.7 million in 2005, an increase of about 41 percent from the 1990 population of 2.6 million. In 2005, slightly more than 721,000 acres of crops were irrigated within the basin. In 2005, the total amount of water withdrawn in the ACF River Basin was about 1,990 million gallons per day (Mgal/d). Of this, surface water accounted for 1,591 Mgal/d (80 percent) and groundwater accounted for 399 Mgal/d (20 percent). Surface water was the primary water source of withdrawals in the northern and central parts of the basin, and groundwater was the primary source in the southern part. The largest surface-water withdrawals was from Cobb County, Georgia (410 Mgal/d, mostly from the Chattahoochee River and Lake Alatoona), and the largest groundwater withdrawals was from Dougherty County, Georgia (38 Mgal/d, mostly from the Upper Floridan aquifer system).

  6. The Impacts of Climate Change on the Discharge of Osse-Ossiomo ...

    African Journals Online (AJOL)

    There is a strong evidence of global warming using the index of temperature in the drainage basin. River discharge also indicated fluctuating trends from year to year in the decades with available discharge records. It was concluded that the river discharge pattern of Osse-Ossiomo River Basin, S. W. Nigeria exhibited ...

  7. Research activities in the fields of radiochemistry and neutron activation analysis using the LENA nuclear plant in Pavia

    International Nuclear Information System (INIS)

    Maggi, L.; Genova, N.; DiCasa, M.; Carmella-Crespi, V.

    1978-01-01

    In the past two years the activity of the Radiochemistry Laboratory and CNR Centre of Radiochemistry and Activation Analysis was mainly devoted to studies of nuclear activation analysis applied to different fields using the LENA reactor. Three NBS vegetable reference standards, Orchard Leaves, Tomato Leaves and Pine Needles, were analyzed for their halogen content. Halogen determination in foodstuff, vegetables and organic tissues gives valuable information on metabolic, nutritional, pollution and epidemiological fields. A detailed study on macro- and micro-elements content in Sardinian coal and its ashes was performed, in order to assess the possibility of using it as a fuel in electric power generating plants. Instrumental neutron activation analysis was used for the determination of Al, Si, Mn, Mg, Na, V, CI, Ce, Yb, Th, Cr, Hf, Cs, Se, Rb, Fe, Co, Ta, Eu, K, La and Sb. A multielement trace analysis of rock samples was developed in cooperation with scientists from other Universities; the determination of R.E., U, Th, Zr, Cs, Ba, Ni, Sc, Ta, Hf, Sr, and Cr by instrumental neutron activation analysis was carried out in connection with orogenetic studies of African Rocks. In the archaeological field ancient artefacts recently discovered during a digging campaign at Monza's Cathedral (Italy) were analyzed with the aim to trace their origin and compare their composition with similar samples whose dating is certain. As a contribute to the international program of certifying NBS reference standard materials, chromium in the Brewer's Yeast, recently proposed as a new SRM, was determined by both instrumental and destructive neutron activation analysis. In the study of the role and behaviour of trace elements in human physiology, vanadium was investigated in human blood, as a trace element of increasing interest in connection with its origin from pollutants. Nuclear activation analysis was also applied to marine organism samples under a contract for oceanographic research

  8. Santa Cristina de Lena, un monumento enigmático del prerrománico asturiano: piedras, deterioro y sugerencias de conservación

    Directory of Open Access Journals (Sweden)

    Soledad Álvarez

    2005-12-01

    Full Text Available El análisis que se expone sobre los elementos matéricos y constructivos de Santa Cristina de Lena no se limita al estudio de la piedra y del deterioro del monumento con la intención de proponer soluciones para su conservación, sino que además contribuye con un conocimiento científico riguroso a arrojar luz sobre uno de los monumentos más enigmáticos del Arte Prerrománico Asturiano, diferenciando los elementos originales de los incorporados con posterioridad y explicando algunas de sus peculiaridades estilísticas.

  9. Miscellaneous flow discharge measurements collected downstream of Brandon Road Lock and Dam

    Data.gov (United States)

    Department of the Interior — Flow discharges were measured in the Des Plaines River from approximately river mile 286 to river mile 284 on October 19–21, 2015 using Teledyne Rio Grande 1200 kHz...

  10. Emerging pollutants in the Esmeraldas watershed in Ecuador: discharge and attenuation of emerging organic pollutants along the San Pedro-Guayllabamba-Esmeraldas rivers.

    Science.gov (United States)

    Voloshenko-Rossin, A; Gasser, G; Cohen, K; Gun, J; Cumbal-Flores, L; Parra-Morales, W; Sarabia, F; Ojeda, F; Lev, O

    2015-01-01

    Water quality characteristics and emerging organic pollutants were sampled along the San Pedro-Guayllabamba-Esmeraldas River and its main water pollution streams in the summer of 2013. The annual flow rate of the stream is 22 000 Mm(3) y(-1) and it collects the wastewater of Quito-Ecuador in the Andes and supplies drinking water to the city of Esmeraldas near the Pacific Ocean. The most persistent emerging pollutants were carbamazepine and acesulfame, which were found to be stable along the San Pedro-Guayllabamba-Esmeraldas River, whereas the concentration of most other organic emerging pollutants, such as caffeine, sulfamethoxazole, venlafaxine, O-desmethylvenlafaxine, and steroidal estrogens, was degraded to a large extent along the 300 km flow. The mass rate of the sum of cocaine and benzoylecgonine, its metabolite, was increased along the stream, which may be attributed to coca plantations and wild coca trees. This raises the possibility of using river monitoring as an indirect way to learn about changes in coca plantations in their watersheds. Several organic emerging pollutants, such as venlafaxine, carbamazepine, sulphamethoxazole, and benzoylecgonine, survived even the filtration treatment at the Esmeraldas drinking water system, though all except for benzoylecgonine are found below 20 ng L(-1), and are therefore not likely to cause adverse health effects. The research provides a way to compare drug consumption in a major Latin American city (Quito) and shows that the consumption of most sampled drugs (carbamazepine, venlafaxine, O-desmethylvenlafaxine, sulphamethoxazole, ethinylestradiol) was below their average consumption level in Europe, Israel, and North America.

  11. Ileostomy - discharge

    Science.gov (United States)

    ... dried fruits (such as raisins), mushrooms, chunky relishes, coconut, and some Chinese vegetables. Tips for when no ... ask your doctor Living with your ileostomy Low-fiber diet Small bowel resection - discharge Total colectomy or ...

  12. Emerging pollutants in the Esmeraldas watershed in Ecuador: discharge and attenuation of emerging organic pollutants along the San Pedro– Guayllabamba–Esmeraldas rivers

    OpenAIRE

    Voloshenko-Rossin, A.; Gasser, G.; Cohen, K.; Gun, J.; Cumbal-Flores, L.; Parra- Morales, W.; Sarabia, F.; Ojeda, F.; Lev, O.

    2015-01-01

    Water quality characteristics and emerging organic pollutants were sampled along the San Pedro–Guayllabamba–Esmeraldas River and its main water pollution streams in the summer of 2013. The annual flow rate of the stream is 22 000 Mm3 y 1 and it collects the wastewater of Quito-Ecuador in the Andes and supplies drinking water to the city of Esmeraldas near the Pacific Ocean. The most persistent emerging pollutants were carbamazepine and acesulfame, which were found to be stable along the San ...

  13. Columbia River water quality monitoring

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Waste water from Hanford activities is discharged at eight points along the Hanford reach of the Columbia River. These discharges consist of backwash water from water intake screens, cooling water, river bank springs, water storage tank overflow, and fish laboratory waste water. Each discharge point is identified in an existing National Pollutant Discharge Elimination System (NPDES) permit issued by the EPA. Effluents from each of these outfalls are routinely monitored and reported by the operating contractors as required by their NPDES permits. Measurements of several Columbia River water quality parameters were conducted routinely during 1982 both upstream and downstream of the Hanford Site to monitor any effects on the river that may be attributable to Hanford discharges and to determine compliance with the Class A designation requirements. The measurements indicated that Hanford operations had a minimal, if any, impact on the quality of the Columbia River water

  14. Eighty years of food-web response to interannual variation in discharge recorded in river diatom frustules from an ocean sediment core.

    Science.gov (United States)

    Sculley, John B; Lowe, Rex L; Nittrouer, Charles A; Drexler, Tina M; Power, Mary E

    2017-09-19

    Little is known about the importance of food-web processes as controls of river primary production due to the paucity of both long-term studies and of depositional environments which would allow retrospective fossil analysis. To investigate how freshwater algal production in the Eel River, northern California, varied over eight decades, we quantified siliceous shells (frustules) of freshwater diatoms from a well-dated undisturbed sediment core in a nearshore marine environment. Abundances of freshwater diatom frustules exported to Eel Canyon sediment from 1988 to 2001 were positively correlated with annual biomass of Cladophora surveyed over these years in upper portions of the Eel basin. Over 28 years of contemporary field research, peak algal biomass was generally higher in summers following bankfull, bed-scouring winter floods. Field surveys and experiments suggested that bed-mobilizing floods scour away overwintering grazers, releasing algae from spring and early summer grazing. During wet years, growth conditions for algae could also be enhanced by increased nutrient loading from the watershed, or by sustained summer base flows. Total annual rainfall and frustule densities in laminae over a longer 83-year record were weakly and negatively correlated, however, suggesting that positive effects of floods on annual algal production were primarily mediated by "top-down" (consumer release) rather than "bottom-up" (growth promoting) controls.

  15. Eighty years of food-web response to interannual variation in discharge recorded in river diatom frustules from an ocean sediment core

    Science.gov (United States)

    Sculley, John B.; Lowe, Rex L.; Nittrouer, Charles A.; Drexler, Tina M.; Power, Mary E.

    2017-01-01

    Little is known about the importance of food-web processes as controls of river primary production due to the paucity of both long-term studies and of depositional environments which would allow retrospective fossil analysis. To investigate how freshwater algal production in the Eel River, northern California, varied over eight decades, we quantified siliceous shells (frustules) of freshwater diatoms from a well-dated undisturbed sediment core in a nearshore marine environment. Abundances of freshwater diatom frustules exported to Eel Canyon sediment from 1988 to 2001 were positively correlated with annual biomass of Cladophora surveyed over these years in upper portions of the Eel basin. Over 28 years of contemporary field research, peak algal biomass was generally higher in summers following bankfull, bed-scouring winter floods. Field surveys and experiments suggested that bed-mobilizing floods scour away overwintering grazers, releasing algae from spring and early summer grazing. During wet years, growth conditions for algae could also be enhanced by increased nutrient loading from the watershed, or by sustained summer base flows. Total annual rainfall and frustule densities in laminae over a longer 83-year record were weakly and negatively correlated, however, suggesting that positive effects of floods on annual algal production were primarily mediated by “top-down” (consumer release) rather than “bottom-up” (growth promoting) controls. PMID:28874576

  16. Using Coupled Models to Study the Effects of River Discharge on Biogeochemical Cycling and Hypoxia in the Northern Gulf of Mexico

    Science.gov (United States)

    Penta, Bradley; Ko, D.; Gould, Richard W.; Arnone, Robert A.; Greene, R.; Lehrter, J.; Hagy, James; Schaeffer, B.; Murrell, M.; Kurtz, J.; hide

    2009-01-01

    We describe emerging capabilities to understand physical processes and biogeoehemical cycles in coastal waters through the use of satellites, numerical models, and ship observations. Emerging capabilities provide significantly improved ability to model ecological systems and the impact of environmental management actions on them. The complex interaction of physical and biogeoehemical processes responsible for hypoxic events requires an integrated approach to research, monitoring, and modeling in order to fully define the processes leading to hypoxia. Our efforts characterizes the carbon cycle associated with river plumes and the export of organic matter and nutrients form coastal Louisiana wetlands and embayments in a spatially and temporally intensive manner previously not possible. Riverine nutrients clearly affect ecosystems in the northern Gulf of Mexico as evidenced in the occurrence of regional hypoxia events. Less known and largely unqualified is the export of organic matter and nutrients from the large areas of disappearing coastal wetlands and large embayments adjacent to the Louisiana Continental Shelf. This project provides new methods to track the river plume along the shelf and to estimate the rate of export of suspended inorganic and organic paniculate matter and dissolved organic matter form coastal habitats of south Louisiana.

  17. Tracing river runoff and DOC over the East Siberian Shelf using in situ CDOM measurements

    Science.gov (United States)

    Pugach, Svetlana; Semiletov, Igor; Pipko, Irina

    2010-05-01

    The Great Siberian Rivers integrate meteorological and hydrological changes in their watersheds and play a significant role in the physical and biogeochemical regime of the Arctic Ocean through transport of fresh water (FW) and carbon into the sea. Since 1994, the Laboratory of Arctic Research POI in cooperation with the IARC UAF investigate the fresh water and carbon fluxes in the Siberian Arctic land-shelf system with the special emphasize in the East Siberian Arctic shelf (ESAS) which represents the widest and shallowest continental shelf in the World Ocean, yet it is still poorly explored. The East Siberian Sea is influenced by water exchange from the eastern Laptev Sea (where local shelf waters are diluted mostly by Lena River discharge) and by inflow of Pacific waters from the Chukchi Sea. This region is characterized by the highest rate of coastal erosion and significant volume of the riverine discharge and exhibits the largest gradients in all oceanographic parameters observed for the entire Arctic Ocean. Here we demonstrate a connection among Chromophoric (or Colored) Dissolved Organic Matter (CDOM) which represents the colored fraction of Dissolved Organic Carbon (DOC), salinity, and pCO2. Our data have documented strong linear correlations between salinity and CDOM in the near shore zone strongly influenced by riverine runoff. Correlation coefficient between CDOM and salinity in surface waters was equal to -0.94, -0.94 and -0.95 for surface water stations in September of 2003, 2004, and 2005, respectively. Combined analysis of CDOM and DOC data demonstrated a high degree of correlation between these parameters (r=0.96). Such close connection between these characteristics of waters in this region makes it possible to restore the distribution of DOC according to our original CDOM data of the profiling systems, such as CTD-Seabird equipped by WETStar CDOM fluorimeter. It is shown that the CDOM can be used as a conservative tracer to follow the transport and

  18. Discharge Dialogue

    DEFF Research Database (Denmark)

    Horsbøl, Anders

    2012-01-01

    For several years, efforts have been made to strengthen collaboration between health professionals with different specializations and to improve patient transition from hospital to home (care). In the Danish health care system, these efforts have concentrated on cancer and heart diseases, whereas...... coordinator, employed at the hospital, is supposed to anticipate discharge and serve as mediator between the hospital and the municipal home care system. Drawing on methods from discourse and interaction analysis, the paper studies the practice of the discharge coordinator in two encounters between patients...... how the home context provides different resources for identification of patient needs and mutual decision making....

  19. A Case Study: Implementation of a Management System for the TRIGA Mark II Research Reactor at the Laboratory of Applied Nuclear Energy (LENA) of the University of Pavia, Italy. Annex I

    International Nuclear Information System (INIS)

    2013-01-01

    This annex provides an example for the implementation of a management system for operating organizations of research reactors, based on a case study in which the implementation of such a system has been completed. The case study relates the experience of the Applied Nuclear Energy Laboratory (hereafter referred to as LENA) of the University of Pavia, Italy. This example is used because of the recent completion of the implementation of an integrated management system, and also because of the specific characteristics of the organization (such as the limited number of staff, limited financial resources, etc.), which are often typical for organizations that operate smaller research reactors. Section I-1 gives a brief presentation of the organization, including the scope of work, the main activities performed, the organizational structure, the identification of interested parties and the applicable requirements and standards. Section I-2 describes the LENA Management System, the reasons for its implementation, the stages of its development and the processes involved. Some practical examples related to the development of the LENA Management System are discussed in Section I-3, indicating the choices made by the organization. In particular, Section I-3.12 shows the correlation between the LENA Management System processes and the processes considered in the main body of this publication.

  20. Disinfection of tertiary wastewater effluent prior to river discharge using peracetic acid; treatment efficiency and results on by-products formed in full scale tests.

    Science.gov (United States)

    Pedersen, Per Overgaard; Brodersen, Erling; Cecil, David

    2013-01-01

    This is an investigation of chemical disinfection, with peracetic acid (PAA), in a tertiary sand filter at a full scale activated sludge plant with nitrification/denitrification and P-removal. The reduction efficiency of Escherichia coli and intestinal enterococci in the sand filter is reported. E. coli log reductions of between 0.4 and 2.2 were found with contact times from 6 to 37 min and with dosing from 0 to 4.8 mg L(-1). The average log reduction was 1.3. The decomposition products, bromophenols, chlorophenols and formaldehyde and residual H2O2 were measured before and after the sand filter. The residual H2O2 concentration in the effluent was critical at short contact times and high dosages of PAA due to the discharge limit of 25 μg L(-1). The other three products could not be detected at 0.1 μg L(-1) levels. The chemical cost of PAA dosing is estimated to be 0.039 US$ m(-3) treated wastewater.

  1. Improving Understanding of Glacier Melt Contribution to High Asian River Discharge through Collaboration and Capacity Building with High Asian CHARIS Partner Institutions

    Science.gov (United States)

    Armstrong, Richard; Brodzik, Mary Jo; Armstrong, Betsy; Barrett, Andrew; Fetterer, Florence; Hill, Alice; Jodha Khalsa, Siri; Racoviteanu, Adina; Raup, Bruce; Rittger, Karl; Williams, Mark; Wilson, Alana; Ye, Qinghua

    2017-04-01

    The Contribution to High Asia Runoff from Ice & Snow (CHARIS) project uses remote sensing data combined with modeling from 2000 to the present to improve proportional estimates of melt from glaciers and seasonal snow surfaces. Based at the National Snow and Ice Data Center (NSIDC), University of Colorado, Boulder, USA, the CHARIS project objectives are twofold: 1) capacity-building efforts with CHARIS partners from eight High Asian countries to better forecast future availability and vulnerability of water resources in the region, and 2) improving our ability to systematically assess the role of glaciers and seasonal snow in the freshwater resources of High Asia. Capacity-building efforts include working with CHARIS partners from Bhutan, Nepal, India, Pakistan, Afghanistan, Kazakhstan, Kyrgyzstan and Tajikistan. Our capacity-building activities include training, data sharing, supporting fieldwork, graduate student education and infrastructure development. Because of the scarcity of in situ data in this High Asian region, we are using the wealth of available remote sensing data to characterize digital elevation, daily maps of fractional snow-cover, annual maps of glacier and permanent snow cover area and downscaled reanalysis temperature data in snow melt models to estimate the relative proportions of river runoff from glacierized and seasonally snow-covered surfaces. Current collaboration with Qinghua Ye, visiting scientist at NSIDC from the Institute of Tibetan Plateau Research, CAS, focuses on remote sensing methods to detect changes in the mountain cryosphere. Collaboration with our Asian partners supports the systematic analysis of the annual cycle of seasonal snow and glacier ice melt across the High Mountain Asia region. With our Asian partners, we have derived reciprocal benefits, learning from their specialized local knowledge and obtaining access to their in situ data. We expect that the improved understanding of runoff from snow and glacier surfaces will

  2. Effects of small-scale hydrogeologic heterogeneity on submarine groundwater discharge (SGD) dynamics in river dominated estuaries: example of Mobile Bay, Alabama

    Science.gov (United States)

    Montiel, D.; Dimova, N.

    2017-12-01

    Submarine groundwater discharge (SGD) is known to be an important pathway for nutrients and dissolved constituents in estuarine environments worldwide. Despite its limited contribution to the total fresh water flux to the ocean (5 - 10 %), SGD-derived material loadings can rival riverine inputs. Therefore, a good understanding of the coastal hydrogeology and subsequent SGD dynamics is crucial to further investigate constituent fluxes and its implications on small and large scale coastal ecosystems. We evaluated SGD in Mobile Bay (Alabama), the fourth largest estuary in the US, using a combination of radiotracer techniques (223Ra, 226Ra, and 222Rn), stable isotopes (δ 18O and δ 2H), geophysical surveys (continuous resistivity profiling (CRP) and electrical resistivity tomography (ERT)), and seepage meters during three consecutive years. A detailed examination of the entire shoreline of Mobile Bay using CRP, ERT imaging, and multiple sediment cores collection unveiled a heterogeneous (horizontal and vertical) distribution of the surficial coastal aquifer. This was reflected and confirmed by groundwater tracer measurements and direct measurements of SGD in the coastal zone. We found that SGD occurs mainly in the northeast section of Mobile Bay with a total flux that ranged between 0.9 and 13 × 105 m3 d-1 during dry and wet periods, which represents 0.4 - 2 % of the total fresh water inputs into the Bay. While total SGD is insignificant when accounting the whole water budget of Mobile Bay, we found that small-scale geology variations produce groundwater flow preferential pathways in particular areas where SGD inputs play an important role in the water and nutrient budgets.

  3. Assessing the Effects of Climate on Global Fluvial Discharge Variability

    Science.gov (United States)

    Hansford, M. R.; Plink-Bjorklund, P.

    2017-12-01

    Plink-Bjorklund (2015) established the link between precipitation seasonality and river discharge variability in the monsoon domain and subtropical rivers (see also Leier et al, 2005; Fielding et al., 2009), resulting in distinct morphodynamic processes and a sedimentary record distinct from perennial precipitation zone in tropical rainforest zone and mid latitudes. This study further develops our understanding of discharge variability using a modern global river database created with data from the Global Runoff Data Centre (GRDC). The database consists of daily discharge for 595 river stations and examines them using a series of discharge variability indexes (DVI) on different temporal scales to examine how discharge variability occurs in river systems around the globe. These indexes examine discharge of individual days and monthly averages that allows for comparison of river systems against each other, regardless of size of the river. Comparing river discharge patterns in seven climate zones (arid, cold, humid subtropics, monsoonal, polar, rainforest, and temperate) based off the Koppen-Geiger climate classifications reveals a first order climatic control on discharge patterns and correspondingly sediment transport. Four groupings of discharge patterns emerge when coming climate zones and DVI: persistent, moderate, seasonal, and erratic. This dataset has incredible predictive power about the nature of discharge in fluvial systems around the world. These seasonal effects on surface water supply affects river morphodynamics and sedimentation on a wide timeframe, ranging from large single events to an inter-annual or even decadal timeframe. The resulting sedimentary deposits lead to differences in fluvial architecture on a range of depositional scales from sedimentary structures and bedforms to channel complex systems. These differences are important to accurately model for several reasons, ranging from stratigraphic and paleoenviromental reconstructions to more

  4. Angioplasty and stent - heart - discharge

    Science.gov (United States)

    Drug-eluting stents - discharge; PCI - discharge; Percutaneous coronary intervention - discharge; Balloon angioplasty - discharge; Coronary angioplasty - discharge; Coronary artery angioplasty - discharge; Cardiac ...

  5. Radiological discharges

    International Nuclear Information System (INIS)

    Woodliffe, J.

    1990-01-01

    Current practice of North Sea States on the discharge and disposal of liquid radioactive wastes to the North Sea are based on the declaration issued at the Second International Conference on the Protection of the North Sea, known as the London Declaration. This has three main points the first of which emphasises the application of the Best Available Technology to protect the North Sea, the second provides a framework on which future controls on radioactive discharges should be based. The third identifies two parts of the framework; to take into account the recommendations of international organizations and that any repositories of radioactive waste which are built should not pollute the North Sea. This chapter looks at how the concensus based on the London Declaration is working, gauges the progress made in the implementation of the policy goal, identifies existing and future areas for concern and proposes ways of strengthening the control of radioactive discharges. The emphasis is on the United Kingdom practice and regulations for liquid wastes, most of which comes from the Sellafield Reprocessing Plant. (author)

  6. Hysterectomy - vaginal - discharge

    Science.gov (United States)

    Vaginal hysterectomy - discharge; Laparoscopically assisted vaginal hysterectomy - discharge; LAVH - discharge ... you were in the hospital, you had a vaginal hysterectomy. Your surgeon made a cut in your ...

  7. The effects of brewery effluent discharge on the water quality and ...

    African Journals Online (AJOL)

    Effluent discharge into the river significantly altered the water quality. Monitoring of effluent discharge into the aquatic environment and strict adherence to regulatory limits will halt further degradation of the environment. Key words: Water, sediment physico-chemistry, distribution coefficient, effluent discharge, tropical river ...

  8. Relative role of bed roughness change and bed erosion on peak discharge increase in hyperconcentrated floods

    NARCIS (Netherlands)

    Li, W.; Wang, Z.B.; Van Maren, D.S.; De Vriend, H.J.; Wu, B.S.

    2014-01-01

    River floods are usually featured by a downstream flattening discharge peak whereas a downstream increasing discharge peak is observed at a rate exceeding the tributary discharge during highly silt-laden floods (hyperconcentrated floods) in China’s Yellow River. It entails a great challenge in the

  9. Lung surgery - discharge

    Science.gov (United States)

    ... Lung biopsy - discharge; Thoracoscopy - discharge; Video-assisted thoracoscopic surgery - discharge; VATS - discharge ... milk) for 2 weeks after video-assisted thoracoscopic surgery and 6 to 8 weeks after open surgery. ...

  10. Pediatric heart surgery - discharge

    Science.gov (United States)

    ... discharge; Heart valve surgery - children - discharge; Heart surgery - pediatric - discharge; Heart transplant - pediatric - discharge ... Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016:chap 434. ...

  11. Anastomosing Rivers are Disequilibrium Patterns

    NARCIS (Netherlands)

    Lavooi, E.; Haas, de T.; Kleinhans, M.G.; Makaske, B.; Smith, D.G.

    2010-01-01

    Anastomosing rivers have multiple interconnected channels that enclose floodbasins. Various theories have been proposed to explain this pattern, including an increased discharge conveyance and sediment transport capacity of multiple channels, or, alternatively, a tendency to avulse due to upstream

  12. Thermal discharge residence by Lake Michigan Salmonids

    International Nuclear Information System (INIS)

    Romberg, G.P.; Prepejchal, W.

    1975-01-01

    Lake Michigan salmon and trout were tagged with a thermoluminescent dosimeter (TLD) temperature tag to estimate their thermal exposure and residence time at a warm water discharge. Fish were collected, tagged, and released at the Point Beach Nuclear Plant, Two Rivers, Wisconsin, in the fall of 1973 and 1974. Tags were recovered during the same season, primarily from fish recaptured at Point Beach. Average uniform temperature exposure and maximum possible discharge residence time were determined. Appropriate hourly intake and discharge temperatures were averaged to calculate mean temperature exposure for the case of maximum discharge residence. Lowest discharge temperature not included within the period of maximum residence was identified to serve as a possible indicator of avoidance temperature. Mean values for the above parameters were calculated for fish species for each tagging year and are reported with the accompanying range of intake and discharge temperatures

  13. The role of river flow and tidal asymmetry on 1-D estuarine morphodynamics

    NARCIS (Netherlands)

    Guo, L.; Van der Wegen, M.; Roelvink, J.A.; He, Q.

    2014-01-01

    Numerous research efforts have been devoted to understanding estuarine morphodynamics under tidal forcing. However, the impact of river discharge on estuarine morphodynamics is insufficiently examined. Inspired by the Yangtze Estuary, this work explores the morphodynamic impact of river discharge in

  14. Operation of river systems. The Otra river

    International Nuclear Information System (INIS)

    Harby, A.; Vaskinn, K.A.; Wathne, M.; Heggenes, J.; Saltveit, S.J.

    1993-12-01

    The purpose of the project described in this report was to prepare an operative tool for making decisions about the operation of the power system on the river Otra (Norway) with regard to how this operation might affect the various users of the river system. Above all this affects fish, outdoor life and esthetic values. The connection between water quality and volume of discharge has been examined in a sub project. How suitable parts of the river are as habitats for trout has been simulated on a computer. From field investigation it is concluded that near the Steinfoss power station the physical conditions for trout depend on the operation of the river system. Outdoor life is not much affected downstream Vikeland. 11 refs., 22 figs., 2 tabs

  15. The Amazon, measuring a mighty river

    Science.gov (United States)

    ,

    1967-01-01

    The Amazon, the world's largest river, discharges enough water into the sea each day to provide fresh water to the City of New York for over 9 years. Its flow accounts for about 15 percent of all the fresh water discharged into the oceans by all the rivers of the world. By comparison, the Amazon's flow is over 4 times that of the Congo River, the world's second largest river. And it is 10 times that of the Mississippi, the largest river on the North American Continent.

  16. Handling sediments in Dutch river management: The planning stage of the Maaswerken river widening project

    NARCIS (Netherlands)

    Meulen, M.J. van der; Rijnveld, M.; Gerrits, L.M.; Joziasse, J.; Heijst, M.W.I.M. van; Gruijters, S.H.L.L.

    2006-01-01

    Goals, Scope and Background. Faced with higher peak discharges in the foreseeable future, the Dutch government has decided to increase the discharge capacities of the Dutch Rhine and Meuse rivers. Instead of raising the dikes, river widening measures are to be undertaken, in and along the riverbed.

  17. Coherence between coastal and river flooding along the California coast

    Science.gov (United States)

    Odigie, Kingsley O.; Warrick, Jonathan

    2018-01-01

    Water levels around river mouths are intrinsically determined by sea level and river discharge. If storm-associated coastal water-level anomalies coincide with extreme river discharge, landscapes near river mouths will be flooded by the hydrodynamic interactions of these two water masses. Unfortunately, the temporal relationships between ocean and river water masses are not well understood. The coherence between extreme river discharge and coastal water levels at six California river mouths across different climatic and geographic regions was examined. Data from river gauges, wave buoys, and tide gauges from 2007 to 2014 were integrated to investigate the relationships between extreme river discharge and coastal water levels near the mouths of the Eel, Russian, San Lorenzo, Ventura, Arroyo Trabuco, and San Diego rivers. Results indicate that mean and extreme coastal water levels during extreme river discharge are significantly higher compared with background conditions. Elevated coastal water levels result from the combination of nontidal residuals (NTRs) and wave setups. Mean and extreme (>99th percentile of observations) NTRs are 3–20 cm and ∼30 cm higher during extreme river discharge conditions, respectively. Mean and extreme wave setups are up to 40 cm and ∼20–90 cm higher during extreme river discharge than typical conditions, respectively. These water-level anomalies were generally greatest for the northern rivers and least for the southern rivers. Time-series comparisons suggest that increases in NTRs are largely coherent with extreme river discharge, owing to the low atmospheric pressure systems associated with storms. The potential flooding risks of the concurrent timing of these water masses are tempered by the mixed, semidiurnal tides of the region that have amplitudes of 2–2.5 m. In summary, flooding hazard assessments for floodplains near California river mouths for current or future conditions with sea-level rise should include the temporal

  18. Tennis elbow surgery - discharge

    Science.gov (United States)

    ... epicondylitis surgery - discharge; Lateral tendinosis surgery - discharge; Lateral tennis elbow surgery - discharge ... long as you are told. This helps ensure tennis elbow will not return. You may be prescribed a ...

  19. Ankle replacement - discharge

    Science.gov (United States)

    ... total - discharge; Total ankle arthroplasty - discharge; Endoprosthetic ankle replacement - discharge; Osteoarthritis - ankle ... You had an ankle replacement. Your surgeon removed and reshaped ... an artificial ankle joint. You received pain medicine and were ...

  20. Hip fracture - discharge

    Science.gov (United States)

    ... neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - discharge ... in the hospital for surgery to repair a hip fracture, a break in the upper part of ...

  1. Asthma - child - discharge

    Science.gov (United States)

    Pediatric asthma - discharge; Wheezing - discharge; Reactive airway disease - discharge ... Your child has asthma , which causes the airways of the lungs to swell and narrow. In the hospital, the doctors and nurses helped ...

  2. Prostate brachytherapy - discharge

    Science.gov (United States)

    Implant therapy - prostate cancer - discharge; Radioactive seed placement - discharge ... You had a procedure called brachytherapy to treat prostate cancer. Your treatment lasted 30 minutes or more, ...

  3. Stage-discharge rating curves based on satellite altimetry and modeled discharge in the Amazon basin

    OpenAIRE

    Paris, Adrien; Dias de Paiva, Rodrigo; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Calmant, Stephane; Garambois, Pierre-André; Collischonn, Walter; Bonnet, Marie-Paule; Seyler, Frederique

    2016-01-01

    In this study, rating curves (RCs) were determined by applying satellite altimetry to a poorly gauged basin. This study demonstrates the synergistic application of remote sensing and watershed modeling to capture the dynamics and quantity of flow in the Amazon River Basin, respectively. Three major advancements for estimating basin-scale patterns in river discharge are described. The first advancement is the preservation of the hydrological meanings of the parameters expressed by ...

  4. River-tide dynamics : Exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary

    NARCIS (Netherlands)

    Guo, L.; Van der Wegen, M.; Jay, D.A.; Matte, P.; Wang, Z.B.; Roelvink, J.A.; He, Q.

    2015-01-01

    River-tide dynamics remain poorly understood, in part because conventional harmonic analysis (HA) does not cope effectively with nonstationary signals. To explore nonstationary behavior of river tides and the modulation effects of river discharge, this work analyzes tidal signals in the Yangtze

  5. Comparison of peak discharges among sites with and without valley fills for the July 8-9, 2001 flood in the headwaters of Clear Fork, Coal River basin, mountaintop coal-mining region, southern West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.; Brogan, Freddie D.

    2003-01-01

    The effects of mountaintop-removal mining practices on the peak discharges of streams were investigated in six small drainage basins within a 7-square-mile area in southern West Virginia. Two of the small basins had reclaimed valley fills, one basin had reclaimed and unreclaimed valley fills, and three basins did not have valley fills. Indirect measurements of peak discharge for the flood of July 8-9, 2001, were made at six sites on streams draining the small basins. The sites without valley fills had peak discharges with 10- to 25-year recurrence intervals, indicating that rainfall intensities and totals varied among the study basins. The flood-recurrence intervals for the three basins with valley fills were determined as though the peak discharges were those from rural streams without the influence of valley fills, and ranged from less than 2 years to more than 100 years.

  6. Estimating sediment discharge: Appendix D

    Science.gov (United States)

    Gray, John R.; Simões, Francisco J. M.

    2008-01-01

    Sediment-discharge measurements usually are available on a discrete or periodic basis. However, estimates of sediment transport often are needed for unmeasured periods, such as when daily or annual sediment-discharge values are sought, or when estimates of transport rates for unmeasured or hypothetical flows are required. Selected methods for estimating suspended-sediment, bed-load, bed- material-load, and total-load discharges have been presented in some detail elsewhere in this volume. The purposes of this contribution are to present some limitations and potential pitfalls associated with obtaining and using the requisite data and equations to estimate sediment discharges and to provide guidance for selecting appropriate estimating equations. Records of sediment discharge are derived from data collected with sufficient frequency to obtain reliable estimates for the computational interval and period. Most sediment- discharge records are computed at daily or annual intervals based on periodically collected data, although some partial records represent discrete or seasonal intervals such as those for flood periods. The method used to calculate sediment- discharge records is dependent on the types and frequency of available data. Records for suspended-sediment discharge computed by methods described by Porterfield (1972) are most prevalent, in part because measurement protocols and computational techniques are well established and because suspended sediment composes the bulk of sediment dis- charges for many rivers. Discharge records for bed load, total load, or in some cases bed-material load plus wash load are less common. Reliable estimation of sediment discharges presupposes that the data on which the estimates are based are comparable and reliable. Unfortunately, data describing a selected characteristic of sediment were not necessarily derived—collected, processed, analyzed, or interpreted—in a consistent manner. For example, bed-load data collected with

  7. Research activities in the fields of radiochemistry and neutron activation analysis using the LENA nuclear plant in Pavia

    International Nuclear Information System (INIS)

    Caramella-Crespi, V.; Case, M. Di; Gallorini, M.; Ganzerli-Valentini, M.

    1976-01-01

    The activity of the Radiochemistry Laboratory and National Research Council Center for Radiochemistry and Activation Analysis in the past two years has been mainly devoted to the following subjects: Several elements (V, Mn, Cu, Cd, Zn, Cr, Co, Fe, Cs, Rb, Sc) have been determined in biological, geological and cosmological matrices (as sediments, river waters, vegetables, foods, Italian condritic meteorites). Comparative measurements have been carried out using different techniques, such as atomic absorption and X-ray fluorescence; comparative investigations have been developed with different radioanalytical methods for Cr trace determination. A new rapid separation procedure of Hg, Se and As has been set up, based on selective behaviour toward granular copper. The evaluation of trace elements amount in Sardinian coal samples has been also accomplished. In the field of biomedical applications levels of trace elements were determined in the principal usual foods used by people of the lower Dahomey to the purpose of studying the correlation between the food content of these elements and the population's intake. Inorganic exchangers studies have been carried out on molybdenum dibromide, tantalum carbide and metallic copper retention properties and on the related absorption mechanism. X-ray fluorescence has been used as an analytical tool to integrate neutron activation analysis in the determination of Cr, Zn, Fe in environmental matrices. (author)

  8. Use of radars to monitor stream discharge by noncontact methods

    Science.gov (United States)

    Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.; Spicer, K.R.; Hayes, E.; Plant, W.; Hayes, K.; Teague, C.; Barrick, D.

    2006-01-01

    Conventional measurements of river flows are costly, time‐consuming, and frequently dangerous. This report evaluates the use of a continuous wave microwave radar, a monostatic UHF Doppler radar, a pulsed Doppler microwave radar, and a ground‐penetrating radar to measure river flows continuously over long periods and without touching the water with any instruments. The experiments duplicate the flow records from conventional stream gauging stations on the San Joaquin River in California and the Cowlitz River in Washington. The purpose of the experiments was to directly measure the parameters necessary to compute flow: surface velocity (converted to mean velocity) and cross‐sectional area, thereby avoiding the uncertainty, complexity, and cost of maintaining rating curves. River channel cross sections were measured by ground‐penetrating radar suspended above the river. River surface water velocity was obtained by Bragg scattering of microwave and UHF Doppler radars, and the surface velocity data were converted to mean velocity on the basis of detailed velocity profiles measured by current meters and hydroacoustic instruments. Experiments using these radars to acquire a continuous record of flow were conducted for 4 weeks on the San Joaquin River and for 16 weeks on the Cowlitz River. At the San Joaquin River the radar noncontact measurements produced discharges more than 20% higher than the other independent measurements in the early part of the experiment. After the first 3 days, the noncontact radar discharge measurements were within 5% of the rating values. On the Cowlitz River at Castle Rock, correlation coefficients between the USGS stream gauging station rating curve discharge and discharge computed from three different Doppler radar systems and GPR data over the 16 week experiment were 0.883, 0.969, and 0.992. Noncontact radar results were within a few percent of discharge values obtained by gauging station, current meter, and hydroacoustic methods

  9. Neutralidade pseudo-inscrita: a doméstica Lena, a dona de casa Alice e a intelectual Gertrude têm uma só incompreensão do valor

    Directory of Open Access Journals (Sweden)

    Fernando Meneghel

    2004-01-01

    Full Text Available http://dx.doi.org/10.1590/S0104-026X2004000200007 Uma leitura do tratamento dispensado pelo feminismo ao trabalho doméstico, preocupada com a relação entre o trabalho doméstico e a infra-estrutura que este proporciona à produção intelectual burguesa. Esta leitura, que busca desestabilizar os valores negativos regularmente agregados à subserviência doméstica, tem como base de análise as obras literobiográficas Autobiografia de Alice B. Toklas e Autobiografia de todo mundo, e o conto A Gentil Lena, todos de Gertrude Stein.

  10. Anthropogenic impacts on global organic river pollution

    NARCIS (Netherlands)

    Wen, Y.

    2017-01-01

    Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. To implement integrated water

  11. Vessel Sewage Discharges

    Science.gov (United States)

    Vessel sewage discharges are regulated under Section 312 of the Clean Water Act, which is jointly implemented by the EPA and Coast Guard. This homepage links to information on marine sanitation devices and no discharge zones.

  12. Effects of an extreme flood on river morphology (case study

    NARCIS (Netherlands)

    Yousefi, Saleh; Mirzaee, Somayeh; Keesstra, Saskia; Surian, Nicola; Pourghasemi, Hamid Reza; Zakizadeh, Hamid Reza; Tabibian, Sahar

    2018-01-01

    An extreme flood occurred on 14 April 2016 in the Karoon River, Iran. The occurred flood discharge was the highest discharge recorded over the last 60 years in the Karoon River. Using the OLI Landsat images taken on 8 April 2016 (before the flood) and 24 April 2016 (after the flood) the geomorphic

  13. Early discharge following birth

    DEFF Research Database (Denmark)

    Nilsson, Ingrid M. S.; Kronborg, Hanne; Knight, Christopher H.

    2017-01-01

    .26–0.48) and primiparous compared to multiparous had an OR of 0.22 (CI 0.17–0.29) for early discharge. Other predictors for early discharge were: no induction of labour, no epidural painkiller, bleeding less than 500 ml during delivery, higher gestational age, early expected discharge and positive breastfeeding experience...

  14. Heart attack - discharge

    Science.gov (United States)

    ... and lifestyle Cholesterol - drug treatment Controlling your high blood pressure Deep vein thrombosis - discharge Dietary fats explained Fast food tips Heart attack - discharge Heart attack - what to ask your doctor Heart bypass ... pacemaker - discharge High blood pressure - what to ask your doctor How to read ...

  15. The Impact of Commercially Treated Oil and Gas Produced Water Discharges on Bromide Concentrations and Modeled Brominated Trihalomethane Disinfection Byproducts at two Downstream Municipal Drinking Water Plants in the Upper Allegheny River, Pennsylvania, USA

    Science.gov (United States)

    In 2010, a dramatic increase in the levels of total trihalomethane (THM) and the relative proportion of brominated species were observed in finished water at several Western Pennsylvania water