WorldWideScience

Sample records for legume root hair

  1. A method for the isolation of root hairs from the model legume Medicago truncatula

    NARCIS (Netherlands)

    Ramos Escribano, J.; Bisseling, T.

    2003-01-01

    A new method for the isolation of root hairs from the model legume, Medicago truncatula, was developed. The procedure involves the propagation of detached roots on agar plates and the collection of root hairs by immersion in liquid nitrogen. Yields of up to 40 µg of root hair protein were obtained

  2. Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks.

    Science.gov (United States)

    Damiani, Isabelle; Drain, Alice; Guichard, Marjorie; Balzergue, Sandrine; Boscari, Alexandre; Boyer, Jean-Christophe; Brunaud, Véronique; Cottaz, Sylvain; Rancurel, Corinne; Da Rocha, Martine; Fizames, Cécile; Fort, Sébastien; Gaillard, Isabelle; Maillol, Vincent; Danchin, Etienne G J; Rouached, Hatem; Samain, Eric; Su, Yan-Hua; Thouin, Julien; Touraine, Bruno; Puppo, Alain; Frachisse, Jean-Marie; Pauly, Nicolas; Sentenac, Hervé

    2016-01-01

    Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as "papilionoid legume-specific" were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This

  3. Nod factor effects on root hair-specific transcriptome of Medicago truncatula: focus on plasma membrane transport systems and reactive oxygen species networks

    Directory of Open Access Journals (Sweden)

    Isabelle eDAMIANI

    2016-06-01

    Full Text Available Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF for 4 h or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10 percent of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1,176 genes that could be considered as papilionoid legume-specific were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an orthologue in every of the 6 legume genomes that we considered, suggesting their involvement in essential functions

  4. NPR1 protein regulates pathogenic and symbiotic interactions between Rhizobium and legumes and non-legumes.

    Directory of Open Access Journals (Sweden)

    Smadar Peleg-Grossman

    Full Text Available BACKGROUND: Legumes are unique in their ability to establish symbiotic interaction with rhizobacteria from Rhizobium genus, which provide them with available nitrogen. Nodulation factors (NFs produced by Rhizobium initiate legume root hair deformation and curling that entrap the bacteria, and allow it to grow inside the plant. In contrast, legumes and non-legumes activate defense responses when inoculated with pathogenic bacteria. One major defense pathway is mediated by salicylic acid (SA. SA is sensed and transduced to downstream defense components by a redox-regulated protein called NPR1. METHODOLOGY/PRINCIPAL FINDINGS: We used Arabidopsis mutants in SA defense pathway to test the role of NPR1 in symbiotic interactions. Inoculation of Sinorhizobium meliloti or purified NF on Medicago truncatula or nim1/npr1 A. thaliana mutants induced root hair deformation and transcription of early and late nodulins. Application of S. meliloti or NF on M. truncatula or A. thaliana roots also induced a strong oxidative burst that lasted much longer than in plants inoculated with pathogenic or mutualistic bacteria. Transient overexpression of NPR1 in M. truncatula suppressed root hair curling, while inhibition of NPR1 expression by RNAi accelerated curling. CONCLUSIONS/SIGNIFICANCE: We show that, while NPR1 has a positive effect on pathogen resistance, it has a negative effect on symbiotic interactions, by inhibiting root hair deformation and nodulin expression. Our results also show that basic plant responses to Rhizobium inoculation are conserved in legumes and non-legumes.

  5. Using coloured roots to study root interaction and competition in intercropped legumes and non-legumes

    DEFF Research Database (Denmark)

    Tosti, Giacomo; Thorup-Kristensen, Kristian

    2010-01-01

    if a species with coloured roots can be used to examine the interaction in a legume-non-legume intercropping system; (ii) to verify the importance of initial root growth on the successive root development of mixture component plants; (iii) to test if the root interaction in the shallow layers has consequences...

  6. Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology

    Directory of Open Access Journals (Sweden)

    Zhenzhen eQiao

    2013-11-01

    Full Text Available Plant root is an organ composed of multiple cell types with different functions. This multicellular complexity limits our understanding of root biology because –omics studies performed at the level of the entire root reflect the average responses of all cells composing the organ. To overcome this difficulty and allow a more comprehensive understanding of root cell biology, an approach is needed that would focus on one single cell type in the plant root. Because of its biological functions (i.e. uptake of water and various nutrients; primary site of infection by nitrogen-fixing bacteria in legumes, the root hair cell is an attractive single cell model to study root cell response to various stresses and treatments. To fully study their biology, we have recently optimized procedures in obtaining root hair cell samples. We culture the plants using an ultrasound aeroponic system maximizing root hair cell density on the entire root systems and allowing the homogeneous treatment of the root system. We then isolate the root hair cells in liquid nitrogen. Isolated root hair yields could be up to 800 to 1000 mg of plant cells from 60 root systems. Using soybean as a model, the purity of the root hair was assessed by comparing the expression level of genes previously identified as soybean root hair specific between preparations of isolated root hair cells and stripped roots, roots devoid in root hairs. Enlarging our tests to include other plant species, our results support the isolation of large quantities of highly purified root hair cells which is compatible with a systems biology approach.

  7. Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks.

    OpenAIRE

    Damiani , Isabelle; Drain , Alice; Guichard , Marjorie; Balzergue , Sandrine; Boscari , Alexandre; Boyer , Jean-Christophe; Brunaud , Véronique; Cottaz , Sylvain; Rancurel , Corinne; Da Rocha , Martine; Fizames , Cécile; Fort , Sébastien; Gaillard , Isabelle; MAILLOL , Vincent; Danchin , Etienne G J

    2015-01-01

    International audience; Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod fac...

  8. Nod factor effects on root hair-specific transcriptome of Medicago truncatula: focus on plasma membrane transport systems and reactive oxygen species networks

    OpenAIRE

    Isabelle eDAMIANI; Alice eDRAIN; Marjorie eGUICHARD; Sandrine eBALZERGUE; Sandrine eBALZERGUE; Alexandre eBOSCARI; Jean-Christophe eBOYER; Véronique eBRUNAUD; Véronique eBRUNAUD; Sylvain eCOTTAZ; Sylvain eCOTTAZ; Corinne eRANCUREL; Martine eDa Rocha; Cécile eFIZAMES; Sebastien eFORT

    2016-01-01

    Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 h or 20 ...

  9. ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Chul Min Kim

    2016-08-01

    Full Text Available Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developing root hair cells after the asymmetric cell division that forms root hair cells and hairless epidermal cells. Expression of BdRSL class I genes is sufficient for root hair cell development: ectopic overexpression of any of the three RSL class I genes induces the development of root hairs in every cell of the root epidermis. Expression of BdRSL class I genes in root hairless Arabidopsis thaliana root hair defective 6 (Atrhd6 Atrsl1 double mutants, devoid of RSL class I function, restores root hair development indicating that the function of these proteins has been conserved. However, neither AtRSL nor BdRSL class I genes is sufficient for root hair development in A. thaliana. These data demonstrate that the spatial pattern of class I RSL activity can account for the pattern of root hair cell differentiation in B. distachyon. However, the spatial pattern of class I RSL activity cannot account for the spatial pattern of root hair cells in A. thaliana. Taken together these data indicate that that the functions of RSL class I proteins have been conserved among most angiosperms-monocots and eudicots-despite the dramatically different patterns of root hair cell development.

  10. From signal to form: Nod factor as a morhogenetic signal molecule to induce symbiotic responses in legume root hairs

    NARCIS (Netherlands)

    Esseling, J.J.

    2004-01-01

    In this thesis, research is presented which contributes to a better understanding of nod factor (NF) induced signalling in Iegume root hairs, leading to a successful symbiosis. We mainly use root hairs of the model Iegume Medicago truncatula ('barrel medic') as an experimental system. In the

  11. Root hair mutants of barley

    International Nuclear Information System (INIS)

    Engvild, K.C.; Rasmussen, K.

    2005-01-01

    Barley mutants without root hairs or with short or reduced root hairs were isolated among M 2 seeds of 'Lux' barley (Hordeum vulgare L.) after acidified sodium azide mutagenesis. Root hair mutants are investigated intensively in Arabidopsis where about 40 genes are known. A few root hair mutants are known in maize, rice, barley and tomato. Many plants without root hairs grow quite well with good plant nutrition, and mutants have been used for investigations of uptake of strongly bound nutrients like phosphorus, iron, zinc and silicon. Seed of 'Lux' barley (Sejet Plant Breeding, Denmark) were soaked overnight, and then treated with 1.5-millimolarsodium azide in 0.1 molar sodium phosphate buffer, pH 3, for 2.5 hours according to the IAEA Manual on Mutation Breeding (2nd Ed.). After rinsing in tap water and air-drying, the M 2 seeds were sown in the field the same day. Spikes, 4-6 per M 1 plant, were harvested. The mutation frequency was similar to that obtained with other barley cultivars from which low-phytate mutants were isolated [5]. Seeds were germinated on black filter paper in tap water for 3 or 4 days before scoring for root hair mutants

  12. Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana

    NARCIS (Netherlands)

    Thole, J.M.; Vermeer, J.E.M.; Zhang, Y.; Gadella, Th.W.J.; Nielsen, E.

    2008-01-01

    Polarized expansion of root hair cells in Arabidopsis thaliana is improperly controlled in root hair-defective rhd4-1 mutant plants, resulting in root hairs that are shorter and randomly form bulges along their length. Using time-lapse fluorescence microscopy in rhd4-1 root hairs, we analyzed

  13. Legume root symbioses: Natural history and prospects for improvement

    Directory of Open Access Journals (Sweden)

    Shtark Oksana

    2011-01-01

    Full Text Available Legumes develop different mutually beneficial microbial-root symbioses such as arbuscular mysorrhiza (AM, rhizobium-legume symbiosis (RLS and epiphytic or endophytic associations with plant growth-promoting bacteria (PGPB which are distinguished in level of integration of the partners. Evidences of the role of AM as ancestral form of symbiosis which might be a source of the legume pre-adaptation to form some RLS are demonstrated. The RLS is supposed to evolve for a few times in ancient legumes in parallel ways based on the universal organization and regulatory mechanisms of the plant genetic material. Associations of plant roots with PGPB probably are the vestige of the early stages of evolution in morphologically differentiated RLS. Also, it is quite possible that 'first' rhizobia have originated from bacterial endosymbionts of AM fungi; then AM fungi might operate as effective vectors for introducing bacteria into the plants. Thus, the legume root symbioses may be considered as a single 'evolutionary plant-microbial continuum'. The acquired knowledge about evolution of plantmicrobe symbioses would contribute to the creation of new commercial varieties of plants with the use of both bio-engineered methods and traditional plant breeding. An original conception of legume breeding to improve their symbiotic effectiveness is proposed.

  14. Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-06-01

    Full Text Available Abscisic acid (ABA plays an essential role in root hair elongation in plants, but the regulatory mechanism remains to be elucidated. In this study, we found that exogenous ABA can promote rice root hair elongation. Transgenic rice overexpressing SAPK10 (Stress/ABA-activated protein kinase 10 had longer root hairs; rice plants overexpressing OsABIL2 (OsABI-Like 2 had attenuated ABA signaling and shorter root hairs, suggesting that the effect of ABA on root hair elongation depends on the conserved PYR/PP2C/SnRK2 ABA signaling module. Treatment of the DR5-GUS and OsPIN-GUS lines with ABA and an auxin efflux inhibitor showed that ABA-induced root hair elongation depends on polar auxin transport. To examine the transcriptional response to ABA, we divided rice root tips into three regions: short root hair, long root hair and root tip zones; and conducted RNA-seq analysis with or without ABA treatment. Examination of genes involved in auxin transport, biosynthesis and metabolism indicated that ABA promotes auxin biosynthesis and polar auxin transport in the root tip, which may lead to auxin accumulation in the long root hair zone. Our findings shed light on how ABA regulates root hair elongation through crosstalk with auxin biosynthesis and transport to orchestrate plant development.

  15. Live cell imaging of Arabidopsis root hairs

    NARCIS (Netherlands)

    Ketelaar, T.

    2014-01-01

    Root hairs are tubular extensions from the root surface that expand by tip growth. This highly focused type of cell expansion, combined with position of root hairs on the surface of the root, makes them ideal cells for microscopic observation. This chapter describes the method that is routinely used

  16. Nitrogen modulation of legume root architecture signalling pathways involves phytohormones and small regulatory molecules

    Directory of Open Access Journals (Sweden)

    Nadiatul Akmal Mohd-Radzman

    2013-10-01

    Full Text Available Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.

  17. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules.

    Science.gov (United States)

    Mohd-Radzman, Nadiatul A; Djordjevic, Michael A; Imin, Nijat

    2013-10-01

    Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.

  18. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    Science.gov (United States)

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  19. Root hairs aid soil penetration by anchoring the root surface to pore walls.

    Science.gov (United States)

    Bengough, A Glyn; Loades, Kenneth; McKenzie, Blair M

    2016-02-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3-3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0-1.5g cm(-3)). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm(-3) soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm(-3) soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm(-3)). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm(-3) soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Diversification of Root Hair Development Genes in Vascular Plants.

    Science.gov (United States)

    Huang, Ling; Shi, Xinhui; Wang, Wenjia; Ryu, Kook Hui; Schiefelbein, John

    2017-07-01

    The molecular genetic program for root hair development has been studied intensively in Arabidopsis ( Arabidopsis thaliana ). To understand the extent to which this program might operate in other plants, we conducted a large-scale comparative analysis of root hair development genes from diverse vascular plants, including eudicots, monocots, and a lycophyte. Combining phylogenetics and transcriptomics, we discovered conservation of a core set of root hair genes across all vascular plants, which may derive from an ancient program for unidirectional cell growth coopted for root hair development during vascular plant evolution. Interestingly, we also discovered preferential diversification in the structure and expression of root hair development genes, relative to other root hair- and root-expressed genes, among these species. These differences enabled the definition of sets of genes and gene functions that were acquired or lost in specific lineages during vascular plant evolution. In particular, we found substantial divergence in the structure and expression of genes used for root hair patterning, suggesting that the Arabidopsis transcriptional regulatory mechanism is not shared by other species. To our knowledge, this study provides the first comprehensive view of gene expression in a single plant cell type across multiple species. © 2017 American Society of Plant Biologists. All Rights Reserved.

  1. Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities.

    NARCIS (Netherlands)

    Scheublin, T.R.; Ridgway, K.P.; Young, J.P.W.; van der Heijden, M.G.A.

    2004-01-01

    Legumes are an important plant functional group since they can form a tripartite symbiosis with nitrogen-fixing Rhizobium bacteria and phosphorus-acquiring arbuscular mycorrhizal fungi (AMF). However, not much is known about AMF community composition in legumes and their root nodules. In this study,

  2. Regulation of root hair initiation and expansin gene expression in Arabidopsis

    Science.gov (United States)

    Cho, Hyung-Taeg; Cosgrove, Daniel J.

    2002-01-01

    The expression of two Arabidopsis expansin genes (AtEXP7 and AtEXP18) is tightly linked to root hair initiation; thus, the regulation of these genes was studied to elucidate how developmental, hormonal, and environmental factors orchestrate root hair formation. Exogenous ethylene and auxin, as well as separation of the root from the medium, stimulated root hair formation and the expression of these expansin genes. The effects of exogenous auxin and root separation on root hair formation required the ethylene signaling pathway. By contrast, blocking the endogenous ethylene pathway, either by genetic mutations or by a chemical inhibitor, did not affect normal root hair formation and expansin gene expression. These results indicate that the normal developmental pathway for root hair formation (i.e., not induced by external stimuli) is independent of the ethylene pathway. Promoter analyses of the expansin genes show that the same promoter elements that determine cell specificity also determine inducibility by ethylene, auxin, and root separation. Our study suggests that two distinctive signaling pathways, one developmental and the other environmental/hormonal, converge to modulate the initiation of the root hair and the expression of its specific expansin gene set.

  3. Early Arabidopsis root hair growth stimulation by pathogenic strains of Pseudomonas syringae.

    Science.gov (United States)

    Pecenková, Tamara; Janda, Martin; Ortmannová, Jitka; Hajná, Vladimíra; Stehlíková, Zuzana; Žárský, Viktor

    2017-09-01

    Selected beneficial Pseudomonas spp. strains have the ability to influence root architecture in Arabidopsis thaliana by inhibiting primary root elongation and promoting lateral root and root hair formation. A crucial role for auxin in this long-term (1week), long-distance plant-microbe interaction has been demonstrated. Arabidopsis seedlings were cultivated in vitro on vertical plates and inoculated with pathogenic strains Pseudomonas syringae pv. maculicola (Psm) and P. syringae pv. tomato DC3000 (Pst), as well as Agrobacterium tumefaciens (Atu) and Escherichia coli (Eco). Root hair lengths were measured after 24 and 48h of direct exposure to each bacterial strain. Several Arabidopsis mutants with impaired responses to pathogens, impaired ethylene perception and defects in the exocyst vesicle tethering complex that is involved in secretion were also analysed. Arabidopsis seedling roots infected with Psm or Pst responded similarly to when infected with plant growth-promoting rhizobacteria; root hair growth was stimulated and primary root growth was inhibited. Other plant- and soil-adapted bacteria induced similar root hair responses. The most compromised root hair growth stimulation response was found for the knockout mutants exo70A1 and ein2. The single immune pathways dependent on salicylic acid, jasmonic acid and PAD4 are not directly involved in root hair growth stimulation; however, in the mutual cross-talk with ethylene, they indirectly modify the extent of the stimulation of root hair growth. The Flg22 peptide does not initiate root hair stimulation as intact bacteria do, but pretreatment with Flg22 prior to Psm inoculation abolished root hair growth stimulation in an FLS2 receptor kinase-dependent manner. These early response phenomena are not associated with changes in auxin levels, as monitored with the pDR5::GUS auxin reporter. Early stimulation of root hair growth is an effect of an unidentified component of living plant pathogenic bacteria. The root

  4. Endophytic colonization of plant roots by nitrogen-fixing bacteria

    International Nuclear Information System (INIS)

    Cocking, Edward C.

    2001-01-01

    Nitrogen-fixing bacteria are able to enter into roots from the rhizosphere, particularly at the base of emerging lateral roots, between epidermal cells and through root hairs. In the rhizosphere growing root hairs play an important role in symbiotic recognition in legume crops. Nodulated legumes in endosymbiosis with rhizobia are amongst the most prominent nitrogen-fixing systems in agriculture. The inoculation of non-legumes, especially cereals, with various non-rhizobial diazotrophic bacteria has been undertaken with the expectation that they would establish themselves intercellularly within the root system, fixing nitrogen endophytic ally and providing combined nitrogen for enhanced crop production. However, in most instances bacteria colonize only the surface of the roots and remain vulnerable to competition from other rhizosphere micro-organisms, even when the nitrogen-fixing bacteria are endophytic, benefits to the plant may result from better uptake of soil nutrients rather than from endophytic nitrogen fixation. Azorhizobium caulinodans is known to enter the root system of cereals, other nonlegume crops and Arabidopsis, by intercellular invasion between epidermal cells and to internally colonize the plant intercellularly, including the xylem. This raises the possibility that xylem colonization might provide a nonnodular niche for endosymbiotic nitrogen fixation in rice, wheat, maize, sorghum and other non-legume crops. A particularly interesting, naturally occurring, non-qodular xylem colonising endophytic diazotrophic interaction with evidence for endophytic nitrogen fixation is that of Gluconacetobacter diazotrophicus in sugarcane. Could this beneficial endophytic colonization of sugarcane by G. diazotrophicus be extended to other members of the Gramineae, including the major cereals, and to other major non-legume crops of the World? (author)

  5. Fabry's disease: biochemical and histochemical studies on hair roots for carrier detection.

    Science.gov (United States)

    Vermorken, A J; Weterings, P J; Spierenburg, G T; vanBennekom, C A; Wirtz, P; deBruyn, C H; Oei, T L

    1978-02-01

    A method of assay alpha-galactosidase and acid phosphatase activities in single hair roots is described. Enzyme histochemical studies show that the distribution of acid phosphatase in the human hair root matches that of alpha-galactosidase. Histochemically, the main activity is located in the upper part of the sheath near the orifice of the duct of the sebaceous gland. This is confirmed by enzyme assays on different parts of the hair root after dissection. The variation in the values found in individual hair roots is improved by relating alpha-galactosidase to acid phosphatase activities. Storage experiments indicate a remarkable stability of both alpha-galactosidase and acid phosphatase in human hair roots.

  6. The density and length of root hairs are enhanced in response to cadmium and arsenic by modulating gene expressions involved in fate determination and morphogenesis of root hairs in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ramin Bahmani

    2016-11-01

    Full Text Available Root hairs are tubular outgrowths that originate from epidermal cells. Exposure of Arabidopsis to cadmium (Cd and arsenic [arsenite, As(III] increases root hair density and length. To examine the underlying mechanism, we measured the expression of genes involved in fate determination and morphogenesis of root hairs. Cd and As(III downregulated TTG1 and GL2 (negative regulators of fate determination and upregulated GEM (positive regulator, suggesting that root hair fate determination is stimulated by Cd and As(III. Cd and As(III increased the transcript levels of genes involved in root hair initiation (RHD6 and AXR2 and root hair elongation (AUX1, AXR1, ETR1, and EIN2 except CTR1. DR5::GUS transgenic Arabidopsis showed a higher DR5 expression in the root tip, suggesting that Cd and As(III increased the auxin content in the root tip. Knockdown of TTG1 in Arabidopsis resulted in increased root hair density and decreased root hair length compared with the control (Col-0 on 1/2 MS media. This phenotype may be attributed to the downregulation of GL2 and CTR1 and upregulation of RHD6. By contrast, gem mutant plants displayed a decrease in root hair density and length with reduced expression of RHD6, AXR2, AUX1, AXR1, ETR1, CTR1, and EIN2. Taken together, our results indicate that fate determination, initiation, and elongation of root hairs are stimulated in response to Cd and As(III through the modulation of the expression of genes involved in these processes in Arabidopsis.

  7. A dual porosity model of nutrient uptake by root hairs

    KAUST Repository

    Zygalakis, K. C.; Kirk, G. J. D.; Jones, D. L.; Wissuwa, M.; Roose, T.

    2011-01-01

    Summary: • The importance of root hairs in the uptake of sparingly soluble nutrients is understood qualitatively, but not quantitatively, and this limits efforts to breed plants tolerant of nutrient-deficient soils. • Here, we develop a mathematical model of nutrient uptake by root hairs allowing for hair geometry and the details of nutrient transport through soil, including diffusion within and between soil particles. We give illustrative results for phosphate uptake. • Compared with conventional 'single porosity' models, this 'dual porosity' model predicts greater root uptake because more nutrient is available by slow release from within soil particles. Also the effect of soil moisture is less important with the dual porosity model because the effective volume available for diffusion in the soil is larger, and the predicted effects of hair length and density are different. • Consistent with experimental observations, with the dual porosity model, increases in hair length give greater increases in uptake than increases in hair density per unit main root length. The effect of hair density is less in dry soil because the minimum concentration in solution for net influx is reached more rapidly. The effect of hair length is much less sensitive to soil moisture. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  8. A dual porosity model of nutrient uptake by root hairs

    KAUST Repository

    Zygalakis, K. C.

    2011-08-09

    Summary: • The importance of root hairs in the uptake of sparingly soluble nutrients is understood qualitatively, but not quantitatively, and this limits efforts to breed plants tolerant of nutrient-deficient soils. • Here, we develop a mathematical model of nutrient uptake by root hairs allowing for hair geometry and the details of nutrient transport through soil, including diffusion within and between soil particles. We give illustrative results for phosphate uptake. • Compared with conventional \\'single porosity\\' models, this \\'dual porosity\\' model predicts greater root uptake because more nutrient is available by slow release from within soil particles. Also the effect of soil moisture is less important with the dual porosity model because the effective volume available for diffusion in the soil is larger, and the predicted effects of hair length and density are different. • Consistent with experimental observations, with the dual porosity model, increases in hair length give greater increases in uptake than increases in hair density per unit main root length. The effect of hair density is less in dry soil because the minimum concentration in solution for net influx is reached more rapidly. The effect of hair length is much less sensitive to soil moisture. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  9. Hair root diameter measurement as an indicator of protein deficiency in nonhospitalized alcoholics.

    Science.gov (United States)

    Bregar, R R; Gordon, M; Whitney, E N

    1978-02-01

    Protein status of alcoholics admitted to a detoxification center was investigated with a view to adapting a hair root test for use in screening for protein deficiency. Hair root volume and hair root diameter had previously been shown to correlate well with hair root protein and to be sensitive indicators of protein deficiency. Hair root volumes in this study correlated well with mean maximum hair root diameters (n = 35, r = 0.9), which were simpler to measure, so diameter measurements were used. Mean maximum hair root diameters (range 0.02 to 0.19 mm) correlated with plasma RNase concentrations (range 6000 to 14,000 units/ml; n = 17, r = -0.7). Mean hair diameters of 84 alcoholics averaged 0.0864 +/- 0.0366 mm; those of 25 nonalcoholics were significantly greater: 0.100 +/- 0.0254 mm (P less than 0.05). Frequency of occurrence of hair root diameters of 0.06 mm or less was significantly higher in 71 alcoholics (29.5%) than in 23 nonalcoholics (8.6%) matched by age. Mean hair root diameters of 0.06 mm or less therefore can be used to signify protein deficiency where more expensive or technically demanding tests are not feasible. Protein deficiency occurs extensively in non hospitalized alcoholics. This method enables staff to single out those clients most likely to be in need of nutritional counseling and therapy.

  10. Enhancement of cell wall protein SRPP expression during emergent root hair development in Arabidopsis.

    Science.gov (United States)

    Uno, Hiroshi; Tanaka-Takada, Natsuki; Sato, Ryosuke; Maeshima, Masayoshi

    2017-10-03

    SRPP is a protein expressed in seeds and root hairs and is significantly induced in root hairs under phosphate (Pi)-deficient conditions. Root hairs in the knockout mutant srpp-1 display defects, i.e., suppression of cell growth and cell death. Here, we analyzed the expression profile of SRPP during cell elongation of root hairs and compared the transcript levels in several mutants with short root hairs. The mRNA level was increased in wild-type plants and decreased in mutants with short root hairs. Induction of SRPP expression by Pi starvation occurred one or two days later than induction of Pi-deficient sensitive genes, such as PHT1 and PHF1. These results indicate that the expression of SRPP is coordinated with root hair elongation. We hypothesize that SRPP is essential for structural robustness of the cell walls of root hairs.

  11. Increased root hair density by loss of WRKY6 in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Markus G. Stetter

    2017-01-01

    Full Text Available Root hairs are unicellular elongations of certain rhizodermal cells that improve the uptake of sparingly soluble and immobile soil nutrients. Among different Arabidopsis thaliana genotypes, root hair density, length and the local acclimation to low inorganic phosphate (Pi differs considerably, when analyzed on split agar plates. Here, genome-wide association fine mapping identified significant single nucleotide polymorphisms associated with the increased root hair density in the absence of local phosphate on chromosome 1. A loss-of-functionmutant of the candidate transcription factor gene WRKY6, which is involved in the acclimation of plants to low phosphorus, had increased root hair density. This is partially explained by a reduced cortical cell diameter in wrky6-3, reducing the rhizodermal cell numbers adjacent to the cortical cells. As a consequence, rhizodermal cells in positions that are in contact with two cortical cells are found more often, leading to higher hair density. Distinct cortical cell diameters and epidermal cell lengths distinguish other Arabidopsis accessions with distinct root hair density and −Pi response from diploid Col-0, while tetraploid Col-0 had generally larger root cell sizes, which explain longer hairs. A distinct radial root morphology within Arabidopsis accessions and wrky6-3explains some, but not all, differences in the root hair acclimation to –Pi.

  12. Deciphering composition and function of the root microbiome of a legume plant

    NARCIS (Netherlands)

    Hartman, Kyle; van der Heijden, Marcel G A|info:eu-repo/dai/nl/240923901; Roussely-Provent, Valexia; Walser, Jean-Claude; Schlaeppi, Klaus

    2017-01-01

    BACKGROUND: Diverse assemblages of microbes colonize plant roots and collectively function as a microbiome. Earlier work has characterized the root microbiomes of numerous plant species, but little information is available for legumes despite their key role in numerous ecosystems including

  13. S-nitrosoglutathione promotes cell wall remodelling, alters the transcriptional profile and induces root hair formation in the hairless root hair defective 6 (rhd6) mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Moro, Camila Fernandes; Gaspar, Marilia; da Silva, Felipe Rodrigues; Pattathil, Sivakumar; Hahn, Michael G; Salgado, Ione; Braga, Marcia Regina

    2017-03-01

    Nitric oxide (NO) exerts pleiotropic effects on plant development; however, its involvement in cell wall modification during root hair formation (RHF) has not yet been addressed. Here, mutants of Arabidopsis thaliana with altered root hair phenotypes were used to assess the involvement of S-nitrosoglutathione (GSNO), the primary NO source, in cell wall dynamics and gene expression in roots induced to form hairs. GSNO and auxin restored the root hair phenotype of the hairless root hair defective 6 (rhd6) mutant. A positive correlation was observed between increased NO production and RHF induced by auxin in rhd6 and transparent testa glabra (ttg) mutants. Deposition of an epitope within rhamnogalacturonan-I recognized by the CCRC-M2 antibody was delayed in root hair cells (trichoblasts) compared with nonhair cells (atrichoblasts). GSNO, but not auxin, restored the wild-type root glycome and transcriptome profiles in rhd6, modulating the expression of a large number of genes related to cell wall composition and metabolism, as well as those encoding ribosomal proteins, DNA and histone-modifying enzymes and proteins involved in post-translational modification. Our results demonstrate that NO plays a key role in cell wall remodelling in trichoblasts and suggest that it also participates in chromatin modification in root cells of A. thaliana. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Characteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses.

    Science.gov (United States)

    Tanaka, Natsuki; Kato, Mariko; Tomioka, Rie; Kurata, Rie; Fukao, Yoichiro; Aoyama, Takashi; Maeshima, Masayoshi

    2014-04-01

    The plasma membrane-associated Ca(2+)-binding protein-2 of Arabidopsis thaliana is involved in the growth of root hair tips. Several transgenic lines that overexpress the 23 residue N-terminal domain of this protein under the control of the root hair-specific EXPANSIN A7 promoter lack root hairs completely. The role of root hairs under normal and stress conditions was examined in one of these root hair-less lines (NR23). Compared with the wild type, NR23 showed a 47% reduction in water absorption, decreased drought tolerance, and a lower ability to adapt to heat. Growth of NR23 was suppressed in media deficient in phosphorus, iron, calcium, zinc, copper, or potassium. Also, the content of an individual mineral in NR23 grown in normal medium, or in medium lacking a specific mineral, was relatively low. In wild-type plants, the primary and lateral roots produce numerous root hairs that become elongated under phosphate-deficient conditions; NR23 did not produce root hairs. Although several isoforms of the plasma membrane phosphate transporters including PHT1;1-PHT1;6 were markedly induced after growth in phosphate-deficient medium, the levels induced in NR23 were less than half those observed in the wild type. In phosphate-deficient medium, the amounts of acid phosphatase, malate, and citrate secreted from NR23 roots were 38, 9, and 16% of the levels secreted from wild-type roots. The present results suggest that root hairs play significant roles in the absorption of water and several minerals, secretion of acid phosphatase(s) and organic acids, and in penetration of the primary roots into gels.

  15. High-resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation.

    Science.gov (United States)

    Koebernick, Nicolai; Daly, Keith R; Keyes, Samuel D; George, Timothy S; Brown, Lawrie K; Raffan, Annette; Cooper, Laura J; Naveed, Muhammad; Bengough, Anthony G; Sinclair, Ian; Hallett, Paul D; Roose, Tiina

    2017-10-01

    In this paper, we provide direct evidence of the importance of root hairs on pore structure development at the root-soil interface during the early stage of crop establishment. This was achieved by use of high-resolution (c. 5 μm) synchrotron radiation computed tomography (SRCT) to visualise both the structure of root hairs and the soil pore structure in plant-soil microcosms. Two contrasting genotypes of barley (Hordeum vulgare), with and without root hairs, were grown for 8 d in microcosms packed with sandy loam soil at 1.2 g cm -3 dry bulk density. Root hairs were visualised within air-filled pore spaces, but not in the fine-textured soil regions. We found that the genotype with root hairs significantly altered the porosity and connectivity of the detectable pore space (> 5 μm) in the rhizosphere, as compared with the no-hair mutants. Both genotypes showed decreasing pore space between 0.8 and 0.1 mm from the root surface. Interestingly the root-hair-bearing genotype had a significantly greater soil pore volume-fraction at the root-soil interface. Effects of pore structure on diffusion and permeability were estimated to be functionally insignificant under saturated conditions when simulated using image-based modelling. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Towards a better understanding of the role of reactive oxygen species in legume root nodules

    NARCIS (Netherlands)

    Ramos Escribano, J.

    2004-01-01

    Biological N2 fixation is carried out exclusively by prokaryotes, either in the free-living form or in mutualistic symbioses with green algae, legumes and actinorhizal plants. The most agronomica1ly relevant symbiosis is, by fàr, that formed between soil rhizobia and legume roots. In addition, the

  17. Hair Growth Promotant Activity of Petroleum Ether Root Extract of ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of Glycyrrhiza glabra root extract on hair growth in female Wistar rats. Methods: Female Wistar rats were used for the hair growth promotion studies. They were divided into three groups(n = 6) and their dorsal skin was completely denuded to completely remove hair. Paraffin oil (control), 2 ...

  18. Response-based selection of barley cultivars and legume species for complementarity: Root morphology and exudation in relation to nutrient source.

    Science.gov (United States)

    Giles, Courtney D; Brown, Lawrie K; Adu, Michael O; Mezeli, Malika M; Sandral, Graeme A; Simpson, Richard J; Wendler, Renate; Shand, Charles A; Menezes-Blackburn, Daniel; Darch, Tegan; Stutter, Marc I; Lumsdon, David G; Zhang, Hao; Blackwell, Martin S A; Wearing, Catherine; Cooper, Patricia; Haygarth, Philip M; George, Timothy S

    2017-02-01

    Phosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in agroecosystems. Phenotypic variation in plants' response to nutrient deficiency may influence positive complementarity in intercropping systems. A multicomponent screening approach was used to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits in barley (H. vulgare L.) and legume species. Root morphology and exudation were determined in six plant nutrient treatments. A clear divergence in the response of barley and legumes to the nutrient treatments was observed. Root morphology varied most among legumes, whereas exudate citrate and phytase activity were most variable in barley. Changes in root morphology were minimized in plants provided with ammonium in comparison to nitrate but increased under P deficiency. Exudate phytase activity and pH varied with legume species, whereas citrate efflux, specific root length, and root diameter lengths were more variable among barley cultivars. Three legume species and four barley cultivars were identified as the most responsive to P deficiency and the most contrasting of the cultivars and species tested. Phenotypic response to nutrient availability may be a promising approach for the selection of plant combinations for minimal input cropping systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Comparative phylogenetic and expression analysis of small GTPases families in legume and non-legume plants.

    Science.gov (United States)

    Flores, Ana Claudia; Via, Virginia Dalla; Savy, Virginia; Villagra, Ulises Mancini; Zanetti, María Eugenia; Blanco, Flavio

    2018-02-01

    Small monomeric GTPases act as molecular switches in several processes that involve polar cell growth, participating mainly in vesicle trafficking and cytoskeleton rearrangements. This gene superfamily has largely expanded in plants through evolution as compared with other Kingdoms, leading to the suggestion that members of each subfamily might have acquired new functions associated to plant-specific processes. Legume plants engage in a nitrogen-fixing symbiotic interaction with rhizobia in a process that involves polar growth processes associated with the infection throughout the root hair. To get insight into the evolution of small GTPases associated with this process, we use a comparative genomic approach to establish differences in the Ras GTPase superfamily between legume and non-legume plants. Phylogenetic analyses did not show clear differences in the organization of the different subfamilies of small GTPases between plants that engage or not in nodule symbiosis. Protein alignments revealed a strong conservation at the sequence level of small GTPases previously linked to nodulation by functional genetics. Interestingly, one Rab and three Rop proteins showed conserved amino acid substitutions in legumes, but these changes do not alter the predicted conformational structure of these proteins. Although the steady-state levels of most small GTPases do not change in response to rhizobia, we identified a subset of Rab, Rop and Arf genes whose transcript levels are modulated during the symbiotic interaction, including their spatial distribution along the indeterminate nodule. This study provides a comprehensive study of the small GTPase superfamily in several plant species. The genetic program associated to root nodule symbiosis includes small GTPases to fulfill specific functions during infection and formation of the symbiosomes. These GTPases seems to have been recruited from members that were already present in common ancestors with plants as distant as monocots

  20. Vigorous root growth is a better indicator of early nutrient uptake than root hair traits in spring wheat grown under low fertility

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Thorup-Kristensen, Kristian; Jensen, Lars Stoumann

    2016-01-01

    . Vigorous root growth, however, was a better indicator of early nutrient acquisition than RHL and RHD. Vigorous root growth and long and dense root hairs ensured efficient acquisition of macro- and micronutrients during early growth and a high root length to shoot dry matter ratio favored high macronutrient......A number of root and root hair traits have been proposed as important for nutrient acquisition. However, there is still a need for knowledge on which traits are most important in determining macro- and micronutrient uptake at low soil fertility. This study investigated the variations in root growth...... vigor and root hair length (RHL) and density (RHD) among spring wheat genotypes and their relationship to nutrient concentrations and uptake during early growth. Six spring wheat genotypes were grown in a soil with low nutrient availability. The root and root hair traits as well as the concentration...

  1. A root hairless barley mutant for elucidating genetic of root hairs and phosphorus uptake (Correction in v. 242, 2002, p. 299)

    DEFF Research Database (Denmark)

    Gahoonia, T.S.; Nielsen, N.E.; Priyavadan, A.J.

    2001-01-01

    This paper reports a new barley mutant missing root hairs. The mutant was spontaneously discovered among the population of wild type (Pallas, a spring barley cultivar), producing normal, 0.8 mm long root hairs. We have called the mutant bald root barley (brb). Root anatomical studies confirmed...

  2. Complex Regulation of Prolyl-4-Hydroxylases Impacts Root Hair Expansion

    DEFF Research Database (Denmark)

    Velasquez, Silvia M; Ricardi, Martiniano M; Poulsen, Christian Peter

    2015-01-01

    Root hairs are single cells that develop by tip growth, a process shared with pollen tubes, axons, and fungal hyphae. However, structural plant cell walls impose constraints to accomplish tip growth. In addition to polysaccharides, plant cell walls are composed of hydroxyproline-rich glycoproteins......5, and to a lesser extent P4H2 and P4H13, are pivotal for root hair tip growth. Second, we demonstrate that P4H5 has in vitro preferred specificity for EXT substrates rather than for other HRGPs. Third, by P4H promoter and protein swapping approaches, we show that P4H2 and P4H13 have interchangeable...... peptidyl-proline hydroxylation on EXTs, and possibly in other HRGPs, is required for proper cell wall self-assembly and hence root hair elongation in Arabidopsis thaliana....

  3. Nemesia root hair response to paper pulp substrate for micropropagation.

    Science.gov (United States)

    Labrousse, Pascal; Delmail, David; Decou, Raphaël; Carlué, Michel; Lhernould, Sabine; Krausz, Pierre

    2012-01-01

    Agar substrates for in vitro culture are well adapted to plant micropropagation, but not to plant rooting and acclimatization. Conversely, paper-pulp-based substrates appear as potentially well adapted for in vitro culture and functional root production. To reinforce this hypothesis, this study compares in vitro development of nemesia on several substrates. Strong differences between nemesia roots growing in agar or in paper-pulp substrates were evidenced through scanning electron microscopy. Roots developed in agar have shorter hairs, larger rhizodermal cells, and less organized root caps than those growing on paper pulp. In conclusion, it should be noted that in this study, in vitro microporous substrates such as paper pulp lead to the production of similar root hairs to those found in greenhouse peat substrates. Consequently, if agar could be used for micropropagation, rooting, and plant acclimatization, enhancement could be achieved if rooting stage was performed on micro-porous substrates such as paper pulp.

  4. Analysis of peptide uptake and location of root hair-promoting peptide accumulation in plant roots.

    Science.gov (United States)

    Matsumiya, Yoshiki; Taniguchi, Rikiya; Kubo, Motoki

    2012-03-01

    Peptide uptake by plant roots from degraded soybean-meal products was analyzed in Brassica rapa and Solanum lycopersicum. B. rapa absorbed about 40% of the initial water volume, whereas peptide concentration was decreased by 75% after 24 h. Analysis by reversed-phase HPLC showed that number of peptides was absorbed by the roots during soaking in degraded soybean-meal products for 24 h. Carboxyfluorescein-labeled root hair-promoting peptide was synthesized, and its localization, movement, and accumulation in roots were investigated. The peptide appeared to be absorbed by root hairs and then moved to trichoblasts. Furthermore, the peptide was moved from trichoblasts to atrichoblasts after 24 h. The peptide was accumulated in epidermal cells, suggesting that the peptide may have a function in both trichoblasts and atrichoblasts. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  5. Analysis of aneuploid lines of bread wheat to map chromosomal locations of genes controlling root hair length.

    Science.gov (United States)

    Liu, Miao; Rathjen, Tina; Weligama, Kumara; Forrest, Kerrie; Hayden, Matthew; Delhaize, Emmanuel

    2017-06-01

    Long root hairs enable the efficient uptake of poorly mobile nutrients such as phosphorus. Mapping the chromosomal locations of genes that control root hair length can help exploit the natural variation within crops to develop improved cultivars. Genetic stocks of the wheat cultivar 'Chinese Spring' were used to map genes that control root hair length. Aneuploid stocks of 'Chinese Spring' were screened using a rapid method based on rhizosheath size and then selected lines were assayed for root hair length to identify chromosomes harbouring genes controlling root hair length. A series of lines with various fractional deletions of candidate chromosomes were then screened to map the root hair loci more accurately. A line with a deletion in chromosome 5A was analysed with a 90 000 single nucleotide polymorphism (SNP) array. The phosphorus acquisition efficiency (PAE) of one deletion line was compared with that of euploid 'Chinese Spring' by growing the seedlings in pots at low and luxury phosphorus supplies. Chromosomes 1A, 1D and 5A were found to harbour genes controlling root hair length. The 90 000 SNP array identified two candidate genes controlling root hair length located on chromosome 5A. The line with a deletion in chromosome 5A had root hairs that were approx. 20 % shorter than euploid 'Chinese Spring', but this was insufficient to reduce its PAE. A rapid screen for rhizosheath size enabled chromosomal regions controlling root hair length to be mapped in the wheat cultivar 'Chinese Spring' and subsequent analysis with an SNP array identified candidate genes controlling root hair length. The difference in root hair length between euploid 'Chinese Spring' and a deletion line identified in the rapid screen was still apparent, albeit attenuated, when the seedlings were grown on a fully fertilized soil. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana.

    Science.gov (United States)

    Canales, Javier; Contreras-López, Orlando; Álvarez, José M; Gutiérrez, Rodrigo A

    2017-10-01

    Root hairs are specialized cells that are important for nutrient uptake. It is well established that nutrients such as phosphate have a great influence on root hair development in many plant species. Here we investigated the role of nitrate on root hair development at a physiological and molecular level. We showed that nitrate increases root hair density in Arabidopsis thaliana. We found that two different root hair defective mutants have significantly less nitrate than wild-type plants, suggesting that in A. thaliana root hairs have an important role in the capacity to acquire nitrate. Nitrate reductase-null mutants exhibited nitrate-dependent root hair phenotypes comparable with wild-type plants, indicating that nitrate is the signal that leads to increased formation of root hairs. We examined the role of two key regulators of root hair cell fate, CPC and WER, in response to nitrate treatments. Phenotypic analyses of these mutants showed that CPC is essential for nitrate-induced responses of root hair development. Moreover, we showed that NRT1.1 and TGA1/TGA4 are required for pathways that induce root hair development by suppression of longitudinal elongation of trichoblast cells in response to nitrate treatments. Our results prompted a model where nitrate signaling via TGA1/TGA4 directly regulates the CPC root hair cell fate specification gene to increase formation of root hairs in A. thaliana. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  7. An Explicit Structural Model of Root Hair and Soil Interactions Parameterised by Synchrotron X-ray Computed Tomography.

    Science.gov (United States)

    Keyes, Samuel David; Zygalakis, Konstantinos C; Roose, Tiina

    2017-12-01

    The rhizosphere is a zone of fundamental importance for understanding the dynamics of nutrient acquisition by plant roots. The canonical difficulty of experimentally investigating the rhizosphere led long ago to the adoption of mathematical models, the most sophisticated of which now incorporate explicit representations of root hairs and rhizosphere soil. Mathematical upscaling regimes, such as homogenisation, offer the possibility of incorporating into larger-scale models the important mechanistic processes occurring at the rhizosphere scale. However, we lack concrete descriptions of all the features required to fully parameterise models at the rhizosphere scale. By combining synchrotron X-ray computed tomography (SRXCT) and a novel root growth assay, we derive a three-dimensional description of rhizosphere soil structure suitable for use in multi-scale modelling frameworks. We describe an approach to mitigate sub-optimal root hair detection via structural root hair growth modelling. The growth model is explicitly parameterised with SRXCT data and simulates three-dimensional root hair ideotypes in silico, which are suitable for both ideotypic analysis and parameterisation of 3D geometry in mathematical models. The study considers different hypothetical conditions governing root hair interactions with soil matrices, with their respective effects on hair morphology being compared between idealised and image-derived soil/root geometries. The studies in idealised geometries suggest that packing arrangement of soil affects hair tortuosity more than the particle diameter. Results in field-derived soil suggest that hair access to poorly mobile nutrients is particularly sensitive to the physical interaction between the growing hairs and the phase of the soil in which soil water is present (i.e. the hydrated textural phase). The general trends in fluid-coincident hair length with distance from the root, and their dependence on hair/soil interaction mechanisms, are

  8. Plasma membrane H(+)-ATPase is involved in methyl jasmonate-induced root hair formation in lettuce (Lactuca sativa L.) seedlings.

    Science.gov (United States)

    Zhu, Changhua; Yang, Na; Ma, Xiaoling; Li, Guijun; Qian, Meng; Ng, Denny; Xia, Kai; Gan, Lijun

    2015-06-01

    Our results show that methyl jasmonate induces plasma membrane H (+) -ATPase activity and subsequently influences the apoplastic pH of trichoblasts to maintain a cell wall pH environment appropriate for root hair development. Root hairs, which arise from root epidermal cells, are tubular structures that increase the efficiency of water absorption and nutrient uptake. Plant hormones are critical regulators of root hair development. In this study, we investigated the regulatory role of the plasma membrane (PM) H(+)-ATPase in methyl jasmonate (MeJA)-induced root hair formation. We found that MeJA had a pronounced effect on the promotion of root hair formation in lettuce seedlings, but that this effect was blocked by the PM H(+)-ATPase inhibitor vanadate. Furthermore, MeJA treatment increased PM H(+)-ATPase activity in parallel with H(+) efflux from the root tips of lettuce seedlings and rhizosphere acidification. Our results also showed that MeJA-induced root hair formation was accompanied by hydrogen peroxide accumulation. The apoplastic acidification acted in concert with reactive oxygen species to modulate root hair formation. Our results suggest that the effect of MeJA on root hair formation is mediated by modulation of PM H(+)-ATPase activity.

  9. Polyethylene Glycol (PEG-Treated Hydroponic Culture Reduces Length and Diameter of Root Hairs of Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2015-10-01

    Full Text Available Wheat is an important cereal crop worldwide that often suffers from moisture deficits at the reproductive stage. Polyethylene glycol (PEG-treated hydroponic conditions create negative osmotic potential which is compared with moisture deficit stress. An experiment was conducted in a growth chamber to study the effects of PEG on root hair morphology and associated traits of wheat varieties. Plants of 13 wheat varieties were grown hydroponically and three different doses of PEG 6000 (w/v: 0% (control, 0.3% and 0.6% (less than −1 bar were imposed on 60 days after sowing for 20 days’ duration. A low PEG concentration was imposed to observe how initial low moisture stress might affect root hair development. PEG-treated hydroponic culture significantly decreased root hair diameter and length. Estimated surface area reduction of root hairs at the main axes of wheat plants was around nine times at the 0.6% PEG level compared to the control plants. Decrease in root hair diameter and length under PEG-induced culture decreased “potential” root surface area per unit length of main root axis. A negative association between panicle traits, length and dry weight and the main axis length of young roots indicated competition for carbon during their development. Data provides insight into how a low PEG level might alter root hair development.

  10. Effects of glucose and ethylene on root hair initiation and elongation in lettuce (Lactuca sativa L.) seedlings.

    Science.gov (United States)

    Harigaya, Wakana; Takahashi, Hidenori

    2018-05-01

    Root hair formation occurs in lettuce seedlings after transfer to an acidic medium (pH 4.0). This process requires cortical microtubule (CMT) randomization in root epidermal cells and the plant hormone ethylene. We investigated the interaction between ethylene and glucose, a new signaling molecule in plants, in lettuce root development, with an emphasis on root hair formation. Dark-grown seedlings were used to exclude the effect of photosynthetically produced glucose. In the dark, neither root hair formation nor the CMT randomization preceding it occurred, even after transfer to the acidic medium (pH 4.0). Adding 1-aminocyclopropane-1-carboxylic-acid (ACC) to the medium rescued the induction, while adding glucose did not. Although CMT randomization occurred when glucose was applied together with ACC, it was somewhat suppressed compared to that in ACC-treated seedlings. This was not due to a decrease in the speed of randomization, but due to lowering of the maximum degree of randomization. Despite the negative effect of glucose on ACC-induced CMT randomization, the density and length of ACC-induced root hairs increased when glucose was also added. The hair-cell length of the ACC-treated seedlings was comparable to that in the combined-treatment seedlings, indicating that the increase in hair density caused by glucose results from an increase in the root hair number. Furthermore, quantitative RT-PCR revealed that glucose suppressed ethylene signaling. These results suggest that glucose has a negative and positive effect on the earlier and later stages of root hair formation, respectively, and that the promotion of the initiation and elongation of root hairs by glucose may be mediated in an ethylene-independent manner.

  11. An expression database for roots of the model legume Medicago truncatula under salt stress.

    Science.gov (United States)

    Li, Daofeng; Su, Zhen; Dong, Jiangli; Wang, Tao

    2009-11-11

    Medicago truncatula is a model legume whose genome is currently being sequenced by an international consortium. Abiotic stresses such as salt stress limit plant growth and crop productivity, including those of legumes. We anticipate that studies on M. truncatula will shed light on other economically important legumes across the world. Here, we report the development of a database called MtED that contains gene expression profiles of the roots of M. truncatula based on time-course salt stress experiments using the Affymetrix Medicago GeneChip. Our hope is that MtED will provide information to assist in improving abiotic stress resistance in legumes. The results of our microarray experiment with roots of M. truncatula under 180 mM sodium chloride were deposited in the MtED database. Additionally, sequence and annotation information regarding microarray probe sets were included. MtED provides functional category analysis based on Gene and GeneBins Ontology, and other Web-based tools for querying and retrieving query results, browsing pathways and transcription factor families, showing metabolic maps, and comparing and visualizing expression profiles. Utilities like mapping probe sets to genome of M. truncatula and In-Silico PCR were implemented by BLAT software suite, which were also available through MtED database. MtED was built in the PHP script language and as a MySQL relational database system on a Linux server. It has an integrated Web interface, which facilitates ready examination and interpretation of the results of microarray experiments. It is intended to help in selecting gene markers to improve abiotic stress resistance in legumes. MtED is available at http://bioinformatics.cau.edu.cn/MtED/.

  12. An expression database for roots of the model legume Medicago truncatula under salt stress

    Directory of Open Access Journals (Sweden)

    Dong Jiangli

    2009-11-01

    Full Text Available Abstract Background Medicago truncatula is a model legume whose genome is currently being sequenced by an international consortium. Abiotic stresses such as salt stress limit plant growth and crop productivity, including those of legumes. We anticipate that studies on M. truncatula will shed light on other economically important legumes across the world. Here, we report the development of a database called MtED that contains gene expression profiles of the roots of M. truncatula based on time-course salt stress experiments using the Affymetrix Medicago GeneChip. Our hope is that MtED will provide information to assist in improving abiotic stress resistance in legumes. Description The results of our microarray experiment with roots of M. truncatula under 180 mM sodium chloride were deposited in the MtED database. Additionally, sequence and annotation information regarding microarray probe sets were included. MtED provides functional category analysis based on Gene and GeneBins Ontology, and other Web-based tools for querying and retrieving query results, browsing pathways and transcription factor families, showing metabolic maps, and comparing and visualizing expression profiles. Utilities like mapping probe sets to genome of M. truncatula and In-Silico PCR were implemented by BLAT software suite, which were also available through MtED database. Conclusion MtED was built in the PHP script language and as a MySQL relational database system on a Linux server. It has an integrated Web interface, which facilitates ready examination and interpretation of the results of microarray experiments. It is intended to help in selecting gene markers to improve abiotic stress resistance in legumes. MtED is available at http://bioinformatics.cau.edu.cn/MtED/.

  13. miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula.

    Science.gov (United States)

    Bazin, Jérémie; Khan, Ghazanfar Abbas; Combier, Jean-Philippe; Bustos-Sanmamed, Pilar; Debernardi, Juan Manuel; Rodriguez, Ramiro; Sorin, Céline; Palatnik, Javier; Hartmann, Caroline; Crespi, Martin; Lelandais-Brière, Christine

    2013-06-01

    The root system is crucial for acquisition of resources from the soil. In legumes, the efficiency of mineral and water uptake by the roots may be reinforced due to establishment of symbiotic relationships with mycorrhizal fungi and interactions with soil rhizobia. Here, we investigated the role of miR396 in regulating the architecture of the root system and in symbiotic interactions in the model legume Medicago truncatula. Analyses with promoter-GUS fusions suggested that the mtr-miR396a and miR396b genes are highly expressed in root tips, preferentially in the transition zone, and display distinct expression profiles during lateral root and nodule development. Transgenic roots of composite plants that over-express the miR396b precursor showed lower expression of six growth-regulating factor genes (MtGRF) and two bHLH79-like target genes, as well as reduced growth and mycorrhizal associations. miR396 inactivation by mimicry caused contrasting tendencies, with increased target expression, higher root biomass and more efficient colonization by arbuscular mycorrhizal fungi. In contrast to MtbHLH79, repression of three GRF targets by RNA interference severely impaired root growth. Early activation of mtr-miR396b, concomitant with post-transcriptional repression of MtGRF5 expression, was also observed in response to exogenous brassinosteroids. Growth limitation in miR396 over-expressing roots correlated with a reduction in cell-cycle gene expression and the number of dividing cells in the root apical meristem. These results link the miR396 network to the regulation of root growth and mycorrhizal associations in plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  14. Legume Shrubs Are More Nitrogen-Homeostatic than Non-legume Shrubs

    OpenAIRE

    Guo, Yanpei; Yang, Xian; Schöb, Christian; Jiang, Youxu; Tang, Zhiyao

    2017-01-01

    Legumes are characterized as keeping stable nutrient supply under nutrient-limited conditions. However, few studies examined the legumes' stoichiometric advantages over other plants across various taxa in natural ecosystems. We explored differences in nitrogen (N) and phosphorus (P) stoichiometry of different tissue types (leaf, stem, and root) between N2-fixing legume shrubs and non-N2-fixing shrubs from 299 broadleaved deciduous shrubland sites in northern China. After excluding effects of ...

  15. Molecular diversity of legume root-nodule bacteria in Kakadu National Park, Northern Territory, Australia.

    Directory of Open Access Journals (Sweden)

    Bénédicte Lafay

    2007-03-01

    Full Text Available Symbiotic relationships between leguminous plants (family Fabaceae and nodule-forming bacteria in Australia native ecosystems remain poorly characterized despite their importance. Most studies have focused on temperate parts of the country, where the use of molecular approaches have already revealed the presence of Bradyrhizobium, Ensifer (formerly Sinorhizobium, Mesorhizobium and Rhizobium genera of legume root-nodule bacteria. We here provide the first molecular characterization of nodulating bacteria from tropical Australia.45 nodule-forming bacterial strains, isolated from eight native legume hosts at eight locations in Kakadu National Park, Northern Territory, Australia, were examined for their genetic diversity and phylogenetic position. Using SSU rDNA PCR-RFLPs and phylogenetic analyses, our survey identified nine genospecies, two of which, Bradyrhizobium genospp. B and P, had been previously identified in south-eastern Australia and one, Mesorhizobium genospecies AA, in southern France. Three of the five newly characterized Bradyrhizobium genospecies were more closely related to B. japonicum USDA110, whereas the other two belonged to the B. elkanii group. All five were each more closely related to strains sampled in various tropical areas outside Australia than to strains known to occur in Australia. We also characterized an entirely novel nodule-forming lineage, phylogenetically distant from any previously described rhizobial and non-rhizobial legume-nodulating lineage within the Rhizobiales.Overall, the present results support the hypothesis of tropical areas being centres of biodiversity and diversification for legume root-nodule bacteria and confirm the widespread occurrence of Bradyrhizobium genosp. B in continental Australia.

  16. Characterizing the Suitability of Selected Indigenous Soil Improving Legumes in a Humid Tropical Environment Using Shoot and Root Attributes

    Directory of Open Access Journals (Sweden)

    Anikwe, MAN.

    2003-01-01

    Full Text Available We studied the biomass accumulation, root length, nodulation, and chemical composition of roots and shoot of ten indigenous soil improving legumes in a humid tropical ecosystem with the view to selecting species for soil improvement programmes. Two cultivars of Vigna unguiculata, and one each of Glycine max, Arachis hypogaea, Crotararia ochroleuca, Cajanus cajan, Pueraria phaseoloides, Lablab purpureus, Mucuna pruriens and Vigna subterranea as treatments were planted in 20 kg pots containing soil from an Oxic paleustalf in Nigeria. The pots were arranged in randomized complete block layout with three replications in a greenhouse at IITA Ibadan, Nigeria. Results from the work show that M. pruriens and C. cajan produced the highest quantity of biomass. Root elongation was highest in M. pruriens whereas A. hypogaea produced the most root nodules with native rhizobia. The highest quantity of nodule dry weight was produced by A. hypogaea and P. phaseoloides whereas most of the legumes except G. max and P. phaseoloides had high and statistically comparable N content of between 2.36 and 3.34 mg.kg-1 N. The results show that the legumes have different root and shoot characteristics, which should be taken into consideration when selecting species for soil improvement programmes.

  17. Uncovering genes and ploidy involved in the high diversity in root hair density, length and response to local scarce phosphate in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Markus G Stetter

    Full Text Available Plant root hairs increase the root surface to enhance the uptake of sparingly soluble and immobile nutrients, such as the essential nutrient phosphorus, from the soil. Here, root hair traits and the response to scarce local phosphorus concentration were studied in 166 accessions of Arabidopsis thaliana using split plates. Root hair density and length were correlated, but highly variable among accessions. Surprisingly, the well-known increase in root hair density under low phosphorus was mostly restricted to genotypes that had less and shorter root hairs under P sufficient conditions. By contrast, several accessions with dense and long root hairs even had lower hair density or shorter hairs in local scarce phosphorus. Furthermore, accessions with whole-genome duplications developed more dense but phosphorus-insensitive root hairs. The impact of genome duplication on root hair density was confirmed by comparing tetraploid accessions with their diploid ancestors. Genome-wide association mapping identified candidate genes potentially involved in root hair responses tp scarce local phosphate. Knock-out mutants in identified candidate genes (CYR1, At1g32360 and RLP48 were isolated and differences in root hair traits in the mutants were confirmed. The large diversity in root hair traits among accessions and the diverse response when local phosphorus is scarce is a rich resource for further functional analyses.

  18. A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells.

    Science.gov (United States)

    Park, Sungjin; Szumlanski, Amy L; Gu, Fangwei; Guo, Feng; Nielsen, Erik

    2011-07-17

    In plants, cell shape is defined by the cell wall, and changes in cell shape and size are dictated by modification of existing cell walls and deposition of newly synthesized cell-wall material. In root hairs, expansion occurs by a process called tip growth, which is shared by root hairs, pollen tubes and fungal hyphae. We show that cellulose-like polysaccharides are present in root-hair tips, and de novo synthesis of these polysaccharides is required for tip growth. We also find that eYFP-CSLD3 proteins, but not CESA cellulose synthases, localize to a polarized plasma-membrane domain in root hairs. Using biochemical methods and genetic complementation of a csld3 mutant with a chimaeric CSLD3 protein containing a CESA6 catalytic domain, we provide evidence that CSLD3 represents a distinct (1→4)-β-glucan synthase activity in apical plasma membranes during tip growth in root-hair cells.

  19. Rhizobial infection in Adesmia bicolor (Fabaceae) roots.

    Science.gov (United States)

    Bianco, Luciana

    2014-09-01

    The native legume Adesmia bicolor shows nitrogen fixation efficiency via symbiosis with soil rhizobia. The infection mechanism by means of which rhizobia infect their roots has not been fully elucidated to date. Therefore, the purpose of the present study was to identify the infection mechanism in Adesmia bicolor roots. To this end, inoculated roots were processed following conventional methods as part of our root anatomy study, and the shape and distribution of root nodules were analyzed as well. Neither root hairs nor infection threads were observed in the root system, whereas infection sites-later forming nodules-were observed in the longitudinal sections. Nodules were found to form between the main root and the lateral roots. It can be concluded that in Adesmia bicolor, a bacterial crack entry infection mechanism prevails and that such mechanism could be an adaptive strategy of this species which is typical of arid environments.

  20. Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting

    DEFF Research Database (Denmark)

    Mathesius, U; Keijzers, Guido; Natera, S H

    2001-01-01

    legume for the study of nodulation-related genes and proteins. Over 2,500 root proteins could be displayed reproducibly across an isoelectric focussing range of 4-7. We analysed 485 proteins by peptide mass fingerprinting, and 179 of those were identified by matching against the current M. truncatula....... This proteome map will be updated continuously (http://semele.anu.edu.au/2d/2d.html) and will be a powerful tool for investigating the molecular mechanisms of root symbioses in legumes....

  1. Peroxidase activity in root hairs of cress (lepidium sativum L.) Cytochemical localization and radioactive labelling of wall bound peroxidase

    International Nuclear Information System (INIS)

    Zaar, K.

    1979-01-01

    The ultrastructural localization of peroxidase activity in young, growing root hairs of cress (Lepidium sativum L.) after assay with 3,3'-diaminobenzidine is reported. Prominent peroxidase activity has been found in the dictyosomes and the associated vesicles, in ribosomes on ER-cisternae, as well as in the cell wall. On the basis of both ultrastructural and cytochemical evidence it is proposed that peroxidase in root hairs is synthesized on the ER- and within dictyosome cisternae packaged and transported in secretory vesicles and extruded into the cell wall particularily at the tip region of a root hair. The kinetic of Golgi apparatus mediated peroxidasesecretion was monitored by measuring the 55 Fe protoheme content of primary cell walls. Peroxidase secretion seems to be enhanced during stress incubation in destilled water. Secretory activity in root hairs is 20 times higher than in cells of the root body. (author)

  2. Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase.

    Science.gov (United States)

    Nestler, Josefine; Liu, Sanzhen; Wen, Tsui-Jung; Paschold, Anja; Marcon, Caroline; Tang, Ho Man; Li, Delin; Li, Li; Meeley, Robert B; Sakai, Hajime; Bruce, Wesley; Schnable, Patrick S; Hochholdinger, Frank

    2014-09-01

    Root hairs are instrumental for nutrient uptake in monocot cereals. The maize (Zea mays L.) roothairless5 (rth5) mutant displays defects in root hair initiation and elongation manifested by a reduced density and length of root hairs. Map-based cloning revealed that the rth5 gene encodes a monocot-specific NADPH oxidase. RNA-Seq, in situ hybridization and qRT-PCR experiments demonstrated that the rth5 gene displays preferential expression in root hairs but also accumulates to low levels in other tissues. Immunolocalization detected RTH5 proteins in the epidermis of the elongation and differentiation zone of primary roots. Because superoxide and hydrogen peroxide levels are reduced in the tips of growing rth5 mutant root hairs as compared with wild-type, and Reactive oxygen species (ROS) is known to be involved in tip growth, we hypothesize that the RTH5 protein is responsible for establishing the high levels of ROS in the tips of growing root hairs required for elongation. Consistent with this hypothesis, a comparative RNA-Seq analysis of 6-day-old rth5 versus wild-type primary roots revealed significant over-representation of only two gene ontology (GO) classes related to the biological functions (i.e. oxidation/reduction and carbohydrate metabolism) among 893 differentially expressed genes (FDR <5%). Within these two classes the subgroups 'response to oxidative stress' and 'cellulose biosynthesis' were most prominently represented. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  3. Cytoplasm localization of aminopeptidase M1 and its functional activity in root hair cells and BY-2 cells.

    Science.gov (United States)

    Lee, Ok Ran; Cho, Hyung-Taeg

    2012-12-01

    Aminopeptidase M1 (APM1) was the first M1 metallopeptidase family member identified in Arabidopsis, isolated by its affinity for the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). A loss-of-function mutation showed various developmental defects in cell division and auxin transport. APM1 was shown to be localized in endomembrane structures, the cytoplasm, and the plasma membrane. These previous results suggested that APM1 has diverse functional roles in different cell and tissue types. Here we report that APM1 localized to the cytoplasm, and its over-expression in the root hair cell caused longer root hair phenotypes. Treatment of aminopeptidase inhibitors caused internalization of auxin efflux PIN-FORMED proteins in root hair cells and suppressed short root hair phenotype of PIN3 overexpression line (PIN3ox). APM1 also localized to the cytoplasm in tobacco BY-2 cells, its over-expression had little effect on auxin transport in these cells.

  4. Legume Shrubs Are More Nitrogen-Homeostatic than Non-legume Shrubs.

    Science.gov (United States)

    Guo, Yanpei; Yang, Xian; Schöb, Christian; Jiang, Youxu; Tang, Zhiyao

    2017-01-01

    Legumes are characterized as keeping stable nutrient supply under nutrient-limited conditions. However, few studies examined the legumes' stoichiometric advantages over other plants across various taxa in natural ecosystems. We explored differences in nitrogen (N) and phosphorus (P) stoichiometry of different tissue types (leaf, stem, and root) between N 2 -fixing legume shrubs and non-N 2 -fixing shrubs from 299 broadleaved deciduous shrubland sites in northern China. After excluding effects of taxonomy and environmental variables, these two functional groups differed considerably in nutrient regulation. N concentrations and N:P ratios were higher in legume shrubs than in non-N 2 -fixing shrubs. N concentrations were positively correlated between the plants and soil for non-N 2 -fixing shrubs, but not for legume shrubs, indicating a stronger stoichiometric homeostasis in legume shrubs than in non-N 2 -fixing shrubs. N concentrations were positively correlated among three tissue types for non-N 2 -fixing shrubs, but not between leaves and non-leaf tissues for legume shrubs, demonstrating that N concentrations were more dependent among tissues for non-N 2 -fixing shrubs than for legume shrubs. N and P concentrations were correlated within all tissues for both functional groups, but the regression slopes were flatter for legume shrubs than non-N 2 -fixing shrubs, implying that legume shrubs were more P limited than non-N 2 -fixing shrubs. These results address significant differences in stoichiometry between legume shrubs and non-N 2 -fixing shrubs, and indicate the influence of symbiotic nitrogen fixation (SNF) on plant stoichiometry. Overall, N 2 -fixing legume shrubs are higher and more stoichiometrically homeostatic in N concentrations. However, due to excess uptake of N, legumes may suffer from potential P limitation. With their N advantage, legume shrubs could be good nurse plants in restoration sites with degraded soil, but their P supply should be taken care

  5. Probing nod factor perception in legumes by fluorescence microspectroscopy

    NARCIS (Netherlands)

    Goedhart, J.

    2001-01-01

    Plants of the family of legumes are capable of forming a symbiosis with Rhizobium bacteria. These Gram-negative bacteria invade the root system of a host legume and fix nitrogen in a specialized organ, the so-called root nodule. In exchange for sugars, the bacteria convert atmospheric

  6. Numerical simulation of the hair formation -modeling of hair cycle

    Science.gov (United States)

    Kajihara, Narumichi; Nagayama, Katsuya

    2018-01-01

    In the recent years, the fields of study of anti-aging, health and beauty, cosmetics, and hair diseases have attracted significant attention. In particular, human hair is considered to be an important aspect with regard to an attractive appearance. To this end, many workers have sought to understand the formation mechanism of the hair root. However, observing growth in the hair root is difficult, and a detailed mechanism of the process has not yet been elucidated. Hair repeats growth, retraction, and pause cycles (hair cycle) in a repetitive process. In the growth phase, hair is formed through processes of cell proliferation and differentiation (keratinization). During the retraction phase, hair growth stops, and during the resting period, hair fall occurs and new hair grows. This hair cycle is believed to affect the elongation rate, thickness, strength, and shape of hair. Therefore, in this study, we introduce a particle model as a new method to elucidate the unknown process of hair formation, and to model the hair formation process accompanying the proliferation and differentiation of the hair root cells in all three dimensions. In addition, to the growth period, the retraction and the resting periods are introduced to realize the hair cycle using this model.

  7. Evaluation and Selection of Common Bean (Phaseolus Vulgaris L.) Genotypes for Root Traits Associated with Phosphorus (P) Acquisition Efficiency and the Use of {sup 32}P Isotope in Studies on P Uptake by Root Hairs

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, M. A.; Jochua, C. [Agricultural Research Institute of Mozambique (IIAM), Maputo (Mozambique); Lynch, J. P. [Pennsylvania State University, University Park, PA (United States)

    2013-11-15

    Low phosphorus (P) availability is one of the main edaphic constraints limiting crop production and productivity in most of the tropical agro-ecosystems. Several root traits are known to be associated with P acquisition efficiency in low P soils. These root traits include root hairs. Computer modeling, laboratory and field studies show the depletion of {sup 32}P-phosphate around roots and that the depletion zone is influenced by the length and density of root hairs. We conducted a study involving a series of experiments with the objective of evaluating the variability of root traits associated with P uptake efficiency among common bean (Phaseolus vulgaris L.) genotypes, and to understand the mechanisms of long root hairs leading to the increase in P uptake in common bean. The study included (a) the screening of common bean genotypes in the laboratory and in the field for root traits, and (b) the use of radioactive phosphorus ({sup 32}P) in the experiments conducted in the greenhouse. For laboratory screening, seedlings were germinated in paper rolls in a growth media for 3 days before evaluation for basal root whorl number (BRWN), basal root number (BRN), basal root growth angle (BRGA) and root hair length (RHL). Common bean genotypes were planted in the field with low P for 45 days after planting (DAP) before evaluation. For the {sup 32}P study four contrasting genotypes for root hairs were grown for 28 DAP in the greenhouse using 15-20 liter pots filled with a mixture of sand and vermiculate as the growth media. The radioactive P was incorporated in the growth medium in the form of alumina-P fertilizer. Normal phosphorus (non-radioactive {sup 31}P) was included in the nutrient solution in the form of calcium phosphate, Ca{sub 3}(PO{sub 4}){sub 2}, and supplied through irrigation. Screened genotypes exhibited different root traits associated with P uptake efficiency, and that a given genotype can have one or more root traits responsible for it P uptake efficiency

  8. Non-enzymatic access to the plasma membrane of Medicago root hairs by laser microsurgery

    Energy Technology Data Exchange (ETDEWEB)

    Kurkdjian, A.; Leitz, G.; Manigault, P.; Harim, A.; Greulich, K. O.

    1993-07-01

    Using UV laser microsurgery, the cell walls of root hairs from Medicago sativa (alfalfa) were perforated under plasmolysing conditions, giving direct access to the plasma membrane without enzyme treatment. The opening in the cell wall of a few μm in diameter results in immediate movement of the protoplasm and partial or complete extrusion of the cell contents. The movement of the protoplasm is retarded by increases in calcium concentration. The calcium-dependency of the movement of the protoplasm allows us to obtain preferentially the extrusion of protoplasm, or to gain access to a small area of plasma membrane in situ. The complete protoplasm can be expelled, to form a protoplast. Fluorescein diacetate staining indicated esterase activity and membrane integrity of the protoplasts. Microscopic examination revealed organelle movement and the presence of a nucleus. The plasma membrane was free from cell wall fragments, as shown by Tinopal staining. Conditions for obtaining plasmolysis without disturbing the physiology of the root hairs too much were achieved by slow, stepwise and reversible plasmolysis. Cytoplasmic streaming in root hairs was maintained during plasmolysis and laser microperforation. This laser technique should be suitable for the performance of electrophysiological studies using the patch-clamp technique on plasma membrane from non-enzyme-treated cells. (author)

  9. Non-enzymatic access to the plasma membrane of Medicago root hairs by laser microsurgery

    International Nuclear Information System (INIS)

    Kurkdjian, A.; Leitz, G.; Manigault, P.; Harim, A.; Greulich, K.O.

    1993-01-01

    Using UV laser microsurgery, the cell walls of root hairs from Medicago sativa (alfalfa) were perforated under plasmolysing conditions, giving direct access to the plasma membrane without enzyme treatment. The opening in the cell wall of a few μm in diameter results in immediate movement of the protoplasm and partial or complete extrusion of the cell contents. The movement of the protoplasm is retarded by increases in calcium concentration. The calcium-dependency of the movement of the protoplasm allows us to obtain preferentially the extrusion of protoplasm, or to gain access to a small area of plasma membrane in situ. The complete protoplasm can be expelled, to form a protoplast. Fluorescein diacetate staining indicated esterase activity and membrane integrity of the protoplasts. Microscopic examination revealed organelle movement and the presence of a nucleus. The plasma membrane was free from cell wall fragments, as shown by Tinopal staining. Conditions for obtaining plasmolysis without disturbing the physiology of the root hairs too much were achieved by slow, stepwise and reversible plasmolysis. Cytoplasmic streaming in root hairs was maintained during plasmolysis and laser microperforation. This laser technique should be suitable for the performance of electrophysiological studies using the patch-clamp technique on plasma membrane from non-enzyme-treated cells. (author)

  10. Endophytic and epiphytic hydrocarbon-utilizing bacteria associated with root nodules of legumes

    International Nuclear Information System (INIS)

    Dashti, N.; Khanafer, M.; Radwan, S.S.

    2005-01-01

    During their withdrawal from Kuwait in 1991, the Iraqi forces damaged and set fire to approximately 700 oil wells. Oil gushed from the wells for a period of 7 months, resulting in oil lakes which covered about 50 square km of the Kuwaiti desert and posing an environmental problem. Most of the crude oil has been pumped out, leaving the lake bottoms polluted with oil to depths reaching 20 to 25 cm. The oily areas have been mediated through indigenous hydrocarbon-utilizing microorganisms, but recovery is slow. Rhizospheres of crop plants, including legumes, are rich in oil-utilizing bacteria. Cultivation of broad beans in oily desert samples has enhanced oil biodegradation. This paper discussed the evidence that rhizobium strains inside the nodules on roots of broad beans are active in hydrocarbon utilization, and that the nodules are also colonized on their entire surfaces with oil-utilizing bacteria. Nodule-associated hydrocarbon utilizers appear to contribute together with rhizospheric hydrocarbon utilizers to the phytoremediation of oily soil. Broad beans were removed from soil and their root surfaces were sterilized to eliminate rhizospheric microorganisms. Plants with intact nodules were tested for their potential of attenuating to crude oil in water. Plants were divided into 2 groups: control plants in which all nodules were removed; and experimental plants which were used directly without further treatment. To isolate rhizobium from inside the nodules, fresh nodules were washed, sterilized and homogenized in sterile water. Bacterial strains were tested for their hydrocarbon utilization potential by streaking cell suspensions on the surface of sterile inorganic mediums containing 1 per cent of crude oil or of individual pure aliphatic and aromatic test hydrocarbons. All bacterial isolates were tested for growth on a solid Ashbery's nitrogen free medium. Results indicated that hydrocarbons were more efficiently eliminated from water supporting disinfected

  11. Ergosterol content in ericaceous hair roots correlates with dark septate endophytes but not with ericoid mycorrhizal colonization

    DEFF Research Database (Denmark)

    Olsrud, Maria; Michelsen, Anders; Wallander, Håkon

    2007-01-01

    The relationship between ergosterol content in ericaceous hair roots and ericoid mycorrhizal (ErM) colonization versus dark septate endophytic (DSE) hyphal colonization was examined in a dwarf shrub-dominated subarctic mire in Northern Sweden. Ergosterol content in hair roots did not correlate...... under natural conditions. It also suggests the possibility of using ergosterol as an estimate of DSE hyphal colonization in ericaceous dwarf shrubs. This study has implications for the interpretation of results in field studies where ergosterol was used as a sole proxy for ErM colonization....

  12. The Root Hair Specific SYP123 Regulates the Localization of Cell Wall Components and Contributes to Rizhobacterial Priming of Induced Systemic Resistance

    Directory of Open Access Journals (Sweden)

    Cecilia Rodriguez-Furlán

    2016-07-01

    Full Text Available Root hairs are important for nutrient and water uptake and are also critically involved the interaction with soil inhabiting microbiota. Root hairs are tubular-shaped outgrowths that emerge from trichoblasts. This polarized elongation is maintained and regulated by a robust mechanism involving the endomembrane secretory and endocytic system. Members of the syntaxin family of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor in plants (SYP, have been implicated in regulation of the fusion of vesicles with the target membranes in both exocytic and endocytic pathways. One member of this family, SYP123, is expressed specifically in the root hairs and accumulated in the growing tip region. This study shows evidence of the SYP123 role in polarized trafficking using knockout insertional mutant plants. We were able to observe defects in the deposition of cell wall proline rich protein PRP3 and cell wall polysaccharides. In a complementary strategy, similar results were obtained using a plant expressing a dominant negative soluble version of SYP123 (SP2 fragment lacking the transmembrane domain. The evidence presented indicates that SYP123 is also regulating PRP3 protein distribution by recycling by endocytosis. We also present evidence that indicates that SYP123 is necessary for the response of roots to plant growth promoting rhizobacterium (PGPR in order to trigger trigger induced systemic response (ISR. Plants with a defective SYP123 function were unable to mount a systemic acquired resistance (SAR in response to bacterial pathogen infection and induced systemic resistance (ISR upon interaction with rhizobacteria. These results indicated that SYP123 was involved in the polarized localization of protein and polysaccharides in growing root hairs and that this activity also contributed to the establishment of effective plant defense responses. Root hairs represent very plastic structures were many biotic and abiotic factors

  13. Traits affecting early season nitrogen uptake in nine legume species

    Directory of Open Access Journals (Sweden)

    Elana Dayoub

    2017-02-01

    Full Text Available Legume crops are known to have low soil N uptake early in their life cycle, which can weaken their ability to compete with other species, such as weeds or other crops in intercropping systems. However, there is limited knowledge on the main traits involved in soil N uptake during early growth and for a range of species. The objective of this research was to identify the main traits explaining the variability among legume species in soil N uptake and to study the effect of the soil mineral N supply on the legume strategy for the use of available N sources during early growth. Nine legume species were grown in rhizotrons with or without N supply. Root expansion, shoot and root biomass, nodule establishment, N2 fixation and mineral soil N uptake were measured. A large interspecific variability was observed for all traits affecting soil N uptake. Root lateral expansion and early biomass in relation to seed mass were the major traits influencing soil N uptake regardless of the level of soil N availability. Fenugreek, lentil, alfalfa, and common vetch could be considered weak competitors for soil N due to their low plant biomass and low lateral root expansion. Conversely, peanut, pea, chickpea and soybean had a greater soil N uptake. Faba bean was separated from other species having a higher nodule biomass, a higher N2 fixation and a lower seed reserve depletion. Faba bean was able to simultaneously fix N2 and take up soil N. This work has identified traits of seed mass, shoot and root biomass, root lateral expansion, N2 fixation and seed reserve depletion that allowing classification of legume species regarding their soil N uptake ability during early growth.

  14. Split-root systems applied to the study of the legume-rhizobial symbiosis: what have we learned?

    Science.gov (United States)

    Larrainzar, Estíbaliz; Gil-Quintana, Erena; Arrese-Igor, Cesar; González, Esther M; Marino, Daniel

    2014-12-01

    Split-root system (SRS) approaches allow the differential treatment of separate and independent root systems, while sharing a common aerial part. As such, SRS is a useful tool for the discrimination of systemic (shoot origin) versus local (root/nodule origin) regulation mechanisms. This type of approach is particularly useful when studying the complex regulatory mechanisms governing the symbiosis established between legumes and Rhizobium bacteria. The current work provides an overview of the main insights gained from the application of SRS approaches to understand how nodule number (nodulation autoregulation) and nitrogen fixation are controlled both under non-stressful conditions and in response to a variety of stresses. Nodule number appears to be mainly controlled at the systemic level through a signal which is produced by nodule/root tissue, translocated to the shoot, and transmitted back to the root system, involving shoot Leu-rich repeat receptor-like kinases. In contrast, both local and systemic mechanisms have been shown to operate for the regulation of nitrogenase activity in nodules. Under drought and heavy metal stress, the regulation is mostly local, whereas the application of exogenous nitrogen seems to exert a regulation of nitrogen fixation both at the local and systemic levels. © 2014 Institute of Botany, Chinese Academy of Sciences.

  15. Early Arabidopsis root hair growth stimulation by pathogenic strains of Pseudomonas syringae

    Czech Academy of Sciences Publication Activity Database

    Pečenková, Tamara; Janda, Martin; Ortmannová, Jitka; Hajná, Vladimíra; Stehlíková, Zuzana; Žárský, Viktor

    2017-01-01

    Roč. 120, č. 3 (2017), s. 437-446 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA15-14886S; GA ČR GA14-09685S Institutional support: RVO:61389030 Keywords : Arabidopsis * dde2/ein2/pad4/sid2 * exocyst * Flg22 * Pseudomonas * Root hair * vesicle trafficking Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 4.041, year: 2016

  16. Function of plasma membrane microdomain-associated proteins during legume nodulation.

    Science.gov (United States)

    Qiao, Zhenzhen; Libault, Marc

    2017-10-03

    Plasma membrane microdomains are plasma membrane sub-compartments enriched in sphingolipids and sterols, and composed by a specific set of proteins. They are involved in recognizing signal molecules, transducing these signals, and controlling endocytosis and exocytosis processes. In a recent study, applying biochemical and microscopic methods, we characterized the soybean GmFWL1 protein, a major regulator of soybean nodulation, as a new membrane microdomain-associated protein. Interestingly, upon rhizobia inoculation of the soybean root system, GmFWL1 and one of its interacting partners, GmFLOT2/4, both translocate to the root hair cell tip, the primary site of interaction and infection between soybean and Rhizobium. The role of GmFWL1 as a plasma membrane microdomain-associated protein is also supported by immunoprecipitation assays performed on soybean nodules, which revealed 178 GmFWL1 protein partners including a large number of microdomain-associated proteins such as GmFLOT2/4. In this addendum, we provide additional information about the identity of the soybean proteins repetitively identified as GmFWL1 protein partners. Their function is discussed especially in regard to plant-microbe interactions and microbial symbiosis. This addendum will provide new insights in the role of plasma membrane microdomains in regulating legume nodulation.

  17. Propidium iodide competes with Ca(2+) to label pectin in pollen tubes and Arabidopsis root hairs.

    Science.gov (United States)

    Rounds, Caleb M; Lubeck, Eric; Hepler, Peter K; Winship, Lawrence J

    2011-09-01

    We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca(2+) binding. We first show that Ca(2+) is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca(2+) in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca(2+)-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca(2+) gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca(2+) in tip growth.

  18. Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum.

    Science.gov (United States)

    Mousa, Walaa K; Shearer, Charles; Limay-Rios, Victor; Ettinger, Cassie L; Eisen, Jonathan A; Raizada, Manish N

    2016-09-26

    The ancient African crop, finger millet, has broad resistance to pathogens including the toxigenic fungus Fusarium graminearum. Here, we report the discovery of a novel plant defence mechanism resulting from an unusual symbiosis between finger millet and a root-inhabiting bacterial endophyte, M6 (Enterobacter sp.). Seed-coated M6 swarms towards root-invading Fusarium and is associated with the growth of root hairs, which then bend parallel to the root axis, subsequently forming biofilm-mediated microcolonies, resulting in a remarkable, multilayer root-hair endophyte stack (RHESt). The RHESt results in a physical barrier that prevents entry and/or traps F. graminearum, which is then killed. M6 thus creates its own specialized killing microhabitat. Tn5-mutagenesis shows that M6 killing requires c-di-GMP-dependent signalling, diverse fungicides and resistance to a Fusarium-derived antibiotic. Further molecular evidence suggests long-term host-endophyte-pathogen co-evolution. The end result of this remarkable symbiosis is reduced deoxynivalenol mycotoxin, potentially benefiting millions of subsistence farmers and livestock. Further results suggest that the anti-Fusarium activity of M6 may be transferable to maize and wheat. RHESt demonstrates the value of exploring ancient, orphan crop microbiomes.

  19. Split-Cre complementation restores combination activity on transgene excision in hair roots of transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Mengling Wen

    Full Text Available The Cre/loxP system is increasingly exploited for genetic manipulation of DNA in vitro and in vivo. It was previously reported that inactive ''split-Cre'' fragments could restore Cre activity in transgenic mice when overlapping co-expression was controlled by two different promoters. In this study, we analyzed recombination activities of split-Cre proteins, and found that no recombinase activity was detected in the in vitro recombination reaction in which only the N-terminal domain (NCre of split-Cre protein was expressed, whereas recombination activity was obtained when the C-terminal (CCre or both NCre and CCre fragments were supplied. We have also determined the recombination efficiency of split-Cre proteins which were co-expressed in hair roots of transgenic tobacco. No Cre recombination event was observed in hair roots of transgenic tobacco when the NCre or CCre genes were expressed alone. In contrast, an efficient recombination event was found in transgenic hairy roots co-expressing both inactive split-Cre genes. Moreover, the restored recombination efficiency of split-Cre proteins fused with the nuclear localization sequence (NLS was higher than that of intact Cre in transgenic lines. Thus, DNA recombination mediated by split-Cre proteins provides an alternative method for spatial and temporal regulation of gene expression in transgenic plants.

  20. LegumeDB1 bioinformatics resource: comparative genomic analysis and novel cross-genera marker identification in lupin and pasture legume species.

    Science.gov (United States)

    Moolhuijzen, P; Cakir, M; Hunter, A; Schibeci, D; Macgregor, A; Smith, C; Francki, M; Jones, M G K; Appels, R; Bellgard, M

    2006-06-01

    The identification of markers in legume pasture crops, which can be associated with traits such as protein and lipid production, disease resistance, and reduced pod shattering, is generally accepted as an important strategy for improving the agronomic performance of these crops. It has been demonstrated that many quantitative trait loci (QTLs) identified in one species can be found in other plant species. Detailed legume comparative genomic analyses can characterize the genome organization between model legume species (e.g., Medicago truncatula, Lotus japonicus) and economically important crops such as soybean (Glycine max), pea (Pisum sativum), chickpea (Cicer arietinum), and lupin (Lupinus angustifolius), thereby identifying candidate gene markers that can be used to track QTLs in lupin and pasture legume breeding. LegumeDB is a Web-based bioinformatics resource for legume researchers. LegumeDB analysis of Medicago truncatula expressed sequence tags (ESTs) has identified novel simple sequence repeat (SSR) markers (16 tested), some of which have been putatively linked to symbiosome membrane proteins in root nodules and cell-wall proteins important in plant-pathogen defence mechanisms. These novel markers by preliminary PCR assays have been detected in Medicago truncatula and detected in at least one other legume species, Lotus japonicus, Glycine max, Cicer arietinum, and (or) Lupinus angustifolius (15/16 tested). Ongoing research has validated some of these markers to map them in a range of legume species that can then be used to compile composite genetic and physical maps. In this paper, we outline the features and capabilities of LegumeDB as an interactive application that provides legume genetic and physical comparative maps, and the efficient feature identification and annotation of the vast tracks of model legume sequences for convenient data integration and visualization. LegumeDB has been used to identify potential novel cross-genera polymorphic legume

  1. Nitrogen fixation by legumes in retorted shale

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, L E; Molitoris, E; Klein, D A

    1981-01-01

    Although a soil-shale mixture was employed as the growth medium in this experiment, the results presentd are applicable to the proposed method of disposal mentioned earlier. Under field conditions, when covering the retorted shale with topsoil, some mixing of these materials might occur in the plant root region. In addition, it has been demonstrated that buried shale negatively affects enzyme activities in overburden surface soil. The occurrence of either of those events could affect symbiotic N/sub 2/ fixation in a manner similar to that reported in this paper. Researchers conclude that due to the varied effects of retorted shale on the legumes tested, further evaluation of other legumes may be necessary. Additional research would be required to determine which legumes have potential use for reclamation of retorted shale.

  2. Forage tree legumes. II. Investigation of nitrogen transfer to an associated grass using a split-root technique

    International Nuclear Information System (INIS)

    Catchpoole, D.W.; Blair, G.J.

    1990-01-01

    The glasshouse study reported, employed a split-root technique, whereby trees of leucaena and gliricidia were grown in boxes with 15 N fed to one half of the root system and the transfer of N to the other half of the box was measured by sampling tree and planted grass. Detection of 15 N in the grass tops and roots from the unlabelled half of the box was used to indicate N transfer from the tree roots to the grass. Transfer of labelled N to the grass amounted to 4.1% in the first 6 week period when 15 N was being injected in the tree root zone. A harvest of the tree and grass was made at 6 weeks and both allowed to regrow for a further 6 weeks with no further addition of 15 N. Over the entire 12 week experimental period 7.6% of the labelled N from the tree was transferred to the grass. The low proportion of N transferred from tree legume to the grass in this experiment, where herbage was cut and removed, is similar to the findings in the earlier field experiment and indicates that, in such a system, little direct beneficial effect of N fixation would be expected in an understorey grass or food crop. 24 refs., 4 tabs

  3. Hair root characteristics of the human scalp hair in health and disease

    NARCIS (Netherlands)

    J.D.R. Peereboom-Wynia

    1982-01-01

    textabstractMorphological data on hair follicles have been available for over a hundred years, but only in recent years has a substantial advance been made in our knowledge of types and distribution of hair, its structure, metabolism, biochemistry and clinical patterns, and hormonal influences on

  4. Vertical distribution of the root system of linseed (Linum usitatissimum L. and legumes in pure and mixed sowing

    Directory of Open Access Journals (Sweden)

    Agnieszka Klimek-Kopyra

    2015-03-01

    Full Text Available Root competition for below-ground resources between edible plants may provide for long-term sustainability of agriculture systems. Intercropping can be more productive than a pure crop due to taking advantage of the morphological differences between species. In pure cropping, all biophysical interactions between plants occur through soil conditions. In intercropping, competition for water and nutrients is of major importance, but if the roots of one species occupy the zone just underneath the roots of the other crop, they can better use the resources of the root zone of the crop. The root system demonstrates a high degree of plasticity in its development in response to local heterogeneity of the soil profile and plant density. This study aimed at determining: (i the morphological characteristics of the root systems of linseed, pea and vetch depending on the method of sowing; (ii the root distribution in various soil types and at different soil profile depths (0–15 cm, 15–30 cm. Two three-year field experiments were conducted on two soil types in south Poland: soil A – Luvic Phaeozem (s1 and soil B – Eutric Cambisol (s2. These results show that linseed was more aggressive toward both legumes in mixture, but it produced lower yield compared to pure cropping. The environmental stress of plants in mixtures increased the relative weight of roots, which resulted in decreasing the root-shoot ratio (RSR.

  5. Microscopy of the hair and trichogram

    Directory of Open Access Journals (Sweden)

    Özlem Dicle

    2014-06-01

    Full Text Available Hair microscopy is a fast and simple method for the diagnosis of various disorders affecting the hair in daily practice. For the microscopy of the hair, samples are collected by either clipping or plucking. The trichogram technique which the hair sample is collected by a standardized plucking method is used for the diagnosis of hair shedding and of alopecia via hair root pattern. In this review, the examination techniques and details are discussed and the most common indications for the hair microscopy including hair abnormalities as a part of genodermatosis and, infections and infestations affecting the hair are highlighted.

  6. Ultrastructural comparison of single dose hydroxyurea and ionizing radiation on mouse hair roots

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, R.W.; Malkinson, F.D.

    1986-01-01

    Growing mouse vibrissae were investigated by light and electron microscopy to compare the effects of hydroxyurea (1500 mgkg/sup -1/ intraperitoneally) and gamma radiation (10 Gy). In the case of the drug, specimens were obtained from 30 min to 9 days post-treatment. Irradiated specimens were taken at intervals up to 1.5 years post-irradiation. The morphological alterations were similar for both types of insult, but the time sequences of events were quite different. The post-irradiation recovery period was vastly extended compared with that of the hydroxyurea treated hair roots.

  7. Ultrastructural comparison of single dose hydroxyurea and ionizing radiation on mouse hair roots

    International Nuclear Information System (INIS)

    Pearson, R.W.; Malkinson, F.D.

    1986-01-01

    Growing mouse vibrissae were investigated by light and electron microscopy to compare the effects of hydroxyurea (1500 mgkg -1 intraperitoneally) and gamma radiation (10 Gy). In the case of the drug, specimens were obtained from 30 min to 9 days post-treatment. Irradiated specimens were taken at intervals up to 1.5 years post-irradiation. The morphological alterations were similar for both types of insult, but the time sequences of events were quite different. The post-irradiation recovery period was vastly extended compared with that of the hydroxyurea treated hair roots. (UK)

  8. Bradyrhizobium sacchari sp. nov., a legume nodulating bacterium isolated from sugarcane roots.

    Science.gov (United States)

    de Matos, Gustavo Feitosa; Zilli, Jerri Edson; de Araújo, Jean Luiz Simões; Parma, Marcia Maria; Melo, Itamar Soares; Radl, Viviane; Baldani, José Ivo; Rouws, Luc Felicianus Marie

    2017-11-01

    Members of the genus Bradyrhizobium are well-known as nitrogen-fixing microsymbionts of a wide variety of leguminous species, but they have also been found in different environments, notably as endophytes in non-legumes such as sugarcane. This study presents a detailed polyphasic characterization of four Bradyrhizobium strains (type strain BR 10280 T ), previously isolated from roots of sugarcane in Brazil. 16S rRNA sequence analysis, multilocus sequence analysis (MLSA) and analysis of the 16S-23S rRNA internal transcribed spacer showed that these strains form a novel clade close to, but different from B. huanghuaihaiense strain CCBAU 23303 T . Average nucleotide identity (ANI) analyses confirmed that BR 10280 T represents a novel species. Phylogenetic analysis based on nodC gene sequences also placed the strains close to CCBAU 23303 T , but different from this latter strain, the sugarcane strains did not nodulate soybean, although they effectively nodulated Vigna unguiculata, Cajanus cajan and Macroptilium atropurpureum. Physiological traits are in agreement with the placement of the strains in the genus Bradyrhizobium as a novel species for which the name Bradyrhizobium sacchari sp. nov. is proposed.

  9. Barley root hair growth and morphology in soil, sand, and water solution media and relationship with nickel toxicity.

    Science.gov (United States)

    Lin, Yanqing; Allen, Herbert E; Di Toro, Dominic M

    2016-08-01

    Barley, Hordeum vulgare (Doyce), was grown in the 3 media of soil, hydroponic sand solution (sand), and hydroponic water solution (water) culture at the same environmental conditions for 4 d. Barley roots were scanned, and root morphology was analyzed. Plants grown in the 3 media had different root morphology and nickel (Ni) toxicity response. Root elongations and total root lengths followed the sequence soil > sand > water. Plants grown in water culture were more sensitive to Ni toxicity and had greater root hair length than those from soil and sand cultures, which increased root surface area. The unit root surface area as root surface area per centimeter of length of root followed the sequence water > sand > soil and was found to be related with root elongation. Including the unit root surface area, the difference in root elongation and 50% effective concentration were diminished, and percentage of root elongations can be improved with a root mean square error approximately 10% for plants grown in different media. Because the unit root surface area of plants in sand culture is closer to that in soil culture, the sand culture method, not water culture, is recommended for toxicity parameter estimation. Environ Toxicol Chem 2016;35:2125-2133. © 2016 SETAC. © 2016 SETAC.

  10. A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicle.

    Science.gov (United States)

    Buscone, Serena; Mardaryev, Andrei N; Raafs, Bianca; Bikker, Jan W; Sticht, Carsten; Gretz, Norbert; Farjo, Nilofer; Uzunbajakava, Natallia E; Botchkareva, Natalia V

    2017-09-01

    Though devices for hair growth based on low levels of light have shown encouraging results, further improvements of their efficacy is impeded by a lack of knowledge on the exact molecular targets that mediate physiological response in skin and hair follicle. The aim of this study was to investigate the expression of selected light-sensitive receptors in the human hair follicle and to study the impact of UV-free blue light on hair growth ex vivo. The expression of Opsin receptors in human skin and hair follicles has been characterized using RT-qPCR and immunofluorescence approaches. The functional significance of Opsin 3 was assessed by silencing its expression in the hair follicle cells followed by a transcriptomic profiling. Proprietary LED-based devices emitting two discrete visible wavelengths were used to access the effects of selected optical parameters on hair growth ex vivo and outer root sheath cells in vitro. The expression of OPN2 (Rhodopsin) and OPN3 (Panopsin, Encephalopsin) was detected in the distinct compartments of skin and anagen hair follicle. Treatment with 3.2 J/cm 2 of blue light with 453 nm central wavelength significantly prolonged anagen phase in hair follicles ex vivo that was correlated with sustained proliferation in the light-treated samples. In contrast, hair follicle treatment with 3.2 J/cm 2 of 689 nm light (red light) did not significantly affect hair growth ex vivo. Silencing of OPN3 in the hair follicle outer root sheath cells resulted in the altered expression of genes involved in the control of proliferation and apoptosis, and abrogated stimulatory effects of blue light (3.2 J/cm 2 ; 453 nm) on proliferation in the outer root sheath cells. We provide the first evidence that (i) OPN2 and OPN3 are expressed in human hair follicle, and (ii) A 453 nm blue light at low radiant exposure exerts a positive effect on hair growth ex vivo, potentially via interaction with OPN3. Lasers Surg. Med. 49:705-718, 2017. © 2017 Wiley

  11. Transport and partitioning of CO2 fixed by root nodules of ureide and amide producing legumes

    International Nuclear Information System (INIS)

    Vance, C.P.; Boylan, K.L.M.; Maxwell, C.A.; Heichel, G.H.; Hardman, L.L.

    1985-01-01

    Nodulated and denodulated roots of adzuki bean (Vigna angularis), soybean (Glycine max), and alfalfa (Medicago sativa) were exposed to 14 CO 2 to investigate the contribution of nodule CO 2 fixation to assimilation and transport of fixed nitrogen. The distribution of radioactivity in xylem sap and partitioning of carbon fixed by nodules to the whole plant were measured. Radioactivity in the xylem sap of nodulated soybean and adzuki bean was located primarily (70 to 87%) in the acid fraction while the basic (amino acid) fraction contained 10 to 22%. In contrast radioactivity in the xylem sap of nodulated alfalfa was primarily in amino acids with about 20% in organic acids. Total ureide concentration was 8.1, 4.7, and 0.0 micromoles per milliliter xylem sap for soybean, adzuki bean, and alfalfa, respectively. While the major nitrogen transport products in soybeans and adzuki beans are ureides, this class of metabolites contained less than 20% of the the total radioactivity. When nodules of plants were removed, radioactivity in xylem sap decreased by 90% or more. Pulse-chase experiments indicated that CO 2 fixed by nodules was rapidly transported to shoots and incorporated into acid stable constituents. The data are consistent with a role for nodule CO 2 fixation providing carbon for the assimilation and transport of fixed nitrogen in amide-based legumes. In contrast, CO 2 fixation by nodules of ureide transporting legumes appears to contribute little to assimilation and transport of fixed nitrogen. 19 references, 2 figures, 5 tables

  12. Legume information system (LegumeInfo.org): a key component of a set of federated data resources for the legume family.

    Science.gov (United States)

    Dash, Sudhansu; Campbell, Jacqueline D; Cannon, Ethalinda K S; Cleary, Alan M; Huang, Wei; Kalberer, Scott R; Karingula, Vijay; Rice, Alex G; Singh, Jugpreet; Umale, Pooja E; Weeks, Nathan T; Wilkey, Andrew P; Farmer, Andrew D; Cannon, Steven B

    2016-01-04

    Legume Information System (LIS), at http://legumeinfo.org, is a genomic data portal (GDP) for the legume family. LIS provides access to genetic and genomic information for major crop and model legumes. With more than two-dozen domesticated legume species, there are numerous specialists working on particular species, and also numerous GDPs for these species. LIS has been redesigned in the last three years both to better integrate data sets across the crop and model legumes, and to better accommodate specialized GDPs that serve particular legume species. To integrate data sets, LIS provides genome and map viewers, holds synteny mappings among all sequenced legume species and provides a set of gene families to allow traversal among orthologous and paralogous sequences across the legumes. To better accommodate other specialized GDPs, LIS uses open-source GMOD components where possible, and advocates use of common data templates, formats, schemas and interfaces so that data collected by one legume research community are accessible across all legume GDPs, through similar interfaces and using common APIs. This federated model for the legumes is managed as part of the 'Legume Federation' project (accessible via http://legumefederation.org), which can be thought of as an umbrella project encompassing LIS and other legume GDPs. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. Nodulation of legumes, nitrogenase activity of roots and occurrence of nitrogen-fixing Azospirillum spp. In representative soils of central Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Sylvester-Bradley, R; De Oliverira, L A; De Podesta Filho, J A; John, T V

    1980-12-01

    Leguminosae do not predominate in the Brazilian Amazon rain forest, although they are among the five best represented families. Plant roots from various soils were examined for the presence of nodules, acetylene-reducing activity and N/sub 2/-fixing Azospirillum spp. Abundant nodulation was found in black earth (''terra preta dos indios'') and in one case on sandy soil under campinarana vegetation along a tributary of the upper Rio Negro. In sandy latosol some nodules occurred in secondary forest and fewer in primary forest. Legumes in disturbed clayey or sandy latosol showed more frequent nodulation. Primary forest on alluvial (''varzea'') soil, and in Bahia coastal rain forest on sandy latosol and Erythrina glauca used for shading cacao plantations were abundantly nodulated. Acetylene reduction assays showed no, or very little, nitrogenase activity of roots from primary or secondary forest on clayey latosol near Manaus. Nodulated roots from secondary forest on sandy latosol showed acetylene-reducing activity. High rates of acetylene reduction were observed in nodulated roots of primary forest on alluvial ''varzea'' soil. Root samples showed ethylene absorption in controls without acetylene which might interfere with the results of acetylene reduction tests. The incidence of Azospirillum was also higher in black earth than the other soils examined, and in soils with higher pH. The hypothesis that Azospirillum is associated with Trema micantha roots was refuted. Roots and soils collected under cultivated grasses showed a higher incidence of Azospirillum when fertilized with phosphorus and lime. Results indicate that nitrogen fixation did occur in association with roots in some soils, but not with roots of primary or secondary forest on clayey latosol in the vicinity of Manaus, which is the most common soil in Central Amazonia. The possible reasons for this are discussed.

  14. Effector-Triggered Immunity Determines Host Genotype-Specific Incompatibility in Legume-Rhizobium Symbiosis.

    Science.gov (United States)

    Yasuda, Michiko; Miwa, Hiroki; Masuda, Sachiko; Takebayashi, Yumiko; Sakakibara, Hitoshi; Okazaki, Shin

    2016-08-01

    Symbiosis between legumes and rhizobia leads to the formation of N2-fixing root nodules. In soybean, several host genes, referred to as Rj genes, control nodulation. Soybean cultivars carrying the Rj4 gene restrict nodulation by specific rhizobia such as Bradyrhizobium elkanii We previously reported that the restriction of nodulation was caused by B. elkanii possessing a functional type III secretion system (T3SS), which is known for its delivery of virulence factors by pathogenic bacteria. In the present study, we investigated the molecular basis for the T3SS-dependent nodulation restriction in Rj4 soybean. Inoculation tests revealed that soybean cultivar BARC-2 (Rj4/Rj4) restricted nodulation by B. elkanii USDA61, whereas its nearly isogenic line BARC-3 (rj4/rj4) formed nitrogen-fixing nodules with the same strain. Root-hair curling and infection threads were not observed in the roots of BARC-2 inoculated with USDA61, indicating that Rj4 blocked B. elkanii infection in the early stages. Accumulation of H2O2 and salicylic acid (SA) was observed in the roots of BARC-2 inoculated with USDA61. Transcriptome analyses revealed that inoculation of USDA61, but not its T3SS mutant in BARC-2, induced defense-related genes, including those coding for hypersensitive-induced responsive protein, which act in effector-triggered immunity (ETI) in Arabidopsis. These findings suggest that B. elkanii T3SS triggers the SA-mediated ETI-type response in Rj4 soybean, which consequently blocks symbiotic interactions. This study revealed a common molecular mechanism underlying both plant-pathogen and plant-symbiont interactions, and suggests that establishment of a root nodule symbiosis requires the evasion or suppression of plant immune responses triggered by rhizobial effectors. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Tropical forage legumes for environmental benefits: An overview

    Directory of Open Access Journals (Sweden)

    Rainer Schultze-Kraft

    2018-01-01

    Full Text Available Ruminant livestock production in the tropics, particularly when based on pastures, is frequently blamed for being detrimental to the environment, allegedly contributing to: (1 degradation and destruction of ecosystems, including degradation and loss of soil, water and biodiversity; and (2 climate change (global warming. In this paper we argue that, rather than being detrimental, tropical forage legumes can have a positive impact on the environment, mainly due to key attributes that characterize the Leguminosae (Fabaceae family: (1 symbiotic nitrogen fixation; (2 high nutritive value; (3 deep-reaching tap-root system; (4 wide taxonomic and genetic diversity; and (5 presence of particular secondary metabolites. Although there are also potential negative aspects, such as soil acidification and the risks of introduced legumes becoming invasive weeds, we submit that legumes have potential to contribute significantly to sustainable intensification of livestock production in the tropics, along with the provision of ecosystem services. To further assess, document and realize this potential, research for development needs in a range of areas are indicated.

  16. Legume Information System (LegumeInfo.org): a key component of a set of federated data resources for the legume family

    Science.gov (United States)

    The Legume Information System (LIS), at http://legumeinfo.org, is a genomic data portal (GDP) for the legume family. LIS provides access to genetic and genomic information for major crop and model legumes. With more than two-dozen domesticated legume species, there are numerous specialists working o...

  17. How legumes recognize rhizobia.

    Science.gov (United States)

    Via, Virginia Dalla; Zanetti, María Eugenia; Blanco, Flavio

    2016-01-01

    Legume plants have developed the capacity to establish symbiotic interactions with soil bacteria (known as rhizobia) that can convert N2 to molecular forms that are incorporated into the plant metabolism. The first step of this relationship is the recognition of bacteria by the plant, which allows to distinguish potentially harmful species from symbiotic partners. The main molecular determinant of this symbiotic interaction is the Nod Factor, a diffusible lipochitooligosaccharide molecule produced by rhizobia and perceived by LysM receptor kinases; however, other important molecules involved in the specific recognition have emerged over the years. Secreted exopolysaccharides and the lipopolysaccharides present in the bacterial cell wall have been proposed to act as signaling molecules, triggering the expression of specific genes related to the symbiotic process. In this review we will briefly discuss how transcriptomic analysis are helping to understand how multiple signaling pathways, triggered by the perception of different molecules produced by rhizobia, control the genetic programs of root nodule organogenesis and bacterial infection. This knowledge can help to understand how legumes have evolved to recognize and establish complex ecological relationships with particular species and strains of rhizobia, adjusting gene expression in response to identity determinants of bacteria.

  18. The Influence of Seed-borne N in 15N Isotope Dilution Studies with Legumes The Influence of Seed-borne N in 15N Isotope Dilution Studies with Legumes

    DEFF Research Database (Denmark)

    Jensen, Erik Steen; Andersen, A. J.; Thomsen, J. D.

    1985-01-01

    The distriution of seed-borne N in shoot and root of pea and field bean was studied using three methods: 1) determination of the N content in shoot and root of plants grown in sand culture without other N sources. 2) 15N isotope dilution in plants grown in Rhizobium-free medium supplied with 15N-...... of corrections for seed-borne N in studies of nitrogen fixation in legumes is discussed....

  19. Intercropping effect on root growth and nitrogen uptake at different nitrogen levels

    DEFF Research Database (Denmark)

    Ramirez-Garcia, Javier; Martens, Helle Juel; Quemada, Miguel

    2015-01-01

    of root growth and N foraging for barley (Hordeum vulgare L.) and vetch (Vicia sativa L.), frequently grown in mixtures as cover crops. N was added at 0 (N0), 50 (N1) and 150 (N2) kg N ha−1. The roots discrimination relying on the anatomical and morphological differences observed between dicots......Aims Intercropping legumes and non-legumes may affect the root growth of both components in the mixture, and the non-legume is known to be strongly favored by increasing nitrogen (N) supply. The knowledge of how root systems affect the growth of the individual species is useful for understanding...... the interactions in intercrops as well as for planning cover cropping strategies. The aim of this work was (i) to determine if different levels of N in the topsoil influence root depth (RD) and intensity of barley and vetch as sole crops or as an intercropped mixture and (ii) to test if the choice of a mixture...

  20. Correlation of arbuscular mycorrhizal colonization with plant growth, nodulation, and shoot npk in legumes

    International Nuclear Information System (INIS)

    Javaid, A.; Anjum, T.; Shah, M.H.M.

    2007-01-01

    Correlation of arbuscular mycorrhizal colonization with different root and shoot growth, nodulation and shoot NPK parameters was studied in three legumes viz. Trifolium alexandrianum, Medicago polymorpha and Melilotus parviflora. The three test legume species showed different patterns of root and shoot growth, nodulation, mycorrhizal colonization and shoot N, P and K content. Different mycorrhizal structures viz. mycelium, arbuscules and vesicles showed different patters of correlation with different studied parameters. Mycelial infection showed an insignificantly positive correlation with root and shoot dry biomass and total root length. Maximum root length was however, negatively associated with mycelial infection. Both arbuscular and vesicular infections were negatively correlated with shoot dry biomass and different parameters of root growth. The association between arbuscular infection and maximum root length was significant. All the three mycorrhizal structures showed a positive correlation with number and biomass of nodules. The association between arbuscular infection and nodule number was significant. Mycelial infection was positively correlated with percentage and total shoot N and P. Similarly percentage N was also positively correlated with arbuscular and vesicular infections. By contrast, total shoot N showed a negative association with arbuscular as well as vesicular infections. Similarly both percentage and total shoot P were negatively correlated with arbuscular and vesicular infections. All the associations between mycorrhizal parameters and shoot K were negative except between vesicular infection and shoot %K. (author)

  1. The root hair assay facilitates the use of genetic and pharmacological tools in order to dissect multiple signalling pathways that lead to programmed cell death.

    Directory of Open Access Journals (Sweden)

    Joanna Kacprzyk

    Full Text Available The activation of programmed cell death (PCD is often a result of complex signalling pathways whose relationship and intersection are not well understood. We recently described a PCD root hair assay and proposed that it could be used to rapidly screen genetic or pharmacological modulators of PCD. To further assess the applicability of the root hair assay for studying multiple signalling pathways leading to PCD activation we have investigated the crosstalk between salicylic acid, autophagy and apoptosis-like PCD (AL-PCD in Arabidopsis thaliana. The root hair assay was used to determine rates of AL-PCD induced by a panel of cell death inducing treatments in wild type plants treated with chemical modulators of salicylic acid synthesis or autophagy, and in genetic lines defective in autophagy or salicylic acid signalling. The assay demonstrated that PCD induced by exogenous salicylic acid or fumonisin B1 displayed a requirement for salicylic acid signalling and was partially dependent on the salicylic acid signal transducer NPR1. Autophagy deficiency resulted in an increase in the rates of AL-PCD induced by salicylic acid and fumonisin B1, but not by gibberellic acid or abiotic stress. The phenylalanine ammonia lyase-dependent salicylic acid synthesis pathway contributed only to death induced by salicylic acid and fumonisin B1. 3-Methyladenine, which is commonly used as an inhibitor of autophagy, appeared to influence PCD induction in all treatments suggesting a possible secondary, non-autophagic, effect on a core component of the plant PCD pathway. The results suggest that salicylic acid signalling is negatively regulated by autophagy during salicylic acid and mycotoxin-induced AL-PCD. However, this crosstalk does not appear to be directly involved in PCD induced by gibberellic acid or abiotic stress. This study demonstrates that the root hair assay is an effective tool for relatively rapid investigation of complex signalling pathways leading to

  2. Breeding food and forge legumes for enhancement of nitrogen fixation: a review

    International Nuclear Information System (INIS)

    Ali, A.; Hussain, S.; Qamar, I.A.; Khan, B.R.

    2000-01-01

    Nitrogen fixation in legume - root nodules requires the functioning of genes present in the Rhizobia that induce nodule-formation. The plant produces the nodules and the energy required for respiration. Genes in both Rhizobium and the plant are responsible for the efficient use of photosynthesis for N/sub 2/ fixation and assimilation of nitrogen. Genes from Rhizobium and legume hosts that are involved in the symbiosis are being identified, isolated and cloned, to facilitate the manipulation of either partner. The amounts of nitrogen fixed by grain-legumes vary appreciably, between and within, species and are also influenced by environment. With few exceptions, most legumes fix insufficient N/sub 2/ to support substantial seed-yields. Deficits between required N and the combined amounts provide by soil and fertilizer help in estimating the improvements in N/sub 2/ fixation which is possible through breeding. Since the symbiosis is a complex process, heritability of traits is weak, and most methods which estimate fixation are destructive, a breeding method that allows selection of replicated families rather than single plants is preferred. (author)

  3. Functional Genomics Approaches to Studying Symbioses between Legumes and Nitrogen-Fixing Rhizobia.

    Science.gov (United States)

    Lardi, Martina; Pessi, Gabriella

    2018-05-18

    Biological nitrogen fixation gives legumes a pronounced growth advantage in nitrogen-deprived soils and is of considerable ecological and economic interest. In exchange for reduced atmospheric nitrogen, typically given to the plant in the form of amides or ureides, the legume provides nitrogen-fixing rhizobia with nutrients and highly specialised root structures called nodules. To elucidate the molecular basis underlying physiological adaptations on a genome-wide scale, functional genomics approaches, such as transcriptomics, proteomics, and metabolomics, have been used. This review presents an overview of the different functional genomics approaches that have been performed on rhizobial symbiosis, with a focus on studies investigating the molecular mechanisms used by the bacterial partner to interact with the legume. While rhizobia belonging to the alpha-proteobacterial group (alpha-rhizobia) have been well studied, few studies to date have investigated this process in beta-proteobacteria (beta-rhizobia).

  4. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding

    DEFF Research Database (Denmark)

    Broghammer, Angelique; Krusell, Lene; Blaise, Mickael

    2012-01-01

    Lipochitin oligosaccharides called Nod factors function as primary rhizobial signal molecules triggering legumes to develop new plant organs: root nodules that host the bacteria as nitrogen-fixing bacteroids. Here, we show that the Lotus japonicus Nod factor receptor 5 (NFR5) and Nod factor recep...

  5. The effect of rhizobacterial inoculation on growth and nutrient ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... The following six treatments were imposed: T1 (control;. N0-PGPR), T2: ... great interest in nitrogen fixing-bacteria associated to non-legumes, principally ..... were colonized in the root hair proliferation zone. The findings are in ...

  6. Root developmental programs shape the Medicago truncatula nodule meristem

    NARCIS (Netherlands)

    Franssen, H.; Xiao, T.T.; Kulikova, O.; Wan, X.; Bisseling, T.; Scheres, B.; Heidstra, R.

    2015-01-01

    Nodules on the roots of legume plants host nitrogen-fixing Rhizobium bacteria. Several lines of evidence indicate that nodules are evolutionarily related to roots. We determined whether developmental control of the Medicago truncatula nodule meristem bears resemblance to that in root meristems

  7. Tolerance of herbaceous summer legumes of temporary waterlogging

    Directory of Open Access Journals (Sweden)

    Elsa M. Ciotti

    2014-09-01

    Full Text Available A greenhouse study to evaluate adaptation of 4 herbaceous summer legumes to temporary waterlogging was conducted.  Species evaluated were Desmanthus virgatus and Aeschynomene americana in their vegetative stage, and Macroptilium lathyroides and M. atropurpureum in both vegetative and reproductive stages.  The experimental design was randomized blocks with 5 replications and treatments were:  T0, control; T1, saturation by capillary movement placing pots in buckets of 5 L with 10 cm of permanent water; and T2, flooding, placing pots in buckets of 10 L and a layer of water 5 cm above the soil.  The duration of the water treatments was 7 days. Waterlogging did not affect shoot or root biomass production nor nodulation in A. americana, whereas D. virgatus had its highest dry matter production in saturated soil (T1.  In M. lathyroides flooding tolerance was more evident in the reproductive than in the vegetative stage, probably due to more production of adventitious roots and formation of aerenchymatic tissue.  Macroptilium atropurpureum showed adaptation to temporary flooding.  Survival and quick recovery of these species would confirm their potential as forages for temporarily waterlogged soils.Keywords: Forage legumes, flooding, Aeschynomene americana, Desmanthus virgatus, Macroptilium lathyroides, Northeast Argentina.DOI: 10.17138/TGFT(2278-286

  8. Dry matter production, seed yield and water use efficiency of some grain legumes grown under different water regimes using nuclear technique

    International Nuclear Information System (INIS)

    Harb, O.M.S.; Salem, M.S.A.; Abdalla, A.A.; Abd-Elwahed, N.M.

    2007-01-01

    Two field experiments were performed in the experimental farm at the Atomic Energy Authority, Inshas, Egypt, during 2002 and 2004 growing seasons to evaluate the responses of dry matter production, seed yield, water use efficiency and root characteristics for three legumes species, i.e. soybean (Glycine max cv. clark), cowpea (Vigna unguiculata cv. Kafr El-Sheikh) and mungbean (Vigna radiate cv. kawmy 1) grown on a new reclaimed sandy soil under different water regimes. The experiments were laid out using a single line source sprinkler irrigation system which allows a gradual variation of irrigation water, i.e. full irrigation (W1), medium water stress (W2) and severe water stress (W3). The obtained results indicated that normal irrigation (W1) gave the highest above ground dry matter production at flowering stage and total dry matter yield at maturity for the tested legumes. Water stress decreased significantly seed yields for all the tested legume seeds. The seed yield of normal watering condition treatment (W1) out yielded seed yield of those irrigated with medium water stress (W2) and severe water stress (W3). Mungbean and cowpea were more adapted to severe water stress than soybean. Most of the reduction in yield arose from a decrease in pod number. Pod number, number of seeds per pod and the thousand seed weight were significantly affected by water stress. The highest water use efficiency based on seed yield or dry matter yield were obtained by exposing the legume plants to medium water stress (W2), while the lowest value was obtained by exposing the plants to severe water stress (W3). There were significant differences in WUE among the tested species, whereas, mungbean showed the highest value in response to water stress, followed by soybean while cowpea showed the lowest value of water use efficiency. Rooting depth was increased under the severe water stress treatment as compared with well watered condition in the tested legume plants. Mungbean had the

  9. An in vivo root hair assay for determining rates of apoptotic-like programmed cell death in plants

    Directory of Open Access Journals (Sweden)

    Hogg Bridget V

    2011-12-01

    Full Text Available Abstract In Arabidopsis thaliana we demonstrate that dying root hairs provide an easy and rapid in vivo model for the morphological identification of apoptotic-like programmed cell death (AL-PCD in plants. The model described here is transferable between species, can be used to investigate rates of AL-PCD in response to various treatments and to identify modulation of AL-PCD rates in mutant/transgenic plant lines facilitating rapid screening of mutant populations in order to identify genes involved in AL-PCD regulation.

  10. Identification of symbiotically defective mutants of Lotus japonicus affected in infection thread growth

    DEFF Research Database (Denmark)

    Lombardo, Fabien; Heckmann, Anne Birgitte Lau; Miwa, Hiroki

    2006-01-01

    During the symbiotic interaction between legumes and rhizobia, the host cell plasma membrane and associated plant cell wall invaginate to form a tunnel-like infection thread, a structure in which bacteria divide to reach the plant root cortex. We isolated four Lotus japonicus mutants that make...... infection pockets in root hairs but form very few infection threads after inoculation with Mesorhizobium loti. The few infection threads that did initiate in the mutants usually did not progress further than the root hair cell. These infection-thread deficient (itd) mutants were unaffected for early...... symbiotic responses such as calcium spiking, root hair deformation, and curling, as well as for the induction of cortical cell division and the arbuscular mycorrhizal symbiosis. Complementation tests and genetic mapping indicate that itd2 is allelic to Ljsym7, whereas the itd1, itd3, and itd4 mutations...

  11. Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before InfectionW⃞

    Science.gov (United States)

    Genre, Andrea; Chabaud, Mireille; Timmers, Ton; Bonfante, Paola; Barker, David G.

    2005-01-01

    The penetration of arbuscular mycorrhizal (AM) fungi through the outermost root tissues of the host plant is a critical step in root colonization, ultimately leading to the establishment of this ecologically important endosymbiotic association. To evaluate the role played by the host plant during AM infection, we have studied in vivo cellular dynamics within Medicago truncatula root epidermal cells using green fluorescent protein labeling of both the plant cytoskeleton and the endoplasmic reticulum. Targeting roots with Gigaspora hyphae has revealed that, before infection, the epidermal cell assembles a transient intracellular structure with a novel cytoskeletal organization. Real-time monitoring suggests that this structure, designated the prepenetration apparatus (PPA), plays a central role in the elaboration of the apoplastic interface compartment through which the fungus grows when it penetrates the cell lumen. The importance of the PPA is underlined by the fact that M. truncatula dmi (for doesn't make infections) mutants fail to assemble this structure. Furthermore, PPA formation in the epidermis can be correlated with DMI-dependent transcriptional activation of the Medicago early nodulin gene ENOD11. These findings demonstrate how the host plant prepares and organizes AM infection of the root, and both the plant–fungal signaling mechanisms involved and the mechanistic parallels with Rhizobium infection in legume root hairs are discussed. PMID:16284314

  12. Lgr5 marks cycling, yet long-lived, hair follicle stem cells.

    NARCIS (Netherlands)

    Jaks, V.; Barker, N.; Kasper, M.; van Es, J.H.; Snippert, H.J.G.; Clevers, H.; Toftgard, R.

    2008-01-01

    In mouse hair follicles, a group of quiescent cells in the bulge is believed to have stem cell activity. Lgr5, a marker of intestinal stem cells, is expressed in actively cycling cells in the bulge and secondary germ of telogen hair follicles and in the lower outer root sheath of anagen hair

  13. Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Joshi, Anjali; Kaur, Simranjeet; Dharamvir, Keya; Nayyar, Harsh; Verma, Gaurav

    2018-06-01

    Reports of multi-walled carbon nanotubes (MWCNTs) incorporated into plants have indicated better yield and productivity, yet the phenomena need in-depth understanding especially when agricultural crops are tested. We primed wheat seeds with MWCNTs to understand the effects on germination, growth, anatomy, physiology and yield. This study, carried out in field conditions, is a step forward over the previous reports. Early germination, excessive root hair, denser stomata and larger root length result in faster growth and higher yield of wheat plants. Denser root hair facilitated the uptake of both water and essential minerals such as phosphorus (P) and potassium (K), which boosted the crop yield by significantly improving grain yield per plant from 1.53 to 2.5 g, a 63% increase. Increase in cell elongation by 80% was recorded, while xylem and phloem sizes dilated to almost 83% and 85% of control, thus enhancing their capacity to conduct water and nutrients. Augmented growth of MWCNT-primed wheat, enhancement in grain number, biomass, stomatal density, xylem-phloem size, epidermal cells, and water uptake is observed while finding no DNA damage. This opens up an entirely new aspect to using cost-effective nanomaterials (the MWCNTs were produced in-house) for enhancing the performance of crop plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Heritability, combining ability and inheritance of storage root dry ...

    African Journals Online (AJOL)

    Storage root dry matter content (RDM) is central to the improvement of consumer and industrial attributes of root crops. Yam bean (Pachyrhizus species) is a legume root crop newly introduced in Uganda, but its adoption may be constrained by low RDM. The objective of this study was to investigate the magnitude of ...

  15. Mutualism and Adaptive Divergence: Co-Invasion of a Heterogeneous Grassland by an Exotic Legume-Rhizobium Symbiosis

    Science.gov (United States)

    Porter, Stephanie S.; Stanton, Maureen L.; Rice, Kevin J.

    2011-01-01

    Species interactions play a critical role in biological invasions. For example, exotic plant and microbe mutualists can facilitate each other's spread as they co-invade novel ranges. Environmental context may influence the effect of mutualisms on invasions in heterogeneous environments, however these effects are poorly understood. We examined the mutualism between the legume, Medicago polymorpha, and the rhizobium, Ensifer medicae, which have both invaded California grasslands. Many of these invaded grasslands are composed of a patchwork of harsh serpentine and relatively benign non-serpentine soils. We grew legume genotypes collected from serpentine or non-serpentine soil in both types of soil in combination with rhizobium genotypes from serpentine or non-serpentine soils and in the absence of rhizobia. Legumes invested more strongly in the mutualism in the home soil type and trends in fitness suggested that this ecotypic divergence was adaptive. Serpentine legumes had greater allocation to symbiotic root nodules in serpentine soil than did non-serpentine legumes and non-serpentine legumes had greater allocation to nodules in non-serpentine soil than did serpentine legumes. Therefore, this invasive legume has undergone the rapid evolution of divergence for soil-specific investment in the mutualism. Contrary to theoretical expectations, the mutualism was less beneficial for legumes grown on the stressful serpentine soil than on the non-serpentine soil, possibly due to the inhibitory effects of serpentine on the benefits derived from the interaction. The soil-specific ability to allocate to a robust microbial mutualism may be a critical, and previously overlooked, adaptation for plants adapting to heterogeneous environments during invasion. PMID:22174755

  16. Mutualism and adaptive divergence: co-invasion of a heterogeneous grassland by an exotic legume-rhizobium symbiosis.

    Directory of Open Access Journals (Sweden)

    Stephanie S Porter

    Full Text Available Species interactions play a critical role in biological invasions. For example, exotic plant and microbe mutualists can facilitate each other's spread as they co-invade novel ranges. Environmental context may influence the effect of mutualisms on invasions in heterogeneous environments, however these effects are poorly understood. We examined the mutualism between the legume, Medicago polymorpha, and the rhizobium, Ensifer medicae, which have both invaded California grasslands. Many of these invaded grasslands are composed of a patchwork of harsh serpentine and relatively benign non-serpentine soils. We grew legume genotypes collected from serpentine or non-serpentine soil in both types of soil in combination with rhizobium genotypes from serpentine or non-serpentine soils and in the absence of rhizobia. Legumes invested more strongly in the mutualism in the home soil type and trends in fitness suggested that this ecotypic divergence was adaptive. Serpentine legumes had greater allocation to symbiotic root nodules in serpentine soil than did non-serpentine legumes and non-serpentine legumes had greater allocation to nodules in non-serpentine soil than did serpentine legumes. Therefore, this invasive legume has undergone the rapid evolution of divergence for soil-specific investment in the mutualism. Contrary to theoretical expectations, the mutualism was less beneficial for legumes grown on the stressful serpentine soil than on the non-serpentine soil, possibly due to the inhibitory effects of serpentine on the benefits derived from the interaction. The soil-specific ability to allocate to a robust microbial mutualism may be a critical, and previously overlooked, adaptation for plants adapting to heterogeneous environments during invasion.

  17. Activation of Symbiosis Signaling by Arbuscular Mycorrhizal Fungi in Legumes and Rice[OPEN

    Science.gov (United States)

    Sun, Jongho; Miller, J. Benjamin; Granqvist, Emma; Wiley-Kalil, Audrey; Gobbato, Enrico; Maillet, Fabienne; Cottaz, Sylvain; Samain, Eric; Venkateshwaran, Muthusubramanian; Fort, Sébastien; Morris, Richard J.; Ané, Jean-Michel; Dénarié, Jean; Oldroyd, Giles E.D.

    2015-01-01

    Establishment of arbuscular mycorrhizal interactions involves plant recognition of diffusible signals from the fungus, including lipochitooligosaccharides (LCOs) and chitooligosaccharides (COs). Nitrogen-fixing rhizobial bacteria that associate with leguminous plants also signal to their hosts via LCOs, the so-called Nod factors. Here, we have assessed the induction of symbiotic signaling by the arbuscular mycorrhizal (Myc) fungal-produced LCOs and COs in legumes and rice (Oryza sativa). We show that Myc-LCOs and tetra-acetyl chitotetraose (CO4) activate the common symbiosis signaling pathway, with resultant calcium oscillations in root epidermal cells of Medicago truncatula and Lotus japonicus. The nature of the calcium oscillations is similar for LCOs produced by rhizobial bacteria and by mycorrhizal fungi; however, Myc-LCOs activate distinct gene expression. Calcium oscillations were activated in rice atrichoblasts by CO4, but not the Myc-LCOs, whereas a mix of CO4 and Myc-LCOs activated calcium oscillations in rice trichoblasts. In contrast, stimulation of lateral root emergence occurred following treatment with Myc-LCOs, but not CO4, in M. truncatula, whereas both Myc-LCOs and CO4 were active in rice. Our work indicates that legumes and non-legumes differ in their perception of Myc-LCO and CO signals, suggesting that different plant species respond to different components in the mix of signals produced by arbuscular mycorrhizal fungi. PMID:25724637

  18. Effects of nano-ZnO on the agronomically relevant Rhizobium-legume symbiosis

    Science.gov (United States)

    The impact of nano-ZnO (nZnO) on Rhizobium-legume symbiosis was studied with garden pea and its compatible bacterial partner Rhizobium leguminosarum bv. viciae 3841. Exposure of peas to nZnO had no impact on germination, but significantly affected root length. Chronic exposure of plant to nZnO impac...

  19. Distribution of epidermal growth factor receptors in rat tissues during embryonic skin development, hair formation, and the adult hair growth cycle

    DEFF Research Database (Denmark)

    Green, M R; Couchman, J R

    1984-01-01

    on the binding distribution of [125I]EGF, representing the tissue localization of available EGF receptors, during embryonic rat skin development including hair follicle formation and the adult hair growth cycle. At 16 days embryonic development a relatively low receptor density is seen over all the epidermal...... condensates marking the first stage of hair follicle development. This restricted and temporary loss of EGF receptors above these specialized mesenchymal condensates implies a role for the EGF receptor and possibly EGF or an EGF-like ligand in stimulating the epithelial downgrowth required for hair follicle...... development. In the anagen hair bulb, receptors for EGF are detected over the outer root sheath and the epithelial cell layers at the base of the follicle and show a correlation with the areas of epithelial proliferation in the hair bulb. During the catagen and telogen phases of the hair cycle, receptors...

  20. Effects of nano-TiO2 on the agronomically-relevant Rhizobium-legume symbiosis

    Science.gov (United States)

    The impact of nano-TiO2 on Rhizobium-legume symbiosis was studied using garden peas and the compatible bacterial partner Rhizobium leguminosarum bv. viciae 3841. Exposure to nano-TiO2 did not affect the germination of peas grown aseptically, nor did it impact the gross root structure. However, nano-...

  1. Regulation of root development in Arabidopsis thaliana by phytohormone-secreting epiphytic methylobacteria.

    Science.gov (United States)

    Klikno, Jana; Kutschera, Ulrich

    2017-09-01

    In numerous experimental studies, seedlings of the model dicot Arabidopsis thaliana have been raised on sterile mineral salt agar. However, under natural conditions, no plant has ever grown in an environment without bacteria. Here, we document that germ-free (gnotobiotic) seedlings, raised on mineral salt agar without sucrose, develop very short root hairs. In the presence of a soil extract that contains naturally occurring microbes, root hair elongation is promoted; this effect can be mimicked by the addition of methylobacteria to germ-free seedlings. Using five different bacterial species (Methylobacterium mesophilicum, Methylobacterium extorquens, Methylobacterium oryzae, Methylobacterium podarium, and Methylobacterium radiotolerans), we show that, over 9 days of seedling development in a light-dark cycle, root development (hair elongation, length of the primary root, branching patterns) is regulated by these epiphytic microbes that occur in the rhizosphere of field-grown plants. In a sterile liquid culture test system, auxin (IAA) inhibited root growth with little effect on hair elongation and significantly stimulated hypocotyl enlargement. Cytokinins (trans-zeatin, kinetin) and ethylene (application of the precursor ACC) likewise exerted an inhibitory effect on root growth but, in contrast to IAA, drastically stimulated root hair elongation. Methylobacteria are phytosymbionts that produce/secrete cytokinins. We conclude that, under real-world conditions (soil), the provision of these phytohormones by methylobacteria (and other epiphytic microbes) regulates root development during seedling establishment.

  2. Searching for plant root traits to improve soil cohesion and resist soil erosion

    Science.gov (United States)

    De Baets, Sarah; Smyth, Kevin; Denbigh, Tom; Weldon, Laura; Higgins, Ben; Matyjaszkiewicz, Antoni; Meersmans, Jeroen; Chenchiah, Isaac; Liverpool, Tannie; Quine, Tim; Grierson, Claire

    2017-04-01

    Soil erosion poses a serious threat to future food and environmental security. Soil erosion protection measures are therefore of great importance for soil conservation and food security. Plant roots have proven to be very effective in stabilizing the soil and protecting the soil against erosion. However, no clear insights are yet obtained into the root traits that are responsible for root-soil cohesion. This is important in order to better select the best species for soil protection. Research using Arabidopsis mutants has made great progress towards explaining how root systems are generated by growth, branching, and responses to gravity, producing mutants that affect root traits. In this study, the performance of selected Arabidopsis mutants is analyzed in three root-soil cohesion assays. Measurements of detachment, uprooting force and soil detachment are here combined with the microscopic analysis of root properties, such as the presence, length and density of root hairs in this case. We found that Arabidopsis seedlings with root hairs (wild type, wer myb23, rsl4) were more difficult to detach from gel media than hairless (cpc try) or short haired (rsl4, rhd2) roots. Hairy roots (wild type, wer myb23) on mature, non-reproductive rosettes were more difficult to uproot from compost or clay soil than hairless roots (cpc try). At high root densities, erosion rates from soils with hairless roots (cpc try) were as much as 10 times those seen from soils occupied by roots with hairs (wer myb23, wild type). We find therefore root hairs play a significant role in root-soil cohesion and in minimizing erosion. This framework and associated suite of experimental assays demonstrates its ability to measure the effect of any root phenotype on the effectiveness of plant roots in binding substrates and reducing erosion.

  3. Signals exchanged between legumes and Rhizobium: agricultural uses and perspectives

    International Nuclear Information System (INIS)

    Broughton, William J.; Perret, Xavier; Staehelin, Christian; Zhang Feng

    2001-01-01

    Legumes and rhizobia exchange at least three different, but sometimes complementary sets of signals. Amongst the variety of substances normally and continuously secreted into the rhizosphere by plants are phenolic compounds. Flavonoid components of these mixtures are especially active in inducing rhizobial nodulation genes. Many nodgenes exist. Some (e.g., nodD) serve as regulators of transcription, but most code for enzymes involved in the synthesis of a family of lipo-chito-oligosaccharides (LCOs) called Nod-factors. Nod-factors possess hormone-like properties, are key determinants in nodulation, and allow rhizobia to enter the plant. As Nod-factors also stimulate the synthesis and release of flavonoids from legume roots, the response to inoculation is amplified. Once the bacteria enter the plant, other sets of signals are exchanged between the symbionts. These include extra-cellular polysaccharides (EPSs) as well as proteins externalised via type-three secretion systems. These carbohydrates/proteins may be active in invasion of the root. At the time of writing, only flavonoids and Nodfactors have been chemically synthesised and of these only the former are available in large quantities. Field trials in North America show that seed application of flavonoids stimulates nodulation and nitrogen fixation in soybeans grown at low soil temperatures. The biological basis to these responses is discussed. (author)

  4. Ultrastructural Studies on Root Nodules of Pithecellobium dulce (Roxb.) Benth. (Fabaceae)

    OpenAIRE

    Raiha Qadri; A. Mahmood; Mohammad Athar

    2007-01-01

    Ultrastructural studies were conducted on Pithecellobium dulce (Roxb) Benth. root nodules collected from trees growing under natural conditions. Rhizobial infection on root surface of P. dulce started with curling of root hair. Both curled and straight root hairs were observed. The internal structure of a mature nodule showed an epidermis, cortex, vascular region and a bacteriod region. Vascular bundles were amphicribral. A distinct periderm consisted of sclereid tissue could be observed in t...

  5. Food legume production in China

    Directory of Open Access Journals (Sweden)

    Ling Li

    2017-04-01

    Full Text Available Food legumes comprise all legumes grown for human food in China as either dry grains or vegetables, except for soybean and groundnut. China has a vast territory with complex ecological conditions. Rotation, intercropping, and mixed cropping involving pulses are normal cropping systems in China. Whether indigenous or introduced crops, pulses have played an important role in Chinese cropping systems and made an important contribution to food resources for humans since ancient times. The six major food legume species (pea, faba bean, common bean, mung bean, adzuki bean, and cowpea are the most well-known pulses in China, as well as those with more local distributions; runner bean, lima bean, chickpea, lentil, grass pea, lupine, rice bean, black gram, hyacinth bean, pigeon pea, velvet bean, winged bean, guar bean, sword bean, and jack bean. China has remained the world's leading producer of peas, faba beans, mung beans, and adzuki beans in recent decades, as documented by FAO statistics and China Agriculture Statistical Reports. The demand for food legumes as a healthy food will markedly increase with the improvement of living standards in China. Since China officially joined the World Trade Organization (WTO in 2001, imports of pea from Canada and Australia have rapidly increased, resulting in reduced prices for dry pea and other food legumes. With reduced profits for food legume crops, their sowing area and total production has decreased within China. At the same time, the rising consumer demand for vegetable food legumes as a healthy food has led to attractive market prices and sharp production increases in China. Vegetable food legumes have reduced growing duration and enable flexibility in cropping systems. In the future, production of dry food legumes will range from stable to slowly decreasing, while production of vegetable food legumes will continue to increase.

  6. Estimation of runoff mitigation by morphologically different cover crop root systems

    Science.gov (United States)

    Yu, Yang; Loiskandl, Willibald; Kaul, Hans-Peter; Himmelbauer, Margarita; Wei, Wei; Chen, Liding; Bodner, Gernot

    2016-07-01

    Hydrology is a major driver of biogeochemical processes underlying the distinct productivity of different biomes, including agricultural plantations. Understanding factors governing water fluxes in soil is therefore a key target for hydrological management. Our aim was to investigate changes in soil hydraulic conductivity driven by morphologically different root systems of cover crops and their impact on surface runoff. Root systems of twelve cover crop species were characterized and the corresponding hydraulic conductivity was measured by tension infiltrometry. Relations of root traits to Gardner's hydraulic conductivity function were determined and the impact on surface runoff was estimated using HYDRUS 2D. The species differed in both rooting density and root axes thickness, with legumes distinguished by coarser axes. Soil hydraulic conductivity was changed particularly in the plant row where roots are concentrated. Specific root length and median root radius were the best predictors for hydraulic conductivity changes. For an intensive rainfall simulation scenario up to 17% less rainfall was lost by surface runoff in case of the coarsely rooted legumes Melilotus officinalis and Lathyrus sativus, and the densely rooted Linum usitatissimum. Cover crops with coarse root axes and high rooting density enhance soil hydraulic conductivity and effectively reduce surface runoff. An appropriate functional root description can contribute to targeted cover crop selection for efficient runoff mitigation.

  7. The value of biodiversity in legume symbiotic nitrogen fixation and nodulation for biofuel and food production.

    Science.gov (United States)

    Gresshoff, Peter M; Hayashi, Satomi; Biswas, Bandana; Mirzaei, Saeid; Indrasumunar, Arief; Reid, Dugald; Samuel, Sharon; Tollenaere, Alina; van Hameren, Bethany; Hastwell, April; Scott, Paul; Ferguson, Brett J

    2015-01-01

    Much of modern agriculture is based on immense populations of genetically identical or near-identical varieties, called cultivars. However, advancement of knowledge, and thus experimental utility, is found through biodiversity, whether naturally-found or induced by the experimenter. Globally we are confronted by ever-growing food and energy challenges. Here we demonstrate how such biodiversity from the food legume crop soybean (Glycine max L. Merr) and the bioenergy legume tree Pongamia (Millettia) pinnata is a great value. Legume plants are diverse and are represented by over 18,000 species on this planet. Some, such as soybean, pea and medics are used as food and animal feed crops. Others serve as ornamental (e.g., wisteria), timber (e.g., acacia/wattle) or biofuel (e.g., Pongamia pinnata) resources. Most legumes develop root organs (nodules) after microsymbiont induction that serve as their habitat for biological nitrogen fixation. Through this, nitrogen fertiliser demand is reduced by the efficient symbiosis between soil Rhizobium-type bacteria and the appropriate legume partner. Mechanistic research into the genetics, biochemistry and physiology of legumes is thus strategically essential for future global agriculture. Here we demonstrate how molecular plant science analysis of the genetics of an established food crop (soybean) and an emerging biofuel P. pinnata feedstock contributes to their utility by sustainable production aided by symbiotic nitrogen fixation. Crown Copyright © 2014. Published by Elsevier GmbH. All rights reserved.

  8. Cytokinins in Symbiotic Nodulation: When, Where, What For?

    Science.gov (United States)

    Gamas, Pascal; Brault, Mathias; Jardinaud, Marie-Françoise; Frugier, Florian

    2017-09-01

    Substantial progress has been made in the understanding of early stages of the symbiotic interaction between legume plants and rhizobium bacteria. Those include the specific recognition of symbiotic partners, the initiation of bacterial infection in root hair cells, and the inception of a specific organ in the root cortex, the nodule. Increasingly complex regulatory networks have been uncovered in which cytokinin (CK) phytohormones play essential roles in different aspects of early symbiotic stages. Intriguingly, these roles can be either positive or negative, cell autonomous or non-cell autonomous, and vary, depending on time, root tissues, and possibly legume species. Recent developments on CK symbiotic functions and interconnections with other signaling pathways during nodule initiation are the focus of this review. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The Ribosomal RNA is a Useful Marker to Visualize Rhizobia Interacting with Legume Plants

    Science.gov (United States)

    Rinaudi, Luciana; Isola, Maria C.; Giordano, Walter

    2004-01-01

    Symbiosis between rhizobia and leguminous plants leads to the formation of nitrogen-fixing root nodules. In the present article, we recommend the use of the ribosomal RNA (rRNA) isolated from legume nodules in an experimental class with the purpose of introducing students to the structure of eukaryotic and prokaryotic ribosomes and of…

  10. Trigoxazonane, a monosubstituted trioxazonane from Trigonella foenum-graecum root exudate, inhibits Orobanche crenata seed germination.

    Science.gov (United States)

    Evidente, Antonio; Fernández-Aparicio, Mónica; Andolfi, Anna; Rubiales, Diego; Motta, Andrea

    2007-10-01

    Orobanche crenata is a major threat to grain legume production. Fenugreek (Trigonella foenum-graecum) is an annual legume that has been shown to effectively reduce O. crenata infection when intercropped with grain legumes. In this paper, we point that this can be attributed to allelopathy, through inhibition of the germination of O. crenata by fenugreek root exudates. The main inhibitory metabolite was isolated and characterized. Allelopathy was demonstrated in different bioassays, by inhibition of O. crenata seeds germination both by growing fenugreek and pea plants together (intercropped), and by application of fenugreek root exudates. Fenugreek root exudates were extracted with organic solvent and fractionated giving several fractions, two of which showed moderate (27%) and strong (54%) inhibition of O. crenata seed germination, respectively. The most active metabolite is a new monosubstituted trioxazonane, characterized by spectroscopic methods as the 2-butyl-[1,4,7,2]trioxazonane and named trigoxazonane.

  11. Loss of normal anagen hair in pemphigus vulgaris.

    Science.gov (United States)

    Daneshpazhooh, M; Mahmoudi, H R; Rezakhani, S; Valikhani, M; Naraghi, Z S; Mohammadi, Y; Habibi, A; Chams-Davatchi, C

    2015-07-01

    Pemphigus vulgaris (PV) is a known cause of loss of 'normal' anagen hair; that is, shedding of intact anagen hairs covered by root sheaths. However, studies on this subject are limited. To investigate anagen hair shedding in patients with PV, and ascertain its association with disease severity. In total, 96 consecutive patients with PV (new patients or patients in relapse) who were admitted to the dermatology wards of a tertiary hospital were enrolled in this study. Demographic data, PV phenotype, disease severity and presence of scalp lesions were recorded. A group of 10-20 hairs were pulled gently from different areas of the scalp (lesional and nonlesional skin) in all patients, and anagen hairs were counted. Disease severity was graded according to Harman score. Anagen hair was obtained by pull test in 59 of the 96 patients (61.5%), of whom 2 had normal scalp. The mean ± SD anagen hair count was 5.9 ± 7.6 (range 0-31). In univariate analysis, anagen hair loss (P hair count was significantly higher in the severe (mean 6.83 ± 7.89) than the moderate (mean 1.06 ± 1.94) subgroup (P hair loss (OR = 1.16, 95% CI = 1.05-1.28, P hair loss was an independent predictor of the disease severity. © 2015 British Association of Dermatologists.

  12. Comparisonof physicochemical properties of selected locally available legume varieties (mung bean, cowpea and soybean

    Directory of Open Access Journals (Sweden)

    Kulasooriyage Tharuka Gunathilake

    2016-10-01

    Full Text Available Grain legumes are widely used as high-protein contained crops that play a secondary role to cereal or root crops. In Sri Lanka various legume species are cultivated and often utilised in the whole grain boiled form. The objective of present study was to analyse and compare locally grown legumes varieties; Mung bean (MI 5, MI 6, Cowpea (Bombay, Waruni, Dhawal, MICP1, ANKCP1 and soybean (pb1, MISB1 for their morphological characteristics, proximate and mineral composition (Fe, Ca, Zn, K, P. Seed shape, seed coat texture and colour, seed size and 100 seed weight (g were observed morphological characteristics in present study. Most of the characteristics of mung bean and soybean were similar within their species whereas characteristics of cowpea varieties largely differed. Values of 100 seed weight among the varieties of mung bean, soybean and cowpea were ranged from 5.8 - 6.5 g, 13.5 - 14.1 g and 13.4 - 17.2 g, respectively. The moisture content of all legume seeds ranged from 6.81% to 11.99%. Results were shown that the protein content significantly higher in soybean (36.56 - 39.70% followed by mung bean (26.56 - 25.99% and cowpea (25.22 - 22.84% respectively. Range of total carbohydrate, crude fat, crude fibre and total ash contents of nine legume varieties varied from 15.29 - 62.97%, 1.25 - 22.02%, 3.04 - 7.93% and 3.43 - 6.35 respectively. potassium (K, phosphorus (P, calcium (Ca, iron (Fe and zinc (Zn ranged from 1000 - 1900, 360 - 669, 15.0 - 192.3, 2.26 - 11.6 and 1.67 - 4.26 mg.100g-1 respectively in all the species of studied legume varieties. The wide variation in the chemical and physical properties of observed nine legume varieties, suggesting possible applications for various end-use products. 

  13. The root epidermis-specific pea gene RH2 is homologous to a pathogenesis-related gene.

    NARCIS (Netherlands)

    Mylona, P.; Moerman, M.; Yang, W.C.; Gloudemans, T.; Kerckhove, van de J.; Kammen, van A.; Bisseling, T.; Franssen, H.J.

    1994-01-01

    Two-dimensional gel electrophoresis of pea root and root hair proteins revealed the existence of at least 10 proteins present at elevated levels in root hairs. One of these, named RH2, was isolated and a partial amino acid sequence was determined from two tryptic peptides. Using this sequence

  14. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities.

    Science.gov (United States)

    Zgadzaj, Rafal; Garrido-Oter, Ruben; Jensen, Dorthe Bodker; Koprivova, Anna; Schulze-Lefert, Paul; Radutoiu, Simona

    2016-12-06

    Lotus japonicus has been used for decades as a model legume to study the establishment of binary symbiotic relationships with nitrogen-fixing rhizobia that trigger root nodule organogenesis for bacterial accommodation. Using community profiling of 16S rRNA gene amplicons, we reveal that in Lotus, distinctive nodule- and root-inhabiting communities are established by parallel, rather than consecutive, selection of bacteria from the rhizosphere and root compartments. Comparative analyses of wild-type (WT) and symbiotic mutants in Nod factor receptor5 (nfr5), Nodule inception (nin) and Lotus histidine kinase1 (lhk1) genes identified a previously unsuspected role of the nodulation pathway in the establishment of different bacterial assemblages in the root and rhizosphere. We found that the loss of nitrogen-fixing symbiosis dramatically alters community structure in the latter two compartments, affecting at least 14 bacterial orders. The differential plant growth phenotypes seen between WT and the symbiotic mutants in nonsupplemented soil were retained under nitrogen-supplemented conditions that blocked the formation of functional nodules in WT, whereas the symbiosis-impaired mutants maintain an altered community structure in the nitrogen-supplemented soil. This finding provides strong evidence that the root-associated community shift in the symbiotic mutants is a direct consequence of the disabled symbiosis pathway rather than an indirect effect resulting from abolished symbiotic nitrogen fixation. Our findings imply a role of the legume host in selecting a broad taxonomic range of root-associated bacteria that, in addition to rhizobia, likely contribute to plant growth and ecological performance.

  15. ILK modulates epithelial polarity and matrix formation in hair follicles.

    Science.gov (United States)

    Rudkouskaya, Alena; Welch, Ian; Dagnino, Lina

    2014-03-01

    Hair follicle morphogenesis requires coordination of multiple signals and communication between its epithelial and mesenchymal constituents. Cell adhesion protein platforms, which include integrins and integrin-linked kinase (ILK), are critical for hair follicle formation. However, their precise contribution to this process is poorly understood. We show that in the absence of ILK, the hair follicle matrix lineage fails to develop, likely due to abnormalities in development of apical-basal cell polarity, as well as in laminin-511 and basement membrane assembly at the tip of the hair bud. These defects also result in impaired specification of hair matrix and absence of precortex and inner sheath root cell lineages. The molecular pathways affected in ILK-deficient follicles are similar to those in the absence of epidermal integrin β1 and include Wnt, but not sonic hedgehog, signaling. ILK-deficient hair buds also show abnormalities in the dermal papilla. Addition of exogenous laminin-511 restores morphological and molecular markers associated with hair matrix formation, indicating that ILK regulates hair bud cell polarity and functions upstream from laminin-511 assembly to regulate the developmental progression of hair follicles beyond the germ stage.

  16. Role of grass-legume communities in revegetation of a subalpine mine site in British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, K

    1982-01-01

    This study describes an investigation of the potential for pioneer grass-legume communities to stabilize and ameliorate geologically-fresh soil leading to the establishment of a self-sustaining, progressive plant succession on a surface-mined subalpine site. The study area is located 2000 m above sea level in the Canadian Rocky Mountains. Field studies revealed chronological trends in grass-legume communities at four sites revegetated during 1974-1978 including: species composition, legumes (Trifolium repens L., T. hybridum L. and Medicago sativa L.) performing increasingly poorly on the older sites; biomass changes, a shoot to root ratio (S/R) decreasing from 2.3 to 0.2 as the communities aged; and litter accumulation which continued even on the oldest site. Fertilizer (13-16-10) operationally applied at 150-391 kg/ha enhanced the growth of Dactylis gomerata L. and litter degradation, and acidified the soil. Nitrogen fertilization was also associated with two clear inverse relationships identified between D. glomerata and Festuca rubra L. biomass, and between soil pH and phosphorus levels. In greenhouse tests grasses were revealed to be more efficient soil nitrogen consumers than were legumes and nitrogen fixation decreased significantly (P < 0.01) and linearly with increasing grass seeding rates.

  17. Effect of amino acid substitution of CAPRICE on cell-to-cell movement ability in Arabidopsis root epidermis.

    Science.gov (United States)

    Tominaga-Wada, Rumi; Wada, Takuji

    2018-03-01

    An R3-type MYB transcription factor, CAPRICE (CPC), is known to promote root hair cell differentiation in Arabidopsis root epidermis. The CPC protein moves from non-hair cells to the neighboring cells, and acts as an inducer of root hair formation. In contrast, we previously showed that the CPC homolog, ENHANCER OF TRY AND CPC1 (ETC1), does not move between the root epidermal cells. To clarify the critical difference in the cell-to-cell movement ability of CPC and ETC1 proteins, we generated five different chimeras of CPC and ETC1. As expected, four of the five chimeric proteins with substitution of CPC amino acids with those of ETC1 induced many root hair and no-trichome phenotype, like CPC. These chimeric proteins essentially maintained the cell-to-cell movement ability of CPC. However, one chimeric protein in which ETC1 was sandwiched between the CPC-specific movement motifs of S1 and S2 did not induce ectopic root hair formation. This chimeric protein did not move between the cells. These results indicate that the maintenance of not only the S1 and S2 motifs but also the precise structure of CPC protein might be necessary for the cell-to-cell movement of CPC. Our results should help in further unraveling of the roles of these MYB transcription factors in root hair formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. [Agricultural and nutritional importance of legumes].

    Science.gov (United States)

    Montilla, J J

    1996-12-01

    The main ecophysiologic, agronomic and economic feature of legume plants is the development of tubercles and nodules in their apical system. Nodule formation occurs in most legume species provided a compatible type of Rhizobium bacteria is present in the soil. Nitrogen fixation in nodules renders these plants independent of nitrogen fertilizers, the most expensive of all goods in modern cereal agriculture. Considering that soils may get enriched in nitrogen through fixation in nodules and the decomposition of foliage when the aerial parts of legume plants are used as green fertilizers, only through the inclusion of legume crops within planned harvest schemes, it would be possible to achieve success in large scale production strategies. Legume crops are extensively produced in temperate climates areas in which, in addition to their use in animal nutrition, yields of 18 kg per person per year are obtained. In contrast, in the Third World countries located in tropical areas, legume production is scarce, with annual yields of 9 kg per person per year. Currently, it is proposed that the energy and protein intake should match that of the developed countries 40 years ago (i.e. 3000 Kcal and 70 g protein per day); for this, it would be necessary to have an average availability of 60 g of legume seeds per person per day. Therefore, the production of legume seeds should be increased. In addition, research aimed to study and exploit the agronomic potential of this rich botanical family should be strengthened through the formation of interdisciplinary groups.

  19. A Comparative Nitrogen Balance and Productivity Analysis of Legume and Non-legume Supported Cropping Systems: The Potential Role of Biological Nitrogen Fixation.

    Science.gov (United States)

    Iannetta, Pietro P M; Young, Mark; Bachinger, Johann; Bergkvist, Göran; Doltra, Jordi; Lopez-Bellido, Rafael J; Monti, Michele; Pappa, Valentini A; Reckling, Moritz; Topp, Cairistiona F E; Walker, Robin L; Rees, Robert M; Watson, Christine A; James, Euan K; Squire, Geoffrey R; Begg, Graham S

    2016-01-01

    The potential of biological nitrogen fixation (BNF) to provide sufficient N for production has encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertilizer, although few studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new legume-based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g., grains, forages and intercrops) across pedoclimatic regions of Europe. Mean BNF for different legume types ranged from 32 to 115 kg ha -1 annually. Output in terms of total biomass (grain, forage, etc.) was 30% greater in non-legumes, which used N to produce dry matter more efficiently than legumes, whereas output of N was greater from legumes. When examined over the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years). BNF was lower when the legume fraction increased to 0.6-0.8, not because of any feature of the legume, but because the cropping systems in this range were dominated by mixtures of legume and non-legume forages to which inorganic N as fertilizer was normally applied. Forage (e.g., grass and clover), as opposed to grain crops in this range maintained high outputs of biomass and N. In conclusion, BNF through grain and forage legumes has the potential to generate major benefit in terms of reducing or dispensing with the need for mineral N without loss of total output.

  20. Genome sequence of Ensifer arboris strain LMG 14919T; a microsymbiont of the legume Prosopis chilensis growing in Kosti, Sudan

    OpenAIRE

    Reeve, Wayne; Tian, Rui; Bräu, Lambert; Goodwin, Lynne; Munk, Christine; Detter, Chris; Tapia, Roxanne; Han, Cliff; Liolios, Konstantinos; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavrommatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia

    2013-01-01

    Ensifer arboris LMG 14919T is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of several species of legume trees. LMG 14919T was isolated in 1987 from a nodule recovered from the roots of the tree Prosopis chilensis growing in Kosti, Sudan. LMG 14919T is highly effective at fixing nitrogen with P. chilensis (Chilean mesquite) and Acacia senegal (gum Arabic tree or gum acacia). LMG 14919T does not nodulate the tree Leuce...

  1. Composite Phaseolus vulgaris plants with transgenic roots as ...

    African Journals Online (AJOL)

    SERVER

    2008-02-19

    Feb 19, 2008 ... ... important processes in the root system will be discussed. Key words: Genetic transformation, Phaseolus vulgaris, Agrobacterium rhizogenes. INTRODUCTION. Grain legumes are important agricultural crops, especially for developing countries, where they provide proteins in vegetarian or meat-poor diets.

  2. Ion beam microanalysis of human hair follicles

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Szikszai, Z.; Telek, A.; Biro, T.; Debrecen Univ.

    2006-01-01

    root sheath keratinocyte layers, 1000- 2000; hair shaft, 1000-2000. The induction of catagen transformation essentially did not change the Ca concentrations in the dermal papilla, bulb matrix regions nor in the hair shaft (1000-2000 in all parts). In contrast, we observed a remarkable increase in the outer/ inner root sheath keratinocyte layers up to 4000-8000 μg/g Ca concentration. In capsaicin-treated catagen HFs, the Ca concentration was increased mostly in those layers which possess a significant expression of TRPV1, the receptor for capsaicin. Since TRPV1 functions as a Ca-permeable channel, the elevated Ca in the TRPV1-expressing layers suggest that the activation of TRPV1 by capsaicin resulted in a prolonged elevation of intracellular Ca-concentration which, in turn, led to the inhibition of proliferation of HF keratinocytes as well as the induction of HF apoptosis. Moreover, our findings also show that ion microscopy may serve as a fine tool to detect changes in elemental distribution related to the human hair-cycle. (author)

  3. A comparative nitrogen balance and productivity analysis of legume and non-legume supported cropping systems: the potential role of biological nitrogen fixation

    Directory of Open Access Journals (Sweden)

    Pietro P M Iannetta

    2016-11-01

    Full Text Available The potential of biological nitrogen fixation (BNF to provide sufficient N for production have encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertiliser, although few studies have systematically evaluated the effect of optimising the balance between legumes and non N-fixing crops to optimise production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new, legume–based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g. grains, forages and intercrops across pedoclimatic regions of Europe. Mean BNF for different legume types ranged from 32-115 kg ha-1 annually. Output in terms of total biomass (grain, forage, etc. was 30% greater in non-legumes, which used N to produce dry matter more efficiently than legumes, whereas output of N was greater from legumes. When examined over the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years. BNF was lower when the legume fraction increased to 0.6-0.8, not because of any feature of the legume, but because the cropping systems in this range were dominated by mixtures of legume and non-legume forages to which inorganic N as fertiliser was normally applied. Forage (e.g. grass and clover, as opposed to grain crops in this range maintained high outputs of biomass and N. In conclusion, BNF through grain and forage legumes have the potential to generate major benefit in terms of reducing or dispensing with the need for mineral N without loss of total output.

  4. A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria

    Science.gov (United States)

    Zgadzaj, Rafal; James, Euan K.; Kelly, Simon; Kawaharada, Yasuyuki; de Jonge, Nadieh; Jensen, Dorthe B.; Madsen, Lene H.; Radutoiu, Simona

    2015-01-01

    Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule. PMID:26042417

  5. Variations in Enzymatic Activities of Shoots and Roots as an Indicator for Irradiated Seeds

    International Nuclear Information System (INIS)

    Abdelbbaary, N.A.; Elagamay, M.R.

    2005-01-01

    Germinated seedlings from oil seeds (sesame and sunflower) and legumes (Trigonella, Haricot, broad bean and cow pea) were irradiated with gamma rays at doses of 0, 0.2, 0.4, 0.8 and 1 kGy and the data were collected from shoots and roots. Enzymatic activities appeared to be correlated with gamma irradiation dose. The enzymatic activities of irradiated seeds understudy were significantly higher than controls. The peroxidase activities were nearly similar in both roots and shoots, while acid phosphatase activities in roots were higher than in shoots. Also protein contents were higher in roots. The peroxidase and acid phosphatase specific activities in roots were similar. Shoots peroxidase enzymatic activity increased with increased gamma doses. The seedling under study showed two different levels of peroxidase activity, higher as sesame, Trigonella and Sunflower, and lower such as all other legumes understudy. Similar tendency have been also noticed in roots-enzymatic activity, positive correlation between gamma doses treatment and peroxidase enzymatic activity, again two groups higher activity cow pea, broad bean, bean and Trigonella lower such as sesame, such as sesame, sunflower and haircut

  6. Pathogenicity and genetic diversity of Fusarium oxysporum causing soybean root rot in northeast China

    Science.gov (United States)

    Soybean is an important edible legume cultivated around the world. However, soybean production is seriously impacted by the widespread occurrence of root rot disease. In this study, genetic diversity and pathogenicity of Fusarium oxysporum associated with root rot of soybean in Heilongjiang province...

  7. Characterization of Rhizobium strain isolated from the roots of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... The Rhizobium species isolated from fenugreek roots have the potential to produce industrially important ... growth of leguminous crops (Dilworth and Parker, 1969). ..... events, such as chemotaxis and root hair colonization,.

  8. Biofertilizer for food legumes: Bangladesh

    International Nuclear Information System (INIS)

    2003-01-01

    In Bangladesh grain legumes are the protein meat substitute of the poor, and an integral part of the daily diet. Yet present yields cannot meet demand and every year about 25% of the country's grain legumes' requirements have to be imported at a cost of about US $23 million in hard-earned foreign exchange. This money could easily be saved by increasing production in the country. The Department of Technical Co-operation is sponsoring a programme, with technical support from the Joint FAO/IAEA Division, in Bangladesh to find ways of increasing yields of grain legumes using efficient strains of biofertilizers. (IAEA)

  9. The MicroRNA390/TAS3 Pathway Mediates Symbiotic Nodulation and Lateral Root Growth1[OPEN

    Science.gov (United States)

    Bustos-Sanmamed, Pilar; Mysore, Kirankumar S.

    2017-01-01

    Legume roots form two types of postembryonic organs, lateral roots and symbiotic nodules. Nodule formation is the result of the interaction of legumes with rhizobia and requires the mitotic activation and differentiation of root cells as well as an independent, but coordinated, program that allows infection by rhizobia. MicroRNA390 (miR390) is an evolutionarily conserved microRNA that targets the Trans-Acting Short Interference RNA3 (TAS3) transcript. Cleavage of TAS3 by ARGONAUTE7 results in the production of trans-acting small interference RNAs, which target mRNAs encoding AUXIN RESPONSE FACTOR2 (ARF2), ARF3, and ARF4. Here, we show that activation of the miR390/TAS3 regulatory module by overexpression of miR390 in Medicago truncatula promotes lateral root growth but prevents nodule organogenesis, rhizobial infection, and the induction of two key nodulation genes, Nodulation Signaling Pathway1 (NSP1) and NSP2. Accordingly, inactivation of the miR390/TAS3 module, either by expression of a miR390 target mimicry construct or mutations in ARGONAUTE7, enhances nodulation and rhizobial infection, alters the spatial distribution of the nodules, and increases the percentage of nodules with multiple meristems. Our results revealed a key role of the miR390/TAS3 pathway in legumes as a modulator of lateral root organs, playing opposite roles in lateral root and nodule development. PMID:28663332

  10. Interaction between Orobanche crenata and its host legumes: unsuccessful haustorial penetration and necrosis of the developing parasite.

    Science.gov (United States)

    Pérez-DE-Luque, A; Rubiales, D; Cubero, J I; Press, M C; Scholes, J; Yoneyama, K; Takeuchi, Y; Plakhine, D; Joel, D M

    2005-05-01

    Orobanche species represent major constraints to crop production in many parts of the world as they reduce yield and alter root/shoot allometry. Although much is known about the histology and effect of Orobanche spp. on susceptible hosts, less is known about the basis of host resistance to these parasites. In this work, histological aspects related to the resistance of some legumes to Orobanche crenata have been investigated in order to determine which types of resistance responses are involved in the unsuccessful penetration of O. crenata. Samples of resistance reactions against O. crenata on different genotypes of resistant legumes were collected. The samples were fixed, sectioned and stained using different procedures. Sections were observed using a transmission light microscope and by epi-fluorescence. Lignification of endodermal and pericycle host cells seems to prevent parasite intrusion into the root vascular cylinder at early infection stages. But in other cases, established tubercles became necrotic and died. Contrary to some previous studies, it was found that darkening at the infection site in these latter cases does not correspond to death of host tissues, but to the secretion of substances that fill the apoplast in the host-parasite interface and in much of the infected host tissues. The secretions block neighbouring host vessels. This may interfere with the nutrient flux between host and parasite, and may lead to necrosis and death of the developing parasite. The unsuccessful penetration of O. crenata seedlings into legume roots cannot be attributed to cell death in the host. It seems to be associated with lignification of host endodermis and pericycle cells at the penetration site. The accumulation of secretions at the infection site, may lead to the activation of xylem occlusion, another defence mechanism, which may cause further necrosis of established tubercles.

  11. A Comparative Nitrogen Balance and Productivity Analysis of Legume and Non-legume Supported Cropping Systems: The Potential Role of Biological Nitrogen Fixation

    DEFF Research Database (Denmark)

    Iannetta, Pietro P M; Young, Mark; Bachinger, Johann

    2016-01-01

    studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new legume......–based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g., grains, forages and intercrops) across pedoclimatic regions...... the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years). BNF was lower when the legume fraction increased to 0.6–0.8, not because of any feature of the legume, but because the cropping...

  12. On the use of hair analysis to assess the influence of exposure to some toxic elements

    International Nuclear Information System (INIS)

    Vis, R.D.

    1993-01-01

    The micro PIXE technique is an analytical method capable to measure trace element concentration distribution at ppm concentration level and at μm scale. This method opens the possibility to measure radial and longitudinal element distribution across and along hair samples. The incorporation of Cd and Pb in rat hair has been studied using two different analytical techniques, namely micro PIXE to measure the radial distribution of these elements across the hair root and in a section cut at 3 mm distance from the root, and synchrotron radiation X-ray fluorescence (SXRF) to measure the distribution of these elements over different protein fractions prepared by other CRP participant. Hair samples from 12 persons were also analyzed with micro PIXE. Inter element effects were observed in this case, especially the negative correlation between Cu and Zn. Also the data indicate correlations between Zn concentration in hair and bone (positive) and hair and liver (negative). Cu shows the same behaviour. A large number of hair and whole blood samples from a group of school children was also analyzed. In this data set, it was observed that Pb concentration affects other elements. It turned out that Ca and Zn concentrations in hair were lower, while Cu values were higher in the samples with high Pb values. (author). 8 refs, 2 figs, 1 tab

  13. Genetic analysis of tolerance to boron toxicity in the legume Medicago truncatula.

    Science.gov (United States)

    Bogacki, Paul; Peck, David M; Nair, Ramakrishnan M; Howie, Jake; Oldach, Klaus H

    2013-03-27

    Medicago truncatula Gaertn. (barrel medic) is cultivated as a pasture legume for its high protein content and ability to improve soils through nitrogen fixation. Toxic concentrations of the micronutrient Boron (B) in agricultural soils hamper the production of cereal and leguminous crops. In cereals, the genetic analysis of B tolerance has led to the development of molecular selection tools to introgress and maintain the B tolerance trait in breeding lines. There is a comparable need for selection tools in legumes that grow on these toxic soils, often in rotation with cereals. Genetic variation for B tolerance in Medicago truncatula was utilised to generate two F2 populations from crosses between tolerant and intolerant parents. Phenotyping under B stress revealed a close correlation between B tolerance and biomass production and a segregation ratio explained by a single dominant locus. M. truncatula homologues of the Arabidopsis major intrinsic protein (MIP) gene AtNIP5;1 and the efflux-type transporter gene AtBOR1, both known for B transport, were identified and nearby molecular markers screened across F2 lines to verify linkage with the B-tolerant phenotype. Most (95%) of the phenotypic variation could be explained by the SSR markers h2_6e22a and h2_21b19a, which flank a cluster of five predicted MIP genes on chromosome 4. Three CAPS markers (MtBtol-1,-2,-3) were developed to dissect the region further. Expression analysis of the five predicted MIPs indicated that only MtNIP3 was expressed when leaf tissue and roots were assessed. MtNIP3 showed low and equal expression in the roots of tolerant and intolerant lines but a 4-fold higher expression level in the leaves of B-tolerant cultivars. The expression profile correlates closely with the B concentration measured in the leaves and roots of tolerant and intolerant plants. Whereas no significant difference in B concentration exists between roots of tolerant and intolerant plants, the B concentration in the leaves

  14. Legume carotenoids.

    Science.gov (United States)

    Sri Kantha, S; Erdman, J W

    1987-01-01

    In recent years, the results of research studies have suggested a positive beneficial relationship between a vegetarian-based diet and low incidence of diseases, including coronary heart disease, cancer, obesity, dental caries, and osteoporosis. beta-Carotene has specifically been suggested as a nutrient with antitumorigenic properties. In this regard there is a need to evaluate the carotenoid content of foods. Legumes are one of the staple components of a vegetarian diet. This review specifically surveys the prevalence of carotenoids in food and forage legumes. In addition, the methods available for carotenoid analysis are discussed; factors affecting the determination of carotenoid content during maturation, germination, processing and storage are identified; research areas which have been inadequately explored are identified; and suggestions are made for future lines of investigation.

  15. A function for Rac1 in the terminal differentiation and pigmentation of hair

    DEFF Research Database (Denmark)

    Behrendt, Kristina; Klatte, Jennifer; Pofahl, Ruth

    2012-01-01

    in the regulation of terminal hair follicle differentiation. To address this, we have expressed a constitutively active mutant of Rac1, L61Rac1, only in the basal epidermal layer and outer root sheath of mice possessing an epidermis-specific deletion of endogenous Rac1, which experience severe hair loss......The small GTPase Rac1 is ubiquitously expressed in proliferating and differentiating layers of the epidermis and hair follicles. Previously, Rac1 was shown to regulate stem cell behaviour in these compartments. We have asked whether Rac1 has, in addition, a specific, stem-cell-independent function....... The resulting 'rescue' mice exhibited a hair coat throughout their lives. Therefore, expression of Rac1 activity in the keratin-14-positive compartment of the skin is sufficient for the formation of hair follicles and hair in normal quantities. The quality of hair formed in rescue mice was, however, not normal...

  16. A study with microbeam PIXE technique needed for the interpretation of data on pollutants in hair obtained with NAA and other bulk concentration analysis. Part of a coordinated programme on nuclear-based methods for analysis of pollutants in human hair

    International Nuclear Information System (INIS)

    Houtman, J.P.W.

    1981-01-01

    Hair metals the analysis of which has been proposed as a practical method for assaying human contamination with metal pollutants, reflect both internal and external contamination. This study is an attempt to distinguish these two components of hair metals, using the scanning microbeam PIXE technique. Individual hair strands were embedded in a resin combined with a hardener. Each embedded hair strand was cut perpendicular to its axis, into the root, 1-cm and 2-cm segments from the root. The 3 segments were analysed for few elements including As and Pb, using the scanning microbeam PIXE technique. For each segment, a proton microbeam of 15μ diameter and 500Hz frequency was used to scan the segment cross-section along the long axis. X-ray spectrometry was used to determine the concentrations of the elements studied. The results, although preliminary, showed that the scanning microbeam PIXE technique may provide important information about elemental concentrations and distribution patterns along hair length and hair cross-section. This may lead to a better understanding of mechanisms responsible for the deposition of elements into hair and thereby to a more rational use of hair analysis as a method for assaying human exposure to element pollutants

  17. Quantitative analysis and classification of AFM images of human hair.

    Science.gov (United States)

    Gurden, S P; Monteiro, V F; Longo, E; Ferreira, M M C

    2004-07-01

    The surface topography of human hair, as defined by the outer layer of cellular sheets, termed cuticles, largely determines the cosmetic properties of the hair. The condition of the cuticles is of great cosmetic importance, but also has the potential to aid diagnosis in the medical and forensic sciences. Atomic force microscopy (AFM) has been demonstrated to offer unique advantages for analysis of the hair surface, mainly due to the high image resolution and the ease of sample preparation. This article presents an algorithm for the automatic analysis of AFM images of human hair. The cuticular structure is characterized using a series of descriptors, such as step height, tilt angle and cuticle density, allowing quantitative analysis and comparison of different images. The usefulness of this approach is demonstrated by a classification study. Thirty-eight AFM images were measured, consisting of hair samples from (a) untreated and bleached hair samples, and (b) the root and distal ends of the hair fibre. The multivariate classification technique partial least squares discriminant analysis is used to test the ability of the algorithm to characterize the images according to the properties of the hair samples. Most of the images (86%) were found to be classified correctly.

  18. Thinning Hair and Hair Loss: Could it be Female Pattern Hair Loss?

    Science.gov (United States)

    ... mcat1=de12", ]; for (var c = 0; c Thinning hair and hair loss: Could it be female pattern hair loss? Female pattern hair loss: Without treatment, female ... can I tell if I have female pattern hair loss? It’s best to make an appointment to ...

  19. Facilitative root interactions in intercrops

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, H.; Jensen, E.S.

    2005-01-01

    of root architecture, exudation of growth stimulating substances, and biofumigation. Facilitative root interactions are most likely to be of importance in nutrient poor soils and in low-input agroecosystems due to critical interspecific competition for plant growth factors. However, studies from more...... nitrogen transfer between legumes and non-leguminous plants, exploitation of the soil via mycorrhizal fungi and soil-plant processes which alter the mobilisation of plant growth resources such as through exudation of amino acids, extra-cellular enzymes, acidification, competition-induced modification......Facilitation takes place when plants ameliorate the environment of their neighbours, and increase their growth and survival. Facilitation occurs in natural ecosystems as well as in agroecosystems. We discuss examples of facilitative root interactions in intercropped agroecosystems; including...

  20. POLYPHENOLS IN CHOSEN SPECIES OF LEGUME - A REVIEW

    Directory of Open Access Journals (Sweden)

    Judita Bystrická

    2010-11-01

    Full Text Available  Legumes belongs to the most important grain for human consumption. They have been cultivated for thousands of years, and have played an important role in the traditional diets of many regions throughout the world. The most legumes are widely consumed in fresh and processed forms. The traditional way of legume preparation includes soaking in water following by cooking and are usually consumed boiled as soup, occasionally as roasted grains too. Legume are widely known for their nutraceutical value, but there is relatively little information about their polyphenols content (with the exception of soya. Inspite of the fact that phenolics in general are not the substances with nutritious value, the interest in them is still persisting for their positive effects on human health. For these reasons this short review is focused on summary of legume polyphenols – identification and quantification of phenolic acids, flavonoids and tannins in raw or processed legumes and their role in these crops. Monitoring and surveying of the changes of polyphenolic compounds contents thus complete knowledge about bioactive substances content in legumes species. And seeing that legumes are considered an ideal complement to cereals in diets, they gain increasing attention as functional food items. doi:10.5219/81

  1. Legume-rhizobia signal exchange: promiscuity and environmental effects

    Directory of Open Access Journals (Sweden)

    Mario Andrade Lira Junior

    2015-09-01

    Full Text Available Although signal exchange between legumes and their rhizobia is among the best-known examples of this biological process, most of the more characterized data comes from just a few legume species and environmental stresses. Although a relative wealth of information is available for some model legumes and some of the major pulses such as soybean, little is known about tropical legumes. This relative disparity in current knowledge is also apparent in the research on the effects of environmental stress on signal exchange; cool-climate stresses, such as low-soil temperature, comprise a relatively large body of research, whereas high-temperature stresses and drought are not nearly as well understood. Both tropical legumes and their environmental stress-induced effects are increasingly important due to global population growth (the demand for protein, climate change (increasing temperatures and more extreme climate behavior, and urbanization (and thus heavy metals. This knowledge gap for both legumes and their environmental stresses is compounded because whereas most temperate legume-rhizobia symbioses are relatively specific and cultivated under relatively stable environments, the converse is true for tropical legumes, which tend to be promiscuous and grow in highly variable conditions. This review will clarify some of this missing information and highlight fields in which further research would benefit our current knowledge.

  2. Browses (legume-legume mixture) as dry season feed ...

    African Journals Online (AJOL)

    Increasing competition between man and animals(monogasters, polygasters, microlivestock and wild/feral) for high quality feed(proteinaceous and carbonaceous concentrate) excessive pressure on land from urbanisation , hence the need of multipurpose browse-legumes (Leucaena leucocephala, Gliricidia sepium and ...

  3. Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1.

    Science.gov (United States)

    Ariel, Federico; Diet, Anouck; Verdenaud, Marion; Gruber, Véronique; Frugier, Florian; Chan, Raquel; Crespi, Martin

    2010-07-01

    The adaptation of root architecture to environmental constraints is a major agricultural trait, notably in legumes, the third main crop worldwide. This root developmental plasticity depends on the formation of lateral roots (LRs) emerging from primary roots. In the model legume Medicago truncatula, the HD-Zip I transcription factor HB1 is expressed in primary and lateral root meristems and induced by salt stress. Constitutive expression of HB1 in M. truncatula roots alters their architecture, whereas hb1 TILLING mutants showed increased lateral root emergence. Electrophoretic mobility shift assay, promoter mutagenesis, and chromatin immunoprecipitation-PCR assays revealed that HB1 directly recognizes a CAATAATTG cis-element present in the promoter of a LOB-like (for Lateral Organ Boundaries) gene, LBD1, transcriptionally regulated by auxin. Expression of these genes in response to abscisic acid and auxin and their behavior in hb1 mutants revealed an HB1-mediated repression of LBD1 acting during LR emergence. M. truncatula HB1 regulates an adaptive developmental response to minimize the root surface exposed to adverse environmental stresses.

  4. Rhizosphere Biological Processes of Legume//Cereal Intercropping Systems: A Review

    Directory of Open Access Journals (Sweden)

    JIANG Yuan-yuan

    2016-09-01

    Full Text Available Intercropping, a sustainable planting pattern, was widely used in the wordwide. It not only has the advantages of yield and nutrient acquisition, but also can ensure food security and reduce the risk of crop failures. The majority of intercropping systems involve legume//cereal combinations because of interspecific facilitation or complementarity. The rhizosphere is the interface between plants and soil where there are interactions among a myriad of microorganisms and affect the uptake of nutrients, water and harmful substances. The rhizosphere biologi-cal processes not only determine the amount of nutrients and the availability of nutrients, but also affect crop productivity and nutrient use efficiency. Hence, this paper summarized the progress made on root morphology, rhizosphere microorganisms, root exudates and ecological ef-fect in the perspective of the rhizosphere biological process,which would provide theoretical basis for improving nutrient availability, remov-ing heavy metals, and plant genetic improvements.

  5. Nitrogen fixation in legume trees: Measurement based on 15N techniques

    International Nuclear Information System (INIS)

    Sisworo, E.L.; Rasyid, H.; Sisworo, H.W.; Solahuddin, S.; Wemay, J.

    2000-01-01

    A field experiment has been conducted to measure the N2-fixation in six legume trees, namely Gliricidia sepium(F1), Sesbania sesban(F2), Caliandra tetragona(F3), Flemengia conges-7ta(F4), Acacia mangium(F5), and Leucena leucocephala (F6), using 15N techniques, e.g. the isotope dilution method. For this technique a reference tress, that is a non N2--fixing trees has to be used. In this experiment three reference trees were planted, but only one was used, which above ground growth was equal to the legyme trees. The reference tree chosen was Eucalyptus alba (R1). Data obtained from this experiment show that in general the legume trees have growth then the reference trees expressed, in dray weight of various plant parts and plants and total-N uptake (TN). At harvest some of the legume and reference tree have reached a 2.5 m height. The percentage of N2-fixation(%-fix) ranges from 50-70%. The highest %N-Fix was shown by Leucena leucocephala (F6) (70%N-Fix). High %N-Fix does not necessarily mean hgh N-Fix uptake(gn/tree)too. The N-Fix appears to be determined by the TN (gn/tree). The highest N-Fix was contributed by the leaves, which also has the highest percentage of total -N(%TN) compare to the other plant parts, i.e. roots, stem, and branches

  6. A generic individual-based model to simulate morphogenesis, C-N acquisition and population dynamics in contrasting forage legumes.

    Science.gov (United States)

    Louarn, Gaëtan; Faverjon, Lucas

    2018-04-18

    Individual-based models (IBMs) are promising tools to disentangle plant interactions in multi-species grasslands and foster innovative species mixtures. This study describes an IBM dealing with the morphogenesis, growth and C-N acquisition of forage legumes that integrates plastic responses from functional-structural plant models. A generic model was developed to account for herbaceous legume species with contrasting above- and below-ground morphogenetic syndromes and to integrate the responses of plants to light, water and N. Through coupling with a radiative transfer model and a three-dimensional virtual soil, the model allows dynamic resolution of competition for multiple resources at individual plant level within a plant community. The behaviour of the model was assessed on a range of monospecific stands grown along gradients of light, water and N availability. The model proved able to capture the diversity of morphologies encountered among the forage legumes. The main density-dependent features known about even-age plant populations were correctly anticipated. The model predicted (1) the 'reciprocal yield' law relating average plant mass to density, (2) a self-thinning pattern close to that measured for herbaceous species and (3) consistent changes in the size structure of plant populations with time and pedo-climatic conditions. In addition, plastic changes in the partitioning of dry matter, the N acquisition mode and in the architecture of shoots and roots emerged from the integration of plant responses to their local environment. This resulted in taller plants and thinner roots when competition was dominated by light, and shorter plants with relatively more developed root systems when competition was dominated by soil resources. A population dynamic model considering growth and morphogenesis responses to multiple resources heterogeneously distributed in the environment was presented. It should allow scaling plant-plant interactions from individual to

  7. Daunomycin accumulation and induction of programmed cell death in rat hair follicles

    DEFF Research Database (Denmark)

    Shin, Masashi; Larsson, Lars-Inge; Hougaard, David M.

    2009-01-01

    The anthracycline antibiotic daunomycin (DM) is useful for the treatment of leukemia but has side-effects such as alopecia. Using immunocytochemistry, we show that, after a single i.v. injection, DM accumulates in the nuclei of matrix cells and in the outer root sheath of hair follicles. DM......-positive matrix cells are detectable up to 48 h after injection and exhibit a characteristic granular morphology, which is not observed in saline-injected controls. TUNEL-staining has revealed that DM injection induces programmed cell death (PCD) in rat hair follicles. Cells undergoing PCD are detectable as late...... (PCD type 2). Interestingly, little, if any, DM accumulation or apoptosis has been detected in the dermal hair papillae. This may have a bearing on potential regeneration of the hair follicles. Thus, DM accumulates in a characteristic pattern in hair follicles. This accumulation is associated...

  8. Expression of basement membrane components through morphological changes in the hair growth cycle

    DEFF Research Database (Denmark)

    Couchman, J R; Gibson, W T

    1985-01-01

    The amount and distribution of fibronectin associated with hair follicles was found to vary during the hair growth cycle in the rat. Immunocytochemical staining of follicles in mid-late anagen (the growth stage) revealed the presence of fibronectin in the dermal papilla matrix, in the basement...... membrane separating this from the epithelial cells of the hair bulb, and in the basement membrane and connective tissue sheath which underly the cells of the outer root sheath. Early in catagen, the transitional stage, staining of the dermal papilla matrix disappeared. Fibronectin persisted in the basement...

  9. Is there any relationship between decreased AgNOR protein synthesis and human hair loss?

    Science.gov (United States)

    Eroz, R; Tasdemir, S; Dogan, H

    2012-11-01

    Argyrophilic nucleolar organizing region associated proteins (AgNORs) play roles in cell proliferation and a variety of diseases. We attempted to determine whether decreased NOR protein synthesis causes human hair loss. We studied 21 healthy males who suffered hair loss on the frontal/vertex portion of the head. Hair root cells from normal and hair loss sites were stained for AgNOR. One hundred nuclei per site were evaluated and the AgNOR number and NORa/TNa proportions of individual cells were determined using a computer program. The cells from normal sites had significantly higher AgNOR counts than those from hair loss sites. Also, the cells from the normal sites had significantly higher NORa/TNa than cells from the hair loss sites. In the normal sites, the cells demonstrated more NOR protein synthesis than cells in hair loss sites. Therefore, decreased NOR protein synthesis appears to be related to hair loss in humans.

  10. Nutritional value and acceptability of irradiated legumes

    International Nuclear Information System (INIS)

    Marathe, S.A.; Rao, V.S.; Thomas, Paul

    1998-01-01

    Disinfestation of prepacked cereal products, legumes and pulses by low dose gamma irradiation is well documented. This study showed that irradiation of prepacked green gram (Mung), Bengal gram (Chick pea or Chole) and horse bean (Val) at 0.25 and 0.75 kGy dose did not alter the contents of macronutrients, functional qualities and sensory attributes of these legumes, compared to non-irradiated legumes. (author)

  11. TRIPTYCHON, not CAPRICE, participates in feedback regulation of SCM expression in the Arabidopsis root epidermis.

    Science.gov (United States)

    Kwak, Su-Hwan; Schiefelbein, John

    2014-01-01

    The Arabidopsis root epidermal cells decide their fates (root-hair cell and non-hair cell) according to their position. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase (LRR RLK) mediates the positional information to the epidermal cells enabling them to adopt the proper fate. Via feedback regulation, the SCM protein accumulates preferentially in cells adopting the root-hair cell fate. In this study, we determine that TRY, but not the related factor CPC, is responsible for this preferential SCM accumulation. We observed severe reduction of SCM::GUS expression in the try-82 mutant root, but not in the cpc-1 mutant. Furthermore, the overexpression of TRY by CaMV35S promoter caused an increase in the expression of SCM::GUS in the root epidermis. Intriguingly, the overexpression of CPC by CaMV35S promoter repressed the expression of SCM::GUS. Together, these results suggest that TRY plays a unique role in generating the appropriate spatial expression of SCM.

  12. The effect of two pesticides (Vitavax-300 and Gaucho on rhizobia and on the nodulation of four legumes

    Directory of Open Access Journals (Sweden)

    P. MIETTINEN

    2008-12-01

    Full Text Available The application of seed-protecting pesticides is often a prerequisite for raising legumes in the tropics. However, these chemicals may influence the development of root nodule symbiosis. In the present study, high concentrations of Gaucho insecticide (imidacloprid and Vitavax-300 fungicide (carboxin and captan clearly inhibited the growth of root nodule bacterium under laboratory conditions. However, they did not effect to the nodulation or biomass production of Arachis pintoi, Arachis hypogaea, Mucuna pruriens or Desmodium ovalifolium raised in a green house in eastern Costa Rica. Explanations for these results are discussed.;

  13. The effect of two pesticides (Vitavax-300 and Gaucho on rhizobia and on the nodulation of four legumes

    Directory of Open Access Journals (Sweden)

    Pasi Miettinen

    1996-03-01

    Full Text Available The application of seed-protecting pesticides is often a prerequisite for raising legumes in the tropics. However, these chemicals may influence the development of root nodule symbiosis. In the present study, high concentrations of Gaucho insecticide (imidacloprid and Vitavax-300 fungicide (carboxin and captan clearly inhibited the growth of root nodule bacterium under laboratory conditions. However, they did not effect to the nodulation or biomass production of Arachis pintoi, Arachis hypogaea, Mucuna pruriens or Desmodium ovalifolium raised in a green house in eastern Costa Rica. Explanations for these results are discussed.

  14. Legume bioactive compounds: influence of rhizobial inoculation

    Directory of Open Access Journals (Sweden)

    Luis R. Silva

    2017-04-01

    Full Text Available Legumes consumption has been recognized as beneficial for human health, due to their content in proteins, fiber, minerals and vitamins, and their cultivation as beneficial for sustainable agriculture due to their ability to fix atmospheric nitrogen in symbiosis with soil bacteria known as rhizobia. The inoculation with these baceria induces metabolic changes in the plant, from which the more studied to date are the increases in the nitrogen and protein contents, and has been exploited in agriculture to improve the crop yield of several legumes. Nevertheless, legumes also contain several bioactive compounds such as polysaccharides, bioactive peptides, isoflavones and other phenolic compounds, carotenoids, tocopherols and fatty acids, which makes them functional foods included into the nutraceutical products. Therefore, the study of the effect of the rhizobial inoculation in the legume bioactive compounds content is gaining interest in the last decade. Several works reported that the inoculation of different genera and species of rhizobia in several grain legumes, such as soybean, cowpea, chickpea, faba bean or peanut, produced increases in the antioxidant potential and in the content of some bioactive compounds, such as phenolics, flavonoids, organic acids, proteins and fatty acids. Therefore, the rhizobial inoculation is a good tool to enhance the yield and quality of legumes and further studies on this field will allow us to have plant probiotic bacteria that promote the plant growth of legumes improving their functionality.

  15. Hair Dye and Hair Relaxers

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  16. Differences in crenate broomrape parasitism dynamics on three legume crops using a thermal time model

    Directory of Open Access Journals (Sweden)

    Alejandro Pérez-De-Luque

    2016-12-01

    Full Text Available Root parasitic weeds are a major limiting production factor in a number of crops, and control is difficult. Genetic resistance and chemical control lead the fight, but without unequivocal success. Models that help to describe and even predict the evolution of parasitism underground are a valuable tool for herbicide applications, and even could help in breeding programs. Legumes are heavily affected by Orobanche crenata (crenate broomrape in the Mediterranean basin. This work presents a descriptive model based on thermal time and correlating growing day-degrees (GDD with the different developmental stages of the parasite. The model was developed in three different legume crops (faba bean, grass pea and lentil attacked by crenate broomrape. The developmental stages of the parasite strongly correlated with the GDD and differences were found depending on the host crop.

  17. Distribution and uses of legume DNA clone resources

    International Nuclear Information System (INIS)

    Young, N.D.

    2001-01-01

    Since 1990, my lab has developed and distributed various DNA clone resources for the legumes. In the first several years, the focus was on members of the tropical genus, Vigna, including the widely cultivated species, mungbean (V. radiata) and cowpea (V. unguiculata). Both of these grain legumes play key roles in agriculture in developing countries of Asia (mungbean) and Africa (cowpea). Moreover, because there is substantial genome conservation among legumes, these genetic resources have also been utilized by a wide range of researchers in other crop species. In 1997, my lab began to focus on the development and distribution of a new generation of DNA clone resources; Bacterial Artificial Chromosomes (BAC). A library of these clones was constructed in soybean (Glycine max) the most important legume species worldwide in terms of economic value. Again, the library has become a valuable resource for the legume research community and has been widely used in studies of legume genomics. (author)

  18. Chronic periapical periodontitis containing mature human hair shaft: a case report.

    Science.gov (United States)

    Sharif, Mohammad Owaise; Yar, Riaz; Oliver, Richard

    2011-04-01

    A case is reported of a 44-year-old male who was referred with persistent pus discharge associated with his UL2 which had been root treated on two occasions. Radiographic examination revealed a radiolucency of approximately 8 mm diameter. An apicectomy was performed and histopathological examination revealed the presence of mature birefringent hair-shaft structures within a chronic periapical periodontitis. This article presents a rare occurrence, the presence of human hair in the periapical tissues.

  19. The legume manifesto: (Networkers on Fabaceae, unite!

    Directory of Open Access Journals (Sweden)

    Mikić Aleksandar

    2011-01-01

    Full Text Available Legumes have been an important part of cropping systems since the dawn of agriculture. The shift in Europe from draught animals to meat animals coincided with the increasing availability of soybean meal from North and South America, and the Common Agricultural Policy of the European Union promoted the growing of cereals and oilseeds at the expense of other crops so legumes fell out of favour with farmers and decision-makers. Continental concerns about food and feed security, high prices of oil and soybean meal and advances in the application of fundamental molecular genetics to crop species, all mean that now is a good opportunity to promote the return of legumes to European cropping systems by enhancing the efficiency of research and development on this family. Hence we propose the establishment of a Legume Society that will promote information exchange and scientific productivity by uniting the various legume research communities.

  20. Localization of Myosin and Actin in the Pelage and Whisker Hair Follicles of Rat

    International Nuclear Information System (INIS)

    Morioka, Kiyokazu; Matsuzaki, Toshiyuki; Takata, Kuniaki

    2006-01-01

    The combined effects of myosin II and actin enable muscle and nonmuscle cells to generate forces required for muscle contraction, cell division, cell migration, cellular morphological changes, the maintenance of cellular tension and polarity, and so on. However, except for the case of muscle contraction, the details are poorly understood. We focus on nonmuscle myosin and actin in the formation and maintenance of hair and skin, which include highly active processes in mammalian life with respect to the cellular proliferation, differentiation, and movement. The localization of nonmuscle myosin II and actin in neonatal rat dorsal skin, mystacial pad, hair follicles, and vibrissal follicles was studied by immunohistochemical technique to provide the basis for the elucidation of the roles of these proteins. Specificities of the antibodies were verified by using samples from the relevant tissues and subjecting them to immunoblotting test prior to morphological analyses. The myosin and actin were abundant and colocalized in the spinous and granular layers but scarce in the basal layer of the dorsal and mystacial epidermis. In hair and vibrissal follicles, nonmuscle myosin and actin were colocalized in the outer root sheath and some hair matrix cells adjoining dermal papillae. In contrast, most areas of the inner root sheath and hair matrix appeared to comprise very small amounts of myosin and actin. Hair shaft may comprise significant myosin during the course of its keratinization. These results suggest that the actin-myosin system plays a part in cell movement, differentiation, protection and other key functions of skin and hair cells

  1. Neglecting legumes has compromised human health and sustainable food production.

    Science.gov (United States)

    Foyer, Christine H; Lam, Hon-Ming; Nguyen, Henry T; Siddique, Kadambot H M; Varshney, Rajeev K; Colmer, Timothy D; Cowling, Wallace; Bramley, Helen; Mori, Trevor A; Hodgson, Jonathan M; Cooper, James W; Miller, Anthony J; Kunert, Karl; Vorster, Juan; Cullis, Christopher; Ozga, Jocelyn A; Wahlqvist, Mark L; Liang, Yan; Shou, Huixia; Shi, Kai; Yu, Jingquan; Fodor, Nandor; Kaiser, Brent N; Wong, Fuk-Ling; Valliyodan, Babu; Considine, Michael J

    2016-08-02

    The United Nations declared 2016 as the International Year of Pulses (grain legumes) under the banner 'nutritious seeds for a sustainable future'. A second green revolution is required to ensure food and nutritional security in the face of global climate change. Grain legumes provide an unparalleled solution to this problem because of their inherent capacity for symbiotic atmospheric nitrogen fixation, which provides economically sustainable advantages for farming. In addition, a legume-rich diet has health benefits for humans and livestock alike. However, grain legumes form only a minor part of most current human diets, and legume crops are greatly under-used. Food security and soil fertility could be significantly improved by greater grain legume usage and increased improvement of a range of grain legumes. The current lack of coordinated focus on grain legumes has compromised human health, nutritional security and sustainable food production.

  2. Identifying the transition to the maturation zone in three ecotypes of Arabidopsis thaliana roots.

    Science.gov (United States)

    Cajero Sánchez, Wendy; García-Ponce, Berenice; Sánchez, María de la Paz; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana

    2018-01-01

    The Arabidopsis thaliana (hereafter Arabidopsis) root has become a useful model for studying how organ morphogenesis emerge from the coordination and balance of cell proliferation and differentiation, as both processes may be observed and quantified in the root at different stages of development. Hence, being able to objectively identify and delimit the different stages of root development has been very important. Up to now, three different zones along the longitudinal axis of the primary root of Arabidopsis, have been identified: the root apical meristematic zone (RAM) with two domains [the proliferative (PD) and the transition domain (TD)], the elongation zone (EZ) and the maturation zone (MZ). We previously reported a method to quantify the length of the cells of the meristematic and the elongation zone, as well as the boundaries or transitions between the root domains along the growing part of the Arabidopsis root. In this study, we provide a more accurate criterion to identify the MZ. Traditionally, the transition between the EZ to the MZ has been established by the emergence of the first root-hair bulge in the epidermis, because this emergence coincides with cell maturation in this cell type. But we have found here that after the emergence of the first root-hair bulge some cells continue to elongate and we have confirmed this in three different Arabidopsis ecotypes. We established the limit between the EZ and the MZ by looking for the closest cortical cell with a longer length than the average cell length of 10 cells after the cortical cell closest to the epidermal cell with the first root-hair bulge in these three ecotypes. In Col-0 and Ws this cell is four cells above the one with the root hair bulge and, in the Ler ecotype, this cell is five cells above. To unambiguously identifying the site at which cells stop elongating and attain their final length and fate at the MZ, we propose to calculate the length of completely elongated cortical cells counting 10

  3. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development.

    Directory of Open Access Journals (Sweden)

    Christopher Hepworth

    Full Text Available Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development.

  4. Global Synthesis of Drought Effects on Food Legume Production.

    Science.gov (United States)

    Daryanto, Stefani; Wang, Lixin; Jacinthe, Pierre-André

    2015-01-01

    Food legume crops play important roles in conservation farming systems and contribute to food security in the developing world. However, in many regions of the world, their production has been adversely affected by drought. Although water scarcity is a severe abiotic constraint of legume crops productivity, it remains unclear how the effects of drought co-vary with legume species, soil texture, agroclimatic region, and drought timing. To address these uncertainties, we collected literature data between 1980 and 2014 that reported monoculture legume yield responses to drought under field conditions, and analyzed this data set using meta-analysis techniques. Our results showed that the amount of water reduction was positively related with yield reduction, but the extent of the impact varied with legume species and the phenological state during which drought occurred. Overall, lentil (Lens culinaris), groundnut (Arachis hypogaea), and pigeon pea (Cajanus cajan) were found to experience lower drought-induced yield reduction compared to legumes such as cowpea (Vigna unguiculata) and green gram (Vigna radiate). Yield reduction was generally greater when legumes experienced drought during their reproductive stage compared to during their vegetative stage. Legumes grown in soil with medium texture also exhibited greater yield reduction compared to those planted on soil of either coarse or fine texture. In contrast, regions and their associated climatic factors did not significantly affect legume yield reduction. In the face of changing climate, our study provides useful information for agricultural planning and research directions for development of drought-resistant legume species to improve adaptation and resilience of agricultural systems in the drought-prone regions of the world.

  5. The ethylene-inhibitor aminoethoxyvinylglycine restores normal nodulation by Rhizobium leguminosarum biovar. viciae on Vicia sativa subsp. nigra by suppressing the 'Thick and short roots' phenotype

    NARCIS (Netherlands)

    Zaat, S. A.; van Brussel, A. A.; Tak, T.; Lugtenberg, B. J.; KIJNE, J. W.

    1989-01-01

    Nodulation of Vicia sativa subsp. nigra L. by Rhizobium bacteria is coupled to the development of thick and short roots (Tsr). This root phenotype as well as root-hair induction (Hai) and root-hair deformation (Had) are caused by a factor(s) produced by the bacteria in response to plant flavonoids.

  6. South African Papilionoid Legumes Are Nodulated by Diverse Burkholderia with Unique Nodulation and Nitrogen-Fixation Loci

    Science.gov (United States)

    Beukes, Chrizelle W.; Venter, Stephanus N.; Law, Ian J.; Phalane, Francina L.; Steenkamp, Emma T.

    2013-01-01

    The root-nodule bacteria of legumes endemic to the Cape Floristic Region are largely understudied, even though recent reports suggest the occurrence of nodulating Burkholderia species unique to the region. In this study, we considered the diversity and evolution of nodulating Burkholderia associated with the endemic papilionoid tribes Hypocalypteae and Podalyrieae. We identified distinct groups from verified rhizobial isolates by phylogenetic analyses of the 16S rRNA and recA housekeeping gene regions. In order to gain insight into the evolution of the nodulation and diazotrophy of these rhizobia we analysed the genes encoding NifH and NodA. The majority of these 69 isolates appeared to be unique, potentially representing novel species. Evidence of horizontal gene transfer determining the symbiotic ability of these Cape Floristic Region isolates indicate evolutionary origins distinct from those of nodulating Burkholderia from elsewhere in the world. Overall, our findings suggest that Burkholderia species associated with fynbos legumes are highly diverse and their symbiotic abilities have unique ancestries. It is therefore possible that the evolution of these bacteria is closely linked to the diversification and establishment of legumes characteristic of the Cape Floristic Region. PMID:23874611

  7. Hair dyeing, hair washing and hair cortisol concentrations among women from the healthy start study

    DEFF Research Database (Denmark)

    Kristensen, Sheila K.; Larsen, Sofus C.; Olsen, Nanna J.

    2017-01-01

    Background: Hair cortisol concentration (HCC) has been suggested as a promising marker for chronic stress. However, studies investigating the influence of hair dyeing and hair washing frequency on HCC have shown inconsistent results. Objective: To examine associations between HCC and hair dyeing...... status or weekly hair washing frequency among women. Methods: This cross-sectional study was based on data from 266 mothers participating in the Healthy Start intervention study. HCC was measured in the proximal end of the hair (1–2 cm closest to the scalp) while hair dyeing status, frequency of hair...... washing and covariates were reported by the women. Linear regression analyses were applied to assess the associations between HCC and hair dyeing or weekly frequency of hair washing. Results: No statistically significant difference (p = 0.91) in HCC was found between women who dyed hair (adjusted mean...

  8. Global Synthesis of Drought Effects on Food Legume Production.

    Directory of Open Access Journals (Sweden)

    Stefani Daryanto

    Full Text Available Food legume crops play important roles in conservation farming systems and contribute to food security in the developing world. However, in many regions of the world, their production has been adversely affected by drought. Although water scarcity is a severe abiotic constraint of legume crops productivity, it remains unclear how the effects of drought co-vary with legume species, soil texture, agroclimatic region, and drought timing. To address these uncertainties, we collected literature data between 1980 and 2014 that reported monoculture legume yield responses to drought under field conditions, and analyzed this data set using meta-analysis techniques. Our results showed that the amount of water reduction was positively related with yield reduction, but the extent of the impact varied with legume species and the phenological state during which drought occurred. Overall, lentil (Lens culinaris, groundnut (Arachis hypogaea, and pigeon pea (Cajanus cajan were found to experience lower drought-induced yield reduction compared to legumes such as cowpea (Vigna unguiculata and green gram (Vigna radiate. Yield reduction was generally greater when legumes experienced drought during their reproductive stage compared to during their vegetative stage. Legumes grown in soil with medium texture also exhibited greater yield reduction compared to those planted on soil of either coarse or fine texture. In contrast, regions and their associated climatic factors did not significantly affect legume yield reduction. In the face of changing climate, our study provides useful information for agricultural planning and research directions for development of drought-resistant legume species to improve adaptation and resilience of agricultural systems in the drought-prone regions of the world.

  9. Localization of ENHANCER OF TRY AND CPC1 protein in Arabidopsis root epidermis.

    Science.gov (United States)

    Tominaga-Wada, Rumi; Kurata, Tetsuya; Wada, Takuji

    2017-07-01

    CAPRICE (CPC) is a R3-type MYB transcription factor, which induces root-hair cell differentiation in Arabidopsis thaliana. The CPC homologous gene ENHANCER TRY AND CPC1 (ETC1) has a similar function to CPC, and acts in concert with CPC. The CPC protein moves between root epidermal cells, from hairless cells to the neighboring cells, and promotes root-hair differentiation. Therefore, ETC1 is predicted to have movement ability similar to that of CPC. In this study, we generated ETC1:ETC1:GFP and CPC:ETC1:GFP transgenic plants to clarify whether ETC1 exhibits cell-to-cell movement. Transgenic plants showed many-root-haired and trichome-less phenotypes, similar to those observed in CPC:CPC:GFP plants, suggesting a similar function of ETC1 and CPC. However, the ETC1:GFP fusion protein located exclusively to the hairless cells in both ETC1:ETC1:GFP and CPC:ETC1:GFP transgenic plants. These results indicate that, unexpectedly, the ETC1 protein cannot move in the root epidermis from hairless cells to the neighboring cells. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Body hair transplant: An additional source of donor hair in hair restoration surgery

    Directory of Open Access Journals (Sweden)

    Poswal Arvind

    2007-01-01

    Full Text Available Androgenic alopecia (pattern baldness is a condition in which there is androgen mediated progressive miniaturization and loss of hair follicles in a genetically susceptible individual. A 47-year-old male patient with advanced degree of hair loss (Norwood 6 category wanted to go for full hair restoration surgery. Due to the limited availability of donor hair in the scalp, a small session with 700-chest hair was performed. On follow-up at eight months it was observed that chest hair grew and formed a cosmetically acceptable forelock.

  11. Soil characteristics under legume and non-legume tree canopies in ...

    African Journals Online (AJOL)

    %, 100% and 150% the distance from tree trunk to canopy edge of leguminous sabiá (Mimosa caesalpiniifolia Benth.) and espinheiro (Machaerium aculeatum Raddi) and non-legume cajueiro (Anacardium occidentale L.) and jaqueira ...

  12. THE POSSIBILITY OF LEGUMES PRODUCTION

    Directory of Open Access Journals (Sweden)

    Glinushkin A.P.

    2013-10-01

    Full Text Available Primary receptacles improve profitability legumes are limiting demonstrations and acts of plant diseases and pests. Pathogens are 25-50% lower yield of soybean, chickpea, beans, peas. Pests focally up to 87% of viable seeds sown reduce the number of plants per 1 ha. Only effective protection against disease and estimates of crop production can increase the average profitability of legume crops by 15-30%. Livestock is very important, but in the Southern Urals requires real support for its production with a positive balance (in the calculations with a deviation of 5%. The most important resource in our opinion may be a reduction in price of fodder. Thus, legumes are sought for animal protein. Soybeans, chickpeas, beans, peas universal culture and the possibility of their use in the food balance for a healthy diet of ordinary people engaged in recreational and other sports niche expands further improve the profitability of their production. Regulation of the balance of the distribution of food and feed produced grain legumes allows fine regulation of the cost of fodder for a particular type of livestock activities. Phytosanitary capabilities , the balance of influence of legumes on arable land, also requires a fine regulation of these processes. Obtaining long-term public support for this production is unlikely in the WTO because actual search for ways to improve the profitability of production of agricultural technologies. In our view, a comprehensive approach taking into account the capacity of local markets for crop production. Such activity can act as a guaranteed quality of agro-technology and animal products from local resources specific zonal conditions of production.

  13. Cis-regulatory PLETHORA promoter elements directing root and nodule expression are conserved between Arabidopsis thaliana and Medicago truncatula

    NARCIS (Netherlands)

    Franssen, H.G.J.M.; Kulikova, O.; Willemsen, V.A.; Heidstra, R.

    2017-01-01

    Nodules are unique organs formed on roots of legumes by soil-borne bacteria, collectively known as rhizobium. Recently, we have shown that orthologs of the AINTEGUMENTA-like (AIL) AP2 transcription factors PLETHORA (PLT) 1 to 4, that redundantly regulate Arabidopsis thaliana root development are

  14. Genome sequence of Ensifer arboris strain LMG 14919T; a microsymbiont of the legume Prosopis chilensis growing in Kosti, Sudan

    Science.gov (United States)

    Reeve, Wayne; Tian, Rui; Bräu, Lambert; Goodwin, Lynne; Munk, Christine; Detter, Chris; Tapia, Roxanne; Han, Cliff; Liolios, Konstantinos; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavrommatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Willems, Anne

    2013-01-01

    Ensifer arboris LMG 14919T is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of several species of legume trees. LMG 14919T was isolated in 1987 from a nodule recovered from the roots of the tree Prosopis chilensis growing in Kosti, Sudan. LMG 14919T is highly effective at fixing nitrogen with P. chilensis (Chilean mesquite) and Acacia senegal (gum Arabic tree or gum acacia). LMG 14919T does not nodulate the tree Leucena leucocephala, nor the herbaceous species Macroptilium atropurpureum, Trifolium pratense, Medicago sativa, Lotus corniculatus and Galega orientalis. Here we describe the features of E. arboris LMG 14919T, together with genome sequence information and its annotation. The 6,850,303 bp high-quality-draft genome is arranged into 7 scaffolds of 12 contigs containing 6,461 protein-coding genes and 84 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project. PMID:25197433

  15. Genome sequence of Ensifer arboris strain LMG 14919(T); a microsymbiont of the legume Prosopis chilensis growing in Kosti, Sudan.

    Science.gov (United States)

    Reeve, Wayne; Tian, Rui; Bräu, Lambert; Goodwin, Lynne; Munk, Christine; Detter, Chris; Tapia, Roxanne; Han, Cliff; Liolios, Konstantinos; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavrommatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Willems, Anne

    2014-06-15

    Ensifer arboris LMG 14919(T) is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of several species of legume trees. LMG 14919(T) was isolated in 1987 from a nodule recovered from the roots of the tree Prosopis chilensis growing in Kosti, Sudan. LMG 14919(T) is highly effective at fixing nitrogen with P. chilensis (Chilean mesquite) and Acacia senegal (gum Arabic tree or gum acacia). LMG 14919(T) does not nodulate the tree Leucena leucocephala, nor the herbaceous species Macroptilium atropurpureum, Trifolium pratense, Medicago sativa, Lotus corniculatus and Galega orientalis. Here we describe the features of E. arboris LMG 14919(T), together with genome sequence information and its annotation. The 6,850,303 bp high-quality-draft genome is arranged into 7 scaffolds of 12 contigs containing 6,461 protein-coding genes and 84 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

  16. 7606 IMPROVEMENT OF DIABETIC DYSLIPIDEMIA BY LEGUMES ...

    African Journals Online (AJOL)

    Rotimi

    2013-04-02

    Apr 2, 2013 ... Grain legumes are a valuable source of food proteins; hence, their exploitation is ... Diabetes is an endocrine-metabolic disease characterised by hyperglycemia associated ... The high level of dietary fibre in legumes has long.

  17. Body Hair

    Science.gov (United States)

    ... girlshealth.gov/ Home Body Puberty Body hair Body hair Even before you get your first period , you ... removing pubic hair Ways to get rid of hair top Removing body hair can cause skin irritation, ...

  18. Hair cosmetics

    Directory of Open Access Journals (Sweden)

    Nina Madnani

    2013-01-01

    Full Text Available The hair cosmetic industry has undergone a revolutionary change over the last two decades. The focus has dramatically veered from merely cleaning to repair, increasing the tensile strength, reducing oxidative damage, and stimulating growth. Newer shorter procedures to make hair look naturally more lustrous, smooth, and manageable have evolved. Specialized grooming products have been formulated to cleanse, calm, and condition the hair, and are tailored for different hair-types, for example, dry, dry-damaged, oily, colored, and gray hair. Other products are formulated to alter the color or structure of the hair shaft, for example, hair dyes, perming/relaxing. Hair sprays and waxes/gels, can alter the ′lift′ of the hair-shaft. Although dermatologists are experts in managing scalp and hair diseases, the esthetic applications of newer cosmetic therapies still remain elusive. This article attempts to fill the lacunae in our knowledge of hair cosmetics and esthetic procedures relevant in today′s rapidly changing beauty-enhancing industry, with special emphasis on the Indian scenario for chemical and ′natural′ hair products.

  19. Genetic control of flowering time in legumes

    Directory of Open Access Journals (Sweden)

    James L Weller

    2015-04-01

    Full Text Available The timing of flowering, and in particular the degree to which it is responsive to the environment, is a key factor in the adaptation of a given species to various eco-geographic locations and agricultural practices. Flowering time variation has been documented in many crop legumes, and selection for specific variants has permitted significant expansion and improvement in cultivation, from prehistoric times to the present day. Recent advances in legume genomics have accelerated the process of gene identification and functional analysis, and opened up new prospects for a molecular understanding of flowering time adaptation in this important crop group. Within the legumes, two species have been prominent in flowering time studies; the vernalization-responsive long-day species pea (Pisum sativum and the warm-season short-day plant soybean (Glycine max. Analysis of flowering in these species is now being complemented by reverse genetics capabilities in the model legumes Medicago truncatula and Lotus japonicus, and the emergence of genome-scale resources in a range of other legumes. This review will outline the insights gained from detailed forward genetic analysis of flowering time in pea and soybean, highlighting the importance of light perception, the circadian clock and the FT family of flowering integrators. It discusses the current state of knowledge on genetic mechanisms for photoperiod and vernalization response, and concludes with a broader discussion of flowering time adaptation across legumes generally.

  20. Cytogenetics of Legumes in the Phaseoloid Clade

    Directory of Open Access Journals (Sweden)

    Aiko Iwata

    2013-11-01

    Full Text Available Cytogenetics played an essential role in studies of chromosome structure, behavior, and evolution in numerous plant species. The advent of molecular cytogenetics combined with recent development of genomic resources has ushered in a new era of chromosome studies that have greatly advanced our knowledge of karyotypic diversity, genome and chromosome organization, and chromosomal evolution in legumes. This review summarizes some of the achievements of cytogenetic studies in legumes in the Phaseoloid clade, which includes several important legume crops such as common bean ( L., cowpea [ (L. Walp.], soybean [ (L. Merr.], and pigeonpea [ (L. Huth]. In the Phaseoloid clade, karyotypes are mostly stable. There are, however, several species with extensive chromosomal changes. Fluorescence in situ hybridization has been useful to reveal chromosomal structure by physically mapping transposons, satellite repeats, ribosomal DNA genes, and bacterial artificial chromosome clones onto chromosomes. Polytene chromosomes, which are much longer than the mitotic chromosomes, have been successfully found and used in cytogenetic studies in some and species. Molecular cytogenetics will continue to be an important tool in legume genetics and genomics, and we discuss future applications of molecular cytogenetics to better understand chromosome and genome structure and evolution in legumes.

  1. Feed legumes for truly sustainable crop-animal systems

    Directory of Open Access Journals (Sweden)

    Paolo Annicchiarico

    2017-06-01

    Full Text Available Legume cultivation has sharply decreased in Italy during the last 50 years. Lucerne remains widely grown (with about 12% of its area devoted to dehydration, whereas soybean is definitely the most-grown grain legume. Poor legume cropping is mainly due to the gap in yielding ability with major cereals, which has widened up in time according to statistical data. Lucerne displays definitely higher crude protein yield and somewhat lower economic gap with benchmark cereals than feed grain legumes. Pea because of high feed energy production per unit area and rate of genetic progress, and white lupin because of high protein yield per unit area, are particularly interesting for Italian rain-fed environments. Greater legume cultivation in Europe is urged by the need for reducing energy and green-house gas emissions and excessive and unbalanced global N flows through greater symbiotic N fixation and more integrated crop-animal production, as well as to cope with ongoing and perspective raising prices of feed proteins and N fertilisers and insecurity of feed protein supplies. The transition towards greater legume cultivation requires focused research effort, comprehensive stakeholder cooperation and fair economic compensation for legume environmental services, with a key role for genetic improvement dragged by public breeding or pre-breeding. New opportunities for yield improvement arise from the ongoing development of cost-efficient genome-enabled selection procedures, enhanced adaptation to specific cropping conditions via ecophysiological and evolutionary-based approaches, and more thorough exploitation of global genetic resources.

  2. Ingrown Hair

    Science.gov (United States)

    Ingrown hair Overview An ingrown hair occurs when a shaved or tweezed hair grows back into the skin. It can cause inflammation, pain and tiny bumps in the area where the hair was removed. Ingrown hair is a common condition ...

  3. Flavonoid profiling and nodulation of some legumes in response to the allelopathic stress of Sonchus oleraceus L.

    OpenAIRE

    Gomaa,Nasr Hassan; Hassan,Mahmoud Omar; Fahmy,Gamal Mohammad; González,Luís; Hammouda,Ola; Atteya,Atteya Mostafa

    2015-01-01

    Annual sowthistle (Sonchus oleraceus) has been reported to produce allelopathic effects. Two greenhouse experiments were conducted to estimate the allelopathic potential of both plant residue and root exudates of S. oleraceus on flavonoid composition and nodulation in a leguminous crop, Trifolium alexandrinum, and in two leguminous weeds, Melilotus indicus and T. resupinatum. The results of high performance liquid chromatography-mass spectrometry (HPLC-MS/MS) showed that all three legumes con...

  4. Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions

    International Nuclear Information System (INIS)

    Isaac, M.E.; Hinsinger, P.; Harmand, J.M.

    2012-01-01

    Considerable amounts of nitrogen (N) and phosphorus (P) fertilizers have been mis-used in agroecosystems, with profound alteration to the biogeochemical cycles of these two major nutrients. To reduce excess fertilizer use, plant-mediated nutrient supply through N 2 -fixation, transfer of fixed N and mobilization of soil P may be important processes for the nutrient economy of low-input tree-based intercropping systems. In this study, we quantified plant performance, P acquisition and belowground N transfer from the N 2 -fixing tree to the cereal crop under varying root contact intensity and P supplies. We cultivated Acacia senegal var senegal in pot-culture containing 90% sand and 10% vermiculite under 3 levels of exponentially supplied P. Acacia plants were then intercropped with durum wheat (Triticum turgidum durum) in the same pots with variable levels of adsorbed P or transplanted and intercropped with durum wheat in rhizoboxes excluding direct root contact on P-poor red Mediterranean soils. In pot-culture, wheat biomass and P content increased in relation to the P gradient. Strong isotopic evidence of belowground N transfer, based on the isotopic signature (δ 15 N) of tree foliage and wheat shoots, was systematically found under high P in pot-culture, with an average N transfer value of 14.0% of wheat total N after 21 days of contact between the two species. In the rhizoboxes, we observed limitations on growth and P uptake of intercropped wheat due to competitive effects on soil resources and minimal evidence of belowground N transfer of N from acacia to wheat. In this intercrop, specifically in pot-culture, facilitation for N transfer from the legume tree to the crop showed to be effective especially when crop N uptake was increased (or stimulated) as occurred under high P conditions and when competition was low. Understanding these processes is important to the nutrient economy and appropriate management of legume-based agroforestry systems. -- Highlights

  5. Root growth of tomato seedlings intensified by humic substances from peat bogs

    Directory of Open Access Journals (Sweden)

    Alexandre Christofaro Silva

    2011-10-01

    Full Text Available Peats are an important reserve of humified carbon in terrestrial ecosystems. The interest in the use of humic substances as plant growth promoters is continuously increasing. The objective of this study was to evaluate the bioactivity of alkaline soluble humic substances (HS, humic (HA and fulvic acids (FA isolated from peats with different decomposition stages of organic matter (sapric, fibric and hemic in the Serra do Espinhaço Meridional, state of Minas Gerais. Dose-response curves were established for the number of lateral roots growing from the main plant axis of tomato seedlings. The bioactivity of HA was greatest (highest response in lateral roots at lowest concentration while FA did not intensify root growth. Both HS and HA stimulated root hair formation. At low concentrations, HS and HA induced root hair formation near the root cap, a typical hormonal imbalance effect in plants. Transgenic tomato with reporter gene DR5::GUS allowed the observation that the auxin-related signalling pathway was involved in root growth promotion by HA.

  6. Ensuring sustainable grain legume-cereal cropping systems

    DEFF Research Database (Denmark)

    Bedoussac, Laurent; Journet, E-P; Hauggaard-Nielsen, Henrik

    2017-01-01

    health makes them a key rotation crop in the sustainable intensification and diversification of smallholder farming. This makes grain legumes a key food security crop. However, yields in developing countries are low as a result of such factors as the need for improved varieties of seed, poor seed......Grain legumes are widely cultivated, particularly for their dry seeds (known as pulses). Grain legumes are an important crop for a number of reasons. They are a rich source of protein and fibre, minerals and vitamins. In addition, their rapid growth and ability to fix nitrogen and improve soil...... distribution, the impact of pests and diseases, as well as vulnerability to poor soils, drought and other effects of climate change. This chapter summarises data from over 50 field experiments undertaken since 2001 on cereal-grain legume intercropping in 13 sites in southern and western France as well...

  7. Nutrition of women with hair loss problem during the period of menopause

    Directory of Open Access Journals (Sweden)

    Zuzanna Sabina Goluch-Koniuszy

    2016-03-01

    Full Text Available During the period of menopause as an effect of changes in hormone status, one of the most common ailments for women is hair loss. Taking into consideration fact that the ingredients of diet contained in various groups of consumed food products are both precursors in steroid hormones synthesis as well as have direct impact on structure, growth and keeping hair in skin integument, this is the reason why nourishing support for women during this period of life as well as during the hair loss therapy is reasonable. Standard value proteins containing Sulphur amino-acids: cysteine and methionine as precursor to keratin hair protein synthesis are basic element of diet conditioning of hair building. Irreplaceable having impact on keeping hair in skin integument is exogenous L-lysine, mainly present in the inner part of hair root is responsible for hair shape and volume. Fats present in the diet take part in steroid hormones synthesis (from cholesterol thus have influence on keeping hair in skin integument. Women diet should contain products rich in complex carbohydrates, with low glycemic index and load containing fiber regulating carbohydrate-lipid metabolism of the body. Vitamins also have impact on the state of hair: C vitamin, group B and A vitamins. Minerals which influence hair growth are: Zn, Fe, Cu, Se, Si, Mg and Ca. It is worthwhile to pay closer attention to diet in women who besides hormone changes and undertaken pharmacotherapy are additionally exposed to chronic stress and improperly conducted cosmetic’s and hairdresser’s treatments.

  8. Cycling of grain legume residue nitrogen

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1995-01-01

    Symbiotic nitrogen fixation by legumes is the main input of nitrogen in ecological agriculture. The cycling of N-15-labelled mature pea (Pisum sativum L.) residues was studied during three years in small field plots and lysimeters. The residual organic labelled N declined rapidly during the initial...... management methods in order to conserve grain legume residue N sources within the soil-plant system....

  9. Burkholderia kirstenboschensis sp. nov. nodulates papilionoid legumes indigenous to South Africa.

    Science.gov (United States)

    Steenkamp, Emma T; van Zyl, Elritha; Beukes, Chrizelle W; Avontuur, Juanita R; Chan, Wai Yin; Palmer, Marike; Mthombeni, Lunghile S; Phalane, Francina L; Sereme, T Karabo; Venter, Stephanus N

    2015-12-01

    Despite the diversity of Burkholderia species known to nodulate legumes in introduced and native regions, relatively few taxa have been formally described. For example, the Cape Floristic Region of South Africa is thought to represent one of the major centres of diversity for the rhizobial members of Burkholderia, yet only five species have been described from legumes occurring in this region and numerous are still awaiting taxonomic treatment. Here, we investigated the taxonomic status of 12 South African root-nodulating Burkholderia isolates from native papilionoid legumes (Hypocalyptus coluteoides, H. oxalidifolius, H. sophoroides and Virgilia oroboides). Analysis of four gene regions (16S rRNA, recA, atpD and rpoB) revealed that the isolates represent a genealogically unique and exclusive assemblage within the genus. Its distinctness was supported by all other aspects of the polyphasic approach utilized, including the genome-based criteria DNA-DNA hybridization (≥70.9%) and average nucleotide identities (≥96%). We accordingly propose the name B. kirstenboschensis sp. nov. for this taxon with isolate Kb15(T) (=LMG 28727(T); =SARC 695(T)) as its type strain. Our data showed that intraspecific genome size differences (≥0.81 Mb) and the occurrence of large DNA regions that are apparently unique to single individuals (16-23% of an isolate's genome) can significantly limit the value of data obtained from DNA-DNA hybridization experiments. Substitution of DNA-DNA hybridization with whole genome sequencing as a prerequisite for the description of Burkholderia species will undoubtedly speed up the pace at which their diversity are documented, especially in hyperdiverse regions such as the Cape Floristic Region. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Functional anatomy of the hair follicle: The Secondary Hair Germ.

    Science.gov (United States)

    Panteleyev, Andrey A

    2018-07-01

    The secondary hair germ (SHG)-a transitory structure in the lower portion of the mouse telogen hair follicle (HF)-is directly involved in anagen induction and eventual HF regrowth. Some crucial aspects of SHG functioning and ontogenetic relations with other HF parts, however, remain undefined. According to recent evidence (in contrast to previous bulge-centric views), the SHG is the primary target of anagen-inducing signalling and a source of both the outer root sheath (ORS) and ascending HF layers during the initial (morphogenetic) anagen subphase. The SHG is comprised of two functionally distinct cell populations. Its lower portion (originating from lower HF cells that survived catagen) forms all ascending HF layers, while the upper SHG (formed by bulge-derived cells) builds up the ORS. The predetermination of SHG cells to a specific morphogenetic fate contradicts their attribution to the "stem cell" category and supports SHG designation as a "germinative" or a "founder" cell population. The mechanisms of this predetermination driving transition of the SHG from "refractory" to the "competent" state during the telogen remain unknown. Functionally, the SHG serves as a barrier, protecting the quiescent bulge stem cell niche from the extensive follicular papilla/SHG signalling milieu. The formation of the SHG is a prerequisite for efficient "precommitment" of these cells and provides for easier sensing and a faster response to anagen-inducing signals. In general, the formation of the SHG is an evolutionary adaptation, which allowed the ancestors of modern Muridae to acquire a specific, highly synchronized pattern of hair cycling. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Utilization of summer legumes as bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Keri B.; Bauer, Philip J.; Ro, Kyoung S. [United States Department of Agriculture, ARS, Coastal Plains Soil, Water, and Plant Research Center, 2611 W. Lucas St. Florence, SC 29501 (United States)

    2010-12-15

    Sunn hemp (Crotolaria juncea), is a fast growing, high biomass yielding tropical legume that may be a possible southeastern bioenergy crop. When comparing this legume to a commonly grown summer legume - cowpeas (Vigna unguiculata), sunn hemp was superior in biomass yield (kg ha{sup -1}) and subsequent energy yield (GJ ha{sup -1}). In one year of the study after 12 weeks of growth, sunn hemp had 10.7 Mg ha{sup -1} of biomass with an energy content of 19.0 Mg ha{sup -1}. This resulted in an energy yield of 204 GJ ha{sup -1}. The energy content was 6% greater than that of cowpeas. Eventhough sunn hemp had a greater amount of ash, plant mineral concentrations were lower in some cases of minerals (K, Ca, Mg, S) known to reduce thermochemical conversion process efficiency. Pyrolytic degradation of both legumes revealed that sunn hemp began to degrade at higher temperatures as well as release greater amounts of volatile matter at a faster rate. (author)

  12. Comparative sequence analysis of nitrogen fixation-related genes in six legumes

    Directory of Open Access Journals (Sweden)

    Dong Hyun eKim

    2013-08-01

    Full Text Available Legumes play an important role as food and forage crops in international agriculture especially in developing countries. Legumes have a unique biological process called nitrogen fixation (NF by which they convert atmospheric nitrogen to ammonia. Although legume genomes have undergone polyploidization, duplication and divergence, NF-related genes, because of their essential functional role for legumes, might have remained conserved. To understand the relationship of divergence and evolutionary processes in legumes, this study analyzes orthologs and paralogs for selected 20 NF-related genes by using comparative genomic approaches in six legumes i.e. Medicago truncatula (Mt, Cicer arietinum, Lotus japonicus, Cajanus cajan (Cc, Phaseolus vulgaris (Pv and Glycine max (Gm. Subsequently, sequence distances, numbers of synonymous substitutions per synonymous site (Ks and nonsynonymous substitutions per nonsynonymous site (Ka between orthologs and paralogs were calculated and compared across legumes. These analyses suggest the closest relationship between Gm and Cc and the farthest distance between Mt and Pv in 6 legumes. Ks proportional plots clearly showed ancient genome duplication in all legumes, whole genome duplication event in Gm and also speciation pattern in different legumes. This study also reported some interesting observations e.g. no peak at Ks 0.4 in Gm-Gm, location of two independent genes next to each other in Mt and low Ks values for outparalogs for three genes as compared to other 12 genes. In summary, this study underlines the importance of NF-related genes and provides important insights in genome organization and evolutionary aspects of six legume species analyzed.

  13. Hair Transplants

    Science.gov (United States)

    ... Search Skin Experts Skin Treatments Hair Transplants Share » HAIR TRANSPLANTS Before (left) and after (right) - front of ... transplant. Photo courtesy of N. Sadick What are hair transplants? In punch transplanting, a plug containing hair ...

  14. From Hair in India to Hair India.

    Science.gov (United States)

    Trüeb, Ralph M

    2017-01-01

    In all cultures, human hair and hairdo have been a powerful metaphor. Tracing back the importance and significance of human hair to the dawn of civilization on the Indian subcontinent, we find that all the Vedic gods are depicted as having uncut hair in mythological stories as well as in legendary pictures. The same is true of the Hindu avatars, and the epic heroes of the Ramayana, and the Mahabharata. Finally, there are a number of hair peculiarities in India pertinent to the creed and religious practices of the Hindu, the Jain, and the Sikh. Shiva Nataraja is a depiction of the Hindu God Shiva as the cosmic dancer who performs his divine dance as creator, preserver, and destroyer of the universe and conveys the Indian conception of the never-ending cycle of time. The same principle manifests in the hair cycle, in which perpetual cycles of growth, regression, and resting underly the growth and shedding of hair. Finally, The Hair Research Society of India was founded as a nonprofit organisation dedicated to research and education in the science of hair. Notably, the HRSI reached milestones in the journey of academic pursuit with the launch of the International Journal of Trichology, and with the establishment of the Hair India conference. Ultimately, the society aims at saving the public from being taken for a ride by quackery, and at creating the awareness that the science of hair represents a subspecialty of Dermatology. In analogy again, the dwarf on which the Nataraja dances represents the demon of egotism, and thus symbolizes Shiva's, respectively, the HRSI's victory over ignorance.

  15. Legume and Lotus japonicus Databases

    DEFF Research Database (Denmark)

    Hirakawa, Hideki; Mun, Terry; Sato, Shusei

    2014-01-01

    Since the genome sequence of Lotus japonicus, a model plant of family Fabaceae, was determined in 2008 (Sato et al. 2008), the genomes of other members of the Fabaceae family, soybean (Glycine max) (Schmutz et al. 2010) and Medicago truncatula (Young et al. 2011), have been sequenced. In this sec....... In this section, we introduce representative, publicly accessible online resources related to plant materials, integrated databases containing legume genome information, and databases for genome sequence and derived marker information of legume species including L. japonicus...

  16. Limitations of the scalp-hair biologic monitor in assessing selenium status in epidemiological investigations

    International Nuclear Information System (INIS)

    Morris, J.S.; Spate, V.L.; Crane, S.B.; Alejandra Gudino

    2012-01-01

    Scalp hair is routinely used to assess exposure to toxic trace elements and nutritional status of some required trace elements. The advantages and disadvantages of hair as a biologic monitor have been comprehensively discussed in the literature for many years. Among the concerns is distinguishing between exogenous and endogenous contributions. Nested in this issue is the longitudinal distribution of a trace element along the hair strand. The typical observation for many elements of interest is that the element concentration increases from the root end to the distal end; and this is attributed to continuing contamination from exogenous sources. In this study we used neutron activation analysis to measure 14 trace elements in 6 mm segments of full-length scalp hair from three healthy members of the same household having light-urban environmental exposure. To extend the data set for selenium, we included three adult female subjects with longer than average scalp hair. From these trace-element concentrations we calculated the root-to-distal end ratios as a profile diagnostic of trace-element distributions. Ratios fall into three diagnostic categories, >1, ∼1, and 1, Zn and S have R ∼ 1, and the remaining 11 elements all have R I > Hg ∼ Au ∼ Mg ∼ Mn ∼ Sb ∼ Ca > Cu > Al ∼ Ag. R Se is greater than 1 and increases with hair length (P 0.02) corresponding to a continuous longitudinal loss of Se in stark and puzzling contrast to the other elements measured. An analogous loss of Se in the nail monitor was not observed leading us to conclude that the nail is less prone to misclassification of selenium status in epidemiological studies. (author)

  17. Breeding for traits supportive of nitrogen fixation in legumes

    International Nuclear Information System (INIS)

    Herridge, David F.

    2001-01-01

    As the potential economic benefits of enhancing dinitrogen (N 2 ) fixation of crop, pasture and forage legumes are substantial, the idea that legume breeding could play a role in enhancing N 2 fixation was advanced more than 50 years ago. Various programmes have sought to genetically improve a wide range of species, from pasture legumes such as red clover (Trifolium pratense) to the crop legumes like soybean (Glycine max) and common bean (Phaseolus vulgaris). In some the selection trait was yield, whilst in others it was high plant reliance on N 2 fixation (%Ndfa). A third strategy was to optimise legume nodulation through specific nodulation traits, e.g. mass, duration, promiscuous and selective nodulation. Plant genetic variation was sought from natural populations or created through mutagenesis. Although methods for assessing single plants and populations of plants for yield and %Ndfa varied over the years, it is now clear that measurements based on either 15 N or xylem solute analysis are the most reliable. Methodological issues as well as poor focus plagued many of the earlier programmes, since enhancing N 2 fixation essentially involves adapting legumes to fix more N when growing in N-poor soils. Programmes in which plant genotypes are inoculated with effective rhizobia and screened under conditions of low soil N maximise the symbiotic potential of the legume. (author)

  18. Hair Removal

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Hair Removal KidsHealth / For Teens / Hair Removal What's in ... you need any of them? Different Types of Hair Before removing hair, it helps to know about ...

  19. Your Hair

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Your Hair KidsHealth / For Kids / Your Hair What's in this ... eyes from sweat dripping down from your forehead. Hair Comes From Where? Whether hair is growing out ...

  20. Hair Removal

    DEFF Research Database (Denmark)

    Hædersdal, Merete

    2011-01-01

    Hair removal with optical devices has become a popular mainstream treatment that today is considered the most efficient method for the reduction of unwanted hair. Photothermal destruction of hair follicles constitutes the fundamental concept of hair removal with red and near-infrared wavelengths...... suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair......, white skin, and a normal hormonal status. Currently, no method of lifelong permanent hair eradication is available, and it is important that patients have realistic expectations. Substantial evidence has been found for short-term hair removal efficacy of up to 6 months after treatment with the available...

  1. Hair removal

    DEFF Research Database (Denmark)

    Haedersdal, Merete; Haak, Christina S

    2011-01-01

    Hair removal with optical devices has become a popular mainstream treatment that today is considered the most efficient method for the reduction of unwanted hair. Photothermal destruction of hair follicles constitutes the fundamental concept of hair removal with red and near-infrared wavelengths...... suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair......, white skin, and a normal hormonal status. Currently, no method of lifelong permanent hair eradication is available, and it is important that patients have realistic expectations. Substantial evidence has been found for short-term hair removal efficacy of up to 6 months after treatment with the available...

  2. Intercropping Maize With Legumes for Sustainable Highland Maize Production

    Directory of Open Access Journals (Sweden)

    Adirek Punyalue

    2018-02-01

    Full Text Available Residue burning to prepare soil for maize growing deprives the soil of both protective cover and organic matter, and it exacerbates environmental issues such as Southeast Asia's haze problem. This paper reports on a study that evaluated the effectiveness of maize/legume intercropping as an alternative to maize cultivation with residue burning. Cowpea (Vigna unguiculata, mung bean (V. radiata, rice bean (V. umbellata, and lablab (Lablab purpureus were sown into a standing maize crop 30 days before harvest, and the results were compared with a maize crop grown using residue burning as the method for land preparation at Pang Da Agricultural Station in Chiang Mai, Thailand, in a replicated trial conducted over 3 growing seasons from 2012 to 2014. Intercropping increased maize grain yield by 31–53% and left 70–170% more residue containing 113–230% more nitrogen than the maize sown after residue burning, depending on the legume, and decreased weed dry weight by two-thirds after 2 seasons. Soil biodiversity was enriched by the intercrops, with a doubling in the spore density of arbuscular mycorrhizal fungi in the root-zone soil and increased abundance, diversity (Shannon index, and richness of the soil macrofauna. The abundance of soil animals increased with crop residue dry weight (r = 0.90, P < 0.05 and nitrogen content (r = 0.98, P < 0.01. The effect of intercropping on maize grain yield and accumulation of residue and nitrogen were then confirmed in a participatory experiment involving farmers in 2 highland villages in the Phrao and Chiang Dao districts of Chiang Mai Province with maize and rice bean in 2015. The effects of maize/legume intercropping—increased nitrogen accumulation and crop residue, enhanced soil biodiversity, suppression of weeds, and protection of the soil surface, which enabled the maize to be sown without land clearing with fire—should all contribute to sustainable highland maize production.

  3. Investigation of hair dye deposition, hair color loss, and hair damage during multiple oxidative dyeing and shampooing cycles.

    Science.gov (United States)

    Zhang, Guojin; McMullen, Roger L; Kulcsar, Lidia

    2016-01-01

    Color fastness is a major concern for consumers and manufacturers of oxidative hair dye products. Hair dye loss results from multiple wash cycles in which the hair dye is dissolved by water and leaches from the hair shaft. In this study, we carried out a series of measurements to help us better understand the kinetics of the leaching process and pathways associated with its escape from the fiber. Hair dye leaching kinetics was measured by suspending hair in a dissolution apparatus and monitoring the dye concentration in solution (leached dye) with an ultraviolet-visible spectrophotometer. The physical state of dye deposited in hair fibers was evaluated by a reflectance light microscopy technique, based on image stacking, allowing enhanced depth of field imaging. The dye distribution within the fiber was monitored by infrared spectroscopic imaging of hair fiber cross sections. Damage to the ultrafine structure of the hair cuticle (surface, endocuticle, and cell membrane complex) and cortex (cell membrane complex) was determined in hair cross sections and on the hair fiber surface with atomic force microscopy. Using differential scanning calorimetry, we investigated how consecutive coloring and leaching processes affect the internal proteins of hair. Further, to probe the surface properties of hair we utilized contact angle measurements. This study was conducted on both pigmented and nonpigmented hair to gain insight into the influence of melanin on the hair dye deposition and leaching processes. Both types of hair were colored utilizing a commercial oxidative hair dye product based on pyrazole chemistry.

  4. Beans and Other Legumes: Types and Cooking Tips

    Science.gov (United States)

    ... Nutrition and healthy eating Want to add nutritious beans and legumes to your diet but aren't ... Staff Legumes — a class of vegetables that includes beans, peas and lentils — are among the most versatile ...

  5. Symbioses with nitrogen-fixing bacteria: nodulation and phylogenetic data across legume genera.

    Science.gov (United States)

    Afkhami, Michelle E; Luke Mahler, D; Burns, Jean H; Weber, Marjorie G; Wojciechowski, Martin F; Sprent, Janet; Strauss, Sharon Y

    2018-02-01

    How species interactions shape global biodiversity and influence diversification is a central - but also data-hungry - question in evolutionary ecology. Microbially based mutualisms are widespread and could cause diversification by ameliorating stress and thus allowing organisms to colonize and adapt to otherwise unsuitable habitats. Yet the role of these interactions in generating species diversity has received limited attention, especially across large taxonomic groups. In the massive angiosperm family Leguminosae, plants often associate with root-nodulating bacteria that ameliorate nutrient stress by fixing atmospheric nitrogen. These symbioses are ecologically-important interactions, influencing community assembly, diversity, and succession, contributing ~100-290 million tons of N annually to natural ecosystems, and enhancing growth of agronomically-important forage and crop plants worldwide. In recent work attempting to determine whether mutualism with N-fixing bacteria led to increased diversification across legumes, we were unable to definitively resolve the relationship between diversification and nodulation. We did, however, succeed in compiling a very large searchable, analysis-ready database of nodulation data for 749 legume genera (98% of Leguminosae genera; LPWG 2017), which, along with associated phylogenetic information, will provide a valuable resource for future work addressing this question and others. For each legume genus, we provide information about the species richness, frequency of nodulation, subfamily association, and topological correspondence with an additional data set of 100 phylogenetic trees curated for database compatibility. We found 386 legume genera were confirmed nodulators (i.e., all species examined for nodulation nodulated), 116 were non-nodulating, four were variable (i.e., containing both confirmed nodulators and confirmed non-nodulators), and 243 had not been examined for nodulation in published studies. Interestingly

  6. Proteomics and Metabolomics: two emerging areas for legume improvement

    Directory of Open Access Journals (Sweden)

    Abirami eRamalingam

    2015-12-01

    Full Text Available The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important source of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signalling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signalling in legumes. In

  7. The Changes of Gene Expression on Human Hair during Long-Spaceflight

    Science.gov (United States)

    Terada, Masahiro; Mukai, Chiaki; Ishioka, Noriaki; Majima, Hideyuki J.; Yamada, Shin; Seki, Masaya; Takahashi, Rika; Higashibata, Akira; Ohshima, Hiroshi; Sudoh, Masamichi; Minamisawa, Susumu

    Hair has many advantages as the experimental sample. In a hair follicle, hair matrix cells actively divide and these active changes sensitively reflect physical condition on human body. The hair shaft records the metabolic conditions of mineral elements in our body. From human hairs, we can detect physiological informations about the human health. Therefore, we focused on using hair root analysis to understand the effects of spaceflight on astronauts. In 2009, we started a research program focusing on the analysis of astronauts’ hairs to examine the effects of long-term spaceflight on the gene expression in the human body. We want to get basic information to invent the effectivly diagnostic methods to detect the health situations of astronauts during space flight by analyzing human hair. We extracted RNA form the collected samples. Then, these extracted RNA was amplified. Amplified RNA was processed and hybridized to the Whole Human Genome (4×44K) Oligo Microarray (Agilent Technologies) according to the manufacturer’s protocol. Slide scanning was performed using the Agilent DNA Microarray Scanner. Scanning data were normalized with Agilent’s Feature Extraction software. Data preprocessing and analysis were performed using GeneSpring software 11.0.1. Next, Synthesis of cDNA (1 mg) was carried out using the PrimeScript RT reagent Kit (TaKaRa Bio) following the manufacturer’s instructions. The qRT-PCR experiment was performed with SYBR Premix Ex Taq (TaKaRa Bio) using the 7500 Real-Time PCR system (Applied Biosystems). We detected the changes of some gene expressions during spaceflight from both microarray and qRT-PCR data. These genes seems to be related with the hair proliferation. We believe that these results will lead to the discovery of the important factor effected during space flight on the hair.

  8. Symbiotic Performance of Herbaceous Legumes in Tropical Cover Cropping Systems

    Directory of Open Access Journals (Sweden)

    Basil Ibewiro

    2001-01-01

    Full Text Available Increasing use of herbaceous legumes such as mucuna (Mucuna pruriens var. utilis [Wright] Bruck and lablab (Lablab purpureus [L.] Sweet in the derived savannas of West Africa can be attributed to their potential to fix atmospheric nitrogen (N2. The effects of management practices on N2 fixation in mucuna and lablab were examined using 15N isotope dilution technique. Dry matter yield of both legumes at 12 weeks was two to five times more in in situ mulch (IM than live mulch (LM systems. Land Equivalent Ratios, however, showed 8 to 30% more efficient utilization of resources required for biomass production under LM than IM systems. Live mulching reduced nodule numbers in the legumes by one third compared to values in the IM systems. Similarly, nodule mass was reduced by 34 to 58% under LM compared to the IM systems. The proportion of fixed N2 in the legumes was 18% higher in LM than IM systems. Except for inoculated mucuna, the amounts of N fixed by both legumes were greater in IM than LM systems. Rhizobia inoculation of the legumes did not significantly increase N2 fixation compared to uninoculated plots. Application of N fertilizer reduced N2 fixed in the legumes by 36 to 51% compared to inoculated or uninoculated systems. The implications of cover cropping, N fertilization, and rhizobia inoculation on N contributions of legumes into tropical low-input systems were discussed.

  9. Legume-rhizobium symbiotic promiscuity and effectiveness do not affect plant invasiveness.

    Science.gov (United States)

    Keet, Jan-Hendrik; Ellis, Allan G; Hui, Cang; Le Roux, Johannes J

    2017-06-01

    The ability to fix atmospheric nitrogen is thought to play an important role in the invasion success of legumes. Interactions between legumes and nitrogen-fixing bacteria (rhizobia) span a continuum of specialization, and promiscuous legumes are thought to have higher chances of forming effective symbioses in novel ranges. Using Australian Acacia species in South Africa, it was hypothesized that widespread and highly invasive species will be more generalist in their rhizobial symbiotic requirements and more effective in fixing atmospheric nitrogen compared with localized and less invasive species. To test these hypotheses, eight localized and 11 widespread acacias were examined using next-generation sequencing data for the nodulation gene, nodC , to compare the identity, species richness, diversity and compositional similarity of rhizobia associated with these acacias. Stable isotope analysis was also used to determine levels of nitrogen obtained from the atmosphere via symbiotic nitrogen fixation. No differences were found in richness, diversity and community composition between localized and widespread acacias. Similarly, widespread and localized acacias did not differ in their ability to fix atmospheric nitrogen. However, for some species by site comparisons, significant differences in δ15N isotopic signatures were found, indicating differential symbiotic effectiveness between these species at specific localities. Overall, the results support recent findings that root nodule rhizobial diversity and community composition do not differ between acacias that vary in their invasiveness. Differential invasiveness of acacias in South Africa is probably linked to attributes such as differences in propagule pressure, reasons for (e.g. forestry vs. ornamental) and extent of, plantings in the country. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  10. Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland

    DEFF Research Database (Denmark)

    Pirhofer-Walzl, Karin; Rasmussen, Jim; Jensen, Henning Høgh

    2012-01-01

    Legumes play a crucial role in nitrogen supply to grass-legume mixtures for ruminant fodder. To quantify N transfer from legumes to neighbouring plants in multi-species grasslands we established a grass-legume-herb mixture on a loamy-sandy site in Denmark. White clover (Trifolium repens L.), red...... amounts of N from legumes than dicotyledonous plants which generally have taproots. Slurry application mainly increased N transfer from legumes to grasses. During the growing season the three legumes transferred approximately 40 kg N ha-1 to neighbouring plants. Below-ground N transfer from legumes...

  11. Impacts of previous crops on Fusarium foot and root rot, and on yields of durum wheat in North West Tunisia

    Directory of Open Access Journals (Sweden)

    Samia CHEKALI

    2016-07-01

    Full Text Available The impacts of ten previous crop rotations (cereals, legumes and fallow on Fusarium foot and root rot of durum wheat were investigated for three cropping seasons in a trial established in 2004 in Northwest Tunisia. Fungi isolated from the roots and stem bases were identified using morphological and molecular methods, and were primarily Fusarium culmorum and F. pseudograminearum. Under low rainfall conditions, the previous crop affected F. pseudograminearum incidence on durum wheat roots but not F. culmorum. Compared to continuous cropping of durum wheat, barley as a previous crop increased disease incidence more than fivefold, while legumes and fallow tended to reduce incidence.  Barley as a previous crop increased wheat disease severity by 47%, compared to other rotations. Grain yield was negatively correlated with the incidence of F. culmorum infection, both in roots and stem bases, and fitted an exponential model (R2 = -0.61 for roots and -0.77 for stem bases, P<0.0001. Fusarium pseudograminearum was also negatively correlated with yield and fitted an exponential model (R2 = -0.53 on roots and -0.71 on stem bases, P < 0.0001 but was not correlated with severity.

  12. Fluorine-induced apoptosis and lipid peroxidation in human hair follicles in vitro.

    Science.gov (United States)

    Wang, Zheng-hui; Li, Xiao-li; Yang, Zhuang-qun; Xu, Min

    2010-12-01

    Fluoride is an essential trace element for human body; however, exposure to high amounts of fluoride has been documented to be correlated with an increasing risk of hair loss. To date, little is known about the mechanism(s) of how fluoride affects hair follicles. Here, we demonstrated that middle (1.0 mmol/L) and high (10.0 mmol/L) concentrations of sodium fluoride (NaF) significantly inhibited hair follicle elongation in vitro, but low NaF (0.1 mmol/L) showed little influence. Moreover, treatment with high levels of NaF resulted in a marked increase in terminal dUTP nick end labeling-positive cells in the outer layer of the outer root sheath, the dermal sheath, and the lower bulb matrix surrounding dermal papilla. Furthermore, the enhanced apoptosis was coupled with an increased oxidative stress manifested as higher malondialdehyde content. Additionally, the presence of selenium considerably antagonized the effects of middle NaF on hair follicles, with regard to either the suppression of hair growth or the induction of oxidative stress and apoptosis. In conclusion, exposure to high levels of fluoride compromises hair follicle growth and accelerate cell apoptosis in vitro. The toxicity of fluoride can be reduced by selenium, at least partially via the suppression of intracellular oxidative stress.

  13. Crops, Nitrogen, Water: Are Legumes Friend, Foe, or Misunderstood Ally?

    Science.gov (United States)

    Adams, Mark A; Buchmann, Nina; Sprent, Janet; Buckley, Thomas N; Turnbull, Tarryn L

    2018-06-01

    Biological nitrogen fixation (BNF) by crop legumes reduces demand for industrial nitrogen fixation (INF). Nonetheless, rates of BNF in agriculture remain low, with strong negative feedback to BNF from reactive soil nitrogen (N) and drought. We show that breeding for yield has resulted in strong relationships between photosynthesis and leaf N in non-leguminous crops, whereas grain legumes show strong relations between leaf N and water use efficiency (WUE). We contrast these understandings with other studies that draw attention to the water costs of grain legume crops, and their potential for polluting the biosphere with N. We propose that breeding grain legumes for reduced stomatal conductance can increase WUE without compromising production or BNF. Legume crops remain a better bet than relying on INF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions

    Energy Technology Data Exchange (ETDEWEB)

    Isaac, M.E., E-mail: marney.isaac@utoronto.ca [CIRAD, UMR Eco and Sols, 34060 Montpellier (France); University of Toronto, Department of Physical and Environmental Sciences, 1265 Military Trail, Toronto, Canada M1C 1A4 (Canada); Hinsinger, P. [INRA, UMR Eco and Sols, 34060 Montpellier (France); Harmand, J.M. [CIRAD, UMR Eco and Sols, 34060 Montpellier (France)

    2012-09-15

    Considerable amounts of nitrogen (N) and phosphorus (P) fertilizers have been mis-used in agroecosystems, with profound alteration to the biogeochemical cycles of these two major nutrients. To reduce excess fertilizer use, plant-mediated nutrient supply through N{sub 2}-fixation, transfer of fixed N and mobilization of soil P may be important processes for the nutrient economy of low-input tree-based intercropping systems. In this study, we quantified plant performance, P acquisition and belowground N transfer from the N{sub 2}-fixing tree to the cereal crop under varying root contact intensity and P supplies. We cultivated Acacia senegal var senegal in pot-culture containing 90% sand and 10% vermiculite under 3 levels of exponentially supplied P. Acacia plants were then intercropped with durum wheat (Triticum turgidum durum) in the same pots with variable levels of adsorbed P or transplanted and intercropped with durum wheat in rhizoboxes excluding direct root contact on P-poor red Mediterranean soils. In pot-culture, wheat biomass and P content increased in relation to the P gradient. Strong isotopic evidence of belowground N transfer, based on the isotopic signature ({delta}{sup 15}N) of tree foliage and wheat shoots, was systematically found under high P in pot-culture, with an average N transfer value of 14.0% of wheat total N after 21 days of contact between the two species. In the rhizoboxes, we observed limitations on growth and P uptake of intercropped wheat due to competitive effects on soil resources and minimal evidence of belowground N transfer of N from acacia to wheat. In this intercrop, specifically in pot-culture, facilitation for N transfer from the legume tree to the crop showed to be effective especially when crop N uptake was increased (or stimulated) as occurred under high P conditions and when competition was low. Understanding these processes is important to the nutrient economy and appropriate management of legume-based agroforestry systems

  15. Expression of a complete soybean leghemoglobin gene in root nodules of transgenic Lotus corniculatus

    DEFF Research Database (Denmark)

    Stougaard, J; Petersen, T E; Marcker, K A

    1987-01-01

    The complete soybean leghemoglobin lbc(3) gene was transferred into the legume Lotus corniculatus using an Agrobacterium rhizogenes vector system. Organ-specific expression of the soybean gene was observed in root nodules formed on regenerated transgenic plants after infection with Rhizobium loti...

  16. Optimizing legume cropping

    NARCIS (Netherlands)

    Kuhlman, Tom; Helming, John; Linderhof, Vincent

    2017-01-01

    The cultivation of legumes is low in Europe. Public policy incentives and/or regulations have a role to play in changing this. This chapter examines six such policies. The CAPRI (Common Agricultural Policy Regional Impact) model, a partial equilibrium model for the agricultural sector, is used to

  17. Root and Nodulation Phenotypes of the Ethylene-Insensitive Sickle Mutant of Medicago truncatula

    Directory of Open Access Journals (Sweden)

    JOKO PRAYITNO

    2010-09-01

    Full Text Available The sickle (skl mutant of the model legume Medicago truncatula is an ethylene-sensitive mutant that have a ten-fold increase in nodule numbers. The nodulation and root phenotypes of the skl mutant were investigated and further characterised. The skl mutant had longer roots than the wild type, but when inoculated with Sinorhizobium, its root length was reduced to the level of wild type. Furthermore, lateral root numbers in uninoculated skl were similar to those in uninoculated wild type. However, when the root tips were decapitated, fewer lateral roots formed in skl than in wild type. Nodule numbers of the skl mutant were significantly reduced by low nitrate concentration (2.5 mM. These results suggest that skl mutant has alterations in both root and nodule development.

  18. Induction of prenylated isoflavonoids and stilbenoids in legumes

    NARCIS (Netherlands)

    Aisyah, S.

    2015-01-01

    The germination of legume seeds in the presence or absence of stress factors was studied with respect to compositional changes in prenylated isoflavonoids and stilbenoids. Different strategies were applied using (i) different types of legume seed, (ii) different stress factors i.e. biotic,

  19. Trade-offs between economic and environmental impacts of introducing legumes into cropping systems

    Directory of Open Access Journals (Sweden)

    Moritz eReckling

    2016-05-01

    Full Text Available Europe’s agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2 % of the arable land and more than 70 % of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 % and 33 % and N fertilizer use by 24 % and 38 % in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22 % in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers.

  20. Evaluation some Forage Legumes in Limited Irrigation Condition

    Directory of Open Access Journals (Sweden)

    Hassan Moniri Far

    2015-11-01

    Full Text Available Forage legumes respond differently to limited irrigation regimes. Their evaluation may, thus, help to select drought tolerant types for limited irrigation conditions. In this study four type of forage legume were studied for two years in Tikma-Dash Research Station of East Azarbaijan Agricultural and Natural Research Center, Tabriz, Iran, in a randomized complete block design using split-plot experiment in 2011-2013 years. Irrigation regimes (without irrigation, one irrigation and two irrigations were assigned to main plots and four forage types (hairy vetch, grass pea, Pannonica sativa and lathyrus were assigned to subplots. The results of analysis of variance showed that the effect of irrigation on plant height, number of shoots, leaf area and plant fresh and dry weights were not significant. Howere, legume types affected these traits significantly (P≤0.01. The effect of irrigation levels and legume types on protein content of hay were significant (P

  1. Biological nitrogen fixation in non-legume plants.

    Science.gov (United States)

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-05-01

    Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.

  2. Proteomics of Maize Root Development.

    Science.gov (United States)

    Hochholdinger, Frank; Marcon, Caroline; Baldauf, Jutta A; Yu, Peng; Frey, Felix P

    2018-01-01

    Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  3. Proteomics of Maize Root Development

    Directory of Open Access Journals (Sweden)

    Frank Hochholdinger

    2018-03-01

    Full Text Available Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  4. Growing tropical forage legumes in full sun and silvopastoral systems

    Directory of Open Access Journals (Sweden)

    Saulo Alberto do Carmo Araújo

    2017-02-01

    Full Text Available Growth was evaluated three tropical forage legumes in two cropping systems: silvopastoral system (SSP and full sun. A completely randomized design was adopted in factorial three legumes (estilosanthes cv. Campo Grande (Stylozanthes macrocephala x Stylozanthes capitata, tropical kudzu (Pueraria phaseoloides (Roxb. Benth and macrotiloma (Macrotyloma axillare cv. Java x two farming systems, with 4 repetitions. A eucalyptus SSP already deployed, with spatial arrangement of 12 x 2 m between trees was used. Legumes were planted in January 2014 a uniform cut being made in May 2014. The court assessment was carried out 125 days after the uniformity cut. There was difference for mass production of dry legumes (PMMSL between cultivation systems, evidencing increased productivity in the farming full sun. The macrotiloma showed higher PMSL (5.29 kg DM ha-1 cut-1, while the kudzu obtained the lowest yield (3.42 kg DM ha-1 cut-1 in the sun growing full. The cultivation of legumes in SSP increased the levels of mineral matter, crude protein and neutral detergent fiber. The shade provided by the SSP caused a reduction in the mass of dry matter production, but also altered the chemical composition of the studied legumes.

  5. Hair loss and hair-pulling in rhesus macaques (Macaca mulatta).

    Science.gov (United States)

    Lutz, Corrine K; Coleman, Kristine; Worlein, Julie; Novak, Melinda A

    2013-07-01

    Alopecia is a common problem in rhesus macaque colonies. A possible cause of this condition is hair-pulling; however the true relationship between hair-pulling and alopecia is unknown. The purpose of this study was to examine the relationship between hair loss and hair-pulling in 1258 rhesus macaques housed in 4 primate colonies across the United States. Alopecia levels ranged from 34.3% to 86.5% (mean, 49.3%) at the primate facilities. At facilities reporting a sex-associated difference, more female macaques were reported to exhibit alopecia than were males. In contrast, more males were reported to hair-pull. Animals reported to hair-pull were significantly more likely to have some amount of alopecia, but rates of hair-pulling were substantially lower than rates of alopecia, ranging from 0.6% to 20.5% (mean, 7.7%) of the populations. These results further demonstrate that hair-pulling plays only a small role in alopecia in rhesus macaques.

  6. Assessment of some macromineral concentration of a grass/ legume ...

    African Journals Online (AJOL)

    Assessment of some macromineral concentration of a grass/ legume sward in ... Bulletin of Animal Health and Production in Africa ... The study aimed to determine the concentration of some macromineral elements in the grass/legume pasture ...

  7. Hair Loss

    Science.gov (United States)

    ... is why some people with eating disorders like anorexia and bulimia lose their hair: The body isn't getting enough protein, vitamins, and minerals to support hair growth. Some teens who are vegetarians also lose their hair if ...

  8. Removing Hair Safely

    Science.gov (United States)

    ... For Consumers Home For Consumers Consumer Updates Removing Hair Safely Share Tweet Linkedin Pin it More sharing ... related to common methods of hair removal. Laser Hair Removal In this method, a laser destroys hair ...

  9. Hair Loss (Alopecia)

    Science.gov (United States)

    ... care Kids’ zone Video library Find a dermatologist Hair loss Overview Hereditary hair loss: Millions of men ... of hair loss can often be successfully treated. Hair loss: Overview Also called alopecia (al-o-PEE- ...

  10. Parietal scalp is another affected area in female pattern hair loss: an analysis of hair density and hair diameter

    Directory of Open Access Journals (Sweden)

    Rojhirunsakool S

    2017-12-01

    Full Text Available Salinee Rojhirunsakool, Poonkiat Suchonwanit Department of Medicine, Division of Dermatology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand Purpose: Female pattern hair loss (FPHL is a common hair disease. However, studies of the quantitative measurement of FPHL are still limited. The aim of this study was to investigate the characteristics of hair density and hair diameter in normal women and FPHL patients, and further correlate the quantitative measurement with the clinical presentation of FPHL.Patients and methods: An evaluation of 471 FPHL patients and 236 normal women was carried out according to the Ludwig classification, and analysis was performed by using a computerized handheld USB camera with computer-assisted software. Various areas of the scalp, including frontal, parietal, midscalp, and occipital, were analyzed for hair density, non-vellus hair diameter, and percentage of miniaturized hair.Results: The hair density in normal women was the highest and the lowest in the midscalp and parietal areas, respectively. The FPHL group revealed the lowest hair density in the parietal area. Significant differences in hair density, non-vellus hair diameter, and percentage of miniaturized hair between the normal and FPHL groups were observed, especially in the midscalp and parietal areas.Conclusion: The parietal area is another important affected area in FPHL in addition to the midscalp area. This finding provides novel important information of FPHL and will be useful for hair transplant surgeons choosing the optimal donor sites for hair transplantation in women. Keywords: androgenetic alopecia, alopecia, phototrichogram, miniaturization

  11. Effects of tropical high tannin non legume and low tannin legume browse mixtures on fermentation parameters and methanogenesis using gas production technique.

    Science.gov (United States)

    Seresinhe, T; Madushika, S A C; Seresinhe, Y; Lal, P K; Orskov, E R

    2012-10-01

    In vitro experiments were conducted to evaluate the suitability of several mixtures of high tanniniferous non legumes with low tanniniferous legumes on in vitro gas production (IVGP), dry matter degradation, Ammonia-N, methane production and microbial population. Eight treatments were examined in a randomized complete block design using four non-legumes and two legumes (Carallia integerrima×Leucaena leucocephala (LL) (Trt 1), C. integerrima×Gliricidia sepium (GS) (Trt 2), Aporosa lindeliyana×LL (Trt 3), A. lindeliyana×GS (Trt 4), Ceiba perntandra×LL (Trt 5), C. perntandra×GS (Trt 6), Artocarpus heterophyllus×LL (Trt 7), A. heterophyllus×GS (Trt 8). The condensed tannin (CT) content of non legumes ranged from 6.2% (Carallia integerrima) to 4.9% (Ceiba perntandra) while the CT of legumes were 1.58% (Leucaena leucocephala) and 0.78% (Gliricidia sepium). Forage mixtures contained more than 14% of crude protein (CP) while the CT content ranged from 2.8% to 4.0% respectively. Differences (pheterophyllus×L. leucocephala (Trt 7) and A. heterophyllus×G. sepium (Trt 8). Highest (p>0.05) NH3-N (ml/200 mg DM) production was observed with the A. heterophyllus×G. sepium (Trt 8) mixture which may be attributed with it's highest CP content. The correlation between IVGP and CT was 0.675 while IVGP and CP was 0.610. In vitro dry matter degradation (IVDMD) was highest in Trt 8 as well. Methane production ranged from 2.57 to 4.79 (ml/200 mg DM) to be synonimous with IVGP. A higher bacteria population (pArtocarpus heterophyllus+G. sepium (Trt 8) and the same trend was observed with the protozoa population as well. The results show that supplementing high tannin non leguminous forages by incremental substitution of legume forage increased gas production parameters, NH3-N, IVDMD and microbial population in the fermentation liquid. Methane production was not significantly affected by the presence of CT or different levels of CP in forage mixtures. Among non legumes, Ceiba

  12. Effects of Tropical High Tannin Non Legume and Low Tannin Legume Browse Mixtures on Fermentation Parameters and Methanogenesis Using Gas Production Technique

    Directory of Open Access Journals (Sweden)

    T. Seresinhe

    2012-10-01

    Full Text Available In vitro experiments were conducted to evaluate the suitability of several mixtures of high tanniniferous non legumes with low tanniniferous legumes on in vitro gas production (IVGP, dry matter degradation, Ammonia-N, methane production and microbial population. Eight treatments were examined in a randomized complete block design using four non-legumes and two legumes (Carallia integerrima×Leucaena leucocephala (LL (Trt 1, C. integerrima×Gliricidia sepium (GS (Trt 2, Aporosa lindeliyana×LL (Trt 3, A. lindeliyana×GS (Trt 4, Ceiba perntandra×LL (Trt 5, C. perntandra×GS (Trt 6, Artocarpus heterophyllus×LL (Trt 7, A. heterophyllus×GS (Trt 8. The condensed tannin (CT content of non legumes ranged from 6.2% (Carallia integerrima to 4.9% (Ceiba perntandra while the CT of legumes were 1.58% (Leucaena leucocephala and 0.78% (Gliricidia sepium. Forage mixtures contained more than 14% of crude protein (CP while the CT content ranged from 2.8% to 4.0% respectively. Differences (p0.05 NH3-N (ml/200 mg DM production was observed with the A. heterophyllus×G. sepium (Trt 8 mixture which may be attributed with it’s highest CP content. The correlation between IVGP and CT was 0.675 while IVGP and CP was 0.610. In vitro dry matter degradation (IVDMD was highest in Trt 8 as well. Methane production ranged from 2.57 to 4.79 (ml/200 mg DM to be synonimous with IVGP. A higher bacteria population (p<0.05 was found in C. perntandra×G. sepium (Trt 6 followed by Artocarpus heterophyllus+G. sepium (Trt 8 and the same trend was observed with the protozoa population as well. The results show that supplementing high tannin non leguminous forages by incremental substitution of legume forage increased gas production parameters, NH3-N, IVDMD and microbial population in the fermentation liquid. Methane production was not significantly affected by the presence of CT or different levels of CP in forage mixtures. Among non legumes, Ceiba perntandra and Artocarpus

  13. Role of Translocted Signals in Regulating Root Development and Nutrient Uptake in Legumes

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, C. A. [School of Plant Biology, University of Western Australia, Crawley, WA (Australia)

    2013-11-15

    Uptake of nutrients is achieved through the expression and activity of specific carrier/transporter mechanisms localized in the root system and distributed as a consequence of the development of the architecture of the system. Both root system development and the nutrient transport mechanisms are responsive to environmental factors that include nutrient supply and availability, water supply, salinity, soil acidity and compaction together with a wide range of biotic stresses. The response to each may be regulated at the molecular level by both local and systemic signals. These signals include the classical plant growth regulators but also low molecular weight compounds such as sugars and amino acids as well as macromolecules, including peptides, proteins and nucleic acids. Among the latter, recent research has shown that small RNA species and especially small interfering RNAs (siRNA) and microRNAs (miRNA) are potent and effective regulators of gene expression which, in the context of root development as well as nutrient uptake, have central and critical roles. Systemic (translocated) signals that specifically regulate root development and function are less well defined but analyses of phloem exudate in species of lupin (Lupinus albus and L. angustifolius) and species of Brassica and cucurbits have demonstrated that a wide range of macromolecules, including miRNAs, are present and potentially translocated from source organs (principally leaves) to sinks (shoot apical meristems, developing fruits and seeds, roots and nodules). While specific signaling roles for many of these macromolecules are yet to be discovered there are some that have been documented and their regulatory activity in organ development and functioning, as well as in nutrition, confirmed. The following article provides an up to date review and presents the results of recent research using lupin with emphasis on the analysis of small RNAs and their likely role(s) in regulation of root development and

  14. Hair cosmetics

    OpenAIRE

    Nina Madnani; Kaleem Khan

    2013-01-01

    The hair cosmetic industry has undergone a revolutionary change over the last two decades. The focus has dramatically veered from merely cleaning to repair, increasing the tensile strength, reducing oxidative damage, and stimulating growth. Newer shorter procedures to make hair look naturally more lustrous, smooth, and manageable have evolved. Specialized grooming products have been formulated to cleanse, calm, and condition the hair, and are tailored for different hair-types, for example, dr...

  15. Compatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis.

    Science.gov (United States)

    Clúa, Joaquín; Roda, Carla; Zanetti, María Eugenia; Blanco, Flavio A

    2018-02-27

    The root nodule symbiosis established between legumes and rhizobia is an exquisite biological interaction responsible for fixing a significant amount of nitrogen in terrestrial ecosystems. The success of this interaction depends on the recognition of the right partner by the plant within the richest microbial ecosystems on Earth, the soil. Recent metagenomic studies of the soil biome have revealed its complexity, which includes microorganisms that affect plant fitness and growth in a beneficial, harmful, or neutral manner. In this complex scenario, understanding the molecular mechanisms by which legumes recognize and discriminate rhizobia from pathogens, but also between distinct rhizobia species and strains that differ in their symbiotic performance, is a considerable challenge. In this work, we will review how plants are able to recognize and select symbiotic partners from a vast diversity of surrounding bacteria. We will also analyze recent advances that contribute to understand changes in plant gene expression associated with the outcome of the symbiotic interaction. These aspects of nitrogen-fixing symbiosis should contribute to translate the knowledge generated in basic laboratory research into biotechnological advances to improve the efficiency of the nitrogen-fixing symbiosis in agronomic systems.

  16. Hair Interactions

    OpenAIRE

    Cani , Marie-Paule; Bertails , Florence

    2006-01-01

    International audience; Processing interactions is one of the main challenges in hair animation. Indeed, in addition to the collisions with the body, an extremely large number of contacts with high friction rates are permanently taking place between individual hair strands. Simulating the latter is essential: without hair self-interactions, strands would cross each other during motion or come to rest at the same location, yielding unrealistic behavior and a visible lack of hair volume. This c...

  17. Phenolic Profiles and Antioxidant Activity of Germinated Legumes

    Directory of Open Access Journals (Sweden)

    Do Tan Khang

    2016-04-01

    Full Text Available Bioactive compounds, which are naturally produced in plants, have been concerned with the food and pharmaceutical industries because of the pharmacological effects on humans. In this study, the individual phenolics of six legumes during germination and antioxidant capacity from sprout extracts were determined. It was found that the phenolic content significantly increased during germination in all legumes. Peanuts showed the strongest antioxidant capacity in both the DPPH• (1,1-diphenyl-2-picrylhydrazyl method and the reducing power assay (32.51% and 84.48%, respectively. A total of 13 phenolic acids were detected and quantified. There were 11 phenolic constituents identified in adzuki beans; 10 in soybeans; 9 in black beans, mung beans, and white cowpeas; and 7 compounds in peanuts. Sinapic acid and cinnamic acid were detected in all six legume sprouts, and their quantities in germinated peanuts were the highest (247.9 µg·g−1 and 62.9 µg·g−1, respectively. The study reveals that, among the investigated legumes, germinated peanuts and soybeans obtained maximum phenolics and antioxidant capacity.

  18. A precise automatic system for the hair assessment in hair-care diagnosis applications.

    Science.gov (United States)

    Shih, H

    2015-11-01

    One emerging subject in medical image processing is to quantitatively assess the health and the properties of cranial hairs, including density, diameter, length, level of oiliness, and others. This information helps hair specialists with making a more accurate diagnosis and the therapy required. We develop a practical hair counting algorithm. This analytic system calculates the number of hairs on a scalp using a digital microscope camera, providing accurate information for both the hair specialist and the patient. Our proposed hair counting algorithm is substantially more accurate than the Hough-based one, and is robust to curls, oily scalp, noise-corruption, and overlapping hairs, under various levels of illumination. Rather than manually counting the hairs on a person's scalp, the proposed system determines the density, diameter, length, and level of oiliness of the hairs. We propose an automated system for counting the amount of hairs in the microscopy images. To reduce the effect of bright spots, we develop a robust morphological algorithm for color to smooth out the color and preserve the fidelity of the hair. Then, we utilize a modified Hough transform algorithm to detect the different hair lengths and to reduce any false detection due to noise. Our proposed system enables us to look at curved hairs as multiple pieces of straight lines. To avoid missing hairs when the thinning process is applied, we use edge information to discover any hidden or overlapping hairs. Finally, we employ a mutually associative regression method to label a group of line segments into a meaningful 'hair'. We demonstrated a novel approach for accurately computing the number of hairs, and successfully solved the three main obstacles in automated hair counting, including (i) oily and moist hairs, (ii) wavy and curly hairs, and (iii) under-estimation of the number of hairs occurs when hairs cross and occlude each other. The framework of this paper can be seen as the first step toward

  19. Dinitrogen fixation by legume shade trees and direct transfer of fixed N to associated cacao in a tropical agroforestry system.

    Science.gov (United States)

    Nygren, Pekka; Leblanc, Humberto A

    2015-02-01

    Natural abundance of (15)N (δ (15)N) was determined in bulk soil, rhizospheric soil and vegetation in an organically managed cacao (Theobroma cacao L.) plantation with Inga edulis Mart. legume trees (inga) as the principal shade for studying the nitrogen (N) cycle in the system. Cacao without contact with legumes in an adjacent plantation was used as the reference for N2 fixation and direct N transfer calculations. Bulk and rhizospheric soils contained 72 and 20%, respectively, of whole- system N. No vegetation effect on δ (15)N in rhizospheric soil was detected, probably due to the high native soil N pool. Fine roots of the cacaos associated with inga contained ∼35% of N fixed from the atmosphere (Nf) out of the total N. Leaves of all species had significantly higher δ (15)N than fine roots. Twenty percent of system Nf was found in cacao suggesting direct N transfer from inga via a common mycelial network of mycorrhizal fungi or recycling of N-rich root exudates of inga. Inga had accumulated 98 kg [Nf] ha(-1) during the 14-year history of the plantation. The conservative estimate of current N2 fixation rate was 41 kg [Nf] ha(-1) year(-1) based on inga biomass only and 50 kg [Nf] ha(-1) year(-1) based on inga and associated trees. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Mineral content of insect infested stored legumes treated with edible oils.

    Science.gov (United States)

    Modgil, R

    2000-12-01

    Mineral content of three insect (pulse beetle, Callosobruchus chinensis L.) infested legumes viz. chick pea, mung pea and pigeon pea stored for six months and treated with three edible oils viz. groundnut, mustard and coconut oil has been studied. With increase in storage period significant increase in calcium, phosphorus and iron content of untreated legumes was observed. After three months of storage slight increase in three minerals was observed in the legumes treated with coconut oil which continued till the end of sixth months as compared to other two oil treated counterparts. The storage period was associated with insect infestation which in turn influenced the mineral content of legumes. Ground nut and mustard oils were able to protect legumes for six months against insect infestation when applied in small amounts (0.5%). Whereas coconut oil had protective effect against insect infestation for four months only.

  1. Hair Loss Myths.

    Science.gov (United States)

    DiMarco, Gabriella; McMichael, Amy

    2017-07-01

    INTRODUCTION: Hair loss is a common complaint seen in dermatology clinics. From frustration and attempts at self-help, patients with hair loss may present to the dermatologist with false beliefs, or myths, about the causes of their condition and what treatments are effective. METHODS: We identified 12 common myths about hair loss, categorized as myths about minoxidil treatment, vitamin and mineral supplements, natural topical treatments, and hair care practices. We performed a PubMed search to find evidence to support or refute each myth. RESULTS: We found that there is little evidence to support many of these common hair loss myths. In some cases, randomized controlled trials have investigated the effects of particular therapies and point to the effectiveness of certain hair loss treatments. DISCUSSION: In many cases, there have not been sufficient randomized controlled trials to evaluate the effect of different therapies and hair care practices on hair loss. It is best to guide patients toward treatments with a long track record of efficacy and away from those where little is known scientifically. J Drugs Dermatol. 2017;16(7):690-694..

  2. Expression of nodule-specific genes in alfalfa root nodules blocked at an early stage of development.

    NARCIS (Netherlands)

    Dickstein, R.; Bisseling, T.; Reinhold, V.N.; Ausubel, F.M.

    1988-01-01

    To help dissect the molecular basis of the Rhizobium-legume symbiosis, we used in vitro translation and Northern blot analysis of nodule RNA to examine alfalfa-specific genes (nodulins) expressed in two types of developmentally defective root nodules elicited by Rhizobium meliloti. Fix- nodules were

  3. Ethnic hair care products may increase false positives in hair drug testing.

    Science.gov (United States)

    Kidwell, David A; Smith, Frederick P; Shepherd, Arica R

    2015-12-01

    The question of why different races appear more susceptible to hair contamination by external drugs remains controversial. This research studied susceptibility of head hair to external cocaine and methamphetamine when hair products have been applied. Three different chemical classes of ethnic hair products were applied to Caucasian, Asian, and African hair. Some products increased the methamphetamine and cocaine concentrations in all hair types. A unique finding of this research is that certain ethnic hair products can replace moisture as a diffusion medium, thereby increasing the susceptibility to contamination over 100-fold compared to petroleum-based products. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Accumulation of N and P in the Legume Lespedeza davurica in Controlled Mixtures with the Grass Bothriochloa ischaemum under Varying Water and Fertilization Conditions.

    Science.gov (United States)

    Xu, Bingcheng; Xu, Weizhou; Wang, Zhi; Chen, Zhifei; Palta, Jairo A; Chen, Yinglong

    2018-01-01

    Water and fertilizers affect the nitrogen (N) and phosphorus (P) acquisition and allocation among organs in dominant species in natural vegetation on the semiarid Loess Plateau. This study aimed to clarify the N and P accumulation and N:P ratio at organ and plant level of a local legume species mixed with a grass species under varying water and fertilizer supplies, and thus to fully understand the requirements and balance of nutrient elements in response to growth conditions change of native species. The N and P concentration in the organ (leaf, stem, and root) and plant level of Lespedeza davurica (C 3 legume), were examined when intercropped with Bothriochloa ischaemum (C 4 grass). The two species were grown outdoors in pots under 80, 60, and 40% of soil water field capacity (FC), -NP, +N, +P, and +NP supply and the grass:legume mixture ratios of 2:10, 4:8, 6:6, 8:4, 10:2, and 12:0. The three set of treatments were under a randomized complete block design. Intercropping with B. ischaemum did not affect N concentrations in leaf, stem and root of L. davurica , but reduced P concentration in each organ under P fertilization. Only leaf N concentration in L. davurica showed decreasing trend as soil water content decreased under all fertilization and mixture proportion treatments. Stems had the lowest, while roots had the highest N and P concentration. As the mixture proportion of L. davurica decreased under P fertilization, P concentration in leaf and root also decreased. The N concentration in L. davurica at the whole plant level was 11.1-17.2%. P fertilization improved P concentration, while decreased N:P ratio in L. davurica . The N:P ratios were less than 14.0 under +P and +NP treatments. Our results implied that exogenous N and P fertilizer application may change the N:P stoichiometry and influence the balance between nutrients and organs of native dominant species in natural grassland, and P element should be paid more attention when considering rehabilitating

  5. Accumulation of N and P in the Legume Lespedeza davurica in Controlled Mixtures with the Grass Bothriochloa ischaemum under Varying Water and Fertilization Conditions

    Directory of Open Access Journals (Sweden)

    Bingcheng Xu

    2018-02-01

    Full Text Available Water and fertilizers affect the nitrogen (N and phosphorus (P acquisition and allocation among organs in dominant species in natural vegetation on the semiarid Loess Plateau. This study aimed to clarify the N and P accumulation and N:P ratio at organ and plant level of a local legume species mixed with a grass species under varying water and fertilizer supplies, and thus to fully understand the requirements and balance of nutrient elements in response to growth conditions change of native species. The N and P concentration in the organ (leaf, stem, and root and plant level of Lespedeza davurica (C3 legume, were examined when intercropped with Bothriochloa ischaemum (C4 grass. The two species were grown outdoors in pots under 80, 60, and 40% of soil water field capacity (FC, -NP, +N, +P, and +NP supply and the grass:legume mixture ratios of 2:10, 4:8, 6:6, 8:4, 10:2, and 12:0. The three set of treatments were under a randomized complete block design. Intercropping with B. ischaemum did not affect N concentrations in leaf, stem and root of L. davurica, but reduced P concentration in each organ under P fertilization. Only leaf N concentration in L. davurica showed decreasing trend as soil water content decreased under all fertilization and mixture proportion treatments. Stems had the lowest, while roots had the highest N and P concentration. As the mixture proportion of L. davurica decreased under P fertilization, P concentration in leaf and root also decreased. The N concentration in L. davurica at the whole plant level was 11.1–17.2%. P fertilization improved P concentration, while decreased N:P ratio in L. davurica. The N:P ratios were less than 14.0 under +P and +NP treatments. Our results implied that exogenous N and P fertilizer application may change the N:P stoichiometry and influence the balance between nutrients and organs of native dominant species in natural grassland, and P element should be paid more attention when considering

  6. Hair loss in women: medical and cosmetic approaches to increase scalp hair fullness.

    Science.gov (United States)

    Sinclair, R; Patel, M; Dawson, T L; Yazdabadi, A; Yip, L; Perez, A; Rufaut, N W

    2011-12-01

    Androgenetic alopecia affects both men and women. In men it produces male pattern hair loss with bitemporal recession and vertex baldness. In women it produces female pattern hair loss (FPHL) with diffuse alopecia over the mid-frontal scalp. FPHL occurs as a result of nonuniform hair follicle miniaturization within follicular units. Diffuse alopecia is produced by a reduction in the number of terminal fibres per follicular unit. Baldness occurs only when all hairs within the follicular units are miniaturized and is a relatively late event in women. The concepts of follicular units and primary and secondary hair follicles within follicular units are well established in comparative mammalian studies, particularly in sheep. However, discovery of these structures in the human scalp hair and investigation of the changes in follicular unit anatomy during the development of androgenetic alopecia have provided a clearer understanding of the early stages of androgenetic alopecia and how the male and female patterns of hair loss are related. FPHL is the most common cause of alopecia in women and approximately one-third of adult caucasian women experience hair loss. The impact of FPHL is predominantly psychological. While men anticipate age-related hair loss, hair loss in women is usually unexpected and unwelcome at any age. Treatment options to arrest hair loss progression and stimulate partial hair regrowth for FPHL include the androgen receptor antagonists spironolactone and cyproterone acetate, the 5α-reductase inhibitor finasteride and the androgen-independent hair growth stimulator minoxidil. These treatments appear to work best when initiated early. Hair transplantation should be considered in advanced FPHL that is resistant to medical treatments. Hair transplantation requires well-preserved hair growth over the occipital donor area. The psychological impact of FPHL may also be reduced by cosmetic products that improve the appearance of the hair. These agents work to

  7. Nutritive evaluation of legume seeds for ruminant feeding.

    Science.gov (United States)

    Ramos-Morales, E; Sanz-Sampelayo, M R; Molina-Alcaide, E

    2010-02-01

    Chemical composition, rumen degradability and the effect of particle losses, and intestinal digestibility of protein by using in situ-in vitro and in vitro techniques were stated for beans (Vicia faba), lupin (Lupinus albus), vetch (Vicia sativa) and bitter vetch (Vicia ervilia) and four diets including those legume seeds. In addition, the apparent digestibility of experimental diets was determined in goats. The legume seeds showed high protein content (206-319 g/kg dry matter). Effective degradability of protein for legumes and diets varied from 0.80 to 0.87 and 0.76 to 0.82, respectively, decreasing to 0.53-0.76 and 0.61-0.67, respectively, when particle loss was taken into account. Different intestinal digestibility values were obtained with both methodologies without significant relationship between them (y = 1.058-0.463x; R(2)=0.068; RSD = 0.140; p = 0.53). There were no differences in the apparent nutrients and energy digestibility among diets (p > 0.05). These legumes can supply rapidly degradable protein for microbial protein synthesis and contribute to the pool of amino acids available for the synthesis of milk protein and for retention in the body.

  8. [Hormones and hair growth].

    Science.gov (United States)

    Trüeb, R M

    2010-06-01

    With respect to the relationship between hormones and hair growth, the role of androgens for androgenetic alopecia (AGA) and hirsutism is best acknowledged. Accordingly, therapeutic strategies that intervene in androgen metabolism have been successfully developed for treatment of these conditions. Clinical observations of hair conditions involving hormones beyond the androgen horizon have determined their role in regulation of hair growth: estrogens, prolactin, thyroid hormone, cortisone, growth hormone (GH), and melatonin. Primary GH resistance is characterized by thin hair, while acromegaly may cause hypertrichosis. Hyperprolactinemia may cause hair loss and hirsutism. Partial synchronization of the hair cycle in anagen during late pregnancy points to an estrogen effect, while aromatase inhibitors cause hair loss. Hair loss in a causal relationship to thyroid disorders is well documented. In contrast to AGA, senescent alopecia affects the hair in a diffuse manner. The question arises, whether the hypothesis that a causal relationship exists between the age-related reduction of circulating hormones and organ function also applies to hair and the aging of hair.

  9. Systematics, diversity and forage value of indigenous legumes of ...

    African Journals Online (AJOL)

    A map representing the collection intensity for the study area showed that the majority of legumes species were collected in the Fynbos, Savanna and Grassland Biome. It is concluded that indigenous South African legumes are extremely diverse and this denotes the importance of further investigating their forage potential ...

  10. Glycaemic responses of some legumes in Nigeria using non ...

    African Journals Online (AJOL)

    Background: It is established that legumes generally have a low glycaemic index (GI) which means that they raise blood glucose levels very little. However, the glycaemic responses to normal subjects and the GI of these local legumes are not yet established. Objective: This work determined the postprandial glycaemic ...

  11. Small RNA pathways and diversity in model legumes: lessons from genomics.

    Directory of Open Access Journals (Sweden)

    Pilar eBustos-Sanmamed

    2013-07-01

    Full Text Available Small non coding RNAs (smRNA participate in the regulation of development, cell differentiation, adaptation to environmental constraints and defense responses in plants. They negatively regulate gene expression by degrading specific mRNA targets, repressing their translation or modifying chromatin conformation through homologous interaction with target loci. MicroRNAs (miRNA and short-interfering RNAs (siRNA are generated from long double stranded RNA (dsRNA that are cleaved into 20- to 24-nucleotide dsRNAs by RNase III proteins called DICERs (DCL. One strand of the duplex is then loaded onto effective complexes containing different ARGONAUTE (AGO proteins. In this review, we explored smRNA diversity in model legumes and compiled available data from miRBAse, the miRNA database, and from 22 reports of smRNA deep sequencing or miRNA identification genome-wide in Medicago truncatula, Glycine max and Lotus japonicus. In addition to conserved miRNAs present in other plant species, 229, 179 and 35 novel miRNA families were identified respectively in these 3 legumes, among which several seems legume-specific. New potential functions of several miRNAs in the legume-specific nodulation process are discussed. Furthermore, a new category of siRNA, the phased siRNAs, which seems to mainly regulate disease-resistance genes, was recently discovered in legumes. Despite that the genome sequence of model legumes are not yet fully completed, further analysis was performed by database mining of gene families and protein characteristics of DCLs and AGOs in these genomes. Although most components of the smRNA pathways are conserved, identifiable homologs of key smRNA players from non-legumes could not yet be detected in M. truncatula available genomic and expressed sequence databases. In addition, an important gene diversification was observed in the three legumes. Functional significance of these variant isoforms may reflect peculiarities of smRNA biogenesis in

  12. Effects, tolerance mechanisms and management of salt stress in grain legumes.

    Science.gov (United States)

    Farooq, Muhammad; Gogoi, Nirmali; Hussain, Mubshar; Barthakur, Sharmistha; Paul, Sreyashi; Bharadwaj, Nandita; Migdadi, Hussein M; Alghamdi, Salem S; Siddique, Kadambot H M

    2017-09-01

    Salt stress is an ever-present threat to crop yields, especially in countries with irrigated agriculture. Efforts to improve salt tolerance in crop plants are vital for sustainable crop production on marginal lands to ensure future food supplies. Grain legumes are a fascinating group of plants due to their high grain protein contents and ability to fix biological nitrogen. However, the accumulation of excessive salts in soil and the use of saline groundwater are threatening legume production worldwide. Salt stress disturbs photosynthesis and hormonal regulation and causes nutritional imbalance, specific ion toxicity and osmotic effects in legumes to reduce grain yield and quality. Understanding the responses of grain legumes to salt stress and the associated tolerance mechanisms, as well as assessing management options, may help in the development of strategies to improve the performance of grain legumes under salt stress. In this manuscript, we discuss the effects, tolerance mechanisms and management of salt stress in grain legumes. The principal inferences of the review are: (i) salt stress reduces seed germination (by up to more than 50%) either by inhibiting water uptake and/or the toxic effect of ions in the embryo, (ii) salt stress reduces growth (by more than 70%), mineral uptake, and yield (by 12-100%) due to ion toxicity and reduced photosynthesis, (iii) apoplastic acidification is a good indicator of salt stress tolerance, (iv) tolerance to salt stress in grain legumes may develop through excretion and/or compartmentalization of toxic ions, increased antioxidant capacity, accumulation of compatible osmolytes, and/or hormonal regulation, (v) seed priming and nutrient management may improve salt tolerance in grain legumes, (vi) plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi may help to improve salt tolerance due to better plant nutrient availability, and (vii) the integration of screening, innovative breeding, and the development of

  13. Hair cosmetics: dyes.

    Science.gov (United States)

    Guerra-Tapia, A; Gonzalez-Guerra, E

    2014-11-01

    Hair plays a significant role in body image, and its appearance can be changed relatively easily without resort to surgical procedures. Cosmetics and techniques have therefore been used to change hair appearance since time immemorial. The cosmetics industry has developed efficient products that can be used on healthy hair or act on concomitant diseases of the hair and scalp. Dyes embellish the hair by bleaching or coloring it briefly, for temporary periods of longer duration, or permanently, depending on the composition of a dye (oxidative or nonoxidative) and its degree of penetration of the hair shaft. The dermatologist's knowledge of dyes, their use, and their possible side effects (contact eczema, cancer, increased porosity, brittleness) can extend to an understanding of cosmetic resources that also treat hair and scalp conditions. Copyright © 2013 Elsevier España, S.L.U. and AEDV. All rights reserved.

  14. Rumen degradability of some feed legume seeds

    OpenAIRE

    González , Javier; Andrés , Santiago

    2003-01-01

    International audience; The aim of this work was to determine the effective degradability (ED) of CP for different feed legume seeds and the possible relationship with their physical and chemical characteristics. The ED was measured using nylon bags and rumen outflow rate techniques on three rumen cannulated wethers fed at 40 g DM$\\cdot$kg$^{-0.75}$, with a 2:1 (on DM basis) hay to concentrate diet. Nine seed samples of the following legume species were tested: lupin (Lupinus albus L., cultiv...

  15. Promotion of hair follicle development and trichogenesis by Wnt-10b in cultured embryonic skin and in reconstituted skin

    International Nuclear Information System (INIS)

    Ouji, Yukiteru; Yoshikawa, Masahide; Shiroi, Akira; Ishizaka, Shigeaki

    2006-01-01

    We previously showed that Wnt-10b promoted the differentiation of primary skin epithelial cells (MPSEC) toward hair shaft and inner root sheath of the hair follicle (IRS) cells in vitro. In the present study, we found that Wnt-10b promotes the development of hair follicles using a culture of mouse embryonic skin tissue and trichogenesis using a reconstitution experiment with nude mice. Hair follicle development was observed in skin taken from mouse embryos on embryonic day 10.5 following a 2-day culture with recombinant Wnt-10b (rWnt-10b), however, not without rWnt-10b. Brown hair growth was observed at the site of reconstituted skin in Balb/c nude mice where dermal fibroblasts and keratinocytes, derived from C3H/HeN new born mice, were transplanted with Wnt-10b-producing COS cells (Wnt-COS). Without the co-transplantation of Wnt-COS, no hair growth was observed. Our results suggest an important role of Wnt-10b in the initiation of hair follicle development and following trichogenesis

  16. Hair and bare skin discrimination for laser-assisted hair removal systems.

    Science.gov (United States)

    Cayir, Sercan; Yetik, Imam Samil

    2017-07-01

    Laser-assisted hair removal devices aim to remove body hair permanently. In most cases, these devices irradiate the whole area of the skin with a homogenous power density. Thus, a significant portion of the skin, where hair is not present, is burnt unnecessarily causing health risks. Therefore, methods that can distinguish hair regions automatically would be very helpful avoiding these unnecessary applications of laser. This study proposes a new system of algorithms to detect hair regions with the help of a digital camera. Unlike previous limited number of studies, our methods are very fast allowing for real-time application. Proposed methods are based on certain features derived from histograms of hair and skin regions. We compare our algorithm with competing methods in terms of localization performance and computation time and show that a much faster real-time accurate localization of hair regions is possible with the proposed method. Our results show that the algorithm we have developed is extremely fast (around 45 milliseconds) allowing for real-time application with high accuracy hair localization ( 96.48 %).

  17. Contribution of Legume Rotations to the Nitrogen Requirements of a ...

    African Journals Online (AJOL)

    Cereal crop yield improvements following legume rotations ... effects of legumes rotation in meeting the N fertilizer requirements of maize. ... The effects of the rotations on increasing the maize yields were equivalent to application of 25, 19 and.

  18. Effect of water deficiency on anatomical structure of codex in root hair zone of maize root tip%水分亏缺对玉米根毛区皮层解剖结构的影响

    Institute of Scientific and Technical Information of China (English)

    于涛; 李万春; 汪李宏; 岳文俊; 马旭凤; 姚雅琴; 张富仓

    2011-01-01

    【Objective】 The research was to study the effect of water deficiency on anatomical structure of codex in maize root hair zone for drought resistance mechanism.【Method】 Taking Gaonong 901 maize which has certain drought resistance in a pot experiment as four groups named control,light deficiency,moderate deficiency,severe deficiency with water treatments:75%-85% of field capacity(CK),65%-75% of field capacity(LS),55%-65% of field capacity(MS),and 45%-55% of field capacity(SS).Tissues of roots which were 10 cm distance from root tips prepared emgedded in epoxy resins were cut into half thin section for optical microscope.With green and the counterstain safranin,armour aniline blue and fluorescent dyes,the changes of cortical cell and casparian band were found through observation under Olympus BX51 microscope and calculation by image pro plus 6.0.【Result】 With increasing water deficiency,codex parenchyma cells were irregularly arranged and width of codex in root hair zone of maize seedling and jointing got thinner.Both in seedling and jointing stage,the length of endodermis in root hair zone decreased unconspicuously,and the width of endodermis changed obviously.Comparatively,the endodermis in seedling changed more obviously than that in jointing,which caused by mature casparian band enhanced mechanical strength of endodermis.Fluorescence observations showed that casparian band of axial walls of endodermis thickened on seedling stage with light deficiency.Both axial and inner tangential walls of casparian band of endodermis thickened more obviously at jointing stage with light and moderate deficiency.Endodermis which had less modified structure deformated obviously with severe deficiency.【Conclusion】 The structure of codex in root hair zone of maize at seedling was more sensitive than at jointing with water deficiency.The tolerance of roots to proper water deficit may be increased by changes such as width of codex and ligno

  19. [Germinated or fermented legumes: food or ingredients of functional food].

    Science.gov (United States)

    Davila, Marbelly A; Sangronis, Elba; Granito, Marisela

    2003-12-01

    Epidemiological research has shown a positive association between certain diseases and dietary intake of food components found in fruits, grains, legumes, fish oil among others. Food that may provide a health benefit beyond the traditional nutrients that it contains, are named functional food. In addition to the varied nutrients, legumes contain compounds such as polyphenols, soluble fiber, alpha-galactosides and isoflavones which confer propierties of functional foods. Do to the cuse of flatus production in some people, long cooking periods, or anti-nutritional factors, legume consumption levels are limited. In this review, germination and fermentation processes will be presented as alternatives that are able to reduce or inactivate anti-nutritional factors, preserve and even improve the content of the isoflavones, or better the potencial of the legumes as functional food or as ingredients for the formulation of functional foods.

  20. Activation of cell divisions in legume nodulation

    DEFF Research Database (Denmark)

    Nadzieja, Marcin

    organogenesis. Coordination of these two interdependent processes results in formation of nodules - bacterial accommodating structures where fixation of atmospheric nitrogen takes place. Plant hormones such as auxin and cytokinin play important roles in nodulation. In some legumes the infection process...... of auxin transport inhibitors or cytokinin alone was shown to induce cortical cell divisions in the absence of rhizobia in certain legume species. While the roles of auxin and cytokinin in nodulation have been studied extensively, the precise timing, location and means of molecular crosstalk between...

  1. Temporal diet changes recorded by stable isotopes in Asiatic black bear (Ursus thibetanus) hair.

    Science.gov (United States)

    Mizukami, R N; Goto, M; Izumiyama, S; Yoh, M; Ogura, N; Hayashi, H

    2005-03-01

    Carbon and nitrogen stable isotope ratios were measured in hair samples of the Asiatic black bear (Ursus thibetanus) inhabiting the Northern Japanese Alps (NJA) (n = 20) and the periphery of Nagano City (NC) (n = 6), in Nagano Prefecture, Japan. The hair of NJA bears, which did not have access to anthropogenic foods, showed lower values of d13C and d15N than that of NC bears which had access to garbage and corn fields, especially during the summer. These results reflect somewhat differing diets between the NJA and NC bears. We attempted to assess the feeding history during the hair growth cycle using the growth section analysis method. Each hair sample had been cut into 3?mm lengths from root to tip, labeled, and analyzed along the hair growth. We measured the carbon and nitrogen stable isotope ratios of each 3?mm length of hair sample from one NC bear which had been killed while raiding a corn field. The sections showed wide ranges of isotope ratios, from -23.2% to -14.6% for delta13C, and from 0.3% to 4.6% for delta15N. It was shown that the diet of this bear shifted dramatically from principally C3 plants to more C4 plants and to foods of animal origin. An analysis of the whole hair reflects just the average feeding habit during hair growth, but the present method can trace its diet history. This method can contribute to obtain precise ecological information of wildlife.

  2. Phenolic composition and antioxidant potential of grain legume seeds: A review.

    Science.gov (United States)

    Singh, Balwinder; Singh, Jatinder Pal; Kaur, Amritpal; Singh, Narpinder

    2017-11-01

    Legumes are a good source of bioactive phenolic compounds which play significant roles in many physiological as well as metabolic processes. Phenolic acids, flavonoids and condensed tannins are the primary phenolic compounds that are present in legume seeds. Majority of the phenolic compounds are present in the legume seed coats. The seed coat of legume seeds primarily contains phenolic acids and flavonoids (mainly catechins and procyanidins). Gallic and protocatechuic acids are common in kidney bean and mung bean. Catechins and procyanidins represent almost 70% of total phenolic compounds in lentils and cranberry beans (seed coat). The antioxidant activity of phenolic compounds is in direct relation with their chemical structures such as number as well as position of the hydroxyl groups. Processing mostly leads to the reduction of phenolic compounds in legumes owing to chemical rearrangements. Phenolic content also decreases due to leaching of water-soluble phenolic compounds into the cooking water. The health benefits of phenolic compounds include acting as anticarcinogenic, anti-thrombotic, anti-ulcer, anti-artherogenic, anti-allergenic, anti-inflammatory, antioxidant, immunemodulating, anti-microbial, cardioprotective and analgesic agents. This review provides comprehensive information of phenolic compounds identified in grain legume seeds along with discussing their antioxidant and health promoting activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Hair Pulling (Trichotillomania)

    Science.gov (United States)

    ... for Families - Vietnamese Spanish Facts for Families Guide Hair Pulling (Trichotillomania) No. 96; Reviewed July 2013 It ... for children and adolescents to play with their hair. However, frequent or obsessive hair pulling can lead ...

  4. Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans.

    Directory of Open Access Journals (Sweden)

    Paula García-Fraile

    Full Text Available The biofertilization of crops with plant-growth-promoting microorganisms is currently considered as a healthy alternative to chemical fertilization. However, only microorganisms safe for humans can be used as biofertilizers, particularly in vegetables that are raw consumed, in order to avoid sanitary problems derived from the presence of pathogenic bacteria in the final products. In the present work we showed that Rhizobium strains colonize the roots of tomato and pepper plants promoting their growth in different production stages increasing yield and quality of seedlings and fruits. Our results confirmed those obtained in cereals and alimentary oil producing plants extending the number of non-legumes susceptible to be biofertilized with rhizobia to those whose fruits are raw consumed. This is a relevant conclusion since safety of rhizobia for human health has been demonstrated after several decades of legume inoculation ensuring that they are optimal bacteria for biofertilization.

  5. Sensory Evaluation of Cooked Sausages with Legumes Additive

    OpenAIRE

    Ilze Gramatina; Jelena Zagorska; Evita Straumite; Svetlana Sarvi

    2012-01-01

    In the meat processing industry the substitution of meat with non-meat ingredients is considered an important strategy for reducing overall production costs. The main purpose of the current research was to evaluate differences in physical-chemical composition of cooked sausage with different legumes additions. Peas (Pisum sativum), beans (Phaseolus vulgaris) and lentil (Lens culinaris) were used in preparation of sausages. The legumes at proportion of 20% of the total wei...

  6. Legumes affect alpine tundra community composition via multiple biotic interactions

    NARCIS (Netherlands)

    Soudzilovskaia, N.A.; Aksenova, A.A.; Makarov, M.I.; Onipchenko, V.G.; Logvinenko, O.A.; Braak, ter C.J.F.; Cornelissen, J.H.C.

    2012-01-01

    The soil engineering function of legumes in natural ecosystems is paramount but associated solely with soil nitrogen (N) subsidies, ignoring concomitant biotic interactions such as competitive or inhibitory effects and exchange between mycorrhizas and rhizobia. We aim to (1) disentangle legume

  7. A Study on Scalp Hair Health and Hair Care Practices among Malaysian Medical Students.

    Science.gov (United States)

    Nayak, B Satheesha; Ann, Chua Yuet; Azhar, Azeldeen Bin; Ling, Emily Chan Su; Yen, Wong Hui; Aithal, P Ashwini

    2017-01-01

    Scalp care is essential because it determines the health and condition of the hair and prevents the diseases of scalp and hair. The objectives of our study were to correlate race and hair types, to determine the awareness of hair care among Malaysian medical students, and to distinguish the factors that affect the health of hair and scalp. It was a cross-sectional study wherein validated questionnaires were given to 240 medical undergraduate students who belonged to three ethnic races of Malaysia, i.e., Chinese, Malay, and Malaysian Indians after their informed consent. The results were then analyzed using percentage statistics. Chinese students had comparatively healthier scalp without dandruff. Most Chinese and Indians had silky type of hair while Malay had dry, rough hair. Chinese and Indians colored their hair and used various styling methods; while among the Malays, this percentage was very less. Regarding hair care practices, males used only shampoo and females used shampoo and conditioner for hair wash. Students also faced dietary and examination-related stress. Results indicate that there exist morphological differences in hair among the studied population. Since most students color their hair and employ various hairstyling methods, they should be educated regarding best hair care practices to improve their scalp hair condition and health.

  8. Composition of legume soaking water and emulsifying properties in gluten-free bread.

    Science.gov (United States)

    Huang, San; Liu, Yuling; Zhang, Weihan; Dale, Kylie J; Liu, Silu; Zhu, Jingnan; Serventi, Luca

    2018-04-01

    Soaking of legumes results in the loss of macronutrients, micronutrients and phytochemicals. Fibre, protein and phytochemicals found in legumes exert emulsifying activity that may improve the structure and texture of gluten-free bread. The legume soaking water of haricot beans, garbanzo chickpeas, whole green lentils, split yellow peas and yellow soybeans were tested in this study for functional properties and use as food ingredients. Composition, physicochemical properties and effect on the quality of gluten-free bread were determined for each legume soaking water. Haricot beans and split yellow peas released the highest amount of solids in the legume soaking water: 1.89 and 2.38 g/100 g, respectively. Insoluble fibre was the main constituent of haricot beans legume soaking water, while water-soluble carbohydrates and protein were the major fraction of split yellow peas. High quantities of phenolics (∼400 µg/g) and saponins (∼3 mg/g) were found in the legume soaking water of haricot beans, whole green lentils and split yellow peas. High emulsifying activity (46 and 50%) was found for the legume soaking water of garbanzo chickpeas and split yellow peas, probably due to their protein content and high ratio of water-soluble carbohydrates to dry matter. Such activity resulted in softer texture of the gluten-free bread. A homogeneous structure of crumb pores was found for split yellow peas, opposing that of whole green lentils. A balance between the contents of yeast nutrients and antinutrients was the likely basis of the different appearances.

  9. Contribution of Root Traits to Phosphorus Acqusition Efficiency by Maize Landraces in Acid Soils of the Highlands in Central Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Bayuelo-Jimenez, J. S.; Hernandez-Bravo, N.; Magdaleno-Armas, M. L.; Perez-Decelis, V. A. [Instituto Nacional de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolas de Hidalgo, Tarimbaro, Michoacan (Mexico); Gallardo-Valdez, M. [Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias,. Campo Experimental Uruapan (Mexico); Ochoa, I. [Unipalma S.A. Bogota D.C. (Colombia); Paredes-Gutierrez, L. C. [Centro Nuclear Dr. Nabor Carrillo Flores, Instituto Nacional de Investigaciones Nucleares, Municipio de Ocoyoacac, Salazar (Mexico); Lynch, J. P. [Department of Horticulture, Pennsylvania State University, University Park, PA (United States)

    2013-11-15

    Plants have a wide range of mechanisms and morphological features that increase availability and acquisition of orthophosphate from soil. Root growth, root branching, and root hair morphology are important for the efficient acquisition of phosphorus (P). The series of studies reported here was based on the hypothesis that Mexican maize landraces, which have developed mostly in environments with low P availability and have a well-developed root system, could be a source of variation for the improvement of phosphorus acquisition. Several studies were conducted to evaluate genotypic variation in both root (root architecture and morphology, including root hairs) and plant growth traits associated with P acquisition efficiency (PAE) and/or P utilization efficiency (PUE) of maize landraces in a P-deficient Andisol in the Central Mexican Highlands, and to identify genotypic differences, among both efficient and inefficient in P acquisition and responsive and non-responsive maize landraces to applied P. The results showed that accessions differed greatly in plant growth, grain yield, root morphology, total uptake of P, PAE, PUE, and P efficiency defined as growth with suboptimal P availability. Phosphorus-efficient accessions had not only greater biomass per unit of absorbed P, but also larger root systems, greater P uptake per unit root weight, more nodal roots, nodal root laterals, and greater root hair density of nodal root main axes and first-order laterals than did Pinefficient accessions under P deficiency. Root biomass allocation, as quantified by the allometric partitioning coefficient (K) was not altered by P availability in the efficient accessions, but inefficient accessions had less biomass partitioning to roots (i.e. a lower K) under low P conditions. Accessions with enhanced nodal rooting and laterals had greater P uptake and growth under low P. Dense root hairs on nodal root main axes and first-order laterals conferred a marked benefit under low P, as

  10. Artificial sensory hairs based on the flow sensitive receptor hairs of crickets

    NARCIS (Netherlands)

    Dijkstra, Marcel; van Baar, J.J.J.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; de Boer, J.H.; Krijnen, Gijsbertus J.M.

    2005-01-01

    This paper presents the modelling, design, fabrication and characterization of flow sensors based on the wind-receptor hairs of crickets. Cricket sensory hairs are highly sensitive to drag-forces exerted on the hair shaft. Artificial sensory hairs have been realized in SU-8 on suspended SixNy

  11. Plant roots use a patterning mechanism to position lateral root branches toward available water.

    Science.gov (United States)

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E; Sturrock, Craig J; Thompson, Mark C; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L; Vernoux, Teva; Mooney, Sacha J; Bennett, Malcolm J; Dinneny, José R

    2014-06-24

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root.

  12. LEGUMES UTILISED IN TRADITIONAL FOODS IN IRAQ

    Directory of Open Access Journals (Sweden)

    Dalaram S. Ismael

    2014-02-01

    Full Text Available Iraq is famous in the traditional food from legumes, especially chickpea, lentil, and beans are fresh and dry seeds and as well as for peas, beans and the seeds of faba, cowpea and chickpeas boiled with salt eaten in the form of Lablabe, or make soup from fresh cowpea, fresh faba bean, fresh fasoulia, as well as lentil soup (shorbat adas and different kinds of salad. Turshi, pickled vegetables and fresh pea, fresh fasoulia in the cuisine of many Balkan and Middle East countries. It is a traditional appetizer, meze. Chickpea is eaten on form falafel . The cuisine of Iraq reflects this rich inheritance as well as strong influence from the culinary traditions of neighbouring Persia, Turkey and the Syria region area. Meals begin with appetizers and salads known as Mezza. Some popular dishes include kebab (often marinated with garlic, lemon and spices, then grilled. It can be challenging to help people adjust their diet to meet their nutrient needs and promote weight loss, while at the same time still keeping them satiated. Nutrient rich legumes can be a valuable part of such a diet. They contain soluble fibre and protein and are low glycemic index, all of which may help promote satiety. Legumes are one of the most sustainable sources of protein in the world. Legumes are also significant sources of resistant starch, which is fermented by colonic bacteria to short chain fatty acids.

  13. 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots.

    Science.gov (United States)

    Tucker, Mark L; Xue, Ping; Yang, Ronghui

    2010-01-01

    Colonization of plant roots by root knot and cyst nematodes requires a functional ethylene response pathway. However, ethylene plays many roles in root development and whether its role in nematode colonization is direct or indirect, for example lateral root initiation or root hair growth, is not known. The temporal requirement for ethylene and localized synthesis of ethylene during the life span of soybean cyst nematode (SCN) on soybean roots was further investigated. Although a significant increase in ethylene evolution was not detected from SCN-colonized roots, the concentration of the immediate precursor to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), was higher in SCN-colonized root pieces and root tips than in other parts of the root. Moreover, expression analysis of 17 ACC synthase (ACS) genes indicated that a select set of ACS genes is expressed in SCN-colonized root pieces that is clearly different from the set of genes expressed in non-colonized roots or root tips. Semi-quantitative real-time PCR indicated that ACS transcript accumulation correlates with the high concentration of ACC in root tips. In addition, an ACS-like sequence was found in the public SCN nucleotide database. Acquisition of a full-length sequence for this mRNA (accession GQ389647) and alignment with transcripts for other well-characterized ACS proteins indicated that the nematode sequence is missing a key element required for ACS activity and therefore probably is not a functional ACS. Moreover, no significant amount of ACC was found in any growth stage of SCN that was tested.

  14. [Signaling Systems of Rhizobia (Rhizobiaceae) and Leguminous Plants (Fabaceae) upon the Formation of a Legume-Rhizobium Symbiosis (Review)].

    Science.gov (United States)

    Glyan'ko, A K

    2015-01-01

    Data from the literature and our own data on the participation and interrelation of bacterial signaling Nod-factors and components of the calcium, NADPH-oxidase, and NO-synthase signaling systems of a plant at the preinfection and infectious stages of the formation of a legume-rhizobium symbiosis are summarized in this review. The physiological role of Nod-factors, reactive oxygen species (ROS), calcium (Ca2+), NADPH-oxidase, nitric oxide (NO), and their cross influence on the processes determining the formation of symbiotic structures on the roots of the host plant is discussed.

  15. Hair cosmetics and camouflage technics

    Directory of Open Access Journals (Sweden)

    Zahide Eriş Eken

    2014-06-01

    Full Text Available Hair is composed of a mixture of trace elements in small quantities, proteins, lipids and water. Proteins consist of helical polypeptide amino acid molecules. In the hair cells; polypeptide chains of keratin protein would be organized in filaments. In recent years, hair cosmetics showed a significant change and development. The content of shampoos which is used to cleanse the hair has enhanced significantly. Hair conditioner, hair styling products, pomades, brilliantine, and gloss sprays, hair protective products, camouflage products are most commonly used hair cosmetics. Hair shaping procedures are frequently applied.

  16. Doppler laser imaging predicts response to topical minoxidil in the treatment of female pattern hair loss.

    Science.gov (United States)

    McCoy, J; Kovacevic, M; Situm, M; Stanimirovic, A; Bolanca, Z; Goren, A

    2016-01-01

    Topical minoxidil is the only drug approved by the US FDA for the treatment of female pattern hair loss. Unfortunately, following 16 weeks of daily application, less than 40% of patients regrow hair. Several studies have demonstrated that sulfotransferase enzyme activity in plucked hair follicles predicts topical minoxidil response in female pattern hair loss patients. However, due to patients’ discomfort with the procedure, and the time required to perform the enzymatic assay it would be ideal to develop a rapid, non-invasive test for sulfotransferase enzyme activity. Minoxidil is a pro-drug converted to its active form, minoxidil sulfate, by sulfotransferase enzymes in the outer root sheath of hair. Minoxidil sulfate is the active form required for both the promotion of hair regrowth and the vasodilatory effects of minoxidil. We thus hypothesized that laser Doppler velocimetry measurement of scalp blood perfusion subsequent to the application of topical minoxidil would correlate with sulfotransferase enzyme activity in plucked hair follicles. In this study, plucked hair follicles from female pattern hair loss patients were analyzed for sulfotransferase enzyme activity. Additionally, laser Doppler velocimetry was used to measure the change in scalp perfusion at 15, 30, 45, and 60 minutes, after the application of minoxidil. In agreement with our hypothesis, we discovered a correlation (r=1.0) between the change in scalp perfusion within 60 minutes after topical minoxidil application and sulfotransferase enzyme activity in plucked hairs. To our knowledge, this is the first study demonstrating the feasibility of using laser Doppler imaging as a rapid, non-invasive diagnostic test to predict topical minoxidil response in the treatment of female pattern hair loss.

  17. Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis

    DEFF Research Database (Denmark)

    Hao, X.; Taghavi, S.; Xie, P.

    2014-01-01

    Legumes are important for nitrogen cycling in the environment and agriculture due to the ability of nitrogen fixation by rhizobia. In this review, we introduce an important and potential role of legume-rhizobia symbiosis in aiding phytoremediation of some metal contaminated soils as various legumes...... have been found to be the dominant plant species in metal contaminated areas. Resistant rhizobia used for phytoremediation could act on metals directly by chelation, precipitation, transformation, biosorption and accumulation. Moreover, the plant growth promoting (PGP) traits of rhizobia including...... is not clear. Therefore, to obtain the maximum benefits from legumes assisted by rhizobia for phytoremediation of metals, it is critical to have a good understanding of interactions between PGP traits, the symbiotic plant-rhizobia relationship and metals....

  18. Hair restoration.

    Science.gov (United States)

    Rawnsley, Jeffrey D

    2008-08-01

    The impact of male hair loss as a personal and social marker of aging is tremendous and its persistence as a human concern throughout recorded history places it in the forefront of male concern about the physical signs of aging. Restoration of the frontal hairline has the visual effect of re-establishing facial symmetry and turning back time. Follicular unit transplantation has revolutionized hair restoration, with its focus on redistributing large numbers of genetically stable hair to balding scalp in a natural distribution. Follicular unit hair restoration surgery is a powerful tool for the facial plastic surgeon in male aesthetic facial rejuvenation because it offers high-impact, natural-appearing results with minimal downtime and risk for adverse outcome.

  19. Field evaluations of N2 fixation by grain legumes in Pakistan

    International Nuclear Information System (INIS)

    Hafeez, F.Y.; Ahmad, T.; Asad, T.; Malik, K.; Shah, N.H.; Danso, S.K.A.

    1998-01-01

    Studies were undertaken with four legume species that are economically important in Pakistan, to gain an understanding of how host-genotype, rhizobial-strain, and environmental factors affect the root-nodule N 2 -fixing symbiosis of field-grown plants. Strong responses to inoculation were obtained with lentil (Lens culinaris) that showed significant host-genotype x rhizobial strain interaction. In contrast, only one of eight mung-bean (Vigna radiata) genotypes and none of five black-gram (V. mungo) genotypes responded positively to inoculation; however, negative effects of inoculation were cautionary that host-genotype x rhizobial strain interactions must nevertheless be considered. Trials with chickpea (Cicer arietinum) indicated that biomass, grain yield and total N may be used as indicators of the amount of N fixed for large screening trials in which employment of the 15 N-dilution technique would be prohibitively expensive

  20. Comparative nitrogen fixation, native arbuscular mycorrhiza formation and biomass production potentials of some grain legumes species grown in the field in the Guinea Savannah zone of Ghana

    International Nuclear Information System (INIS)

    Ahiabor, B.D.K.; Fosu, M.; Tibo, I.; Sumaila, I.

    2007-01-01

    An on-station trial was conducted in the experimental field of Savannah Agricultural Research Institute at Nyankpala in the Northern Region of Ghana to assess the nitrogen fixation, native arbuscular mycorrhizal formation and biomass production potentials of cowpea (Vigna unguiculata), devil-bean (Crotalaria retusa), Mucuna pruriens var. utilis (black and white types) and Canavalia ensiformis with maize (Dorke SR) as the reference crop using the total nitrogen difference (TND) method. Plants were fertilized with 40 kg P/ha and 30 kg K/ha at 2 weeks after planting and grown for 55 days after which they were harvested. The harvested biomass (separated into roots, stems and leaves) of each crop was oven-dried at 70 0 C for 48 h to a constant weight. Cowpea and devil-bean produced approximately 5 and 6 t/ha biomass whereas Mucuna and Canavalia yielded about 2 t/ha biomass each. Although cowpea had the least number of arbuscular mycorrhiza fungal (AMF) spores in its rhizosphere, its roots were the most heavily colonized (34%) and M. pruriens recording below 5% colonization. Apart from C. ensiformis, the test legumes derived over 50% of their total accumulated N from the atmosphere with cowpea being the most efficient (90% Ndfa). Both N and P accumulations were significantly higher in cowpea than the other legumes due to increased N concentration and dry matter accumulation, respectively. In all the legumes, there was a direct positive correlation between the extent of mycorrhiza formation, biological N fixation and total N uptake. It could, therefore, be concluded that the extensive mycorrhiza formation in cowpea and its high N 2 -fixing potential resulted in a high shoot N and P uptake leading to a comparatively better growth enhancement. Cowpea could, therefore, be the grain legume for consideration in the selection of a suitable legume pre-crop to cereals for the amelioration of the low fertility of the degraded soils of the Guinea savannah zone of Ghana, and also as

  1. Beans (Phaseolus spp.) - model food legumes

    International Nuclear Information System (INIS)

    Broughton, W.J.; Hemandez, H.; Blair, M.; Beebe, S.; Gepts, P.; Vanderleyden, J.

    2001-01-01

    Globally, 800 million people are malnourished. Heavily subsidised farmers in rich countries produce sufficient surplus food to feed the hungry, but not at a price the poor can afford. Even donating the rich world's surplus to the poor would not solve the problem. Most poor people earn their living from agriculture, so a deluge of free food would destroy their livelihoods. Thus, the only answer to world hunger is to safeguard and improve the productivity of farmers in poor countries. Diets of subsistence level farmers in Africa and Latin America often contain sufficient carbohydrates (through cassava, corn/maize, rice, wheat, etc.), but are poor in proteins. Dietary proteins can take the form of scarce animal products (eggs, milk, meat, etc.), but are usually derived from legumes (plants of the bean and pea family). Legumes are vital in agriculture as they form associations with bacteria that 'fix-nitrogen' from the air. Effectively this amounts to internal fertilisation and is the main reason that legumes are richer in proteins than all other plants. Thousands of legume species exist but more common beans (Phaseolus vulgaris L.) are eaten than any other. In some countries such as Mexico and Brazil, beans are the primary source of protein in human diets. As half the grain legumes consumed worldwide are common beans, they represent the species of choice for the study of grain legume nutrition. Unfortunately, the yields of common beans are low even by the standards of legumes, and the quality of their seed proteins is sub-optimal. Most probably this results from millennia of selection for stable rather than high yield, and as such, is a problem that can be redressed by modem genetic techniques. We have formed an international consortium called 'Phaseomics' to establish the necessary framework of knowledge and materials that will result in disease-resistant, stress-tolerant, high-quality protein and high-yielding beans. Phaseomics will be instrumental in improving

  2. Viking Age Hair

    Directory of Open Access Journals (Sweden)

    Elisabeth Arwill-Nordbladh

    2016-11-01

    Full Text Available A study of hair in the Viking Age. The article draws on medieval Icelandic and Scandinavian texts for interpretation. Further information is taken from pictoral representations of viking hair styles and decoration, hairdressing artefacts, figurines and actual remains of hair.

  3. No evidence for adaptation to local rhizobial mutualists in the legume Medicago lupulina.

    Science.gov (United States)

    Harrison, Tia L; Wood, Corlett W; Borges, Isabela L; Stinchcombe, John R

    2017-06-01

    Local adaptation is a common but not ubiquitous feature of species interactions, and understanding the circumstances under which it evolves illuminates the factors that influence adaptive population divergence. Antagonistic species interactions dominate the local adaptation literature relative to mutualistic ones, preventing an overall assessment of adaptation within interspecific interactions. Here, we tested whether the legume Medicago lupulina is adapted to the locally abundant species of mutualistic nitrogen-fixing rhizobial bacteria that vary in frequency across its eastern North American range. We reciprocally inoculated northern and southern M. lupulina genotypes with the northern ( Ensifer medicae ) or southern bacterium ( E. meliloti ) in a greenhouse experiment. Despite producing different numbers of root nodules (the structures in which the plants house the bacteria), neither northern nor southern plants produced more seeds, flowered earlier, or were more likely to flower when inoculated with their local rhizobia. We then used a pre-existing dataset to perform a genome scan for loci that showed elevated differentiation between field-collected plants that hosted different bacteria. None of the loci we identified belonged to the well-characterized suite of legume-rhizobia symbiosis genes, suggesting that the rhizobia do not drive genetic divergence between M. lupulina populations. Our results demonstrate that symbiont local adaptation has not evolved in this mutualism despite large-scale geographic variation in the identity of the interacting species.

  4. Hair follicle stem cell proliferation, Akt and Wnt signaling activation in TPA-induced hair regeneration.

    Science.gov (United States)

    Qiu, Weiming; Lei, Mingxing; Zhou, Ling; Bai, Xiufeng; Lai, Xiangdong; Yu, Yu; Yang, Tian; Lian, Xiaohua

    2017-06-01

    Regeneration of hair follicles relies on activation of hair follicle stem cells during telogen to anagen transition process in hair cycle. This process is rigorously controlled by intrinsic and environmental factors. 12-o-tetradecanoylphorbol-13-acetate (TPA), a tumor promoter, accelerates reentry of hair follicles into anagen phase. However, it is unclear that how TPA promotes the hair regeneration. In the present study, we topically applied TPA onto the dorsal skin of 2-month-old C57BL/6 female mice to examine the activity of hair follicle stem cells and alteration of signaling pathways during hair regeneration. We found that refractory telogen hair follicles entered anagen prematurely after TPA treatment, with the enhanced proliferation of CD34-positive hair follicle stem cells. Meanwhile, we observed Akt signaling was activated in epidermis, hair infundibulum, bulge and hair bulb, and Wnt signaling was also activated after hair follicle stem cells proliferation. Importantly, after overexpression of DKK1, a specific Wnt signaling inhibitor, the accelerated reentry of hair follicles into anagen induced by TPA was abolished. Our data indicated that TPA-induced hair follicle regeneration is associated with activation of Akt and Wnt/β-catenin signaling.

  5. Hair loss in infancy.

    Science.gov (United States)

    Moreno-Romero, J A; Grimalt, R

    2014-02-01

    Hair diseases represent a significant portion of cases seen by pediatric dermatologists although hair has always been a secondary aspect in pediatricians and dermatologists training, on the erroneous basis that there is not much information extractable from it. Dermatologists are in the enviable situation of being able to study many disorders with simple diagnostic techniques. The hair is easily accessible to examination but, paradoxically, this approach is often disregarded by non-dermatologist. This paper has been written on the purpose of trying to serve in the diagnostic process of daily practice, and trying to help, for example, to distinguish between certain acquired and some genetically determined hair diseases. We will focus on all the data that can be obtained from our patients' hair and try to help on using the messages given by hair for each patient. Quite often it is extremely hard to distinguish between abnormality and normality in neonatal hair aspects. We will specially focus in the most common physiological changes that may mislead to an incorrect diagnosis. Specific treatment for those hair diseases that do have one, and basic general approach to improve the cosmetic appearance of hair, will be also be discussed for those hair disturbances that do not have a specific treatment.

  6. Localization of the CAPRICE-ENHANCER OF TRY AND CPC1 chimera protein in Arabidopsis root epidermis.

    Science.gov (United States)

    Tominaga-Wada, Rumi; Kurata, Tetsuya; Wada, Takuji

    2017-09-01

    The CAPRICE (CPC) encodes an R3-type MYB transcription factor, which promotes root-hair differentiation. Previously, we showed that the CPC protein moves from the non-hair cell to the neighboring cell and induces root-hair differentiation in Arabidopsis. In addition, we proposed two cell-to-cell movement signal sequences, S1 and S2, in CPC. However, an S1:2xGFP:S2 chimera protein did not move between root epidermal cells. Here, we show that the S1 and S2 sequences do not confer cell-to-cell movement or nuclear localization ability to a GFP protein. The ENHANCER OF TRY AND CPC1 (ETC1) gene encodes the CPC homolog R3 MYB; this protein does not possess cell-to-cell movement ability or the S1 sequence. To elucidate whether the S1 sequence can induce cell-to-cell movement ability in ETC1, CPCp:S1:ETC1:2xGFP was constructed and introduced into Arabidopsis. Our results indicate that the addition of the S1 sequence was not sufficient for ETC1 to acquire cell-to-cell movement ability.

  7. Hair loss in women.

    Science.gov (United States)

    Harfmann, Katya L; Bechtel, Mark A

    2015-03-01

    Hair loss is a common cause of morbidity for many women. As a key member of the woman's health care team, the obstetrician/gynecologist may be the first person to evaluate the complaint of hair loss. Common types of nonscarring hair loss, including female pattern hair loss and telogen effluvium, may be diagnosed and managed by the obstetrician/gynecologist. A systematic approach to diagnosis and management of these common forms of hair loss is presented.

  8. Hair casts

    OpenAIRE

    Sweta S Parmar; Kirti S Parmar; Bela J Shah

    2014-01-01

    Hair casts or pseudonits are circumferential concretions, which cover the hair shaft in such a way that, it could be easily removed. They are thin, cylindrical, and elongated in length. We present an unusual case of an 8-year-old girl presenting with hair casts. Occurrence of these is unusual, and they may have varied associations. This patient was suffering from developmental delay. It is commonly misdiagnosed as and very important to differentiate from pediculosis capitis.

  9. Mobilizing Transit-Amplifying Cell-Derived Ectopic Progenitors Prevents Hair Loss from Chemotherapy or Radiation Therapy.

    Science.gov (United States)

    Huang, Wen-Yen; Lai, Shih-Fan; Chiu, Hsien-Yi; Chang, Michael; Plikus, Maksim V; Chan, Chih-Chieh; Chen, You-Tzung; Tsao, Po-Nien; Yang, Tsung-Lin; Lee, Hsuan-Shu; Chi, Peter; Lin, Sung-Jan

    2017-11-15

    Genotoxicity-induced hair loss from chemotherapy and radiotherapy is often encountered in cancer treatment, and there is a lack of effective treatment. In growing hair follicles (HF), quiescent stem cells (SC) are maintained in the bulge region, and hair bulbs at the base contain rapidly dividing, yet genotoxicity-sensitive transit-amplifying cells (TAC) that maintain hair growth. How genotoxicity-induced HF injury is repaired remains unclear. We report here that HFs mobilize ectopic progenitors from distinct TAC compartments for regeneration in adaptation to the severity of dystrophy induced by ionizing radiation (IR). Specifically, after low-dose IR, keratin 5 + basal hair bulb progenitors, rather than bulge SCs, were quickly activated to replenish matrix cells and regenerated all concentric layers of HFs, demonstrating their plasticity. After high-dose IR, when both matrix and hair bulb cells were depleted, the surviving outer root sheath cells rapidly acquired an SC-like state and fueled HF regeneration. Their progeny then homed back to SC niche and supported new cycles of HF growth. We also revealed that IR induced HF dystrophy and hair loss and suppressed WNT signaling in a p53- and dose-dependent manner. Augmenting WNT signaling attenuated the suppressive effect of p53 and enhanced ectopic progenitor proliferation after genotoxic injury, thereby preventing both IR- and cyclophosphamide-induced alopecia. Hence, targeted activation of TAC-derived progenitor cells, rather than quiescent bulge SCs, for anagen HF repair can be a potential approach to prevent hair loss from chemotherapy and radiotherapy. Cancer Res; 77(22); 6083-96. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Hair removal in adolescence

    Directory of Open Access Journals (Sweden)

    Sandra Pereira

    2015-06-01

    Full Text Available Introduction: Due to hormonal stimulation during puberty, changes occur in hair type and distribution. In both sexes, body and facial unwanted hair may have a negative psychological impact on the teenager. There are several available methods of hair removal, but the choice of the most suitable one for each individual can raise doubts. Objective: To review the main methods of hair removal and clarify their indications, advantages and disadvantages. Development: There are several removal methods currently available. Shaving and depilation with chemicals products are temporary methods, that need frequent repetition, because hair removal is next to the cutaneous surface. The epilating methods in which there is full hair extraction include: epilation with wax, thread, tweezers, epilating machines, laser, intense pulsed light, and electrolysis. Conclusions: The age of beginning hair removal and the method choice must be individualized and take into consideration the skin and hair type, location, dermatological and endocrine problems, removal frequency, cost and personal preferences.

  11. Metagenomic analyses of bacteria on human hairs: a qualitative assessment for applications in forensic science.

    Science.gov (United States)

    Tridico, Silvana R; Murray, Dáithí C; Addison, Jayne; Kirkbride, Kenneth P; Bunce, Michael

    2014-01-01

    Mammalian hairs are one of the most ubiquitous types of trace evidence collected in the course of forensic investigations. However, hairs that are naturally shed or that lack roots are problematic substrates for DNA profiling; these hair types often contain insufficient nuclear DNA to yield short tandem repeat (STR) profiles. Whilst there have been a number of initial investigations evaluating the value of metagenomics analyses for forensic applications (e.g. examination of computer keyboards), there have been no metagenomic evaluations of human hairs-a substrate commonly encountered during forensic practice. This present study attempts to address this forensic capability gap, by conducting a qualitative assessment into the applicability of metagenomic analyses of human scalp and pubic hair. Forty-two DNA extracts obtained from human scalp and pubic hairs generated a total of 79,766 reads, yielding 39,814 reads post control and abundance filtering. The results revealed the presence of unique combinations of microbial taxa that can enable discrimination between individuals and signature taxa indigenous to female pubic hairs. Microbial data from a single co-habiting couple added an extra dimension to the study by suggesting that metagenomic analyses might be of evidentiary value in sexual assault cases when other associative evidence is not present. Of all the data generated in this study, the next-generation sequencing (NGS) data generated from pubic hair held the most potential for forensic applications. Metagenomic analyses of human hairs may provide independent data to augment other forensic results and possibly provide association between victims of sexual assault and offender when other associative evidence is absent. Based on results garnered in the present study, we believe that with further development, bacterial profiling of hair will become a valuable addition to the forensic toolkit.

  12. Quantification of the Volume and Surface Area of Symbiosomes and Vacuoles of Infected Cells in Root Nodules of Medicago truncatula

    NARCIS (Netherlands)

    Gavrin, A.Y.; Fedorova, E.

    2015-01-01

    Legumes are able to form endosymbiotic interactions with nitrogen-fixing rhizobia. Endosymbiosis takes shape in formation of a symbiotic organ, the root nodule. Medicago truncatula (M. truncatula) nodules contain several zones representing subsequent stages of development. The apical part of the

  13. Teknologi Pengendalian Gulma Alang-alang dengan Tanaman Legum untuk Pertanian Tanaman Pangan

    Directory of Open Access Journals (Sweden)

    Ishak Juarsah

    2015-07-01

    Full Text Available Di Indonesia, Alang-alang (Imperata cylindrica L. Beauv merupakan salah satu gulma terpenting dan termasuk sepuluh gulma bermasalah di dunia.  Melalui biji dan rimpang, alang-alang dapat tumbuh dan menyebar luas pada hampir semua kondisi lahan. Teknologi pengendalian alang-alang telah banyak dikenal namun belum dapat menjamin eradikasi populasi alang-alang secara berkelanjutan tanpa diikuti oleh kultur teknis dan pola budidaya tanaman pangan sepanjang tahun. Hasil penelitian menunjukan bahwa lahan alang-alang dapat dikendalikan/dikelola menjadi lahan produktif setelah direhabilitasi dengan tanaman legume (Mucuna sp. untuk usaha tani tanaman pangan lahan kering berorientasi konservasi tanah. Bahan hijauan tanaman Mucuna dapat meningkatkan kadar C-organik, memperbaiki sifat fisika, kimia tanah dan meningkatkan  produksi tanaman pangan. In Indonesia, Alang-alang (Imperata cylindrica L. Beauv is one of important weeds and included to ten most problematic weeds around the world. Through its seeds and roots, alang-alang can grow and expand in nearly all soil conditions. Many technologies for controlling have been known but can not ensure the eradication of weeds population, however the controlling via food crops cropping systems for the whole years is the best method so far to have sustainability of the agriculture land. Research showed that alang-alang area could be controlled/managed became more productive land after rehabilitation with legume (ie Mucuna sp. especially for dry land conservation oriented. Mucuna green materials might increase C-organic content, both soil chemical and physical improvement, furthermore increased foodcrops production.

  14. Tissue-engineered skin preserving the potential of epithelial cells to differentiate into hair after grafting.

    Science.gov (United States)

    Larouche, Danielle; Cuffley, Kristine; Paquet, Claudie; Germain, Lucie

    2011-03-01

    The aim of this study was to evaluate whether tissue-engineered skin produced in vitro was able to sustain growth of hair follicles in vitro and after grafting. Different tissues were designed. Dissociated newborn mouse keratinocytes or newborn mouse hair buds (HBs) were added onto dermal constructs consisting of a tissue-engineered cell-derived matrix elaborated from either newborn mouse or adult human fibroblasts cultured with ascorbic acid. After 7-21 days of maturation at the air-liquid interface, no hair was noticed in vitro. Epidermal differentiation was observed in all tissue-engineered skin. However, human fibroblast-derived tissue-engineered dermis (hD) promoted a thicker epidermis than mouse fibroblast-derived tissue-engineered dermis (mD). In association with mD, HBs developed epithelial cyst-like inclusions presenting outer root sheath-like attributes. In contrast, epidermoid cyst-like inclusions lined by a stratified squamous epithelium were present in tissues composed of HBs and hD. After grafting, pilo-sebaceous units formed and hair grew in skin elaborated from HBs cultured 10-26 days submerged in culture medium in association with mD. However, the number of normal hair follicles decreased with longer culture time. This hair-forming capacity after grafting was not observed in tissues composed of hD overlaid with HBs. These results demonstrate that epithelial stem cells can be kept in vitro in a permissive tissue-engineered dermal environment without losing their potential to induce hair growth after grafting.

  15. Expression and localization of VEGFR-2 in hair follicles during induced hair growth in mice.

    Science.gov (United States)

    Wu, Xian-Jie; Jing, Jing; Lu, Zhong-Fa; Zheng, Min

    2018-06-16

    Recently, VEGFR-2 has been detected not only in vascular and lymphatic endothelial cells but also in some non-vascular endothelial cells, particularly human hair follicles, sebaceous glands, and sweat glands. In addition, VEGFR-2 has been confirmed to play direct roles in hair follicle keratinocyte regulation beyond simply angiogenesis. To elucidate whether VEGFR-2 activation plays a role in hair follicle cycling regulation, immunofluorescence of VEGFR-2 expression was performed during hair cycling of the dorsum of the mouse induced by hair plucking. We observed that staining for VEGFR-2 in hair follicles during anagen II and IV was much stronger than during anagen VI, catagen and telogen. During anagen II, intense staining for VEGFR-2 was observed on the keratinocyte strands of the hair follicle. Subsequently, we detected intense staining for VEGFR-2 in the ORS, IRS and hair bulb during anagen IV. Moderate staining for VEGFR-2 was detected in the ORS and hair bulb, but staining was most intense in IRS during anagen VI. During catagen, staining for VEGFR-2 in the IRS remained intense, while staining in the ORS and hair bulb was significantly weakened and was negative in the dermal papilla. During telogen, we detected VEGFR-2 in germ cells, cap, and club hair adjoining the epidermis. In conclusion, VEGFR-2 was expressed on the hair follicles of the dorsum of the mouse and varied in expression on the mouse hair follicles during hair cycling, suggesting that VEGFR-2 may exert roles in hair cycle regulation in hair follicles on the dorsum of mice.

  16. Contribution of Legume Rotations to the Nitrogen Requirements of a ...

    African Journals Online (AJOL)

    Industrial fertilizers are expensive for small-scale farmers who, as alternative, rely on legume crops for providing N for a subsequent maize crop. A legume-maize rotational experiment was carried out on a Rhodic Ferralsol at Mlingano Agricultural Research Institute in Muheza, Tanga, Tanzania, to evaluate the effects of ...

  17. [Development and technological transfer of functional pastas extended with legumes].

    Science.gov (United States)

    Granito, Marisela; Ascanio, Vanesa

    2009-03-01

    Development and technological transfer of functional pastas extended with legumes. Semolina pasta is a highly consumed foodstuff, the biological value of which is low because its protein is deficient in lysine. However, if the semolina is extended with legumes rich in this essential aminoacid, not only and aminoacid supplementation is produced, but also the dietary fibre and minerals are increased. In this work, pastas extended in 10% with a white variety of Phaseolus vulgaris and with Cajanus cajan were produced on a pilot plant scale, and this technology was transferred to a cooperative producing artisanal pastas. The cooking qualities and the physical, chemical, and nutritional characteristics of the pastas were evaluated, as well as the sensorial acceptability in institutionalized elderly people. The extension of the pastas with legume flours increased the optimum cooking time (15 to 20%), the weight (20% and 25%), and the loss of solids by cooking. Similarly, the functional value of the pastas increased by increasing the contents of minerals and dietary fibre. The protein content, as well as the protein digestibility in vitro also increased; however, the parameters of colour L, a and b, and the total starch content of the pastas decreased. At consumer level, the pastas extended with legumes had a good acceptability, for what it was concluded that the extension of the semolina with legume flours in the manufacture of pastas is technologically feasible.

  18. Co-option of Hair Follicle Keratins into Amelogenesis Is Associated with the Evolution of Prismatic Enamel: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Elia Beniash

    2017-10-01

    Full Text Available Recent discovery of hair follicle keratin 75 (KRT75 in enamel raises questions about the function of this protein in enamel and the mechanisms of its secretion. It is also not clear how this protein with a very specific and narrow expression pattern, limited to the inner root sheath of the hair follicle, became associated with enamel. We propose a hypothesis that KRT75 was co-opted by ameloblasts during the evolution of Tomes' process and the prismatic enamel in synapsids.

  19. Legume Seed Production Meeting Market Requirements and Economic Impacts

    DEFF Research Database (Denmark)

    Boelt, Birte; Julier, Bernadette; Karagić, Đura

    2015-01-01

    The seed is the carrier of the genetic improvements brought about by modern plant breeding, and seed production is carried out in accordance with certification systems to guarantee consistent high quality. In forage legumes, breeding efforts are primarily related to the vegetative development...... of the plant, although the commercial success of an agronomically superior cultivar is dependent on a reliable supply of competitively priced seed. In seed production of the three most important forage legumes, alfalfa (Medicago sativa L.), white clover (Trifolium repens L.), and red clover (Trifolium pratense......-pollinated forage legumes it is further highly influenced by environmental conditions and crop management factors. Further investigations into the use of plant growth regulators and an improved understanding of the interaction between pollinators and the seed crop might improve future seed yields. There is likely...

  20. Use of ex vitro composite plants to study the interaction of cowpea (Vigna unguiculata L.) with the root parasitic angiosperm Striga gesnerioides

    Science.gov (United States)

    2012-01-01

    Background Cowpea (Vigna unguiculata L.) is an important grain and forage legume grown throughout sub-Saharan Africa primarily by subsistence farmers on poor, drought prone soils. Genetic improvement of the crop is being actively pursued and numerous functional genomics studies are underway aimed at characterizing gene controlling key agronomic characteristics for disease and pest resistances. Unfortunately, similar to other legumes, efficient plant transformation technology is a rate-limiting step in analysis of gene function in cowpea. Results Here we describe an optimized protocol for the rapid generation of transformed hairy roots on ex vitro composite plants of cowpea using Agrobacterium rhizogenes. We further demonstrate the applicability of cowpea composite plants to study gene expression involved in the resistance response of the plant roots to attack by the root parasitic weed, Striga gesnerioides. The utility of the new system and critical parameters of the method are described and discussed herein. Conclusions Cowpea composite plants offer a rapid alternative to methods requiring stable transformation and whole plant regeneration for studying gene expression in resistance or susceptibility responses to parasitic weeds. Their use can likely be readily adapted to look at the effects of both ectopic gene overexpression as well as gene knockdown of root associated defense responses and to the study of a broader range of root associated physiological and aphysiological processes including root growth and differentiation as well as interactions with other root pests, parasites, and symbionts. PMID:22741546

  1. Does plant immunity have a central role in the legume rhizobium symbiosis?

    Directory of Open Access Journals (Sweden)

    Katalin eToth

    2015-06-01

    Full Text Available Plants are exposed to many different microbes in their habitat. These microbes may be benign or pathogenic, but in some cases they are beneficial. The rhizosphere provides an especially rich palette for colonization by beneficial (associative and symbiotic microorganisms, which raises the question as to how roots can distinguish such ‘friends’ from possible ‘foes’ (i.e., pathogens. Plants possess an innate immunity system that can recognize pathogens, through an arsenal of protein receptors. These receptors include receptor-like kinases (RLK and receptor-like proteins (RLP located at the plasma membrane, as well as intracellular receptors (so called NBS-LRR proteins or R proteins that recognize molecules released by microbes into the plant cell. The key rhizobial, symbiotic signaling molecule (called Nod factor is perceived by the host legume plant using LysM-domain containing RLKs. Perception of the symbiotic Nod factor triggers signaling cascades leading to bacterial infection and accommodation of the symbiont in a newly formed root organ, the nodule, resulting in a nitrogen-fixing root nodule symbiosis (RNS. The net result of this symbiosis is the intracellular colonization of the plant with thousands of bacteria; a process that seems to occur in spite of the immune ability of plants to prevent pathogen infection. In this review, we discuss the potential of the invading rhizobial symbiont to actively avoid this innate immunity response, as well as specific examples of where the plant immune response may modulate rhizobial infection and host range.

  2. "I think gorilla-like back effusions of hair are rather a turn-off": 'Excessive hair' and male body hair (removal) discourse.

    Science.gov (United States)

    Terry, Gareth; Braun, Virginia

    2016-06-01

    Men's hair removal practices are becoming mainstream, seen as a consequence of changing masculine norms and men's relationships to their bodies. This is often presented as a straightforward 'shift' from men's ideal bodies as naturally hairy, to increased hairlessness, and the consequence on men's body concerns as inevitable. This paper analyses qualitative survey data from Aotearoa/New Zealand using critical thematic analysis, and describes three themes. Two themes capture contradictory ideas: that men's body hair is natural, and that men's body hair is unpleasant. A third theme introduces the concept of 'excess' hair, which allowed sense-making of this contradiction, mandating men's grooming of 'excessive' hair. However its vagueness as a concept may provoke anxiety for men resulting in hair removal. This paper adds to a body of research demonstrating a cultural transition: the ways changing masculinities, increased commodification of male bodies, and shifting gender roles impact on men's hair removal practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Hair dye contact allergy

    DEFF Research Database (Denmark)

    Søsted, Heidi; Rastogi, Suresh Chandra; Andersen, Klaus Ejner

    2004-01-01

    Colouring of hair can cause severe allergic contact dermatitis. The most frequently reported hair dye allergens are p-phenylenediamine (PPD) and toluene-2,5-diamine, which are included in, respectively, the patch test standard series and the hairdressers series. The aim of the present study...... was to identify dye precursors and couplers in hair dyeing products causing clinical hair dye dermatitis and to compare the data with the contents of these compounds in a randomly selected set of similar products. The patient material comprised 9 cases of characteristic clinical allergic hair dye reaction, where...... exposure history and patch testing had identified a specific hair dye product as the cause of the reaction. The 9 products used by the patients were subjected to chemical analysis. 8 hair dye products contained toluene-2,5-diamine (0.18 to 0.98%). PPD (0.27%) was found in 1 product, and m-aminophenol (0...

  4. Physiological and morphological adaptations of herbaceous perennial legumes allow differential access to sources of varyingly soluble phosphate.

    Science.gov (United States)

    Pang, Jiayin; Yang, Jiyun; Lambers, Hans; Tibbett, Mark; Siddique, Kadambot H M; Ryan, Megan H

    2015-08-01

    The aim of this study was to investigate the capacity of three perennial legume species to access sources of varyingly soluble phosphorus (P) and their associated morphological and physiological adaptations. Two Australian native legumes with pasture potential (Cullen australasicum and Kennedia prostrata) and Medicago sativa cv. SARDI 10 were grown in sand under two P levels (6 and 40 µg P g(-1) ) supplied as Ca(H2 PO4 )2 ·H2 O (Ca-P, highly soluble, used in many fertilizers) or as one of three sparingly soluble forms: Ca10 (OH)2 (PO4 )6 (apatite-P, found in relatively young soils; major constituent of rock phosphate), C6 H6 O24 P6 Na12 (inositol-P, the most common form of organic P in soil) and FePO4 (Fe-P, a poorly-available inorganic source of P). All species grew well with soluble P. When 6 µg P g(-1) was supplied as sparingly soluble P, plant dry weight (DW) and P uptake were very low for C. australasicum and M. sativa (0.1-0.4 g DW) with the exception of M. sativa supplied with apatite-P (1.5 g). In contrast, K. prostrata grew well with inositol-P (1.0 g) and Fe-P (0.7 g), and even better with apatite-P (1.7 g), similar to that with Ca-P (1.9 g). Phosphorus uptake at 6 µg P g(-1) was highly correlated with total root length, total rhizosphere carboxylate content and total rhizosphere acid phosphatase (EC 3.1.3.2) activity. These findings provide strong indications that there are opportunities to utilize local Australian legumes in low P pasture systems to access sparingly soluble soil P and increase perennial legume productivity, diversity and sustainability. © 2014 Scandinavian Plant Physiology Society.

  5. Hair cycle in dogs with different hair types in a tropical region of Brazil.

    Science.gov (United States)

    Favarato, Evandro S; Conceição, Lissandro Gonçalves

    2008-02-01

    Hair cycle activity has been extensively studied in humans, sheep and laboratory animals, but there is a lack of information in dogs. Besides varying according to species, breed, sex and general health, hair growth is mainly affected by climatic variations. The aim of the study was to evaluate the follicle activity in three breeds of dogs with different hair types, in the city of Viçosa, Minas Gerais (latitude 20 degrees 45'S), Brazil. Twenty-one male dogs of boxer, labrador and schnauzer breeds were trichographically analysed monthly over 12 consecutive months. Hair percentage of telogen and anagen hairs at the different stages of the hair cycle in boxers and labradors was not significantly different, but both differed from the schnauzers. A significant correlation between hair follicle cycle and environmental temperature and photoperiod was noted in the boxers and labradors. In these breeds, a larger number of telogen hairs were observed during the hottest months of the year, and an increase in anagen hairs during the coldest months. The mean percentage of telogen hairs was 93, 90 and 55.3% for boxer, labrador and schnauzer, respectively.

  6. Drug-induced hair loss.

    Science.gov (United States)

    2016-05-01

    Hair loss can have major psychological consequences. It can be due to a wide variety of causes, including hormonal disorders, dietary factors, infections, inflammation, trauma, emotional factors, and cancer. Drugs can also induce hair loss, by interacting with the hair growth cycle. Drug-induced hair loss may be immediate or delayed, sudden or gradual, and diffuse or localised. It is usually reversible after drug discontinuation. The drugs most often implicated in hair loss are anticancer agents, interferon, azole antifungals, lithium, immunosuppressants, and many other drugs belonging to a variety of pharmacological classes.

  7. Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions.

    Science.gov (United States)

    Wang, Qi; Liu, Jinge; Zhu, Hongyan

    2018-01-01

    Legumes are able to form a symbiotic relationship with nitrogen-fixing soil bacteria called rhizobia. The result of this symbiosis is to form nodules on the plant root, within which the bacteria can convert atmospheric nitrogen into ammonia that can be used by the plant. Establishment of a successful symbiosis requires the two symbiotic partners to be compatible with each other throughout the process of symbiotic development. However, incompatibility frequently occurs, such that a bacterial strain is unable to nodulate a particular host plant or forms nodules that are incapable of fixing nitrogen. Genetic and molecular mechanisms that regulate symbiotic specificity are diverse, involving a wide range of host and bacterial genes/signals with various modes of action. In this review, we will provide an update on our current knowledge of how the recognition specificity has evolved in the context of symbiosis signaling and plant immunity.

  8. Loose anagen hair syndrome with diffuse woolly hair phenotype: A rare association

    Directory of Open Access Journals (Sweden)

    Arshdeep

    2016-01-01

    Full Text Available Loose anagen hair syndrome (LAHS is an underestimated cause of noncicatricial alopecia among children, manifesting as thin, sparse or fine hair. We report a case of LAHS clinically presenting as diffuse woolly hair, an association rarely described in the literature. In addition, we review the clinical as well as genetic link between these two enigmatic hair disorders and hypothesize that both may be associated in a yet unknown manner.

  9. N2-fixing tropical legume evolution: a contributor to enhanced weathering through the Cenozoic?

    Science.gov (United States)

    Epihov, Dimitar Z; Batterman, Sarah A; Hedin, Lars O; Leake, Jonathan R; Smith, Lisa M; Beerling, David J

    2017-08-16

    Fossil and phylogenetic evidence indicates legume-rich modern tropical forests replaced Late Cretaceous palm-dominated tropical forests across four continents during the early Cenozoic (58-42 Ma). Tropical legume trees can transform ecosystems via their ability to fix dinitrogen (N 2 ) and higher leaf N compared with non-legumes (35-65%), but it is unclear how their evolutionary rise contributed to silicate weathering, the long-term sink for atmospheric carbon dioxide (CO 2 ). Here we hypothesize that the increasing abundance of N 2 -fixing legumes in tropical forests amplified silicate weathering rates by increased input of fixed nitrogen (N) to terrestrial ecosystems via interrelated mechanisms including increasing microbial respiration and soil acidification, and stimulating forest net primary productivity. We suggest the high CO 2 early Cenozoic atmosphere further amplified legume weathering. Evolution of legumes with high weathering rates was probably driven by their high demand for phosphorus and micronutrients required for N 2 -fixation and nodule formation. © 2017 The Author(s).

  10. Relative efficiency of legumes in utilizing soil and fertilizer phosphorus

    International Nuclear Information System (INIS)

    Joshi, O.P.; Prasad, R.; Subbiah, B.V.

    1977-01-01

    A pot-culture study was made at Indian Agricultural Research Institute, New Delhi to study the native P feeding power of six rainy season legumes (green gram, black gram, cowpea, pigeon pea, soyabean and groundnut). Ordinary superphosphate tagged with 32 P was used in the study. At the first harvest (30 days after seeding) soybean and cowpea and at the second harvest (45 days after sowing) cowpea and groundnut removed more P than the other legumes. Pigeon pea removed the least P due to its slow growth. The tracer studies showed that during the first 30 days, groundnut, pigeon pea and soyabean were relatively better feeders of native soil P than the other legumes. Some varietal differences with respect to their capacity to feed on native soil P were also observed and in groundnut the varieties AK-12-24 and Jyoti removed more soil P than the variety NG-268. Differences between the legumes with respect to feeding on native soil P were much less at the second harvest (45 days after seeding). (author)

  11. Relative efficiency of legumes in utilizing soil and fertilizer phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, O P; Prasad, R; Subbiah, B V [Indian Agricultural Research Inst., New Delhi. Nuclear Research Lab.

    1977-09-01

    A pot-culture study was made at Indian Agricultural Research Institute, New Delhi to study the native P feeding power of six rainy season legumes (green gram, black gram, cowpea, pigeon pea, soybean and groundnut). Ordinary superphosphate tagged with /sup 32/P was used in the study. At the first harvest (30 days after seeding) soybean and cowpea and at the second harvest (45 days after sowing) cowpea and groundnut removed more P than the other legumes. Pigeon pea removed the least P due to its slow growth. The tracer studies showed that during the first 30 days, groundnut, pigeon pea and soybean were relatively better feeders of native soil P than the other legumes. Some varietal differences with respect to their capacity to feed on native soil P were also observed and in groundnut the varieties AK-12-24 and Jyoti removed more soil P than the variety NG-268. Differences between the legumes with respect to feeding on native soil P were much less at the second harvest (45 days after seeding).

  12. Drugs and hair loss.

    Science.gov (United States)

    Patel, Mansi; Harrison, Shannon; Sinclair, Rodney

    2013-01-01

    Hair loss is a common complaint, both in men and women, and use of prescription medications is widespread. When there is a temporal association between the onset of hair loss and commencement of a medication, the medication is commonly thought to have caused the hair loss. However, hair loss and in particular telogen effluvium may occur in response to a number of triggers including fever, hemorrhage, severe illness, stress, and childbirth, and a thorough exclusion of these potential confounders is necessary before the hair loss can be blamed on the medication. Certain medications are known to cause hair loss by a variety of mechanisms including anagen arrest, telogen effluvium, or accentuation of androgenetic alopecia by androgens. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  13. Optical hair removal.

    Science.gov (United States)

    Ort, R J; Anderson, R R

    1999-06-01

    Traditional methods of hair removal have proven unsatisfactory for many individuals with excessive or unwanted hair. In the last few years, several lasers and xenon flashlamps have been developed that promise to fulfill the need for a practical, safe, and long-lasting method of hair removal. Aggressive marketing of these has contributed to their popularity among patients and physicians. However, significant controversy and confusion surrounds this field. This article provides a detailed explanation of the scientific underpinnings for optical hair removal and explores the advantages and disadvantages of the various devices currently available (Nd:YAG, ruby, alexandrite, diode lasers, and xenon flashlamp). Treatment and safety guidelines are provided to assist the practitioner in the use of these devices. Although the field of optical hair removal is still in its infancy, initial reports of long-term efficacy are encouraging.

  14. Synchrotron nanoscopy imaging study of scalp hair in breast cancer patients and healthy individuals: Difference in medulla loss and cortical membrane enhancements.

    Science.gov (United States)

    Han, Sung-Mi; Chikawa, Jun-Ichi; Jeon, Jae-Kun; Hwang, Min-Young; Lim, Jun; Jeong, Young-Ju; Park, Sung-Hwan; Kim, Hong-Tae; Jheon, Sanghoon; Kim, Jong-Ki

    2016-01-01

    Nanoscopic synchrotron X-ray imaging was performed on scalp hair samples of patients with breast cancer and healthy individuals to investigate any structural differences as diagnostic tool. Hair strands were divided into 2-3 segments along the strands from root to tip, followed by imaging either in projection or in CT scanning with a monochromatic 6.78-keV X-ray using zone-plate optics with a resolving power of 60 nm. All the examined cancer hairs exhibited medulla loss with cancer stage-dependent pattern; complete loss, discontinuous or trace along the strands. In contrast, medullas were well retained without complete loss in the healthy hair. In the CT-scanned axial images, the cortical spindle compartments had no contrast in the healthy hair, but appeared hypointense in contrast to the surrounding hyperintense cortical membrane complex in the cancer hair. In conclusion, observation of medulla loss and cortical membrane enhancements in the hair strands of breast cancer patients demonstrated structural variations in the cancer hair, providing a new platform for further synchrotron X-ray imaging study of screening breast cancer patients. © 2015 Wiley Periodicals, Inc.

  15. 7 CFR 201.56-6 - Legume or pea family, Fabaceae (Leguminosae).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Legume or pea family, Fabaceae (Leguminosae). 201.56-6 Section 201.56-6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL...-6 Legume or pea family, Fabaceae (Leguminosae). Kinds of seed: Alfalfa, alyceclover, asparagusbean...

  16. Hair camouflage: A comprehensive review.

    Science.gov (United States)

    Saed, Stephanie; Ibrahim, Omer; Bergfeld, Wilma F

    2017-03-01

    Hair is venerated, cherished, and desired in societies throughout the world. Both women and men express their individual identities through their hairstyles. Healthy hair contributes to successful social assimilation, employment, and overall quality of life. Therefore, hair loss can have detrimental effects on almost every aspect of a person's life. In this review, we discuss the myriad of options that aid in concealing and camouflaging hair loss to facilitate a healthier-appearing scalp. Camouflage options for patients who suffer from hair loss include full or partial wigs, hair extensions, concealing powders and sprays, surgical tattoos, and hair transplants. We describe these modalities in detail and discuss their respective advantages and disadvantages.

  17. Artificial Hair: By the Dawn to Automatic Biofibre® Hair Implant

    Directory of Open Access Journals (Sweden)

    Maria Roccia

    2017-12-01

    In 1995 the European Union (UE recognised the artificial hair implant as a legitimate medical treatment and outlined the rules related to that procedure. In 1996, biocompatible fibres (Biofibre® produced by Medicap® Italy were approved by the UE Authorities and by the Australian Therapeutic Goods Administration (TGA as medical devices for hair implant. An effective medical protocol was developed during the following years to provide correct guidelines for appropriate treatment, and to reduce possible related complications. Automatic Biofibre® hair implant represents the last achievement in this hair restoration technique with significant advantages for the patients.

  18. Evolutionary signals of symbiotic persistence in the legume-rhizobia mutualism.

    Science.gov (United States)

    Werner, Gijsbert D A; Cornwell, William K; Cornelissen, Johannes H C; Kiers, E Toby

    2015-08-18

    Understanding the origins and evolutionary trajectories of symbiotic partnerships remains a major challenge. Why are some symbioses lost over evolutionary time whereas others become crucial for survival? Here, we use a quantitative trait reconstruction method to characterize different evolutionary stages in the ancient symbiosis between legumes (Fabaceae) and nitrogen-fixing bacteria, asking how labile is symbiosis across different host clades. We find that more than half of the 1,195 extant nodulating legumes analyzed have a high likelihood (>95%) of being in a state of high symbiotic persistence, meaning that they show a continued capacity to form the symbiosis over evolutionary time, even though the partnership has remained facultative and is not obligate. To explore patterns associated with the likelihood of loss and retention of the N2-fixing symbiosis, we tested for correlations between symbiotic persistence and legume distribution, climate, soil and trait data. We found a strong latitudinal effect and demonstrated that low mean annual temperatures are associated with high symbiotic persistence in legumes. Although no significant correlations between soil variables and symbiotic persistence were found, nitrogen and phosphorus leaf contents were positively correlated with legumes in a state of high symbiotic persistence. This pattern suggests that highly demanding nutrient lifestyles are associated with more stable partnerships, potentially because they "lock" the hosts into symbiotic dependency. Quantitative reconstruction methods are emerging as a powerful comparative tool to study broad patterns of symbiont loss and retention across diverse partnerships.

  19. Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata.

    Science.gov (United States)

    Kirchner, Thomas W; Niehaus, Markus; Debener, Thomas; Schenk, Manfred K; Herde, Marco

    2017-01-01

    A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA) was delivered by the hairy root transformation technique, and a successful transformation was monitored by GFP fluorescence. PAGE analysis of an amplified region, presumably containing the deletions and insertions, demonstrated up to seven different indels in one transgenic root and in all analyzed roots a wildtype allele of the modified gene was not detectable. Interestingly, many of these mutations consisted of relatively large indels with up to 112 bp. The exact size of the deletions was determined to allow an estimation whether the targeted gene was not functional due to a considerable deletion or a frame shift within the open reading frame. This allowed a direct phenotypic assessment of the previously characterized roots and, in fact, deletions in FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 1 (BcFLA1)-a gene with an expression pattern consistent with a role in root hair architecture-resulted in shorter root hairs compared to control roots ectopically expressing an allele of the gene that cannot be targeted by the gRNA in parallel to the CRISPR construct. As an additional line of evidence, we monitored BcFLA1 expression with qPCR and detected a significant reduction of the transcript in roots with an active CRISPR construct compared to the control, although residual amounts of the transcript were detected, possibly due to inefficient nonsense-mediated mRNA decay. Additionally, the presence of deletions and insertions were verified by Sanger sequencing of the respective amplicons. In summary we demonstrate the successful application of CRISPR/Cas9 in hairy roots of B. carinata, the proof of its effectiveness and its effect on the root hair phenotype. This study paves the way for experimental strategies involving the phenotypic assessment of gene lesions by CRISPR which

  20. Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata.

    Directory of Open Access Journals (Sweden)

    Thomas W Kirchner

    Full Text Available A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA was delivered by the hairy root transformation technique, and a successful transformation was monitored by GFP fluorescence. PAGE analysis of an amplified region, presumably containing the deletions and insertions, demonstrated up to seven different indels in one transgenic root and in all analyzed roots a wildtype allele of the modified gene was not detectable. Interestingly, many of these mutations consisted of relatively large indels with up to 112 bp. The exact size of the deletions was determined to allow an estimation whether the targeted gene was not functional due to a considerable deletion or a frame shift within the open reading frame. This allowed a direct phenotypic assessment of the previously characterized roots and, in fact, deletions in FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 1 (BcFLA1-a gene with an expression pattern consistent with a role in root hair architecture-resulted in shorter root hairs compared to control roots ectopically expressing an allele of the gene that cannot be targeted by the gRNA in parallel to the CRISPR construct. As an additional line of evidence, we monitored BcFLA1 expression with qPCR and detected a significant reduction of the transcript in roots with an active CRISPR construct compared to the control, although residual amounts of the transcript were detected, possibly due to inefficient nonsense-mediated mRNA decay. Additionally, the presence of deletions and insertions were verified by Sanger sequencing of the respective amplicons. In summary we demonstrate the successful application of CRISPR/Cas9 in hairy roots of B. carinata, the proof of its effectiveness and its effect on the root hair phenotype. This study paves the way for experimental strategies involving the phenotypic assessment of gene lesions

  1. Telogen Effluvium Hair Loss

    Science.gov (United States)

    ... Category: Share: Yes No, Keep Private Telogen Effluvium Hair Loss Share | It is normal to lose up to ... months after the "shock". This sudden increase in hair loss, usually described as the hair coming out in ...

  2. Taking Care of Your Hair

    Science.gov (United States)

    ... Educators Search English Español Taking Care of Your Hair KidsHealth / For Teens / Taking Care of Your Hair ... role in how healthy it looks. Caring for Hair How you take care of your hair depends ...

  3. Tropical pasture legumes in southern Africa: A review. | J.H. | African ...

    African Journals Online (AJOL)

    Clipping trials have indicated that the use of tropical legumes could possibly be extended into drier areas and areas experiencing extremes of temperature. More intensive plant introduction, breeding and evaluation programmes are needed if the full potential of tropical legumes is to be realised. Keywords: adaptation ...

  4. In Vitro Methodologies to Evaluate the Effects of Hair Care Products on Hair Fiber

    Directory of Open Access Journals (Sweden)

    Robson Miranda da Gama

    2017-01-01

    Full Text Available Consumers use different hair care products to change the physical appearance of their hair, such as shampoos, conditioners, hair dye and hair straighteners. They expect cosmetics products to be available in the market to meet their needs in a broad and effective manner. Evaluating efficacy of hair care products in vitro involves the use of highly accurate equipment. This review aims to discuss in vitro methodologies used to evaluate the effects of hair care products on hair fiber, which can be assessed by various methods, such as Scanning Electron Microscopy, Transmission Electron Microscopy, Atomic Force Microscopy, Optical Coherence Tomography, Infrared Spectroscopy, Raman Spectroscopy, Protein Loss, Electrophoresis, color and brightness, thermal analysis and measuring mechanical resistance to combing and elasticity. The methodology used to test hair fibers must be selected according to the property being evaluated, such as sensory characteristics, determination of brightness, resistance to rupture, elasticity and integrity of hair strain and cortex, among others. If equipment is appropriate and accurate, reproducibility and ease of employment of the analytical methodology will be possible. Normally, the data set must be discussed in order to obtain conclusive answers to the test.

  5. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement

    Science.gov (United States)

    Muñoz, Nacira; Liu, Ailin; Kan, Leo; Li, Man-Wah; Lam, Hon-Ming

    2017-01-01

    Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea) to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes. PMID:28165413

  6. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Nacira Muñoz

    2017-02-01

    Full Text Available Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes.

  7. Molecular Phylogenetic Classification of Streptomycetes Isolated from the Rhizosphere of Tropical Legume (Paraserianthes falcataria (L. Nielsen

    Directory of Open Access Journals (Sweden)

    LANGKAH SEMBIRING

    2009-09-01

    Full Text Available Intrageneric diversity of 556 streptomycetes isolated from the rhizosphere of tropical legume was determined by using molecular taxonomic method based on 16S rDNA. A total of 46 isolates were taken to represent 37 colour groups of the isolates. 16S rDNA were amplified and subsequently sequenced and the sequences data were aligned with streptomycete sequences retrieved from the ribosomal data base project (RDP data. Phylogenetic trees were generated by using the PHYLIP software package and the matrix of nucleotide similarity and nucleotide difference were generated by using PHYDIT software. The results confirmed and extended the value of 16S rDNA sequencing in streptomycete systematic. The 16S rDNA sequence data showed that most of the tested colour group representatives formed new centers of taxonomic variation within the genus Streptomyces. The generic assignment of these organisms was underpinned by 16S rDNA sequence data which also suggested that most of the strains represented new centers of taxonomic variation. The taxonomic data indicate that diverse populations of streptomycetes are associated with the roots of tropical legume (P. falcataria. Therefore, the combination of selective isolation and molecular taxonomic procedures used in this study provide a powerful way of uncovering new centers of taxonomic variation within the genus Streptomyces.

  8. Gender differences in scalp hair growth rates are maintained but reduced in pattern hair loss compared to controls.

    Science.gov (United States)

    Van Neste, D J J; Rushton, D H

    2016-08-01

    Hair loss is related to follicular density, programmed regrowth and hair productivity. The dissatisfaction with hair growth in patients experiencing hair loss might be due to slower linear hair growth rate (LHGR). LHGR and hair diameter was evaluated in Caucasian controls and patients with patterned hair loss employing the validated non-invasive, contrast-enhanced-phototrichogram with exogen collection. We evaluated 59,765 anagen hairs (controls 24,609, patients 35,156) and found thinner hairs grew slower than thicker hairs. LHGR in normal women was generally higher than in normal men. LHGR correlates with hair diameter (P hair of equal thickness in controls, subjects affected with patterned hair loss showed reduced hair growth rates, an observation found in both male and female patients. Males with pattern hair loss showed further reduction in growth rates as clinical severity worsened. However, sample size limitations prevented statistical evaluation of LHGR in severely affected females. Caucasian ethnicity. In pattern hair loss, LHGR significantly contributes to the apparent decrease in hair volume in affected areas. In early onset, LHRG might have a prognostic value in females but not in males. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Nutritional composition and in vitro digestibility of grass and legume winter (cover) crops.

    Science.gov (United States)

    Brown, A N; Ferreira, G; Teets, C L; Thomason, W E; Teutsch, C D

    2018-03-01

    In dairy farming systems, growing winter crops for forage is frequently limited to annual grasses grown in monoculture. The objectives of this study were to determine how cropping grasses alone or in mixtures with legumes affects the yield, nutritional composition, and in vitro digestibility of fresh and ensiled winter crops and the yield, nutritional composition, and in vitro digestibility of the subsequent summer crops. Experimental plots were planted with 15 different winter crops at 3 locations in Virginia. At each site, 4 plots of each treatment were planted in a randomized complete block design. The 15 treatments included 5 winter annual grasses [barley (BA), ryegrass (RG), rye (RY), triticale (TR), and wheat (WT)] in monoculture [i.e., no legumes (NO)] or with 1 of 2 winter annual legumes [crimson clover (CC) and hairy vetch (HV)]. After harvesting the winter crops, corn and forage sorghum were planted within the same plots perpendicular to the winter crop plantings. The nutritional composition and the in vitro digestibility of winter and summer crops were determined for fresh and ensiled samples. Growing grasses in mixtures with CC increased forage dry matter (DM) yield (2.84 Mg/ha), but the yield of mixtures with HV (2.47 Mg/ha) was similar to that of grasses grown in monoculture (2.40 Mg/ha). Growing grasses in mixtures with legumes increased the crude protein concentration of the fresh forage from 13.0% to 15.5% for CC and to 17.3% for HV. For neutral detergent fiber (NDF) concentrations, the interaction between grasses and legumes was significant for both fresh and ensiled forages. Growing BA, RY, and TR in mixtures with legumes decreased NDF concentrations, whereas growing RG and WT with legumes did not affect the NDF concentrations of either the fresh or the ensiled forages. Growing grasses in mixtures with legumes decreased the concentration of sugars of fresh forages relative to grasses grown in monoculture. Primarily, this decrease can be

  10. Help! It's Hair Loss!

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Hair Loss KidsHealth / For Kids / Hair Loss What's in this ... head are in the resting phase. What Causes Hair Loss? Men, especially older men, are the ones who ...

  11. Skin, Hair, and Nails

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Skin, Hair, and Nails KidsHealth / For Parents / Skin, Hair, and ... piel, el cabello y las uñas About Skin, Hair and Nails Skin is our largest organ. If ...

  12. Competition Experiments for Legume Infection Identify Burkholderia phymatum as a Highly Competitive β-Rhizobium

    Directory of Open Access Journals (Sweden)

    Martina Lardi

    2017-08-01

    Full Text Available Members of the genus Burkholderia (β-proteobacteria have only recently been shown to be able to establish a nitrogen-fixing symbiosis with several legumes, which is why they are also referred to as β-rhizobia. Therefore, very little is known about the competitiveness of these species to nodulate different legume host plants. In this study, we tested the competitiveness of several Burkholderia type strains (B. diazotrophica, B. mimosarum, B. phymatum, B. sabiae, B. symbiotica and B. tuberum to nodulate four legumes (Phaseolus vulgaris, Macroptilium atropurpureum, Vigna unguiculata and Mimosa pudica under our closely defined growth conditions. The assessment of nodule occupancy of these species on different legume host plants revealed that B. phymatum was the most competitive strain in the three papilionoid legumes (bean, cowpea and siratro, while B. mimosarum outcompeted the other strains in mimosa. The analysis of phenotypes known to play a role in nodulation competitiveness (motility, exopolysaccharide production and additional in vitro competition assays among β-rhizobial strains suggested that B. phymatum has the potential to be a very competitive legume symbiont.

  13. Linear scans of hair strands for trace elements by proton induced x-ray emission

    International Nuclear Information System (INIS)

    Jolly, R.K.; Pehrson, G.R.; Gupta, S.K.; Buckle, D.C.; Aceto, H. Jr.

    1974-01-01

    Hair strands obtained from school children in the 10 to 12 year age group were analyzed for trace element concentration as a function of distance from the root by proton-induced x-ray emission to study the history of exposure of the donors to toxic trace metals. These samples were collected from the vicinity of a copper smelter where high levels of As, Cd, Sb, and Pb have been noted. Scans show a continual build-up of Pb as a function of distance from the root, while As shows a reproducible and distinct maximum approximately 10 cm from the root. The concentration of Zn was found to be constant in all samples (without exception) to within the uncertainties of our measurements

  14. Geochemical Characterization of Copper Tailings after Legume Revegetation

    Directory of Open Access Journals (Sweden)

    Justine Perry T. Domingo

    2014-12-01

    Full Text Available Knowledge on the geochemistry of mine tailings is important in understanding the challenges in establishing vegetation cover on tailings dumps and mined out areas. In this study, the mineralogy and trace element composition of copper tailings were examined. Two legume species, Calopogonium mucunoides and Centrosema molle, were utilized to investigate the possible effects of these plants in the geochemical development of mine tailings into soil-like material. The initial mineralogical and chemical analysis of the tailings samples indicated poor conditions for plant growth—minimal levels of major nutrients and organic matter as well as elevated copper concentrations. Despite these conditions, the two legume species exhibited good growth rates. Both legumes have likewise signif icantly reduced heavy metal concentrations in the tailings, indicating the possibility of metal hyperaccumulation in the plant tissue. The mineral composition has been retained even after revegetation; nevertheless, breakdown of primary minerals and subsequent formation of clay minerals were detected. These results provide insights on the transformation of toxic materials into habitable substrates for sustained plant growth.

  15. The amazing miniorgan: Hair follicle

    Directory of Open Access Journals (Sweden)

    Çiler Çelik Özenci

    2014-06-01

    Full Text Available Hair is a primary characteristic of mammals, and exerts a wide range of functions including thermoregulation, physical protection, sensory activity, and social interactions. The hair shaft consists of terminally differentiated keratinocytes that are produced by the hair follicle. Hair follicle development takes place during fetal skin development and relies on tightly regulated ectodermal–mesodermal interactions. Hair follicles form during embryonic development and, after birth, undergo recurrent cycling of growth (anagen, apoptosis-driven regression (catagen, and relative quiescence (telogen. As a functional mini-organ, the hair follicle develops in an environment with dynamic and alternating changes of diverse molecular signals. Our molecular understanding of hair follicle biology relies heavily on genetically engineered mouse models with abnormalities in hair structure, growth, and/or pigmentation and significant advances have been made toward the identification of key signaling pathways and the regulatory genes involved. In this review, the basic concepts of hair follicle, a mini-complex organ, biology will be presented and its importance in clinical applications will be summarized.

  16. Hair dye poisoning

    Science.gov (United States)

    Hair tint poisoning ... Different types of hair dye contain different harmful ingredients. The harmful ingredients in permanent dyes are: Naphthylamine Other aromatic amino compounds Phenylenediamines Toluene ...

  17. Towards a new classification system for legumes: Progress report from the 6th International Legume Conference

    NARCIS (Netherlands)

    Pontes Coelho Borges, L.M.; Bruneau, A.; Cardoso, D.; Crisp, M.; Delgado-Salinas, A.; Doyle, J.J.; Egan, A.; Herendeen, P.S.; Hughes, C.; Kenicer, G.; Klitgaard, B.; Koenen, E.; Lavin, M.; Lewis, G.; Luckow, M.; Mackinder, B.; Malecot, V.; Miller, J.T.; Pennington, R.T.; Queiroz, de L.P.; Schrire, B.; Simon, M.F.; Steele, K.; Torke, B.; Wieringa, J.J.; Wojciechowski, M.F.; Boatwright, S.; Estrella, de la M.; Mansano, V.D.; Prado, D.E.; Stirton, C.; Wink, M.

    2013-01-01

    Legume systematists have been making great progress in understanding evolutionary relationships within the Leguminosae (Fabaceae), the third largest family of flowering plants. As the phylogenetic picture has become clearer, so too has the need for a revised classification of the family. The

  18. An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation.

    Science.gov (United States)

    López-Bucio, José; Hernández-Abreu, Esmeralda; Sánchez-Calderón, Lenin; Pérez-Torres, Anahí; Rampey, Rebekah A; Bartel, Bonnie; Herrera-Estrella, Luis

    2005-02-01

    Arabidopsis (Arabidopsis thaliana) plants display a number of root developmental responses to low phosphate availability, including primary root growth inhibition, greater formation of lateral roots, and increased root hair elongation. To gain insight into the regulatory mechanisms by which phosphorus (P) availability alters postembryonic root development, we performed a mutant screen to identify genetic determinants involved in the response to P deprivation. Three low phosphate-resistant root lines (lpr1-1 to lpr1-3) were isolated because of their reduced lateral root formation in low P conditions. Genetic and molecular analyses revealed that all lpr1 mutants were allelic to BIG, which is required for normal auxin transport in Arabidopsis. Detailed characterization of lateral root primordia (LRP) development in wild-type and lpr1 mutants revealed that BIG is required for pericycle cell activation to form LRP in both high (1 mm) and low (1 microm) P conditions, but not for the low P-induced alterations in primary root growth, lateral root emergence, and root hair elongation. Exogenously supplied auxin restored normal lateral root formation in lpr1 mutants in the two P treatments. Treatment of wild-type Arabidopsis seedlings with brefeldin A, a fungal metabolite that blocks auxin transport, phenocopies the root developmental alterations observed in lpr1 mutants in both high and low P conditions, suggesting that BIG participates in vesicular targeting of auxin transporters. Taken together, our results show that auxin transport and BIG function have fundamental roles in pericycle cell activation to form LRP and promote root hair elongation. The mechanism that activates root system architectural alterations in response to P deprivation, however, seems to be independent of auxin transport and BIG.

  19. Zebrafish hair cell mechanics and physiology through the lens of noise-induced hair cell death

    Science.gov (United States)

    Coffin, Allison B.; Xu, Jie; Uribe, Phillip M.

    2018-05-01

    Hair cells are exquisitely sensitive to auditory stimuli, but also to damage from a variety of sources including noise trauma and ototoxic drugs. Mammals cannot regenerate cochlear hair cells, while non-mammalian vertebrates exhibit robust regenerative capacity. Our research group uses the lateral line system of larval zebrafish to explore the mechanisms underlying hair cell damage, identify protective therapies, and determine molecular drivers of innate regeneration. The lateral line system contains externally located sensory organs called neuromasts, each composed of ˜8-20 hair cells. Lateral line hair cells are homologous to vertebrate inner ear hair cells and share similar susceptibility to ototoxic damage. In the last decade, the lateral line has emerged as a powerful model system for understanding hair cell death mechanisms and for identifying novel protective compounds. Here we demonstrate that the lateral line is a tractable model for noise-induced hair cell death. We have developed a novel noise damage system capable of inducing over 50% loss of lateral line hair cells, with hair cell death occurring in a dose- and time-dependent manner. Cell death is greatest 72 hours post-exposure. However, early signs of hair cell damage, including changes in membrane integrity and reduced mechanotransduction, are apparent within hours of noise exposure. These features, early signs of damage followed by delayed hair cell death, are consistent with mammalian data, suggesting that noise acts similarly on zebrafish and mammalian hair cells. In our future work we will use our new model system to investigate noise damage events in real time, and to develop protective therapies for future translational research.

  20. Effect of hair care and hair cosmetics on the concentrations of fatty acid ethyl esters in hair as markers of chronically elevated alcohol consumption.

    Science.gov (United States)

    Hartwig, Sven; Auwärter, Volker; Pragst, Fritz

    2003-01-28

    Fatty acid ethyl esters (FAEE) can be used as alcohol markers in hair. It was investigated in this study whether this diagnostic method is disturbed by hair care and hair cosmetics. Traces of ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate were detected in all of 49 frequently applied hair care products by headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The highest concentration was 0.003% in a hair wax. From experiments with separated hair samples of alcoholics as well as from the evaluation of the FAEE concentrations and the data about hair care of 75 volunteers (alcoholics, social drinkers and teetotalers) follows that usual shampooing, permanent wave, dyeing, bleaching or shading are of minor importance as compared to the drinking amount and other individual features. However, false positive results were found after daily treatment with a hair lotion containing 62.5% ethanol, with a deodorant and with a hair spray. As an explanation, it is assumed that FAEE are formed in the sebum glands also after regular topical application of products with a higher ethanol content.

  1. Essential of Hair Care Cosmetics

    Directory of Open Access Journals (Sweden)

    Aurora Alessandrini

    2016-09-01

    Full Text Available Nowadays, hair care and style play a very important role in people’s physical aspect and self-perception. Hair cosmetics can be distinguished into two main categories: cosmetics with temporary effect on the hair, for example shampoos, conditioners, sprays, and temporary colors; and cosmetics with permanent effect on the hair, such as permanent waves, relaxers, bleaches and permanent colors. These cosmetic procedures may induce hair abnormalities. We provide an overview on the most important characteristics of these procedures, analyzing components and effects on the hair. Finally, we evaluated new camouflage techniques and tattoo scalp.

  2. Legumes in Finnish agriculture: history, present status and future prospects

    Directory of Open Access Journals (Sweden)

    F. L. STODDARD

    2008-12-01

    Full Text Available Legumes are important in world agriculture, providing biologically fixed nitrogen, breaking cereal disease cycles and contributing locally grown food and feed, including forage. Pea and faba bean were grown by early farmers in Finland, with remains dated to 500 BC. Landraces of pea and faba bean were gradually replaced by better adapted, higher quality materials for food use. While grain legumes have been restricted by their long growing seasons to the south of the country, red, white and alsike clovers are native throughout and have long been used in leys for grazing, hay and silage. Breeding programmes released many cultivars of these crops during the 1900s, particularly pea and red clover. A.I. Virtanen earned the 1945 Nobel Prize in Chemistry for his work on both nitrogen fixation and silage preservation. Use of crop mixtures may appear modern, but farmers used them already in the early 1800s, when oat was used to support pea, and much effort has been devoted to improving the system and establishing its other benefits. Although international cultivars have been easily accessible since Finland’s 1995 entry into the European Union, the combination of feed quality and appropriate earliness is still needed, as < 1% of arable land is sown to grain legumes and an increase to 9–10% would allow replacement of imported protein feeds. Climate change will alter the stresses on legume crops, and investment in agronomy, physiology and breeding is needed so that farmers can gain from the many advantages of a legume-supported rotation.;

  3. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects

    Science.gov (United States)

    Pandey, Manish K.; Roorkiwal, Manish; Singh, Vikas K.; Ramalingam, Abirami; Kudapa, Himabindu; Thudi, Mahendar; Chitikineni, Anu; Rathore, Abhishek; Varshney, Rajeev K.

    2016-01-01

    Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries. PMID:27199998

  4. Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions.

    Science.gov (United States)

    Isaac, M E; Hinsinger, P; Harmand, J M

    2012-09-15

    Considerable amounts of nitrogen (N) and phosphorus (P) fertilizers have been mis-used in agroecosystems, with profound alteration to the biogeochemical cycles of these two major nutrients. To reduce excess fertilizer use, plant-mediated nutrient supply through N(2)-fixation, transfer of fixed N and mobilization of soil P may be important processes for the nutrient economy of low-input tree-based intercropping systems. In this study, we quantified plant performance, P acquisition and belowground N transfer from the N(2)-fixing tree to the cereal crop under varying root contact intensity and P supplies. We cultivated Acacia senegal var senegal in pot-culture containing 90% sand and 10% vermiculite under 3 levels of exponentially supplied P. Acacia plants were then intercropped with durum wheat (Triticum turgidum durum) in the same pots with variable levels of adsorbed P or transplanted and intercropped with durum wheat in rhizoboxes excluding direct root contact on P-poor red Mediterranean soils. In pot-culture, wheat biomass and P content increased in relation to the P gradient. Strong isotopic evidence of belowground N transfer, based on the isotopic signature (δ(15)N) of tree foliage and wheat shoots, was systematically found under high P in pot-culture, with an average N transfer value of 14.0% of wheat total N after 21 days of contact between the two species. In the rhizoboxes, we observed limitations on growth and P uptake of intercropped wheat due to competitive effects on soil resources and minimal evidence of belowground N transfer of N from acacia to wheat. In this intercrop, specifically in pot-culture, facilitation for N transfer from the legume tree to the crop showed to be effective especially when crop N uptake was increased (or stimulated) as occurred under high P conditions and when competition was low. Understanding these processes is important to the nutrient economy and appropriate management of legume-based agroforestry systems. Copyright

  5. Inactivation Methods of Trypsin Inhibitor in Legumes: A Review.

    Science.gov (United States)

    Avilés-Gaxiola, Sara; Chuck-Hernández, Cristina; Serna Saldívar, Sergio O

    2018-01-01

    Seed legumes have played a major role as a crop worldwide, being cultivated on about 12% to 15% of Earth's arable land; nevertheless, their use is limited by, among other things, the presence of several antinutritional factors (ANFs - naturally occurring metabolites that the plant produces to protect itself from pest attacks.) Trypsin inhibitors (TIs) are one of the most relevant ANFs because they reduce digestion and absorption of dietary proteins. Several methods have been developed in order to inactivate TIs, and of these, thermal treatments are the most commonly used. They cause loss of nutrients, affect functional properties, and require high amounts of energy. Given the above, new processes have emerged to improve the nutritional quality of legumes while trying to solve the problems caused by the use of thermal treatments. This review examines and discusses the methods developed by researchers to inactivate TI present in legumes and their effects over nutritional and functional properties. © 2017 Institute of Food Technologists®.

  6. Limestone amendments and the establishment of legumes on pyritic colliery spoil

    Energy Technology Data Exchange (ETDEWEB)

    Jefferies, R A

    1981-11-01

    This paper examines the effect of high liming, using two commercially available limestone grades of different particle size distributions, on the establishment of six contrasting legume species, in order to determine whether other legume species are more tolerant of the conditions imposed by high liming, and whether the effect can be avoided. 13 refs.

  7. Peanut cross-reacting allergens in seeds and sprouts of a range of legumes

    DEFF Research Database (Denmark)

    Jensen, L.B.; Pedersen, M.H.; Skov, P.S.

    2008-01-01

    Recently, peanut-allergic patients have reported symptoms upon ingestion of bean sprouts produced from various legumes.......Recently, peanut-allergic patients have reported symptoms upon ingestion of bean sprouts produced from various legumes....

  8. Hair straightener poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002706.htm Hair straightener poisoning To use the sharing features on this page, please enable JavaScript. Hair straightener poisoning occurs when someone swallows products that ...

  9. Hair spray poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) ...

  10. Diseases that turn African hair silky.

    Science.gov (United States)

    Ajose, Frances O A

    2012-11-01

    African hair in its natural state poses tenacious grooming challenges; consequently a large portion of the African cosmetic industry is focused on means to relax the tight curls of African hair to make the hair more manageable. In malnourished and hypoproteinemic states, African hair straightens in an uncomplimentary manner. Recently, we observed that in certain diseases African hair changes to a desirable silky wavy texture. To identify the diseases that turn African hair silky and their parameters we examined 5612 dermatology patients at a tertiary hospital in Nigeria. We then studied the clinical and basic laboratory parameters of those patients whose diseases were accompanied by the silky hair change. Silky hair change similar to the hair of the African neonatal child was observed in five diseases, namely AIDS, rheumatoid arthritis, systemic lupus erythematosus, pulmonary tuberculosis with cachexia, and Behçet's disease. Our study identified retrogression of African hair to the neonatal structure in five diseases. Anemia of chronic illness, high erythrocyte sedimentation rate, and mild hypocalcemia were significant laboratory parameters. This is an important observation, which should excite and advance research into the nature and structure of African hair. The causes of structural hair changes should include these five diseases. © 2012 The International Society of Dermatology.

  11. Systemic causes of hair loss.

    Science.gov (United States)

    Lin, Richard L; Garibyan, Lilit; Kimball, Alexandra B; Drake, Lynn A

    2016-09-01

    Hair loss is both a common chief complaint by patients and a clinical challenge for physicians, especially general practitioners, yet few dermatological problems yield as much patient satisfaction when resolved as hair loss. The diagnosis is often attributed to androgen-related hair loss, while other causes, some of which are life-threatening but treatable, are overlooked. We searched for relevant literature on hair loss and supported these findings with our clinical experience to identify seven major systemic etiologies of hair loss, ranging from infectious agents to consumption of unsafe supplements. Many causes are only described in the literature through case studies, though some original articles and meta-analyses are available. Careful history taking, proper examination techniques, and judicious use of laboratory tests are essential to reach at the correct diagnosis in a cost-effective manner when performing patient work-up. Such methodical evaluation of hair loss can result in the appropriate treatment plan and provide significant patient satisfaction. Key messages Hair loss is a common chief complaint and a difficult challenge for both general practitioners and dermatology consultants. We identified seven major categories of systemic hair loss etiology and present a framework for their clinical evaluation. A methodical approach to hair loss can result in the appropriate treatment plan and provide significant patient satisfaction.

  12. The interaction between glucose and cytokinin signaling in controlling Arabidopsis thaliana seedling root growth and development.

    Science.gov (United States)

    Kushwah, Sunita; Laxmi, Ashverya

    2017-05-04

    Cytokinin (CK) and glucose (GLC) control several common responses in plants. There is an extensive overlap between CK and GLC signal transduction pathways in Arabidopsis. Physiologically, both GLC and CK could regulate root length in light. CK interacts with GLC via HXK1 dependent pathway for root length control. Wild-type (WT) roots cannot elongate in the GLC free medium while CK-receptor mutant ARABIDOPSIS HISTIDINE KINASE4 (ahk4) and type B ARR triple mutant ARABIDOPSIS RESPONSE REGULATOR1, 10,11 (arr1, 10,11) roots could elongate even in the absence of GLC as compared with the WT. The root hair initiation was also found defective in CK signaling mutants ahk4, arr1,10,11 and arr3,4,5,6,8,9 on increasing GLC concentration (up to 3%); and lesser number of root hairs were visible even at 5% GLC as compared with the WT. Out of 941 BAP regulated genes, 103 (11%) genes were involved in root growth and development. Out of these 103 genes, 60 (58%) genes were also regulated by GLC. GLC could regulate 5736 genes, which include 327 (6%) genes involved in root growth and development. Out of these 327 genes, 60 (18%) genes were also regulated by BAP. Both GLC and CK signaling cannot alter root length in light in auxin signaling mutant AUXIN RESPONSE3/INDOLE-3-ACETIC ACID17 (axr3/iaa17) suggesting that they may involve auxin signaling component as a nodal point. Therefore CK- and GLC- signaling are involved in controlling different aspects of root growth and development such as root length, with auxin signaling components working as downstream target.

  13. Biological and physiological changes in raw and radiation-processed legumes

    International Nuclear Information System (INIS)

    El Wakeil, F.A.; Sharabash, M.T.M.; Farag, M. Diaa El-Din H.; Mahrous, S.R.

    1994-01-01

    Body weight of rats fed on raw kidney beans, soybeans, broad beans, chick peas and lupines suffered from poor growth due to some antinutritional factors. When the studied legumes were exposed to 10 kGy, the rats gained more weight than those kept on raw legumes. When extracts of raw legumes were intraperitoneally injected, the LD 50 were found to be 125, 300 and 1800 mg/kg, for raw kidney beans, raw soybeans, and raw broad beans respectively. However, injecting extracts of raw chick peas and raw lupines did not kill the rats even at higher concentration levels of 3000 mg/kg. Similar results were obtained with irradiated chick peas and lupines (10 kGy). Meanwhile, after irradiation treatment of kidney beans, soybeans and broad beans, the LD 50 were found to be 250, 400 and 2000 mg/kg for the above pulses respectively. Both raw and irradiated kidney beans and raw soybeans were most active in stimulating pancreas and liver growth and reducing spleen weight. Irradiated soybeans showed a moderate but significant increase in liver weight only. However, rats fed on both raw and irradiated broad beans, chick peas and lupines in their diets did not suffer any pancreatic and liver hypertrophy or spleen atrophy. The haematological parameters investigated showed that there was no significant differences between rat groups fed on either raw or irradiated legumes. It could be concluded that irradiation offers a good treatment for legumes as it has a beneficial effect to correct the poor growth for rats fed on raw beans during experimental period without any deleterious physiological effects. (author)

  14. Managing hair loss in midlife women.

    Science.gov (United States)

    Mirmirani, Paradi

    2013-02-01

    Hair is considered one of the most defining aspects of human appearance. Hair loss, or alopecia in women is often met with significant emotional distress and anxiety. In midlife, women may encounter various hormonal and age-related physiologic changes that can lead to alterations in hair texture and growth. The most significant hormonal alteration is the onset of menopause in which there is a cessation of ovarian estrogen production. This decrease in estrogen is known to have deleterious effects on the skin and cutaneous appendages. As our understanding of the molecular and hormonal controls on the hair follicle has grown, there has been increased interest in the various modulators of hair growth, including the potential role of estrogen. Further study of hair changes in midlife women provides an important opportunity for identification of the complex regulation of hair growth as well as identification of treatment targets that may specifically benefit women. In this review, management of hair loss in midlife women is discussed with a focus on three most commonly encountered clinical conditions: female pattern hair loss, hair shaft alterations due to hair care, and telogen effluvium. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Optimising biological N2 fixation by legumes in farming systems

    International Nuclear Information System (INIS)

    Hardarson, Gudni; Atkins, Craig

    2001-01-01

    Whether grown as pulses for grain, as green manure, as pastures or as the tree components of agro-forestry systems, the value of leguminous crops lies in their ability to fix atmospheric N 2 , so reducing the use of expensive fertiliser N and enhancing soil fertility. N 2 fixing legumes provide the basis for developing sustainable farming systems that incorporate integrated nutrient management. By exploiting the stable nitrogen isotope 15 N, it has been possible to reliably measure rates of N 2 fixation in a wide range of agro-ecological field situations involving many leguminous species. The accumulated data demonstrate that there is a wealth of genetic diversity among legumes and their Rhizobium symbionts which can be used to enhance N 2 fixation. Practical agronomic and microbiological means to maximise N inputs by legumes have also been identified. (author)

  16. Translational genomics from model species Medicago truncatula to crop legume Trifolium pratense

    NARCIS (Netherlands)

    Lang Chunting, Chunting

    2012-01-01

    The legume Trifolium pratense (red clover) is an important fodder crop and produces important secondary metabolites. This makes red clover an interesting species. In this thesis, the red clover genome is compared to the legume model species Medicago truncatula, of which the

  17. Hair-on-hair static friction coefficient can be determined by tying a knot.

    Science.gov (United States)

    Chevalier, Nicolas R

    2017-11-01

    Characterizing the tribological properties of the hair-hair interface is important to quantify the manageability of hair and to assess the performance of hair care products. Audoly et al. (Phys. Rev. Lett. 99, 164301, 2007) derived an equation relating the self-friction coefficient of an elastic fiber to the dimensions of a simple, relaxed overhand knot made from this fiber. I experimentally tested and validated their equation using nylon thread and an independent measurement of its self-friction coefficient. I show that this methodology can be applied to provide high-throughput data on the static self-friction coefficient of single hair fibers in various conditions and to quantitatively assess how hair care treatments (conditioner, relaxant) alter frictional properties. I find that treatment of hair with 1M sodium hydroxide leads to a quick, irreversible self-friction coefficient increase; the resulting fine frictional fibers can be used to form very small knots for microsurgical vessel and organ ligature in medicine or embryology. The relaxed overhand knot method can more generally be used to measure the self-friction coefficients of a wide range of elastic fibers from the nano- (e.g. proteins, nanotubes) to the macro-scale (e.g. textile fiber, fiberglass). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. In vitro digestion of bloat-safe and bloat-causing legumes by rumen microorganisms: gas and foam production.

    Science.gov (United States)

    Fay, J P; Cheng, K J; Hanna, M R; Howarth, R E; Costerton, J W

    1980-08-01

    Leaves of three bloat-safe legumes -- birdsfoot trefoil (Lotus corniculatus L.), sainfoin (Onobrychis viciaefolia Scop.), and cicer milkvetch (Astralagus cicer L.) -- and of three bloat-causing legumes -- alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.), and white clover (Trifolium repens L.) -- were incubated with strained rumen fluid or with mixed rumen fluid and solids. Gas released was measured during the early period (0 to 22 h) of this in vitro digestion. Gas volume was greater with a 1:1 (wt/vol) mixture of solid and fluid rumen contents than with rumen fluid alone. It was greater with whole and chewed leaves from the bloat-causing legumes than with whole leaves from the bloat-safe legumes. However, when leaves were homogenized, volumes of gas from bloat-causing and bloat-safe legumes were similar. More gas was released from homogenized leaves than from the same weight of whole leaves. The amount of foam produced on chewed herbage and homogenized leaves of bloat-causing legumes was greater than on those of bloat-safe legumes. These results are consistent with the rate of disintegration and digestion of legumes by rumen bacteria being an important determinant in pasture bloat. Measurement of gas produced early in in vitro digestion may provide a useful bioassay for evaluating the bloat-causing potential of legumes in breeding selections if variability of the method can be reduced.

  19. Black Hole's 1/N Hair

    CERN Document Server

    Dvali, Gia

    2013-01-01

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

  20. Speciation of arsenic in human nail and hair from arsenic-affected area by HPLC-inductively coupled argon plasma mass spectrometry

    International Nuclear Information System (INIS)

    Mandal, Badal Kumar; Ogra, Yasumitsu; Suzuki, Kazuo T.

    2003-01-01

    Nail and hair are rich in fibrous proteins, i.e., α-keratins that contain abundant cysteine residues (up to 22% in nail and 10-14% in hair). Although they are metabolically dead materials in the epidermis, the roots are highly influenced by the health status of the living beings and their analyses are used as a tool to monitor occupational and environmental exposure to toxic elements. The aims of the present study are to speciate arsenicals in human nail and hair and also to judge whether they should be used as a biomarker to arsenic (As) exposure and/or toxicity. All human fingernail and hair samples (n = 47) were collected from the As-affected area of West Bengal, India. Speciation of arsenicals in water extracts of fingernails and hair at 90 degree sign C was carried out by HPLC-inductively coupled argon plasma mass spectrometer (ICP MS). Fingernails contained iAs III (58.6%), iAs V (21.5), MMA V (7.7), DMA III (9.2), and DMA V (3.0), and hair contained iAs III (60.9%), iAs V (33.2), MMA V (2.2), and DMA V (3.6). Fingernails contained DMA III , but hair did not. The higher percentage of iAs III both in fingernails and hair than that of iAs V suggests more affinity of iAs III to keratin. Although all arsenicals in fingernails and hair correlate to As exposure positively, As speciation in fingernails seems to be more correlated with arsenism than that in hair. Exogenous contamination is a confounding factor for hair to consider it as a biomarker, whereas this is mostly absent in fingernails, which recommends it to be a better biomarker to arsenic exposure. DMA III content in fingernails and DMA V contents in both fingernails and hair could be the biomarker to As exposure

  1. Grey Hair Evlsion Technique For Evaluating the Effect of Drugs For the Treatment of Premature Grey Hairs

    Directory of Open Access Journals (Sweden)

    J S Pasricha

    1985-01-01

    Full Text Available An improved method for evaluating the effect of treatment for premature grey hairs is described. The method consists of pulling out all the grey hairs in a patient and counting the number removed. Simultaneously, the converted hairs are also snipped at the grey-black junction and counted. After a gap of 3 months, the survey is repeated to count the number of hairs which have regrowing as grey hairs, the hairs which have become grey and also the hairs which have got converted into black during this period. Such surveys are repeated at 3 months intervals over a period of several years to see the progress of greying of hair in an individual and to evaluate the effect of various therapeutic procedures.

  2. Transfer Comparison Study Nitrogen on the Intact and Decapitated Legumes by Using the 15N Labeling Technique

    International Nuclear Information System (INIS)

    Widjayanto, Didik W.

    1998-01-01

    The experiment was done in order to evaluate the N transfer from the intact and decapitated legumes by using the 15 N labeling technique. Seven days after final labeling the above ground biomass from labeled legume species was removed and the remaining stalks capped to prevent regrowth. Twenty days after final labeling (fourteen days after capping) the all treatments were sample and analyzed. The decapitated legumes appeared to transfer more percentage N than the intact legumes. Although both decapitated and intact legumes transferred, the transfer of N did not incur a dry matter and N yield benefit

  3. Biological reclamation of coal mine spoils without topsoil: an amendment study with domestic raw sewage and grass-legume mixture

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, S.K.; Saxena, N.C. [Indian School of Mines, Dhanbad (India). Centre of Mining Environment

    1997-12-31

    A range of tree species were successfully established and grown on spoil site irrigated with domestic raw sewage in India. The heavy metals content in leaves, stem wood, stem bark root wood and root bark differ between species. In general, heavy metals like Fe, Zn, Mn, Cu, and Pb were accumulated more in Eucalyptus then Melia, however only Co accumulated maximum in Acacia. Increase trend was reported in respect of Na, K, Fe, Zn, Cu in grass and vegetables which were grown at a sewage fed farm. However, in all the cases micronutrients and heavy metals contents did not reach the critical limits to produce any phytotoxic effect. Irrigation with raw sewage had no adverse effect on chemical properties of spoil over the 3 year period. This study shows that raising vegetation on spoil material in mining areas irrigated with raw sewage is feasible. However, irrigation by raw sewage caused the accumulation of heavy metals in different plant parts. These plants are not of the fodder type and thus are not entering directly into ecological food chains, hence they can act as heavy metals sinks. On the basis of the Grass-legume experimental study, it may be concluded that N accumulation of coal mine spoil related with nature of spoil, prevailing climate and legume used. In a tropical climate N accumulation rate was found higher than in a temperate one. Addition of phosphorus fertilizer is essential for the reclamation of many mine spoils because even after three years available P level can remain deficient. Available K was found to be sufficient after three years.

  4. Effects of methyl-jasmonate on 9-methoxycanthin-6-one content in Eurycoma longifolia (Tongkat Ali) root culture

    International Nuclear Information System (INIS)

    Chee, F.M.; Rathinam, X.; Danial, M.

    2015-01-01

    Eurycoma longifolia is a flowering plant from the Simaroubaceae family and it has been identified as one of the most intriguing medicinal plants in Malaysia. In the present study, the production of 9-methoxycanthin-6-one, an alkaloid compound was determined with various methyl-jasmonate (MeJA) concentrations using root culture via liquid system. Quantification of 9-methoxycanthin-6-one was confirmed by using thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Quantitative analysis using HPLC displayed highest concentration of 9-methoxycanthin-6- one content in the absence of MeJA treatment (control) followed by increasing concentrations of MeJA (1, 10 and 100 micro M). Microanatomical analysis using Scanning Electron Microscope (SEM) has shown that root hair morphology of E.longifolia does not change significantly, whereas roots hair displayed rough surfaces with increases MeJA concentrations. Therefore, MeJA is not a suitable elicitor to increase 9-methoxycanthin-6-one compound in E. lon. (author)

  5. Performance of organic grain legumes in Tuscany

    Directory of Open Access Journals (Sweden)

    Valentina Moschini

    2014-03-01

    Full Text Available In 2005-2007 growing season, few varieties of field bean, high protein pea and white lupin were compared in an organic farm of Central Italy (Mugello area, Tuscany, to evaluate their agronomic performance in terms of grain yield, nutritional quality and competitive ability against weeds. The experiment was performed under rain-fed conditions. Furthermore, grain legumes features were compared between two different sowing seasons (autumnal vs late-winter for two years, in order to get information on the best time of sowing of these species, and the stability of yields of different genotypes in those climatic and soil conditions. These legumes could be an alternative protein source to external soybean, a high-risk alimentary source of genetically modified organisms, in the organic livestock sector. The main findings indicate that higher yields in grain and crude protein were obtained with the pea species and in particular with cultivars Hardy (4.0 t/ha grain yield; 626 kg/ha crude protein yield and Classic (3.1 t/ha grain yield; 557 kg/ha crude protein yield; followed by field bean cv. Chiaro di Torre Lama (2.9 t/ha grain yield; 624 kg/ha crude protein yield and cv. Vesuvio (2.5 t/ha grain yield; 549 kg/ha crude protein yield. Furthermore the field bean is interesting for the stability of yield in both years despite climatic conditions rather different. The white lupin has showed the lower yield but the best values of grain quality, with higher values in lupin Multitalia for dry matter, crude protein and ether extract and in lupin Luxe also for crude fibre, respect to the other legumes analysed. Among lupin varieties, lupin Multitalia showed the best yield results for the pedo-climatic conditions of Mugello area (0.9 t/ha lupin Multitalia; 0.2 t/ha lupin Luxe. The total yield of organic grain legumes, in the experimental site, is resulted higher with an autumnal seeding respect to the late-winter seeding (2.8 t/ha vs 1.9 t/ha.

  6. Hair breakage as a presenting sign of early or occult central centrifugal cicatricial alopecia: clinicopathologic findings in 9 patients.

    Science.gov (United States)

    Callender, Valerie D; Wright, Dakara Rucker; Davis, Erica C; Sperling, Leonard C

    2012-09-01

    Central centrifugal cicatricial alopecia is the most common form of cicatricial alopecia in African American women. Treatment options are limited and mostly aimed at halting further hair loss but rarely result in hair regrowth. Therefore, it is important to recognize early clinical signs, perform a confirmatory biopsy, and begin treatment promptly. We have observed that hair breakage may be a key sign of early central centrifugal cicatricial alopecia, and this association is not clearly described in the literature. Nine patients with hair breakage on the vertex with or without scalp symptoms underwent scalp biopsies as part of their evaluation. Of these, 8 had histologic samples adequate for complete interpretation: 5 specimens (63%) showed histologic changes typical of central centrifugal cicatricial alopecia, with 1 of these showing advanced end-stage changes of cicatricial alopecia. Two (25%) revealed premature desquamation of the inner root sheath as the sole finding suggestive of early central centrifugal cicatricial alopecia and 1 (13%) was normal. Although hair breakage can have multiple causes, early central centrifugal cicatricial alopecia must be considered in the differential diagnosis, particularly in women of African ancestry. Histologic evaluation may reveal early or late findings that can help establish the diagnosis.

  7. Photodynamic therapy for hair removal

    Directory of Open Access Journals (Sweden)

    Mohamed H. M. Ali

    2013-05-01

    Full Text Available Background: Unwanted hair is one of the most common medical problems affecting women of reproductive age inducing a lot of psychological stress and threatening their femininity and self-esteem. Old methods of removing unwanted hair include shaving, waxing, chemical depilation, and electrolysis, all of which have temporary results. However laser-assisted hair removal is the most efficient method of long-term hair removal currently available. It is desirable to develop a reduced cost photodynamic therapy (PDT system whose properties should include high efficiency and low side-effects. Method: Mice skin tissues were used in this study and divided into six groups such as controls, free methylene blue (MB incubation, liposome methylene blue (MB incubation, laser without methylene blue (MB, free methylene blue (MB for 3 and 4 hrs and laser, liposome methylene blue (MB for 3 hrs and laser. Methylene blue (MBwas applied to wax epilated areas. The areas were irradiated with CW He-Ne laser system that emits orange-red light with wavelength 632.8 nm and 10 mW at energy density of 5 J/ cm2 for 10 minutes. The UV-visible absorption spectrum was collected by Cary spectrophotometer. Results: Methylene blue (MB is selectively absorbed by actively growing hair follicles due to its cationic property. Methylene blue (MBuntreated sections showed that hair follicle and sebaceous gland are intact and there is no change due to the laser exposure. Free methylene blue (MB sections incubated for 3 hrs showed that He:Ne laser induced destruction in hair follicles, leaving an intact epidermis. Treated section with free methylene blue (MB for 4 hrs showed degeneration and necrosis in hair follicle, leaving an intact epidermis. Liposomal methylene blue (MB sections incubated for 3 hrs showed He:Ne laser induced destruction in hair follicles with intradermal leucocytic infiltration. Conclusions: Low power CW He:Ne laser and methylene blue (MB offered a successful PDT system

  8. Harvesting Legume Genomes: Plant Genetic Resources

    Science.gov (United States)

    Genomics and high through-put phenotyping are ushering in a new era of accessing genetic diversity held in plant genetic resources, the cornerstone of both traditional and genomics-assisted breeding efforts of food legume crops. Acknowledged or not, yield plateaus must be broken given the daunting ...

  9. Automatic hair detection in the wild

    DEFF Research Database (Denmark)

    Julian, Pauline; Dehais, Christophe; Lauze, Francois Bernard

    2010-01-01

    This paper presents an algorithm for segmenting the hair region in uncontrolled, real life conditions images. Our method is based on a simple statistical hair shape model representing the upper hair part. We detect this region by minimizing an energy which uses active shape and active contour....... The upper hair region then allows us to learn the hair appearance parameters (color and texture) for the image considered. Finally, those parameters drive a pixel-wise segmentation technique that yields the desired (complete) hair region. We demonstrate the applicability of our method on several real images....

  10. Side Effects: Hair Loss (Alopecia)

    Science.gov (United States)

    Hair loss, also called alopecia, is a side effect of cancer treatments, such as chemotherapy and radiation therapy. Learn how to cope with and manage hair loss. Listen to tips from others who have experienced hair loss.

  11. Effect of non-protein nitrogen and fodder legumes on the intake, digestibility and growth parameters of buffaloes

    International Nuclear Information System (INIS)

    Premaratne, S.

    1990-01-01

    Two in vivo digestibility studies and three nylon bag studies were conducted using four rumen fistulated male buffaloes to investigate the role of supplements of tree legumes and non-protein nitrogen on the feed intake, rumen function and growth of buffaloes given a basal diet of rice straw. Straw dry matter (DM) intake and digestibility were increased by urea treatment compared with urea supplementation. Inclusion of legume tree leaves in the diet increased the in vivo DM digestibility of both untreated and treated straw, but the increment was much higher for untreated straw. A supplementation of legumes also increased the in vivo nitrogen (N) digestibility of the diet of buffaloes. A trend towards an increase in straw intake with legume supplementation was also observed. Of the tree fodder legumes tested, Erythrina lithosperma had the highest potential for providing protein. Inclusion of legumes in the diet increased the DM and N degradation rates of feedstuff. In a growth trial of grazing female buffalo calves, the inclusion of fodder legumes increased the weight gain when compared with grazing alone. (author). 6 refs, 5 tabs

  12. Topical Valproate Solution for Hair Growth

    Directory of Open Access Journals (Sweden)

    Anil Kakunje

    2018-05-01

    Full Text Available Valproate is used regularly in the treatment of various seizure disorders, bipolar disorder, migraine prophylaxis and off label in many other conditions. Alopecia or hair loss is cosmetic side effect of oral valproate administration. Hair loss with valproate is diffused, non-scarring and dose related. A large number of drugs may interfere with the hair cycle and produce hair loss. We have only a few drugs like Minoxidil, Finasteride used for hair regeneration and both have its own side effects and limitations. In contrast to oral ingestions of valproate causing hair loss, early experiments with topical Valproic acid cream showed hair regeneration. Valproic acid cream is currently unavailable in the market, alternatively, we do have valproate and divalproex solutions available in various strengths which have a potential to be used topically for hair regeneration. The side effects and cost of topical valproate solution could be much less than the available options in the market. Valproate solution topically has the potential to be used for hair growth.

  13. N2-fixing legumes are linked to enhanced mineral dissolution and microbiome modulations in Neotropical rainforests

    Science.gov (United States)

    Epihov, Dimitar; Batterman, Sarah; Hedin, Lars; Saltonstall, Kristin; Hall, Jefferson; Leake, Jonathan; Beerling, David

    2017-04-01

    Legumes represent the dominant family of many tropical forests with estimates of 120 billion legume trees in the Amazon basin alone. Many rainforest legume trees form symbioses with N2-fixing bacteria. In the process of atmospheric N2-fixation large amounts of nitrogen-rich litter are generated, supplying half of all nitrogen required to support secondary rainforest succession. However, it is unclear how N2-fixers affect the biogeochemical cycling of other essential nutrients by affecting the rates of mineral dissolution and rock weathering. Here we show that N2-fixing legumes in young Panamanian rainforests promote acidification and enhance silicate rock weathering by a factor of 2 compared to non-fixing trees. We report that N2-fixers also associate with enhanced dissolution of Al- and Fe-bearing secondary minerals native to tropical oxisols. In legume-rich neighbourhoods, non-fixers benefited from raised weathering rates relative to those of legume-free zones thus suggesting a positive community effect driven by N2-fixers. These changes in weathering potential were tracked by parallel functional and structural changes in the soil and rock microbiomes. Our findings support the view that N2-fixing legumes are central components of biogeochemical cycling, associated with enhanced release of Fe- and Al-bound P and primary mineral products (Mg, Mo). Rainforest legume services therefore bear important implications to short-term C cycling related to forest growth and the long-term C cycle related to marine carbonate deposition fuelled by silicate weathering.

  14. Características morfológicas e produtivas de leguminosas forrageiras tropicais submetidas a duas frequências de corte Morphologic and productive characteristics of tropical forage legumes under two harvest frequencies

    Directory of Open Access Journals (Sweden)

    Valdson José da Silva

    2010-01-01

    complete design was used in a factorial arrangement (07 legumes × 02 harvest frequencies, with four replications per treatment and the following variables were analyzed: biomass accumulation, number of branches per plant, number of live leaves/plant, root dry matter, nodule number, and nodule matter. Shoot and root dry matter accumulation per unit time was similar for the harvests at every 28 or every 56 days, except for Arachis, Clitoria, and Desmodium, which showed greater shoot and root biomass when harvested every 56 days. Nodule number and nodule mass differed among legumes, but a greater nodule number was observed when the legumes were harvested every 56 days. Live leaf number per plant was greater at 56 days, except for Arachis and Calopogonium which showed similar values for both frequencies. Harvest frequency affected differently the morphologic and productive characteristics of the studied legumes that indicated the need for different management among the varieties tested.

  15. Flavonoid profiling and nodulation of some legumes in response to the allelopathic stress of Sonchus oleraceus L.

    Directory of Open Access Journals (Sweden)

    Nasr Hassan Gomaa

    2015-12-01

    Full Text Available Annual sowthistle (Sonchus oleraceus has been reported to produce allelopathic effects. Two greenhouse experiments were conducted to estimate the allelopathic potential of both plant residue and root exudates of S. oleraceus on flavonoid composition and nodulation in a leguminous crop, Trifolium alexandrinum, and in two leguminous weeds, Melilotus indicus and T. resupinatum. The results of high performance liquid chromatography-mass spectrometry (HPLC-MS/MS showed that all three legumes contained six flavonoid aglycones: apigenin, daidzein, kaempferol, luteolin, myricetin and quercetin; and seven flavonoid glycosides: daidzin, genistin, hesperidin, hyperoside, kaempferol-7-O-glucoside, naringin and rutin. In general, both plant residue and root exudates had inhibitory effects on the flavonoid composition and nodulation of the target species. However, residue of S. oleraceus caused a significant increase in both individual and total detected flavonoids in T. alexandrinum. The results suggest that the phytotoxins released from S. oleraceus may restrain the biosynthesis of flavonoids in the target species, whereas the accumulated flavonoids in T. alexandrinum are allelopathic-induced metabolites and suggest a resistance mode in this crop.

  16. A toddler with hair fascination.

    Science.gov (United States)

    Kao, Patricia; Needlman, Robert D; Stein, Martin T

    2010-04-01

    Joseph is a 24-months old boy referred by his pediatrician because of an "obsession" with pulling and eating hair. When Joseph was 14 months old, he enjoyed touching and twirling his mother's long hair. She observed that it seemed to provide comfort to him. At 18 months, he initiated pulling out and eating his own hair, twirling his mother's hair around his thumb and then sucking on it. Currently, he searches the carpet or a hard floor and looks for hair to eat. The identical behavior is observed at daycare. Joseph's teacher commented, "He pulled hair from a girl who has the longest hair of all the children. We try to distract him from this habit, but he is not distracted for long." Less frequently, Joseph has also eaten sand, chalk, and crayons at daycare. Joseph's mother describes him as a "happy and outgoing" child who interacts with his peers and has a best friend at the daycare. There have not been recent changes or stressful events in his life. Joseph separates from his mother with ease and he sleeps comfortably through the night in his own bed. There have been no episodes of nausea, vomiting, abdominal pain, or constipation. Strands of hair are occasionally seen in the stool. Prenatal and perinatal history was unremarkable. Joseph was breast-fed for 11 months, described as an "easy" baby, achieved motor, social, and language developmental milestones at the usual time, and has been in excellent health. He lives with his mother and maternal grandparents; the biological father has never been involved in his care. At 20 months, Joseph's pediatrician suggested cutting his hair. After several haircuts, Joseph stopped pulling his own hair. However, he continued to search the floor for hair. Hemoglobin and a blood lead level were normal. Joseph appeared pleasant and friendly with normal growth parameters and facial features. He was sitting comfortably on his mother's lap, sucking on his thumb. Social interactions with his mother were appropriate and reciprocal. He

  17. Background and History of the Lotus japonicus Model Legume System

    DEFF Research Database (Denmark)

    Stougaard, Jens

    2014-01-01

    The combination of favourable biological features, stable transformation procedures, application of genetics and genome-based global approaches has established Lotus japonicus as a model legume and provided a platform for addressing important biological questions often, but not exclusively......, focusing on endosymbiosis. Several important discoveries have been made, and the Lotus community has contributed novel results, promoting our understanding of plant biology as well as our understanding of properties and characteristics typical for plants belonging to the legume family. Progress has been...

  18. Mutations in Three Genes Encoding Proteins Involved in Hair Shaft Formation Cause Uncombable Hair Syndrome

    DEFF Research Database (Denmark)

    Ü Basmanav, F Buket; Cau, Laura; Tafazzoli, Aylar

    2016-01-01

    Uncombable hair syndrome (UHS), also known as "spun glass hair syndrome," "pili trianguli et canaliculi," or "cheveux incoiffables" is a rare anomaly of the hair shaft that occurs in children and improves with age. UHS is characterized by dry, frizzy, spangly, and often fair hair that is resistant...... in the majority of UHS case subjects. The two enzymes PADI3 and TGM3, responsible for posttranslational protein modifications, and their target structural protein TCHH are all involved in hair shaft formation. Elucidation of the molecular outcomes of the disease-causing mutations by cell culture experiments...... and tridimensional protein models demonstrated clear differences in the structural organization and activity of mutant and wild-type proteins. Scanning electron microscopy observations revealed morphological alterations in hair coat of Padi3 knockout mice. All together, these findings elucidate the molecular genetic...

  19. Missing Strands? Dealing with Hair Loss

    Science.gov (United States)

    ... 2017 Print this issue Missing Strands? Dealing with Hair Loss En español Send us your comments Hair loss is often associated with men and aging, but ... or their treatments, and many other things cause hair loss. The most common type of hair loss is ...

  20. Hair transplantation: Standard guidelines of care

    Directory of Open Access Journals (Sweden)

    Patwardhan Narendra

    2008-03-01

    Full Text Available Hair transplantation is a surgical method of hair restoration. Physician qualification : The physician performing hair transplantation should have completed post graduation training in dermatology; he should have adequate background training in dermatosurgery at a centre that provides education training in cutaneous surgery. In addition, he should obtain specific hair transplantation training or experience at the surgical table(hands on under the supervision of an appropriately trained and experienced hair transplant surgeon. In addition to the surgical technique, training should include instruction in local anesthesia and emergency resuscitation and care. Facility : Hair transplantation can be performed safely in an outpatient day case dermatosurgical facility. The day case theatre should be equipped with facilities for monitoring and handling emergencies. A plan for handling emergencies should be in place and all nursing staff should be familiar with the emergency plan. It is preferable, but not mandatory to have a standby anesthetist. Indication for hair transplantation is pattern hair loss in males and also in females. In female pattern hair loss, investigations to rule out any underlying cause for hair loss such as anemia and thyroid deficiency should be carried out. Hair transplantation can also be performed in selected cases of scarring alopecia, eyebrows and eye lashes, by experienced surgeons. Preoperative counseling and informed consent :Detailed consent form listing details about the procedure and possible complications should be signed by the patient. The consent form should specifically state the limitations of the procedure and if more procedures are needed for proper results, it should be clearly mentioned. Patient should be provided with adequate opportunity to seek information through brochures, computer presentations, and personal discussions. Need for concomitant medical therapy should be emphasized. Patients should understand

  1. Hair Shaft Abnormality in Children: a Narrative Review

    Directory of Open Access Journals (Sweden)

    Ghasem Rahmatpour Rokni

    2017-08-01

    Full Text Available Background Hair is an ectodermal structure, and its formation is regulated by master genes important in embryology. Hair shaft consists of three major regions: the medulla, cortex and cuticle. Hair shaft abnormality will divide structural hair abnormalities into two broad categories - those associated with increased hair fragility and those not associated with increased hair fragility. We conducted a review study to assess hair shaft abnormality in children. Materials and Methods We conducted a review of all papers published on hair shaft abnormalities. A literature search was performed using PubMed, Scopus and Google Scholar on papers publish from 1990 to 2016. The search terms were: hair shaft abnormality, Hair loss, Hair fragility. All abstracts and full text English-language articles were studied. Results While common developmental and structural features are shared in hair follicles and hair shafts. Anomalies of the hair shaft are separated into those with and those without increased hair fragility. Conclusion Although hair has no vital function, it may serve as an indicator for human health. Clinical and morphological hair abnormalities can be clues to specific complex disorders. Hair shaft abnormalities can be inherited or acquired, can reflect a local problem or a systemic disease.

  2. Diagnosis of Hair Loss: Clinical features of common causes of hair loss

    OpenAIRE

    Coupe, Robert L.M.

    1992-01-01

    Common causes of hair loss include androgenic hair loss, alopecia areata, trichotillomania, tinea capitis, telogen effluvium, and traction alopecia. The author discusses their distinguishing clinical features and those of less common alopecias.

  3. Relationship between legumes consumption and metabolic syndrome: Findings of the Isfahan Healthy Heart Program

    Directory of Open Access Journals (Sweden)

    Firouzeh Sajjadi

    2014-01-01

    Full Text Available BACKGROUND: Epidemiologic studies have shown an inverse association between dietary fiber and metabolic syndrome (MetS. Therefore, the purpose of this study was to investigate the association between MetS and consumption of legumes in adults in Isfahan, Iran. METHODS: This cross-sectional study was carried out on 2027 individuals who were a subsample of the 3rd phase of the Isfahan Healthy Heart Program (IHHP. Basic characteristics information such as age, sex, smoking status, and physical activity were collected using a questionnaire. A validated 48-item food frequency questionnaire was used to assess dietary behaviors. Blood pressure, waist circumference (WC, glucose, triacylglycerols, and high-density lipoprotein cholesterol were measured, and MetS was defined based on Adult Treatment Panel III guidelines. Multiple logistic regression models examined associations of frequency consumption of legumes with MetS occurrence and its components. RESULTS: All MetS components were less prevalent among subjects with regular legume intake (P < 0.01. Legume intake was inversely associated with the risk of MetS, after adjustment for confounding factors in women. Life style adjusted odds ratio of Mets between highest and lowest tertile and no consumption (as reference category of legume intake were 0.31 (0.13, 0.70, 0.38 (0.17, 0.87, respectively, in women (P = 0.01. CONCLUSION: This study showed that age has a crucial role in MetS incidence; therefore, after further age adjustment to lifestyle adjusted model there was no significant difference in lower and higher tertile of legume intake and MetS.   Keywords: Legumes, Metabolic Syndrome, Iran 

  4. Future prospects for ascochyta blight resistance breeding in cool season food legumes

    Directory of Open Access Journals (Sweden)

    Diego eRubiales

    2012-02-01

    Full Text Available Legume cultivation is strongly hampered by the occurrence of ascochyta blights. Strategies of control have been developed but only marginal successes have been achieved. Breeding for disease resistance is regarded the most cost efficient method of control. Significant genetic variation for disease resistance exists in most legume crops with numerous germplasm lines maintained, providing an excellent resource for plant breeders. Fast and reliable screening methods have been adjusted to fulfil breeding programmes needs. However, the complex inheritance controlled quantitatively by multiple genes, have been difficult to manipulate. Successful application of biotechnology to ascochyta blight resistance breeding in legume crops will facilitate both a good biological knowledge of the crops and of the mechanisms underlying resistance. The current focus in applied breeding is leveraging biotechnological tools to develop more and better markers to speed up the delivery of improved cultivars to the farmer. To date, however, progress in marker development and delivery of useful markers has been slow. The limited saturation of the genomic regions bearing putative QTLs in legume crops makes difficult to identify the most tightly-linked markers

  5. Hair analysis using PIXE

    International Nuclear Information System (INIS)

    Li Hongkou.

    1983-10-01

    A simple new technique for examining single hair strands to obtain linear mass densities, longitudinal profiles and transverse distribution of each trace element is described. It is primarily based upon the PIXE technique, in combination with proton back- scattering. The three main components of this technique are: 1) An accurate way of using an interpolation method to evaluate the magnitude of the correction factor accounting for the proton energy loss and X-ray absorption in the bulk of the hair is formulated; 2) A simple method to qualitatively determine the transverse distribution of each trace element in a hair is in- troduced and proved to be effective; 3) Proton back-scattering is proved to be capable of providing an ideal linear measure of the geometric hair diameter, one of the most important parameters in quantifying the results of PIXE measurements in mass concentrations. Using the technique, a PIXE system designed and constructed for routine longitudinal scanning of single hair strands is also described. (Author)

  6. Effect of Radiation Processing on Protein Quality of Certain Legumes

    International Nuclear Information System (INIS)

    El-Niely, H.F.G

    2007-01-01

    The Effects of irradiation (dose levels of 5, 7.5 and 10 kGy) on nutritive characteristics of peas (Pisum satinum L), cow peas (Vigna unguiculata L.Walp), lentils (Lens culinaris Med), kidney beans (Phaseolus vulgaris L), and chickpeas (Cicer arietinurn L) were examined. Analyses included proximate composition, levels of anti-nutrients (phytic acid, tannins), available lysine (AL), in vitro protein digestibility (IVPD), and protein efficiency ratio (PER) in the growing rat. The results showed that moisture, crude protein, crude fat, crude fiber, and ash were unchanged by the irradiation. Radiation processing significantly (p<0.05) reduced the levels of phytic acid (PA), tannins (TN), and available lysine (AE). IVPD and PER were significantly enhanced in a dose-dependent manner, relative to unirradiated control samples, for all legumes. The data sets for each legume exhibited high correlation coefficients between radiation dose and PA, TN, AE, IVPD, and PER. These results demonstrate the benefits of irradiation on the nutritional properties of these legumes

  7. Hair: what is new in diagnosis and management? Female pattern hair loss update: diagnosis and treatment.

    Science.gov (United States)

    Atanaskova Mesinkovska, Natasha; Bergfeld, Wilma F

    2013-01-01

    Female pattern hair loss (FPHL) is the most common cause of alopecia in women. FPHL is characterized histologically with increased numbers of miniaturized, velluslike hair follicles. The goal of treatment of FPHL is to arrest hair loss progression and stimulate hair regrowth. The treatments for FPHL can be divided into androgen-dependent and androgen-independent. There is an important adjuvant role for nutritional supplements, light therapy, and hair transplants. All treatments work best when initiated early. Combinations of treatments tend to be more efficacious. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Hair Loss: Common Causes and Treatment.

    Science.gov (United States)

    Phillips, T Grant; Slomiany, W Paul; Allison, Robert

    2017-09-15

    Hair loss is often distressing and can have a significant effect on the patient's quality of life. Patients may present to their family physician first with diffuse or patchy hair loss. Scarring alopecia is best evaluated by a dermatologist. Nonscarring alopecias can be readily diagnosed and treated in the family physician's office. Androgenetic alopecia can be diagnosed clinically and treated with minoxidil. Alopecia areata is diagnosed by typical patches of hair loss and is self-limited. Tinea capitis causes patches of alopecia that may be erythematous and scaly and must be treated systemically. Telogen effluvium is a nonscarring, noninflammatory alopecia of relatively sudden onset caused by physiologic or emotional stress. Once the precipitating cause is removed, the hair typically will regrow. Trichotillomania is an impulse-control disorder; treatment is aimed at controlling the underlying psychiatric condition. Trichorrhexis nodosa occurs when hairs break secondary to trauma and is often a result of hair styling or overuse of hair products. Anagen effluvium is the abnormal diffuse loss of hair during the growth phase caused by an event that impairs the mitotic activity of the hair follicle, most commonly chemotherapy. Physician support is especially important for patients in this situation.

  9. Hair dosimetry following neutron irradiation.

    Science.gov (United States)

    Lebaron-Jacobs, L; Gaillard-Lecanu, E; Briot, F; Distinguin, S; Boisson, P; Exmelin, L; Racine, Y; Berard, P; Flüry-Herard, A; Miele, A; Fottorino, R

    2007-05-01

    Use of hair as a biological dosimeter of neutron exposure was proposed a few years ago. To date, the (32)S(n,p)(32)P reaction in hair with a threshold of 2.5 MeV is the best choice to determine the fast neutron dose using body activation. This information is essential with regards to the heterogeneity of the neutron transfer to the organism. This is a very important parameter for individual dose reconstruction from the surface to the deeper tissues. This evaluation is essential to the adapted management of irradiated victims by specialized medical staff. Comparison exercises between clinical biochemistry laboratories from French sites (the CEA and COGEMA) and from the IRSN were carried out to validate the measurement of (32)P activity in hair and to improve the techniques used to perform this examination. Hair was placed on a phantom and was irradiated at different doses in the SILENE reactor (Valduc, France). Different parameters were tested: variation of hair type, minimum weight of hair sample, hair wash before measurement, delivery period of results, and different irradiation configurations. The results obtained in these comparison exercises by the different laboratories showed an excellent correlation. This allowed the assessment of a dose-activity relationship and confirmed the feasibility and the interest of (32)P measurement in hair following fast neutron irradiation.

  10. Mesorhizobium shonense sp. nov., Mesorhizobium hawassense sp. nov. and Mesorhizobium abyssinicae sp. nov., isolated from root nodules of different agroforestry legume trees.

    Science.gov (United States)

    Degefu, Tulu; Wolde-Meskel, Endalkachew; Liu, Binbin; Cleenwerck, Ilse; Willems, Anne; Frostegård, Åsa

    2013-05-01

    A total of 18 strains, representing members of the genus Mesorhizobium, obtained from root nodules of woody legumes growing in Ethiopia, have been previously shown, by multilocus sequence analysis (MLSA) of five housekeeping genes, to form three novel genospecies. In the present study, the phylogenetic relationship between representative strains of these three genospecies and the type strains of their closest phylogenetic neighbours Mesorhizobium plurifarium, Mesorhizobium amorphae, Mesorhizobium septentrionale and Mesorhizobium huakuii was further evaluated using a polyphasic taxonomic approach. In line with our earlier MLSA of other housekeeping genes, the phylogenetic trees derived from the atpD and glnII genes grouped the test strains into three well-supported, distinct lineages that exclude all defined species of the genus Mesorhizobium. The DNA-DNA relatedness between the representative strains of genospecies I-III and the type strains of their closest phylogenetic neighbours was low (≤59 %). They differed from each other and from their closest phylogenetic neighbours by the presence/absence of several fatty acids, or by large differences in the relative amounts of particular fatty acids. While showing distinctive features, they were generally able to utilize a wide range of substrates as sole carbon and nitrogen sources. The strains belonging to genospecies I, II and III therefore represent novel species for which we propose the names Mesorhizobium shonense sp. nov., Mesorhizobium hawassense sp. nov. and Mesorhizobium abyssinicae sp. nov. The isolates AC39a(T) ( = LMG 26966(T) = HAMBI 3295(T)), AC99b(T) ( = LMG 26968(T) = HAMBI 3301(T)) and AC98c(T) ( = LMG 26967(T) = HAMBI 3306(T)) are proposed as type strains for the respective novel species.

  11. Mixed artificial grasslands with more roots improved mine soil infiltration capacity

    Science.gov (United States)

    Wu, Gao-Lin; Yang, Zheng; Cui, Zeng; Liu, Yu; Fang, Nu-Fang; Shi, Zhi-Hua

    2016-04-01

    Soil water is one of the critical limiting factors in achieving sustainable revegetation. Soil infiltration capacity plays a vital role in determining the inputs from precipitation and enhancing water storage, which are important for the maintenance and survival of vegetation patches in arid and semi-arid areas. Our study investigated the effects of different artificial grasslands on soil physical properties and soil infiltration capacity. The artificial grasslands were Medicago sativa, Astragalus adsurgens, Agropyron mongolicum, Lespedeza davurica, Bromus inermis, Hedysarum scoparium, A. mongolicum + Artemisia desertorum, A. adsurgens + A. desertorum and M. sativa + B. inermis. The soil infiltration capacity index (SICI), which was based on the average infiltration rate of stage I (AIRSI) and the average infiltration rate of stage III (AIRS III), was higher (indicating that the infiltration capacity was greater) under the artificial grasslands than that of the bare soil. The SICI of the A. adsurgens + A. desertorum grassland had the highest value (1.48) and bare soil (-0.59) had the lowest value. It was evident that artificial grassland could improve soil infiltration capacity. We also used principal component analysis (PCA) to determine that the main factors that affected SICI were the soil water content at a depth of 20 cm (SWC20), the below-ground root biomasses at depths of 10 and 30 cm (BGB10, BGB30), the capillary porosity at a depth of 10 cm (CP10) and the non-capillary porosity at a depth of 20 cm (NCP20). Our study suggests that the use of Legume-poaceae mixtures and Legume-shrub mixtures to create grasslands provided an effective ecological restoration approach to improve soil infiltration properties due to their greater root biomasses. Furthermore, soil water content, below-ground root biomass, soil capillary porosity and soil non-capillary porosity were the main factors that affect the soil infiltration capacity.

  12. Impact of increased ultraviolet-B radiation stress due to stratospheric ozone depletion on N2 fixation in traditional African commercial legumes

    International Nuclear Information System (INIS)

    Chimphango, S.B.M.; Musil, C.F.; Dakora, F.D.

    2004-01-01

    Reports of diminished nodule formation and nitroge-nase activity in some Asian tropical legumes exposed to above-ambient levels of ultraviolet-B (UV-B: 280-315nm) radiation have raised concerns as to the impact of stratospheric ozone depletion on generally poorly developed traditional African farming systems confronted by the high cost and limited availability of chemical fertilisers. These rely on N 2 -fixing legumes as the cheapest source of N for maintaining soil fertility and sustainable yields in the intrinsically infertile and heterogeneous African soils. In view of this, we examined the effects of supplemental UV-B radiation approximating 15% and 25% depletions in the total ozone column on N 2 fixation in eight traditional African commercial legume species representing crop, forest, medicinal, ornamental and pasture categories. In all categories examined, except medicinal, supplemental UV-B had no effect on root non-structural carbohydrates, antho-cyanins and flavonoids, known to signal Rhizobiaceae micro-symbionts and promote nodule formation, or on nodule mass, activity and quantities of N fixed in different plant organs and whole plants. In contrast, in the medicinal category Cyclopia maculata (Honeybush) a slow growing commercially important herbal beverage with naturally high flavonoid concentrations, displayed decreased nodule activity and quantities of N fixed in different plant organs and whole plants with increased UV-B. This study's findings conclude negligible impacts of ozone depletion on nitrogen fixation and soil fertility in most traditional African farming systems, these limited to occasional inhibition of nodule induction in some crops. (author)

  13. Potential of fodder tree/shrub legumes as a feed resource for dry season supplementation of smallholder ruminant animals

    International Nuclear Information System (INIS)

    Simbaya, J.

    2002-01-01

    Fodder tree/shrub legumes have the potential for alleviating some of the feed shortages and nutritional deficiencies experienced in the dry season on smallholder farms. Zambia has a wide range of naturally occurring tree/shrub species that can be used as fodder for ruminants. Over the years a number of trees have been selected for their agronomic qualities and are currently being used in arable farming systems to promote soil fertility and erosion control. There is a need to evaluate them for use as fodder for ruminants in the dry season. Because of their high content of protein, minerals and vitamins and availability in the dry season, fodder tree/shrub legumes have the capacity to complement the feeding of crop-residues and natural pastures. Tree/shrub legumes also have other advantages in that they are available on-farm and can also be used as a source of food, timber and medicines at village level. Being deep rooted, fodder trees are rarely affected by seasonal climatic changes. The main limitation to their use as a feed resource for ruminants is the high tannin content which may have detrimental effects on the performance of animals. A number of techniques including, wilting, sun-drying, treatment with chemicals and ammoniation have been developed to minimize their adverse effects. Controlled intake through stall feeding or mixing of tree/shrub fodder with basal diets could also be used to mitigate their toxic effects. Research is currently under way to establish rumen microbes that have capacity to detoxify tannins. To promote increased use of fodder trees on smallholder farms, farmers must be provided with information on the good quality fodder trees and the approaches to effectively utilise them. They should also be encouraged to start planting fodder trees in their food crop farming systems or establishing fodder gardens on fallow lands. (author)

  14. Increasing seed size and quality by manipulating BIG SEEDS1 in legume species.

    Science.gov (United States)

    Ge, Liangfa; Yu, Jianbin; Wang, Hongliang; Luth, Diane; Bai, Guihua; Wang, Kan; Chen, Rujin

    2016-11-01

    Plant organs, such as seeds, are primary sources of food for both humans and animals. Seed size is one of the major agronomic traits that have been selected in crop plants during their domestication. Legume seeds are a major source of dietary proteins and oils. Here, we report a conserved role for the BIG SEEDS1 (BS1) gene in the control of seed size and weight in the model legume Medicago truncatula and the grain legume soybean (Glycine max). BS1 encodes a plant-specific transcription regulator and plays a key role in the control of the size of plant organs, including seeds, seed pods, and leaves, through a regulatory module that targets primary cell proliferation. Importantly, down-regulation of BS1 orthologs in soybean by an artificial microRNA significantly increased soybean seed size, weight, and amino acid content. Our results provide a strategy for the increase in yield and seed quality in legumes.

  15. Risk assessment of clinical reactions to legumes in peanut-allergic children

    DEFF Research Database (Denmark)

    Jensen, Louise Bjerremann; Andersen, Milene; Skov, Per Stahl

    2008-01-01

    Peanut-allergic children might be at risk for reactions to other legumes. However, it is not always possible to perform multiple oral food challenges in children. On the basis of patient case history, in vitro diagnostic tests, and eventually food challenges, we aimed at developing an algorithm...... for risk assessment of possible clinical reactions to other legumes (soybean, lupine, fresh, and blanched green pea). Seventy-five consecutive patients with a positive oral food challenge to peanut were included in the study. All tests were run as part of the routine allergy examination. A high proportion...... of patients and/or caretakers refused the administered legume oral food challenges. Obtained diagnoses from histamine release did not correlate significantly to the outcome of the algorithm. Interestingly, threshold from peanut challenges did not correlate with the risk assessment.The algorithm presented...

  16. Hair Loss Following The Topiramate Treatment

    Directory of Open Access Journals (Sweden)

    I Ghafoor

    2017-02-01

    Full Text Available BACKGROUND AND OBJECTIVE: Genetics, hormone profiles and other physiologic factors can cause hair loss. Medication induced hair loss is an occasional side effect of many psychopharmaceuticals. It can reduce medication compliance if not discovered and treated. We present a 18 year old female with migraine headache who developed hair loss after 3 months of receiving topiramate treatment. CASE REPORT: 18 year old female had been suffering from headache visited in psychiatric clinic. She agreed to a treatment with topiramate (50mg per day for Migraine headache. 3 months later, the patient complained of significant hair loss. Topiramate tapered to 25 mg/day and stopped. Hair loss stopped after topiramate withdrawal. Two weeks after reintroduction of topiramate, hair loss developed again. The medication was stopped and hair loss stopped again. CONCLUSION: Topiramate can cause hair loss. Although the condition is not life-threatening, a decrease in medication compliance can cause recurrence of the underlying disease. It is necessary to ask the patient at visits about it.

  17. Legume Logic & Green Manuring

    OpenAIRE

    Basavanagowda Nagabhushana, Nandeesh

    2014-01-01

    Brown plant hopper showed me the way into organic farming. In 2001, I started my practice with logic of legumes just to cut down the 45 percent expenses of my paddy on fertilizers, pesticides and herbicides. Later as I realized each and every plant carries it’s own nutrients, medicinal values and characters. Plants like millets, oil seeds, spices, di-cots, monocots and weeds all being used as a green manure. For all my agriculture problems and crop demands, I look for the answers only thro...

  18. Soil macrofauna in wooded pasture with legume trees

    Directory of Open Access Journals (Sweden)

    Lusimar Lamarte Gonzaga Galindo da Silva

    2015-07-01

    Full Text Available Grasslands afforestation aims at adding different soil uses in a way they become profitable for their owners. As such handling aims at minimizing impacts, the current study had as its goal the use of soil macrofauna in order to evaluate legume afforestation effects on the soil, regardless the depth. Thus, nitrogen fixing species were inserted onto grassland areas and the macrofauna collection was performed 6 years after their planting in the 0-10cm, 10-20cm and 20.30cm layers, in winter and summer. Leguminous influence was different between depths and times of the year. It mostly favors communities under "Mimosa" Genus treetops. Besides, the effects from climatic seasonal variations on invertebrates were mitigated by the implementation of such legume trees

  19. Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts.

    Science.gov (United States)

    Remigi, Philippe; Zhu, Jun; Young, J Peter W; Masson-Boivin, Catherine

    2016-01-01

    Bacterial accessory genes are genomic symbionts with an evolutionary history and future that is different from that of their hosts. Packages of accessory genes move from strain to strain and confer important adaptations, such as interaction with eukaryotes. The ability to fix nitrogen with legumes is a remarkable example of a complex trait spread by horizontal transfer of a few key symbiotic genes, converting soil bacteria into legume symbionts. Rhizobia belong to hundreds of species restricted to a dozen genera of the Alphaproteobacteria and Betaproteobacteria, suggesting infrequent successful transfer between genera but frequent successful transfer within genera. Here we review the genetic and environmental conditions and selective forces that have shaped evolution of this complex symbiotic trait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The Effect of Irradiation Treatment on the Non-Enzymatic Browning Reaction in Legume Seeds

    International Nuclear Information System (INIS)

    El-Niely, H.F.G.

    2013-01-01

    The present study was conducted to evaluate the effects of gamma irradiation treatment, at room temperature, on the non-enzymatic browning reaction (Millerd reaction products, MRPs) generated in soybeans, broad beans and dried peas seeds at dose levels of 10, 30 and 60 kGy and their effects on the chemical constituents, soluble protein, available lysine and in vitro protein digestibility. The formation of MRPs in the studied legumes was assayed by monitoring the formation of brown pigments (browning intensity) by spectrophotometric method. The results revealed that the chemical composition of irradiated legumes showed non-significant differences relative to the raw one. A dose dependent decrease in soluble proteins and available lysine in the three legumes were observed. The non-enzymatic browning reaction was significantly increased with increasing the radiation dose, which was proved by changes in browning index tests. At the same time, the in vitro protein digestibility was increased after irradiation up to 60 kGy. Irradiation of dried peas with 60 kGy produced higher browning index than the other legumes. A positive correlation was observed between the radiation dose and the browning index for soybeans (R2= 0.96), broad beans (R2 = 0.81) and dried peas (R2 = 0.97) which means that 96%, 81% and 97 of the variation in the incidence of non-enzymatic browning reaction in soybean, broad bean and dried peas, respectively, are due to the effect of irradiation treatments. The present study suggests that the formation of non-enzymatic browning reaction did not impair the nutritional quality of legumes, therefore, the process of irradiation was helpful in increasing the in vitro protein digestibility of studied legumes. These results clearly indicated that gamma irradiation processing at the studied doses can add valuable effects to the studied legumes

  1. Soil oribatid mite communities under three species of legumes in an ultisol in Brazil.

    Science.gov (United States)

    Badejo, M Adetola; Espindola, Jose Antonio Azevedo; Guerra, Jose Guilherme Marinho; De Aquino, Adriana Maria; Correa, Maria Elizabeth Fernandes

    2002-01-01

    Oribatid mite densities in the topsoil and their activity at the soil surface were monitored under three species of perennial legume cover crops namely, Arachis pintoi, Macroptilium atropupureum and Pueraria phaseoloides, grass (Panicum maximum) and bare plots on three occasions in 1998 and 1999 in a derived savanna zone in Brazil. Both densities and activity at the soil surface were higher in the early but cool dry season in April 1998 than in the early wet but warm season in November 1998 and 1999. Three taxonomic groups of macropyline oribatid mites, namely Nothrus, Archegozetes and Masthermannia as well as a brachypyline taxon, Scheloribates were suggested as possible indicators of effect of legumes on soil biota because their populations increased under the legumes and/or the irresidues. Nothrus in particular increased in abundance more than any other taxon in the presence of residues of A. pintoi. Each legume supported a unique oribatid mite community in terms of species composition and relative abundance. The large numbers of Archegozeres trapped from all the legume and grass plots in April and November 1998 were also attributed to highly conducive conditions provided by the vegetation cover and their residues. The results suggest that the oribatid mite community of the study area was numerically stable as the peak populations of different species were not synchronized. Many taxonomic groups of pycnonotic brachypyline mites were absent. Legume cover crops, especially A. pintoi, and their residues have potential in restoring oribatid mite populations to precultivation levels.

  2. Root developmental adaptation to phosphate starvation: better safe than sorry.

    Science.gov (United States)

    Péret, Benjamin; Clément, Mathilde; Nussaume, Laurent; Desnos, Thierry

    2011-08-01

    Phosphorus is a crucial component of major organic molecules such as nucleic acids, ATP and membrane phospholipids. It is present in soils in the form of inorganic phosphate (Pi), which has low availability and poor mobility. To cope with Pi limitations, plants have evolved complex adaptive responses that include morphological and physiological modifications. This review describes how the model plant Arabidopsis thaliana adapts its root system architecture to phosphate deficiency through inhibition of primary root growth, increase in lateral root formation and growth and production of root hairs, which all promote topsoil foraging. A better understanding of plant adaptation to low phosphate will open the way to increased phosphorus use efficiency by crops. Such an improvement is needed in order to adjust how we manage limited phosphorus stocks and to reduce the disastrous environmental effects of phosphate fertilizers overuse. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Fine-tuning by strigolactones of root response to low phosphate.

    Science.gov (United States)

    Kapulnik, Yoram; Koltai, Hinanit

    2016-03-01

    Strigolactones are plant hormones that regulate the development of different plant parts. In the shoot, they regulate axillary bud outgrowth and in the root, root architecture and root-hair length and density. Strigolactones are also involved with communication in the rhizosphere, including enhancement of hyphal branching of arbuscular mycorrhizal fungi. Here we present the role and activity of strigolactones under conditions of phosphate deprivation. Under these conditions, their levels of biosynthesis and exudation increase, leading to changes in shoot and root development. At least for the latter, these changes are likely to be associated with alterations in auxin transport and sensitivity. On the other hand, strigolactones may positively affect plant-mycorrhiza interactions and thereby promote phosphate acquisition by the plant. Strigolactones may be a way for plants to fine-tune their growth pattern under phosphate deprivation. © 2015 Institute of Botany, Chinese Academy of Sciences.

  4. Can an "Aesthetic" Intervention (Braided Hair Coil) Cause Hair Loss After an Aesthetic Operation?

    Science.gov (United States)

    Dionyssopoulos, Alexander; Papaconstantinou, Antony; Stoltidou, Alexandra; Spyropoulou, Georgia-Alexandra

    2014-07-01

    Postoperative pressure alopecia (PPA), defined as hair loss caused by prolonged pressure on the patient's scalp during surgery, is an uncommon condition after aesthetic surgery. Originally, it was described for patients who underwent lengthy cardiovascular and gynecologic operations. The authors present a rare case, in which hair loss occurred after secondary breast augmentation (replacement of breast implants). The PPA appeared in the occipitoparietal region of the patient's scalp approximately 2 weeks after surgery. The operation was completed in less than 3 hours, without any fluctuations in the patient's blood pressure or any unusual blood loss. There were no other precipitating factors such as anemia or coagulopathies. The probable cause of this unexpected result was the patient's braided hair coil, which had not been noted before the operation. The patient habitually, and on the day of her operation, combed her hair into a braided coil, which placed extra pressure on the occipitoparietal region. The hair loss was temporary, and hair regrowth was complete within 2 months. This incident may have been avoided if the braided hair coil had been noted by nursing or other medical staff preoperatively. Repositioning the head every 30 minutes and providing adequate head padding during surgery are advised to protect the patient and prevent such incidents. 5. © 2014 The American Society for Aesthetic Plastic Surgery, Inc.

  5. Eps8 regulates hair bundle length and functional maturation of mammalian auditory hair cells.

    Directory of Open Access Journals (Sweden)

    Valeria Zampini

    2011-04-01

    Full Text Available Hair cells of the mammalian cochlea are specialized for the dynamic coding of sound stimuli. The transduction of sound waves into electrical signals depends upon mechanosensitive hair bundles that project from the cell's apical surface. Each stereocilium within a hair bundle is composed of uniformly polarized and tightly packed actin filaments. Several stereociliary proteins have been shown to be associated with hair bundle development and function and are known to cause deafness in mice and humans when mutated. The growth of the stereociliar actin core is dynamically regulated at the actin filament barbed ends in the stereociliary tip. We show that Eps8, a protein with actin binding, bundling, and barbed-end capping activities in other systems, is a novel component of the hair bundle. Eps8 is localized predominantly at the tip of the stereocilia and is essential for their normal elongation and function. Moreover, we have found that Eps8 knockout mice are profoundly deaf and that IHCs, but not OHCs, fail to mature into fully functional sensory receptors. We propose that Eps8 directly regulates stereocilia growth in hair cells and also plays a crucial role in the physiological maturation of mammalian cochlear IHCs. Together, our results indicate that Eps8 is critical in coordinating the development and functionality of mammalian auditory hair cells.

  6. Eps8 regulates hair bundle length and functional maturation of mammalian auditory hair cells.

    Science.gov (United States)

    Zampini, Valeria; Rüttiger, Lukas; Johnson, Stuart L; Franz, Christoph; Furness, David N; Waldhaus, Jörg; Xiong, Hao; Hackney, Carole M; Holley, Matthew C; Offenhauser, Nina; Di Fiore, Pier Paolo; Knipper, Marlies; Masetto, Sergio; Marcotti, Walter

    2011-04-01

    Hair cells of the mammalian cochlea are specialized for the dynamic coding of sound stimuli. The transduction of sound waves into electrical signals depends upon mechanosensitive hair bundles that project from the cell's apical surface. Each stereocilium within a hair bundle is composed of uniformly polarized and tightly packed actin filaments. Several stereociliary proteins have been shown to be associated with hair bundle development and function and are known to cause deafness in mice and humans when mutated. The growth of the stereociliar actin core is dynamically regulated at the actin filament barbed ends in the stereociliary tip. We show that Eps8, a protein with actin binding, bundling, and barbed-end capping activities in other systems, is a novel component of the hair bundle. Eps8 is localized predominantly at the tip of the stereocilia and is essential for their normal elongation and function. Moreover, we have found that Eps8 knockout mice are profoundly deaf and that IHCs, but not OHCs, fail to mature into fully functional sensory receptors. We propose that Eps8 directly regulates stereocilia growth in hair cells and also plays a crucial role in the physiological maturation of mammalian cochlear IHCs. Together, our results indicate that Eps8 is critical in coordinating the development and functionality of mammalian auditory hair cells.

  7. Pollution Damage and Protection of Asian Hair

    Directory of Open Access Journals (Sweden)

    Xin Qu

    2018-02-01

    Full Text Available Cigarette smoke was used to simulate a polluted environment and an experiment was performed to reveal how virgin and bleached hair are damaged by a polluted environment. The dry/wet combability, surface contact angle, tryptophan content, and cuticle morphology of the smoke exposed hair were evaluated, and compared to unexposed virgin hair. The results showed that pollution exposure can cause significant chemical damage to hair. In particular, virgin hair exposure to pollution can cause damage to the hair cuticles (higher wet/dry combing, protein degradation, and a more hydrophilic hair surface. The experiment also demonstrated that the styling polymer, polyimide-1 (isobutylene/dimethyl amino propyl maleimide/ethoxylated maleimide/maleic acid copolymer, can provide effective protection against such hair damage.

  8. Mercury in human hair

    International Nuclear Information System (INIS)

    Kapauan, P.A.; Cruz, C.C.; Verceluz, F.P.

    1980-10-01

    The analysis of mercury (Hg) in scalp hair obtained from individuals residing in five different localities in the Philippines - Metro Manila, Naga City in Bicol, Bataan, Oriental Mindoro, and Palawan is presented. An overall mean of 1.46 ug/g of hair was obtained for all samples excluding those from Palawan and represents a baseline value.'' In terms of the mercury levels found in hair, the Honda Bay area in Palawan is, relatively, a ''contaminated area.'' (author)

  9. Testing forage legume technologies with smallholder dairy farmers ...

    African Journals Online (AJOL)

    Mo

    documented on forage legumes and fodder trees in Uganda. However .... held to encourage interaction and collaborative learning between .... decision-making regarding income. ... the introduction of a milk-processing machine by Masaka.

  10. PGPRs and nitrogen-fixing legumes: a perfect team for efficient Cd phytoremediation?

    Directory of Open Access Journals (Sweden)

    María Teresa eGómez-Sagasti

    2015-02-01

    Full Text Available Cadmium (Cd is a toxic, biologically non-essential and highly mobile metal that has become an increasingly important environmental hazard to both wildlife and humans. In contrast to conventional remediation technologies, phytoremediation based on rhizobia-legume symbiosis has emerged as an inexpensive decontamination alternative which also revitalize contaminated soils due to the role of legumes in nitrogen cycling. In recent years, there is growing interest in understanding symbiotic rhizobia-legume relationship and its interactions with Cd. The aim of the present review is to provide a comprehensive picture of the main effects of Cd in N2-fixing leguminous plants and the benefits of exploiting this symbiosis together with plant growth promoting rhizobacteria (PGPRs to boost an efficient reclamation of Cd-contaminated soils.

  11. The Current Status of Microscopical Hair Comparisons

    Directory of Open Access Journals (Sweden)

    Walter F. Rowe

    2001-01-01

    Full Text Available Although the microscopical comparison of human hairs has been accepted in courts of law for over a century, recent advances in DNA technology have called this type of forensic examination into question. In a number of cases, post-conviction DNA testing has exonerated defendants who were convicted in part on the results of microscopical hair comparisons. A federal judge has held a Daubert hearing on the microscopical comparison of human hairs and has concluded that this type of examination does not meet the criteria for admission of scientific evidence in federal courts. A review of the available scientific literature on microscopical hair comparisons (including studies conducted by the Royal Canadian Mounted Police and the Federal Bureau of Investigation leads to three conclusions: (1 microscopical comparisons of human hairs can yield scientifically defensible conclusions that can contribute to criminal investigations and criminal prosecutions, (2 the reliability of microscopical hair comparisons is strongly affected by the training of the forensic hair examiner, (3 forensic hair examiners cannot offer estimates of the probability of a match of a questioned hair with a hair from a randomly selected person. In order for microscopical hair examinations to survive challenges under the U.S. Supreme Court’s Daubert decision, hair microscopists must be better trained and undergo frequent proficiency testing. More research on the error rates of microscopical hair comparisons should be undertaken, and guidelines for the permissible interpretations of such comparisons should be established. Until these issues have been addressed and satisfactorily resolved, microscopical hair comparisons should be regarded by law enforcement agencies and courts of law as merely presumptive in nature, and all microscopical hair comparisons should be confirmed by nuclear DNA profiling or mitochondrial DNA sequencing.

  12. "Castor Oil" - The Culprit of Acute Hair Felting.

    Science.gov (United States)

    Maduri, V Ramya; Vedachalam, Ahalya; Kiruthika, S

    2017-01-01

    Acute hair felting is a rare disorder of scalp hair. In this condition, the hair becomes twisted, entangled as a hard stony mass resembling a bird's nest. Sudden hair matting has been reported earlier in the literature after vigorous use of chemical and herbal shampoos. Plica polonica is a patchy area of hair matting occurring in due course of time in neglected hair or underlying psychiatric illness. This case is interesting as the whole scalp hair matted immediately after using coconut oil and castor oil following washing. Growing long hair and taking oil bath are cultural and religious customs in South India. The high viscosity of castor oil and long hair had contributed to sudden felting of hair. This disorder of hair is irreversible and the hair should be cut off. Acute nature of this disorder will result in a serious psychological impact on the patient and the family.

  13. Nanotechnology-Based Cosmetics for Hair Care

    Directory of Open Access Journals (Sweden)

    Jamie Rosen

    2015-07-01

    Full Text Available Hair is a significant indicator of health and can have a major impact on an individual’s cosmetic appearance. Research within the cosmetics industry has revealed that when nanomaterials are engineered into hair care, they can enhance the benefits of active ingredients in order to improve hair cosmesis. Within the cosmetics arena, the unique size and intrinsic properties of nanoparticles can be tailored to target the hair follicle and shaft. This review aims to provide an overview of cosmetic nanocarriers that can be employed to improve the appearance of hair.

  14. Why Does Hair Turn Gray?

    Science.gov (United States)

    ... out, but people with naturally lighter hair are just as likely to go gray. From the time a person notices a few gray hairs, it may take more than 10 years for all of that person's hair to turn ... really believe that this happens. Just in case, try not to freak out your ...

  15. Stimulation of hair cells with ultraviolet light

    Science.gov (United States)

    Azimzadeh, Julien B.; Fabella, Brian A.; Hudspeth, A. J.

    2018-05-01

    Hair bundles are specialized organelles that transduce mechanical inputs into electrical outputs. To activate hair cells, physiologists have resorted to mechanical methods of hair-bundle stimulation. Here we describe a new method of hair-bundle stimulation, irradiation with ultraviolet light. A hair bundle illuminated by ultraviolet light rapidly moves towards its tall edge, a motion typically associated with excitatory stimulation. The motion disappears upon tip-link rupture and is associated with the opening of mechanotransduction channels. Hair bundles can be induced to move sinusoidally with oscillatory modulation of the stimulation power. We discuss the implications of ultraviolet stimulation as a novel hair-bundle stimulus.

  16. Exposure to nickel by hair mineral analysis.

    Science.gov (United States)

    Michalak, Izabela; Mikulewicz, Marcin; Chojnacka, Katarzyna; Wołowiec, Paulina; Saeid, Agnieszka; Górecki, Henryk

    2012-11-01

    The aim of the present work was to investigate the exposure to nickel from various sources by investigation of mineral composition of human scalp hair. The research was carried out on hair sampled from subjects, including 87 males and 178 females (22 ± 2 years). The samples of hair were analyzed by ICP-OES. The effect of several factors on nickel content in hair was examined: lifestyle habits (e.g. hair coloring, hair spray, hair straighteners, hair drier, drugs); dietary factors (e.g. yoghurts, blue cheese, lettuce, lemon, mushroom, egg, butter); other (e.g. solarium, cigarette smoking, tap water pipes, tinned food, PVC foil, photocopier, amalgam filling). These outcomes were reached by linking the results of nickel level in hair with the results of questionnaire survey. Basing on the results it can be concluded that exposure to nickel ions can occur from different sources: lifestyle, eating habits and environmental exposure. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Symbiotic N fixation and fertilizer nitrogen use efficiency in legume-cereal intercropping systems

    International Nuclear Information System (INIS)

    Jena, D.; Misra, C.

    1990-01-01

    On a lateritic soil at Bhubaneswar short duration rice, finger millet, maize, groundnut, pigeon pea, black gram were grown alone or as intercrop in microplots (1mx1m). Thirty days after germination, 15 N tagged urea (3% a.e.) solutions was applied to all the treatments so as to provide 40 kg N ha -1 for the cereals, 10 kg n ha -1 for the legumes and 20 kg N ha -1 for cereal plus legumes. The results show the fertilizer efficiency values to be nearly 62 to 69 per cent for rice, 53 per cent for maize and 22 percent for finger millet. These values were 12 to 17 per cent for pigeon pea, 18 percent for black gram and 23 percent for groundnut. Averaged over the cropping system and fertilizer doses, the nitrogen fixed by legumes, viz,pigeon-pea, black gram and groundnut were 16.3, 15.5 and 17.5 kg ha -1 , respectively, within 60 days of crop growth. Horse gram grown as a sequence crop during the dry season (after the harvest of wet season crops) using the residual soil water and nutrients appears to utilize the residual 15 N better when it follows the non-legumes compared with that when it follows the legumes. (author). 5 refs., 5 tabs

  18. Excessive or unwanted hair in women

    Science.gov (United States)

    Hypertrichosis; Hirsutism; Hair - excessive (women); Excessive hair in women; Hair - women - excessive or unwanted ... Women normally produce low levels of male hormones (androgens). If your body makes too much of this ...

  19. Female pattern hair loss

    Directory of Open Access Journals (Sweden)

    İdil Ünal

    2014-06-01

    Full Text Available Female androgenetic alopecia is the commonest cause of hair loss in women. It is characterized by a diffuse reduction in hair density over the crown and frontal scalp with retention of the frontal hairline and a characteristic pattern distribution in genetically predisposed women. Because of the uncertain relationship with the androgens Female Pattern Hair Loss (FPHL is the most preferred definition of the condition. This review has been focused on the clinical features, diagnosis and treatment alternatives of FPHL.

  20. Alterations in Hair Follicle Dynamics in Women

    Directory of Open Access Journals (Sweden)

    Claudine Piérard-Franchimont

    2013-01-01

    Full Text Available Endocrine changes supervening after parturition and menopause participate in the control of sebum production and hair growth modulation. The ensuing conditions include some peculiar aspects of hair loss (effluvium, alopecia, and facial hirsutism. The hair cycling is of major clinical relevance because most hair growth disorders result from disturbances in this chronobiological feature. Of note, any correlation between a biologic abnormality and hair cycling disturbance does not prove a relationship of causality. The proportion of postmenopausal women is rising in the overall population. Therefore, the prevalence of these hair follicle disturbances is globally on the rise. Current therapies aim at correcting the underlying hormonal imbalances, and at improving the overall cosmetic appearance. However, in absence of pathogenic diagnosis and causality criteria, chances are low that a treatment given by the whims of fate will adequately control hair effluvium. The risk and frequency of therapeutic inertia are further increased. When the hair loss is not controlled and/or compensated by growth of new hairs, several clinical aspects of alopecia inexorably develop. Currently, there is little evidence supporting any specific treatment for these endocrine hair disorders in post-partum and postmenopausal women. Current hair treatment strategies are symptomatic and nonspecific so current researchers aim at developing new, targeted methods.

  1. Trichotillomania (Hair-Pulling Disorder)

    Science.gov (United States)

    ... pulling Biting, chewing or eating pulled-out hair Playing with pulled-out hair or rubbing it across ... of trichotillomania: Family history. Genetics may play a role in the development of trichotillomania, and the disorder ...

  2. Kidney bean: a major sensitizer among legumes in asthma and rhinitis patients from India.

    Directory of Open Access Journals (Sweden)

    Ramkrashan Kasera

    Full Text Available BACKGROUND: The prevalence of IgE mediated food allergies has increased over the last two decades. Food allergy has been reported to be fatal in highly sensitive individuals. Legumes are important food allergens but their prevalence may vary among different populations. The present study identifies sensitization to common legumes among Indian population, characterizes allergens of kidney bean and establishes its cross reactivity with other legumes. METHODOLOGY: Patients (n = 355 with history of legume allergy were skin prick tested (SPT with 10 legumes. Specific IgE (sIgE and total IgE were estimated in sera by enzyme-linked immunosorbent assay. Characterization of kidney bean allergens and their cross reactivity was investigated by immunobiochemical methods. Identification of major allergens of kidney bean was carried out by mass spectrometry. PRINCIPAL FINDINGS: Kidney bean exhibited sensitization in 78 (22.0% patients followed by chickpea 65 (18.0% and peanut 53 (15%. SPT positive patients depicted significantly elevated sIgE levels against different legumes (r = 0.85, p<0.0001. Sera from 30 kidney bean sensitive individuals exhibited basophil histamine release (16-54% which significantly correlated with their SPT (r = 0.83, p<0.0001 and sIgE (r = 0.99, p<0.0001. Kidney bean showed eight major allergens of 58, 50, 45, 42, 40, 37, 34 and 18 kDa on immunoblot and required 67.3±2.51 ng of homologous protein for 50% IgE inhibition. Inhibition assays revealed extensive cross reactivity among kidney bean, peanut, black gram and pigeon pea. nLC-MS/MS analysis identified four allergens of kidney bean showing significant matches with known proteins namely lectin (phytohemagglutinin, phaseolin, alpha-amylase inhibitor precursor and group 3 late embryogenesis abundant protein. CONCLUSION/SIGNIFICANCE: Among legumes, kidney bean followed by chick pea and peanut are the major allergic triggers in asthma and rhinitis patients in India

  3. Improved biolistic transfection of hair cells.

    Directory of Open Access Journals (Sweden)

    Hongyu Zhao

    Full Text Available Transient transfection of hair cells has proven challenging. Here we describe modifications to the Bio-Rad Helios Gene Gun that, along with an optimized protocol, improve transfection of bullfrog, chick, and mouse hair cells. The increased penetrating power afforded by our method allowed us to transfect mouse hair cells from the basal side, through the basilar membrane; this configuration protects hair bundles from damage during the procedure. We characterized the efficiency of transfection of mouse hair cells with fluorescently-tagged actin fusion protein using both the optimized procedure and a published procedure; while the efficiency of the two methods was similar, the morphology of transfected hair cells was improved with the new procedure. In addition, using the improved method, we were able to transfect hair cells in the bullfrog sacculus and chick cochlea for the first time. We used fluorescent-protein fusions of harmonin b (USH1C and PMCA2 (ATP2B2; plasma-membrane Ca(2+-ATPase isoform 2 to examine protein distribution in hair cells. While PMCA2-EGFP localization was similar to endogenous PMCA2 detected with antibodies, high levels of harmonin-EGFP were found at stereocilia tapers in bullfrog and chick, but not mouse; by contrast, harmonin-EGFP was concentrated in stereocilia tips in mouse hair cells.

  4. Managing Chemotherapy Side Effects: Hair Loss (Alopecia)

    Science.gov (United States)

    ... C ancer I nstitute Managing Chemotherapy Side Effects Hair Loss (Alopecia) “Losing my hair was hard at first. ... and anywhere on your body may fall out. Hair loss is called alopecia. When will my hair start ...

  5. The use of human hair as biodosimeter

    International Nuclear Information System (INIS)

    Tepe Çam, S.; Polat, M.; Seyhan, N.

    2014-01-01

    The potential use of human hair samples as biologic dosimeter was investigated by electron spin resonance (ESR) spectroscopy. The hair samples were obtained from female volunteers and classified according to the color, age and whether they are natural or dyed. Natural black, brown, red, blonde and dyed black hair samples were irradiated at low doses (5–50 Gy) and high doses (75–750 Gy) by gamma source giving the dose rate of 0.25 Gy/s in The Sarayköy Establishment of Turkish Atomic Energy Authority. While the peak heights and g-values (2.0021–2.0023) determined from recorded spectra of hair were color dependent, the peak-to-peak line widths were varied according to natural or dyed hair (ΔH pp : 0.522–0.744 mT). In all samples, the linear dose–response curves at low doses saturated after ∼300 Gy. In black hair samples taken from different individuals, differences in the structure of the spectrum and signal intensities were not observed. The EPR signal intensities of samples stored at room temperature for 22 days fell to their half-values in 44 h in black hair, 41 h in blonde and brown hairs, 35 h in dyed black hair and in 17 h in red hair. The activation energies of samples annealed at high temperatures for different periods of time were correlated well with those obtained in the literature. In conclusion, hair samples can be used as a biological dosimeter considering the limitations showed in this study. - Highlights: • Applied electron spin resonance spectroscopy to human hair used in biodosimetry. • Showed the limitations of hair samples using as a biological dosimeter. • Provided more systematic information on radiation-induced radicals in hair. • Found at least 3 different contributions in the RIS. That is the major finding of this work

  6. GeMprospector--online design of cross-species genetic marker candidates in legumes and grasses.

    Science.gov (United States)

    Fredslund, Jakob; Madsen, Lene H; Hougaard, Birgit K; Sandal, Niels; Stougaard, Jens; Bertioli, David; Schauser, Leif

    2006-07-01

    The web program GeMprospector (URL: http://cgi-www.daimi.au.dk/cgi-chili/GeMprospector/main) allows users to automatically design large sets of cross-species genetic marker candidates targeting either legumes or grasses. The user uploads a collection of ESTs from one or more legume or grass species, and they are compared with a database of clusters of homologous EST and genomic sequences from other legumes or grasses, respectively. Multiple sequence alignments between submitted ESTs and their homologues in the appropriate database form the basis of automated PCR primer design in conserved exons such that each primer set amplifies an intron. The only user input is a collection of ESTs, not necessarily from more than one species, and GeMprospector can boost the potential of such an EST collection by combining it with a large database to produce cross-species genetic marker candidates for legumes or grasses.

  7. Elution behaviors of elements from the hair

    International Nuclear Information System (INIS)

    Akashi, Junko; Fukushima, Ichiro; Imahori, Akira

    1981-01-01

    The elution of the neutron activated elements out of hair soaked in some organic solvents and EDTA solution was studied. Soakage of the hair sample, which was washed with water and acetone in advance as IAEA's proposal, in ether and acetone for 30 minutes each resulted in no elution of Hg, Zn, Co and Se. Elution of Zn and Co from the powdered hair sample soaked in 0.1 M EDTA solution was rapid, while Zn did not elute out from the cut hair (2 -- 3 mm length) on the same condition. Hg, Se and Au were not eluted out by 0.1 M EDTA solution in the both case of cut hair and of powdered hair. Br was removed by 0.1 M EDTA solution from the cut hair and from the powdered hair with equal ease. (author)

  8. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development

    DEFF Research Database (Denmark)

    Ott, Thomas; van Dongen, Joost T; Günther, Catrin

    2005-01-01

    Hemoglobins are ubiquitous in nature and among the best-characterized proteins. Genetics has revealed crucial roles for human hemoglobins, but similar data are lacking for plants. Plants contain symbiotic and nonsymbiotic hemoglobins; the former are thought to be important for symbiotic nitrogen...... fixation (SNF). In legumes, SNF occurs in specialized organs, called nodules, which contain millions of nitrogen-fixing rhizobia, called bacteroids. The induction of nodule-specific plant genes, including those encoding symbiotic leghemoglobins (Lb), accompanies nodule development. Leghemoglobins...... accumulate to millimolar concentrations in the cytoplasm of infected plant cells prior to nitrogen fixation and are thought to buffer free oxygen in the nanomolar range, avoiding inactivation of oxygen-labile nitrogenase while maintaining high oxygen flux for respiration. Although widely accepted...

  9. A Legume TOR Protein Kinase Regulates Rhizobium Symbiosis and Is Essential for Infection and Nodule Development.

    Science.gov (United States)

    Nanjareddy, Kalpana; Blanco, Lourdes; Arthikala, Manoj-Kumar; Alvarado-Affantranger, Xóchitl; Quinto, Carmen; Sánchez, Federico; Lara, Miguel

    2016-11-01

    The target of rapamycin (TOR) protein kinase regulates metabolism, growth, and life span in yeast, animals, and plants in coordination with nutrient status and environmental conditions. The nutrient-dependent nature of TOR functionality makes this kinase a putative regulator of symbiotic associations involving nutrient acquisition. However, TOR's role in these processes remains to be understood. Here, we uncovered the role of TOR during the bean (Phaseolus vulgaris)-Rhizobium tropici (Rhizobium) symbiotic interaction. TOR was expressed in all tested bean tissues, with higher transcript levels in the root meristems and senesced nodules. We showed TOR promoter expression along the progressing infection thread and in the infected cells of mature nodules. Posttranscriptional gene silencing of TOR using RNA interference (RNAi) showed that this gene is involved in lateral root elongation and root cell organization and also alters the density, size, and number of root hairs. The suppression of TOR transcripts also affected infection thread progression and associated cortical cell divisions, resulting in a drastic reduction of nodule numbers. TOR-RNAi resulted in reduced reactive oxygen species accumulation and altered CyclinD1 and CyclinD3 expression, which are crucial factors for infection thread progression and nodule organogenesis. Enhanced expression of TOR-regulated ATG genes in TOR-RNAi roots suggested that TOR plays a role in the recognition of Rhizobium as a symbiont. Together, these data suggest that TOR plays a vital role in the establishment of root nodule symbiosis in the common bean. © 2016 American Society of Plant Biologists. All Rights Reserved.

  10. Plastid Genome Evolution in the Early-Diverging Legume Subfamily Cercidoideae (Fabaceae

    Directory of Open Access Journals (Sweden)

    Yin-Huan Wang

    2018-02-01

    Full Text Available The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes. The plastomes of Cercidoideae all exhibited a typical quadripartite structure with a conserved gene content typical of most angiosperm plastomes. Plastome size ranged from 151,705 to 165,416 bp, mainly due to the expansion and contraction of inverted repeat (IR regions. The order of genes varied due to the occurrence of several inversions. In Tylosema species, a plastome with a 29-bp IR-mediated inversion was found to coexist with a canonical-type plastome, and the abundance of the two arrangements of isomeric molecules differed between individuals. Complete plastome data were much more efficient at resolving intergeneric relationships of Cercidoideae than the previously used selection of only a few plastid or nuclear loci. In sum, our study revealed novel insights into the structural diversification of plastomes in an early-branching legume lineage, and, thus, into the evolutionary trajectories of legume plastomes in general.

  11. Genome-Wide Identification of Chalcone Reductase Gene Family in Soybean: Insight into Root-Specific GmCHRs and Phytophthora sojae Resistance

    Directory of Open Access Journals (Sweden)

    Caroline J. Sepiol

    2017-12-01

    Full Text Available Soybean (Glycine max [L.] Merr is one of the main grain legumes worldwide. Soybean farmers lose billions of dollars’ worth of yield annually due to root and stem rot disease caused by the oomycete Phytophthora sojae. Many strategies have been developed to combat the disease, however, these methods have proven ineffective in the long term. A more cost effective and durable approach is to select a trait naturally found in soybean that can increase resistance. One such trait is the increased production of phytoalexin glyceollins in soybean. Glyceollins are isoflavonoids, synthesized via the legume-specific branch of general phenylpropanoid pathway. The first key enzyme exclusively involved in glyceollin synthesis is chalcone reductase (CHR which coacts with chalcone synthase for the production of isoliquiritigenin, the precursor for glyceollin biosynthesis. Here we report the identification of 14 putative CHR genes in soybean where 11 of them are predicted to be functional. Our results show that GmCHRs display tissue-specific gene expression, and that only root-specific GmCHRs are induced upon P. sojae infection. Among 4 root-specific GmCHRs, GmCHR2A is located near a QTL that is linked to P. sojae resistance suggesting GmCHR2A as a novel locus for partial resistance that can be utilized for resistance breeding.

  12. Age-related hair pigment loss.

    Science.gov (United States)

    Tobin, Desmond J

    2015-01-01

    Humans are social animals that communicate disproportionately via potent genetic signals imbued in the skin and hair, including racial, ethnic, health, gender, and age status. For the vast majority of us, age-related hair pigment loss becomes the inescapable signal of our disappearing youth. The hair follicle (HF) pigmentary unit is a wonderful tissue for studying mechanisms generally regulating aging, often before this becomes evident elsewhere in the body. Given that follicular melanocytes (unlike those in the epidermis) are regulated by the hair growth cycle, this cycle is likely to impact the process of aging in the HF pigmentary unit. The formal identification of melanocyte stem cells in the mouse skin has spurred a flurry of reports on the potential involvement of melanocyte stem cell depletion in hair graying (i.e., canities). Caution is recommended, however, against simple extrapolation of murine data to humans. Regardless, hair graying in both species is likely to involve an age-related imbalance in the tissue's oxidative stress handling that will impact not only melanogenesis but also melanocyte stem cell and melanocyte homeostasis and survival. There is some emerging evidence that the HF pigmentary unit may have regenerative potential, even after it has begun to produce white hair fibers. It may therefore be feasible to develop strategies to modulate some aging-associated changes to maintain melanin production for longer. © 2015 S. Karger AG, Basel.

  13. Incorporation of trace elements into hair structure

    International Nuclear Information System (INIS)

    Limic, N.; Valkovic, V.

    1985-01-01

    Examining blood and urine provides an immense insight into human diseases. It is natural to hope that the hair studies will be added routinely to the examinations. Human head hair is a recording filament which can reflect metabolic changes of many elements over a long period of time. The idea of hair analysis is very inviting, because hair is easily samples, shipped and analyzed. In this paper the authors propose a method for the determination of some diffusion parameters from experimental data on the distribution of trace element concentrations in hair and then a method for the determination of the radial diffusion constants of Se, Zn and Pb. The authors' model of hair structure with respect to diffusion is based on the supposition of cross-sectional homogeneity as well as the longitudinal homogeneity of hair. This supposition implies nonisotropic diffusion in hair which is described by two diffusion constants. Diffusion constants can be determined by experiment on wetting hair in solvents or by measurements of natural contamination of hair in air. The first type of experiments can be arranged in various ways to separate radial diffusion from the longitudinal one and, consequently, to determine two diffusion constants from various sets of experiments. The authors' aim is to consider only radial diffusion in hair and to determine the radial diffusion constants of Se, Zn and Pb

  14. Geometric classification of scalp hair for valid drug testing, 6 more reliable than 8 hair curl groups.

    Directory of Open Access Journals (Sweden)

    K Mkentane

    Full Text Available Curly hair is reported to contain higher lipid content than straight hair, which may influence incorporation of lipid soluble drugs. The use of race to describe hair curl variation (Asian, Caucasian and African is unscientific yet common in medical literature (including reports of drug levels in hair. This study investigated the reliability of a geometric classification of hair (based on 3 measurements: the curve diameter, curl index and number of waves.After ethical approval and informed consent, proximal virgin (6cm hair sampled from the vertex of scalp in 48 healthy volunteers were evaluated. Three raters each scored hairs from 48 volunteers at two occasions each for the 8 and 6-group classifications. One rater applied the 6-group classification to 80 additional volunteers in order to further confirm the reliability of this system. The Kappa statistic was used to assess intra and inter rater agreement.Each rater classified 480 hairs on each occasion. No rater classified any volunteer's 10 hairs into the same group; the most frequently occurring group was used for analysis. The inter-rater agreement was poor for the 8-groups (k = 0.418 but improved for the 6-groups (k = 0.671. The intra-rater agreement also improved (k = 0.444 to 0.648 versus 0.599 to 0.836 for 6-groups; that for the one evaluator for all volunteers was good (k = 0.754.Although small, this is the first study to test the reliability of a geometric classification. The 6-group method is more reliable. However, a digital classification system is likely to reduce operator error. A reliable objective classification of human hair curl is long overdue, particularly with the increasing use of hair as a testing substrate for treatment compliance in Medicine.

  15. Induced mutations for the improvement of grain legumes in South East Asia (1975)

    International Nuclear Information System (INIS)

    1977-01-01

    The report is divided into seven sections containing papers on the following subjects: regional cooperation for improving grain legume production in South-East Asia and the role of FAO in this connection; national reports on the production and consumption of grain legumes (mainly beans, soybeans, peas, peanuts) in various Asian countries (separate reports for Pakistan, India, Sri Lanka, Bangladesh, Burma, Philippines, Indonesia, Papua New Guinea, Taiwan, and Australia). Specific papers are presented on the following: modifications of field pea; chickpea breeding at ICRISAT; mutation breeding in winged bean; mutation breeding in improving groundnut cultivars; and the consumption of grain legumes in Singapore. Finally, some conclusions and recommendations adopted by the participants of the meeting are presented

  16. Transfer of biologically fixed nitrogen to the non-legume component of mixed pastures

    International Nuclear Information System (INIS)

    Haystead, A.

    1983-01-01

    Pasture ecosystems are extremely diverse, as are the management procedures imposed upon them by the pastoralist. In low input pasture enterprises in marginal areas, legume nitrogen fixation is frequently (but not invariably) crucial to continued productivity. Legumes usually do not dominate a pasture and their role in transferring fixed nitrogen to a non-legume, frequently graminaceous, species is important. Methods for measuring this transfer are critically assessed in terms of their usefulness in realistic pasture environments. Existing techniques all have serious disadvantages in this respect. Isotopic studies of individual processes within the transfer system are described and some new lines of investigation are proposed. The value of isotopic studies in improving pasture management is discussed. (author)

  17. Zinc bioavailability from legumes in non-human primates (Macaca fascicularis)

    International Nuclear Information System (INIS)

    Sockalingam, S.

    1984-01-01

    Zinc bioavailability from legumes in non-human primates (M. Fascicularis) was studied by: (1) determining zinc requirements of adolescent monkeys, (2) validating the use of extrinsic zinc label in peas, (3) validating the blood appearance and disappearance technique, and (4) measuring zinc absorption and endogenous excretion from control and legume diets. Ten monkeys were assigned to the control (CG) and legume groups (LG) based on their initial body weights and plasma zinc concentrations. Zinc salt or legumes served as the source of zinc for CG and LG, respectively. The animals were adapted for three weeks to 2.23, 5.70, 11.67, 16.70 and 30.00 ppm dietary zinc for the requirement and bioavailability experiments and 5.70 ppm dietary zinc for the extrinsic labeling study and the blood appearance and disappearance study. Zinc requirement was determined using the following criteria: body weight, clinical signs and plasma, leukocyte and erythrocyte zinc concentrations. The use of the extrinsic label was validated by comparing percent absorption of 65 Zn (salt) and intrinsically labeled 65 Zn from peas. The blood appearance and disappearance of orally administered /sup 69m/Zn (CG) and 65 Zn(LG) and intravenously administered 65 Zn was determined serially in blood over an eight hour period. Zinc absorption and regulation in the CG and LG was determined by the fecal balance method and endogenous excretion of intravenously administered 65 Zn. The zinc requirement for adolescent M. Fascicularis was between 11.67 and 16.70 ppm dietary zinc per day

  18. Toxic effects of low concentrations of Cu on nodulation of cowpea (Vigna unguiculata)

    International Nuclear Information System (INIS)

    Kopittke, Peter M.; Dart, Peter J.; Menzies, Neal W.

    2007-01-01

    Although Cu is phytotoxic at Cu 2+ activities as low as 1-2 μM, the effect of Cu 2+ on the nodulation of legumes has received little attention. The effect of Cu 2+ on nodulation of cowpea (Vigna unguiculata (L.) Walp. cv. Caloona) was examined in a dilute solution culture system utilising a cation exchange resin to buffer solution Cu 2+ . The nodulation process was more sensitive to increasing Cu 2+ activities than both shoot and root growth; whilst a Cu 2+ activity of 1.0 μM corresponded to a 10% reduction in the relative yield of the shoots and roots, a Cu 2+ activity of 0.2 μM corresponded to a 10% reduction in nodulation. This reduction in nodulation with increasing Cu 2+ activity was associated with an inhibition of root hair formation in treatments containing ≥0.77 μM Cu 2+ , rather than to a reduction in the size of the Rhizobium population. - The nodulation process was more sensitive to increasing Cu 2+ activities than either shoot or root growth

  19. Trace-element content of human scalp hair

    International Nuclear Information System (INIS)

    Gordus, A.A.; Wysocki, C.M.; Maher, C.C. III; Wieland, R.C.

    1974-01-01

    The importance of some of the factors that could affect the measured trace-element content of human scalp hair have been evaluated. Included are frequency of hair washing and swimming, shampoos used, gross differences in diet, and the variation in content along the strands of hair. The data for length-content variation suggest that, for some elements, eccrine sweat may contribute significantly to the measured trace-element content of hair and that such variation must be taken into account in assessing data for historical hair samples, many of which represent clippings of distal segments of hair

  20. Possible biological dosimeters in skin and hair

    International Nuclear Information System (INIS)

    Potten, C.S.

    1986-01-01

    The hair follicle, when producing hair, contains rapidly proliferating cells, some of which are very sensitive to radiation. These can be detected by studying the incidence of dead or dying (apoptotic) cells which reach peak yields 12 h after irradiation. The yield of apoptotic cells in the follicle has been studied after various doses. The response is dose-dependent and sensitive down to levels of a few cGy. Any reduction in cell production resulting from mitotic delay or cell death might be expressed as a reduction in the width of the hair. This has been studied and the abnormality referred to as dysplasia of the hair. The fraction of dysplastic hairs is strongly dose dependent over the range 2-10 Gy. More detailed studies using higher magnification and numerous measurements of hair width should make this end-point an even more sensitive assay for radiation exposure. Preliminary measurements on the average width at a critical point along the length of the hair illustrate that doses between 1.0 and 1.5 Gy can be detected. The width of the hair is dose dependent. The length of the affected region of the hair is also probably dose dependent. Estimates for the full reduction in volume of hair should increase the sensitivity further. (orig./MG)

  1. Influence of functionalized silicones on hair fiber-fiber interactions and on the relationship with the macroscopic behavior of hair assembly.

    Science.gov (United States)

    Dussaud, Anne; Fieschi-Corso, Lara

    2009-01-01

    It is well established that silicones alter hair surface properties and that silicones have a significant impact on the macroscopic behavior of hair assembly, such as visual appearance, combing performance and manageability of the hair. In order to fine-tune the chemistry of functionlized silicones for specific consumer benefits and hair types, we investigated the influence of silicones on hair fiber-fiber interactions and their correlation to hair volume. The incline plane fiber loop method, implemented with a high-precision motorized rotary stage, was used to quantify the fiber-fiber interactions. Low load static friction was studied as a function of polymer molecular weight, dose and chemical architecture. This information was related to the macroscopic behavior of hair assembly, using virgin curly hair in high humidity.

  2. Frontier in hair loss and trichoscopy: A review

    Directory of Open Access Journals (Sweden)

    Ebtisam Elghblawi

    2016-07-01

    Full Text Available Skin surfaces have always been examined using dermoscopy, a familiar tool which is useful to magnify and examine skin especially in cases of pigmented skin lesions. However, to examine the hair and scalp, a practical tool called trichoscopy has surfaced recently and has proven to be handy and functional in diagnosing most hair-related diseases. It is also referred to as dermoscopy of the hair and the scalp. It can aid in assessing active diseases in the scalp and hair, such as yellow dots, dystrophic hairs, cadaverized black dots, white dots, and exclamation mark hairs – all of which denote specific criteria for hair diseases. Trichoscopy is a very newly developed non-invasive technique for hair image analysis. It permits non-invasive visualization of hair shafts at higher intensification (about ×70 and ×100 and enables measurement of hair shaft width without the need for removing hair for diagnostic reasons. Moreover, it helps in vivo visualization of the epidermal portion of hair follicles and perifollicular epidermis (orifices. Consequently, it is valuable as it permits the inspection of structures that are otherwise not seen by the naked eye. Trichoscopy is the new frontier for the diagnosis of hair and scalp disease. Nowadays, a trichoscope is considered a must for dermatologists and it is a hot topic in the treatment of hair diseases. There is pooled evidence that the utilization of trichoscopy in the clinical setting for evaluating hair disorders can improve its diagnostic capability beyond simple clinical scrutiny. Trichoscopy can identify both hair shaft and hair opening abnormalities without the need for hair sampling, as well as distinguish between different scalp and hair diseases. Furthermore, it can give easy and quick evaluation of the hair with a follow-up to determine progress and prognosis of the disease with photos. It can also aid in some genetic hair shaft dystrophies such as trichorrhexis nodosa, trichorrhexis

  3. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review.

    Science.gov (United States)

    Zhu, Fengmei; Du, Bin; Xu, Baojun

    2018-05-24

    Inflammation is the first biological response of the immune system to infection, injury or irritation. Evidence suggests that the anti-inflammatory effect is mediated through the regulation of various inflammatory cytokines, such as nitric oxide, interleukins, tumor necrosis factor alpha-α, interferon gamma-γ as well as noncytokine mediator, prostaglandin E 2 . Fruits, vegetables, and food legumes contain high levels of phytochemicals that show anti-inflammatory effect, but their mechanisms of actions have not been completely identified. The aim of this paper was to summarize the recent investigations and findings regarding in vitro and animal model studies on the anti-inflammatory effects of fruits, vegetables, and food legumes. Specific cytokines released for specific type of physiological event might shed some light on the specific use of each source of phytochemicals that can benefit to counter the inflammatory response. As natural modulators of proinflammatory gene expressions, phytochemical from fruits, vegetables, and food legumes could be incorporated into novel bioactive anti-inflammatory formulations of various nutraceuticals and pharmaceuticals. Finally, these phytochemicals are discussed as the natural promotion strategy for the improvement of human health status. The phenolics and triterpenoids in fruits and vegetables showed higher anti-inflammatory activity than other compounds. In food legumes, lectins and peptides had anti-inflammatory activity in most cases. However, there are lack of human study data on the anti-inflammatory activity of phytochemicals from fruits, vegetables, and food legumes.

  4. Hierarchical capillary adhesion of microcantilevers or hairs

    International Nuclear Information System (INIS)

    Liu Jianlin; Feng Xiqiao; Xia Re; Zhao Hongping

    2007-01-01

    As a result of capillary forces, animal hairs, carbon nanotubes or nanowires of a periodically or randomly distributed array often assemble into hierarchical structures. In this paper, the energy method is adopted to analyse the capillary adhesion of microsized hairs, which are modelled as clamped microcantilevers wetted by liquids. The critical conditions for capillary adhesion of two hairs, three hairs or two bundles of hairs are derived in terms of Young's contact angle, elastic modulus and geometric sizes of the beams. Then, the hierarchical capillary adhesion of hairs is addressed. It is found that for multiple hairs or microcantilevers, the system tends to take a hierarchical structure as a result of the minimization of the total potential energy of the system. The level number of structural hierarchy increases with the increase in the number of hairs if they are sufficiently long. Additionally, we performed experiments to verify our theoretical solutions for the adhesion of microbeams

  5. Female pattern hair loss: Current treatment concepts

    Directory of Open Access Journals (Sweden)

    Quan Q Dinh

    2007-07-01

    Full Text Available Quan Q Dinh, Rodney SinclairDepartment of Dermatology, St Vincent’s Hospital, Fitzroy, Victoria, AustraliaAbstract: Fewer than 45% of women go through life with a full head of hair. Female pattern hair loss is the commonest cause of hair loss in women and prevalence increases with advancing age. Affected women may experience psychological distress and impaired social functioning. In most cases the diagnosis can be made clinically and the condition treated medically. While many women using oral antiandrogens and topical minoxidil will regrow some hair, early diagnosis and initiation of treatment is desirable as these treatments are more effective at arresting progression of hair loss than stimulating regrowth. Adjunctive nonpharmacological treatment modalities such as counseling, cosmetic camouflage and hair transplantation are important measures for some patients. The histology of female pattern hair loss is identical to that of male androgenetic alopecia. While the clinical pattern of the hair loss differs between men, the response to oral antiandrogens suggests that female pattern hair loss is an androgen dependant condition, at least in the majority of cases. Female pattern hair loss is a chronic progressive condition. All treatments need to be continued to maintain the effect. An initial therapeutic response often takes 12 or even 24 months. Given this delay, monitoring for treatment effect through clinical photography or standardized clinical severity scales is helpful.Keywords: female pattern hair loss, androgenetic alopecia

  6. Growing hairs in shorn cattle

    Directory of Open Access Journals (Sweden)

    Cecília José Veríssimo

    2013-12-01

    Full Text Available The shearing operation can provide double benefits to the cattle: they can become more heat tolerant and the tick infestation decreases. The cattle tick Rhipicephalus (Boophilus microplus causes great losses to dairy cattle, especially to the Holstein cattle because they are very susceptible to this tick. Its control is becoming each day more difficult, owing to the increasing resistance to acaricides they are acquiring. The objective of this work was to study the growing of haircoat following shearing. We made our experiment with 17 animals, 7 females and 10 males. They were shaved on the anterior third (head, neck, dewlap, scapula and arm of one side, at random. The work was performed in two steps: they were shorn for the first time on August 2nd 2012, with a size 10 blade in a clipper Oster model GoldenA5, which left the fur coat 2 mm long. Then we evaluated the hair length growing by collecting fortnightly three sample of hairs in the middle of the scapula, with  electric pliers, modified for this purpose, in both sides of the animals, sheared and non-sheared, until 30 days after this shearing. The three hair samples were put inside a little plastic bag per animal. Meanwhile, as we thought that the animals shearing had to be done closer to the skin, we decided to shear them again (in the same side shorn before, on October 2nd 2012. We changed our procedure using the same machine, but now with a blade size 30, which left the fur coat 1mm thick. After that, we collected again, fortnightly, samples of hairs on both sides during 2 months. The 10 longest hairs in the plastig bag were measured using a graph paper and the average per animal was calculated in each data and blade. A random design was applied for statistical analysis, the hair length of both sides, sheared and non sheared were compared by a two related samples tests – Wilcoxon, in a non parametric test, using the SPSSP 12.0 program, in each data within each blade. Using blade size

  7. The position of prenylation of isoflavonoids and stilbenoids from legumes (Fabaceae) modulates the antimicrobial activity against Gram positive pathogens

    NARCIS (Netherlands)

    Araya-Cloutier, Carla; Besten, den Heidy M.W.; Aisyah, Siti; Gruppen, Harry; Vincken, Jean Paul

    2017-01-01

    The legume plant family (Fabaceae) is a potential source of antimicrobial phytochemicals. Molecular diversity in phytochemicals of legume extracts was enhanced by germination and fungal elicitation of seven legume species, as established by RP-UHPLC–UV–MS. The relationship between phytochemical

  8. Hair-Thread Tourniquet Syndrome

    Directory of Open Access Journals (Sweden)

    Emre Gokcen

    2016-01-01

    Two month-old male infant was brought to the emergency service with the complaint of fever, uneasiness, and swelling on 4th-5th toes of right foot.  Apparent swelling, rubescence and increase in heat were seen and a constrictive band was observed to surround proximal phalanges of both toes in the physical examination of the patient (Figure 1.  A hair was found on the constrictive band surrounding both toes. The hair was removed by means of forceps. Oral antibiotic was administered to the patient. The patient was treated successfully by not letting a necrosis develop on the toes. It should be remembered that hair-thread tourniquet syndrome may be observed in the infant patients applying to the hospital with the complaints of unexplained fever and uneasiness. Figure 1: Appearance of the toes right after the hair was removed. Arrows show the constrictive band. 

  9. Conditions Affecting Shelf-Life of Inoculated Legume Seed

    Directory of Open Access Journals (Sweden)

    Greg Gemell

    2012-02-01

    Full Text Available Microbial inoculants are becoming more available as sustainable alternatives to fertilizers and other agrichemicals in broad-acre cropping. However, with the exception of legume inoculants little is understood about effective delivery and survival of the inoculum. Legume inoculants are applied to both seed and soil but seed inoculation is the most economical technique. Large quantities of pasture seed in Australia are inoculated by commercial seed coating companies, but the long-term survival of seed-applied inoculum is variable and monitoring of viability requires specialist microbiology skills and facilities. The aim of our research was to define optimum storage conditions for survival of rhizobia on legume seed and evaluate water activity as a means of monitoring shelf-life. The relationship between survival and water activity varied according to seed species, inoculum preparation, coating ingredients, initial water activity and time suggesting that storage conditions would need to be defined for each different combination. Although drying seeds after coating significantly reduced viable numbers of rhizobia, survival of rhizobia on dried commercially coated lucerne seed after 11 weeks was less variable than seeds that had not been dried. The highest numbers were maintained when seeds remained dry with water activities of between 0.47 and 0.38. The quality of inoculated seed could be improved by reducing the death rate of inoculum during preparation and providing optimum storage conditions for long-term survival.

  10. Changes in nutritive value and herbage yield during extended growth intervals in grass-legume mixtures

    DEFF Research Database (Denmark)

    Elgersma, Anjo; Søegaard, Karen

    2018-01-01

    . Perennial ryegrass was sown with each of four legumes: red clover, white clover, lucerne and birdsfoot trefoil, and white clover was sown with hybrid ryegrass, meadow fescue and timothy. Effects of species composition on herbage yield, contents of N, neutral detergent fibre (NDF), acid detergent fibre (ADF...... in quality parameters differed among species and functional groups, i.e., grasses and legumes. Results are discussed in the context of quantifying the impact of delaying the harvest date of grass–legume mixtures and relationships between productivity and components of feed quality....

  11. Matting of Hair Due to Halo-egg Shampoo

    Directory of Open Access Journals (Sweden)

    Z M Mani

    1983-01-01

    Full Text Available A case of hair matting in an 18 year old female is reported. The hair got densely entangled immediately after washing the hair with ′Halo Egg′ shampoo. The hair was disentangled completely after prolonged dipping of the hair in arachis oil frr 5 days.

  12. Immunocosmeceuticals: An emerging trend in repairing human hair damage

    Directory of Open Access Journals (Sweden)

    Karthika Selvan

    2013-01-01

    Full Text Available Hair is one of the most important portions for beauty care and in recent years grooming and cosmetic treatment of hair has drastically risen. Substantially, it may deteriorate and weaken the hair by modification of keratin protein. This makes the hair dry, brittle and split vend occurs due to loss of hair strength and the damage further increases with cosmetic treatments. The various poor ingredients are being used for repairing which have extremely poor compatibility with hair. Now the hair care products can be introduced with an active ingredient comprising a yolk derived anti-hair antibody immunoglobin obtained from egg of chickens immunized with damaged hair as antigen. This immuno-cosmeceuticals can repair the hair damage and imparts flexibility and smoothness to the hair. These effects are not lost by the ordinary shampooing. This article focuses on the characteristic of human hair, its damaging processes and the effects of immuno-cosmeceuticals for repairing the hair damage.

  13. A Legume TOR Protein Kinase Regulates Rhizobium Symbiosis and Is Essential for Infection and Nodule Development1[OPEN

    Science.gov (United States)

    Blanco, Lourdes; Quinto, Carmen

    2016-01-01

    The target of rapamycin (TOR) protein kinase regulates metabolism, growth, and life span in yeast, animals, and plants in coordination with nutrient status and environmental conditions. The nutrient-dependent nature of TOR functionality makes this kinase a putative regulator of symbiotic associations involving nutrient acquisition. However, TOR’s role in these processes remains to be understood. Here, we uncovered the role of TOR during the bean (Phaseolus vulgaris)-Rhizobium tropici (Rhizobium) symbiotic interaction. TOR was expressed in all tested bean tissues, with higher transcript levels in the root meristems and senesced nodules. We showed TOR promoter expression along the progressing infection thread and in the infected cells of mature nodules. Posttranscriptional gene silencing of TOR using RNA interference (RNAi) showed that this gene is involved in lateral root elongation and root cell organization and also alters the density, size, and number of root hairs. The suppression of TOR transcripts also affected infection thread progression and associated cortical cell divisions, resulting in a drastic reduction of nodule numbers. TOR-RNAi resulted in reduced reactive oxygen species accumulation and altered CyclinD1 and CyclinD3 expression, which are crucial factors for infection thread progression and nodule organogenesis. Enhanced expression of TOR-regulated ATG genes in TOR-RNAi roots suggested that TOR plays a role in the recognition of Rhizobium as a symbiont. Together, these data suggest that TOR plays a vital role in the establishment of root nodule symbiosis in the common bean. PMID:27698253

  14. Undead Blond Hair in the Victorian Imagination: The Hungarian Roots of Bram Stoker’s "The Secret of the Growing Gold"

    Directory of Open Access Journals (Sweden)

    Abigail Heiniger

    2011-01-01

    Full Text Available The Hungarian folktale “Woman with Hair of Gold” is a part of what Nina Auerbach calls feminine mythos in Woman and the Demon. It is a story about the murder and revenge of a “very strange but beautiful woman with golden hair as fine as spun gold.” This paper explores how Bram Stoker’s short story “The Secret of the Growing Gold” reworks this folktale, stripping away its uniquely feminine voice, to create a story expressing British Victorian racial anxieties. The message of Teutonic superiority, which Stoker links with Hungarian folklore, is this author’s most dangerous and nefarious fiction.

  15. Hair follicle proteoglycans

    DEFF Research Database (Denmark)

    Couchman, J R

    1993-01-01

    that are present in the epithelial and stromal compartments of hair follicles. However, the transmembrane proteoglycan syndecan may be important in follicle morphogenesis, both with respect to the epithelium and dermal papilla cells. Syndecan may possess both heparan and chondroitin sulfate chains, interacts...... basement membranes, including those surrounding the epithelial compartment of hair follicles. Additionally, and quite unlike the dermis, the dermal papilla is enriched in basement-membrane components, especially a chondroitin 6-sulfate-containing proteoglycan, BM-CSPG. The function of this proteoglycan...... is not known, but developmental studies indicate that it may have a role in stabilizing basement membranes. In the hair cycle, BM-CSPG decreases through catagen and is virtually absent from the telogen papilla. One or more heparan sulfate proteoglycans, including perlecan, are also present in papilla...

  16. An overview of unwanted female hair.

    Science.gov (United States)

    Blume-Peytavi, U

    2011-12-01

    Unwanted facial hair (UFH) is an important but often overlooked issue, with over 40% of women experiencing some degree of UFH. In the female population a wide spectrum of unwanted hair concerns is represented - from biologically normal but undesirable to excessive unwanted hair with an underlying pathology. While women may seek to manage unwanted hair across their bodies, UFH is a particular concern, due to its negative impact on perceived femininity. There may not always be a direct correlation between degree of severity diagnosed objectively by the physician and level of concern and impact upon the patient. This review discusses the spectrum of facial hair experience and outlines the clinical approach to unwanted hair management including UFH. It highlights the importance of a treatment regimen which should respond to the causation factors and needs of the individual. This will lead to a holistic treatment approach including evaluation of the implementation of emotional coping strategies and on-going support, lifestyle modifications, pharmacological interventions (to address underlying pathologies) and the use of cosmetic hair removal methods as either a stand-alone or adjunct treatment as appropriate to the individual. © 2011 The Author. BJD © 2011 British Association of Dermatologists.

  17. Comparative genomics and prediction of conditionally dispensable sequences in legume-infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors.

    Science.gov (United States)

    Williams, Angela H; Sharma, Mamta; Thatcher, Louise F; Azam, Sarwar; Hane, James K; Sperschneider, Jana; Kidd, Brendan N; Anderson, Jonathan P; Ghosh, Raju; Garg, Gagan; Lichtenzveig, Judith; Kistler, H Corby; Shea, Terrance; Young, Sarah; Buck, Sally-Anne G; Kamphuis, Lars G; Saxena, Rachit; Pande, Suresh; Ma, Li-Jun; Varshney, Rajeev K; Singh, Karam B

    2016-03-05

    Soil-borne fungi of the Fusarium oxysporum species complex cause devastating wilt disease on many crops including legumes that supply human dietary protein needs across many parts of the globe. We present and compare draft genome assemblies for three legume-infecting formae speciales (ff. spp.): F. oxysporum f. sp. ciceris (Foc-38-1) and f. sp. pisi (Fop-37622), significant pathogens of chickpea and pea respectively, the world's second and third most important grain legumes, and lastly f. sp. medicaginis (Fom-5190a) for which we developed a model legume pathosystem utilising Medicago truncatula. Focusing on the identification of pathogenicity gene content, we leveraged the reference genomes of Fusarium pathogens F. oxysporum f. sp. lycopersici (tomato-infecting) and F. solani (pea-infecting) and their well-characterised core and dispensable chromosomes to predict genomic organisation in the newly sequenced legume-infecting isolates. Dispensable chromosomes are not essential for growth and in Fusarium species are known to be enriched in host-specificity and pathogenicity-associated genes. Comparative genomics of the publicly available Fusarium species revealed differential patterns of sequence conservation across F. oxysporum formae speciales, with legume-pathogenic formae speciales not exhibiting greater sequence conservation between them relative to non-legume-infecting formae speciales, possibly indicating the lack of a common ancestral source for legume pathogenicity. Combining predicted dispensable gene content with in planta expression in the model legume-infecting isolate, we identified small conserved regions and candidate effectors, four of which shared greatest similarity to proteins from another legume-infecting ff. spp. We demonstrate that distinction of core and potential dispensable genomic regions of novel F. oxysporum genomes is an effective tool to facilitate effector discovery and the identification of gene content possibly linked to host

  18. Mitochondrial DNA sequencing of cat hair: an informative forensic tool.

    Science.gov (United States)

    Tarditi, Christy R; Grahn, Robert A; Evans, Jeffrey J; Kurushima, Jennifer D; Lyons, Leslie A

    2011-01-01

    Approximately 81.7 million cats are in 37.5 million U.S. households. Shed fur can be criminal evidence because of transfer to victims, suspects, and/or their belongings. To improve cat hairs as forensic evidence, the mtDNA control region from single hairs, with and without root tags, was sequenced. A dataset of a 402-bp control region segment from 174 random-bred cats representing four U.S. geographic areas was generated to determine the informativeness of the mtDNA region. Thirty-two mtDNA mitotypes were observed ranging in frequencies from 0.6-27%. Four common types occurred in all populations. Low heteroplasmy, 1.7%, was determined. Unique mitotypes were found in 18 individuals, 10.3% of the population studied. The calculated discrimination power implied that 8.3 of 10 randomly selected individuals can be excluded by this region. The genetic characteristics of the region and the generated dataset support the use of this cat mtDNA region in forensic applications. 2010 American Academy of Forensic Sciences. Published 2010. This article is a U.S. Government work and is in the public domain in the U.S.A.

  19. Enhancing Legume Ecosystem Services through an Understanding of Plant–Pollinator Interplay

    Science.gov (United States)

    Suso, María J.; Bebeli, Penelope J.; Christmann, Stefanie; Mateus, Célia; Negri, Valeria; Pinheiro de Carvalho, Miguel A. A.; Torricelli, Renzo; Veloso, Maria M.

    2016-01-01

    Legumes are bee-pollinated, but to a different extent. The importance of the plant–pollinator interplay (PPI), in flowering crops such as legumes lies in a combination of the importance of pollination for the production service and breeding strategies, plus the increasing urgency in mitigating the decline of pollinators through the development and implementation of conservation measures. To realize the full potential of the PPI, a multidisciplinary approach is required. This article assembles an international team of genebank managers, geneticists, plant breeders, experts on environmental governance and agro-ecology, and comprises several sections. The contributions in these sections outline both the state of the art of knowledge in the field and the novel aspects under development, and encompass a range of reviews, opinions and perspectives. The first three sections explore the role of PPI in legume breeding strategies. PPI based approaches to crop improvement can make it possible to adapt and re-design breeding strategies to meet both goals of: (1) optimal productivity, based on an efficient use of pollinators, and (2) biodiversity conservation. The next section deals with entomological aspects and focuses on the protection of the “pest control service” and pollinators in legume crops. The final section addresses general approaches to encourage the synergy between food production and pollination services at farmer field level. Two basic approaches are proposed: (a) Farming with Alternative Pollinators and (b) Crop Design System. PMID:27047514

  20. Enhancing legume ecosystem services through an understanding of plant-pollinator interplay

    Directory of Open Access Journals (Sweden)

    Maria Jose eSuso

    2016-03-01

    Full Text Available Legumes are bee-pollinated, but to a different extent. The importance of the plant-pollinator interplay (PPI, in flowering crops such as legumes lies in a combination of the importance of pollination for the production service and breeding strategies, plus the increasing urgency in mitigating the decline of pollinators through the development and implementation of conservation measures. To realize the full potential of the PPI, a multidisciplinary approach is required. This article assembles an international team of genebank managers, geneticists, plant breeders, experts on environmental governance and agro-ecology, and comprises several sections. The contributions in these sections outline both the state of the art of knowledge in the field and the novel aspects under development, and encompass a range of reviews, opinions and perspectives. The first three sections explore the role of PPI in legume breeding strategies. PPI based approaches to crop improvement can make it possible to adapt and re-design breeding strategies to meet both goals of: 1 optimal productivity, based on an efficient use of pollinators, and 2 biodiversity conservation. The next section deals with entomological aspects and focuses on the protection of the pest control service and pollinators in legume crops. The final section addresses general approaches to encourage the synergy between food production and pollination services at farmer field level. Two basic approaches are proposed: a Farming with Alternative Pollinators (FAP and b Crop Design System (CDS.

  1. Inoculation and inter-cropping of legumes in established grass for increasing biomass of fodder

    International Nuclear Information System (INIS)

    Ullah, M.A.; Hussain, N.

    2014-01-01

    Livestock sector has become very important component of agriculture sector in the world due to variety of dairy and meat products and high income to the farmers. In Pakistan, this vast resource faces many crucial challenges like low quality and high priced feed and fodder and limited chances of increasing area under fodders due to competition for food crops. Intercropping (33%, 50% and 67%) of Panicum maximum grass and legumes (Vicia sativa and cowpeas) coupled with inoculation was studied under rainfed conditions at National Agricultural Research Centre (NARC) Islamabad, Pakistan. Intercropping significantly increased tillering of grass. Seed inoculation of legumes also gave maximum tillers. The grass and legumes biomass without any treatment were recorded as 7.09 and -18.17 t ha, respectively, during two years of study. Mixed fodder -1 production increased to 11.62, 13.6 and 14.13 t ha with 33%, 50% and 67% intercropping, respectively. Respective values of biomass were -1 observed as 13.18, 13.70 and 17.87 t ha when combined with inoculation. Intercropping of grass and legumes 67% with inoculation was assessed as the best treatment. The increases were computed as 304%, 230%, 132%, and 60% over grass alone in the first, second, third and fourth crops while respective increases were 101%, 151%, 165% and 74% over monoculture legumes. (author)

  2. Solubilisation of inorganic phosphates by inoculant strains from tropical legumes

    Directory of Open Access Journals (Sweden)

    Leandro Marciano Marra

    2011-10-01

    Full Text Available Microbial solubilisation of low soluble inorganic phosphates is an important process contributing for the phosphorus available to plants in tropical soils. This study evaluates the ability of inoculant strains for tropical legumes to solubilise inorganic phosphates of low solubility that are found in tropical soils. Seven strains of Leguminosae nodulating bacteria (LNB were compared with one another and with a non-nodulating positive control, Burkholderia cepacia (LMG 1222T. Four of the strains are used as inoculants for cowpeas (Vigna unguiculata (Bradyrhizobium sp. UFLA 03-84; Bradyrhizobium elkani INPA 03-11B and Bradyrhizobium japonicum BR3267 or for common beans (Phaseolus vulgaris (Rhizobium tropici CIAT 899T. Rhizobium etli UFLA 02-100 and Rhizobium leguminosarum 316C10a are also efficient nodulators of beans and Cupriavidus taiwanensis LMG 19424T nodulates on Mimosa pudica. Two experiments, with solid and liquid media, were performed to determine whether the strains were able to solubilise CaHPO4, Al(H2PO43 or FePO4.2H2O. On solid GELP medium none of the strains dissolved FePO4.2H2O, but LMG 1222, UFLA 03-84 and CIAT 899 solubilised CaHPO4 particularly well. These strains, along with LMG 19424 and BR 3267, were also able to increase the solubility of Al(H2PO43. In liquid GELP medium, LMG 1222 solubilised all phosphate sources, but no legume nodulating strain could increase the solubility of Al(H2PO43. The strains CIAT 899 and UFLA 02-100 were the only legume nodulating bacteria able to solubilise the other phosphate sources in liquid media, dissolving both CaHPO4 and FePO4.2H2O. There was a negative correlation between the pH of the culture medium and the concentration of soluble phosphate when the phosphorus source was CaHPO4 or FePO4.2H2O. The contribution of these strains to increasing the phosphorus nutrition of legumes and non-legume plant species should be investigated further by in vivo experiments.

  3. Clinical Evidence of Increase in Hair Growth and Decrease in Hair Loss without Adverse Reactions Promoted by the Commercial Lotion ECOHAIR®.

    Science.gov (United States)

    Alonso, María Rosario; Anesini, Claudia

    2017-01-01

    Hair exerts protection, sensory functions, thermoregulation, and sexual attractiveness. Hair loss (alopecia) is caused by several diseases, drug intake, hormone imbalance, stress, and infections (Malassesia furfur). Drugs usually used in alopecia produce irreversible systemic and local side effects. An association of extracts of Coffea arabica and Larrea divaricata (ECOHAIR®) is successfully being commercialized in Argentina for hair growth. The aim of this study was to provide scientific support for the efficacy and innocuousness of ECOHAIR® in patients with noncicatricial alopecia during a 3-month treatment. The efficacy was determined through the assessment of an increase in hair volume, improvement in hair looks, growth of new hair, and a decrease in hair loss by the test of hair count and hair traction. The capacity to decrease the amount of dandruff was also evaluated as well as the adverse local effects caused by the treatment. ECOHAIR® spray improved the overall hair volume and appearance; it increased its thickness, induced hair growth, and decreased hair loss. Besides, no adverse local reactions were observed upon treatment with the product. This study provides scientific support for the clinical use of ECOHAIR® as a treatment to be used in noncicatricial alopecia. © 2017 S. Karger AG, Basel.

  4. The ethylene-inhibitor aminoethoxyvinylglycine restores normal nodulation by Rhizobium leguminosarum biovar. viciae on Vicia sativa subsp. nigra by suppressing the 'Thick and short roots' phenotype.

    Science.gov (United States)

    Zaat, S A; Van Brussel, A A; Tak, T; Lugtenberg, B J; Kijne, J W

    1989-02-01

    Nodulation of Vicia sativa subsp. nigra L. by Rhizobium bacteria is coupled to the development of thick and short roots (Tsr). This root phenotype as well as root-hair induction (Hai) and root-hair deformation (Had) are caused by a factor(s) produced by the bacteria in response to plant flavonoids. When very low inoculum concentrations (0.5-5 bacteria·ml(-1)) were used, V. sativa plants did not develop the Tsr phenotype and became nodulated earlier than plants with Tsr roots. Furthermore, the nodules of these plants were located on the primary root in contrast to nodules on Tsr roots, which were all located at sites of lateral-root emergence. The average numbers of nodules per plant were not significantly different for these two types of nodulation. Root-growth inhibition and Hai, but not Had, could be mimicked by ethephon, and inhibited by aminoethoxyvinylglycine (AVG). Addition of AVG to co-cultures of Vicia sativa and the standard inoculum concentration of 5·10(5) bacteria·ml(-1) suppressed the development of the Tsr phenotype and restored nodulation to the pattern that was observed with very low concentrations of bacteria (0.5-5 bacteria·ml(-1)). The delay in nodulation on Tsr roots appeared to be caused by the fact that nodule meristems did not develop on the primary root, but only on the emerging laterals. The relationship between Tsr, Hai, Had, and nodulation is discussed.

  5. Biologic Rhythms Derived from Siberian Mammoths Hairs

    Energy Technology Data Exchange (ETDEWEB)

    M Spilde; A Lanzirotti; C Qualls; G Phillips; A Ali; L Agenbroad; O Appenzeller

    2011-12-31

    Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was {approx}31 cms/year and {approx}16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios), which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna.

  6. Biologic rhythms derived from Siberian mammoths' hairs.

    Directory of Open Access Journals (Sweden)

    Mike Spilde

    Full Text Available Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was ∼31 cms/year and ∼16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios, which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna.

  7. [Monilethrix--rare syndrome of structural hair abnormalities].

    Science.gov (United States)

    Brzezińska-Wcisło, L; Bogdanowski, T; Szeremeta-Bazylewicz, G; Pierzchała, E

    1999-11-01

    Monilethrix is a rare structural disorder of hair. Characteristic abnormalities in the form of alternating thinning and fusiform thickening are observed in most of hair shafts that we call beaded hair. Macroscopic estimation shows lustreless, dry, rough, fragile hair. Trichological examination usually reveals a considerable percentage of anagenic hair. According to our own experiences and literature data systemic therapy (vitamins) and topical treatment (desquamative ointments) are not effective sufficiently. Spontaneous regression of symptoms often appears with time. Five cases of familial occurrence of monilethrix have been presented.

  8. Comparative metabolomics of drought acclimation in model and forage legumes.

    Science.gov (United States)

    Sanchez, Diego H; Schwabe, Franziska; Erban, Alexander; Udvardi, Michael K; Kopka, Joachim

    2012-01-01

    Water limitation has become a major concern for agriculture. Such constraints reinforce the urgent need to understand mechanisms by which plants cope with water deprivation. We used a non-targeted metabolomic approach to explore plastic systems responses to non-lethal drought in model and forage legume species of the Lotus genus. In the model legume Lotus. japonicus, increased water stress caused gradual increases of most of the soluble small molecules profiled, reflecting a global and progressive reprogramming of metabolic pathways. The comparative metabolomic approach between Lotus species revealed conserved and unique metabolic responses to drought stress. Importantly, only few drought-responsive metabolites were conserved among all species. Thus we highlight a potential impediment to translational approaches that aim to engineer traits linked to the accumulation of compatible solutes. Finally, a broad comparison of the metabolic changes elicited by drought and salt acclimation revealed partial conservation of these metabolic stress responses within each of the Lotus species, but only few salt- and drought-responsive metabolites were shared between all. The implications of these results are discussed with regard to the current insights into legume water stress physiology. © 2011 Blackwell Publishing Ltd.

  9. Hair curvature: a natural dialectic and review.

    Science.gov (United States)

    Nissimov, Joseph N; Das Chaudhuri, Asit Baran

    2014-08-01

    Although hair forms (straight, curly, wavy, etc.) are present in apparently infinite variations, each fibre can be reduced to a finite sequence of tandem segments of just three types: straight, bent/curly, or twisted. Hair forms can thus be regarded as resulting from genetic pathways that induce, reverse or modulate these basic curvature modes. However, physical interconversions between twists and curls demonstrate that strict one-to-one correspondences between them and their genetic causes do not exist. Current hair-curvature theories do not distinguish between bending and twisting mechanisms. We here introduce a multiple papillary centres (MPC) model which is particularly suitable to explain twisting. The model combines previously known features of hair cross-sectional morphology with partially/completely separated dermal papillae within single follicles, and requires such papillae to induce differential growth rates of hair cortical material in their immediate neighbourhoods. The MPC model can further help to explain other, poorly understood, aspects of hair growth and morphology. Separate bending and twisting mechanisms would be preferentially affected at the major or minor ellipsoidal sides of fibres, respectively, and together they exhaust the possibilities for influencing hair-form phenotypes. As such they suggest dialectic for hair-curvature development. We define a natural-dialectic (ND) which could take advantage of speculative aspects of dialectic, but would verify its input data and results by experimental methods. We use this as a top-down approach to first define routes by which hair bending or twisting may be brought about and then review evidence in support of such routes. In particular we consider the wingless (Wnt) and mammalian target of rapamycin (mTOR) pathways as paradigm pathways for molecular hair bending and twisting mechanisms, respectively. In addition to the Wnt canonical pathway, the Wnt/Ca(2+) and planar cell polarity (PCP) pathways

  10. Interferon alfa and ribavirin induced hair changes

    International Nuclear Information System (INIS)

    Amir, S.; Taj, A.; Muhamud, T.H.; Iqbal, Z.; Yaqub, F.

    2007-01-01

    Combination therapy of Interferon alfa and ribavirin in chronic hepatitis C has well documented cutaneous adverse effects. Most interesting of these has been reported on hair physiology. This study was conducted to determine the frequency and pattern of adverse effects involving hair in patients receiving combination of interferon alfa 2a and ribavirin for chronic hepatitis C. The study was conducted in Department of Dermatology, Division of Medicine Shaikh Zayed Hospital. Thirty Eight patients who completed treatment with interferon alfa (3 MIU subcutaneously thrice weekly) and 1200 mg ribavirin daily for 24 weeks were enrolled in this single-center study. The patient's response and examination finding particularly regarding involvement of hair was noted on a Proforma. Thirty Two out of thirty eight (84%) patients noted adverse effects involving hair. The most frequent was diffuse hair loss and occurred in 27 patients (71%). Hypertrichosis of eyelashes (trichomegaly) and eyebrows (synophyrs) was observed in 18 (47%) and 16 (42%) patients respectively. Graying of hair was noted in 4 patients (11%), while discoloration of moustache hair was seen in 2 patients (5%). Epilation at the site of subcutaneous injection was noted in 10 patients (26%). Alopecia areata was reported in 2 patients (5%). It is concluded that adverse effects involving hair are frequent and varied (hair loss to excess hair growth) during combination therapy with Interferon alfa-2a and Ribavirin for chronic hepatitis C. (author)

  11. Epithelial-mesenchymal transition in keloid tissues and TGF-β1-induced hair follicle outer root sheath keratinocytes.

    Science.gov (United States)

    Yan, Li; Cao, Rui; Wang, Lianzhao; Liu, Yuanbo; Pan, Bo; Yin, Yanhua; Lv, Xiaoyan; Zhuang, Qiang; Sun, Xuejian; Xiao, Ran

    2015-01-01

    Keloid is a skin fibrotic disease with the characteristics of recurrence and invasion, its pathogenesis still remains unrevealed. The epithelial-mesenchymal transition (EMT) is critical for wound healing, fibrosis, recurrence, and invasion of cancer. We sought to investigate the EMT in keloid and the mechanism through which the EMT regulates keloid formation. In keloid tissues, the expressions of EMT-associated markers and transforming growth factor (TGF)-β1/Smad3 signaling were examined by immunohistochemistry. In the keloid epidermis and dermal tissue, the expressions of genes related to the regulation of skin homeostasis, fibroblast growth factor receptor 2 (FGFR2) and p63, were analyzed using quantitative real-time polymerase chain reaction. The results showed that accompanying the loss of the epithelial marker E-cadherin and the gain of the mesenchymal markers fibroblast-specific protein 1 (FSP1) and vimentin in epithelial cells from epidermis and skin appendages, and in endothelial cells from dermal microvessels, enhanced TGF-β1 expression and Smad3 phosphorylation were noted in keloid tissues. Moreover, alternative splicing of the FGFR2 gene switched the predominantly expressed isoform from FGFR2-IIIb to -IIIc, concomitant with the decreased expression of ΔNp63 and TAp63, which changes might partially account for abnormal epidermis and appendages in keloids. In addition, we found that TGF-β1-induced hair follicle outer root sheath keratinocytes (ORSKs) and normal skin epithelial cells underwent EMT in vitro with ORSKs exhibiting more obvious EMT changes and more similar expression profiles for EMT-associated and skin homeostasis-related genes as in keloid tissues, suggesting that ORSKs might play crucial roles in the EMT in keloids. Our study provided insights into the molecular mechanisms mediating the EMT pathogenesis of keloids. © 2015 by the Wound Healing Society.

  12. Digestion site of starch from cereals and legumes in lactating dairy cows

    DEFF Research Database (Denmark)

    Larsen, M; Lund, P; Weisbjerg, M R

    2009-01-01

    The effect of grinding and rolling (i.e. processing) of cereals and legumes (i.e. source) on site of starch digestion in lactating dairy cows was tested according to a 2×2 factorial design using a dataset derived from an overall dataset compiled from four experiments conducted at our laboratory...... digestibility of starch was decreased by rolling for legumes, whereas the three other source by processing combinations did not differ. The duodenal flow of microbial starch was estimated to 276 g/d as the intercept in the regression analysis. Apparent ruminal digestibilities of starch seemed to underestimate...... true ruminal digestibility in rations with low starch intake due to a relatively higher contribution of microbial starch to total duodenal starch flow compared to rumen escape feed starch. The small intestinal and total tract digestibility of legume starch was lower compared with starch from cereals...

  13. Biophysics of Human Hair Structural, Nanomechanical, and Nanotribological Studies

    CERN Document Server

    Bhushan, Bharat

    2010-01-01

    This book presents the biophysics of hair. It deals with the structure of hair, its mechanical properties, the nanomechanical characterization, tensile deformation, tribological characterization, the thickness distribution and binding interactions on hair surface. Another important topic of the book is the health of hair, human hair and skin, hair care, cleaning and conditioning treatments and damaging processes. It is the first book on the biophysical properties of hair.

  14. [New discoveries in forensic medicine. Hair analysis].

    Science.gov (United States)

    Kaempe, B

    1999-03-29

    A review of forensic chemical drug testing in hair is given. Applications for analysis of hair are described. The special problems linked to the determination of drugs in hair such as contamination, differences in sex and ethnic groups and cosmetic pretreatment of the hair are outlined. It is concluded that greater knowledge of hair analysis is needed before the results can be used for toxicological evaluation at the same level as blood. On the other hand, a chemical hair analysis might expose a (mis)use of drugs and follow it step by step up to half a year back in time. In this way, it may supplement a systematic toxicological analysis (STA) for 'a general unknown' for use by police and forensic pathologists.

  15. Hormonal therapy in female pattern hair loss

    Directory of Open Access Journals (Sweden)

    Kevin R. Brough

    2017-03-01

    Full Text Available Female pattern hair loss is the most common cause of hair loss in women and one of the most common problems seen by dermatologists. This hair loss is a nonscarring alopecia in which loss occurs on the vertex scalp, generally sparing the frontal hairline. Hair loss can have significant psychosocial effects on patients, and treatment can be long and difficult. The influence of hormones on the pathogenesis of female pattern hair loss is not entirely known. The purpose of this paper is to review physiology and potential hormonal mechanisms for the pathogenesis of female pattern hair loss. We also discuss the current hormonal and hormone-modifying therapies that are available to providers as they partner with patients to treat this frustrating issue.

  16. Strategies For Sustainable Conservation And Use Of Legume ...

    African Journals Online (AJOL)

    Strategies For Sustainable Conservation And Use Of Legume Genetic Resources In Ghana. ... Ghana Journal of Science ... Strategic development of conservation technologies in plant genetic resources (PGR) is the backbone for agricultural development, food security and sustainable livelihood, now and for the future.

  17. Proteome analysis of pod and seed development in the model legume Lotus japonicus

    DEFF Research Database (Denmark)

    Nautrup-Pedersen, G.; Dam, S.; Laursen, B. S.

    2010-01-01

    Legume pods serve important functions during seed development and are themselves sources of food and feed. Compared to seeds, the metabolism and development of pods are not well-defined. The present characterization of pods from the model legume Lotus japonicus, together with the detailed analyses...... of the pod and seed proteomes in five developmental stages, paves the way for comparative pathway analysis and provides new metabolic information. Proteins were analyzed by two-dimensional gel electrophoresis and tandem-mass spectrometry. These analyses lead to the identification of 604 pod proteins and 965...... and photosynthesis. Proteins detected only in pods included three enzymes participating in the urea cycle and four in nitrogen and amino group metabolism, highlighting the importance of nitrogen metabolism during pod development. Additionally, five legume seed proteins previously unassigned in the glutamate...

  18. Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules.

    Science.gov (United States)

    Larrainzar, Estíbaliz; Molenaar, Johanna A; Wienkoop, Stefanie; Gil-Quintana, Erena; Alibert, Bénédicte; Limami, Anis M; Arrese-Igor, Cesar; González, Esther M

    2014-09-01

    Symbiotic nitrogen fixation is one of the first physiological processes inhibited in legume plants under water-deficit conditions. Despite the progress made in the last decades, the molecular mechanisms behind this regulation are not fully understood yet. Recent proteomic work carried out in the model legume Medicago truncatula provided the first indications of a possible involvement of nodule methionine (Met) biosynthesis and related pathways in response to water-deficit conditions. To better understand this involvement, the drought-induced changes in expression and content of enzymes involved in the biosynthesis of Met, S-adenosyl-L-methionine (SAM) and ethylene in M. truncatula root and nodules were analyzed using targeted approaches. Nitrogen-fixing plants were subjected to a progressive water deficit and a subsequent recovery period. Besides the physiological characterization of the plants, the content of total sulphur, sulphate and main S-containing metabolites was measured. Results presented here show that S availability is not a limiting factor in the drought-induced decline of nitrogen fixation rates in M. truncatula plants and provide evidences for a down-regulation of the Met and ethylene biosynthesis pathways in roots and nodules in response to water-deficit conditions. © 2014 John Wiley & Sons Ltd.

  19. Classifications of Patterned Hair Loss: A Review.

    Science.gov (United States)

    Gupta, Mrinal; Mysore, Venkataram

    2016-01-01

    Patterned hair loss is the most common cause of hair loss seen in both the sexes after puberty. Numerous classification systems have been proposed by various researchers for grading purposes. These systems vary from the simpler systems based on recession of the hairline to the more advanced multifactorial systems based on the morphological and dynamic parameters that affect the scalp and the hair itself. Most of these preexisting systems have certain limitations. Currently, the Hamilton-Norwood classification system for males and the Ludwig system for females are most commonly used to describe patterns of hair loss. In this article, we review the various classification systems for patterned hair loss in both the sexes. Relevant articles were identified through searches of MEDLINE and EMBASE. Search terms included but were not limited to androgenic alopecia classification, patterned hair loss classification, male pattern baldness classification, and female pattern hair loss classification. Further publications were identified from the reference lists of the reviewed articles.

  20. Classifications of patterned hair loss: a review

    Directory of Open Access Journals (Sweden)

    Mrinal Gupta

    2016-01-01

    Full Text Available Patterned hair loss is the most common cause of hair loss seen in both the sexes after puberty. Numerous classification systems have been proposed by various researchers for grading purposes. These systems vary from the simpler systems based on recession of the hairline to the more advanced multifactorial systems based on the morphological and dynamic parameters that affect the scalp and the hair itself. Most of these preexisting systems have certain limitations. Currently, the Hamilton-Norwood classification system for males and the Ludwig system for females are most commonly used to describe patterns of hair loss. In this article, we review the various classification systems for patterned hair loss in both the sexes. Relevant articles were identified through searches of MEDLINE and EMBASE. Search terms included but were not limited to androgenic alopecia classification, patterned hair loss classification, male pattern baldness classification, and female pattern hair loss classification. Further publications were identified from the reference lists of the reviewed articles.