WorldWideScience

Sample records for lego-robotics integrated engineering

  1. Examining Students' Proportional Reasoning Strategy Levels as Evidence of the Impact of an Integrated LEGO Robotics and Mathematics Learning Experience

    Science.gov (United States)

    Martínez Ortiz, Araceli

    2015-01-01

    The presented study used a problem-solving experience in engineering design with LEGO robotics materials as the real-world mathematics-learning context. The goals of the study were (a) to determine if a short but intensive extracurricular learning experience would lead to significant student learning of a particular academic topic and (b) to…

  2. Lego Robotics: STEM Sport of the Mind

    Science.gov (United States)

    Gura, Mark

    2012-01-01

    Lego robotics is engaging, hands-on, and encompasses every one of the NETS for Students. It also inspires a love of science, technology, engineering, and mathematics (STEM) and provides the experience students need to use digital age skills in the real world. In this article, the author discusses how schools get involved with Lego Robotics and…

  3. LEGO Robotics: An Authentic Problem Solving Tool?

    Science.gov (United States)

    Castledine, Alanah-Rei; Chalmers, Chris

    2011-01-01

    With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…

  4. Lego Robots & Autism Spectrum Disorder: a potential partnership?

    Directory of Open Access Journals (Sweden)

    Sandra Costa

    2016-06-01

    Full Text Available Individuals with autism spectrum disorder (ASD present difficulties in developing social behaviours, in communicating gestural or verbally, and they may present some repetitive motor activities. The objective of this study was to improve social competences and to enable the transfer of acquired skills of five children with ASD and intellectual disabilities using a low-cost Lego robot as a mediator. The proposed methodology was divided in five phases: Familiarization, Pre-test, Practice, Post-Test and Transfer of Skills. The study ran in two sequential periods at different places. Each of these periods tackled different individual research questions and goals (taking into account the target group. During each period, the proposed methodology had to be adjusted according to the current context. Therefore, different experimental scenarios and corresponding specific goals had to be delineated. Results show that joint attention of the children increased over the sessions; and interaction with the researcher was verified. Furthermore, results show that there was an effective transfer of skills in the addressed case studies. This reinforces conclusions that robots seem, in fact, powerful tools that should be explored concerning this target population. But a more detailed study is required. The proposed methodology can be used by professionals and parents as a complement to common interventions.

  5. A Lego Robot on the ISS: Chronicles of a Successful Space Outreach Programme

    Science.gov (United States)

    Carl, S.; Mirra, C.

    2002-01-01

    In a recent effort, a space outreach project on the International Space Station (ISS) was initiated and successfully implemented. This project, named "Mindstorms in Space", was solely supported by industry. The Lego Company, being active in the non-space area, in co-operation with Intospace, a space industry service provider, developed a space education project aimed at developing, launching and operating a Lego Robot on the Space Station. The idea behind the project is part of a subsequent marketing campaign of Lego in Central Europe in order to promote their Lego Mindstorms series. This series is a highly sophisticated assembly set with programmable microchips and advanced reaction systems such as light-, touch or rotational sensors. The space environment of the ISS was perceived as the right scenario for this hi-tech project. Therefore a public competition was announced to create attention offering interested people to participate in developing a robot that will be in the condition to support the ISS crew during their daily routine work. The criteria of the competition were kept in line with the common Lego principles, i.e. creativity, innovation, fun and teamwork, as well as the basic manned space support parameters, i.e. usefulness, functionality in microgravity, interaction with the crew. Several steps were necessary to make this happen including the qualification of the hardware and selection of the competition winner by a jury. Furthermore integration preparation tasks, the actual launch and the final demonstration during a live transmission from onboard the ISS represented a good example of how such a project can be successfully accomplished in a short time. This paper will present the development and execution of this project and will provide a snapshot on the success of the public outreach campaign.

  6. Memory and accurate processing brain rehabilitation for the elderly: LEGO robot and iPad case study.

    Science.gov (United States)

    Lopez-Samaniego, Leire; Garcia-Zapirain, Begonya; Mendez-Zorrilla, Amaia

    2014-01-01

    This paper presents the results of research that applies cognitive therapies associated with memory and mathematical problem-solving in elderly people. The exercises are programmed in an iPad and can be performed both from the Tablet and in an interactive format with a LEGO robot. The system has been tested with 2 men and 7 women over the age of 65 who have slight physical and cognitive impairment. Evaluation with the SUS resulted in a mean of 48.45 with a standard deviation of 5.82. The score of overall satisfaction was 84.37 with a standard deviation of 18.6. Interaction with the touch screen caused some usability problems due to the elderly people's visual difficulties and clicking accuracy. Future versions will include visualization with more color contrast and less use of the keyboard.

  7. LEGO robot vehicle lesson plans for secondary education : a recruitment tool.

    Science.gov (United States)

    2012-08-01

    Robotics is a great way to get kids excited about science, technology, engineering, and math (STEM) topics. It is also highly effective in stimulation development of teamwork and self-confidence. This project provides transportation-related lesson pl...

  8. Line integral on engineering mathematics

    Science.gov (United States)

    Wiryanto, L. H.

    2018-01-01

    Definite integral is a basic material in studying mathematics. At the level of calculus, calculating of definite integral is based on fundamental theorem of calculus, related to anti-derivative, as the inverse operation of derivative. At the higher level such as engineering mathematics, the definite integral is used as one of the calculating tools of line integral. the purpose of this is to identify if there is a question related to line integral, we can use definite integral as one of the calculating experience. The conclusion of this research says that the teaching experience in introducing the relation between both integrals through the engineer way of thinking can motivate and improve students in understanding the material.

  9. Dispersion engineering for integrated nanophotonics

    CERN Document Server

    Vanbésien, Olivier

    2014-01-01

    This book shows how dispersion engineering in two dimensional dielectric photonic crystals can provide new effects for the precise control of light propagation for integrated nanophotonics.Dispersion engineering in regular and graded photonic crystals to promote anomalous refraction effects is studied from the concepts to experimental demonstration via nanofabrication considerations. Self collimation, ultra and negative refraction, second harmonic generation, mirage and invisibility effects which lead to an unprecedented control of light propagation at the (sub-)wavelength scale for the

  10. Systems engineering and integration as a foundation for mission engineering

    OpenAIRE

    Beam, David F.

    2015-01-01

    Approved for public release; distribution is unlimited This paper investigates the emerging term mission engineering through the framework of systems engineering and systems integration. Systems engineering concepts, processes, and methodologies are extrapolated for use in conjunction with a systems integration, life-cycle based framework to effect mission engineering. The specific systems engineering concepts of measures of effectiveness, performance and suitability are recommended as fou...

  11. An Integrated Architecture for Engineering Problem Solving

    National Research Council Canada - National Science Library

    Pisan, Yusuf

    1998-01-01

    .... This thesis describes the Integrated Problem Solving Architecture (IPSA) that combines qualitative, quantitative and diagrammatic reasoning skills to produce annotated solutions to engineering problems...

  12. Radio-frequency integrated-circuit engineering

    CERN Document Server

    Nguyen, Cam

    2015-01-01

    Radio-Frequency Integrated-Circuit Engineering addresses the theory, analysis and design of passive and active RFIC's using Si-based CMOS and Bi-CMOS technologies, and other non-silicon based technologies. The materials covered are self-contained and presented in such detail that allows readers with only undergraduate electrical engineering knowledge in EM, RF, and circuits to understand and design RFICs. Organized into sixteen chapters, blending analog and microwave engineering, Radio-Frequency Integrated-Circuit Engineering emphasizes the microwave engineering approach for RFICs. Provide

  13. Integration of Sustainability in Engineering Education

    DEFF Research Database (Denmark)

    Guerra, Aida

    2017-01-01

    Purpose: Education for sustainable development (ESD) is one of the challenges engineering education currently faces. Engineering education needs to revise and change its curriculum to integrate ESD principles and knowledge. Problem based learning (PBL) has been one of the main learning pedagogies...... used to integrate sustainability in engineering education. However, there is a lack of understanding of the relation between ESD and PBL principles and the ways in which they can be integrated and practised in the engineering curricula. This paper aims to investigate the relation between PBL and ESD...... and the ways in which they are integrated and practised in the engineering curricula. Design/methodology/approach: The study starts with a review of the literature concerning ESD and PBL theories where relations between both are defined. The literature review is followed by an empirical work in which the PBL...

  14. Integration of Sustainability in Engineering Education:

    DEFF Research Database (Denmark)

    Guerra, Aida

    2017-01-01

    Purpose: Education for sustainable development (ESD) is one of the challenges engineering education currently faces. Engineering education needs to revise and change its curriculum to integrate ESD principles and knowledge. Problem based learning (PBL) has been one of the main learning pedagogies...... used to integrate sustainability in engineering education. However, there is a lack of understanding of the relation between ESD and PBL principles and the ways in which they can be integrated and practised in the engineering curricula. This paper aims to investigate the relation between PBL and ESD...... and the ways in which they are integrated and practised in the engineering curricula. Design/methodology/approach: The study starts with a review of the literature concerning ESD and PBL theories where relations between both are defined. The literature review is followed by an empirical work in which the PBL...

  15. Integrating Ethics into Engineering Education

    DEFF Research Database (Denmark)

    Zhou, Chunfang; Otrel-Cass, Kathrin; Børsen, Tom

    2015-01-01

    products are not value neutral. With a focus on Problem-Based Learning (PBL), the authors examine why engineers need to incorporate ethical codes in their decision-making process and professional tasks. Finally, they discuss how to build creative learning environments that can support attaining......In this chapter, the authors aim to explore the necessity of teaching ethics as part of engineering education based on the gaps between learning “hard” knowledge and “soft” skills in the current educational system. They discuss why the nature of engineering practices makes it difficult to look...

  16. Integrated engineering system for nuclear facilities building

    International Nuclear Information System (INIS)

    Tomura, H.; Miyamoto, A.; Futami, F.; Yasuda, S.; Ohtomo, T.

    1995-01-01

    In the construction of buildings for nuclear facilities in Japan, construction companies are generally in charge of the building engineering work, coordinating with plant engineering. An integrated system for buildings (PROMOTE: PROductive MOdeling system for Total nuclear Engineering) described here is a building engineering system including the entire life cycle of buildings for nuclear facilities. A Three-dimensional (3D) building model (PRO-model) is to be in the core of the system (PROMOTE). Data sharing in the PROMOTE is also done with plant engineering systems. By providing these basic technical foundations, PROMOTE is oriented toward offering rational, highquality engineering for the projects. The aim of the system is to provide a technical foundation in building engineering. This paper discusses the characteristics of buildings for nuclear facilities and the outline of the PROMOTE. (author)

  17. Delft Aerospace engineering integrated curriculum

    NARCIS (Netherlands)

    Kamp, A.

    2011-01-01

    The complex multidisciplinary problems and challenges in our society require deep problem solvers in science, management and engineering who are also capable of interacting with and understanding specialists from a wide range of disciplines and functional areas. Industry refers to these people as

  18. Integrated Systems Engineering Framework (ISEF)

    Data.gov (United States)

    Federal Laboratory Consortium — The ISEF is an integrated SE framework built to create and capture knowledge using a decision-centric method, high-quality data visualizations, intuitive navigation...

  19. Integrating ergonomic knowledge into engineering design processes

    DEFF Research Database (Denmark)

    Hall-Andersen, Lene Bjerg

    to the ergonomic ambitions of the clients. The ergonomists’ ability to navigate, act strategically, and compromise on ergonomic inputs is also important in relation to having an impact in the engineering design processes. Familiarity with the engineering design terminology and the setup of design projects seems...... on learning and knowledge management and theoretical concepts of objects derived from Science and Technology Studies. This combination of theoretical perspectives is new with this area. In the engineering consultancy setting the proximity, which arose from the ergonomists and engineering designers being...... employed in the same company, constituted a supporting factor for the possibilities to integrate ergonomic knowledge into the engineering design processes. However, the integration activities remained discrete and only happened in some of the design projects. A major barrier was related to the business...

  20. Integral Methods in Science and Engineering

    CERN Document Server

    Constanda, Christian

    2011-01-01

    An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques

  1. An integrative and holistic engineering education

    Science.gov (United States)

    Bordogna, Joseph; Fromm, Eli; Ernst, Edward W.

    1995-09-01

    The several reports and papers of the past decade suggesting paradigm shifts in engineering education are shown to reveal a common theme, to wit: engineering is an integrative process, and thus engineering education, particularly at the baccalaureate level, should be designed toward that end. Suggesting a change in intellectual culture, the roots of contemporary collegiate education in the United States are traced to their origin and attention is given to discussing the current emphasis on reductionism vis-à-vis integration or, said another way, a course-focused education compared to a more holistic approach in which process and knowledge are woven throughout the curriculum. A new construct for systemic change in baccalaureate engineering education is suggested in terms of a taxonomy of intellectual components connected holistically with a core focus on developing human potential, as opposed to the present system in which students are passed serially through course filters.

  2. Integrated Engineering Information Technology, FY93 accommplishments

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.N.; Miller, D.K.; Neugebauer, G.L.; Orona, J.R.; Partridge, R.A.; Herman, J.D.

    1994-03-01

    The Integrated Engineering Information Technology (IEIT) project is providing a comprehensive, easy-to-use computer network solution or communicating with coworkers both inside and outside Sandia National Laboratories. IEIT capabilities include computer networking, electronic mail, mechanical design, and data management. These network-based tools have one fundamental purpose: to help create a concurrent engineering environment that will enable Sandia organizations to excel in today`s increasingly competitive business environment.

  3. Comparative integrated manufacturing efficiency in production engineering

    OpenAIRE

    Koriath, Hans-Joachim; Kuznetsov, Alexandr; Kalyashina, A.V.

    2017-01-01

    At present a plurality of manufacturing methods, different manufacturing processes and manufacturing equipment are known in order to produce and customize work pieces and products. A new systematic approaches for the analysis and evaluation of manufacturing methods bases on the energy-information model as a conceptual approach to the comparative integrated manufacturing efficiency in production engineering. The integrated manufacturing efficiency is equal to the product of the efficiencies of...

  4. Engineering the System and Technical Integration

    Science.gov (United States)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.

    2011-01-01

    Approximately 80% of the problems encountered in aerospace systems have been due to a breakdown in technical integration and/or systems engineering. One of the major challenges we face in designing, building, and operating space systems is: how is adequate integration achieved for the systems various functions, parts, and infrastructure? This Contractor Report (CR) deals with part of the problem of how we engineer the total system in order to achieve the best balanced design. We will discuss a key aspect of this question - the principle of Technical Integration and its components, along with management and decision making. The CR will first provide an introduction with a discussion of the Challenges in Space System Design and meeting the challenges. Next is an overview of Engineering the System including Technical Integration. Engineering the System is expanded to include key aspects of the Design Process, Lifecycle Considerations, etc. The basic information and figures used in this CR were presented in a NASA training program for Program and Project Managers Development (PPMD) in classes at Georgia Tech and at Marshall Space Flight Center (MSFC). Many of the principles and illustrations are extracted from the courses we teach for MSFC.

  5. Integrating interface slicing into software engineering processes

    Science.gov (United States)

    Beck, Jon

    1993-01-01

    Interface slicing is a tool which was developed to facilitate software engineering. As previously presented, it was described in terms of its techniques and mechanisms. The integration of interface slicing into specific software engineering activities is considered by discussing a number of potential applications of interface slicing. The applications discussed specifically address the problems, issues, or concerns raised in a previous project. Because a complete interface slicer is still under development, these applications must be phrased in future tenses. Nonetheless, the interface slicing techniques which were presented can be implemented using current compiler and static analysis technology. Whether implemented as a standalone tool or as a module in an integrated development or reverse engineering environment, they require analysis no more complex than that required for current system development environments. By contrast, conventional slicing is a methodology which, while showing much promise and intuitive appeal, has yet to be fully implemented in a production language environment despite 12 years of development.

  6. Thermal integrity in mechanics and engineering

    CERN Document Server

    Shorr, Boris F

    2015-01-01

    The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author’s contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspec...

  7. Integration of basic electromagnetism and engineering technology

    DEFF Research Database (Denmark)

    Bentz, Sigurd

    1995-01-01

    The theory of electromagnetism is taught as a part of most contemporary electrical engineering curricula. Usually a basic course is intended to cover all the fundamental electromagnetic theory which is needed in later engineering courses. However it is often found that students fail to understand...... theoretical course contents have been reduced to a core of fundamental principles. These are combined with the study of magnetic properties of materials closely related to manufacturer's data sheets. To enhance the understanding of these fundamentals, practical topics from engineering technology are included....... Components or systems that combine magnetic, electrical and mechanical aspects are preferred. Also, a series of hands-on lab projects give the students an opportunity to learn by doing. The topics that are covered by the course are outlined. By integrating the teaching of basic physical laws...

  8. Thermal integrity in mechanics and engineering

    International Nuclear Information System (INIS)

    Shorr, Boris F.

    2015-01-01

    The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author's contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspects of thermal integrity. The author endeavors to provide a thorough yet sufficiently simple presentation of the underlying concepts, making the book compelling to a wide audience.

  9. Thermal integrity in mechanics and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shorr, Boris F. [Central Institute of Aviation Motors (CIAM), Moscow (Russian Federation)

    2015-07-01

    The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author's contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspects of thermal integrity. The author endeavors to provide a thorough yet sufficiently simple presentation of the underlying concepts, making the book compelling to a wide audience.

  10. Validation of human factor engineering integrated system

    International Nuclear Information System (INIS)

    Fang Zhou

    2013-01-01

    Apart from hundreds of thousands of human-machine interface resources, the control room of a nuclear power plant is a complex system integrated with many factors such as procedures, operators, environment, organization and management. In the design stage, these factors are considered by different organizations separately. However, whether above factors could corporate with each other well in operation and whether they have good human factors engineering (HFE) design to avoid human error, should be answered in validation of the HFE integrated system before delivery of the plant. This paper addresses the research and implementation of the ISV technology based on case study. After introduction of the background, process and methodology of ISV, the results of the test are discussed. At last, lessons learned from this research are summarized. (authors)

  11. Near-Surface Engineered Environmental Barrier Integrity

    International Nuclear Information System (INIS)

    Piet, S.J.; Breckenridge, R.P.

    2002-01-01

    The INEEL Environmental Systems Research and Analysis (ESRA) program has launched a new R and D project on Near-Surface Engineered Environmental Barrier Integrity to increase knowledge and capabilities for using engineering and ecological components to improve the integrity of near-surface barriers used to confine contaminants from the public and the environment. The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions and enable improved solutions for future cleanup decisions. The research is planned to (a) improve the knowledge of degradation mechanisms (weathering, biological, geological, chemical, radiological, and catastrophic) in times shorter than service life, (b) improve modeling of barrier degradation dynamics, (c) develop sensor systems to identify degradation prior to failure, and (d) provide a better basis for developing and testing of new barrier systems to increase reliability and reduce the risk of failure. Our project combine s selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing and the meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The performance of evapo-transpiration, capillary, and grout-based barriers will be examined

  12. Improvement of Engineering Work Efficiency through System Integration

    International Nuclear Information System (INIS)

    Lee, Sangdae; Jo, Sunghan; Hyun, Jinwoo

    2016-01-01

    This paper presents the concept of developing an integrated engineering system for ER to improve efficiency and utilization of engineering system. Each process including computer system and database was introduced separately by each department at that different time. Each engineering process has a close relation with other engineering processes. The introduction of processes in a different time has caused the several problems such as lack of interrelationship between engineering processes, lack of integration fleet-wide statistical data, lack of the function of data comparison among plants and increase of access time by different access location on internet. These problems have caused inefficiency of engineering system utilization to get proper information and degraded engineering system utilization. KHNP has introduced and conducted advanced engineering processes to maintain equipment effectively in a highly reliable condition since 2000s. But engineering systems for process implementation have been developed in each department at a different time. This has caused the problems of process inefficiency and data discordance. Integrated Engineering System(IES) to integrate dispersed engineering processes will improve work efficiency and utilization of engineering system because integration system would enable engineer to get total engineering information easily and do engineering work efficiently

  13. Concise Review: Organ Engineering: Design, Technology, and Integration

    NARCIS (Netherlands)

    Kaushik, G.; Leijten, Jeroen Christianus Hermanus; Khademhosseini, A.

    Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling

  14. Interactive software integrates geological and engineering data

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, G.S. (Oxy USA Inc., Tulsa, OK (United States))

    1994-09-05

    A comprehensive software package provides Oxy USA Inc. a set of interactive tools for rapid and easy integration of geological, geophysical, petrophysical, and reservoir engineering data for the purpose of reservoir characterization. The stacked curves system (SCPC), proprietary software of Oxy USA Inc., is used extensively within Occidental Petroleum Corp. to determine detailed knowledge of reservoir geometry and associated parameters crucial in infill drilling, field extension, and enhanced recovery projects. SCPC has all the desk top management and mapping software tools necessary to fully address, analyze, and resolve three components of reservoir characterization: defining the geometry; calculating reservoir properties; and making volumetric estimates. The paper discusses the background of the software, describes its functions of data base management and transformation, and explains the types of displays it is capable of producing.

  15. Reverse Engineering Integrated Circuits Using Finite State Machine Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oler, Kiri J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Carl H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-12

    In this paper, we present a methodology for reverse engineering integrated circuits, including a mathematical verification of a scalable algorithm used to generate minimal finite state machine representations of integrated circuits.

  16. High School Engineering and Technology Education Integration through Design Challenges

    Science.gov (United States)

    Mentzer, Nathan

    2011-01-01

    This study contextualized the use of the engineering design process by providing descriptions of how each element in a design process was integrated in an eleventh grade industry and engineering systems course. The guiding research question for this inquiry was: How do students engage in the engineering design process in a course where technology…

  17. Integrating sustainability in Engineering Education in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik; Valderrama Pineda, Andres Felipe; Remmen, Arne

    2013-01-01

    they promote and the accreditation criteria they develop. But this is not the first time engineering educators have attempted to bring social and environmental issues into the engineering curriculum. In this paper we examine different approaches to incorporate environmental and energy issues into the education......How to include sustainability in engineering education is currently the main concern among engineering educators. In one way or another, engineering educators are increasingly addressing sustainability issues in the courses they teach, the programs they design and run, the institutional activities...... of engineers and use them as a background for a discussion of how sustainability may and should impact engineering. In the first part of the article, we account for the ways in which environmental and energy issues were incorporated in the education of engineers of the Technical University of Denmark...

  18. Bridging the engineering gap: integrated systems thinking

    Science.gov (United States)

    Weintré, J. R.; Delfi, M.

    2017-09-01

    On visits to rural Indonesia it is apparent that the advances made possible by technical engineered solutions, are rarely at the same pace as the human captivation of technical development. This uneven pace has limited the application of labour-saving equipment and efficiency. It is suggested to be of primary importance to advance technical application skills among communities as part of the continuous advancement cycle in our human environment. A creative approach to inclusive technology and internal transfer of equipment knowledge in society, reduces barriers and could diminish structural or societal undesired situations. Earlier theoretical concepts provide us a lens for describing the practices of habitus, conceptualization of social capital and integrated systems thinking. The interrelationship and complexities in technical and social systems requires to be investigated. This paper aims to describe those, combined with technological applications in an empirical ethnographic approach. The study analyses the negotiations of community members with the available technology. It intends to foster a better understanding of the various cultural-economic values by exploring the systems thinking theory, with a focus on rice cultivation in Indonesia, Japan and Australia. This research suggests that cultural, economic and technical advances vary considerably and human expectations are strongly influenced by local culture.

  19. The Engineering Workforce of Tomorrow - The Integrated Space Engineer

    DEFF Research Database (Denmark)

    Nielsen, Jens Frederik Dalsgaard

    2007-01-01

    The space engineer of tomorrow needs a variety of skills ranging from high specialized knowledge to cooperative capacities and the ability to understand and even to a certain degree to be productive outside their specialized skills. Newly educated engineers often lack many of these skills due...

  20. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  1. Integrated two-cylinder liquid piston Stirling engine

    International Nuclear Information System (INIS)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-01-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  2. Integrated engine-generator concept for aircraft electric secondary power

    Science.gov (United States)

    Secunde, R. R.; Macosko, R. P.; Repas, D. S.

    1972-01-01

    The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.

  3. Integration of basic electromagnetism and engineering technology

    OpenAIRE

    Bentz, Sigurd

    1995-01-01

    The theory of electromagnetism is taught as a part of most contemporary electrical engineering curricula. Usually a basic course is intended to cover all the fundamental electromagnetic theory which is needed in later engineering courses. However it is often found that students fail to understand and retain much of the course material, which in turn makes their subsequent studies more difficult. We describe a freshman course in electromagnetism which alleviates these problems. Our hypothesis ...

  4. Integrated Computational Material Engineering Technologies for Additive Manufacturing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — QuesTek Innovations, a pioneer in Integrated Computational Materials Engineering (ICME) and a Tibbetts Award recipient, is teaming with University of Pittsburgh,...

  5. Integral methods in science and engineering theoretical and practical aspects

    CERN Document Server

    Constanda, C; Rollins, D

    2006-01-01

    Presents a series of analytic and numerical methods of solution constructed for important problems arising in science and engineering, based on the powerful operation of integration. This volume is meant for researchers and practitioners in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students.

  6. Effective Integration of Life Cycle Engineering in Education

    NARCIS (Netherlands)

    Oude Luttikhuis, Ellen; Toxopeus, Marten E.; Lutters, Diederick

    2015-01-01

    In practice, applying life cycle engineering in product design and development requires an integrated approach, because of the many stakeholders and variables (e.g. cost, environmental impact, energy, safety, quality) involved in a complete product life cycle. In educating young engineers, the same

  7. PHYTOREMEDIATION: INTEGRATING ART AND ENGINEERING THROUGH PLANTING

    Science.gov (United States)

    Landscape Architecture and Remediation Engineering are related fields, united by common areas of endeavor, yet they have strikingly different languages, techniques, and habits of thought. What unites the fields is the fact that they often work on the same site, with the common go...

  8. (Ict) Integration Into Science, Technology, Engineering And ...

    African Journals Online (AJOL)

    As Nigeria aspires for technological growth, positive changes need be made by placing proper educational values towards Science, Technology, Engineering and Mathematics (STEM) education. Some problems faced by STEM include lack of qualified teachers, curriculum, the misconception that STEM education is ...

  9. Integrating ecosystem engineering and food webs

    NARCIS (Netherlands)

    Sanders, D.; Jones, C.G.; Thébault, E.; Bouma, T.J.; van der Heide, T.; van Belzen, J.; Barot, S.

    2014-01-01

    Ecosystem engineering, the physical modification of the environment by organisms, is a common and often influential process whose significance to food web structure and dynamics is largely unknown. In the light of recent calls to expand food web studies to include non-trophic interactions, we

  10. Integrating ecosystem engineering and food webs

    NARCIS (Netherlands)

    Sanders, Dirk; Jones, Clive G.; Thebault, Elisa; Bouma, Tjeerd J.; van der Heide, Tjisse; van Belzen, Jim; Barot, Sebastien

    Ecosystem engineering, the physical modification of the environment by organisms, is a common and often influential process whose significance to food web structure and dynamics is largely unknown. In the light of recent calls to expand food web studies to include non-trophic interactions, we

  11. Motivating programming students by Problem Based Learning and LEGO robots

    DEFF Research Database (Denmark)

    Lykke, Marianne; Coto Chotto, Mayela; Mora, Sonia

    2014-01-01

    Retention of first year students in Computer Science is a concern for universities internationally. Especially programming courses are regarded as difficult, and often have the highest failure and dropout rates. The Informatics School at Universidad Nacional in Costa Rica is not an exception...... students programming skills and motivation for learning in an introductory programming course. The paper reports the results related with one of the components of the study - the experiential qualities of the three learning designs. The data were collected through a questionnaire survey with 229 students...

  12. Designing and implementing nervous system simulations on LEGO robots.

    Science.gov (United States)

    Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph

    2013-05-25

    We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.(1) The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.

  13. Planning integration at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    DeHaan, W.; Mullen, C.; Nielsen, R.

    1994-01-01

    Idaho National Engineering Laboratory (INEL) has reorganized in response to changes made when the Federal Facilities Agreement and Consent Order was negotiated with the State of Idaho. Several changes have been made in the management of environmental restoration contractors in order to integrate planning efforts and to integrate specific cooperative activities. Some of these changes are described in this presentation

  14. Integration of Sustainable Development in Sanitary Engineering Education in Sweden

    Science.gov (United States)

    Rydhagen, B.; Dackman, C.

    2011-01-01

    In the Swedish Act for higher education, as well as in the policies of technical universities, it is stated that sustainable development (SD) should be integrated into engineering education. Researchers argue that SD needs to be integrated into the overall course content rather than added as a specific course. In this paper, six engineering…

  15. Concise Review: Organ Engineering: Design, Technology, and Integration.

    Science.gov (United States)

    Kaushik, Gaurav; Leijten, Jeroen; Khademhosseini, Ali

    2017-01-01

    Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling technologies including biocompatible biomaterials and biofabrication platforms such as three-dimensional bioprinting. When engineering complex tissues and organs, core design principles must be taken into account, such as the structure-function relationship, biochemical signaling, mechanics, gradients, and spatial constraints. Technological advances in biomaterials, biofabrication, and biomedical imaging allow for in vitro control of these factors to recreate in vivo phenomena. Finally, organ engineering emerges as an integration of biological design and technical rigor. An overall workflow for organ engineering and guiding technology to advance biology as well as a perspective on necessary future iterations in the field is discussed. Stem Cells 2017;35:51-60. © 2016 AlphaMed Press.

  16. Vehicle Systems Engineering and Integration Activities

    Science.gov (United States)

    2012-08-31

    tools and procedures (MPT) to support this mission. TARDEC has found that many systems engineers from the automobile industry have significant...instruction “If the chassis has a turret and weapon system attached, and if these components will be moved to various fixed positions or...M113A1, M577A1, and M106A1, as well as several new derivative systems. Some of these new derivatives were based on the armored M113 chassis (the

  17. Reverse Engineering in Data Integration Software

    Directory of Open Access Journals (Sweden)

    Vlad DIACONITA

    2013-05-01

    Full Text Available Integrated applications are complex solutions that help build better consolidated and standardized systems from existing (usually transactional systems. Integrated applications are complex solutions, whose complexity are determined by the economic processes they implement, the amount of data employed (millions of records grouped in hundreds of tables, databases, hundreds of GB and the number of users [11]. Oracle, once mainly known for his database and e-business solutions has been constantly expanding its product portfolio, providing solutions for SOA, BPA, Warehousing, Big Data and Cloud Computing. In this article I will review the facilities and the power of using a dedicated integration tool in an environment with multiple data sources and a target data mart.

  18. Ramjets: Thermal Management an Integrated Engineering Approach

    Science.gov (United States)

    2010-09-01

    and Thermal Management (Propulsion a vitesse elevee : Conception du moteur - integration et gestion thermique ) 14. ABSTRACT Within the framework of...2.0 AERODYNAMIC HEATING 2.1 General Heat Transfer Relations The air flow around any vehicle moving through the atmosphere comes to rest at the...resulting in a convective heat flux from the air flow to the structure of the vehicle. The basic equation describing convective heat transfer is: )( wawcc

  19. Leveling the Playing Field: Teacher Perception of Integrated STEM, Engineering, and Engineering Practices

    Science.gov (United States)

    Fincher, Bridgette Ann

    The purpose of this study was to describe the perceptions and approaches of 14 third-through-fifth grade Arkansan elementary teachers towards integrative engineering and engineering practices during 80 hours of integrated STEM professional development training in the summer and fall of 2014. This training was known as Project Flight. The purpose of the professional development was to learn integrated STEM content related to aviation and to write grade level curriculum units using Wiggins and McTighe's Understanding by Design curriculum framework. The current study builds upon on the original research. Using a mixed method exploratory, embedded QUAL[quan] case study design and a non-experimental convenience sample derived from original 20 participants of Project Flight, this research sought to answer the following question: Does professional development influence elementary teachers' perceptions of the curriculum and instruction of integrated STEM engineering and engineering practices in a 3-to-5 grade level setting? A series of six qualitative and one quantitative sub-questions informed the research of the mixed method question. Hermeneutic content analysis was applied to archival and current qualitative data sets while descriptive statistics, independent t-tests, and repeated measures ANOVA tests were performed on the quantitative data. Broad themes in the teachers' perceptions and understanding of the nature of integrated engineering and engineering practices emerged through triangulation. After the professional development and the teaching of the integrated STEM units, all 14 teachers sustained higher perceptions of personal self-efficacy in their understanding of Next Generation Science Standards (NGSS). The teachers gained understanding of engineering and engineering practices, excluding engineering habits of mind, throughout the professional development training and unit teaching. The research resulted in four major findings specific to elementary engineering

  20. Requirements Engineering for Software Integrity and Safety

    Science.gov (United States)

    Leveson, Nancy G.

    2002-01-01

    Requirements flaws are the most common cause of errors and software-related accidents in operational software. Most aerospace firms list requirements as one of their most important outstanding software development problems and all of the recent, NASA spacecraft losses related to software (including the highly publicized Mars Program failures) can be traced to requirements flaws. In light of these facts, it is surprising that relatively little research is devoted to requirements in contrast with other software engineering topics. The research proposed built on our previous work. including both criteria for determining whether a requirements specification is acceptably complete and a new approach to structuring system specifications called Intent Specifications. This grant was to fund basic research on how these ideas could be extended to leverage innovative approaches to the problems of (1) reducing the impact of changing requirements, (2) finding requirements specification flaws early through formal and informal analysis, and (3) avoiding common flaws entirely through appropriate requirements specification language design.

  1. Integrated Heat Exchange For Recuperation In Gas Turbine Engines

    Science.gov (United States)

    2016-12-01

    DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE INTEGRATED HEAT EXCHANGE FOR RECUPERATION IN GAS TURBINE ENGINES 5. FUNDING NUMBERS 6. AUTHOR...ship gas turbines is difficult due the size and weight of the heat exchanger components required. An alternate approach would be to embed a heat ... exchange system within the engine using existing blade surfaces to extract and insert heat . Due to the highly turbulent and transient flow, heat

  2. Engineering systems reliability, safety, and maintenance an integrated approach

    CERN Document Server

    Dhillon, B S

    2017-01-01

    Today, engineering systems are an important element of the world economy and each year billions of dollars are spent to develop, manufacture, operate, and maintain various types of engineering systems around the globe. Many of these systems are highly sophisticated and contain millions of parts. For example, a Boeing jumbo 747 is made up of approximately 4.5 million parts including fasteners. Needless to say, reliability, safety, and maintenance of systems such as this have become more important than ever before.  Global competition and other factors are forcing manufacturers to produce highly reliable, safe, and maintainable engineering products. Therefore, there is a definite need for the reliability, safety, and maintenance professionals to work closely during design and other phases. Engineering Systems Reliability, Safety, and Maintenance: An Integrated Approach eliminates the need to consult many different and diverse sources in the hunt for the information required to design better engineering syste...

  3. Buried waste integrated demonstration human engineered control station. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

  4. Buried waste integrated demonstration human engineered control station. Final report

    International Nuclear Information System (INIS)

    1994-09-01

    This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system

  5. Integrated system approach for increase of engine combined cycle efficiency

    International Nuclear Information System (INIS)

    Gewald, D.; Karellas, S.; Schuster, A.; Spliethoff, H.

    2012-01-01

    Highlights: ► A new approach for the optimization of engine combined cycle systems is presented. ► The efficiency can be increased by integrating all available waste heat sources. ► The optimization of the ICE cooling system towards higher temperatures is examined. ► Higher engine cooling water temperatures increase the combined cycle efficiency. ► The costs of electricity generation can be decreased by five integrated system. - Abstract: Internal combustion engines (ICEs) are widely used as independent power producers due to their high electrical efficiency (up to 47%), which can be further enhanced by operating them in combined cycle mode with a water/steam cycle as bottoming cycle. This study presents an integrated approach to optimize the combined cycle overall system efficiency. Therefore, not only the most favorable design of the waste heat recovery (WHR) cycle, but also the optimal configuration of the ICE cooling system have to be investigated, in order to integrate both available engine waste heat sources (exhaust gas, 300–400 °C, engine cooling water, 90 °C) into the waste heat recovery cycle. For the definition of the most favourable temperature level of the engine cooling water three variants of engine cooling systems are examined, with respect to technical limitations given by the ICE. In order to determine the types of engines for which this optimization approach is suitable, three types of engines with different characteristics (fuel, exhaust gas parameters) combined with a water/steam cycle are simulated, by using the calculation tools Excel and Ebsilon Professional. An energetic, exergetic and economic analysis is conducted. These reveal the impacts of the temperature level to the WHR system and to the design of the engine cooling system. The calculations performed, showed that up to 19% of the engine cooling water heat can be efficiently recovered compared to a portion of 6% in the standard system. The better recovery leads to a 5

  6. Engineering integrated photonics for heralded quantum gates.

    Science.gov (United States)

    Meany, Thomas; Biggerstaff, Devon N; Broome, Matthew A; Fedrizzi, Alessandro; Delanty, Michael; Steel, M J; Gilchrist, Alexei; Marshall, Graham D; White, Andrew G; Withford, Michael J

    2016-06-10

    Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate the design, fabrication and characterisation of the optimal known gate scheme which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show device performance to be less sensitive to phase variations in the circuit than to small deviations in the coupler reflectivity, which are expected given the tolerance values of the fabrication method. The mode fidelity is also shown to be less sensitive to reflectivity and phase errors than the process fidelity. Our best device achieves a fidelity of 0.931 ± 0.001 with the ideal 4 × 4 unitary circuit and a process fidelity of 0.680 ± 0.005 with the ideal computational-basis process.

  7. Optimal control for integrated emission management in diesel engines

    NARCIS (Netherlands)

    Donkers, M.C.F.; Schijndel, J. van; Heemels, W.P.M.H.; Willems, F.P.T.

    2016-01-01

    Integrated Emission Management (IEM) is a supervisory control strategy that minimises operational costs (consisting of fuel and AdBlue) for diesel engines with an aftertreatment system, while satisfying emission constraints imposed by legislation. In most work on IEM, a suboptimal heuristic

  8. Integrating standardization into engineering education: the case of forerunner Korea

    NARCIS (Netherlands)

    D.G. Choi (Dong Geun); H.J. de Vries (Henk)

    2013-01-01

    textabstractThe Republic of Korea is a forerunner in integrating the topic of standardization into engineering education at the academic level. This study investigates developments and evolutions in the planning and operating of the University Education Promotion on Standardization (UEPS) in Korea.

  9. Integrating Standardization into Engineering Education: The Case of Forerunner Korea

    Science.gov (United States)

    Choi, Dong Geun; de Vries, Henk J.

    2013-01-01

    The Republic of Korea is a forerunner in integrating the topic of standardization into engineering education at the academic level. This study investigates developments and evolutions in the planning and operating of the University Education Promotion on Standardization (UEPS) in Korea. This paper examines why the Korean government initiated the…

  10. Reducing acquisition risk through integrated systems of systems engineering

    Science.gov (United States)

    Gross, Andrew; Hobson, Brian; Bouwens, Christina

    2016-05-01

    In the fall of 2015, the Joint Staff J7 (JS J7) sponsored the Bold Quest (BQ) 15.2 event and conducted planning and coordination to combine this event into a joint event with the Army Warfighting Assessment (AWA) 16.1 sponsored by the U.S. Army. This multipurpose event combined a Joint/Coalition exercise (JS J7) with components of testing, training, and experimentation required by the Army. In support of Assistant Secretary of the Army for Acquisition, Logistics, and Technology (ASA(ALT)) System of Systems Engineering and Integration (SoSE&I), Always On-On Demand (AO-OD) used a system of systems (SoS) engineering approach to develop a live, virtual, constructive distributed environment (LVC-DE) to support risk mitigation utilizing this complex and challenging exercise environment for a system preparing to enter limited user test (LUT). AO-OD executed a requirements-based SoS engineering process starting with user needs and objectives from Army Integrated Air and Missile Defense (AIAMD), Patriot units, Coalition Intelligence, Surveillance and Reconnaissance (CISR), Focused End State 4 (FES4) Mission Command (MC) Interoperability with Unified Action Partners (UAP), and Mission Partner Environment (MPE) Integration and Training, Tactics and Procedures (TTP) assessment. The SoS engineering process decomposed the common operational, analytical, and technical requirements, while utilizing the Institute of Electrical and Electronics Engineers (IEEE) Distributed Simulation Engineering and Execution Process (DSEEP) to provide structured accountability for the integration and execution of the AO-OD LVC-DE. As a result of this process implementation, AO-OD successfully planned for, prepared, and executed a distributed simulation support environment that responsively satisfied user needs and objectives, demonstrating the viability of an LVC-DE environment to support multiple user objectives and support risk mitigation activities for systems in the acquisition process.

  11. Integrating chemical engineering fundamentals in the capstone process design project

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik

    2010-01-01

    All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30...... of the CDIO standards – especially standard 3 – Integrated Curriculum - means that the course projects must draw on competences provided in other subjects which the students are taking in parallel with Process Design – specifically Process Control and Reaction Engineering. In each semester of the B...... Reaction Engineering. In order to incorporate reactor design into process design in a meaningful way, the teachers of the respective courses need to collaborate (Standard 9 – Enhancement of Faculty CDIO skills). The students also see that different components of the chemical engineering curriculum relate...

  12. Predicted performance of an integrated modular engine system

    Science.gov (United States)

    Binder, Michael; Felder, James L.

    1993-01-01

    Space vehicle propulsion systems are traditionally comprised of a cluster of discrete engines, each with its own set of turbopumps, valves, and a thrust chamber. The Integrated Modular Engine (IME) concept proposes a vehicle propulsion system comprised of multiple turbopumps, valves, and thrust chambers which are all interconnected. The IME concept has potential advantages in fault-tolerance, weight, and operational efficiency compared with the traditional clustered engine configuration. The purpose of this study is to examine the steady-state performance of an IME system with various components removed to simulate fault conditions. An IME configuration for a hydrogen/oxygen expander cycle propulsion system with four sets of turbopumps and eight thrust chambers has been modeled using the Rocket Engine Transient Simulator (ROCETS) program. The nominal steady-state performance is simulated, as well as turbopump thrust chamber and duct failures. The impact of component failures on system performance is discussed in the context of the system's fault tolerant capabilities.

  13. First Canadian workshop on engineering structural integrity : CWESI. Proceedings

    International Nuclear Information System (INIS)

    2002-01-01

    The First Canadian Workshop on Engineering Structural Integrity (CWESI) was held on October 16 and 17, 2002, in Toronto, Canada. The purpose of the Workshop was to review strategies for ESI in a number of key industries, and to attempt to plot a course for co-operation in ESI activities and implementation of ESI initiatives in Canadian industry, together with support for appropriate educational, research and development activities. The Workshop consisted of presentations by speakers from a number of industries. Presentations focused on in-service experience under service conditions related to the Canadian environment. This Workshop was attended by practising structural integrity engineers, managers with the responsibility for delivery of safe and reliable operation, and researchers in the structural integrity area

  14. Integrated Tools for Future Distributed Engine Control Technologies

    Science.gov (United States)

    Culley, Dennis; Thomas, Randy; Saus, Joseph

    2013-01-01

    Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.

  15. CONFIG: Integrated engineering of systems and their operation

    Science.gov (United States)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    This article discusses CONFIG 3, a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operations of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. CONFIG supports integration among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. CONFIG is designed to support integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems.

  16. An engineering approach to an integrated value proposition design framework

    Directory of Open Access Journals (Sweden)

    Van Der Merwe, Carmen

    2015-05-01

    Full Text Available Numerous problems with product quality and time-to-market launches can be traced back to how the product lifecycle process is managed within the organisation. This article provides insight into how an integrated value proposition design framework shifts product lifecycle management from a product-centric view to a customer-centric view, through the use of good engineering practices as found in the systems engineering discipline. Combining this with methods and tools such as the Refined Kano model, Blue Ocean strategy, and the Generalised Bass model enables the organisation to enhance product and service quality while reducing the time-to-market for new value proposition launches.

  17. The Need for Integrated Approaches in Metabolic Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, Anna; Brunk, Elizabeth; Keasling, Jay D.

    2016-08-15

    This review highlights state-of-the-art procedures for heterologous small-molecule biosynthesis, the associated bottlenecks, and new strategies that have the potential to accelerate future accomplishments in metabolic engineering. We emphasize that a combination of different approaches over multiple time and size scales must b e considered for successful pathway engineering in a heterologous host. We have classified these optimization procedures based on the "system" that is being manipulated: transcriptome, translatome, proteome, or reactome. By bridging multiple disciplines, including molecular biology, biochemistry, biophysics, and computational sciences, we can create an integral framework for the discovery and implementation of novel biosynthetic production routes.

  18. Experimental Evaluation of Integral Transformations for Engineering Drawings Vectorization

    Science.gov (United States)

    Vaský, Jozef; Gramblička, Matúš

    2014-12-01

    The concept of digital manufacturing supposes application of digital technologies in the whole product life cycle. Direct digital manufacturing includes such information technology processes, where products are directly manufactured from 3D CAD model. In digital manufacturing, engineering drawing is replaced by CAD product model. In the contemporary practice, lots of engineering paper-based drawings are still archived. They could be digitalized by scanner and stored to one of the raster graphics format and after that vectorized for interactive editing in the specific software system for technical drawing or for archiving in some of the standard vector graphics file format. The vector format is suitable for 3D model generating, too.The article deals with using of selected integral transformations (Fourier, Hough) in the phase of digitalized raster engineering drawings vectorization.

  19. Experimental Evaluation of Integral Transformations for Engineering Drawings Vectorization

    Directory of Open Access Journals (Sweden)

    Vaský Jozef

    2014-12-01

    Full Text Available The concept of digital manufacturing supposes application of digital technologies in the whole product life cycle. Direct digital manufacturing includes such information technology processes, where products are directly manufactured from 3D CAD model. In digital manufacturing, engineering drawing is replaced by CAD product model. In the contemporary practice, lots of engineering paper-based drawings are still archived. They could be digitalized by scanner and stored to one of the raster graphics format and after that vectorized for interactive editing in the specific software system for technical drawing or for archiving in some of the standard vector graphics file format. The vector format is suitable for 3D model generating, too.The article deals with using of selected integral transformations (Fourier, Hough in the phase of digitalized raster engineering drawings vectorization.

  20. Fluid design studies of integrated modular engine system

    Science.gov (United States)

    Frankenfield, Bruce; Carek, Jerry

    1993-01-01

    A study was performed to develop a fluid system design and show the feasibility of constructing an integrated modular engine (IME) configuration, using an expander cycle engine. The primary design goal of the IME configuration was to improve the propulsion system reliability. The IME fluid system was designed as a single fault tolerant system, while minimizing the required fluid components. This study addresses the design of the high pressure manifolds, turbopumps and thrust chambers for the IME configuration. A physical layout drawing was made, which located each of the fluid system components, manifolds and thrust chambers. Finally, a comparison was made between the fluid system designs of an IME system and a non-network (clustered) engine system.

  1. Integrating Engineering Data Systems for NASA Spaceflight Projects

    Science.gov (United States)

    Carvalho, Robert E.; Tollinger, Irene; Bell, David G.; Berrios, Daniel C.

    2012-01-01

    NASA has a large range of custom-built and commercial data systems to support spaceflight programs. Some of the systems are re-used by many programs and projects over time. Management and systems engineering processes require integration of data across many of these systems, a difficult problem given the widely diverse nature of system interfaces and data models. This paper describes an ongoing project to use a central data model with a web services architecture to support the integration and access of linked data across engineering functions for multiple NASA programs. The work involves the implementation of a web service-based middleware system called Data Aggregator to bring together data from a variety of systems to support space exploration. Data Aggregator includes a central data model registry for storing and managing links between the data in disparate systems. Initially developed for NASA's Constellation Program needs, Data Aggregator is currently being repurposed to support the International Space Station Program and new NASA projects with processes that involve significant aggregating and linking of data. This change in user needs led to development of a more streamlined data model registry for Data Aggregator in order to simplify adding new project application data as well as standardization of the Data Aggregator query syntax to facilitate cross-application querying by client applications. This paper documents the approach from a set of stand-alone engineering systems from which data are manually retrieved and integrated, to a web of engineering data systems from which the latest data are automatically retrieved and more quickly and accurately integrated. This paper includes the lessons learned through these efforts, including the design and development of a service-oriented architecture and the evolution of the data model registry approaches as the effort continues to evolve and adapt to support multiple NASA programs and priorities.

  2. Integration of Social Sciences and Humanities into Mechanical Engineering Curriculum

    Directory of Open Access Journals (Sweden)

    Nikša Dubreta

    2014-04-01

    Full Text Available Article deals with ways in which social sciences and humanities have been integrated from the 1980s to the present day into curriculum of Faculty of Mechanical Engineering and Naval Architecture at University of Zagreb, Croatia. After a brief review and summary of selected research and theoretical contributions to the subject theme, a specific research setting is indicated and contextualized. Elements of socio-historical approach are established primarily through analysis of corresponding documents: curriculums from the 1980s, 1990s and 2000s and from key documents on strategic development of the Faculty. It is stressed that social sciences and humanities topics are continually represented in mechanical engineering study program as legitimate, but separate unit, poorly integrated in the main engineering courses. Together with more or less expressed orientation toward micro-social and micro-economical issues in industry and business, it points to the main features in continuity of establishing the field of social sciences and humanities. Finally, it is shown that chances to widen and enrich aforementioned field are in close relation to the character of engineering and its social contextualization expressed in a key Faculty’s strategic documents.

  3. Developing an Integration Infrastructure for Distributed Engine Control Technologies

    Science.gov (United States)

    Culley, Dennis; Zinnecker, Alicia; Aretskin-Hariton, Eliot; Kratz, Jonathan

    2014-01-01

    Turbine engine control technology is poised to make the first revolutionary leap forward since the advent of full authority digital engine control in the mid-1980s. This change aims squarely at overcoming the physical constraints that have historically limited control system hardware on aero-engines to a federated architecture. Distributed control architecture allows complex analog interfaces existing between system elements and the control unit to be replaced by standardized digital interfaces. Embedded processing, enabled by high temperature electronics, provides for digitization of signals at the source and network communications resulting in a modular system at the hardware level. While this scheme simplifies the physical integration of the system, its complexity appears in other ways. In fact, integration now becomes a shared responsibility among suppliers and system integrators. While these are the most obvious changes, there are additional concerns about performance, reliability, and failure modes due to distributed architecture that warrant detailed study. This paper describes the development of a new facility intended to address the many challenges of the underlying technologies of distributed control. The facility is capable of performing both simulation and hardware studies ranging from component to system level complexity. Its modular and hierarchical structure allows the user to focus their interaction on specific areas of interest.

  4. The fully integrated engineer combining technical ability and leadership prowess

    CERN Document Server

    Cerri, Steven T

    2016-01-01

    College teaches you to be a good engineer. But it's likely that your college engineering courses didn't have time to teach you how to effectively contribute your ideas or how to transition to management or leadership. This book provides you with those missing tools. This book addresses the differences between being proficient as a technical individual and effectively contributing to and leading a team to effectively contribute to various projects. The Fully Integrated Engineer: Combining Technical Ability and Leadership Prowess shines a light on how the habits learned in school, while contributing to individual short-term success, actually become hindrances in the modern engineering workplace if your goal is to achieve long-term success as either an engineer, a team lead, manager, or leader. The author offers specific ways to address those limiting habits, turning you into an effective team contributor and leader building toward long-term career succes . The author’s approach to retooling less-than-op...

  5. Engineering Physics Division integral experiments and their analyses

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Integral experiments are performed as part of the Engineering Physics Division's on-going research in the development and application of radiation shielding methods. Integral experiments performed at the Oak Ridge Electron Linear Accelerator (ORELA) under the Division's Magnetic Fusion program are designed to provide data against which ORNL and all other organizations involved in shielding calculations for fusion devices can test their calculational methods and interaction data. The Tower Shielding Facility (TSF) continues to be the primary source of integral data for fission reactor shielding design. The experiments performed at the TSF during the last few years have been sponsored by the Gas Cooled Fast Reactor (GCFR) program. During this report period final documentation was also prepared for the remaining LMFBR shielding experiments, including an examination of streaming through annular slits and measurement of secondary gamma-ray production in reinforced concrete

  6. Modification site localization scoring integrated into a search engine.

    Science.gov (United States)

    Baker, Peter R; Trinidad, Jonathan C; Chalkley, Robert J

    2011-07-01

    Large proteomic data sets identifying hundreds or thousands of modified peptides are becoming increasingly common in the literature. Several methods for assessing the reliability of peptide identifications both at the individual peptide or data set level have become established. However, tools for measuring the confidence of modification site assignments are sparse and are not often employed. A few tools for estimating phosphorylation site assignment reliabilities have been developed, but these are not integral to a search engine, so require a particular search engine output for a second step of processing. They may also require use of a particular fragmentation method and are mostly only applicable for phosphorylation analysis, rather than post-translational modifications analysis in general. In this study, we present the performance of site assignment scoring that is directly integrated into the search engine Protein Prospector, which allows site assignment reliability to be automatically reported for all modifications present in an identified peptide. It clearly indicates when a site assignment is ambiguous (and if so, between which residues), and reports an assignment score that can be translated into a reliability measure for individual site assignments.

  7. The Effects of Maple Integrated Strategy on Engineering Technology Students' Understanding of Integral Calculus

    Science.gov (United States)

    Salleh, Tuan Salwani; Zakaria, Effandi

    2016-01-01

    The objective of this research is to investigate the effectiveness of a learning strategy using Maple in integral calculus. This research was conducted using a quasi-experimental nonequivalent control group design. One hundred engineering technology students at a technical university were chosen at random. The effectiveness of the learning…

  8. GLobal Integrated Design Environment (GLIDE): A Concurrent Engineering Application

    Science.gov (United States)

    McGuire, Melissa L.; Kunkel, Matthew R.; Smith, David A.

    2010-01-01

    The GLobal Integrated Design Environment (GLIDE) is a client-server software application purpose-built to mitigate issues associated with real time data sharing in concurrent engineering environments and to facilitate discipline-to-discipline interaction between multiple engineers and researchers. GLIDE is implemented in multiple programming languages utilizing standardized web protocols to enable secure parameter data sharing between engineers and researchers across the Internet in closed and/or widely distributed working environments. A well defined, HyperText Transfer Protocol (HTTP) based Application Programming Interface (API) to the GLIDE client/server environment enables users to interact with GLIDE, and each other, within common and familiar tools. One such common tool, Microsoft Excel (Microsoft Corporation), paired with its add-in API for GLIDE, is discussed in this paper. The top-level examples given demonstrate how this interface improves the efficiency of the design process of a concurrent engineering study while reducing potential errors associated with manually sharing information between study participants.

  9. Integration of an ion engine on the Communications Technology Satellite.

    Science.gov (United States)

    Payne, W. F.; Finke, R. C.

    1972-01-01

    An ion engine subsystem intended for satellite stationkeeping tasks is described. Ion thrusters are chosen to perform the task because the specific impulse is at least an order of magnitude higher than the commonly used reaction control jets. The higher the value of specific impulse, the greater the total impulse that can be attained for a given weight of propellant, hence cost benefits result. The integration, subsystem testing, and the operating plans for the ion engine experiment to be flown in 1975 on the Canadian Communications Technology Satellite (CTS) are described. The subsystem is designed to demonstrate north-south stationkeeping, attitude control by means of thrust vectoring, long-term space storage and restart capability, and compatibility with a high powered communications transponder.

  10. Integrating ergonomics into engineering design: The role of objects

    DEFF Research Database (Denmark)

    Hall-Andersen, Lene Bjerg; Broberg, Ole

    2014-01-01

    as an intermediary object. However, when the ergonomic guidelines were circulated in the design process, only some of the guidelines were transferred to the design of the sterile processing plant. Based on these findings, recommendations for working with objects in design processes are included. © 2013 Elsevier Ltd......The objective of this study was to explore the role of objects in integrating ergonomic knowledge in engineering design processes. An engineering design case was analyzed using the theoretical concepts of boundary objects and intermediary objects: Boundary objects facilitate collaboration between...... different knowledge domains, while the aim of an intermediary object is to circulate knowledge and thus produce a distant effect. Adjustable layout drawings served as boundary objects and had a positive impact on the dialog between an ergonomist and designers. An ergonomic guideline document was identified...

  11. Engineering Biomaterials to Integrate and Heal: The Biocompatibility Paradigm Shifts

    Science.gov (United States)

    Bryers, James D.; Giachelli, Cecilia M.; Ratner, Buddy D.

    2012-01-01

    This article focuses on one of the major failure routes of implanted medical devices, the foreign body reaction (FBR)—that is, the phagocytic attack and encapsulation by the body of the so-called “biocompatible” biomaterials comprising the devices. We then review strategies currently under development that might lead to biomaterial constructs that will harmoniously heal and integrate into the body. We discuss in detail emerging strategies to inhibit the FBR by engineering biomaterials that elicit more biologically pertinent responses. PMID:22592568

  12. High-Voltage LED Light Engine with Integrated Driver

    Energy Technology Data Exchange (ETDEWEB)

    Soer, Wouter [Lumileds LLC, San Jose, CA (United States)

    2016-02-29

    LED luminaires have seen dramatic changes in cost breakdown over the past few years. The LED component cost, which until recently was the dominant portion of luminaire cost, has fallen to a level of the same order as the other luminaire components, such as the driver, housing, optics etc. With the current state of the technology, further luminaire performance improvement and cost reduction is realized most effectively by optimization of the whole system, rather than a single component. This project focuses on improving the integration between LEDs and drivers. Lumileds has developed a light engine platform based on low-cost high-power LEDs and driver topologies optimized for integration with these LEDs on a single substrate. The integration of driver and LEDs enables an estimated luminaire cost reduction of about 25% for targeted applications, mostly due to significant reductions in driver and housing cost. The high-power LEDs are based on Lumileds’ patterned sapphire substrate flip-chip (PSS-FC) technology, affording reduced die fabrication and packaging cost compared to existing technology. Two general versions of PSS-FC die were developed in order to create the desired voltage and flux increments for driver integration: (i) small single-junction die (0.5 mm2), optimal for distributed lighting applications, and (ii) larger multi-junction die (2 mm2 and 4 mm2) for high-power directional applications. Two driver topologies were developed: a tapped linear driver topology and a single-stage switch-mode topology, taking advantage of the flexible voltage configurations of the new PSS-FC die and the simplification opportunities enabled by integration of LEDs and driver on the same board. A prototype light engine was developed for an outdoor “core module” application based on the multi-junction PSS-FC die and the single-stage switch-mode driver. The light engine meets the project efficacy target of 128 lm/W at a luminous flux

  13. Integrating soft and hard tissues via interface tissue engineering.

    Science.gov (United States)

    Patel, Sahishnu; Caldwell, Jon-Michael; Doty, Stephen B; Levine, William N; Rodeo, Scott; Soslowsky, Louis J; Thomopoulos, Stavros; Lu, Helen H

    2017-11-17

    The enthesis, or interface between bone and soft tissues such as ligament and tendon, is prone to injury and often does not heal, even post surgical intervention. Interface tissue engineering represents an integrative strategy for regenerating the native enthesis by functionally connecting soft and hard tissues and thereby improving clinical outcome. This review focuses on integrative and cell-instructive scaffold designs that target the healing of the two most commonly injured soft tissue-bone junctions: tendon-bone interface (e.g., rotator cuff) and ligament-bone interface (e.g., anterior cruciate ligament). The inherent connectivity between soft and hard tissues is instrumental for musculoskeletal motion and is therefore a key design criterion for soft tissue regeneration. To this end, scaffold design for soft tissue regeneration have progressed from single tissue systems to the emerging focus on pre-integrated and functional composite tissue units. Specifically, a multifaceted, bioinspired approach has been pursued wherein scaffolds are tailored to stimulate relevant cell responses using spatially patterned structural and chemical cues, growth factors, and/or mechanical stimulation. Moreover, current efforts to elucidate the essential scaffold design criteria via strategic biomimicry are emphasized as these will reduce complexity in composite tissue regeneration and ease the related burden for clinical translation. These innovative studies underscore the clinical relevance of engineering connective tissue integration and have broader impact in the formation of complex tissues and total joint regeneration. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Engineering Integration: Building a Quick and Effective Faculty Seminar

    Directory of Open Access Journals (Sweden)

    Kate Peterson

    2012-12-01

    Full Text Available In the spring of 2010, the Science & Engineering Library of the University of Minnesota-Twin Cities partnered with the Information Literacy Librarian and offered a faculty seminar to the College of Science and Engineering. The seminar’s goals included 1. refreshing and expanding faculty’s knowledge of information and 21st century literacies and 2. creating a community of faculty committed to developing student skills in finding, evaluating and synthesizing information in their academic coursework and into their professional careers. Overall, the seminar increased faculty understanding of services and expertise of the libraries, and 21st century literacies. It also developed and strengthened ties between individual faculty members and their subject librarians, leading to a mix of outcomes from a faculty member partnering on a grant the Libraries applied for to course integrated instruction sessions to faculty participating in an e-textbook pilot. This seminar provides a strong model for re-framing information literacy in the context of teaching and learning in science and engineering, giving librarians an opportunity to strengthen relationships and increase liaison effectiveness.

  15. Knowledge Management tools integration within DLR's concurrent engineering facility

    Science.gov (United States)

    Lopez, R. P.; Soragavi, G.; Deshmukh, M.; Ludtke, D.

    The complexity of space endeavors has increased the need for Knowledge Management (KM) tools. The concept of KM involves not only the electronic storage of knowledge, but also the process of making this knowledge available, reusable and traceable. Establishing a KM concept within the Concurrent Engineering Facility (CEF) has been a research topic of the German Aerospace Centre (DLR). This paper presents the current KM tools of the CEF: the Software Platform for Organizing and Capturing Knowledge (S.P.O.C.K.), the data model Virtual Satellite (VirSat), and the Simulation Model Library (SimMoLib), and how their usage improved the Concurrent Engineering (CE) process. This paper also exposes the lessons learned from the introduction of KM practices into the CEF and elaborates a roadmap for the further development of KM in CE activities at DLR. The results of the application of the Knowledge Management tools have shown the potential of merging the three software platforms with their functionalities, as the next step towards the fully integration of KM practices into the CE process. VirSat will stay as the main software platform used within a CE study, and S.P.O.C.K. and SimMoLib will be integrated into VirSat. These tools will support the data model as a reference and documentation source, and as an access to simulation and calculation models. The use of KM tools in the CEF aims to become a basic practice during the CE process. The settlement of this practice will result in a much more extended knowledge and experience exchange within the Concurrent Engineering environment and, consequently, the outcome of the studies will comprise higher quality in the design of space systems.

  16. An integrated systems engineering approach to aircraft design

    Science.gov (United States)

    Price, M.; Raghunathan, S.; Curran, R.

    2006-06-01

    The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology. The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer. SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events. There are major issues as

  17. Integrated Design Engineering Analysis (IDEA) Environment - Aerodynamics, Aerothermodynamics, and Thermal Protection System Integration Module

    Science.gov (United States)

    Kamhawi, Hilmi N.

    2011-01-01

    This report documents the work performed during from March 2010 October 2011. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed environment using the Adaptive Modeling Language (AML) as the underlying framework. This report will focus on describing the work done in the area of extending the aerodynamics, and aerothermodynamics module using S/HABP, CBAERO, PREMIN and LANMIN. It will also detail the work done integrating EXITS as the TPS sizing tool.

  18. Integrated Design and Engineering Analysis (IDEA) Environment - Propulsion Related Module Development and Vehicle Integration

    Science.gov (United States)

    Kamhawi, Hilmi N.

    2013-01-01

    This report documents the work performed during the period from May 2011 - October 2012 on the Integrated Design and Engineering Analysis (IDEA) environment. IDEA is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML). This report will focus on describing the work done in the areas of: (1) Integrating propulsion data (turbines, rockets, and scramjets) in the system, and using the data to perform trajectory analysis; (2) Developing a parametric packaging strategy for a hypersonic air breathing vehicles allowing for tank resizing when multiple fuels and/or oxidizer are part of the configuration; and (3) Vehicle scaling and closure strategies.

  19. Integrated tokamak modeling: when physics informs engineering and research planning

    Science.gov (United States)

    Poli, Francesca

    2017-10-01

    Simulations that integrate virtually all the relevant engineering and physics aspects of a real tokamak experiment are a power tool for experimental interpretation, model validation and planning for both present and future devices. This tutorial will guide through the building blocks of an ``integrated'' tokamak simulation, such as magnetic flux diffusion, thermal, momentum and particle transport, external heating and current drive sources, wall particle sources and sinks. Emphasis is given to the connection and interplay between external actuators and plasma response, between the slow time scales of the current diffusion and the fast time scales of transport, and how reduced and high-fidelity models can contribute to simulate a whole device. To illustrate the potential and limitations of integrated tokamak modeling for discharge prediction, a helium plasma scenario for the ITER pre-nuclear phase is taken as an example. This scenario presents challenges because it requires core-edge integration and advanced models for interaction between waves and fast-ions, which are subject to a limited experimental database for validation and guidance. Starting from a scenario obtained by re-scaling parameters from the demonstration inductive ``ITER baseline'', it is shown how self-consistent simulations that encompass both core and edge plasma regions, as well as high-fidelity heating and current drive source models are needed to set constraints on the density, magnetic field and heating scheme. This tutorial aims at demonstrating how integrated modeling, when used with adequate level of criticism, can not only support design of operational scenarios, but also help to asses the limitations and gaps in the available models, thus indicating where improved modeling tools are required and how present experiments can help their validation and inform research planning. Work supported by DOE under DE-AC02-09CH1146.

  20. Integrating Global Hydrology Into Graduate Engineering Education and Research

    Science.gov (United States)

    Griffis, V. W.

    2007-12-01

    Worldwide, polluted water affects the health of 1.2 billion people and contributes to the death of 15 million children under five every year. In addition poor environmental quality contributes to 25 per cent of all preventable ill health in the world. To address some of these problems, at the 2002 World Summit on Sustainable Development, the world community set the goal of halving, by the year 2015, the proportion of people without access to safe drinking water and basic sanitation. Solving sanitation and water resource management problems in any part of the world presents an interdisciplinary, complex challenge. However, when we attempt to solve these problems in an international context, our technical approaches must be tempered with cultural sensitivity and extraordinary management strategies. To meet this challenge, Michigan Tech has developed a unique global partnership with the U.S. Peace Corps to address our acknowledgement of the importance of placing engineering solutions in a global context. The program has graduated 30 students. Program enrollment is now over 30 and over 20 countries have hosted our students. The objective of this presentation is to demonstrate how this unique partnership can be integrated with graduate engineering education and research and also show how such a program may attract a more diverse student population into engineering. All graduate students enrolled in our Master's International Program in Civil and Environmental Engineering must complete specific coursework requirements before departing for their international experience. In CE5993 (Field Engineering in the Developing World) students learn to apply concepts of sustainable development and appropriate technology in the developing world. In FW5770 (Rural Community Development Planning and Analysis) students learn how one involves a community in the decision making process. A common theme in both courses is the role of woman in successful development projects. Technical

  1. Glass-based integrated optical splitters: engineering oriented research

    Science.gov (United States)

    Hao, Yinlei; Zheng, Weiwei; Yang, Jianyi; Jiang, Xiaoqing; Wang, Minghua

    2010-10-01

    Optical splitter is one of most typical device heavily demanded in implementation of Fiber To The Home (FTTH) system. Due to its compatibility with optical fibers, low propagation loss, flexibility, and most distinguishingly, potentially costeffectiveness, glass-based integrated optical splitters made by ion-exchange technology promise to be very attractive in application of optical communication networks. Aiming at integrated optical splitters applied in optical communication network, glass ion-exchange waveguide process is developed, which includes two steps: thermal salts ion-exchange and field-assisted ion-diffusion. By this process, high performance optical splitters are fabricated in specially melted glass substrate. Main performance parameters of these splitters, including maximum insertion loss (IL), polarization dependence loss (PDL), and IL uniformity are all in accordance with corresponding specifications in generic requirements for optic branching components (GR-1209-CORE). In this paper, glass based integrated optical splitters manufacturing is demonstrated, after which, engineering-oriented research work results on glass-based optical splitter are presented.

  2. An integrated engineering solution in treating tailings pond water (TPW)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Z. [Alberta Univ., Edmonton, AB (Canada)

    2010-07-01

    This presentation described the progress that has been made in the treatment of tailings pond water (TPW). Several treatment technologies were examined for their potential use. Any valid treatment methods must be technically practicable and economically feasible in treating TPW. An integrated TPW treatment process was proposed in this paper after reviewing recent published literature related to TPW treatment. The process was proposed based on knowledge and experience gained from municipal and other industrial water and wastewater treatment operations. This engineered treatment process consists of bioadsorption, bioflocculation, suspended sludge blanket filtration, clarification, ozonation, and coke assisted hybrid biodegradation. The proposed treatment process was aiming at environmental release and/or further reuse of the treated TPW. This proposed treatment process features the reuse of 2 waste materials in order to enhance the treatment efficiency, to increase financial feasibility, and to maximize environmental benefits of the treatment. tabs., figs.

  3. Computer graphics application in the engineering design integration system

    Science.gov (United States)

    Glatt, C. R.; Abel, R. W.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Stewart, W. A.

    1975-01-01

    The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design.

  4. Challenges and promises of integrating knowledge engineering and qualitative methods

    Science.gov (United States)

    Lundberg, C. Gustav; Holm, Gunilla

    Our goal is to expose some of the close ties that exist between knowledge engineering (KE) and qualitative methodology (QM). Many key concepts of qualitative research, for example meaning, commonsense, understanding, and everyday life, overlap with central research concerns in artificial intelligence. These shared interests constitute a largely unexplored avenue for interdisciplinary cooperation. We compare and take some steps toward integrating two historically diverse methodologies by exploring the commonalities of KE and QM both from a substantive and a methodological/technical perspective. In the second part of this essay, we address knowledge acquisition problems and procedures. Knowledge acquisition within KE has been based primarily on cognitive psychology/science foundations, whereas knowledge acquisition within QM has a broader foundation in phenomenology, symbolic interactionism, and ethnomethodology. Our discussion and examples are interdisciplinary in nature. We do not suggest that there is a clash between the KE and QM frameworks, but rather that the lack of communication potentially may limit each framework's future development.

  5. Capability Maturity Model Integration (CMMISM), Version 1.1 CMMISM for Systems Engineering, Software Engineering, Integrated Product and Process Development, and Supplier Sourcing (CMMI-SE/SW/IPPD/SS, V1.1). Staged Representation

    National Research Council Canada - National Science Library

    2002-01-01

    .... Concepts covered by this model include systems engineering, software engineering, integrated product and process development, and supplier sourcing as well as traditional CMM concepts such as process...

  6. Integration and framing between system engineering, enterprise engineering and whole of society

    CSIR Research Space (South Africa)

    Erasmus, Louwrence D

    2017-07-01

    Full Text Available Vision 2025: “Expanding the application of systems engineering across industry domains, applying systems engineering to help shape policy related to social and natural systems, expanding the theoretical foundation for systems engineering, advancing...

  7. Driven by Beliefs: Understanding Challenges Physical Science Teachers Face When Integrating Engineering and Physics

    Science.gov (United States)

    Dare, Emily A.; Ellis, Joshua A.; Roehrig, Gillian H.

    2014-01-01

    It is difficult to ignore the increased use of technological innovations in today's world, which has led to various calls for the integration of engineering into K-12 science standards. The need to understand how engineering is currently being brought to science classrooms is apparent and necessary in order to address these calls for integration.…

  8. Integration of Sustainability in Engineering Education: Why Is PBL an Answer?

    Science.gov (United States)

    Guerra, Aida

    2017-01-01

    Purpose: Education for sustainable development (ESD) is one of the challenges engineering education currently faces. Engineering education needs to revise and change its curriculum to integrate ESD principles and knowledge. Problem based learning (PBL) has been one of the main learning pedagogies used to integrate sustainability in engineering…

  9. Grid Integration Science, NREL Power Systems Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-25

    This report highlights journal articles published in 2016 by researchers in the Power Systems Engineering Center. NREL's Power Systems Engineering Center published 47 journal and magazine articles in the past year, highlighting recent research in grid modernization.

  10. Integrated modeling tool for performance engineering of complex computer systems

    Science.gov (United States)

    Wright, Gary; Ball, Duane; Hoyt, Susan; Steele, Oscar

    1989-01-01

    This report summarizes Advanced System Technologies' accomplishments on the Phase 2 SBIR contract NAS7-995. The technical objectives of the report are: (1) to develop an evaluation version of a graphical, integrated modeling language according to the specification resulting from the Phase 2 research; and (2) to determine the degree to which the language meets its objectives by evaluating ease of use, utility of two sets of performance predictions, and the power of the language constructs. The technical approach followed to meet these objectives was to design, develop, and test an evaluation prototype of a graphical, performance prediction tool. The utility of the prototype was then evaluated by applying it to a variety of test cases found in the literature and in AST case histories. Numerous models were constructed and successfully tested. The major conclusion of this Phase 2 SBIR research and development effort is that complex, real-time computer systems can be specified in a non-procedural manner using combinations of icons, windows, menus, and dialogs. Such a specification technique provides an interface that system designers and architects find natural and easy to use. In addition, PEDESTAL's multiview approach provides system engineers with the capability to perform the trade-offs necessary to produce a design that meets timing performance requirements. Sample system designs analyzed during the development effort showed that models could be constructed in a fraction of the time required by non-visual system design capture tools.

  11. Vehicle Systems Engineering and Integration Activities - Phase 5

    Science.gov (United States)

    2012-08-31

    TARDEC has found that many systems engineers from the automobile industry have significant experience in systems engineering (SE), but lack experience in...mission. TARDEC has found that many systems engineers from the automobile industry have significant experience in systems engineering (SE), but lack...additional physical characteristics that limit versatility. The Vehicle Dynamics Data Sheets contained the instruction “If the chassis has a turret and

  12. An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States

    Science.gov (United States)

    2015-12-22

    AFRL-AFOSR-VA-TR-2016-0037 An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States Adrian Lee UNIVERSITY OF WASHINGTON...to 14-09-2015 4. TITLE AND SUBTITLE An Integrated Neuroscience and Engineering Approach to Classifying Human Brain- States 5a.  CONTRACT NUMBER 5b...specific cognitive states remains elusive, owing perhaps to limited crosstalk between the fields of neuroscience and engineering. Here, we report a

  13. Supply Chain Systems Architecture and Engineering Design: Green-field Supply Chain Integration

    OpenAIRE

    Radanliev, Petar

    2016-01-01

    This paper developed a new theory for supply chain architecture, and engineering design that enables integration of the business and supply chain strategies. The architecture starts with individual supply chain participants and derives insights into the complex and abstract concept of green-field integration design. The paper presented a conceptual system for depicting the interactions between business and supply chain strategy engineering. The system examines the decisions made when engineer...

  14. Analysing the Integration of Engineering in Science Lessons with the Engineering-Infused Lesson Rubric

    Science.gov (United States)

    Peterman, Karen; Daugherty, Jenny L.; Custer, Rodney L.; Ross, Julia M.

    2017-01-01

    Science teachers are being called on to incorporate engineering practices into their classrooms. This study explores whether the Engineering-Infused Lesson Rubric, a new rubric designed to target best practices in engineering education, could be used to evaluate the extent to which engineering is infused into online science lessons. Eighty lessons…

  15. Systems integrated human engineering on the Navy's rapid acquisition of manufactured parts/test and integration facility

    Science.gov (United States)

    Gallaway, Glen R.

    1987-01-01

    Human Engineering in many projects is at best a limited support function. In this Navy project the Human Engineering function is an integral component of the systems design and development process. Human Engineering is a member of the systems design organization. This ensures that people considerations are: (1) identified early in the project; (2) accounted for in the specifications; (3) incorporated into the design; and (4) the tested product meets the needs and expectations of the people while meeting the overall systems requirements. The project exemplifies achievements that can be made by the symbiosis between systems designers, engineers and Human Engineering. This approach increases Human Engineering's effectiveness and value to a project because it becomes an accepted, contributing team member. It is an approach to doing Human Engineering that should be considered for most projects. The functional and organizational issues giving this approach strength are described.

  16. Introduction to Integral Calculus Systematic Studies with Engineering Applications for Beginners

    CERN Document Server

    Rohde, Ulrich L; Poddar, Ajay K; Ghosh, A K

    2011-01-01

    An accessible introduction to the fundamentals of calculus needed to solve current problems in engineering and the physical sciences I ntegration is an important function of calculus, and Introduction to Integral Calculus combines fundamental concepts with scientific problems to develop intuition and skills for solving mathematical problems related to engineering and the physical sciences. The authors provide a solid introduction to integral calculus and feature applications of integration, solutions of differential equations, and evaluation methods. With logical organization coupled with cle

  17. Polar Seismic TETwalker: Integrating Engineering Teaching and Research

    Science.gov (United States)

    Gifford, C. M.; Ruiz, I.; Carmichael, B. L.; Wade, U. B.; Agah, A.

    2007-12-01

    Based on the TETwalker robot platform at NASA/Goddard Space Flight Center, the Center for Remote Sensing of Ice Sheets (CReSIS) has begun work on designing and modeling the integration of seismic surveying equipment into the TETwalker robot architecture for use in polar environments. Employing multiple Seismic TETwalker robots will allow gathering of polar seismic data in previously inaccessible or unexplored terrains, as well as help significantly reduce human involvement in such harsh environments. NASA's TETwalker mobile robot uses a unique form of mobility to topple across the surface and over obstacles. This robot therefore does not suffer the fate of other wheeled and tracked robots if tipped over. It is composed of extending struts and nodes, forming a tetrahedral shape which can be strategically adjusted to change the robot's center of gravity for toppling. Of the many platforms the TETwalker architecture can form, the 4-TETwalker robot (consisting of four ground nodes, a center payload node, and interconnecting struts) has been the focus of current research. The center node has been chosen as the geophone deployment medium, designed in such a way to allow geophone insertion using any face of the robot's structure. As the robot comes to rest at the deployment location, one of its faces will rest on the surface. No matter which side it is resting on, a geophone spike will be perpendicular to its face and an extending strut will be vertical for pushing the geophone into the ground. Lengthening and shortening struts allow the deployment node to precisely place the geophone into the ground, as well as vertically orient the geophones for proper data acquisition on non-flat surfaces. Power source integration has been investigated, incorporating possible combinations of solar, wind, and vibration power devices onboard the robot models for long-term survival in a polar environment. Designs have also been modeled for an alternate center node sensor package (e

  18. THE CONCEPT OF INTEGRATED ENGINEERING AND BUSINESS (EB EDUCATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Michał Charlak

    2013-12-01

    Full Text Available In our approach to engineering and business education system an engineer is a man working as creator and user of technical products. We stress that the process of understanding and gaining knowledge of technical reality and creativity of engineers are the essential for EB concept . Next, we describe briefly three perspectives for building the system of innovative product origination as a basis for EB system: 1 designer’s perspective; 2 business perspective. 3 consumer perspective.

  19. Integrated-mechanized production of welded constructions in boiler fabrication and nuclear power engineering

    International Nuclear Information System (INIS)

    Medal'e, V.G.; Shul'man, I.E.; Shcherbatykh, V.A.

    1981-01-01

    Modern state and prospects of development of integral- mechanized production of welded constructions in boiler fabrication and nuclear power engineering are considered. Several integral-mechanized sections being under operation at the enterprises of the branch of industry are described. Efficiency of the use of integral-mechanized production of welded constructions is shown [ru

  20. Integration, Authenticity, and Relevancy in College Science through Engineering Design

    Science.gov (United States)

    Turner, Ken L., Jr.; Hoffman, Adam R.

    2018-01-01

    Engineering design is an ideal perspective for engaging students in college science classes. An engineering design problem-solving framework was used to create a general chemistry lab activity focused on an important environmental issue--dead zones. Dead zones impact over 400 locations around the world and are a result of nutrient pollution, one…

  1. Successful integration of industry and education with concurrent engineering projects

    NARCIS (Netherlands)

    Ir. H.E.V. Veenstra; Ir. Peter van Kollenburg

    1998-01-01

    The Department of Electrical and Electronic Engineering at the Fontys University of Professional Education in Eindhoven, The Netherlands, offers a course which is being developed around the principles of Concurrent Engineering. From research we found that in general students are not completely aware

  2. Experiences with Integrating Simulation into a Software Engineering Curriculum

    Science.gov (United States)

    Bollin, Andreas; Hochmuller, Elke; Mittermeir, Roland; Samuelis, Ladislav

    2012-01-01

    Software Engineering education must account for a broad spectrum of knowledge and skills software engineers will be required to apply throughout their professional life. Covering all the topics in depth within a university setting is infeasible due to curricular constraints as well as due to the inherent differences between educational…

  3. Integrating Surface Modeling into the Engineering Design Graphics Curriculum

    Science.gov (United States)

    Hartman, Nathan W.

    2006-01-01

    It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…

  4. IntegromeDB: an integrated system and biological search engine.

    Science.gov (United States)

    Baitaluk, Michael; Kozhenkov, Sergey; Dubinina, Yulia; Ponomarenko, Julia

    2012-01-19

    With the growth of biological data in volume and heterogeneity, web search engines become key tools for researchers. However, general-purpose search engines are not specialized for the search of biological data. Here, we present an approach at developing a biological web search engine based on the Semantic Web technologies and demonstrate its implementation for retrieving gene- and protein-centered knowledge. The engine is available at http://www.integromedb.org. The IntegromeDB search engine allows scanning data on gene regulation, gene expression, protein-protein interactions, pathways, metagenomics, mutations, diseases, and other gene- and protein-related data that are automatically retrieved from publicly available databases and web pages using biological ontologies. To perfect the resource design and usability, we welcome and encourage community feedback.

  5. Integrating ergonomics in design processes: a case study within an engineering consultancy firm

    DEFF Research Database (Denmark)

    Sørensen, Lene Bjerg; Broberg, Ole

    2012-01-01

    This paper reports on a case study within an engineering consultancy firm, where engineering designers and ergonomists were working together on the design of a new hospital sterile processing plant. The objective of the paper is to gain a better understanding of the premises for integrating...... ergonomics into engineering design processes and how different factors either promote or limit the integration. Based on a grounded theory approach a model illustrating these factors is developed and different hypotheses about how these factors either promote and/or limit the integration of ergonomics...

  6. Systems Engineering and Integration for Advanced Life Support System and HST

    Science.gov (United States)

    Kamarani, Ali K.

    2005-01-01

    Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.

  7. Integrating ergonomics into engineering: Empirical evidence and implications for the ergononomist

    DEFF Research Database (Denmark)

    Broberg, Ole

    2007-01-01

    Engineering design is a strong determinant of workplace ergonomics. A survey among 680 engineers in twenty Danish enterprises indicated that engineers are not aware that they influence the work environment of other people. Ergonomics had a low rating among engineers, perhaps because neither...... management nor safety organizations expressed any expectations in this area. The study further indicated that effects of ergonomics training in engineering schools were very lim-ited. The engineering cultures in enterprises, together with other organizational factors, are suggested to be of greater...... importance than the professional training. The implications for industrial ergonomists might be an acknowledgement of the role as change agent when trying to integrate ergonomics into engineering. In do-ing so, they need also to acknowledge that engineers are widely different. They have different background...

  8. Integrative Dynamic Reconfiguration in a Parallel Stream Processing Engine

    DEFF Research Database (Denmark)

    Madsen, Kasper Grud Skat; Zhou, Yongluan; Cao, Jianneng

    2017-01-01

    Load balancing, operator instance collocations and horizontal scaling are critical issues in Parallel Stream Processing Engines to achieve low data processing latency, optimized cluster utilization and minimized communication cost respectively. In previous work, these issues are typically tackled...... solution called ALBIC, which support general jobs. We implement the proposed techniques on top of Apache Storm, an open-source Parallel Stream Processing Engine. The extensive experimental results over both synthetic and real datasets show that our techniques clearly outperform existing approaches....

  9. Integration of a wood pellet burner and a Stirling engine to produce residential heat and power

    International Nuclear Information System (INIS)

    Cardozo, Evelyn; Erlich, Catharina; Malmquist, Anders; Alejo, Lucio

    2014-01-01

    The integration a Stirling engine with a pellet burner is a promising alternative to produce heat and power for residential use. In this context, this study is focused on the experimental evaluation of the integration of a 20 kW th wood pellet burner and a 1 kW e Stirling engine. The thermal power not absorbed by the engine is used to produce hot water. The evaluation highlights the effects of pellet type, combustion chamber length and cycling operation on the Stirling engine temperatures and thermal power absorbed. The results show that the position of the Stirling engine is highly relevant in order to utilize as much as possible of the radiative heat from the burner. Within this study, only a 5 cm distance change between the Stirling engine and the pellet burner could result in an increase of almost 100 °C in the hot side of the engine. However, at a larger distance, the temperature of the hot side is almost unchanged suggesting dominating convective heat transfer from the hot flue gas. Ash accumulation decreases the temperature of the hot side of the engine after some cycles of operation when a commercial pellet burner is integrated. The temperature ratio, which is the relation between the minimum and maximum temperatures of the engine, decreases when using Ø8 mm wood pellets in comparison to Ø6 mm pellets due to higher measured temperatures on the hot side of the engine. Therefore, the amount of heat supplied to the engine is increased for Ø8 mm wood pellets. The effectiveness of the engine regenerator is increased at higher pressures. The relation between temperature of the hot side end and thermal power absorbed by the Stirling engine is nearly linear between 500 °C and 660 °C. Higher pressure inside the Stirling engine has a positive effect on the thermal power output. Both the chemical and thermal losses increase somewhat when integrating a Stirling engine in comparison to a stand-alone boiler for only heat production. The overall efficiency

  10. Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration

    NARCIS (Netherlands)

    Leijten, Jeroen Christianus Hermanus; Rouwkema, Jeroen; Zhang, Y.S.; Nasajpour, A.; Dokmeci, M.R.; Khademhosseini, A.

    2016-01-01

    Tissue engineering has the potential to revolutionize the health care industry. Delivering on this promise requires the generation of efficient, controllable and predictable implants. The integration of nano- and microtechnologies into macroscale regenerative biomaterials plays an essential role in

  11. An integrated knowledge system for wind tunnel testing - Project Engineers' Intelligent Assistant

    Science.gov (United States)

    Lo, Ching F.; Shi, George Z.; Hoyt, W. A.; Steinle, Frank W., Jr.

    1993-01-01

    The Project Engineers' Intelligent Assistant (PEIA) is an integrated knowledge system developed using artificial intelligence technology, including hypertext, expert systems, and dynamic user interfaces. This system integrates documents, engineering codes, databases, and knowledge from domain experts into an enriched hypermedia environment and was designed to assist project engineers in planning and conducting wind tunnel tests. PEIA is a modular system which consists of an intelligent user-interface, seven modules and an integrated tool facility. Hypermedia technology is discussed and the seven PEIA modules are described. System maintenance and updating is very easy due to the modular structure and the integrated tool facility provides user access to commercial software shells for documentation, reporting, or database updating. PEIA is expected to provide project engineers with technical information, increase efficiency and productivity, and provide a realistic tool for personnel training.

  12. State of the Art : Integrated Management of Requirements in Model-Based Software Engineering

    OpenAIRE

    Thörn, Christer

    2006-01-01

    This report describes the background and future of research concerning integrated management of requirements in model-based software engineering. The focus is on describing the relevant topics and existing theoretical backgrounds that form the basis for the research. The report describes the fundamental difficulties of requirements engineering for software projects, and proposes that the results and methods of models in software engineering can help leverage those problems. Taking inspiration...

  13. The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology: Capabilities and Applications

    Science.gov (United States)

    Evers, Ken H.; Bachert, Robert F.

    1987-01-01

    The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology has been formulated and applied over a five-year period. It has proven to be a unique, integrated approach utilizing a top-down, structured technique to define and document the system of interest; a knowledge engineering technique to collect and organize system descriptive information; a rapid prototyping technique to perform preliminary system performance analysis; and a sophisticated simulation technique to perform in-depth system performance analysis.

  14. Towards Continuous Integration in Model-Based Engineering of Automated Production Systems

    OpenAIRE

    Jakob Mund, Iman Badr, Safa Bougouffa, Birgit Vogel-Heuser

    2017-01-01

    Continuous integration (CI) is widely used in software engineering. The observed benefits include reduced efforts for system integration, which is particularly appealing for engineering automated production systems (aPS) due to the different disciplines involved. Yet, while many individual quality assurance means for aPS have been proposed, their adequacy for and systematic use in CI remains unclear. In this article, we provide two key contributions: First, we propose a quality model for mode...

  15. Integration of supervisory control synthesis in model-based systems engineering

    NARCIS (Netherlands)

    J.C.M. Baeten (Jos); J.M. van de Mortel-Fronczak (Joanna); J.E. Rooda (Jacobus)

    2016-01-01

    htmlabstractIncreasing system complexity, time to market and development costs reduction place higher demands on engineering processes. Formal models play an important role here because they enable the use of various model-based analyses and early integration techniques and tools. Engineering

  16. Creating the integral engineer : Combining development education, sustainability, entrepreneurship and technology at Delft University of Technology

    NARCIS (Netherlands)

    Zwarteveen, J.W.; Blom, E.M.; Vastbinder, B.; Brezet, J.C.

    2010-01-01

    A modern engineer is more than a technical specialist. Training an integral engineer requires education in non-technical skills, including social and ethical aspects. Therefore, Delft University of Technology (DUT) introduced sustainable development and entrepreneurship into its bachelor and master

  17. Integration and the hold-up problem in the design organization for engineering projects

    NARCIS (Netherlands)

    Zerjav, Vedran; Hartmann, Timo; Javernick-Will, A.; Chinowsky, P.

    2012-01-01

    The paper presents a perspective of the design organization in engineering projects based on the economic concept of the hold-up problem. By integrating the economic theories on the boundaries of organizations into the existing knowledge on design in engineering projects, the paper hypothesizes a

  18. Generating Alternative Engineering Designs by Integrating Desktop VR with Genetic Algorithms

    Science.gov (United States)

    Chandramouli, Magesh; Bertoline, Gary; Connolly, Patrick

    2009-01-01

    This study proposes an innovative solution to the problem of multiobjective engineering design optimization by integrating desktop VR with genetic computing. Although, this study considers the case of construction design as an example to illustrate the framework, this method can very much be extended to other engineering design problems as well.…

  19. Geothermal engineering integrating mitigation of induced seismicity in reservoirs - The European GEISER project

    NARCIS (Netherlands)

    Bruhn, D.; Huenges, E.; Áǵustsson, K.; Zang, A.; Kwiatek, G.; Rachez, X.; Wiemer, S.; Wees, J.D.A.M. van; Calcagno, P.; Kohl, T.; Dorbath, C.; Natale, G. de; Oye, V.

    2011-01-01

    The GEISER (Geothermal Engineering Integrating Mitigation of Induced SEismicity in Reservoirs) project is co-funded by the European Commission to address the mitigation and understanding of induced seismicity (IS) in geothermal engineering. The aim of the project is to contribute to the improvement

  20. Integrated planning of spare parts and service engineers with partial backlogging

    NARCIS (Netherlands)

    Rahimi Ghahroodi, S.; Al Hanbali, A.; Zijm, W.H.M.; van Ommeren, J.C.W.; Sleptchenko, Andrei

    2017-01-01

    In this paper, we consider the integrated planning of resources in a service maintenance logistics system in which spare parts supply and service engineers deployment are considered simultaneously. The objective is to determine close-to-optimal stock levels as well as the number of service engineers

  1. Integrated resource planning in maintenance logistics with spare parts emergency shipment and service engineers backlogging

    NARCIS (Netherlands)

    Rahimi-Ghahroodi, S.; Al Hanbali, Ahmad; Zijm, Willem H.M.; van Ommeren, Jan C.W.; Sleptchenko, Andrei

    In this paper, we consider the integrated planning of resources in a service maintenance logistics system in which spare parts supply and service engineers deployment are considered simultaneously. The objective is to determine close-to-optimal stock levels as well as the number of service engineers

  2. How an Integrative STEM Curriculum Can Benefit Students in Engineering Design Practices

    Science.gov (United States)

    Fan, Szu-Chun; Yu, Kuang-Chao

    2017-01-01

    STEM-oriented engineering design practice has become recognized increasingly by technology education professionals in Taiwan. This study sought to examine the effectiveness of the application of an integrative STEM approach within engineering design practices in high school technology education in Taiwan. A quasi-experimental study was conducted…

  3. 13th International Conference on Integral Methods in Science and Engineering

    CERN Document Server

    Kirsch, Andreas

    2015-01-01

    This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering.  Written by internationally recognized researchers, the chapters in this book are based on talks given at the Thirteenth International Conference on Integral Methods in Science and Engineering, held July 21–25, 2014, in Karlsruhe, Germany.   A broad range of topics is addressed, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches.   This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool.

  4. Engineering of tunnel barrier for highly integrated nonvolatile memory applications

    Science.gov (United States)

    You, Hee-Wook; Son, Jung-Woo; Cho, Won-Ju

    2011-03-01

    In this paper, the engineered tunnel barrier technology is introduced by using the engineered tunnel barrier of VARIOT type (SiO2/Si3N4/SiO2) and CRESTED type (Si3N4/SiO2/Si3N4) with Si3N4 and high- k HfO2 layers as charge trapping layers, respectively. In addition, the high- k stacked VARIOT type of SiO2/HfO2/Al2O3 and Al2O3/HfO2/Al2O3 are compared with O/N/O tunnel barrier memory. As a result, the engineered tunnel barrier memory device showed excellent memory characteristics compared to the single SiO2 tunnel barrier memory device, such as very high P/E (program/erase) speed, good retention time and no degradation in endurance characteristics.

  5. Integration of systems biology with bioprocess engineering: L: -threonine production by systems metabolic engineering of Escherichia coli.

    Science.gov (United States)

    Lee, Sang Yup; Park, Jin Hwan

    2010-01-01

    Random mutation and selection or targeted metabolic engineering without consideration of its impact on the entire metabolic and regulatory networks can unintentionally cause genetic alterations in the region, which is not directly related to the target metabolite. This is one of the reasons why strategies for developing industrial strains are now shifted towards targeted metabolic engineering based on systems biology, which is termed systems metabolic engineering. Using systems metabolic engineering strategies, all the metabolic engineering works are conducted in systems biology framework, whereby entire metabolic and regulatory networks are thoroughly considered in an integrated manner. The targets for purposeful engineering are selected after all possible effects on the entire metabolic and regulatory networks are thoroughly considered. Finally, the strain, which is capable of producing the target metabolite to a high level close to the theoretical maximum value, can be constructed. Here we review strategies and applications of systems biology successfully implemented on bioprocess engineering, with particular focus on developing L: -threonine production strains of Escherichia coli.

  6. Integrating Computational Thinking into Technology and Engineering Education

    Science.gov (United States)

    Hacker, Michael

    2018-01-01

    Computational Thinking (CT) is being promoted as "a fundamental skill used by everyone in the world by the middle of the 21st Century" (Wing, 2006). CT has been effectively integrated into history, ELA, mathematics, art, and science courses (Settle, et al., 2012). However, there has been no analogous effort to integrate CT into…

  7. An Experiment in Integrating an Engineering Communication Toolkit into the Industrial Engineering Curriculum

    Science.gov (United States)

    2011-01-31

    A recent survey on the working habits of professional engineers found that nearly 2/3 of their day is spent communicating with others, while only 1/3 is spent on tasks commonly associated with engineering (Sageev & Romanowski, 2001). Whether it is fa...

  8. Using the Engineering Design Cycle to Develop Integrated Project Based Learning in Aerospace Engineering

    NARCIS (Netherlands)

    Saunders-Smits, G.N.; Roling, P.; Brügemann, V.; Timmer, N.; Melkert, J.

    2012-01-01

    Over the past four years the Faculty of Aerospace Engineering at Delft University of Technology in the Netherlands has redeveloped its BSc curriculum to mimic an engineering design cycle. Each semester represents a step in the design cycle: exploration; system design; sub-system design; test,

  9. Transient performance simulation of aircraft engine integrated with fuel and control systems

    International Nuclear Information System (INIS)

    Wang, C.; Li, Y.G.; Yang, B.Y.

    2017-01-01

    Highlights: • A new performance simulation method for engine hydraulic fuel systems is introduced. • Time delay of engine performance due to fuel system model is noticeable but small. • The method provides details of fuel system behavior in engine transient processes. • The method could be used to support engine and fuel system designs. - Abstract: A new method for the simulation of gas turbine fuel systems based on an inter-component volume method has been developed. It is able to simulate the performance of each of the hydraulic components of a fuel system using physics-based models, which potentially offers more accurate results compared with those using transfer functions. A transient performance simulation system has been set up for gas turbine engines based on an inter-component volume (ICV) method. A proportional-integral (PI) control strategy is used for the simulation of engine controller. An integrated engine and its control and hydraulic fuel systems has been set up to investigate their coupling effect during engine transient processes. The developed simulation system has been applied to a model aero engine. The results show that the delay of the engine transient response due to the inclusion of the fuel system model is noticeable although relatively small. The developed method is generic and can be applied to any other gas turbines and their control and fuel systems.

  10. Integrating reuse measurement practices into the ERP requirements engineering process

    NARCIS (Netherlands)

    Daneva, Maia; Münich, Jürgen; Vierimaa, Matias

    2006-01-01

    The management and deployment of reuse-driven and architecturecentric requirements engineering processes have become common in many organizations adopting Enterprise Resource Planning solutions. Yet, little is known about the variety of reusability aspects in ERP projects at the level of

  11. An Empirical Methodology for Engineering Human Systems Integration

    Science.gov (United States)

    2009-12-01

    rules IIE ....................................... Institute of Industrial Engineering IMC ..................................... Instrument...optimization, and control theory and draws from empirical research in information theory, physiology, and applied psychology . Since the problems of HSI...of False Alarm (β) Sensor package A Human 56 diverse real world conditions. Empirical data from basic research in physiology and psychology can

  12. Antimisting kerosene JT3 engine fuel system integration study

    Science.gov (United States)

    Fiorentino, A.

    1987-01-01

    An analytical study and laboratory tests were conducted to assist NASA in determining the safety and mission suitability of the modified fuel system and flight tests for the Full-Scale Transport Controlled Impact Demonstration (CID) program. This twelve-month study reviewed and analyzed both the use of antimisting kerosene (AMK) fuel and the incorporation of a fuel degrader on the operational and performance characteristics of the engines tested. Potential deficiencies and/or failures were identified and approaches to accommodate these deficiencies were recommended to NASA Ames -Dryden Flight Research Facility. The result of flow characterization tests on degraded AMK fuel samples indicated levels of degradation satisfactory for the planned missions of the B-720 aircraft. The operability and performance with the AMK in a ground test engine and in the aircraft engines during the test flights were comparable to those with unmodified Jet A. For the final CID test, the JT-3C-7 engines performed satisfactorily while operating on AMK right up to impact.

  13. Model-integrating software components engineering flexible software systems

    CERN Document Server

    Derakhshanmanesh, Mahdi

    2015-01-01

    In his study, Mahdi Derakhshanmanesh builds on the state of the art in modeling by proposing to integrate models into running software on the component-level without translating them to code. Such so-called model-integrating software exploits all advantages of models: models implicitly support a good separation of concerns, they are self-documenting and thus improve understandability and maintainability and in contrast to model-driven approaches there is no synchronization problem anymore between the models and the code generated from them. Using model-integrating components, software will be

  14. Integration of Engineering Education by High School Teachers to Meet Standards in the Physics Classroom

    Science.gov (United States)

    Kersten, Jennifer Anna

    In recent years there has been increasing interest in engineering education at the K-12 level, which has resulted in states adopting engineering standards as a part of their academic science standards. From a national perspective, the basis for research into engineering education at the K-12 level is the belief that it is of benefit to student learning, including to "improve student learning and achievement in science and mathematics; increase awareness of engineering and the work of engineers; boost youth interest in pursuing engineering as a career; and increase the technological literacy of all students" (National Research Council, 2009a, p. 1). The above has led to a need to understand how teachers are currently implementing engineering education in their classrooms. High school physics teachers have a history of implementing engineering design projects in their classrooms, thus providing an appropriate setting to look for evidence of quality engineering education at the high school level. Understanding the characteristics of quality engineering integration can inform curricular and professional development efforts for teachers asked to implement engineering in their classrooms. Thus, the question that guided this study is: How, and to what extent, do physics teachers represent quality engineering in a physics unit focused on engineering? A case study research design was implemented for this project. Three high school physics teachers were participants in this study focused on the integration of engineering education into the physics classroom. The data collected included observations, interviews, and classroom documents that were analyzed using the Framework for Quality K-12 Engineering Education (Moore, Glancy et al., 2013). The results provided information about the areas of the K-12 engineering framework addressed during these engineering design projects, and detailed the quality of these lesson components. The results indicate that all of the design

  15. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  16. The KNOMAD Methodology for Integration of Multi-Disciplinary Engineering Knowledge within Aerospace Production

    NARCIS (Netherlands)

    Curran, R.; Verhagen, W.J.C.; Van Tooren, M.J.L.

    2010-01-01

    The paper is associated with the integration of multi-disciplinary knowledge within a Knowledge Based Engineering (KBE)-enabled design framework. To support this integration effort, the KNOMAD methodology has been devised. KNOMAD stands for Knowledge Optimized Manufacture And Design and is a

  17. Russian Academy of Engineering: a strong power for integration of engineering community

    Directory of Open Access Journals (Sweden)

    GUSEV Boris Vladimirovich

    2015-04-01

    Full Text Available Russian Academy of Engineering is legal successor of the Engineering Academy of USSR, founded by 20 ministries and departments of USSR and RSFSR on May 13, 1990. The Engineering Academy of USSR since the very beginning of its functioning, has launched its task-oriented activity on strengthening of links between science and industry, on solving the problems of using the results of basic (fundamental research and their accelerated adaptation into the industry. In the post-Soviet period, on the basis of the Academy, the Ministry of Justice of the Russian Federation, on December 24, 1991, registered the All-Russian Public Organization Russian Academy of Engineering (RAE. At the present time, RAE includes over 1350 full and corresponding members, prominent Russian scientists, engineers and industry organizers, over 200 member societies which include major Russian science & technology organizations, and over 40 regional engineering-technical structures, departments of RAE. RAE carries out large-scale work on the development of science & technology areas in science, creating new machinery and technologies, organization of efficient functioning of the Russian Engineering community. During the 25-year period of work, about 4,5 thousand new technologies were developed, over 6,5 thousand monographs were published. Over 4 thousand patents were obtained. 209 members of RAE became laureates of State Prize of USSR and RF, 376 members of RAE became laureates of Government Prize of USSR and RF. Annual value of science & research, project and other works in the area of engineering amounts from 0,5 to 1 billion roubles. This information and reference edition of the Encyclopedia of the Russian Academy of Engineering is dedicated to the 25th anniversary of the Russian Academy of Engineering. The Encyclopedia includes creative biographies of more than 1750 full and corresponding members of RAE, prominent scientists, distinguished engineers and organizers of industry

  18. Safety Concepts in Structural Glass Engineering : Towards an Integrated Approach

    NARCIS (Netherlands)

    Bos, F.P.

    2009-01-01

    This dissertation proposes the Integrated Approach to Structural Glass Safety, based on four clearly defined element safety properties, damage sensitivity, relative resistance, redundancy, and fracture mode. The Element Safety Diagram (ESD) is introduced to provide an easy-to-read graphical

  19. Integrating Sustainability in a PBL Environment for Electronics Engineering

    DEFF Research Database (Denmark)

    Arsat, Mahyuddin; Holgaard, Jette Egelund; de Graaff, Erik

    2013-01-01

    In the past decades, education for sustainable development (ESD) has obtained increasing recognition as a general subject in higher education (HE). Institutions worldwide have had attention to the integration of sustainability into the curricula, and on the conceptual level problem based learning...

  20. Integral finned heater and cooler for stirling engines

    Science.gov (United States)

    Corey, John A.

    1984-01-01

    A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.

  1. Integrating Technical Communication in the Mechanical Engineering Curriculum

    Science.gov (United States)

    Norberg, Seth; Ashcraft, Timothy; van Poppel, Bret

    2017-11-01

    Technical communication is essential to engineering practice, but these skills can be challenging to teach and assess in the classroom. Instructors in the Mechanical Engineering (ME) program at the United States Military Academy are developing new learning exercises to prepare students for success in their capstone design course and beyond. In this paper we highlight the recent successes and lessons learned from two courses: junior-level Thermal-Fluid Systems and the senior-level ME Seminar. Both courses support the newly implemented West Point Writing Program (WPWP), an institutional, writing-across-the-curriculum program. The junior course incorporates four hands-on experiments, which provide an abundance of data for students to analyze, assess, and present. In the senior course the majority of the content that students present is from their ongoing capstone design projects. Between the two courses, students craft essays, lab reports, short summaries, posters, quad charts, and technical presentations. Both courses include peer evaluation, revision exercises, and timed (on demand) writing assignments. The junior course includes assignments co-authored by a group as well as an individual report. An overview of both courses' assignments with course-end feedback from the students and the faculty is provided. Strengths and weaknesses are identified and recommendations for instructors seeking to implement similar technical communications assignments in their own courses are presented.

  2. Teachers' Integration of Scientific and Engineering Practices in Primary Classrooms

    Science.gov (United States)

    Merritt, Eileen G.; Chiu, Jennie; Peters-Burton, Erin; Bell, Randy

    2017-06-01

    The Next-Generation Science Standards (NGSS) challenge primary teachers and students to work and think like scientists and engineers as they strive to understand complex concepts. Teachers and teacher educators can leverage what is already known about inquiry teaching as they plan instruction to help students meet the new standards. This cross-case analysis of a multiple case study examined teacher practices in the context of a semester-long professional development course for elementary teachers. We reviewed lessons and teacher reflections, examining how kindergarten and first grade teachers incorporated NGSS scientific and engineering practices during inquiry-based instruction. We found that most of the teachers worked with their students on asking questions; planning and carrying out investigations; analyzing and interpreting data, using mathematics and computational thinking; and obtaining, evaluating and communicating information. Teachers faced challenges in supporting students in developing their own questions that could be investigated and using data collection strategies that aligned with students' development of number sense concepts. Also, some teachers overemphasized the scientific method and lacked clarity in how they elicited and responded to student predictions. Discussion focuses on teacher supports that will be needed as states transition to NGSS.

  3. 14th International Conference on Integral Methods in Science and Engineering

    CERN Document Server

    Riva, Matteo; Lamberti, Pier; Musolino, Paolo

    2017-01-01

    This contributed volume contains a collection of articles on the most recent advances in integral methods.  The first of two volumes, this work focuses on the construction of theoretical integral methods. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Fourteenth International Conference on Integral Methods in Science and Engineering, held July 25-29, 2016, in Padova, Italy. A broad range of topics is addressed, such as: • Integral equations • Homogenization • Duality methods • Optimal design • Conformal techniques This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines, and to other professionals who use integration as an essential tool in their work.

  4. Computer integration of engineering design and production: A national opportunity

    Science.gov (United States)

    1984-01-01

    The National Aeronautics and Space Administration (NASA), as a purchaser of a variety of manufactured products, including complex space vehicles and systems, clearly has a stake in the advantages of computer-integrated manufacturing (CIM). Two major NASA objectives are to launch a Manned Space Station by 1992 with a budget of $8 billion, and to be a leader in the development and application of productivity-enhancing technology. At the request of NASA, a National Research Council committee visited five companies that have been leaders in using CIM. Based on these case studies, technical, organizational, and financial issues that influence computer integration are described, guidelines for its implementation in industry are offered, and the use of CIM to manage the space station program is recommended.

  5. NVH Integration of Twin Charger Direct Injected Gasoline Engine

    OpenAIRE

    Shah, Ashish; Lennström, David; Sturesson, Per-Olof; Easterling, William

    2014-01-01

    The increased focus and demands on the reduction of fuel consumption and CO2 requires the automotive industry todevelop and introduce new and more energy efficient powertrain concepts. The extensive utilisation of downsizingconcepts, such as boosting, leads to significant challenges in noise, vibration and harshness (NVH) integration. This is inconflict with the market expectation on the vehicle's acoustic refinement, which plays an increasingly important role interms of product perception, e...

  6. Integrated biocircuits: engineering functional multicellular circuits and devices

    Science.gov (United States)

    Prox, Jordan; Smith, Tory; Holl, Chad; Chehade, Nick; Guo, Liang

    2018-04-01

    Objective. Implantable neurotechnologies have revolutionized neuromodulatory medicine for treating the dysfunction of diseased neural circuitry. However, challenges with biocompatibility and lack of full control over neural network communication and function limits the potential to create more stable and robust neuromodulation devices. Thus, we propose a platform technology of implantable and programmable cellular systems, namely Integrated Biocircuits, which use only cells as the functional components of the device. Approach. We envision the foundational principles for this concept begins with novel in vitro platforms used for the study and reconstruction of cellular circuitry. Additionally, recent advancements in organoid and 3D culture systems account for microenvironment factors of cytoarchitecture to construct multicellular circuits as they are normally formed in the brain. We explore the current state of the art of these platforms to provide knowledge of their advancements in circuit fabrication and identify the current biological principles that could be applied in designing integrated biocircuit devices. Main results. We have highlighted the exemplary methodologies and techniques of in vitro circuit fabrication and propose the integration of selected controllable parameters, which would be required in creating suitable biodevices. Significance. We provide our perspective and propose new insights into the future of neuromodulaion devices within the scope of living cellular systems that can be applied in designing more reliable and biocompatible stimulation-based neuroprosthetics.

  7. LEAN-GREEN MANUFACTURING: COLLABORATIVE CONTENT AND LANGUAGE INTEGRATED LEARNING IN HIGHER EDUCATION AND ENGINEERING COURSES

    Directory of Open Access Journals (Sweden)

    MARCELO RUDOLFO CALVETE GASPAR

    2017-09-01

    Full Text Available Lean and Green manufacturing processes aim at achieving lower material and labour costs, while reducing impacts on the environment, and promoting sustainability as a whole. This paper reports on a pilot experiment with higher education and engineering students, exploring the full potential of a collaborative approach on courses integrating the Portuguese Polytechnic of Castelo Branco engineering studies curricula, while simultaneously improving their proficiency in English. Content and Language Integrated Learning (CLIL has become a key area of curricular innovation since it is known for improving both language and content teacher and student motivation. In this context, instructional design for CLIL entailed tandem work of content (engineering and language (English teacher to design learning sequences and strategies. This allowed students to improve not only their language skills in English but also their knowledge in the specific engineering domain content on green and lean manufacturing processes.

  8. Something Old, Something New: Integrating Engineering Practice into the Teaching of Engineering Mechanics.

    Science.gov (United States)

    Miller, Gregory R.; Cooper, Stephen C.

    1995-01-01

    Presents a multifaceted method for teaching engineering mechanics to satisfy several desiderata. This approach includes design projects, group work, basic competency exams, computational environments for simulating and visualizing phenomena, multimedia instructional tools, hands-on experiences, and student presentations. Describes the materials…

  9. Integrating electron microscopy into nanoscience and materials engineering programs

    Science.gov (United States)

    Cormia, Robert D.; Oye, Michael M.; Nguyen, Anh; Skiver, David; Shi, Meng; Torres, Yessica

    2014-10-01

    Preparing an effective workforce in high technology is the goal of both academic and industry training, and has been the engine that drives innovation and product development in the United States for over a century. During the last 50 years, technician training has comprised a combination of two-year academic programs, internships and apprentice training, and extensive On-the-Job Training (OJT). Recently, and especially in Silicon Valley, technicians have four-year college degrees, as well as relevant hands-on training. Characterization in general, and microscopy in particular, is an essential tool in process development, manufacturing and QA/QC, and failure analysis. Training for a broad range of skills and practice is challenging, especially for community colleges. Workforce studies (SRI/Boeing) suggest that even four year colleges often do not provide the relevant training and experience in laboratory skills, especially design of experiments and analysis of data. Companies in high-tech further report difficulty in finding skilled labor, especially with industry specific experience. Foothill College, in partnership with UCSC, SJSU, and NASA-Ames, has developed a microscopy training program embedded in a research laboratory, itself a partnership between university and government, providing hands-on experience in advanced instrumentation, experimental design and problem solving, with real-world context from small business innovators, in an environment called `the collaboratory'. The program builds on AFM-SEM training at Foothill, and provides affordable training in FE-SEM and TEM through a cost recovery model. In addition to instrument and engineering training, the collaboratory also supports academic and personal growth through a multiplayer social network of students, faculty, researchers, and innovators.

  10. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    Science.gov (United States)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  11. Department of Energy environmental management complex-wide integration using systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fairbourn, P.

    1997-10-01

    A systems engineering approach was successfully used to recommend changes to environmental management activities across the DOE Complex. A team of technical experts and systems engineers developed alternatives that could save tax payers billions of dollars if the barriers are removed to allow complete implementation. The alternatives are technically-based and defensible, and are being worked through the stakeholder review process. The integration process and implementing project structure are both discussed.

  12. Integrated Business and Engineering Framework for Synthesis and Design of Enterprise-Wide Processing Networks

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Sarup, Bent; Sin, Gürkan

    2012-01-01

    The synthesis and design of processing networks is a complex and multidisciplinary problem, which involves many strategic and tactical decisions at business (considering financial criteria, market competition, supply chain network, etc) and engineering levels (considering synthesis, design and op...... issues allowing thereby fast and flexible model development for various production processes.A case study from vegetable oil industry is used successfully to demonstrate the applicability of the integrated framework for making optimal business and engineering decisions....

  13. Department of Energy environmental management complex-wide integration using systems engineering

    International Nuclear Information System (INIS)

    Fairbourn, P.

    1997-01-01

    A systems engineering approach was successfully used to recommend changes to environmental management activities across the DOE Complex. A team of technical experts and systems engineers developed alternatives that could save tax payers billions of dollars if the barriers are removed to allow complete implementation. The alternatives are technically-based and defensible, and are being worked through the stakeholder review process. The integration process and implementing project structure are both discussed

  14. Integrating Requirements Engineering, Modeling, and Verification Technologies into Software and Systems Engineering

    National Research Council Canada - National Science Library

    Broy, Manfred; Leucker, Martin

    2007-01-01

    The objective of this project is the development of an integrated suite of technologies focusing on end-to-end software development supporting requirements analysis, design, implementation, and verification...

  15. Integration of catalyst design and reactor engineering in paraffins dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, D.; Miracca, I. [Snamprogetti S.p.A., S. Donato Milanese (Italy)

    2005-07-01

    Unfortunately, olefins are not a natural fossil resource. Their production requires sophisticated and costly technologies, highly demanding in terms of investments and energy. Dehydrogenations are applied industrially to light alkanes (propane to propylene for polymers and isobutane to iso-butylene for gasoline and polymers) as well as long linear ones (C{sub 10}-C{sub 14} to linear-alkyl-benzenes) and for the production of styrene from ethylbenzene. The light paraffins dehydrogenation sustains a network of technologies allowing an integrated approach to create value from Natural Gas. (orig.)

  16. A Planning Approach of Engineering Characteristics Based on QFD-TRIZ Integrated

    Science.gov (United States)

    Liu, Shang; Shi, Dongyan; Zhang, Ying

    Traditional QFD planning method compromises contradictions between engineering characteristics to achieve higher customer satisfaction. However, this compromise trade-off can not eliminate the contradictions existing among the engineering characteristics which limited the overall customer satisfaction. QFD (Quality function deployment) integrated with TRIZ (the Russian acronym of the Theory of Inventive Problem Solving) becomes hot research recently for TRIZ can be used to solve contradictions between engineering characteristics which construct the roof of HOQ (House of quality). But, the traditional QFD planning approach is not suitable for QFD integrated with TRIZ for that TRIZ requires emphasizing the contradictions between engineering characteristics at problem definition stage instead of compromising trade-off. So, a new planning approach based on QFD / TRIZ integration is proposed in this paper, which based on the consideration of the correlation matrix of engineering characteristics and customer satisfaction on the basis of cost. The proposed approach suggests that TRIZ should be applied to solve contradictions at the first step, and the correlation matrix of engineering characteristics should be amended at the second step, and at next step IFR (ideal final result) must be validated, then planning execute. An example is used to illustrate the proposed approach. The application indicated that higher customer satisfaction can be met and the contradictions between the characteristic parameters are eliminated.

  17. MSblender: A probabilistic approach for integrating peptide identifications from multiple database search engines.

    Science.gov (United States)

    Kwon, Taejoon; Choi, Hyungwon; Vogel, Christine; Nesvizhskii, Alexey I; Marcotte, Edward M

    2011-07-01

    Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for every possible PSM and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for most proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses.

  18. Application of integrated computer-aided engineering for design, construction and operation of nuclear power plant

    International Nuclear Information System (INIS)

    Kyung-shick Min; Byung-hun Lee

    1987-01-01

    Computer-aided-engineering (CAE) is an essential tool for modern nuclear power plant engineering. It greatly varies in definition, application, and technology from project to project and company to company. Despite the fast growing technologies and applications of CAE, its complexty and variety have thrown aonther puzzle to management of a nuclear project. Without due consideration of an integrated CAE system in early planning stage, the overall efficiency of a nuclear project would slow down due to the inefficiency in data flow. In this paper, practices and perspectives of CAE appliation are discussed under the Korea Power Engineering Company (KOPEC) philosophy in CAE approach. (author)

  19. The fully integrated biomedical engineering programme at Eindhoven University of Technology.

    Science.gov (United States)

    Slaaf, D W; van Genderen, M H P

    2009-05-01

    The development of a fully integrated biomedical engineering programme (life sciences included from the start) is described. Details are provided about background, implementation, and didactic concept: design centred learning combined with courses. The curriculum has developed into a bachelor-master's programme with two different master's degrees: Master's Degree in Biomedical Engineering and Master's Degree in Medical Engineering. Recently, the programme has adopted semester programming, has included a major and minor in the bachelor's degree phase, and a true bachelor's degree final project. Details about the programme and data about where graduates find jobs are provided in this paper.

  20. Integrated language education - a means of enhancing engineers' social competences

    Science.gov (United States)

    Lappalainen, P.

    2010-08-01

    The changes facing industries are necessitating a concomitant change in university curriculum. Before instigating a reform, however, education providers need to acquire an understanding of the most pertinent development needs essential for filling industrial competence gaps. The Language Centre at the Helsinki University of Technology in Finland set out to respond to the emerging competence demands by examining industrial requirements through previous research and stakeholder analyses. Surveys conducted among employers and students corroborated a need to shift focus towards oral communication abilities. More specifically, university education needs to address interaction skills essential in meetings and managerial tasks. As a result, a so-called integrated language course was designed and piloted to train students into multi-disciplinary, culturally and ethically aware communicators who possess leveraged self-leadership and managerial abilities. 'Organisational Communications' integrates substance matters such as finance, strategy, leadership and ethics into a language course, while harnessing the English language as a tool. Course methodology is based on project- and problem-based learning and situational learning, rooting the students in real working life by imitating authentic corporate cases and industrial contexts. The course aims to provide the students with preparedness, ability and mindset to deal with working life challenges and ways of working while applying their specialist discourse, that is, the appropriate industrial jargon and linguistic practices. The learning outcomes and student feedback from this course indicate that the pedagogy in use in this experiment, drawing from exercises emulating authentic, industrial problems, offers an effective method of preparing students for working life requirements.

  1. Integrated approaches for implementing building information modelling (BIM) in engineering education

    OpenAIRE

    Hjelseth, Eilif

    2015-01-01

    The construction industry faces high demand for candidates with relevant Building Information Modelling (BIM) competency, yet higher education continues to struggle in providing such competencies. This conceptual paper explores the use of an integrated approach to implement BIM into the curriculum for undergraduates and graduates in engineering. The curriculum under study employed the Technological Pedagogical Content Knowledge (TPACK) pedagogical framework for integrating three BIM related s...

  2. Engineering Engine/Airframe Integration for Fully Reusable Space Transportation Systems

    Science.gov (United States)

    2010-09-01

    Conception du moteur - integration et gestion thermique ) 14. ABSTRACT In the late 80ties and 90ties many programs were initiated in US, Russia, Japan and...major time frames. At the end, mainly to shortcomings of the national budget, the program was transferred as a starting point to an ESA initiated

  3. The Engineering Design of Engine/Airframe Integration for the SAENGER Fully Reusable Space Transportation System

    Science.gov (United States)

    2010-09-01

    elevee : Conception du moteur - integration et gestion thermique ) 14. ABSTRACT In Germany the Ministry of Research and Technology (BMFT) initiated in...national budget, the program was transferred as a starting point to an ESA initiated international European program named FESTIP (Future European Space

  4. Assessment of external combustion, Brayton-cycle engine potential in total and integrated energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Marciniak, T.J.; Bratis, J.C.; Davis, A.; Jain, M.L.; Ashe, T.L.; Six, L.D.; Trimble, S.W.

    1980-03-01

    The history, advantages, disadvantages, and performance and cost characteristics of the external-combustion, Brayton engine are discussed. Included are studies of external combustion, Brayton engines in Integrated Energy Systems, and comparisons with current technologies, such as diesels and gas turbines, as well as with other advanced prime-mover technologies, such as large Stirling engines and adiabatic turbocompound diesel engines. Lastly, a development program, one that would lead to a commercializable external combustion, Brayton engine using an atmospheric fluidized bed combustor is described. The fluidized bed offers a method for burning coal in an environmentally acceptable manner at a fairly reasonable cost so that the external combustion Brayton concept can be used in the residential/commercial sector. Based on this study, it appears that the external combustion, Brayton engine, using a fluidized-bed combustion system, offers a technologically sound alternative for developing an economically viable, environmentally acceptable method for using non-scarce fuels. Although the efficiency of the engine is not as high as that projected for large diesel and Stirling engines, the capital cost advantages, fuel flexibility, relatively low developmental costs, and high chance of success make it an attractive alternative.

  5. Assessment of Stirling engine potential in total and integrated energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Marciniak, T.J.; Bratis, J.C.; Davis, A.; Lee, C.

    1979-02-01

    The development of Stirling engines for stationary power applications in Total Energy Systems is attractive for two main reasons: high potential engine efficiency, and fuel flexibility especially in the use of coal and coal-derived fuels. Total Energy applications are unique in that they offer an option for using fuel energy most effectively on a local basis by recovering the rejected heat from electric power generation to meet thermal requirements within a community. These thermal requirements include space heating, cooling, and hot water service demands. The advantages and disadvantages of large Stirling engines in Total, or Integrated, Energy Systems are discussed and the performance and cost characteristics of such engines are analyzed and compared with the main competitors (diesel engines and gas turbines) for such applications. The comparisons are made through simplified and detailed systems analyses. Lastly, based on the systems studied and intercomparisons of competing technologies, the requirements for the development of a large Stirling engine are outlined along with a suggested developmental program. From this study it is clear that, given the attributes of the competing technologies involved, the main advantage of the Stirling engine lies in its ability to use fuels other than distillates. This attribute must be developed further in order to provide engine technologies which can burn abundant fuels such as coal or coal-derived fuels. Secondarily, the potentially high efficiency of Stirlings would be especially advantageous in applications where a high electrical-to-thermal-energy demand ratio exists.

  6. Integrated Tokamak modeling: When physics informs engineering and research planning

    Science.gov (United States)

    Poli, Francesca Maria

    2018-05-01

    Modeling tokamaks enables a deeper understanding of how to run and control our experiments and how to design stable and reliable reactors. We model tokamaks to understand the nonlinear dynamics of plasmas embedded in magnetic fields and contained by finite size, conducting structures, and the interplay between turbulence, magneto-hydrodynamic instabilities, and wave propagation. This tutorial guides through the components of a tokamak simulator, highlighting how high-fidelity simulations can guide the development of reduced models that can be used to understand how the dynamics at a small scale and short time scales affects macroscopic transport and global stability of plasmas. It discusses the important role that reduced models have in the modeling of an entire plasma discharge from startup to termination, the limits of these models, and how they can be improved. It discusses the important role that efficient workflows have in the coupling between codes, in the validation of models against experiments and in the verification of theoretical models. Finally, it reviews the status of integrated modeling and addresses the gaps and needs towards predictions of future devices and fusion reactors.

  7. Integration Mining Engineering, Faculty of Engineering, National University of San Juan

    International Nuclear Information System (INIS)

    Berenguer, T.; Salinas, L.; Cascon, R.

    2007-01-01

    This work presents proposals for the mud handling derived from mineralogical processes, trying to maintain a balance between the nature and the sustainable development of the region; it comprises of an investigation project that the authors carry out in the National University of San Juan.In this case particular aspects of problematic the environmental one are approached as the contamination of associated the superficial and underground water to the handling of the mineral remainders, specifically muds.To practices and procedures of engineering are described that offer protection against the faults of the deposits so that the remainders and the water of process are outside the hydrological river basins. (author)

  8. Arctic Ice Management: an integrated approach to climate engineering

    Science.gov (United States)

    Desch, S. J.; Hartnett, H. E.; Groppi, C. E.; Romaniello, S. J.

    2017-12-01

    The warming climate is having the most rapid and pronounced effects in the high Arctic. The loss of Arctic sea ice is not only changing the physical oceanography of the Arctic Ocean and its coastlines; it is also promoting new conversations about the dangers and benefits for trade, transportation, and industry in the Arctic. The rate of decrease of summer sea ice in the Arctic is currently -300 km3 yr-1, a rate that will lead to complete loss of end-summer sea ice as soon as 2030. Preventing the strong positive feedbacks and increased warming due to sea ice albedo loss must be an important component of climate mitigation strategies. Here, we explore a direct engineering approach we call Arctic Ice Management (AIM) to reduce the loss of Arctic sea ice. We predict that pumping seawater onto the ice surface during the Arctic winter using wind-powered pumps can thicken sea ice by up to 1 m per year, reversing the current loss rates and prolonging the time until the Arctic Ocean is ice-free. Thickening sea ice would not change CO2 levels, which are the underlying cause of ice loss, but it would prevent some of the strongest feedbacks and would buy time to develop the tools and governance systems necessary to achieve carbon-neutrality. We advocate exploration of AIM as a mitigation strategy employed in parallel with CO2 reduction efforts. The opportunity and risk profiles of AIM differ from other geoengineering proposals. While similar in principle to solar radiation management, AIM may present fewer large-scale environmental risks. AIM is separate from greenhouse gas emission reduction or sequestration, but might help prevent accelerated release of methane from thawing permafrost. Further, AIM might be usefully employed at regional and local scales to preserve Arctic ecosystems and possibly reduce the effects of ice-loss induced coastal erosion. Through presentation of the AIM concept, we hope to spark new conversations between scientists, stakeholders, and decision

  9. Non-ideal Stirling engine thermodynamic model suitable for the integration into overall energy systems

    International Nuclear Information System (INIS)

    Araoz, Joseph A.; Salomon, Marianne; Alejo, Lucio; Fransson, Torsten H.

    2014-01-01

    The reliability of modelling and simulation of energy systems strongly depends on the prediction accuracy of each system component. This is the case of Stirling engine-based systems, where an accurate modelling of the engine performance is very important to understand the overall system behaviour. In this sense, many Stirling engine analyses with different approaches have been already developed. However, there is a lack of Stirling engine models suitable for the integration into overall system simulations. In this context, this paper aims to develop a rigorous Stirling engine model that could be easily integrated into combined heat and power schemes for the overall techno-economic analysis of these systems. The model developed considers a Stirling engine with adiabatic working spaces, isothermal heat exchangers, dead volumes, and imperfect regeneration. Additionally, it considers mechanical pumping losses due to friction, limited heat transfer and thermal losses on the heat exchangers. The model is suitable for different engine configurations (alpha beta and gamma engines). It was developed using Aspen Custom Modeller ® (ACM®) as modelling software. The set of equations were solved using ACM ® equation solver for steady-state operation. However, due to the dynamic behaviour of the cycle, a C++ code was integrated to solve iteratively a set of differential equations. This resulted in a cyclic steady-state model that calculates the power output and thermal requirements of the system. The predicted efficiency and power output were compared with the numerical model and the experimental work reported by the NASA Lewis Research Centre for the GPU-3 Stirling engine. This showed average absolute errors around ±4% for the brake power, and ±5% for the brake efficiency at different frequencies. However, the model also showed large errors (±15%) for these calculations at higher frequencies and low pressures. Additional results include the calculation of the cyclic

  10. Integration of Wind Energy Systems into Power Engineering Education Program at UW-Madison

    Energy Technology Data Exchange (ETDEWEB)

    Venkataramanan, Giri [Univ. of Wisconsin, Madison, WI (United States); Lesieutre, Bernard [Univ. of Wisconsin, Madison, WI (United States); Jahns, Thomas [Univ. of Wisconsin, Madison, WI (United States); Desai, Ankur R [Univ. of Wisconsin, Madison, WI (United States)

    2012-09-01

    This project has developed an integrated curriculum focused on the power engineering aspects of wind energy systems that builds upon a well-established graduate educational program at UW- Madison. Five new courses have been developed and delivered to students. Some of the courses have been offered on multiple occasions. The courses include: Control of electric drives for Wind Power applications, Utility Applications of Power Electronics (Wind Power), Practicum in Small Wind Turbines, Utility Integration of Wind Power, and Wind and Weather for Scientists and Engineers. Utility Applications of Power Electronics (Wind Power) has been provided for distance education as well as on-campus education. Several industrial internships for students have been organized. Numerous campus seminars that provide discussion on emerging issues related to wind power development have been delivered in conjunction with other campus events. Annual student conferences have been initiated, that extend beyond wind power to include sustainable energy topics to draw a large group of stakeholders. Energy policy electives for engineering students have been identified for students to participate through a certificate program. Wind turbines build by students have been installed at a UW-Madison facility, as a test-bed. A Master of Engineering program in Sustainable Systems Engineering has been initiated that incorporates specializations that include in wind energy curricula. The project has enabled UW-Madison to establish leadership at graduate level higher education in the field of wind power integration with the electric grid.

  11. An Integrated Surface Engineering Technology Development for Improving Energy Efficiency of Engine Components

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Hsu; Liming Chang; Huan Zhan

    2009-05-31

    Frictional losses are inherent in most practical mechanical systems. The ability to control friction offers many opportunities to achieve energy conservation. Over the years, materials, lubricants, and surface modifications have been used to reduce friction in automotive and diesel engines. However, in recent years, progress in friction reduction technology has slowed because many of the inefficiencies have been eliminated. A new avenue for friction reduction is needed. Designing surfaces specifically for friction reduction with concomitant enhanced durability for various engine components has emerged recently as a viable opportunity due to advances in fabrication and surface finishing techniques. Recently, laser ablated dimples on surfaces have shown friction reduction properties and have been demonstrated successfully in conformal contacts such as seals where the speed is high and the load is low. The friction reduction mechanism in this regime appears to depend on the size, patterns, and density of dimples in the contact. This report describes modeling efforts in characterizing surface textures and understanding their mechanisms for enhanced lubrication under high contact pressure conditions. A literature survey is first presented on the development of descriptors for irregular surface features. This is followed by a study of the hydrodynamic effects of individual micro-wedge dimples using the analytical solution of the 1-D Reynolds equation and the determination of individual components of the total friction resistance. The results obtained provide a better understanding of the dimple orientation effects and the approach which may be used to further compare the friction reduction provided by different texture patterns.

  12. Engineering Task Plan for the Integrity Assessment Examination of Double Contained Receiver Tanks (DCRT) Catch Tanks and Ancillary facilities

    Energy Technology Data Exchange (ETDEWEB)

    BECKER, D.L.

    2000-05-23

    This Engineering Task Plan (ETP) presents the integrity assessment examination of three DCRTs, seven catch tanks, and two ancillary facilities located in the 200 East and West Areas of the Hanford Site. The integrity assessment examinations, as described in this ETP, will provide the necessary information to enable the independently qualified registered professional engineer (IQRPE) to assess the condition and integrity of these facilities. The plan is consistent with the Double-Shell Tank Waste Transfer Facilities Integrity Assessment Plan.

  13. Engineering Task Plan for the Integrity Assessment Examination of Double-Contained Receiver Tanks (DCRT), Catch Tanks and Ancillary facilities

    International Nuclear Information System (INIS)

    BECKER, D.L.

    2000-01-01

    This Engineering Task Plan (ETP) presents the integrity assessment examination of three DCRTs, seven catch tanks, and two ancillary facilities located in the 200 East and West Areas of the Hanford Site. The integrity assessment examinations, as described in this ETP, will provide the necessary information to enable the independently qualified registered professional engineer (IQRPE) to assess the condition and integrity of these facilities. The plan is consistent with the Double-Shell Tank Waste Transfer Facilities Integrity Assessment Plan

  14. Using the Discipline of Agricultural Engineering to Integrate Math and Science

    Science.gov (United States)

    Foutz, Tim; Navarro, Maria; Hill, Roger B.; Thompson, Sidney A.; Miller, Kathy; Riddleberger, Deborah

    2011-01-01

    An outcome of a 1998 forum sponsored by the National Research Council was a recognition that topics related to food production and agriculture are excellent mechanisms for integrating science topics taught in the K-12 education system and for providing many avenues for inquiry based and project based learning. The engineering design process is…

  15. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.; Feru, E.

    2015-01-01

    Rankine-cycleWasteHeatRecovery (WHR)systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine andWHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel

  16. Effects of Brief Integrated Information Literacy Education Sessions on Undergraduate Engineering Students' Interdisciplinary Research

    Science.gov (United States)

    Talikka, Marja; Soukka, Risto; Eskelinen, Harri

    2018-01-01

    Engineering students often conduct information searches without sufficient consideration of the context of their research topic. This article discusses how development of a new information literacy (IL) mindset through instruction in integrated IL education affects students' understanding of research problems and formulation of information search…

  17. Thermodynamic and Thermoeconomic investigation of an Integrated Gasification SOFC and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    Thermodynamic and thermoeconomic investigation of a small scale Integrated Gasification Solid Oxide Fuel Cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120kW have been performed. Woodchips are used as gasification feedstock to produce syngas which...

  18. Integrated emission management strategy for cost-optimal engine-aftertreatment operation

    NARCIS (Netherlands)

    Cloudt, R.P.M.; Willems, F.P.T.

    2011-01-01

    A new cost-based control strategy is presented that optimizes engine-aftertreatment performance under all operating conditions. This Integrated Emission Management strategy minimizes fuel consumption within the set emission limits by on-line adjustment of air management based on the actual state of

  19. RAGE Reusable Game Software Components and Their Integration into Serious Game Engines

    NARCIS (Netherlands)

    Van der Vegt, Wim; Nyamsuren, Enkhbold; Westera, Wim

    2016-01-01

    This paper presents and validates a methodology for integrating reusable software components in diverse game engines. While conforming to the RAGE com-ponent-based architecture described elsewhere, the paper explains how the interac-tions and data exchange processes between a reusable software

  20. On Integrating Student Empirical Software Engineering Studies with Research and Teaching Goals

    NARCIS (Netherlands)

    Galster, Matthias; Tofan, Dan; Avgeriou, Paris

    2012-01-01

    Background: Many empirical software engineering studies use students as subjects and are conducted as part of university courses. Aim: We aim at reporting our experiences with using guidelines for integrating empirical studies with our research and teaching goals. Method: We document our experience

  1. On the Prospects and Concerns of Integrating Open Source Software Environment in Software Engineering Education

    Science.gov (United States)

    Kamthan, Pankaj

    2007-01-01

    Open Source Software (OSS) has introduced a new dimension in software community. As the development and use of OSS becomes prominent, the question of its integration in education arises. In this paper, the following practices fundamental to projects and processes in software engineering are examined from an OSS perspective: project management;…

  2. Vertical and Horizontal Integration of Laboratory Curricula and Course Projects across the Electronic Engineering Technology Program

    Science.gov (United States)

    Zhan, Wei; Goulart, Ana; Morgan, Joseph A.; Porter, Jay R.

    2011-01-01

    This paper discusses the details of the curricular development effort with a focus on the vertical and horizontal integration of laboratory curricula and course projects within the Electronic Engineering Technology (EET) program at Texas A&M University. Both software and hardware aspects are addressed. A common set of software tools are…

  3. Integrating Sustainable Development in Chemical Engineering Education: The Application of an Environmental Management System

    Science.gov (United States)

    Montanes, M. T.; Palomares, A. E.; Sanchez-Tovar, R.

    2012-01-01

    The principles of sustainable development have been integrated in chemical engineering education by means of an environmental management system. These principles have been introduced in the teaching laboratories where students perform their practical classes. In this paper, the implementation of the environmental management system, the problems…

  4. Integrating Social Sustainability in Engineering Education at the KTH Royal Institute of Technology

    Science.gov (United States)

    Björnberg, Karin Edvardsson; Skogh, Inga-Britt; Strömberg, Emma

    2015-01-01

    Purpose: The purpose of this paper is to investigate what are perceived to be the main challenges associated with the integration of social sustainability into engineering education at the KTH Royal Institute of Technology, Stockholm. Design/methodology/approach: Semi-structured interviews were conducted with programme leaders and teachers from…

  5. Designing an Earthquake-Proof Art Museum: An Arts- and Engineering-Integrated Science Lesson

    Science.gov (United States)

    Carignan, Anastasia; Hussain, Mahjabeen

    2016-01-01

    In this practical arts-integrated science and engineering lesson, an inquiry-based approach was adopted to teach a class of fourth graders in a Midwest elementary school about the scientific concepts of plate tectonics and earthquakes. Lessons were prepared following the 5 E instructional model. Next Generation Science Standards (4-ESS3-2) and the…

  6. Engineering Assessment and Certification of Integrity of the Building 943 Tank System

    Energy Technology Data Exchange (ETDEWEB)

    Abri Environmental Engineering Inc.

    2015-01-01

    This Engineering Assessment and Certification of Integrity of Building 943 (B943) Tank System has been prepared using the guidelines of 40 CFR 265.192(a) and 22 CCR 66265.192(a) for tank systems* that manage hazardous waste and have secondary containment. The regulations require that this assessment be completed and certified by an independent, qualified, California-registered professional engineer. This technical assessment has been reviewed by an independent, qualified, California-registered professional engineer, who has certified the tank system for the following: • sufficient structural integrity, • acceptability for storing of hazardous waste, • compatibility with the waste, and • suitability of tank and containment system design to achieve the requirements of the applicable regulations so they will not collapse, rupture, or fail.

  7. Solving system integration and interoperability problems using a model reference systems engineering framework

    Science.gov (United States)

    Makhlouf, Mahmoud A.

    2001-09-01

    This paper presents a model-reference systems engineering framework, which is applied on a number of ESC projects. This framework provides an architecture-driven system engineering process supported by a tool kit. This kit is built incrementally using an integrated set of commercial and government developed tools. These tools include project management, systems engineering, military worth-analysis and enterprise collaboration tools. Products developed using these tools enable the specification and visualization of an executable model of the integrated system architecture as it evolves from a low fidelity concept into a high fidelity system model. This enables end users of system products, system designers, and decision-makers; to perform what if analyses on system design alternatives before making costly final system acquisition decisions.

  8. CMMI for Systems Engineering, Software Engineering, Integrated Product and Process Development, and Supplier Sourcing, Version 1.1 (CMMI-SE/SW/IPPD/SS, V1.1) Continuous Representation

    National Research Council Canada - National Science Library

    2002-01-01

    .... Concepts covered by this model include systems engineering, software engineering, integrated product and process development, and supplier sourcing as well as traditional CMM concepts such as process...

  9. Analysis of airframe/engine interactions in integrated flight and propulsion control

    Science.gov (United States)

    Schierman, John D.; Schmidt, David K.

    1991-01-01

    An analysis framework for the assessment of dynamic cross-coupling between airframe and engine systems from the perspective of integrated flight/propulsion control is presented. This analysis involves to determining the significance of the interactions with respect to deterioration in stability robustness and performance, as well as critical frequency ranges where problems may occur due to these interactions. The analysis illustrated here investigates both the airframe's effects on the engine control loops and the engine's effects on the airframe control loops in two case studies. The second case study involves a multi-input/multi-output analysis of the airframe. Sensitivity studies are performed on critical interactions to examine the degradations in the system's stability robustness and performance. Magnitudes of the interactions required to cause instabilities, as well as the frequencies at which the instabilities occur are recorded. Finally, the analysis framework is expanded to include control laws which contain cross-feeds between the airframe and engine systems.

  10. Technology readiness assessment of advanced space engine integrated controls and health monitoring

    Science.gov (United States)

    Millis, Marc G.

    1991-01-01

    An evaluation is given for an integrated control and health-monitoring (ICHM) system that is designed to be used with hydrogen-oxygen rocket engines. The minimum required ICHM functions, system elements, technology readiness, and system cost are assessed for a system which permits the operation of H-O engines that are space-based, reusable, and descent-throttleable. Only the advanced sensors and some engine-dependent software are not found to be ready for applications to laboratory demonstration. Other systems related to the minimum functions are more developed, bringing the total system readiness to the conceptual design stage. Based on the evaluation of the H-O ICHM, it is estimated that the minimum system requirements for demonstration on an engine system testbed will require an investment of 30-45 million dollars over 6 years.

  11. Integrated Water Hazards Engineering Based on Mapping, Nature-Based and Technical Solutions

    Science.gov (United States)

    Halbac-Cotoara-Zamfir, Rares; Herban, Sorin; Stolte, Jannes; Bozan, Csaba

    2017-10-01

    Climate change is expected to alter average temperature and precipitation values and to increase the variability of precipitation events, which may lead to even more intense and frequent water hazards. Water hazards engineering is the branch of engineering concerned with the application of scientific and engineering principles for protection of human populations from the effects of water hazards; protection of environments, both local and global, from the potentially deleterious effects of water hazards; and improvement of environmental quality for mitigating the negative effects of water hazards. An integrated approach of water hazards engineering based on mapping, nature-based and technical solutions will constitute a feasible solution in the process of adapting to challenges generated by climate changes worldwide. This paper will debate this concept also providing some examples from several European countries.

  12. Integrating experiences from operations into engineering design: modelling knowledge transfer in the offshore oil industry

    DEFF Research Database (Denmark)

    Souza da Conceição, Carolina; Broberg, Ole; Paravizo, Esdras

    2017-01-01

    and workwise distance between operations and engineering design teams, integrating human factors and transferring knowledge are key aspects when designing for better performance systems. Research Objective: Based on an in-depth empirical investigation in an offshore oil company, this study aims to provide......Summative Statement: Integrating human factors and users’ experiences in design projects is a well-known challenge. This study focus on the specific challenges for transferring these experiences and how using a knowledge transfer model can help this integration on the design of high-risk productive...... a framework for the knowledge transfer process from operations into engineering design that helps identifying and facing the challenges for such a transfer process. Methodology: The study was carried out as a case study in an offshore oil company. We used the empirical data collected through interviews...

  13. Design considerations for an engine-integral reciprocating natural gas compressor

    International Nuclear Information System (INIS)

    Malakoutirad, Mohammad; Bradley, Thomas H.; Hagen, Chris

    2015-01-01

    Highlights: • An engine-integral natural gas compressor was developed under contract to ARPA-E. • System is novel in that an engine powers its 6th cylinder as a multi-stage compressor. • A structural and functional description of the system is presented. • Dynamic and thermal characteristics of the system dictate the design. - Abstract: Conventionally, compressed natural gas (CNG) vehicles are refueled using a high-cost, centralized, and sparse network of CNG fueling stations that has primarily been developed for the use of fleet customers. An engine-integral reciprocating natural gas (NG) compressor has the capability to disrupt the incumbent CNG market by enabling the use of NG for personal transportation, fueled at home, from the preexisting low-pressure NG infrastructure, at low parts count, using conventional components, and therefore at low incremental costs. The principal objective of this paper is therefore to describe and analyze the dynamic and thermal design considerations for an automotive engine-integral reciprocating NG compressor. The purpose of this compressor is to pressurize storage tanks in NG vehicles from a low-pressure NG source by using one of the engine cylinders as a multi-stage reciprocating compressor. The engine-integral compressor is developed by making changes to a 5.9 l displacement diesel-cycle automotive engine. In this novel design and implementation, a small tank and its requisite valving are added to the engine as an intermediate gas storage system to enable a single compressor cylinder to perform two-stage compression. The resulting maximum pressure in the storage tank is 250 MPa, equivalent to the storage and delivery pressure of conventional CNG delivery systems. Dynamic simulation results show that the high cylinder pressures required for the compression process create reaction torques on the crankshaft, but do not generate abnormal rotational speed oscillations. Thermal simulation results show that the temperature of

  14. Integrating Communication into Engineering Curricula: An Interdisciplinary Approach to Facilitating Transfer at New Mexico Institute of Mining and Technology

    Science.gov (United States)

    Ford, Julie Dyke

    2012-01-01

    This program profile describes a new approach towards integrating communication within Mechanical Engineering curricula. The author, who holds a joint appointment between Technical Communication and Mechanical Engineering at New Mexico Institute of Mining and Technology, has been collaborating with Mechanical Engineering colleagues to establish a…

  15. Integrating Internet into Engineering Education: A Case Study of Students' Usage and Attitudes in Faculty of Engineering, Ahmadu Bello University

    Directory of Open Access Journals (Sweden)

    F.O. Anafi

    2015-12-01

    Full Text Available The attitude of students towards the integration of the internet as a study tool and communication channel in teaching and learning in engineering has been investigated. A study was carried out in the Faculty of Engineering, Ahmadu Bello University Zaria, Nigeria, aimed at investigating the effect of certain variables such as gender, course of study, computer experience, and the percentage of internet usage on teaching and learning processes. A well-structured questionnaire was administered to a randomly selected five hundred (500 male and female students across the seven (7 departments of the faculty and about 85% were filled and returned. The study also examines the university management's perspectives and strategies to incorporate internet usage in teaching and learning processes especially in engineering. Amazingly, responses received showed that experience in the use of the computer in surfing the internet for problem based activities mainly affects the level of internet usage across the faculty. This factor makes some students to misplace their priority in internet usage emphasizing on e-mail correspondence and social networking rather than sourcing for information and solving problems as it is done by a few students. Furthermore, findings support that internet cannot entirely substitute for traditional teaching and learning processes like text reading but can serve as a reasonable alternative when the latter is unavailable

  16. Designing, Developing, and Implementing a Course on LEGO Robotics for Technology Teacher Education

    Science.gov (United States)

    Chambers, Joan M.; Carbonaro, Mike

    2003-01-01

    Within a constructivist philosophy of learning, teachers, as students, are introduced to different perspectives of teaching with robotic technology while immersed in what Papert called a "constructionist" environment. Robotics allows students to creatively explore computer programming, mechanical design and construction, problem solving,…

  17. Liquid-handling Lego robots and experiments for STEM education and research.

    Directory of Open Access Journals (Sweden)

    Lukas C Gerber

    2017-03-01

    Full Text Available Liquid-handling robots have many applications for biotechnology and the life sciences, with increasing impact on everyday life. While playful robotics such as Lego Mindstorms significantly support education initiatives in mechatronics and programming, equivalent connections to the life sciences do not currently exist. To close this gap, we developed Lego-based pipetting robots that reliably handle liquid volumes from 1 ml down to the sub-μl range and that operate on standard laboratory plasticware, such as cuvettes and multiwell plates. These robots can support a range of science and chemistry experiments for education and even research. Using standard, low-cost household consumables, programming pipetting routines, and modifying robot designs, we enabled a rich activity space. We successfully tested these activities in afterschool settings with elementary, middle, and high school students. The simplest robot can be directly built from the widely used Lego Education EV3 core set alone, and this publication includes building and experiment instructions to set the stage for dissemination and further development in education and research.

  18. Liquid-handling Lego robots and experiments for STEM education and research.

    Science.gov (United States)

    Gerber, Lukas C; Calasanz-Kaiser, Agnes; Hyman, Luke; Voitiuk, Kateryna; Patil, Uday; Riedel-Kruse, Ingmar H

    2017-03-01

    Liquid-handling robots have many applications for biotechnology and the life sciences, with increasing impact on everyday life. While playful robotics such as Lego Mindstorms significantly support education initiatives in mechatronics and programming, equivalent connections to the life sciences do not currently exist. To close this gap, we developed Lego-based pipetting robots that reliably handle liquid volumes from 1 ml down to the sub-μl range and that operate on standard laboratory plasticware, such as cuvettes and multiwell plates. These robots can support a range of science and chemistry experiments for education and even research. Using standard, low-cost household consumables, programming pipetting routines, and modifying robot designs, we enabled a rich activity space. We successfully tested these activities in afterschool settings with elementary, middle, and high school students. The simplest robot can be directly built from the widely used Lego Education EV3 core set alone, and this publication includes building and experiment instructions to set the stage for dissemination and further development in education and research.

  19. Experimental investigation of integrated refrigeration system (IRS) with gas engine, compression chiller and absorption chiller

    International Nuclear Information System (INIS)

    Sun, Z.G.

    2008-01-01

    An integrated refrigeration system (IRS) with a gas engine, a vapor-compression chiller and an absorption chiller is set up and tested. The vapor-compression refrigeration cycle is operated directly by the gas engine. The waste heat from the gas engine operates the absorption refrigeration cycle, which provides additional cooling. The performance of the IRS is described. The cooling capacity of the IRS is about 596 kW, and primary energy ratio (PER) reaches 1.84 at air-conditioning rated conditions. The refrigerating capacity of the prototype increased and PER of prototype decreased with the increase of the gas engine speed. The gas engine speed was preferably regulated at part load condition in order to operate the prototype at high-energy efficiency. The refrigerating capacity and PER of the prototype increased with the increase of the outlet temperature of chilled water or the decrease of the inlet temperature of cooling water. The integrated refrigeration chiller in this work saves running costs as compared to the conventional refrigeration system by using the waste heat

  20. Changing the Engineering Student Culture with Respect to Academic Integrity and Ethics.

    Science.gov (United States)

    VanDeGrift, Tammy; Dillon, Heather; Camp, Loreal

    2017-08-01

    Engineers create airplanes, buildings, medical devices, and software, amongst many other things. Engineers abide by a professional code of ethics to uphold people's safety and the reputation of the profession. Likewise, students abide by a code of academic integrity while learning the knowledge and necessary skills to prepare them for the engineering and computing professions. This paper reports on studies designed to improve the engineering student culture with respect to academic integrity and ethics. To understand the existing culture at a university in the USA, a survey based on a national survey about cheating was administered to students. The incidences of self-reported cheating and incidences of not reporting others who cheat show the culture is similar to other institutions. Two interventions were designed and tested in an introduction to an engineering course: two case studies that students discussed in teams and the whole class, and a letter of recommendation assignment in which students wrote about themselves (character, strengths, examples of ethical decisions) three years into the future. Students were surveyed after the two interventions. Results show that first-year engineering students appreciate having a code of academic integrity and they want to earn their degree without cheating, yet less than half of the students would report on another cheating student. The letter of recommendation assignment had some impact on getting students to think about ethics, their character, and their actions. Future work in changing the student culture will continue in both a top-down (course interventions) and bottom-up (student-driven interventions) manner.

  1. Perceived leader integrity and employee job satisfaction: A quantitative study of U.S. aerospace engineers

    Science.gov (United States)

    Harper, Kay E.

    The goal of this quantitative study was to determine if there is a significant relationship between perceived leader integrity and employee job satisfaction. The population selected to be analyzed was U.S. Aerospace engineers. Two existing valid and reliable survey instruments were used to collect data. One of the surveys was the Perceived Leader Integrity Scale developed by Craig and Gustafson. The second survey was the Minnesota Satisfaction Questionnaire created by Weiss, Dawis, England, and Lofquist. The public professional networking site LinkedIn was used to invite U.S. Aerospace engineers to participate. The survey results were monitored by Survey Monkey and the sample data was analyzed using SPSS software. 184 responses were collected and of those, 96 were incomplete. 91 usable survey responses were left to be analyzed. When the results were plotted on an x-y plot, the data line had a slight negative slope. The plotted data showed a very small negative relationship between perceived leader integrity and employee job satisfaction. This relationship could be interpreted to mean that as perceived leader integrity improved, employee job satisfaction decreased only slightly. One explanation for this result could be that employees focused on their negative feelings about their current job assignment when they did not have to be concerned about the level of integrity with which their leader acted. The findings of this study reinforce the importance of employee's perception of a critical leader quality - integrity. For future research, a longitudinal study utilizing another sampling method other than convenience sampling may better statistically capture the relationship between perceived leader integrity and employee job satisfaction for U.S. aerospace engineers.

  2. INTEGRATED SCIENTIFIC-MANUFACTURING COMPLEXES AS A BASIS OF MODERN MECHANICAL ENGINEERING

    Directory of Open Access Journals (Sweden)

    N.A. Malyh

    2007-03-01

    Full Text Available The experience of FGUP PO "Uralvagonzavod" development is shown in the article, the analysis of mechanical engineering development in our country on modern stage is given. The authors’ approach upon the possibility, necessity and inevitability of a single right perspective decision of such economical problem in short period by the native financial, scientific-technical and people resources of Russia is proven. The position of seeing defensive enterprises as modern integrated scientific-manufacturing complexes, which are a real basis for creation of qualitatively new technique and technology of mechanical engineering and other country’s industry sectors.

  3. Exploring a Science Teacher's Uncertainty with Integrating Engineering Design: An Action Research Study

    Science.gov (United States)

    Capobianco, Brenda M.

    2011-11-01

    This study examines a fifth grade science teacher's attempts at integrating engineering design using the construct of uncertainty. Collaborative action research served as a supportive mechanism to uncover and confront the teacher's uncertainties. Data were gathered through semi-structured interviews, reflections, classroom observations, lesson plans, and student work. Data analysis entailed the use of grounded theory. Findings from this study revealed that teaching science through engineering design is both challenging and problematic. Underpinning the teacher's pedagogical experiences was the constant force of uncertainty, in various forms, and how her sense of doubt was beneficial rather than problematic.

  4. Application of integrated logistic techniques to operation, maintenance and re engineering processes in Nuclear Power plants

    International Nuclear Information System (INIS)

    Santiago Diez, P.

    1997-01-01

    This paper addresses the advisability of adapting and applying management and Integrated Logistic engineering techniques to nuclear power plants instead of using more traditional maintenance management methods. It establishes a historical framework showing the origins of integrated approaches based on traditional logistic support concepts, their phases and the real results obtained in the aeronautic world where they originated. It reviews the application of integrated management philosophy, and logistic support and engineering analysis techniques regarding Availability, Reliability and Maintainability (ARM) and shows their inter dependencies in different phases of the system's life (Design, Development and Operation). It describes how these techniques are applied to nuclear power plant operation, their impact on plant availability and the optimisation of maintenance and replacement plans. The paper analyses the need for data (type and volume), which will have to be collected, and the different tools to manage such data. It examines the different CALS tools developed by EA for engineering and for logistic management. It also explains the possibility of using these tools for process and data operations through the INTERNET. It also focuses on the qualities of some simple examples of possible applications, and how they would be used in the framework of Integrated Logistic Support (ILS). (Author)

  5. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    Full text: In 2002, the US Department of Energy (US DOE) transferred sponsorship of the INEEL and ANL-W to the DOE Office of Nuclear Energy, Science and Technology and designated the INEEL and ANL-W as the nation's lead laboratories for nuclear reactor and nuclear fuel cycle research and development. This transfer acknowledged the laboratories' history, infrastructure, expertise and commitment to collaborate broadly in order to fulfill its assigned role as the nation's center for nuclear energy research and development. Key to this role is the availability of well-educated and trained nuclear engineers, professionals from other disciplines of engineering, nuclear scientists, and others with advanced degrees in supporting disciplines such as physics, chemistry, and math. In 2005 the INEEL and ANL-W will be combined into the Idaho National Laboratory (INL). One of US DOE's objectives for the INL will be for it to take a strong role in the revitalization of nuclear engineering and nuclear science education in the US. Responding to this objective for the INL and the national need to rejuvenate nuclear engineering and nuclear science research and education, ISU, University of Idaho (UI), Boise State University, the INEEL, and ANL-W are all supporting a new Institute of Nuclear Science and Engineering (INSE), initially proposed by and to be administered by ISU. The Institute will rely on the resources of both universities and the INL to create a US center for reactor and fuel cycle research to development and attract outstanding faculty and students to Idaho and to the INL. The Institute and other university based education development efforts represent only one component of a viable Human Resources Pipeline from university to leading edge laboratory researcher. Another critical component is the successful integration of new graduates into the laboratory research environment, the transfer of knowledge from senior researchers, and the development of these individuals into

  6. Engineering issues on the diagnostic port integration in ITER upper port 18

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Sunil, E-mail: paksunil@nfri.re.kr [National Fusion Research Institute, Gwahak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Bertalot, Luciano [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Cheon, Mun Seong [National Fusion Research Institute, Gwahak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Giacomin, Thibaud [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Heemskerk, Cock J.M.; Koning, Jarich F. [Heemskerk Innovative Technology, Merelhof 2, 2172 HZ Sassenheim (Netherlands); Lee, Hyeon Gon [National Fusion Research Institute, Gwahak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Nemtcev, Grigorii [Institution “PROJECT CENTER ITER”, Akademika Kurchatova sq., Moscow (Russian Federation); Ronden, Dennis M.S. [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Seon, Chang Rae [National Fusion Research Institute, Gwahak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Udintsev, Victor; Yukhnov, Nikolay [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Zvonkov, Alexander [Institution “PROJECT CENTER ITER”, Akademika Kurchatova sq., Moscow (Russian Federation)

    2016-11-01

    Highlights: • Diagnostic port integration in the upper port 18 of ITER is presented in order to house the three diagnostic systems. • Issue on the neutron shielding in the upper port 18 is addressed and the shut-down dose rate in the interspace is summarized. • The maintenance strategy in the upper port 18 is described. - Abstract: The upper port #18 (UP18) in ITER hosts three diagnostic systems: the neutron activation system, the Vacuum Ultra-Violet spectrometer system, and the vertical neutron camera. These diagnostics are integrated into three infrastructures in the port: the upper port plug, interspace support structure and port cell support structure. The port integration in UP18 is at the preliminary design stage and the current design of the infrastructure as well as the diagnostic integration is described here. The engineering issues related to neutron shielding and maintenance are addressed and the design approach is suggested.

  7. Implementing vertical and horizontal engineering students' integration and assessment of consequence academic achievement

    Science.gov (United States)

    Al-Zubaidy, Sarim; Abdulaziz, Nidhal; Dashtpour, Reza

    2012-08-01

    Recent scholarship references indicate that integration of the student body can result in an enhanced learning experience for students and also greater satisfaction. This paper reports the results of a case study whereby mechanical engineering students studying at a newly established branch campus in Dubai of a British university were exposed to vertical and horizontal integration. Different activities have been embedded to ensure that students integrated and worked together with their peers and colleagues at different levels. The implemented processes and practices led to improved academic achievements, which were better than those of a similar cohort of students where no effort had been made to integrate. The analysis revealed that cooperative learning and the degree of academic support provided by teachers are positively and directly correlated with academic as well as the students' own sense of personal achievement. The results are discussed in light of previous research and with reference to the cultural context of the study.

  8. Teaching `community engagement' in engineering education for international development: Integration of an interdisciplinary social work curriculum

    Science.gov (United States)

    Gilbert, Dorie J.; Lehman Held, Mary; Ellzey, Janet L.; Bailey, William T.; Young, Laurie B.

    2015-05-01

    This article reviews the literature on challenges faced by engineering faculty in educating their students on community-engaged, sustainable technical solutions in developing countries. We review a number of approaches to increasing teaching modules on social and community components of international development education, from adding capstone courses and educational track seminars to integrating content from other disciplines, particularly the social sciences. After summarising recent pedagogical strategies to increase content on community-focused development, we present a case study of how one engineering programme incorporates social work students and faculty to infuse strategies for community engagement in designing and implementing student-led global engineering development projects. We outline how this interdisciplinary pedagogical approach teaches students from the two disciplines to work together in addressing power balances, economic and social issues and overall sustainability of international development projects.

  9. Andromeda - a peptide search engine integrated into the MaxQuant environment

    DEFF Research Database (Denmark)

    Cox, Jurgen; Neuhauser, Nadin; Michalski, Annette

    2011-01-01

    A key step in mass spectrometry (MS)-based proteomics is the identification of peptides in sequence databases by their fragmentation spectra. Here we describe Andromeda, a novel peptide search engine using a probabilistic scoring model. On proteome data Andromeda performs as well as Mascot......, a widely used commercial search engine, as judged by sensitivity and specificity analysis based on target decoy searches. Furthermore, it can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, such as highly...... phosphorylated peptides and accommodates extremely large databases. The algorithms of Andromeda are provided. Andromeda can function independently or as an integrated search engine of the widely used MaxQuant computational proteomics platform and both are freely available at www.maxquant.org. The combination...

  10. Biomass gasification integrated with a solid oxide fuel cell and Stirling engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks for electric......An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks......-of-plant is designed and suggested. Thermodynamic analysis shows that a thermal efficiency of 42.4% based on the lower heating value (LHV) can be achieved if all input parameters are selected conservatively. Different parameter studies are performed to analyze the system behavior under different conditions...

  11. Biomass gasification integrated with a solid oxide fuel cell and Stirling engine

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2014-01-01

    An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks for electricity production. Unreacted hydrocarbons remaining after the SOFC are burned in a catalytic burner, and the hot off-gases from the burner are recovered in a Stirling engine for electricity and heat production. Domestic hot water is used as a heat sink for the Stirling engine. A complete balance-of-plant is designed and suggested. Thermodynamic analysis shows that a thermal efficiency of 42.4% based on the lower heating value (LHV) can be achieved if all input parameters are selected conservatively. Different parameter studies are performed to analyze the system behavior under different conditions. The analysis shows that the decreasing number of stacks from a design viewpoint, indicating that plant efficiency decreases but power production remains nearly unchanged. Furthermore, the analysis shows that there is an optimum value for the utilization factor of the SOFC for the suggested plant design with the suggested input parameters. This optimum value is approximately 65%, which is a rather modest value for SOFC. In addition, introducing a methanator increases plant efficiency slightly. If SOFC operating temperature decreases due to new technology then plant efficiency will slightly be increased. Decreasing gasifier temperature, which cannot be controlled, causes the plant efficiency to increase also. - Highlights: • Design of integrated gasification with solid oxide fuel and Stirling engine. • Important plant parameters study. • Plant running on biomass with and without methanator. • Thermodynamics of integrated gasification SOFC-Stirling engine plants

  12. Integration of CATIA/Smarteam into CERN's corporate engineering data management system

    CERN Document Server

    Hakulinen, Timo; Friman, Per Olof; Pettersson, Thomas Sven; Van Uytvinck, E; Widegren, David; Fournier, G

    2008-01-01

    We present a short overview of the strategy defined to integrate the 3D CAD system CATIA/Smarteam into CERN's corporate Engineering and Equipment Data Management System (EDMS), which is used to manage the information about the Laboratory's installations and technical infrastructure. A brief description of the existing EDMS architecture is given, describing the available project life cycle management features, including CATIA/Smarteam. An overview of the design office requirements on the new CAD system is also presented.

  13. Computer-aided-engineering system for modeling and analysis of ECLSS integration testing

    Science.gov (United States)

    Sepahban, Sonbol

    1987-01-01

    The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.

  14. Integrating E-Commerce and Social Engineering Perspectives on Trust in Online Communication

    OpenAIRE

    Pfeiffer, Thomas; Kauer, Michaela; Bruder, Ralph

    2012-01-01

    Currently, interpersonal trust in computer-mediated communication is a research topic for e-commerce as well as usable security researchers. While the e-commerce researchers focus on gaining warranted trust, usable security researchers focus on preventing misplaced trust, in order to protect users from social engineering attacks. In this paper an approach to integrate findings and theories from both fields is proposed in order to create a complete model for predicti...

  15. GIGGLE: a search engine for large-scale integrated genome analysis

    Science.gov (United States)

    Layer, Ryan M; Pedersen, Brent S; DiSera, Tonya; Marth, Gabor T; Gertz, Jason; Quinlan, Aaron R

    2018-01-01

    GIGGLE is a genomics search engine that identifies and ranks the significance of genomic loci shared between query features and thousands of genome interval files. GIGGLE (https://github.com/ryanlayer/giggle) scales to billions of intervals and is over three orders of magnitude faster than existing methods. Its speed extends the accessibility and utility of resources such as ENCODE, Roadmap Epigenomics, and GTEx by facilitating data integration and hypothesis generation. PMID:29309061

  16. GIGGLE: a search engine for large-scale integrated genome analysis.

    Science.gov (United States)

    Layer, Ryan M; Pedersen, Brent S; DiSera, Tonya; Marth, Gabor T; Gertz, Jason; Quinlan, Aaron R

    2018-02-01

    GIGGLE is a genomics search engine that identifies and ranks the significance of genomic loci shared between query features and thousands of genome interval files. GIGGLE (https://github.com/ryanlayer/giggle) scales to billions of intervals and is over three orders of magnitude faster than existing methods. Its speed extends the accessibility and utility of resources such as ENCODE, Roadmap Epigenomics, and GTEx by facilitating data integration and hypothesis generation.

  17. Review of methods for the integration of reliability and design engineering

    International Nuclear Information System (INIS)

    Reilly, J.T.

    1978-03-01

    A review of methods for the integration of reliability and design engineering was carried out to establish a reliability program philosophy, an initial set of methods, and procedures to be used by both the designer and reliability analyst. The report outlines a set of procedures which implements a philosophy that requires increased involvement by the designer in reliability analysis. Discussions of each method reviewed include examples of its application

  18. Engineering of metal-clad optical nanocavity to optimize coupling with integrated waveguides

    OpenAIRE

    Kim, Myung-Ki; Li, Zheng; Huang, Kun; Going, Ryan; Wu, Ming C.; Choo, Hyuck

    2013-01-01

    We propose a cladding engineering method that flexibly modifies the radiation patterns and rates of metal-clad nanoscale optical cavity. Optimally adjusting the cladding symmetry of the metal-clad nanoscale optical cavity modifies the modal symmetry and produces highly directional radiation that leads to 90% coupling efficiency into an integrated waveguide. In addition, the radiation rate of the cavity mode can be matched to its absorption rate by adjusting the thickness of the bottom-claddin...

  19. A System-of-Systems Engineering Approach for Australian Land Force Capability Integration

    Science.gov (United States)

    2012-09-01

    Shelf NCW Network Centric Warfare NCWIIS NCW Integration and Implementation Strategy NDIA National Defense Industrial Association OCD Operational...individual rather than via the systemic approach offered by SoSE. The success of this approach is critically dependent upon the energy and presence of the...Success Factors in SoS Engineering SoSE Personnel 27. It is necessary to identify and manage critical workforce competencies. It is also essential to

  20. Integrated Energy and Emission Management for Diesel Engines with Waste Heat Recovery Using Dynamic Models

    Directory of Open Access Journals (Sweden)

    Willems Frank

    2015-01-01

    Full Text Available Rankine-cycle Waste Heat Recovery (WHR systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine and WHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel engine with WHR system. This Integrated Powertrain Control (IPC strategy optimizes the CO2-NOx trade-off by minimizing online the operational costs associated with fuel and AdBlue consumption. Contrary to other control studies, the proposed control strategy optimizes overall engine-aftertreatment-WHR system performance and deals with emission constraints. From simulations, the potential of this IPC strategy is demonstrated over a World Harmonized Transient Cycle (WHTC using a high-fidelity simulation model. These results are compared with a state-of-the-art baseline engine control strategy. By applying the IPC strategy, an additional 2.6% CO2 reduction is achieved compare to the baseline strategy, while meeting the tailpipe NOx emission limit. In addition, the proposed low-level WHR controller is shown to deal with the cold start challenges.

  1. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    Science.gov (United States)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.

  2. The integration of engineering design projects into the secondary science classroom

    Science.gov (United States)

    Green, Adam

    In order to compete in the global economy, the United States needs to adequately train an increasing number of students in the STEM (Science, Technology, Engineering, and Mathematics) fields. Recent studies show that the U.S. is lagging behind other countries in international science and mathematics assessments, and that the motivation of students to enter into and stay in the STEM fields of study is low. Businesses and government alike are pushing for increased instruction in science and math for K-12 students as a means for producing larger numbers of STEM ready students. New approaches to adding more engineering instruction into the curriculum are being applied but current research into the effectiveness of such approaches is mixed. This study sought to gauge the effectiveness that integrating engineering design projects into the traditional physical science classroom has on students understanding of the applied scientific concepts as opposed to traditional instruction. The results indicate that integration of engineering design projects has a positive effect on student's science concept knowledge as well as their motivation in the classroom.

  3. Discovery, Integration, and Analysis (DIA) Engine for Ontologically Registered Earth Science Data

    Science.gov (United States)

    Sinha, A.; Malik, Z.; Rezgui, A.; Dalton, A.; Lin, K.

    2006-12-01

    A newly developed DIA engine within the NSF supported GEON program utilizes an ontologic cyberinfrastructure framework for discovery, integration, and analysis of earth science data. Data discovery, is commonly challenging because of the use of personalized acronyms, notations, conventions, etc., but can be simplified through ontologic registration. Data integration enables users to extract new information, called data products, by jointly considering and correlating several ontologically registered data sets. We have developed ontology packages as well as accessed ontologies such as SWEET, which provide concepts, concept taxonomies, relationships between concepts, and properties, as an initial step towards the development of complete heavyweight ontologies (with axioms and constraints) for earth science. The primary objective is to allow researchers to associate ontology to their data, so that a unique and definite meaning is associated with each data item. This facilitates data discovery and integration by relating data items with similar semantics across various repositories. The DIA engine provides a Web accessible graphical user interface (GUI) comprising of map services and query menus. Users can specify a "geological region of interest" by making selections on geologic maps which are part of the GUI. Moreover, interactive menus enable filtering, discovery and integration of data (geospatial as well as aspatial), using many tools, including those developed by the community. We support the Web services technology to share these tools since web services hide the tool implementation details and only provide the required invocation details (input/output parameters, etc.). Thus, geoscientists can build tools that access ontologically registered data and provide invocation details publicly. Therefore, any tool that is developed as a Web service can be plugged in the DIA engine. The DIA engine supports dynamic data product creation which requires "on

  4. System engineering approach in the EU Test Blanket Systems Design Integration

    International Nuclear Information System (INIS)

    Panayotov, D.; Sardain, P.; Boccaccini, L.V.; Salavy, J.-F.; Cismondi, F.; Jourd'Heuil, L.

    2011-01-01

    The complexity of the Test Blanket Systems demands diverse and comprehensive integration activities. Test Blanket Modules - Consortia of Associates (TBM-CA) applies the system engineering methods in all stages of the Test Blanket System (TBS) design integration. Completed so far integration engineering tasks cover among others status and initial set of TBS operating parameters; list of codes, standards and regulations related to TBS; planning of the TBS interfaces and baseline documentation. Most of the attention is devoted to the establishment the Helium-Cooled Lithium Lead (HCLL) and Helium-Cooled Pebble Bed Lead (HCPB) TBS configuration baseline, TBS break down into sub-systems, identification, definition and management of the internal and external interfaces, development of the TBS plant break down structure (PBS), establishment and management of the required TBS baseline documentation infrastructure. Break down of the TBS into sub-systems that is crucial for the further design and interfaces' management has been selected considering several options and using specific evaluation criteria. Process of the TBS interfaces management covers the planning, definition and description, verification and review, non-conformances and deviations, and modification and improvement processes. Process of interfaces review is developed, identifying the actors, input, activities and output of the review. Finally the relations and interactions of system engineering processes with TBM configuration management and TBM-CA Quality Management System are discussed.

  5. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  6. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos

    2009-01-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  7. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2013-10-01

    Full Text Available Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  8. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-10-11

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  9. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: vasconv@cdtn.br, e-mail: silvaem@cdtn.br, e-mail: aclc@cdtn.br, e-mail: reissc@cdtn.br

    2009-07-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  10. Structural integrity for DEMO: An opportunity to close the gap from materials science to engineering needs

    Energy Technology Data Exchange (ETDEWEB)

    Porton, M., E-mail: michael.porton@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Wynne, B.P. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); University of Sheffield, Sheffield, South Yorkshire S10 2TN (United Kingdom); Bamber, R.; Hardie, C.D.; Kalsey, M. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2016-11-01

    Highlights: • Key shortfalls in the current approaches to verification of structural integrity are outlined. • Case studies for high integrity applications in other demanding environments are examined. • Relevant lessons are drawn from fission and space for the design stage and through service life. • Future efforts are suggested to align materials and engineering for DEMO structural integrity. - Abstract: It is clear that fusion demonstration devices offer unique challenges due to the myriad, interacting material degradation effects and the numerous, conflicting requirements that must be addressed in order for in-vessel components to deliver satisfactory performance over the required lifetime. The link between mechanical engineering and materials science is pivotal to assure the timely realisation and exploitation of successful fusion power. A key aspect of this link is the verification of structural integrity, achieved at the design stage via structural design criteria against which designs are judged to be sufficiently resilient (or not) to failure, for a given set of loading conditions and desired lifetime. As various demonstration power plant designs progress through their current conceptual design phases, this paper seeks to highlight key shortfalls in this vital link between engineering needs and materials science, offering a perspective on where future attention can be prioritised to maximise impact. Firstly, issues in applying existing structural design criteria to demonstration power plant designs are identified. Whilst fusion offers particular challenges, there are significant insights to be gained from attempts to address such issues for high performance, high integrity applications in other demanding environments. Therefore case studies from beyond fusion are discussed. These offer examples where similar shortfalls have been successfully addressed, via approaches at the design stage and through service lifetime in order to deliver significant

  11. Enhanced Electrical Integration of Engineered Human Myocardium via Intramyocardial versus Epicardial Delivery in Infarcted Rat Hearts.

    Directory of Open Access Journals (Sweden)

    Kaytlyn A Gerbin

    Full Text Available Cardiac tissue engineering is a promising approach to provide large-scale tissues for transplantation to regenerate the heart after ischemic injury, however, integration with the host myocardium will be required to achieve electromechanical benefits. To test the ability of engineered heart tissues to electrically integrate with the host, 10 million human embryonic stem cell (hESC-derived cardiomyocytes were used to form either scaffold-free tissue patches implanted on the epicardium or micro-tissue particles (~1000 cells/particle delivered by intramyocardial injection into the left ventricular wall of the ischemia/reperfusion injured athymic rat heart. Results were compared to intramyocardial injection of 10 million dispersed hESC-cardiomyocytes. Graft size was not significantly different between treatment groups and correlated inversely with infarct size. After implantation on the epicardial surface, hESC-cardiac tissue patches were electromechanically active, but they beat slowly and were not electrically coupled to the host at 4 weeks based on ex vivo fluorescent imaging of their graft-autonomous GCaMP3 calcium reporter. Histologically, scar tissue physically separated the patch graft and host myocardium. In contrast, following intramyocardial injection of micro-tissue particles and suspended cardiomyocytes, 100% of the grafts detected by fluorescent GCaMP3 imaging were electrically coupled to the host heart at spontaneous rate and could follow host pacing up to a maximum of 300-390 beats per minute (5-6.5 Hz. Gap junctions between intramyocardial graft and host tissue were identified histologically. The extensive coupling and rapid response rate of the human myocardial grafts after intramyocardial delivery suggest electrophysiological adaptation of hESC-derived cardiomyocytes to the rat heart's pacemaking activity. These data support the use of the rat model for studying electromechanical integration of human cardiomyocytes, and they

  12. Integrating ergonomics knowledge into business-driven design projects: The shaping of resource constraints in engineering consultancy

    DEFF Research Database (Denmark)

    Hall-Andersen, Lene Bjerg; Neumann, W. Patrick; Broberg, Ole

    2016-01-01

    . The economical contribution of ergonomics measures was not evaluated in the entire life cycle of a designed workplace. Coping strategies included teaming up with engineering designers in the sales process or creating an alliance with ergonomists in the client organization......BACKGROUND: The integration of ergonomics knowledge into engineering projects leads to both healthier and more efficient workplaces. There is a lack of knowledge about integrating ergonomic knowledge into the design practice in engineering consultancies. OBJECTIVES: This study explores how...... organizational resources can pose constraints for the integration of ergonomics knowledge into engineering design projects in a business-driven setting, and how ergonomists cope with these resource constraints. PARTICIPANTS: An exploratory case study in an engineering consultancy was conducted. A total of 27...

  13. Engineering Assessment and Certification of Integrity of the 177-R2 tank system

    International Nuclear Information System (INIS)

    Graser, D.A.; Schwartz, W.W.

    1993-10-01

    This Engineering Assessment and Certification of Integrity of retention tanks 177-R2U1, 177-R2Al, and 177-R2A2 has been prepared in response to 40 CFR 265.192(a) and 22 CCR 66265.192(a) for new tank systems that store hazardous waste and have secondary containment. The regulations require that this assessment be completed and certified by an independent, qualified, California-registered professional engineer before the tank system is placed in use as a hazardous waste storage tank system. The technical assessments for the 177-R2Ul, 177-R2A1, and 177-R2A2 tank systems have been reviewed by an independent, qualified, California-registered professional engineer, who has certified that the tank systems have sufficient structural integrity, are acceptable for transferring and storing hazardous waste, are compatible with the stored waste, and the tanks and containment system are suitably designed to achieve the requirements of the applicable regulations so they will not collapse, rupture, or fail. This document will be kept on file by the Lawrence Livermore National Laboratory (LLNL) Environment Protection Department

  14. CEA engineering studies and integration of the ITER diagnostic port plugs

    Energy Technology Data Exchange (ETDEWEB)

    Doceul, L. [Association Euratom-CEA sur la Fusion Controlee, Centre d' Etudes de Cadarache, F-13108 Saint-Paul-Lez-Durance Cedex (France)], E-mail: louis.doceul@cea.fr; Walker, C. [ITER International Team, Boltzmannstr. 2, D-85748 Garching bei Muenchen (Germany); Ingesson, C.; Ciattaglia, E. [EFDA CSU - Garching, Boltzmannstr. 2, D-85748 Garching bei Muenchen (Germany); Chappuis, P.; Portafaix, C.; Salasca, S.; Thomas, E.; Tremblay, G.; Bruyere, C. [Association Euratom-CEA sur la Fusion Controlee, Centre d' Etudes de Cadarache, F-13108 Saint-Paul-Lez-Durance Cedex (France)

    2007-10-15

    Most of the ITER diagnostic system is integrated in port plugs, which are water cooled stainless steel structures inserted into the vacuum-vessel ports. The port plug must perform basic functions such as providing neutron and gamma shielding, supporting the first wall armour and shielding blanket material, closing the vacuum vessel ports, while supporting the diagnostic equipment. CEA has contributed to the engineering activities on the port plugs and has more particularly focused on the design and diagnostic integration in the representative equatorial port plug Eq no. 01. The specific CEA contributions have been the engineering, structural and thermal analysis. These detailed analyses have highlighted some design issues which were worked out through different solutions. This paper contains a description of the engineering activities performed such as: the conceptual design of the Eq no. 01 port plug, the static mechanical calculations, the dynamic calculation to estimate the dynamic amplification factor due to the resonance phenomenon, the thermal assessment under the neutronic load and the seismic response of the port plug inside the vacuum vessel.

  15. CEA engineering studies and integration of the ITER diagnostic port plugs

    International Nuclear Information System (INIS)

    Doceul, L.; Walker, C.; Ingesson, C.; Ciattaglia, E.; Chappuis, P.; Portafaix, C.; Salasca, S.; Thomas, E.; Tremblay, G.; Bruyere, C.

    2007-01-01

    Most of the ITER diagnostic system is integrated in port plugs, which are water cooled stainless steel structures inserted into the vacuum-vessel ports. The port plug must perform basic functions such as providing neutron and gamma shielding, supporting the first wall armour and shielding blanket material, closing the vacuum vessel ports, while supporting the diagnostic equipment. CEA has contributed to the engineering activities on the port plugs and has more particularly focused on the design and diagnostic integration in the representative equatorial port plug Eq no. 01. The specific CEA contributions have been the engineering, structural and thermal analysis. These detailed analyses have highlighted some design issues which were worked out through different solutions. This paper contains a description of the engineering activities performed such as: the conceptual design of the Eq no. 01 port plug, the static mechanical calculations, the dynamic calculation to estimate the dynamic amplification factor due to the resonance phenomenon, the thermal assessment under the neutronic load and the seismic response of the port plug inside the vacuum vessel

  16. Exergetic analysis of cogeneration plants through integration of internal combustion engine and process simulators

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Leonardo de Oliveira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)], E-mail: leonardo.carvalho@petrobras.com.br; Leiroz, Albino Kalab; Cruz, Manuel Ernani [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Mecanica], Emails: leiroz@mecanica.ufrj.br, manuel@mecanica.ufrj.br

    2010-07-01

    Internal combustion engines (ICEs) have been used in industry and power generation much before they were massively employed for transportation. Their high reliability, excellent power-to-weight ratio, and thermal efficiency have made them a competitive choice as main energy converters in small to medium sized power plants. Process simulators can model ICE powered energy plants with limited depth, due to the highly simplified ICE models used. Usually a better understanding of the global effects of different engine parameters is desirable, since the combustion process within the ICE is typically the main cause of exergy destruction in systems which utilize them. Dedicated commercial ICE simulators have reached such a degree of maturity, that they can adequately model a wide spectrum of phenomena that occur in ICEs. However, ICE simulators are unable to incorporate the remaining of power plant equipment and processes in their models. This paper presents and exploits the integration of an internal combustion engine simulator with a process simulator, so as to evaluate the construction of a fully coupled simulation platform to analyze the performance of ICE-based power plants. A simulation model of an actual cogeneration plant is used as a vehicle for application of the proposed computational methodology. The results show that by manipulating the engine mapping parameters, the overall efficiency of the plant can be improved. (author)

  17. Integrating Creativity Training into Problem and Project-Based Learning (PBL) Curriculum in Engineering Education

    DEFF Research Database (Denmark)

    Zhou, Chunfang

    2012-01-01

    In order to foster creative engineers, a creativity training programme was carried out in medialogy education in a Problem and Project-Based Learning (PBL) environment at Aalborg University, Denmark. This paper focuses on the question of how engineering students perceive the strategy of integrati......, limitations of the programme show that only five days of training did not fit the requirements of learning skills in PBL. So the supervisors are suggested to offer more creativity techniques and process engagement to move projects forward.......In order to foster creative engineers, a creativity training programme was carried out in medialogy education in a Problem and Project-Based Learning (PBL) environment at Aalborg University, Denmark. This paper focuses on the question of how engineering students perceive the strategy of integrating...... creativity training into a PBL curriculum. A total of 20 medialogy students in the training programme were interviewed. The data shows that the training programme was thought useful and students get benefits such as gaining project work skills, creative concepts and confidence of being creative. However...

  18. Multi-Objective Climb Path Optimization for Aircraft/Engine Integration Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Aristeidis Antonakis

    2017-04-01

    Full Text Available In this article, a new multi-objective approach to the aircraft climb path optimization problem, based on the Particle Swarm Optimization algorithm, is introduced to be used for aircraft–engine integration studies. This considers a combination of a simulation with a traditional Energy approach, which incorporates, among others, the use of a proposed path-tracking scheme for guidance in the Altitude–Mach plane. The adoption of population-based solver serves to simplify case setup, allowing for direct interfaces between the optimizer and aircraft/engine performance codes. A two-level optimization scheme is employed and is shown to improve search performance compared to the basic PSO algorithm. The effectiveness of the proposed methodology is demonstrated in a hypothetic engine upgrade scenario for the F-4 aircraft considering the replacement of the aircraft’s J79 engine with the EJ200; a clear advantage of the EJ200-equipped configuration is unveiled, resulting, on average, in 15% faster climbs with 20% less fuel.

  19. Integrated Community Energy Systems: engineering analysis and design bibliography. [368 citations

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.; Sapienza, G.R.

    1979-05-01

    This bibliography cites 368 documents that may be helpful in the planning, analysis, and design of Integrated Community Energy Systems. It has been prepared for use primarily by engineers and others involved in the development and implementation of ICES concepts. These documents include products of a number of Government research, development, demonstration, and commercialization programs; selected studies and references from the literature of various technical societies and institutions; and other selected material. The key programs which have produced cited reports are the Department of Energy Community Systems Program (DOE/CSP), the Department of Housing and Urban Development Modular Integrated Utility Systems Program (HUD/MIUS), and the Department of Health, Education, and Welfare Integrated Utility Systems Program (HEW/IUS). The cited documents address experience gained both in the U.S. and in other countries. Several general engineering references and bibliographies pertaining to technologies or analytical methods that may be helpful in the analysis and design of ICES are also included. The body of relevant literature is rapidly growing and future updates are therefore planned. Each citation includes identifying information, a source, descriptive information, and an abstract. The citations are indexed both by subjects and authors, and the subject index is extensively cross-referenced to simplify its use.

  20. An Approach to Integrating Health Disparities within Undergraduate Biomedical Engineering Education.

    Science.gov (United States)

    Vazquez, Maribel; Marte, Otto; Barba, Joseph; Hubbard, Karen

    2017-11-01

    Health disparities are preventable differences in the incidence, prevalence and burden of disease among communities targeted by gender, geographic location, ethnicity and/or socio-economic status. While biomedical research has identified partial origin(s) of divergent burden and impact of disease, the innovation needed to eradicate health disparities in the United States requires unique engagement from biomedical engineers. Increasing awareness of the prevalence and consequences of health disparities is particularly attractive to today's undergraduates, who have undauntedly challenged paradigms believed to foster inequality. Here, the Department of Biomedical Engineering at The City College of New York (CCNY) has leveraged its historical mission of access-and-excellence to integrate the study of health disparities into undergraduate BME curricula. This article describes our novel approach in a multiyear study that: (i) Integrated health disparities modules at all levels of the required undergraduate BME curriculum; (ii) Developed opportunities to include impacts of health disparities into undergraduate BME research projects and mentored High School summer STEM training; and (iii) Established health disparities-based challenges as BME capstone design and/or independent entrepreneurship projects. Results illustrate the rising awareness of health disparities among the youngest BMEs-to-be, as well as abundant undergraduate desire to integrate health disparities within BME education and training.

  1. Integrating the Concept of Sustainable Development into English Language Curriculum of Environmental Engineering Sciences

    Directory of Open Access Journals (Sweden)

    Rūta Petkutė

    2012-06-01

    Full Text Available The article attempts to present and discuss practical implementation of the objectives of the project Sustainable Living Environment carried out at the Faculty of Environmental Engineering of Vilnius Gediminas Technical University (VGTU. The project is a response to a commonly articulated and acknowledged need to infuse sustainable development principles into traditional curricula of all levels of education to pursue goals of sustainable development. Thus, the present study aims to take an account of the increasing role of Education for Sustainable Development (ESD in a globalized world and define how the implimentation of the ESD objectives changes teaching/learning patterns at a university of technology. Moreover, it offers an interdisciplinary curriculum scheme for teaching/learning English as a second language for Environmental Engineering as an efficient means to integrate principles of sustainable development into language classroom.

  2. Computer-aided operations engineering with integrated models of systems and operations

    Science.gov (United States)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.

  3. Engineering aspects of design and integration of ECE diagnostic in ITER

    Directory of Open Access Journals (Sweden)

    Udintsev V.S.

    2015-01-01

    Full Text Available ITER ECE diagnostic [1] needs not only to meet measurement requirements, but also to withstand various loads, such as electromagnetic, mechanical, neutronic and thermal, and to be protected from stray ECH radiation at 170 GHz and other millimeter wave emission, like Collective Thomson scattering which is planned to operate at 60 GHz. Same or similar loads will be applied to other millimetre-wave diagnostics [2], located both in-vessel and in-port plugs. These loads must be taken into account throughout the design phases of the ECE and other microwave diagnostics to ensure their structural integrity and maintainability. The integration of microwave diagnostics with other ITER systems is another challenging activity which is currently ongoing through port integration and in-vessel integration work. Port Integration has to address the maintenance and the safety aspects of diagnostics, too. Engineering solutions which are being developed to support and to operate ITER ECE diagnostic, whilst complying with safety and maintenance requirements, are discussed in this paper.

  4. Machining the Integral Impeller and Blisk of Aero-Engines: A Review of Surface Finishing and Strengthening Technologies

    Science.gov (United States)

    Fu, Youzhi; Gao, Hang; Wang, Xuanping; Guo, Dongming

    2017-05-01

    The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces for power transmission, and their surface integrity has significant effects on the aerodynamic efficiency and service life of an aero-engine. Thus, it is indispensable to finish and strengthen the blades before use. This paper presents a comprehensive literature review of studies on finishing and strengthening technologies for the impeller and blisk of aero-engines. The review includes independent and integrated finishing and strengthening technologies and discusses advanced rotational abrasive flow machining with back-pressure used for finishing the integral impeller and blisk. A brief assessment of future research problems and directions is also presented.

  5. Integrated Design Engineering Analysis (IDEA) Environment Automated Generation of Structured CFD Grids using Topology Methods

    Science.gov (United States)

    Kamhawi, Hilmi N.

    2012-01-01

    This report documents the work performed from March 2010 to March 2012. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML) as a framework and supporting the configuration design and parametric CFD grid generation. This report will focus on describing the work in the area of parametric CFD grid generation using novel concepts for defining the interaction between the mesh topology and the geometry in such a way as to separate the mesh topology from the geometric topology while maintaining the link between the mesh topology and the actual geometry.

  6. A hingeless rotor XV-15 design integration feasibility study. Volume 1: Engineering design studies

    Science.gov (United States)

    Magee, J. P.; Alexander, H. R.

    1978-01-01

    A design integration feasibility study was carried out to investigate what modifications to the basic XV-15 were necessary to accomplish a flight demonstration of the XV-15 with a Boeing hingeless rotor. Also investigated were additional modifications which would exploit the full capability provided by the combination of the new rotor and the existing T53 engine. An evaluation of the aircraft is presented and the data indicate improved air vehicle performance, acceptable aeroelastic margins, lower noise levels and improved flying qualities compared with the XV-15 aircraft. Inspection of the rotor system data provided shows an essentially unlimited life rotor for the flight spectrum anticipated for the XV-15.

  7. On the engineering design for systematic integration of agent-orientation in industrial automation.

    Science.gov (United States)

    Yu, Liyong; Schüller, Andreas; Epple, Ulrich

    2014-09-01

    In today's automation industry, agent-oriented development of system functionalities appears to have a great potential for increasing autonomy and flexibility of complex operations, while lowering the workload of users. In this paper, we present a reference model for the harmonious and systematical integration of agent-orientation in industrial automation. Considering compatibility with existing automation systems and best practice, this model combines advantages of function block technology, service orientation and native description methods from the automation standard IEC 61131-3. This approach can be applied as a guideline for the engineering design of future agent-oriented automation systems. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Extending the Activity Theory Based Model for Serious Games Design in Engineering to Integrate Analytics

    Directory of Open Access Journals (Sweden)

    Michael Callaghan

    2018-02-01

    Full Text Available Serious Games (SG have been shown to have instructional potential and a number of formal models, frameworks and methodologies have emerged to support their design and analysis. The Activity Theory-based Model of Serious Games (ATMSG facilitates a systematic and detailed representation of educational SG describing how game elements are connected together to contribute to pedagogical goals. This paper proposes and presents an extension to the ATMSG framework to facilitate the identification, selection and integration of analytics into serious games. A practical example of the approach in use in the analysis and design phase of a SG for engineering is demonstrated.

  9. Thermodynamic Analysis of a Woodchips Gasification Integrated with Solid Oxide Fuel Cell and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    Integrated gasification Solid Oxide Fuel Cell (SOFC) and Stirling engine for combined heat and power application is analysed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas which is utilized for feeding the SOFC stacks for electricity...... and suggested. Thermodynamic analysis shows that a thermal efficiency of 42.4% based on LHV (lower heating value) can be achieved. Different parameter studies are performed to analysis system behaviour under different conditions. The analysis show that increasing fuel mass flow from the design point results...

  10. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    In a joint effort with the Argonne National Laboratory - West (ANL-W), the Idaho National Engineering and Environmental Laboratory (INEEL) has assumed the lead role for nuclear energy reactor research for the United States Government. In 2005, these two laboratories will be combined into one entity, the Idaho National Laboratory (INL). There are two objectives for the INL: (1) to act as the lead systems integrator for the Department of Energy's Office of Nuclear Energy Science and Technology and, (2) to establish a Center for Advanced Energy Studies. Focusing on the Center for Advanced Energy Studies, this paper presents a Human Resources Pipeline Model outlining a nuclear educational pathway that leads to university and industry research partnerships. The pathway progresses from education to employment and into retirement. Key to the model is research and mentoring and their impact upon each stage. The Center's success will be the result of effective and advanced communications, faculty/student involvement, industry support, inclusive broadbased involvement, effective long-term partnering, and increased federal and state support. (author)

  11. The Impact of Design-Based STEM Integration Curricula on Student Achievement in Engineering, Science, and Mathematics

    Science.gov (United States)

    Selcen Guzey, S.; Harwell, Michael; Moreno, Mario; Peralta, Yadira; Moore, Tamara J.

    2017-04-01

    The new science education reform documents call for integration of engineering into K-12 science classes. Engineering design and practices are new to most science teachers, meaning that implementing effective engineering instruction is likely to be challenging. This quasi-experimental study explored the influence of teacher-developed, engineering design-based science curriculum units on learning and achievement among grade 4-8 students of different races, gender, special education status, and limited English proficiency (LEP) status. Treatment and control students ( n = 4450) completed pretest and posttest assessments in science, engineering, and mathematics as well as a state-mandated mathematics test. Single-level regression results for science outcomes favored the treatment for one science assessment (physical science, heat transfer), but multilevel analyses showed no significant treatment effect. We also found that engineering integration had different effects across race and gender and that teacher gender can reduce or exacerbate the gap in engineering achievement for student subgroups depending on the outcome. Other teacher factors such as the quality of engineering-focused science units and engineering instruction were predictive of student achievement in engineering. Implications for practice are discussed.

  12. Alternative Pathways to Engineering Success--Using Academic and Social Integration to Understand Two-Year Engineering Student Success

    Science.gov (United States)

    Marra, Rose M.; Tsai, Chia-Lin; Bogue, Barbara; Pytel, Jean Landa

    2015-01-01

    The need for educating engineers in the United States continues as the projected demand is rising the number of high school seniors planning to enter engineering careers has remained relatively stable (Sargent, 2014). Additionally, figures show that attrition rates in undergraduate engineering continue to be an area of concern, (Sargent, 2014;…

  13. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  14. An integrated computational materials engineering method for woven carbon fiber composites preforming process

    Science.gov (United States)

    Zhang, Weizhao; Ren, Huaqing; Wang, Zequn; Liu, Wing K.; Chen, Wei; Zeng, Danielle; Su, Xuming; Cao, Jian

    2016-10-01

    An integrated computational materials engineering method is proposed in this paper for analyzing the design and preforming process of woven carbon fiber composites. The goal is to reduce the cost and time needed for the mass production of structural composites. It integrates the simulation methods from the micro-scale to the macro-scale to capture the behavior of the composite material in the preforming process. In this way, the time consuming and high cost physical experiments and prototypes in the development of the manufacturing process can be circumvented. This method contains three parts: the micro-scale representative volume element (RVE) simulation to characterize the material; the metamodeling algorithm to generate the constitutive equations; and the macro-scale preforming simulation to predict the behavior of the composite material during forming. The results show the potential of this approach as a guidance to the design of composite materials and its manufacturing process.

  15. An Integrated Computational Materials Engineering Method for Woven Carbon Fiber Composites Preforming Process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weizhao; Ren, Huaqing; Wang, Zequn; Liu, Wing K.; Chen, Wei; Zeng, Danielle; Su, Xuming; Cao, Jian

    2016-10-19

    An integrated computational materials engineering method is proposed in this paper for analyzing the design and preforming process of woven carbon fiber composites. The goal is to reduce the cost and time needed for the mass production of structural composites. It integrates the simulation methods from the micro-scale to the macro-scale to capture the behavior of the composite material in the preforming process. In this way, the time consuming and high cost physical experiments and prototypes in the development of the manufacturing process can be circumvented. This method contains three parts: the micro-scale representative volume element (RVE) simulation to characterize the material; the metamodeling algorithm to generate the constitutive equations; and the macro-scale preforming simulation to predict the behavior of the composite material during forming. The results show the potential of this approach as a guidance to the design of composite materials and its manufacturing process.

  16. Unifying Human Centered Design and Systems Engineering for Human Systems Integration

    Science.gov (United States)

    Boy, Guy A.; McGovernNarkevicius, Jennifer

    2013-01-01

    Despite the holistic approach of systems engineering (SE), systems still fail, and sometimes spectacularly. Requirements, solutions and the world constantly evolve and are very difficult to keep current. SE requires more flexibility and new approaches to SE have to be developed to include creativity as an integral part and where the functions of people and technology are appropriately allocated within our highly interconnected complex organizations. Instead of disregarding complexity because it is too difficult to handle, we should take advantage of it, discovering behavioral attractors and the emerging properties that it generates. Human-centered design (HCD) provides the creativity factor that SE lacks. It promotes modeling and simulation from the early stages of design and throughout the life cycle of a product. Unifying HCD and SE will shape appropriate human-systems integration (HSI) and produce successful systems.

  17. A system-of-systems approach as a broad and integrated paradigm for sustainable engineered nanomaterials.

    Science.gov (United States)

    Tolaymat, Thabet; El Badawy, Amro; Sequeira, Reynold; Genaidy, Ash

    2015-04-01

    There is an urgent need for a trans-disciplinary approach for the collective evaluation of engineered nanomaterial (ENM) benefits and risks. Currently, research studies are mostly focused on examining effects at individual endpoints with emphasis on ENM risk effects. Less research work is pursuing the integration needed to advance the science of sustainable ENMs. Therefore, the primary objective of this article is to discuss the system-of-systems (SoS) approach as a broad and integrated paradigm to examine ENM benefits and risks to society, environment, and economy (SEE) within a sustainability context. The aims are focused on: (a) current approaches in the scientific literature and the need for a broad and integrated approach, (b) documentation of ENM SoS in terms of architecture and governing rules and practices within sustainability context, and (c) implementation plan for the road ahead. In essence, the SoS architecture is a communication vehicle offering the opportunity to track benefits and risks in an integrated fashion so as to understand the implications and make decisions about advancing the science of sustainable ENMs. In support of the SoS architecture, we propose using an analytic-based decision support system consisting of a knowledge base and analytic engine along the benefit and risk informatics routes in the SEE system to build sound decisions on what constitutes sustainable and unsustainable ENMs in spite of the existing uncertainties and knowledge gaps. The work presented herein is neither a systematic review nor a critical appraisal of the scientific literature. Rather, it is a position paper that largely expresses the views of the authors based on their expert opinion drawn from industrial and academic experience. Copyright © 2014. Published by Elsevier B.V.

  18. The integration of quality function deployment and Kansei Engineering: An overview of application

    Science.gov (United States)

    Lokman, Anitawati Mohd; Awang, Ahmad Azran; Omar, Abdul Rahman; Abdullah, Nur Atiqah Sia

    2016-02-01

    As a result of today's globalized world and robust development of emerging markets, consumers are able to select from an endless number of products that are mostly similar in terms of design and properties, as well as equivalent in function and performance. The survival of businesses in a competitive ambience requires innovation, consumer loyalty, and products that are easily identifiable by consumers. Today's manufacturers have started to employ customer research instruments to survive in the highly industrialized world—for example, Conjoint Analysis, Design of Experiments and Semantic Design of Environment. However, this work only attempts to concentrate on Kansei Engineering and Quality Function Deployment. Kansei Engineering (KE) is deemed as the most appropriate method to link consumers' feelings, emotions or senses to the properties of a product because it translates people's impressions, interests, and feelings to the solutions of product design. Likewise, Quality Function Deployment (QFD) enables clearer interpretation of the needs of consumers, better concepts or products, and enhanced communication to internal operations that must then manufacture and deliver the product or services. The integration of both KE and QFD is believed possible, as many product manufacturers and businesses have started to utilize systematized methods to translate consumers' needs and wants into processes and products. Therefore, this work addresses areas of various integrations of KE and QFD processes in the industry, in an effort to assist an integration of KE and QFD. This work aims to provide evidence on the integration mechanism to enable successful incorporation of consumer's implicit feelings and demands into product quality improvement, and simultaneously providing an overview of both KE and QFD from the perspective of a novice.

  19. Integrative Approaches among Science, Technology, Engineering, and Mathematics (STEM) Subjects on Students' Learning: A Meta-Analysis

    Science.gov (United States)

    Becker, Kurt Henry; Park, Kyungsuk

    2011-01-01

    Within the literature there has been a call for the integration of science, technology, engineering, and mathematics (STEM) disciplines. Little research has been conducted to investigate the effects of integrative approaches among STEM subjects. The purpose of this study was to synthesize findings from existing research on the effects of…

  20. Global Metabolic Engineering of Glycolytic Pathway via Multicopy Integration in Saccharomyces cerevisiae.

    Science.gov (United States)

    Yamada, Ryosuke; Wakita, Kazuki; Ogino, Hiroyasu

    2017-04-21

    The use of renewable feedstocks for producing biofuels and biobased chemicals by engineering metabolic pathways of yeast Saccharomyces cerevisiae has recently become an attractive option. Many researchers attempted to increase glucose consumption rate by overexpressing some glycolytic enzymes because most target biobased chemicals are derived through glycolysis. However, these attempts have met with little success. In this study, to create a S. cerevisiae strain with high glucose consumption rate, we used multicopy integration to develop a global metabolic engineering strategy. Among approximately 350 metabolically engineered strains, YPH499/dPdA3-34 exhibited the highest glucose consumption rate. This strain showed 1.3-fold higher cell growth rate and glucose consumption rate than the control strain. Real-time PCR analysis revealed that transcription levels of glycolysis-related genes such as HXK2, PFK1, PFK2, PYK2, PGI1, and PGK1 in YPH499/dPdA3-34 were increased. Our strategy is thus a promising approach to optimize global metabolic pathways in S. cerevisiae.

  1. Vascular Tissue Engineering: Effects of Integrating Collagen into a PCL Based Nanofiber Material

    Directory of Open Access Journals (Sweden)

    Ulf Bertram

    2017-01-01

    Full Text Available The engineering of vascular grafts is a growing field in regenerative medicine. Although numerous attempts have been made, the current vascular grafts made of polyurethane (PU, Dacron®, or Teflon® still display unsatisfying results. Electrospinning of biopolymers and native proteins has been in the focus of research to imitate the extracellular matrix (ECM of vessels to produce a small caliber, off-the-shelf tissue engineered vascular graft (TEVG as a substitute for poorly performing PU, Dacron, or Teflon prostheses. Blended poly-ε-caprolactone (PCL/collagen grafts have shown promising results regarding biomechanical and cell supporting features. In order to find a suitable PCL/collagen blend, we fabricated plane electrospun PCL scaffolds using various collagen type I concentrations ranging from 5% to 75%. We analyzed biocompatibility and morphological aspects in vitro. Our results show beneficial features of collagen I integration regarding cell viability and functionality, but also adverse effects like the loss of a confluent monolayer at high concentrations of collagen. Furthermore, electrospun PCL scaffolds containing 25% collagen I seem to be ideal for engineering vascular grafts.

  2. Andromeda: a peptide search engine integrated into the MaxQuant environment.

    Science.gov (United States)

    Cox, Jürgen; Neuhauser, Nadin; Michalski, Annette; Scheltema, Richard A; Olsen, Jesper V; Mann, Matthias

    2011-04-01

    A key step in mass spectrometry (MS)-based proteomics is the identification of peptides in sequence databases by their fragmentation spectra. Here we describe Andromeda, a novel peptide search engine using a probabilistic scoring model. On proteome data, Andromeda performs as well as Mascot, a widely used commercial search engine, as judged by sensitivity and specificity analysis based on target decoy searches. Furthermore, it can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, such as highly phosphorylated peptides, and accommodates extremely large databases. The algorithms of Andromeda are provided. Andromeda can function independently or as an integrated search engine of the widely used MaxQuant computational proteomics platform and both are freely available at www.maxquant.org. The combination enables analysis of large data sets in a simple analysis workflow on a desktop computer. For searching individual spectra Andromeda is also accessible via a web server. We demonstrate the flexibility of the system by implementing the capability to identify cofragmented peptides, significantly improving the total number of identified peptides.

  3. Engine-integrated solid oxide fuel cells for efficient electrical power generation on aircraft

    Science.gov (United States)

    Waters, Daniel F.; Cadou, Christopher P.

    2015-06-01

    This work investigates the use of engine-integrated catalytic partial oxidation (CPOx) reactors and solid oxide fuel cells (SOFCs) to reduce fuel burn in vehicles with large electrical loads like sensor-laden unmanned air vehicles. Thermodynamic models of SOFCs, CPOx reactors, and three gas turbine (GT) engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed and checked against relevant data and source material. Fuel efficiency is increased by 4% and 8% in the 50 kW and 90 kW separate exhaust turbofan systems respectively at only modest cost in specific power (8% and 13% reductions respectively). Similar results are achieved in other engine types. An additional benefit of hybridization is the ability to provide more electric power (factors of 3 or more in some cases) than generator-based systems before encountering turbine inlet temperature limits. A sensitivity analysis shows that the most important parameters affecting the system's performance are operating voltage, percent fuel oxidation, and SOFC assembly air flows. Taken together, this study shows that it is possible to create a GT-SOFC hybrid where the GT mitigates balance of plant losses and the SOFC raises overall system efficiency. The result is a synergistic system with better overall performance than stand-alone components.

  4. An integrated science-based methodology to assess potential risks and implications of engineered nanomaterials.

    Science.gov (United States)

    Tolaymat, Thabet; El Badawy, Amro; Sequeira, Reynold; Genaidy, Ash

    2015-11-15

    There is an urgent need for broad and integrated studies that address the risks of engineered nanomaterials (ENMs) along the different endpoints of the society, environment, and economy (SEE) complex adaptive system. This article presents an integrated science-based methodology to assess the potential risks of engineered nanomaterials. To achieve the study objective, two major tasks are accomplished, knowledge synthesis and algorithmic computational methodology. The knowledge synthesis task is designed to capture "what is known" and to outline the gaps in knowledge from ENMs risk perspective. The algorithmic computational methodology is geared toward the provision of decisions and an understanding of the risks of ENMs along different endpoints for the constituents of the SEE complex adaptive system. The approach presented herein allows for addressing the formidable task of assessing the implications and risks of exposure to ENMs, with the long term goal to build a decision-support system to guide key stakeholders in the SEE system towards building sustainable ENMs and nano-enabled products. Published by Elsevier B.V.

  5. Integrating security issues in nuclear engineering curriculum in Indonesia. Classical vs policy approaches

    International Nuclear Information System (INIS)

    Putero, Susetyo Hario; Rosita, Widya; Sihana, Fnu; Ferdiansjah; Santosa, Haryono Budi; Muharini, Anung

    2015-01-01

    Recently, risk management for nuclear facilities becomes more complex due to security issue addressed by IAEA. The harmonization between safety, safeguards and security is still questionable. It also challenges to nuclear engineering curriculum in the world how to appropriately lecture the new issue. This paper would like to describe how to integrate this issue in developing nuclear engineering curriculum in Indonesia. Indonesia has still no nuclear power plant, but there are 3 research reactors laid in Indonesia. As addition, there are several hospitals and industries utilizing radioisotopes in their activities. The knowledge about nuclear security of their staffs is also not enough for handling radioactive material furthermore the security officers. Universitas Gadjah Mada (UGM) is the only university in Indonesia offering nuclear engineering program, as consequently the university should actively play the role in overcoming this issue not only in Indonesia, but also in Southeast Asia. In the other hand, students has to have proper knowledge in order to complete in the global nuclear industry. After visited several universities in USA and participated in INSEN meeting, we found that most of universities in the world anticipate this issue by giving the student courses related to policy (non-technical) study based on IAEA NSS 12. In the other hand, the rest just make nuclear security as a case study on their class. Furthermore, almost all of programs are graduate level. UGM decided to enhance several present related undergraduate courses with security topics as first step to develop the awareness of student to nuclear security. The next (curriculum 2016) is to integrate security topics into the entire of curriculum including designing a nuclear security elective course for undergraduate level. The first trial has successfully improved the student knowledge and awareness on nuclear security. (author)

  6. A preliminary study on the integral relationship between critical thinking and mathematical thinking among practicing civil engineers

    Science.gov (United States)

    Osman, Sharifah; Mohammad, Shahrin; Abu, Mohd Salleh

    2015-05-01

    Mathematics and engineering are inexorably and significantly linked and essentially required in analyzing and accessing thought to make good judgment when dealing in complex and varied engineering problems. A study in the current engineering education curriculum to explore how the critical thinking and mathematical thinking relates to one another, is therefore timely crucial. Unfortunately, there is not much information available explicating about the link. This paper aims to report findings of a critical review as well as to provide brief description of an on-going research aimed to investigate the dispositions of critical thinking and the relationship and integration between critical thinking and mathematical thinking during the execution of civil engineering tasks. The first part of the paper reports an in-depth review on these matters based on rather limited resources. The review showed a considerable form of congruency between these two perspectives of thinking, with some prevalent trends of engineering workplace tasks, problems and challenges. The second part describes an on-going research to be conducted by the researcher to investigate rigorously the relationship and integration between these two types of thinking within the perspective of civil engineering tasks. A reasonably close non-participant observations and semi-structured interviews will be executed for the pilot and main stages of the study. The data will be analyzed using constant comparative analysis in which the grounded theory methodology will be adopted. The findings will serve as a useful grounding for constructing a substantive theory revealing the integral relationship between critical thinking and mathematical thinking in the real civil engineering practice context. The substantive theory, from an angle of view, is expected to contribute some additional useful information to the engineering program outcomes and engineering education instructions, aligns with the expectations of

  7. Integration of a NASA faculty fellowship project within an undergraduate engineering capstone design class

    Science.gov (United States)

    Carmen, C.

    2012-11-01

    implemented during the 2010-2011 academic year at UAH and have proven to significantly motivate and enhance the students understanding of the design, development and optimization of space systems. The current paper provides an overview of the NASA ESMD faculty fellowship program, the 2010 fellowship projects, a detailed description of the means of integrating the X-TOOLSS and LW projects within the UAH MAE senior design class, the MAE student design project results, as well as the learning outcome and impact of the ESMD project had upon the engineering students.

  8. The electromagnetic integrated demonstration at the Idaho National Engineering Laboratory cold test pit

    International Nuclear Information System (INIS)

    Pellerin, L.; Alumbaugh, D.L.; Pfeifer, M.C.

    1997-01-01

    The electromagnetic integrated demonstration (EMID) is a baseline study in electromagnetic (EM) exploration of the shallow subsurface (< 10 m). Eleven distinct EM systems, covering the geophysical spectrum, acquired data on a grid over the Idaho National Engineering Laboratory (INEL) Cold Test Pit (CTP). The systems are investigated and evaluated for the purpose of identifying and reviewing existing geophysical characterization instrumentation (commercial and experimental), integrating those technologies with multi-dimensional interpretational algorithms, and identifying gaps in shallow subsurface EM imaging technology. The EMID data, are valuable for testing and evaluating new interpretational software, and developing techniques for integrating multiple datasets. The experimental field techniques shows how the acquisition of data in a variety of array configurations can considerably enhance interpretation. All data are available on the world wide web. Educators and students are encouraged to use the data for both classroom and graduate studies. The purpose of this paper is to explain why, where, how and what kind of data were collected. It is left to the reader to assess the value of a given system for their particular application. Information about the EMID is organized into two general categories: survey description and system evaluation

  9. Integrating Cost Engineering and Project Management in a Junior Engineering Economics Course and a Senior Capstone Project Design Course

    Science.gov (United States)

    Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.

    2013-01-01

    Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…

  10. Integrating Protein Engineering and Bioorthogonal Click Conjugation for Extracellular Vesicle Modulation and Intracellular Delivery.

    Directory of Open Access Journals (Sweden)

    Ming Wang

    Full Text Available Exosomes are small, cell-secreted vesicles that transfer proteins and genetic information between cells. This intercellular transmission regulates many physiological and pathological processes. Therefore, exosomes have emerged as novel biomarkers for disease diagnosis and as nanocarriers for drug delivery. Here, we report an easy-to-adapt and highly versatile methodology to modulate exosome composition and conjugate exosomes for intracellular delivery. Our strategy combines the metabolic labeling of newly synthesized proteins or glycan/glycoproteins of exosome-secreting cells with active azides and bioorthogonal click conjugation to modify and functionalize the exosomes. The azide-integrated can be conjugated to a variety of small molecules and proteins and can efficiently deliver conjugates into cells. The metabolic engineering of exosomes diversifies the chemistry of exosomes and expands the functions that can be introduced into exosomes, providing novel, powerful tools to study the roles of exosomes in biology and expand the biomedical potential of exosomes.

  11. Geoscience information integration and visualization research of Shandong Province, China based on ArcGIS engine

    Science.gov (United States)

    Xu, Mingzhu; Gao, Zhiqiang; Ning, Jicai

    2014-10-01

    To improve the access efficiency of geoscience data, efficient data model and storage solutions should be used. Geoscience data is usually classified by format or coordinate system in existing storage solutions. When data is large, it is not conducive to search the geographic features. In this study, a geographical information integration system of Shandong province, China was developed based on the technology of ArcGIS Engine, .NET, and SQL Server. It uses Geodatabase spatial data model and ArcSDE to organize and store spatial and attribute data and establishes geoscience database of Shangdong. Seven function modules were designed: map browse, database and subject management, layer control, map query, spatial analysis and map symbolization. The system's characteristics of can be browsed and managed by geoscience subjects make the system convenient for geographic researchers and decision-making departments to use the data.

  12. Orbit transfer rocket engine integrated control and health monitoring system technology readiness assessment

    Science.gov (United States)

    Bickford, R. L.; Collamore, F. N.; Gage, M. L.; Morgan, D. B.; Thomas, E. R.

    1992-01-01

    The objectives of this task were to: (1) estimate the technology readiness of an integrated control and health monitoring (ICHM) system for the Aerojet 7500 lbF Orbit Transfer Vehicle engine preliminary design assuming space based operations; and (2) estimate the remaining cost to advance this technology to a NASA defined 'readiness level 6' by 1996 wherein the technology has been demonstrated with a system validation model in a simulated environment. The work was accomplished through the conduct of four subtasks. In subtask 1 the minimally required functions for the control and monitoring system was specified. The elements required to perform these functions were specified in Subtask 2. In Subtask 3, the technology readiness level of each element was assessed. Finally, in Subtask 4, the development cost and schedule requirements were estimated for bringing each element to 'readiness level 6'.

  13. Teriparatide Therapy as an Adjuvant for Tissue Engineering and Integration of Biomaterials

    Directory of Open Access Journals (Sweden)

    Robinder S. Dhillon

    2011-06-01

    Full Text Available Critically sized large bone defects commonly result from trauma, radical tumor resections or infections. Currently, massive allografting remain as the clinical standard to treat these critical defects. Unfortunately, allograft healing is limited by the lack of osteogenesis and bio-integration of the graft to the host bone. Based on its widely studied anabolic effects on the bone, we have proposed that teriparatide [recombinant parathyroid hormone (PTH1–34] could be an effective adjuvant for massive allograft healing. In support of this theory, here we review studies that have demonstrated that intermittent PTH1–34 treatment enhances and accelerates the skeletal repair process via a number of mechanisms including: effects on mesenchymal stem cells (MSC, angiogenesis, chondrogenesis, bone formation and remodeling. We also review the current literature on the effects of PTH1–34 therapy on bone healing, and discuss this drug’s long term potential as an adjuvant for endogenous tissue engineering.

  14. INTEGRATED DRILLING SYSTEM USING MUD ACTUATED DOWN HOLE HAMMER AS PRIMARY ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    John V. Fernandez; David S. Pixton

    2005-12-01

    A history and project summary of the development of an integrated drilling system using a mud-actuated down-hole hammer as its primary engine are given. The summary includes laboratory test results, including atmospheric tests of component parts and simulated borehole tests of the hammer system. Several remaining technical hurdles are enumerated. A brief explanation of commercialization potential is included. The primary conclusion for this work is that a mud actuated hammer can yield substantial improvements to drilling rate in overbalanced, hard rock formations. A secondary conclusion is that the down-hole mud actuated hammer can serve to provide other useful down-hole functions including generation of high pressure mud jets, generation of seismic and sonic signals, and generation of diagnostic information based on hammer velocity profiles.

  15. Control technology for integrated circuit fabrication at Micro-Circuit Engineering, Incorporated, West Palm Beach, Florida

    Science.gov (United States)

    Mihlan, G. I.; Mitchell, R. I.; Smith, R. K.

    1984-07-01

    A survey to assess control technology for integrated circuit fabrication was conducted. Engineering controls included local and general exhaust ventilation, shielding, and personal protective equipment. Devices or work stations that contained toxic materials that were potentially dangerous were controlled by local exhaust ventilation. Less hazardous areas were controlled by general exhaust ventilation. Process isolation was used in the plasma etching, low pressure chemical vapor deposition, and metallization operations. Shielding was used in ion implantation units to control X-ray emissions, in contact mask alignes to limit ultraviolet (UV) emissions, and in plasma etching units to control radiofrequency and UV emissions. Most operations were automated. Use of personal protective equipment varied by job function.

  16. Integrating UAV Flight outputs in Esri's CityEngine for semi-urban areas

    Science.gov (United States)

    Anca, Paula; Vasile, Alexandru; Sandric, Ionut

    2016-04-01

    One of the most pervasive technologies of recent years, which has crossed over into consumer products due to its lowering prince, is the UAV, commonly known as drones. Besides its ever-more accessible prices and growing functionality, what is truly impressive is the drastic reduction in processing time, from days to ours: from the initial flight preparation to the final output. This paper presents such a workflow and goes further by integrating the outputs into another growing technology: 3D. The software used for this purpose is Esri's CityEngine, which was developed for modeling 3D urban environments using existing 2D GIS data and computer generated architecture (CGA) rules, instead of modeling each feature individually. A semi-urban areas was selected for this study and captured using the E-Bee from Parrot. The output point cloud elevation from the E-Bee flight was transformed into a raster in order to be used as an elevation surface in CityEngine, and the mosaic raster dataset was draped over this surface. In order to model the buildings in this area CGA rules were written using the building footprints, as inputs, in the form of Feature Classes. The extrusion heights for the buildings were also extracted from the point cloud, and realistic textures were draped over the 3D building models. Finally the scene was shared as a 3D web-scene which can be accessed by anyone through a link, without any software besides an internet browser. This can serve as input for Smart City development through further analysis for urban ecology Keywords: 3D, drone, CityEngine, E-Bee, Esri, scene, web-scene

  17. Integrated System Health Management: Pilot Operational Implementation in a Rocket Engine Test Stand

    Science.gov (United States)

    Figueroa, Fernando; Schmalzel, John L.; Morris, Jonathan A.; Turowski, Mark P.; Franzl, Richard

    2010-01-01

    This paper describes a credible implementation of integrated system health management (ISHM) capability, as a pilot operational system. Important core elements that make possible fielding and evolution of ISHM capability have been validated in a rocket engine test stand, encompassing all phases of operation: stand-by, pre-test, test, and post-test. The core elements include an architecture (hardware/software) for ISHM, gateways for streaming real-time data from the data acquisition system into the ISHM system, automated configuration management employing transducer electronic data sheets (TEDS?s) adhering to the IEEE 1451.4 Standard for Smart Sensors and Actuators, broadcasting and capture of sensor measurements and health information adhering to the IEEE 1451.1 Standard for Smart Sensors and Actuators, user interfaces for management of redlines/bluelines, and establishment of a health assessment database system (HADS) and browser for extensive post-test analysis. The ISHM system was installed in the Test Control Room, where test operators were exposed to the capability. All functionalities of the pilot implementation were validated during testing and in post-test data streaming through the ISHM system. The implementation enabled significant improvements in awareness about the status of the test stand, and events and their causes/consequences. The architecture and software elements embody a systems engineering, knowledge-based approach; in conjunction with object-oriented environments. These qualities are permitting systematic augmentation of the capability and scaling to encompass other subsystems.

  18. Optical Beam Deflection Based AFM with Integrated Hardware and Software Platform for an Undergraduate Engineering Laboratory

    Directory of Open Access Journals (Sweden)

    Siu Hong Loh

    2017-02-01

    Full Text Available Atomic force microscopy (AFM has been used extensively in nanoscience research since its invention. Recently, many teaching laboratories in colleges, undergraduate institutions, and even high schools incorporate AFM as an effective teaching tool for nanoscience education. This paper presents an optical beam deflection (OBD based atomic force microscope, designed specifically for the undergraduate engineering laboratory as a teaching instrument. An electronic module for signal conditioning was built with components that are commonly available in an undergraduate electronic laboratory. In addition to off-the-shelf mechanical parts and optics, the design of custom-built mechanical parts waskept as simple as possible. Hence, the overall cost for the setup is greatly reduced. The AFM controller was developed using National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS, an integrated hardware and software platform which can be programmed in LabVIEW. A simple yet effective control algorithm for scanning and feedback control was developed. Despite the use of an educational platform and low-cost components from the undergraduate laboratory, the developed AFM is capable of performing imaging in constant-force mode with submicron resolution and at reasonable scanning speed (approximately 18 min per image. Therefore, the AFM is suitable to be used as an educational tool for nanoscience. Moreover, the construction of the system can be a valuable educational experience for electronic and mechanical engineering students.

  19. Towards integrated drug substance and drug product design for an active pharmaceutical ingredient using particle engineering.

    Science.gov (United States)

    Kougoulos, Eleftherios; Smales, Ian; Verrier, Hugh M

    2011-03-01

    A novel experimental approach describing the integration of drug substance and drug production design using particle engineering techniques such as sonocrystallization, high shear wet milling (HSWM) and dry impact (hammer) milling were used to manufacture samples of an active pharmaceutical ingredient (API) with diverse particle size and size distributions. The API instability was addressed using particle engineering and through judicious selection of excipients to reduce degradation reactions. API produced using a conventional batch cooling crystallization process resulted in content uniformity issues. Hammer milling increased fine particle formation resulting in reduced content uniformity and increased degradation compared to sonocrystallized and HSWM API in the formulation. To ensure at least a 2-year shelf life based on predictions using an Accelerated Stability Assessment Program, this API should have a D [v, 0.1] of 55 μm and a D [v, 0.5] of 140 μm. The particle size of the chief excipient in the drug product formulation needed to be close to that of the API to avoid content uniformity and stability issues but large enough to reduce lactam formation. The novel methodology described here has potential for application to other APIs. © 2011 American Association of Pharmaceutical Scientists

  20. Application of integrated computer-aided engineering for design, construction and operation of nuclear power plant: practice and prospects

    International Nuclear Information System (INIS)

    Min, K.S.; Lee, B.H.

    1988-01-01

    Computer-aided-engineering (CAE) is an essential tool for modern nuclear power plant engineering. It greatly varies in definition, application, and technology from project to project and company to company. Despite the fast growing technologies and applications of CAE, its complexity and variety have thrown another puzzle to management of a nuclear project. Without due consideration of an integrated CAE system in early planning stage, the overall efficiency of a nuclear project would slow down due to the inefficiency in data flow. In this application are discussed under the Korea Power engineering Company philosophy in CAE approach

  1. Multiscale paradigms in integrated computational materials science and engineering materials theory, modeling, and simulation for predictive design

    CERN Document Server

    Runge, Keith; Muralidharan, Krishna

    2016-01-01

    This book presents cutting-edge concepts, paradigms, and research highlights in the field of computational materials science and engineering, and provides a fresh, up-to-date perspective on solving present and future materials challenges. The chapters are written by not only pioneers in the fields of computational materials chemistry and materials science, but also experts in multi-scale modeling and simulation as applied to materials engineering. Pedagogical introductions to the different topics and continuity between the chapters are provided to ensure the appeal to a broad audience and to address the applicability of integrated computational materials science and engineering for solving real-world problems.

  2. Modeling, simulation, parametric study and economic assessment of reciprocating internal combustion engine integrated with multi-effect desalination unit

    International Nuclear Information System (INIS)

    Salimi, Mohsen; Amidpour, Majid

    2017-01-01

    Highlights: • Integration of small MED unit with gas engine power cycle is studied in this paper. • Modeling, simulation, parametric study and sensitivity analysis were performed. • A thermodynamic model for heat recovery and power generation of the gas engine has been presented. • Annualized Cost of System (ACS) has been employed for economic assessment. • Economic feasibilty dependence of integrated system on natural gas and water prices has been investigated. - Abstract: Due to thermal nature of multi-effect desalination (MED), its integration with a suitable power cycle is highly desirable for waste heat recovery. One of the proper power cycle for proposed integration is internal combustion engine (ICE). The exhaust gas heat of ICE is used to produce motive steam for the required heat for the first effect of MED system. Also, the water jacket heat is utilized in a heat exchanger to pre-heat the seawater. This paper studies a thermodynamic model for a tri-generation system composed of ICE integrated with MED. The ICE thermodynamic model has been used in place of different empirical efficiency relations to estimate performance – load curves reasonably. The entire system performance has been coded in MATLAB, and the results of proposed thermodynamic model for the engine have been verified by manufacturer catalogue. By increasing the engine load from 40% to 100%, the water production of MED unit will increase from 4.38 cubic meters per day to 26.78 cubic meters per day and the tri-generation efficiency from 31% to 56%. Economic analyses of the MED unit integrated with ICE was performed based on Annualized Cost of System method. This integration makes the system more economical. It has been determined that in higher market prices for fresh water (more than 7 US$ per cubic meter), the increase in effects number is more significant to the period of return decrement.

  3. Crack Growth-Based Predictive Methodology for the Maintenance of the Structural Integrity of Repaired and Nonrepaired Aging Engine Stationary Components

    National Research Council Canada - National Science Library

    Barron, Michael

    1999-01-01

    .... Specifically, the FAA's goal was to develop "Crack Growth-Based Predictive Methodologies for the Maintenance of the Structural Integrity of Repaired and Nonrepaired Aging Engine Stationary Components...

  4. An integrated dispersion preparation, characterization and in vitro dosimetry methodology for engineered nanomaterials

    Science.gov (United States)

    DeLoid, Glen M.; Cohen, Joel M.; Pyrgiotakis, Georgios; Demokritou, Philip

    2018-01-01

    Summary Evidence continues to grow of the importance of in vitro and in vivo dosimetry in the hazard assessment and ranking of engineered nanomaterials (ENMs). Accurate dose metrics are particularly important for in vitro cellular screening to assess the potential health risks or bioactivity of ENMs. In order to ensure meaningful and reproducible quantification of in vitro dose, with consistent measurement and reporting between laboratories, it is necessary to adopt standardized and integrated methodologies for 1) generation of stable ENM suspensions in cell culture media, 2) colloidal characterization of suspended ENMs, particularly properties that determine particle kinetics in an in vitro system (size distribution and formed agglomerate effective density), and 3) robust numerical fate and transport modeling for accurate determination of ENM dose delivered to cells over the course of the in vitro exposure. Here we present such an integrated comprehensive protocol based on such a methodology for in vitro dosimetry, including detailed standardized procedures for each of these three critical steps. The entire protocol requires approximately 6-12 hours to complete. PMID:28102836

  5. Compact Combustor Integrated (CI) with Compressor and Turbine for Perspective Turbojet Engine

    Science.gov (United States)

    Strokin, V. N.; Volkov, S. A.; Ljashenko, V. P.; Popov, V. I.; Startzev, A. N.; Nigmatullin, R. Z.; Shilova, T. V.; Belikov, U. V.

    2017-11-01

    For several years, CIAM has conducted comprehensive work on the development the combustor integrated (CI) with air swirling. This project involved an integrated development of three components: diffuser, combustion chamber and nozzle guide vanes of turbine to reduce their length and, respectively, the length of the engine and obtain high performance elements with low emissions of harmful substances. The new frontal device was proposed for CI combustor. The design optimization of this type combustor was conducted in the compartments and in a full-size combustion chamber. It was shown the possibility of obtaining high combustion efficiency and low NOx emissions at a short length on cruise condition. By a simplified model of the frontal device it was shown experimentally that the proposed device provided a lighting-up and flame spreading in a wide range of equivalence ratio ER (ER > 0.014) at idling. It was shown that short vane diffuser with moderate swirling ensured high parameters of the combustion chamber. The use of residual swirling of the combustion products at the exit of combustor allows reducing the size, or the number of nozzle guide vanes of the turbine. In General, the use of the swirling of the air stream gives a possibility of total length reduction for all three elements by about 20 – 25 %.

  6. Engineering challenges for instrumenting and controlling integrated organ-on-chip systems.

    Science.gov (United States)

    Wikswo, John P; Block, Frank E; Cliffel, David E; Goodwin, Cody R; Marasco, Christina C; Markov, Dmitry A; McLean, David L; McLean, John A; McKenzie, Jennifer R; Reiserer, Ronald S; Samson, Philip C; Schaffer, David K; Seale, Kevin T; Sherrod, Stacy D

    2013-03-01

    The sophistication and success of recently reported microfabricated organs-on-chips and human organ constructs have made it possible to design scaled and interconnected organ systems that may significantly augment the current drug development pipeline and lead to advances in systems biology. Physiologically realistic live microHuman (μHu) and milliHuman (mHu) systems operating for weeks to months present exciting and important engineering challenges such as determining the appropriate size for each organ to ensure appropriate relative organ functional activity, achieving appropriate cell density, providing the requisite universal perfusion media, sensing the breadth of physiological responses, and maintaining stable control of the entire system, while maintaining fluid scaling that consists of ~5 mL for the mHu and ~5 μL for the μHu. We believe that successful mHu and μHu systems for drug development and systems biology will require low-volume microdevices that support chemical signaling, microfabricated pumps, valves and microformulators, automated optical microscopy, electrochemical sensors for rapid metabolic assessment, ion mobility-mass spectrometry for real-time molecular analysis, advanced bioinformatics, and machine learning algorithms for automated model inference and integrated electronic control. Toward this goal, we are building functional prototype components and are working toward top-down system integration.

  7. Integrated System Validation of Barakah Nuclear Power Plant in UAE for The Human Factor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Munsoo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    APR1400 simulator has been developed based on the state-of-the-art object-oriented simulation technology of TH(Thermo-Hydraulic) and Reactor Core model, which is applied for the first time in the our country and for the exportation, to well simulate characteristics of APR1400. Barakah unit 1,2 simulator are constructed and supplied with this type simulator model. Integrated system validation was performed using a simulator to verify the HFE(Human Factor Engineering) design of the MCR(Maim Control Room) for instrumentation and control system validation of the UAE nuclear power plant. APR1400 for the Barakah unit 1,2 has many specific features such as digital I and C, and digitalized main control room (MCR) design. From January 2016 to February, during six weeks, the tests carried out three times repeatedly and the various proposals for ergonomical satisfactation were derived. However, the HFE errors that cause significant change of validation target for APR1400 MCR design safety fidelity wasn't found. This has resulted in the conclusion to prove the stability of the basic design of APR1400 MCR. In the future, using the simulator derives the HFE requirements of the MCR systems and continually improve the simulator will be built in close to real high-fidelity power plant. These Integrated system validations are likely to be a great help in operating safety and preventing human errors by operators. Therefore successful completion of the Integrated System Validation for BNPP simulation will be effective to promotion the distinction of our simulator and APR1400 NPP.

  8. Elementary Science Teachers' Integration of Engineering Design into Science Instruction: Results from a Randomised Controlled Trial

    Science.gov (United States)

    Maeng, Jennifer L.; Whitworth, Brooke A.; Gonczi, Amanda L.; Navy, Shannon L.; Wheeler, Lindsay B.

    2017-01-01

    This randomised controlled trial used a mixed-methods approach to investigate the frequency and how elementary teachers integrated engineering design (ED) principles into their science instruction following professional development (PD). The ED components of the PD were aligned with Cunningham and Carlsen's [(2014). "Teaching engineering…

  9. Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering

    NARCIS (Netherlands)

    Coburn, J.; Gibson, M.; Bandalini, P.A.; Laird, C.; Mao, H.Q.; Moroni, Lorenzo; Seliktar, D.; Elisseeff, J.H.

    2011-01-01

    The native extracellular matrix (ECM) consists of an integrated fibrous protein network and proteoglycan-based ground (hydrogel) substance. We designed a novel electrospinning technique to engineer a three dimensional fiber-hydrogel composite that mimics the native ECM structure, is injectable, and

  10. Technological and cross-border mixture value chain of science and engineering of multi-integrative mechatronics-integronics-adaptronics

    Science.gov (United States)

    Gheorghe, Gh. Ion; Popan, Gheorghe

    2013-10-01

    This scientific paper presents in national premiere and in original concept of the author, the scientific national and the author's original concept, the technological and cross-border mixture value chain of science and engineering of multi-integrative Mechatronics-Integronics-Adaptronics, as high-tech vector support development, for viability and sustainability of a new intelligent and competitive labour market.

  11. Integrating Environmental Management in Chemical Engineering Education by Introducing an Environmental Management System in the Student's Laboratory

    Science.gov (United States)

    Montanes, Maria T.; Palomares, Antonio E.

    2008-01-01

    In this work we show how specific challenges related to sustainable development can be integrated into chemical engineering education by introducing an environmental management system in the laboratory where the students perform their experimental lessons. It is shown how the system has been developed and implemented in the laboratory, what role…

  12. Hypersonic research engine project. Phase 2: Aerothermodynamic Integration Model (AIM) data reduction computer program, data item no. 54.16

    Science.gov (United States)

    Gaede, A. E.; Platte, W. (Editor)

    1975-01-01

    The data reduction program used to analyze the performance of the Aerothermodynamic Integration Model is described. Routines to acquire, calibrate, and interpolate the test data, to calculate the axial components of the pressure area integrals and the skin function coefficients, and to report the raw data in engineering units are included along with routines to calculate flow conditions in the wind tunnel, inlet, combustor, and nozzle, and the overall engine performance. Various subroutines were modified and used to obtain species concentrations and transport properties in chemical equilibrium at each of the internal and external engine stations. It is recommended that future test plans include the configuration, calibration, and channel assignment data on a magnetic tape generated at the test site immediately before or after a test, and that the data reduction program be designed to operate in a batch environment.

  13. Engineering Vascularized Bone Grafts by Integrating a Biomimetic Periosteum and β-TCP Scaffold

    Science.gov (United States)

    2015-01-01

    Treatment of large bone defects using synthetic scaffolds remain a challenge mainly due to insufficient vascularization. This study is to engineer a vascularized bone graft by integrating a vascularized biomimetic cell-sheet-engineered periosteum (CSEP) and a biodegradable macroporous beta-tricalcium phosphate (β-TCP) scaffold. We first cultured human mesenchymal stem cells (hMSCs) to form cell sheet and human umbilical vascular endothelial cells (HUVECs) were then seeded on the undifferentiated hMSCs sheet to form vascularized cell sheet for mimicking the fibrous layer of native periosteum. A mineralized hMSCs sheet was cultured to mimic the cambium layer of native periosteum. This mineralized hMSCs sheet was first wrapped onto a cylindrical β-TCP scaffold followed by wrapping the vascularized HUVEC/hMSC sheet, thus generating a biomimetic CSEP on the β-TCP scaffold. A nonperiosteum structural cell sheets-covered β-TCP and plain β-TCP were used as controls. In vitro studies indicate that the undifferentiated hMSCs sheet facilitated HUVECs to form rich capillary-like networks. In vivo studies indicate that the biomimetic CSEP enhanced angiogenesis and functional anastomosis between the in vitro preformed human capillary networks and the mouse host vasculature. MicroCT analysis and osteocalcin staining show that the biomimetic CSEP/β-TCP graft formed more bone matrix compared to the other groups. These results suggest that the CSEP that mimics the cellular components and spatial configuration of periosteum plays a critical role in vascularization and osteogenesis. Our studies suggest that a biomimetic periosteum-covered β-TCP graft is a promising approach for bone regeneration. PMID:24858072

  14. Integrated Hydrologic Science and Environmental Engineering Observatory: CLEANER's Vision for the WATERS Network

    Science.gov (United States)

    Montgomery, J. L.; Minsker, B. S.; Schnoor, J.; Haas, C.; Bonner, J.; Driscoll, C.; Eschenbach, E.; Finholt, T.; Glass, J.; Harmon, T.; Johnson, J.; Krupnik, A.; Reible, D.; Sanderson, A.; Small, M.; van Briesen, J.

    2006-05-01

    With increasing population and urban development, societies grow more and more concerned over balancing the need to maintain adequate water supplies with that of ensuring the quality of surface and groundwater resources. For example, multiple stressors such as overfishing, runoff of nutrients from agricultural fields and confined animal feeding lots, and pathogens in urban stormwater can often overwhelm a single water body. Mitigating just one of these problems often depends on understanding how it relates to others and how stressors can vary in temporal and spatial scales. Researchers are now in a position to answer questions about multiscale, spatiotemporally distributed hydrologic and environmental phenomena through the use of remote and embedded networked sensing technologies. It is now possible for data streaming from sensor networks to be integrated by a rich cyberinfrastructure encompassing the innovative computing, visualization, and information archiving strategies needed to cope with the anticipated onslaught of data, and to turn that data around in the form of real-time water quantity and quality forecasting. Recognizing this potential, NSF awarded $2 million to a coalition of 12 institutions in July 2005 to establish the CLEANER Project Office (Collaborative Large-Scale Engineering Analysis Network for Environmental Research; http://cleaner.ncsa.uiuc.edu). Over the next two years the project office, in coordination with CUAHSI (Consortium of Universities for the Advancement of Hydrologic Science, Inc.; http://www.cuahsi.org), will work together to develop a plan for a WATer and Environmental Research Systems Network (WATERS Network), which is envisioned to be a collaborative scientific exploration and engineering analysis network, using high performance tools and infrastructure, to transform our scientific understanding of how water quantity, quality, and related earth system processes are affected by natural and human-induced changes to the environment

  15. Organizational Considerations for Implementing Systems Engineering and Integration in the Ares Projects Office

    Science.gov (United States)

    Thomas, LeAnn; Doreswamy, Rajiv N.

    2008-01-01

    Systems Engineering and Integration (SE&I) is a critical discipline in developing new space systems. In 2005, NASA performed an internal study of 24 agency and Department of Defense (DoD) programs to evaluate methods of integrating SE&I practices and determine their effectiveness. The goal of the study was to determine the best SE&I implementation strategy for the Ares Projects Office. The study identified six SE&I organizational structures: 1. Lead systems integrator (LSI) with SE&I responsibility and government technical insight. 2a. Integration contractor with government SE&I responsibility (government insight). 2b. Integration contractor with government SE&I responsibility (government oversight). 3a. Prime contractor with SE&I responsibility (government insight). 3b. Prime contractor with SE&I responsibility (government oversight). 3c. Prime contractor with SE&I responsibility (government/industry partnership). 4a.Prime contractor with government SE&I responsibility (government insight). 4b. Prime contractor with government SE&I responsibility (government oversight). 4d.Prime contractors with total system performance responsibility (TSPR). 5. Prime contractor with government SE&I responsibility and integration products through a Federally Funded Research and Development Center (FFRDC). 6. Government/FFRDC in-house development with SE&I responsibility and function. The organizational structure used most often was number 4, using a prime contractor with government SE&I responsibility and government technical insight. However, data analyses did not establish a positive relationship between program development costs and specific SE&I organizational types, nor did it positively determine the relationship between successful programs or projects and their SE&I structure. The SE&I study reached the following conclusions: (1) Large, long-duration, technically complex programs or projects reach their technical goals, but rarely meet schedule or cost goals. NASA's recent

  16. An Overview of NASA's Integrated Design and Engineering Analysis (IDEA) Environment

    Science.gov (United States)

    Robinson, Jeffrey S.

    2011-01-01

    Historically, the design of subsonic and supersonic aircraft has been divided into separate technical disciplines (such as propulsion, aerodynamics and structures), each of which performs design and analysis in relative isolation from others. This is possible, in most cases, either because the amount of interdisciplinary coupling is minimal, or because the interactions can be treated as linear. The design of hypersonic airbreathing vehicles, like NASA's X-43, is quite the opposite. Such systems are dominated by strong non-linear interactions between disciplines. The design of these systems demands that a multi-disciplinary approach be taken. Furthermore, increased analytical fidelity at the conceptual design phase is highly desirable, as many of the non-linearities are not captured by lower fidelity tools. Only when these systems are designed from a true multi-disciplinary perspective, can the real performance benefits be achieved and complete vehicle systems be fielded. Toward this end, the Vehicle Analysis Branch at NASA Langley Research Center has been developing the Integrated Design and Engineering Analysis (IDEA) Environment. IDEA is a collaborative environment for parametrically modeling conceptual and preliminary designs for launch vehicle and high speed atmospheric flight configurations using the Adaptive Modeling Language (AML) as the underlying framework. The environment integrates geometry, packaging, propulsion, trajectory, aerodynamics, aerothermodynamics, engine and airframe subsystem design, thermal and structural analysis, and vehicle closure into a generative, parametric, unified computational model where data is shared seamlessly between the different disciplines. Plans are also in place to incorporate life cycle analysis tools into the environment which will estimate vehicle operability, reliability and cost. IDEA is currently being funded by NASA?s Hypersonics Project, a part of the Fundamental Aeronautics Program within the Aeronautics

  17. Integrated Computational Materials Engineering Development of Advanced High Strength Steel for Lightweight Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hector, Jr., Louis G. [General Motors, Warren, MI (United States); McCarty, Eric D. [United States Automotive Materials Partnership LLC (USAMP), Southfield, MI (United States)

    2017-07-31

    The goal of the ICME 3GAHSS project was to successfully demonstrate the applicability of Integrated Computational Materials Engineering (ICME) for the development and deployment of third generation advanced high strength steels (3GAHSS) for immediate weight reduction in passenger vehicles. The ICME approach integrated results from well-established computational and experimental methodologies to develop a suite of material constitutive models (deformation and failure), manufacturing process and performance simulation modules, a properties database, as well as the computational environment linking them together for both performance prediction and material optimization. This is the Final Report for the ICME 3GAHSS project, which achieved the fol-lowing objectives: 1) Developed a 3GAHSS ICME model, which includes atomistic, crystal plasticity, state variable and forming models. The 3GAHSS model was implemented in commercially available LS-DYNA and a user guide was developed to facilitate use of the model. 2) Developed and produced two 3GAHSS alloys using two different chemistries and manufacturing processes, for use in calibrating and validating the 3GAHSS ICME Model. 3) Optimized the design of an automotive subassembly by substituting 3GAHSS for AHSS yielding a design that met or exceeded all baseline performance requirements with a 30% mass savings. A technical cost model was also developed to estimate the cost per pound of weight saved when substituting 3GAHSS for AHSS. The project demonstrated the potential for 3GAHSS to achieve up to 30% weight savings in an automotive structure at a cost penalty of up to $0.32 to $1.26 per pound of weight saved. The 3GAHSS ICME Model enables the user to design 3GAHSS to desired mechanical properties in terms of strength and ductility.

  18. Development of an integrated indicator system to assess the impacts of reclamation engineering on a river estuary.

    Science.gov (United States)

    Xu, Yan; Cai, Yanpeng; Sun, Tao; Yin, Xin'An; Tan, Qian

    2017-06-30

    An integrated indicator system was developed for determining synthetic environmental responses under multiple types of coastal reclamation engineering in the Yellow River estuary, China. Four types of coastal engineering works were analyzed, namely port construction, petroleum exploitation, fishery and aquaculture, and seawall defense. In addition, two areas with limited human disturbances were considered for comparison. From the weights of the response value for each indicator, port construction was determined to be the primary impact contributor among the four engineering works studies. Specifically, hydrodynamic conditions, ecological status, economic costs, and engineering intensity were on average 72.78%, 65.03%, 75.03%, and 66.35% higher than those of other engineering types. Furthermore, fishery and aquaculture impact on water quality was 42.51% higher than that of other engineering types, whereas seawall defense impact on landscape variation was 51.75% higher than that of other engineering types. The proposed indicator system may provide effective coastal management in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Development of teaching material to integrate GT-POWER into combustion courses for IC engine simulations.

    Science.gov (United States)

    2009-02-01

    The main objective of this project was to develop instructional engineering projects that utilize the newly-offered PACE software GT-POWER for engine simulations in combustion-related courses at the Missouri University of Science and Technology. Stud...

  20. Three approaches to integrating building performance simulations tools in architecture and engineering undergraduate education

    Energy Technology Data Exchange (ETDEWEB)

    Charles, P.P. [Roger Williams Univ., Bristol, RI (United States). School of Architecture, Art and Historic Preservation; Thomas, C.R. [Roger Williams Univ., Bristol, RI (United States). School of Engineering, Computing and Construction Management

    2008-07-01

    This paper described past and on-going teaching experiences at Roger Williams University in Bristol, Rhode Island. In particular, the university has offered several new architecture courses where building simulation tools have played a key role in explaining hard-to-grasp physical phenomena at play in a building. The university also offers a new course to both undergraduate architecture and engineering students to promote collaboration between these two disciplines. The course focuses on the elements of simulation tools that are adapted to sustainable building design. The paper concluded with the advantages and limitations of these teaching methods and provided perspectives to future improvement of some of the pedagogical models. It was concluded that in general, the integration of building simulation tools in the architecture studios and courses have provided students with valuable insight into the dynamic nature of the building environment and about comfort, particularly when the software have transient simulation capabilities. The simulation tools expand the realm of the design beyond the mere visual. Multiple simulation runs of design options help reinforce in the student the basic notion of the iterative nature of the design process. 17 refs.

  1. Supersymmetric quantum mechanics: Engineered hierarchies of integrable potentials and related orthogonal polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Balondo Iyela, Daddy [International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey–Calavi, 072 B. P. 50 Cotonou, Republic of Benin (Benin); Centre for Cosmology, Particle Physics and Phenomenology (CP3), Institut de Recherche en Mathématique et Physique (IRMP), Université catholique de Louvain U.C.L., 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Département de Physique, Université de Kinshasa (UNIKIN), B.P. 190 Kinshasa XI, Democratic Republic of Congo (Congo, The Democratic Republic of the); Govaerts, Jan [International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey–Calavi, 072 B. P. 50 Cotonou, Republic of Benin (Benin); Centre for Cosmology, Particle Physics and Phenomenology (CP3), Institut de Recherche en Mathématique et Physique (IRMP), Université catholique de Louvain U.C.L., 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Hounkonnou, M. Norbert [International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey–Calavi, 072 B. P. 50 Cotonou, Republic of Benin (Benin)

    2013-09-15

    Within the context of supersymmetric quantum mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy which should allow for its resolution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of supersymmetric quantum mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper, these ideas are presented and solved explicitly for the cases N= 1 and N= 2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. In the context of dressing chains and deformed polynomial Heisenberg algebras, some partial results for N⩾ 3 also exist in the literature, which should be relevant to a complete study of the N⩾ 3 general periodic hierarchies.

  2. CAPE-OPEN Integration for Advanced Process Engineering Co-Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zitney, S.E.

    2006-11-01

    This paper highlights the use of the CAPE-OPEN (CO) standard interfaces in the Advanced Process Engineering Co-Simulator (APECS) developed at the National Energy Technology Laboratory (NETL). The APECS system uses the CO unit operation, thermodynamic, and reaction interfaces to provide its plug-and-play co-simulation capabilities, including the integration of process simulation with computational fluid dynamics (CFD) simulation. APECS also relies heavily on the use of a CO COM/CORBA bridge for running process/CFD co-simulations on multiple operating systems. For process optimization in the face of multiple and some time conflicting objectives, APECS offers stochastic modeling and multi-objective optimization capabilities developed to comply with the CO software standard. At NETL, system analysts are applying APECS to a wide variety of advanced power generation systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based FutureGen power and hydrogen production plant.

  3. Design of microreactor by integration of reverse engineering and direct metal laser sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Bineli, Aulus Roberto Romao; Gimenez Perez, Ana Paula; Bernardes, Luiz Fernando; Munhoz, Andre Luiz Jardini; Maciel Filho, Rubens [Universidade de Campinas (LOPCA/UNICAMP), SP (Brazil). School of Chemical Engineering. Laboratory of Optimization, Design and Advanced Process Control], Email: aulus@feq.unicamp.br

    2010-07-01

    The propose of this work is to present high precision microfabrication facilities using computer aided technologies as Reverse Engineering (RE) and Rapid Manufacturing (RM) to analyze, design and construct micro reactors to produce high content hydrogen gas. Micro reactors are very compact, have a high surface to volume ratio, exhibit enhanced heat and mass transfer rates, denotes extremely low pressure drop and allow improved thermal integration in the processes involved. The main goals of micro reactors are the optimization of conventional chemical plants and low footprint, opening different ways to research new process technologies and synthesis of new products. In this work, a microchannels plate and housing structure of these plates were fabricated using DMLS method (Direct Metal Laser Sintering). The plates were analyzed to verify the minimum thickness wall that machine can produce, and the housing structure were digitalized, using a 3D scanning, to perform a 3D inspection and to verify the deflection of the constructed part in comparison with original CAD design models. It was observed that DMLS systems are able to produce micro reactors and microchannels plates with high precision at different metallic materials. However, it is important to choose appropriate conditions to avoid residual stresses and consequently warping parts. (author)

  4. Enhanced Missing Proteins Detection in NCI60 Cell Lines Using an Integrative Search Engine Approach

    Science.gov (United States)

    2017-01-01

    The Human Proteome Project (HPP) aims deciphering the complete map of the human proteome. In the past few years, significant efforts of the HPP teams have been dedicated to the experimental detection of the missing proteins, which lack reliable mass spectrometry evidence of their existence. In this endeavor, an in depth analysis of shotgun experiments might represent a valuable resource to select a biological matrix in design validation experiments. In this work, we used all the proteomic experiments from the NCI60 cell lines and applied an integrative approach based on the results obtained from Comet, Mascot, OMSSA, and X!Tandem. This workflow benefits from the complementarity of these search engines to increase the proteome coverage. Five missing proteins C-HPP guidelines compliant were identified, although further validation is needed. Moreover, 165 missing proteins were detected with only one unique peptide, and their functional analysis supported their participation in cellular pathways as was also proposed in other studies. Finally, we performed a combined analysis of the gene expression levels and the proteomic identifications from the common cell lines between the NCI60 and the CCLE project to suggest alternatives for further validation of missing protein observations. PMID:28960077

  5. Enhanced Missing Proteins Detection in NCI60 Cell Lines Using an Integrative Search Engine Approach.

    Science.gov (United States)

    Guruceaga, Elizabeth; Garin-Muga, Alba; Prieto, Gorka; Bejarano, Bartolomé; Marcilla, Miguel; Marín-Vicente, Consuelo; Perez-Riverol, Yasset; Casal, J Ignacio; Vizcaíno, Juan Antonio; Corrales, Fernando J; Segura, Victor

    2017-12-01

    The Human Proteome Project (HPP) aims deciphering the complete map of the human proteome. In the past few years, significant efforts of the HPP teams have been dedicated to the experimental detection of the missing proteins, which lack reliable mass spectrometry evidence of their existence. In this endeavor, an in depth analysis of shotgun experiments might represent a valuable resource to select a biological matrix in design validation experiments. In this work, we used all the proteomic experiments from the NCI60 cell lines and applied an integrative approach based on the results obtained from Comet, Mascot, OMSSA, and X!Tandem. This workflow benefits from the complementarity of these search engines to increase the proteome coverage. Five missing proteins C-HPP guidelines compliant were identified, although further validation is needed. Moreover, 165 missing proteins were detected with only one unique peptide, and their functional analysis supported their participation in cellular pathways as was also proposed in other studies. Finally, we performed a combined analysis of the gene expression levels and the proteomic identifications from the common cell lines between the NCI60 and the CCLE project to suggest alternatives for further validation of missing protein observations.

  6. Integrating Human Factors Engineering and Information Processing Approaches to Facilitate Evaluations in Criminal Justice Technology Research.

    Science.gov (United States)

    Salvemini, Anthony V; Piza, Eric L; Carter, Jeremy G; Grommon, Eric L; Merritt, Nancy

    2015-06-01

    Evaluations are routinely conducted by government agencies and research organizations to assess the effectiveness of technology in criminal justice. Interdisciplinary research methods are salient to this effort. Technology evaluations are faced with a number of challenges including (1) the need to facilitate effective communication between social science researchers, technology specialists, and practitioners, (2) the need to better understand procedural and contextual aspects of a given technology, and (3) the need to generate findings that can be readily used for decision making and policy recommendations. Process and outcome evaluations of technology can be enhanced by integrating concepts from human factors engineering and information processing. This systemic approach, which focuses on the interaction between humans, technology, and information, enables researchers to better assess how a given technology is used in practice. Examples are drawn from complex technologies currently deployed within the criminal justice system where traditional evaluations have primarily focused on outcome metrics. Although this evidence-based approach has significant value, it is vulnerable to fully account for human and structural complexities that compose technology operations. Guiding principles for technology evaluations are described for identifying and defining key study metrics, facilitating communication within an interdisciplinary research team, and for understanding the interaction between users, technology, and information. The approach posited here can also enable researchers to better assess factors that may facilitate or degrade the operational impact of the technology and answer fundamental questions concerning whether the technology works as intended, at what level, and cost. © The Author(s) 2015.

  7. Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

  8. DEVELOPMENT OF INTEGRATED ELECTROCHEMISTRY TEACHING MATERIAL BASED CONTEXTUAL FOR VOCATIONAL HIGH SCHOOL IN MACHINE ENGINEERING DEPARTEMENT

    Directory of Open Access Journals (Sweden)

    Wiwik Widodo

    2017-10-01

    Full Text Available The chemistry teaching at Vocational High School which tends to be theoretical and not directly connected to vocational lesson has caused students to have low interest, low motivation, and low achievement. The problem is becoming more complex due to limited time allotment and limited teaching materials. One of the efforts to solve the problem is by providing the relevant teaching material using contextual learning approach. The aims of this Research and Development (R&D research are: (1 to produce an appropriate chemistry teaching material on electrochemistry integrated with skill program subjects using Contextual approach for Vocational High School students of Machinery Engineering Department; (2 to know the feasibility of development result of teaching material. The development of the teaching material uses the 4D developmental model from Thiagarajan et al consisting of four phases namely Define, Design, Develop, and Desiminate. The dominate phase was not done. The scores of evaluation of the feasibility or the appropriateness of the product from the content expert are 88.75% (very feasible for the teachers’ book and 91.25% (very feasible for the students’ book. The expert on media gave 89.25% (very feasible for the teachers’ book and 89.9% (very feasible for the students’ book. The result of readability test shows that the teachers’ book is feasible (83.81% and the students’ book is very feasible (93.61%.

  9. Yield asymmetry design of magnesium alloys by integrated computational materials engineering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongsheng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Khaleel, Mohammad [Qatar Foundation Research adn Development (Qatar); Ahzi, Said [Univ. of Strasbourg (France)

    2013-11-01

    Deformation asymmetry of magnesium alloys is an important factor on machine design in the automobile industry. Represented by the ratio of compressive yield stress (CYS) against tensile yield stress (TYS), deformation asymmetry is strongly related to texture and grain size. A polycrystalline viscoplasticity model, modified intermediate Φ-model, is used to predict the deformation behavior of magnesium alloys with different grain sizes. Validated with experimental results, integrated computational materials engineering is applied to find out the route in achieving desired asymmetry via thermomechanical processing. For example, CYS/TYS in rolled texture is smaller than 1 under different loading directions. In other textures, such as extruded texture, CYS/TYS is large along the normal direction. Starting from rolled texture, asymmetry will increase to close to 1 along the rolling direction after being compressed to a strain of 0.2. Our modified Φ-model also shows that grain refinement increases CYS/TYS. Along with texture control, grain refinement also can optimize the yield asymmetry. After the grain size decreases to a critical value, CYS/TYS reaches to 1 because CYS increases much faster than TYS. By tailoring the microstructure using texture control and grain refinement, it is achievable to optimize yield asymmetry in wrought magnesium alloys.

  10. Integrating systems and business engineering in an international context : The SpaceTech Postgraduate Program

    NARCIS (Netherlands)

    Gill, E.K.A.; Kreisl, J.; Verma, D.

    2009-01-01

    Successful education of engineers needs continuous adaptation to track the changing needs of industry. The adaptation is not limited to technological advance or to the changing mentality of new students but also to end-to-end engineering approaches using Systems Engineering. However, industries

  11. Integration of CFD Methods into Concurrent Design of Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    M. Polášek

    2004-01-01

    Full Text Available This paper describes patterns of algorithms for different innovative levels of design at parametric, configuration and conceptual levels. They can be applied to Computer-aided Engine Design (CED. Data structures, process simulation hierarchy, engine simulation modules and the requirements for further development are described. An example of advanced thermodynamics modeling of combustion engines is included.

  12. Integrated science and engineering for the OSIRIS-REx asteroid sample return mission

    Science.gov (United States)

    Lauretta, D.

    2014-07-01

    Introduction: The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission will survey near-Earth asteroid (101955) Bennu to understand its physical, mineralogical, and chemical properties, assess its resource potential, refine the impact hazard, and return a sample of this body to the Earth [1]. This mission is scheduled for launch in 2016 and will rendezvous with the asteroid in 2018. Sample return to the Earth follows in 2023. The OSIRIS-REx mission has the challenge of visiting asteroid Bennu, characterizing it at global and local scales, then selecting the best site on the asteroid surface to acquire a sample for return to the Earth. Minimizing the risk of exploring an unknown world requires a tight integration of science and engineering to inform flight system and mission design. Defining the Asteroid Environment: We have performed an extensive astronomical campaign in support of OSIRIS-REx. Lightcurve and phase function observations were obtained with UA Observatories telescopes located in southeastern Arizona during the 2005--2006 and 2011--2012 apparitions [2]. We observed Bennu using the 12.6-cm radar at the Arecibo Observatory in 1999, 2005, and 2011 and the 3.5-cm radar at the Goldstone tracking station in 1999 and 2005 [3]. We conducted near-infrared measurements using the NASA Infrared Telescope Facility at the Mauna Kea Observatory in Hawaii in September 2005 [4]. Additional spectral observations were obtained in July 2011 and May 2012 with the Magellan 6.5-m telescope [5]. We used the Spitzer space telescope to observe Bennu in May 2007 [6]. The extensive knowledge gained as a result of our telescopic characterization of Bennu was critical in the selection of this object as the OSIRIS-REx mission target. In addition, we use these data, combined with models of the asteroid, to constrain over 100 different asteroid parameters covering orbital, bulk, rotational, radar

  13. Translating theory into practice: integrating the affective and cognitive learning dimensions for effective instruction in engineering education

    Science.gov (United States)

    Alias, Maizam; Lashari, Tahira Anwar; Abidin Akasah, Zainal; Jahaya Kesot, Mohd.

    2014-03-01

    Learning in the cognitive domain is highly emphasised and has been widely investigated in engineering education. Lesser emphasis is placed on the affective dimension although the role of affects has been supported by research. The lack of understanding on learning theories and how they may be translated into classroom application of teaching and learning is one factor that contributes to this situation. This paper proposes a working framework for integrating the affective dimension of learning into engineering education that is expected to promote better learning within the cognitive domain. Four major learning theories namely behaviourism, cognitivism, socio-culturalism, and constructivism were analysed and how affects are postulated to influence cognition are identified. The affective domain constructs identified to be important are self-efficacy, attitude and locus of control. Based on the results of the analysis, a framework that integrates methodologies for achieving learning in the cognitive domain with the support of the affective dimension of learning is proposed. It is expected that integrated approach can be used as a guideline to engineering educators in designing effective and sustainable instructional material that would result in the effective engineers for future development.

  14. Speed limiter integrated fatigue analyzer (SLIFA) for speed and fatigue control on diesel engine truck and bus

    Science.gov (United States)

    Wahyudi, Haris; Pranoto, Hadi; Leman, A. M.; Sebayang, Darwin; Baba, I.

    2017-09-01

    Every second, the number of road traffic deaths is increased globally with millions more sustaining severe injuries and living with long-term adverse health consequences. Jakarta alone in year 2015 had recorded 556 people died due to road accidents, approximately reached 6.231 road accident cases. The identified major contributory factors of such unfortunate events are both driver fatigue and over speeding habit especially related to the driving of truck and bus. This paper presents the idea on how to control the electronic system from input fuel system of injection pump and the combustion chamber engine will control the valve solenoid in injection pump which can lock and fuel will stop for moment, and speed limit can be success, by using sensor heart rate we can input reduce speed limit when fatigue detection driver. Integration process this tool can be relevant when Speed Limiter Integrated Fatigue Analyser (SLIFA) trial in the diesel engine for truck and bus, the result of this research Speed Limiter Integrated Fatigue Analyser (SLIFA) able to control speed of diesel engine for truck and bus almost 30km/h, 60km/h, and until 70 km/h. The installation of the sensor heart rate as the input speed limit SLIFA would work when the driver is detected to be in the fatigue condition. We make Speed Limiter Integrated Fatigue Analyser (SLIFA) for control and monitoring system for diesel engine in truck and bus. Speed Limiter Integrated Fatigue Analyser (SLIFA) system can save the historical of the speed record, fatigue, rpm, and body temperature of the driver.

  15. Integration of educational and scientific-technological areas during the process of education of aerospace engineers

    Science.gov (United States)

    Mayorova, Vera

    2011-09-01

    National priorities, defined by modern state of high-tech industries, demand adequate problem solving of training professionals possessing required modern qualifications. Modern tendencies of the development of aerospace technologies, harsh competition in the market of space services and expansion of international cooperation for implementation of space projects, demand sharp increase of the scientific/technical level and competitiveness of the developed projects. Especially important is to be able to solve technological problems, which in turn define the cost and quality attributes of the designed item, as well as the ability to utilize the most modern design principles. Training of highly efficient, creative professionals who are capable of generating and implementing new ideas is a very important factor driving not only the development of national economy and industry, but also enriching the human capital of the country. Moscow State Technical University named after N.E. Bauman developed and successfully implemented the project-oriented technology of professional training for aerospace industry. It assumes a multitude of forms, methodologies and organizational events, which allow preparing the specialists - on the basis of integration of scientific/technological and educational environment - who are adapted to the conditions of the intellectual market. The Youth Space Center of the University is the base where graduate and post-graduate students attend unique lectures as a part of the facultative course "Applied Cosmonautics", participate in annual International Youth Science School "Space Development: Theory and Practice" and develop innovative technical projects aimed at creation of real-life space hardware. Microsatellite technologies are being developed in Bauman University through various projects, which are implemented in a coordinated manner by way of accomplishing the following steps: development of small-size satellites by universities, using them as

  16. Integrating Solar Power onto the Electric Grid - Bridging the Gap between Atmospheric Science, Engineering and Economics

    Science.gov (United States)

    Ghonima, M. S.; Yang, H.; Zhong, X.; Ozge, B.; Sahu, D. K.; Kim, C. K.; Babacan, O.; Hanna, R.; Kurtz, B.; Mejia, F. A.; Nguyen, A.; Urquhart, B.; Chow, C. W.; Mathiesen, P.; Bosch, J.; Wang, G.

    2015-12-01

    One of the main obstacles to high penetrations of solar power is the variable nature of solar power generation. To mitigate variability, grid operators have to schedule additional reliability resources, at considerable expense, to ensure that load requirements are met by generation. Thus despite the cost of solar PV decreasing, the cost of integrating solar power will increase as penetration of solar resources onto the electric grid increases. There are three principal tools currently available to mitigate variability impacts: (i) flexible generation, (ii) storage, either virtual (demand response) or physical devices and (iii) solar forecasting. Storage devices are a powerful tool capable of ensuring smooth power output from renewable resources. However, the high cost of storage is prohibitive and markets are still being designed to leverage their full potential and mitigate their limitation (e.g. empty storage). Solar forecasting provides valuable information on the daily net load profile and upcoming ramps (increasing or decreasing solar power output) thereby providing the grid advance warning to schedule ancillary generation more accurately, or curtail solar power output. In order to develop solar forecasting as a tool that can be utilized by the grid operators we identified two focus areas: (i) develop solar forecast technology and improve solar forecast accuracy and (ii) develop forecasts that can be incorporated within existing grid planning and operation infrastructure. The first issue required atmospheric science and engineering research, while the second required detailed knowledge of energy markets, and power engineering. Motivated by this background we will emphasize area (i) in this talk and provide an overview of recent advancements in solar forecasting especially in two areas: (a) Numerical modeling tools for coastal stratocumulus to improve scheduling in the day-ahead California energy market. (b) Development of a sky imager to provide short term

  17. Integrating Delta Building Physics & Economics: Optimizing the Scale of Engineered Avulsions in the Mississippi River Delta

    Science.gov (United States)

    Kenney, M. A.; Mohrig, D.; Hobbs, B. F.; Parker, G.

    2011-12-01

    Land loss in the Mississippi River Delta caused by subsidence and erosion has resulted in habitat loss, interference with human activities, and increased exposure of New Orleans and other settled areas to storm surge risks. Prior to dam and levee building and oil and gas production in the 20th century, the long term rates of land building roughly balanced land loss through subsidence. Now, however, sediment is being deposited at dramatically lower rates in shallow areas in and adjacent to the Delta, with much of the remaining sediment borne by the Mississippi being lost to the deep areas of the Gulf of Mexico. A few projects have been built in order to divert sediment from the river to areas where land can be built, and many more are under consideration as part of State of Louisiana and Federal planning processes. Most are small scale, although there have been some proposals for large engineered avulsions that would divert a significant fraction of the remaining available sediment (W. Kim, et al. 2009, EOS). However, there is debate over whether small or large diversions are the economically optimally and socially most acceptable size of such land building projects. From an economic point of view, the optimal size involves tradeoffs between scale economies in civil work construction, the relationship between depth of diversion and sediment concentration in river water, effects on navigation, and possible diminishing returns to land building at a single location as the edge of built land progresses into deeper waters. Because land building efforts could potentially involve billions of dollars of investment, it is important to gain as much benefit as possible from those expenditures. We present the result of a general analysis of scale economies in land building from engineered avulsions. The analysis addresses the question: how many projects of what size should be built at what time in order to maximize the amount of land built by a particular time? The analysis

  18. DYNA3D, INGRID, and TAURUS: an integrated, interactive software system for crashworthiness engineering

    International Nuclear Information System (INIS)

    Benson, D.J.; Hallquist, J.O.; Stillman, D.W.

    1985-04-01

    Crashworthiness engineering has always been a high priority at Lawrence Livermore National Laboratory because of its role in the safe transport of radioactive material for the nuclear power industry and military. As a result, the authors have developed an integrated, interactive set of finite element programs for crashworthiness analysis. The heart of the system is DYNA3D, an explicit, fully vectorized, large deformation structural dynamics code. DYNA3D has the following four capabilities that are critical for the efficient and accurate analysis of crashes: (1) fully nonlinear solid, shell, and beam elements for representing a structure, (2) a broad range of constitutive models for representing the materials, (3) sophisticated contact algorithms for the impact interactions, and (4) a rigid body capability to represent the bodies away from the impact zones at a greatly reduced cost without sacrificing any accuracy in the momentum calculations. To generate the large and complex data files for DYNA3D, INGRID, a general purpose mesh generator, is used. It runs on everything from IBM PCs to CRAYS, and can generate 1000 nodes/minute on a PC. With its efficient hidden line algorithms and many options for specifying geometry, INGRID also doubles as a geometric modeller. TAURUS, an interactive post processor, is used to display DYNA3D output. In addition to the standard monochrome hidden line display, time history plotting, and contouring, TAURUS generates interactive color displays on 8 color video screens by plotting color bands superimposed on the mesh which indicate the value of the state variables. For higher quality color output, graphic output files may be sent to the DICOMED film recorders. We have found that color is every bit as important as hidden line removal in aiding the analyst in understanding his results. In this paper the basic methodologies of the programs are presented along with several crashworthiness calculations

  19. A multi-purpose unit concept to integrate storage, transportation, and the engineered barrier system

    International Nuclear Information System (INIS)

    Hollaway, W.R.; Rozier, R.; Nitti, D.A.; Williams, J.R.

    1993-01-01

    The Multi-Purpose Unit (MPU) is a new concept for standardizing and integrating the waste management functions of spent fuel storage, transportation, and geologic disposal. The MPU concept would use one unit, composed of a relatively thick-walled inner canister with a multi-purpose overpack, to meet the requirements for storage in 10 CFR 72, transportation in 10 CFR 71, and the engineered barrier system in 10 CFR 60. The MPU concept differs from the recently proposed Multi-Purpose Canister (MPC) concept in that the MPU concept uses a single multi-purpose overpack for storage, transportation, and geologic disposal, while the MPC concept uses separate and unique overpacks for each of these system functions. A design concept for the MPU is presented along with an estimate of unit costs. An initial evaluation of overall system cost showed that the MPU concept could be economically competitive with the current reference system. The MPU concept provides the potential for significant reduction, simplification, and standardization of Civilian Radioactive Waste Management (CRWMS) facilities and operations, including those at the utilities, during waste acceptance and transportation, and at the Monitored Retrievable Storage (MRS) facility and the repository. The primary issues for the MPU concept relate to uncertainties with respect to licensing, and the programmatic risks associated with implementing the MPU concept before the repository design is finalized. The strong potential exhibited by the MPU concept demonstrates that this option merits additional development and should be considered in the next phase of work on multi-purpose concepts for the CRWMS

  20. An Analysis of Computer Aided Design (CAD) Packages Used at MSFC for the Recent Initiative to Integrate Engineering Activities

    Science.gov (United States)

    Smith, Leigh M.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    This paper analyzes the use of Computer Aided Design (CAD) packages at NASA's Marshall Space Flight Center (MSFC). It examines the effectiveness of recent efforts to standardize CAD practices across MSFC engineering activities. An assessment of the roles played by management, designers, analysts, and manufacturers in this initiative will be explored. Finally, solutions are presented for better integration of CAD across MSFC in the future.

  1. Integration of supervisory control synthesis in model-based systems engineering

    NARCIS (Netherlands)

    J.C.M. Baeten (Jos); J.M. van de Mortel-Fronczak (Joanna); J.E. Rooda (Jacobus)

    2011-01-01

    htmlabstractDue to increasing system complexity, time-to-market and development costs reduction, there are higher demands on engineering processes. Model-based engineering processes can play a role here because they support system development by enabling the use of various model-based analysis

  2. Reverse engineering of industrially relevant phenotypes in yeast : An integrated approach

    NARCIS (Netherlands)

    Oud, B.

    2013-01-01

    Reverse engineering is the study of discovering the structure, function and operation of a device or system with the express aim to reconstruct its key functionalities. This principle is applied to many disciplines, from military, through computer engineering, to health, but also in metabolic

  3. Integrator Element as a Promoter of Active Learning in Engineering Teaching

    Science.gov (United States)

    Oliveira, Paulo C.; Oliveira, Cristina G.

    2014-01-01

    In this paper, we present a teaching proposal used in an Introductory Physics course to civil engineering students from Porto's Engineering Institute/Instituto Superior de Engenharia do Porto (ISEP). The proposal was born from the need to change students' perception and motivation for learning physics. It consists in the use of an integrator…

  4. Integrating Engineering into Delaware's K-5 Classrooms: A Study of Pedagogical and Curricular Resources

    Science.gov (United States)

    Grusenmeyer, Linda Huey

    This study examines the personal and curricular resources available to Delaware's elementary teachers during a time of innovative curriculum change, i.e., their knowledge, goals and beliefs regarding elementary engineering curriculum and the pedagogical support to teach two Science and Engineering Practices provided by science teaching materials. Delaware was at the forefront of K-12 STEM movement, first to adopt statewide elementary curriculum materials to complement existing science units, and one of the first to adopt the new science standards--Next Generation Science Standards. What supports were available to teachers as they adapted and adopted this new curriculum? To investigate this question, I examined (1) teachers' beliefs about engineering and the engineering curriculum, and (2) the pedagogical supports available to teachers in selected science and engineering curriculum. Teachers' knowledge, goals, and beliefs regarding Delaware's adoption of new elementary engineering curriculum were surveyed using an adapted version of the Design, Engineering, and Technology Survey (Hong, Purser, & Gardella, 2011; Yaser, Baker, Carpius, Krauss, & Roberts, 2006). Also, three open ended questions sought to reveal deeper understanding of teacher knowledge and understanding of engineering; their concerns about personal and systemic resources related to the new curriculum, its logistics, and feasibility; and their beliefs about the potential positive impact presented by the engineering education initiative. Teacher concerns were analyzed using the Concerns-Based Adoption Model (Hall & Hord, 2010). Lay understandings of engineering were analyzed by contrasting naive representations of engineering with three key characteristics of engineering adapted from an earlier study (Capobianco Diefes-Dux, Mena, & Weller, 2011). Survey findings for teachers who had attended training and those who have not yet attended professional development in the new curriculum were compared with few

  5. Definition, technology readiness, and development cost of the orbit transfer vehicle engine integrated control and health monitoring system elements

    Science.gov (United States)

    Cannon, I.; Balcer, S.; Cochran, M.; Klop, J.; Peterson, S.

    1991-01-01

    An Integrated Control and Health Monitoring (ICHM) system was conceived for use on a 20 Klb thrust baseline Orbit Transfer Vehicle (OTV) engine. Considered for space used, the ICHM was defined for reusability requirements for an OTV engine service free life of 20 missions, with 100 starts and a total engine operational time of 4 hours. Functions were derived by flowing down requirements from NASA guidelines, previous OTV engine or ICHM documents, and related contracts. The elements of an ICHM were identified and listed, and these elements were described in sufficient detail to allow estimation of their technology readiness levels. These elements were assessed in terms of technology readiness level, and supporting rationale for these assessments presented. The remaining cost for development of a minimal ICHM system to technology readiness level 6 was estimated. The estimates are within an accuracy range of minus/plus 20 percent. The cost estimates cover what is needed to prepare an ICHM system for use on a focussed testbed for an expander cycle engine, excluding support to the actual test firings.

  6. Conceptual design of modular fixture for frame welding and drilling process integration case study: Student chair in UNS industrial engineering integrated practicum

    Science.gov (United States)

    Darmawan, Tofiq Dwiki; Priadythama, Ilham; Herdiman, Lobes

    2018-02-01

    Welding and drilling are main processes of making chair frame from metal material. Commonly, chair frame construction includes many arcs which bring difficulties for its welding and drilling process. In UNS industrial engineering integrated practicum there are welding fixtures which use to fixing frame component position for welding purpose. In order to achieve exact holes position for assembling purpose, manual drilling processes were conducted after the frame was joined. Unfortunately, after it was welded the frame material become hard and increase drilling tools wear rate as well as reduce holes position accuracy. The previous welding fixture was not equipped with clamping system and cannot accommodate drilling process. To solve this problem, our idea is to reorder the drilling process so that it can be execute before welding. Thus, this research aims to propose conceptual design of modular fixture which can integrate welding and drilling process. We used Generic Product Development Process to address the design concept. We collected design requirements from 3 source, jig and fixture theoretical concepts, user requirements, and clamping part standards. From 2 alternatives fixture tables, we propose the first which equipped with mounting slots instead of holes. We test the concept by building a full sized prototype and test its works by conducting welding and drilling of a student chair frame. Result from the welding and drilling trials showed that the holes are on precise position after welding. Based on this result, we conclude that the concept can be a consideration for application in UNS Industrial Engineering Integrated Practicum.

  7. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues.

    Science.gov (United States)

    Kant, Rajeev J; Coulombe, Kareen L K

    2018-03-15

    The field of tissue engineering has turned towards biomimicry to solve the problem of tissue oxygenation and nutrient/waste exchange through the development of vasculature. Induction of angiogenesis and subsequent development of a vascular bed in engineered tissues is actively being pursued through combinations of physical and chemical cues, notably through the presentation of topographies and growth factors. Presenting angiogenic signals in a spatiotemporal fashion is beginning to generate improved vascular networks, which will allow for the creation of large and dense engineered tissues. This review provides a brief background on the cells, mechanisms, and molecules driving vascular development (including angiogenesis), followed by how biomaterials and growth factors can be used to direct vessel formation and maturation. Techniques to accomplish spatiotemporal control of vascularization include incorporation or encapsulation of growth factors, topographical engineering, and 3D bioprinting. The vascularization of engineered tissues and their application in angiogenic therapy in vivo is reviewed herein with an emphasis on the most densely vascularized tissue of the human body - the heart. Vascularization is vital to wound healing and tissue regeneration, and development of hierarchical networks enables efficient nutrient transfer. In tissue engineering, vascularization is necessary to support physiologically dense engineered tissues, and thus the field seeks to induce vascular formation using biomaterials and chemical signals to provide appropriate, pro-angiogenic signals for cells. This review critically examines the materials and techniques used to generate scaffolds with spatiotemporal cues to direct vascularization in engineered and host tissues in vitro and in vivo. Assessment of the field's progress is intended to inspire vascular applications across all forms of tissue engineering with a specific focus on highlighting the nuances of cardiac tissue

  8. SHARP's systems engineering challenge: rectifying integrated product team requirements with performance issues in an evolutionary spiral development acquisition

    Science.gov (United States)

    Kuehl, C. Stephen

    2003-08-01

    Completing its final development and early deployment on the Navy's multi-role aircraft, the F/A-18 E/F Super Hornet, the SHAred Reconnaissance Pod (SHARP) provides the war fighter with the latest digital tactical reconnaissance (TAC Recce) Electro-Optical/Infrared (EO/IR) sensor system. The SHARP program is an evolutionary acquisition that used a spiral development process across a prototype development phase tightly coupled into overlapping Engineering and Manufacturing Development (EMD) and Low Rate Initial Production (LRIP) phases. Under a tight budget environment with a highly compressed schedule, SHARP challenged traditional acquisition strategies and systems engineering (SE) processes. Adopting tailored state-of-the-art systems engineering process models allowd the SHARP program to overcome the technical knowledge transition challenges imposed by a compressed program schedule. The program's original goal was the deployment of digital TAC Recce mission capabilities to the fleet customer by summer of 2003. Hardware and software integration technical challenges resulted from requirements definition and analysis activities performed across a government-industry led Integrated Product Team (IPT) involving Navy engineering and test sites, Boeing, and RTSC-EPS (with its subcontracted hardware and government furnished equipment vendors). Requirements development from a bottoms-up approach was adopted using an electronic requirements capture environment to clarify and establish the SHARP EMD product baseline specifications as relevant technical data became available. Applying Earned-Value Management (EVM) against an Integrated Master Schedule (IMS) resulted in efficiently managing SE task assignments and product deliveries in a dynamically evolving customer requirements environment. Application of Six Sigma improvement methodologies resulted in the uncovering of root causes of errors in wiring interconnectivity drawings, pod manufacturing processes, and avionics

  9. CAD and 3d-printing integration experience in the curriculum of engineers education

    Directory of Open Access Journals (Sweden)

    V. V. Zelentsov

    2016-01-01

    Full Text Available The paper examines the results of using the 3d-printing educational methodology for training the students in the spacecraft-configuration developing area.The first purpose of the considered methodology practice is to implement the rapid-prototyping skills into the educational process, to provide perfection of the student knowledge in configuring the internal on-board equipment of the spacecraft. The second purpose – is to habituate the students to the main principles of the available CAM technologies, to fill the available educational gap in the area of information support of the spacecraft life-cycle.The proposed curriculum includes six training exercises based on a special “Engineering drawing” course unit. The training exercises require using the SolidWorks geometric-simulation software. The preliminary obtained virtual prototypes of the spacecraft configuration elements are subjected to 3d-printing and assembled into a physical configuration model. The physical configuration models are obtained using one of the most accessible rapid-prototyping technologies – 3d-printing of extrusion type. Practicing in 3d-printing provides developing the student skills in managing all other digital-program control devices.The specified first experience of integrating the computer geometricsimulation methodology and the 3d-printing practices in a single course unit has proved: developing the physical-configuration models heightens the student interest to the configuration training.A ready-made physical model does not excuse the available configuration mistakes unlike a virtual model where the component interferences may remain undetected. So, developing a physical model requires additional endeavor and responsibility. Developing a project in a team has proved to be an effective means for solving a common creative problem.The first test of the proposed methodology has shown the importance of perfect adjustment of the available 3d-printing process and

  10. Service Oriented Integration of Distributed Heterogeneous IT Systems in Production Engineering Using Information Standards and Linked Data

    Directory of Open Access Journals (Sweden)

    Navid Shariat Zadeh

    2017-01-01

    Full Text Available While design of production systems based on digital models brings benefits, the communication of models comes with challenges since models typically reside in a heterogeneous IT environment using different syntax and semantics. Coping with heterogeneity requires a smart integration strategy. One main paradigm to integrate data and IT systems is to deploy information standards. In particular, ISO 10303 STEP has been endorsed as a suitable standard to exchange a wide variety of product manufacturing data. One the other hand, service-oriented tool integration solutions are progressively adopted for the integration of data and IT-tools, especially with the emergence of Open Services for Lifecycle Collaboration whose focus is on the linking of data from heterogeneous software tools. In practice, there should be a combination of these approaches to facilitate the integration process. Hence, the aim of this paper is to investigate the applications of the approaches and the principles behind them and try to find criteria for where to use which approach. In addition, we explore the synergy between them and consequently suggest an approach based on combination of them. In addition, a systematic approach is suggested to identify required level of integrations and their corresponding approaches exemplified in a typical IT system architecture in Production Engineering.

  11. Integration of project management and systems engineering: Tools for a total-cycle environmental management system

    International Nuclear Information System (INIS)

    Blacker, P.B.; Winston, R.

    1997-01-01

    An expedited environmental management process has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL). This process is one result of the Lockheed Martin commitment to the US Department of Energy to incorporate proven systems engineering practices with project management and program controls practices at the INEEL. Lockheed Martin uses a graded approach of its management, operations, and systems activities to tailor the level of control to the needs of the individual projects. The Lockheed Martin definition of systems engineering is: ''''Systems Engineering is a proven discipline that defines and manages program requirements, controls risk, ensures program efficiency, supports informed decision making, and verifies that products and services meet customer needs.'''' This paper discusses: the need for an expedited environmental management process; how the system was developed; what the system is; what the system does; and an overview of key components of the process

  12. An Integrated Heavy Fuel Piston Engine Ducted Fan Propulsion Unit for Personal Air Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed PAVE propulsion system technology demonstration combines an innovative high-speed aero-diesel engine with a novel ducted fan assembly resulting in a low...

  13. An Integrated Heavy Fuel Piston Engine Ducted Fan Propulsion Unit for Personal Air Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed PAVE propulsion system technology demonstration combines an innovative high-speed aero-diesel engine with a novel ducted fan assembly resulting in a low...

  14. Integrating Industry in Project Organized Problem Based Learning for Engineering Educations

    DEFF Research Database (Denmark)

    Nielsen, Kirsten M.

    2006-01-01

    This abstract deals with the challenge of establishing engineering student projects in collaboration with industry. Based on empirical results a set of advices for industrial collaboration in project oriented problem based learning are formulated...

  15. A novel split cycle internal combustion engine with integral waste heat recovery

    International Nuclear Information System (INIS)

    Dong, Guangyu; Morgan, Robert; Heikal, Morgan

    2015-01-01

    Highlights: • A novel engine thermodynamic cycle is proposed. • Theoretical analysis is applied to identify the key parameters of the thermodynamic cycle. • The key stages of the split cycle are analysed via one-dimensional modelling work. • The effecting mechanism of the split cycle efficiency is analysed. - Abstract: To achieve a step improvement in engine efficiency, a novel split cycle engine concept is proposed. The engine has separate compression and combustion cylinders and waste heat is recovered between the two. Quasi-isothermal compression of the charge air is realised in the compression cylinder while isobaric combustion of the air/fuel mixture is achieved in the combustion cylinder. Exhaust heat recovery between the compression and combustion chamber enables highly efficient recovery of waste heat within the cycle. Based on cycle analysis and a one-dimensional engine model, the fundamentals and the performance of the split thermodynamic cycle is estimated. Compared to conventional engines, the compression work can be significantly reduced through the injection of a controlled quantity of water in the compression cylinder, lowering the gas temperature during compression. Thermal energy can then be effectively recovered from the engine exhaust in a recuperator between the cooled compressor cylinder discharge air and the exhaust gas. The resulting hot high pressure air is then injected into a combustor cylinder and mixed with fuel, where near isobaric combustion leads to a low combustion temperature and reduced heat transferred from the cylinder wall. Detailed cycle simulation indicates a 32% efficiency improvement can be expected compared to the conventional diesel engines.

  16. Integrating E-Learning and Classroom Learning for Engineering Quality Control unit - Curtin University Experience

    Directory of Open Access Journals (Sweden)

    Ali M. Darabi Golshani

    2011-08-01

    Full Text Available Engineering employers expect engineering graduates to possess a wide range of skills that goes beyond their technical knowledge. It is vital that graduates have skills which demonstrate that they are responsible for their own development and careers. Some of these skills include; communication abilities, organizational skills, self-promotion, the ability to work as part of a team, be an effective problem solver, be a critical thinker, have good negotiation skills, have the ability to be a leader and being able to network effectively. Department of Civil Engineering at Curtin University of Technology in Perth, Australia offers a Master of Engineering Management degree for Engineers from various disciplines. One of the units taught in this Master degree program is Engineering Quality Control. It was decided to incorporate these non-technical skills in this unit by using an e-learning platform (Blackboard together with an adaptation of the Seven Principles of Good Practice and Dr Meredith Belbin’s team role theory to divide participants into groups. At the end of the unit, most of the participants were showing improvements in their non-technical skills.

  17. Enhancing vehicle’s engine warm up using integrated mechanical approach

    Science.gov (United States)

    Ibrahim, T. M.; Syahir, A. Z.; Zulkifli, N. W. M.; Masjuki, H. H.; Osman, A.

    2017-06-01

    Transportation sector covers a large portion of the total energy consumption shares and is highly associated to global warming. Growing concern over the harmful gases being emitted from vehicles and their environmental implications has urged the need for pollutant reduction through more efficient engines. Good engine thermal management especially during cold-start warm up phase has been proven to enhance the engine efficiency in terms of fuel economy and greenhouse emissions specifically. In this study, the viability engine split cooling system was tested in two separate test. The parameters of interest include coolant and transmission temperature as these both parameters indicate the internal engine condition and highly associated with engine efficiency. In the first idle test, coolant temperature within the modified cooling configuration reached the optimum coolant temperature of 60 °C about 41.28% faster when compared to baseline configuration. The modified configuration also heat up the transmission oil around 4 times faster. In the second NEDC test which simulates the real time driving condition, the coolant of the modified vehicle reached the optimum temperature around 28.26% compared to the baseline.

  18. Agent-based re-engineering of ErbB signaling: a modeling pipeline for integrative systems biology.

    Science.gov (United States)

    Das, Arya A; Ajayakumar Darsana, T; Jacob, Elizabeth

    2017-03-01

    Experiments in systems biology are generally supported by a computational model which quantitatively estimates the parameters of the system by finding the best fit to the experiment. Mathematical models have proved to be successful in reverse engineering the system. The data generated is interpreted to understand the dynamics of the underlying phenomena. The question we have sought to answer is that - is it possible to use an agent-based approach to re-engineer a biological process, making use of the available knowledge from experimental and modelling efforts? Can the bottom-up approach benefit from the top-down exercise so as to create an integrated modelling formalism for systems biology? We propose a modelling pipeline that learns from the data given by reverse engineering, and uses it for re-engineering the system, to carry out in-silico experiments. A mathematical model that quantitatively predicts co-expression of EGFR-HER2 receptors in activation and trafficking has been taken for this study. The pipeline architecture takes cues from the population model that gives the rates of biochemical reactions, to formulate knowledge-based rules for the particle model. Agent-based simulations using these rules, support the existing facts on EGFR-HER2 dynamics. We conclude that, re-engineering models, built using the results of reverse engineering, opens up the possibility of harnessing the power pack of data which now lies scattered in literature. Virtual experiments could then become more realistic when empowered with the findings of empirical cell biology and modelling studies. Implemented on the Agent Modelling Framework developed in-house. C ++ code templates available in Supplementary material . liz.csir@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  19. FDRAnalysis: a tool for the integrated analysis of tandem mass spectrometry identification results from multiple search engines.

    Science.gov (United States)

    Wedge, David C; Krishna, Ritesh; Blackhurst, Paul; Siepen, Jennifer A; Jones, Andrew R; Hubbard, Simon J

    2011-04-01

    Confident identification of peptides via tandem mass spectrometry underpins modern high-throughput proteomics. This has motivated considerable recent interest in the postprocessing of search engine results to increase confidence and calculate robust statistical measures, for example through the use of decoy databases to calculate false discovery rates (FDR). FDR-based analyses allow for multiple testing and can assign a single confidence value for both sets and individual peptide spectrum matches (PSMs). We recently developed an algorithm for combining the results from multiple search engines, integrating FDRs for sets of PSMs made by different search engine combinations. Here we describe a web-server and a downloadable application that makes this routinely available to the proteomics community. The web server offers a range of outputs including informative graphics to assess the confidence of the PSMs and any potential biases. The underlying pipeline also provides a basic protein inference step, integrating PSMs into protein ambiguity groups where peptides can be matched to more than one protein. Importantly, we have also implemented full support for the mzIdentML data standard, recently released by the Proteomics Standards Initiative, providing users with the ability to convert native formats to mzIdentML files, which are available to download.

  20. A Process Engineering Approach to the Development and Integration of Intrusion Detection Techniques

    National Research Council Canada - National Science Library

    Ye, Nong

    2001-01-01

    ...) investigate system-level intrusion detection techniques for the fusion and correlation of local information about intrusions, based on the integration infrastructure for intrusion detection; and (3...

  1. A Process Engineering Approach to the Development and Integration of Intrusion Detection Techniques

    National Research Council Canada - National Science Library

    Ye, Nong

    2002-01-01

    ...) investigate system-level intrusion detection techniques for the fusion and correlation of local information about intrusions, based on the integration infrastructure for intrusion detection; and (3...

  2. Design and characterization of microcapsules-integrated collagen matrixes as multifunctional three-dimensional scaffolds for soft tissue engineering.

    Science.gov (United States)

    Del Mercato, Loretta L; Passione, Laura Gioia; Izzo, Daniela; Rinaldi, Rosaria; Sannino, Alessandro; Gervaso, Francesca

    2016-09-01

    Three-dimensional (3D) porous scaffolds based on collagen are promising candidates for soft tissue engineering applications. The addition of stimuli-responsive carriers (nano- and microparticles) in the current approaches to tissue reconstruction and repair brings about novel challenges in the design and conception of carrier-integrated polymer scaffolds. In this study, a facile method was developed to functionalize 3D collagen porous scaffolds with biodegradable multilayer microcapsules. The effects of the capsule charge as well as the influence of the functionalization methods on the binding efficiency to the scaffolds were studied. It was found that the binding of cationic microcapsules was higher than that of anionic ones, and application of vacuum during scaffolds functionalization significantly hindered the attachment of the microcapsules to the collagen matrix. The physical properties of microcapsules-integrated scaffolds were compared to pristine scaffolds. The modified scaffolds showed swelling ratios, weight losses and mechanical properties similar to those of unmodified scaffolds. Finally, in vitro diffusional tests proved that the collagen scaffolds could stably retain the microcapsules over long incubation time in Tris-HCl buffer at 37°C without undergoing morphological changes, thus confirming their suitability for tissue engineering applications. The obtained results indicate that by tuning the charge of the microcapsules and by varying the fabrication conditions, collagen scaffolds patterned with high or low number of microcapsules can be obtained, and that the microcapsules-integrated scaffolds fully retain their original physical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Process oriented thinking as a key for integration of ecohydrology, biotechnology and engineering for sustainable water resources management and ecosystems

    Science.gov (United States)

    Zalewski, M.

    2015-04-01

    The recent high rate of environmental degradation due to unsustainable use of water and other natural resources and mismanagement, is, in many cases, the result of a dominant sectoral approach, limited communication between different users and agencies, and lack of knowledge transfer between different disciplines, and especially lack of dialogue between environmental scientists and engineers. There is no doubt that the genuine improvement of human well-being has to be based on understanding the complexity of interactions between abiotic, biotic and socio-economic systems. The major drivers of biogeosphere evolution and function have been the cycles of water and nutrients in a complex array of differing climates and catchment geomorphologies. In the face of global climate change and unequally distributed human populations, the recent sectoral mechanistic approach in natural resources management has to be replaced by an evolutionary systems approach based on well-integrated problem-solving and policy-oriented environmental science. Thus the principles of ecohydrology should be the basis for further integration of ecology, hydrology, engineering, biotechnology and other environmental sciences. Examples from UNESCO IHP VII show how the integration of these will not only increase the efficiency of measures to harmonize ecosystem potentials with societal needs, but also significantly reduce the costs of sustainable environmental management.

  4. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations.

    Science.gov (United States)

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-15

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  5. Optimization Using Metamodeling in the Context of Integrated Computational Materials Engineering (ICME)

    Energy Technology Data Exchange (ETDEWEB)

    Hammi, Youssef; Horstemeyer, Mark F; Wang, Paul; David, Francis; Carino, Ricolindo

    2013-11-18

    Predictive Design Technologies, LLC (PDT) proposed to employ Integrated Computational Materials Engineering (ICME) tools to help the manufacturing industry in the United States regain the competitive advantage in the global economy. ICME uses computational materials science tools within a holistic system in order to accelerate materials development, improve design optimization, and unify design and manufacturing. With the advent of accurate modeling and simulation along with significant increases in high performance computing (HPC) power, virtual design and manufacturing using ICME tools provide the means to reduce product development time and cost by alleviating costly trial-and-error physical design iterations while improving overall quality and manufacturing efficiency. To reduce the computational cost necessary for the large-scale HPC simulations and to make the methodology accessible for small and medium-sized manufacturers (SMMs), metamodels are employed. Metamodels are approximate models (functional relationships between input and output variables) that can reduce the simulation times by one to two orders of magnitude. In Phase I, PDT, partnered with Mississippi State University (MSU), demonstrated the feasibility of the proposed methodology by employing MSU?s internal state variable (ISV) plasticity-damage model with the help of metamodels to optimize the microstructure-process-property-cost for tube manufacturing processes used by Plymouth Tube Company (PTC), which involves complicated temperature and mechanical loading histories. PDT quantified the microstructure-property relationships for PTC?s SAE J525 electric resistance-welded cold drawn low carbon hydraulic 1010 steel tube manufacturing processes at seven different material states and calibrated the ISV plasticity material parameters to fit experimental tensile stress-strain curves. PDT successfully performed large scale finite element (FE) simulations in an HPC environment using the ISV plasticity

  6. Integrated Analysis of the Scavenging Process in Marine Two-Stroke Diesel Engines

    DEFF Research Database (Denmark)

    Andersen, Fredrik Herland

    the exhaust valve and replaced with fresh air for the subsequent compression stroke. The scavenging air enters the cylinder via inlet ports which are uncovered by the piston at bottom dead center (BDC). The exhaust gases are then displaced bythe fresh air entering the cylinder. The scavenging ports are cut...... performance.This thesis will present a CFD model that is tested and validated with quantitative data obtained from a dedicated test engine and during engine commissioning on location at the shipbuilder. The CFD model comprises the full geometry of a single cylinder from scavenge receiver to the exhaust...... in the scavenge and exhaust receivers increase while the scavenge port exposure time, tscav, decrease. Further the scavenging pressure is varied while the engine speed is kept constant. From the perspective of the scavenging process this will resemble a load sweep following a generator curve. The scavenge port...

  7. From Design to Production Control Through the Integration of Engineering Data Management and Workflow Management Systems

    CERN Document Server

    Le Goff, J M; Bityukov, S; Estrella, F; Kovács, Z; Le Flour, T; Lieunard, S; McClatchey, R; Murray, S; Organtini, G; Vialle, J P; Bazan, A; Chevenier, G

    1997-01-01

    At a time when many companies are under pressure to reduce "times-to-market" the management of product information from the early stages of design through assembly to manufacture and production has become increasingly important. Similarly in the construction of high energy physics devices the collection of ( often evolving) engineering data is central to the subsequent physics analysis. Traditionally in industry design engineers have employed Engineering Data Management Systems ( also called Product Data Management Systems) to coordinate and control access to documented versions of product designs. However, these systems provide control only at the collaborative design level and are seldom used beyond design. Workflow management systems, on the other hand, are employed in industry to coordinate and support the more complex and repeatable work processes of the production environment. Commer cial workflow products cannot support the highly dynamic activities found both in the design stages of product developmen...

  8. Zebras and Jaguars, Oh My! Integrating Science and Engineering Standards with Art during Prekindergarten Block Time

    Science.gov (United States)

    Smith, Brandy A.; Cline, Jane E.

    2016-01-01

    This study considered how arts integration impacted preschoolers concerning the students' acquisition, understanding, and retention of information about animal habitats. This current investigation used control and experimental conditions to determine the effects of art integration during students' block building of animal habitats and their…

  9. Engineering planetary exploration systems : Integrating novel technologies and the human element using work domain analysis

    NARCIS (Netherlands)

    Baker, C.; Naikar, N.; Neerincx, M.

    2008-01-01

    The realisation of sustainable space exploration and utilisation requires not only the development of novel concepts and technologies, but also their successful integration. Hardware, software, and the human element must be integrated effectively to make the dream for which these technologies were

  10. Packaging for consumer electronic products : The need for integrating design and engineering

    NARCIS (Netherlands)

    Wever, R.; Boks, C.; Stevels, A.

    2008-01-01

    From the perspective of a multinational corporation producing durable consumer goods sustainable packaging is packaging that fulfils the right functionalities in the most efficient way. In order to achieve this, an integral design process is required. Such an integral approach to the design of

  11. Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pratapas, John [Gas Technology Inst., Des Plaines, IL (United States); Zelepouga, Serguei [Gas Technology Inst., Des Plaines, IL (United States); Gnatenko, Vitaliy [Gas Technology Inst., Des Plaines, IL (United States); Saveliev, Alexei [North Carolina State Univ., Raleigh, NC (United States); Jangale, Vilas [North Carolina State Univ., Raleigh, NC (United States); Li, Hailin [West Virginia Univ., Morgantown, WV (United States); Getz, Timothy [West Virginia Univ., Morgantown, WV (United States); Mather, Daniel [Digital Engines, New York, NY (United States)

    2013-08-31

    The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

  12. A code guidance system for integrated nuclear data evaluation system on the basis of knowledge engineering technology

    International Nuclear Information System (INIS)

    Fukahori, Tokio; Nakagawa, Tsuneo

    1994-01-01

    The integrated nuclear data evaluation system (INDES) is being made in order to support the nuclear data evaluation work. A guidance system in INDES, 'Evaluation Tutor (ET)', is under development in order to support users in selecting the most suitable set of theoretical calculation codes by applying knowledge engineering technology and the experiences of evaluation work for JENDL-3. In this paper, the function of ET is introduced as well as the functions and databases of INDES. An example run of ET for 56 Fe in the 1-20 MeV neutron energy region is also explained. (author)

  13. Towards describing co-design by the integration of Engineering Design and Technology and Innovation Management literature

    DEFF Research Database (Denmark)

    Parraguez, Pedro; Maier, Anja

    2012-01-01

    in the fields of Engineering Design (ED) and Technology and Innovation Management (TIM). Interactions between design and third parties in a range of co-design situations are examined via a targeted literature review, and a map is developed containing a network of keywords. As a result of this review, key...... aspects from the literature are summarised and connected through an initial framework characterising, the what, when, who, how and why of co-design. The research motivation arises from the Danish Industry Complex Cleantech Solutions initiative and its need for a conceptual background that integrates...

  14. Biomass Power Generation through Direct Integration of Updraft Gasifier and Stirling Engine Combustion System

    Directory of Open Access Journals (Sweden)

    Jai-Houng Leu

    2010-01-01

    Full Text Available Biomass is the largest renewable energy source in the world. Its importance grows gradually in the future energy market. Since most biomass sources are low in energy density and are widespread in space, small-scale biomass conversion system is therefore more competitive than a large stand-alone conversion plant. The current study proposes a small-scale solid biomass power system to explore the viability of direct coupling of an updraft fixed bed gasifier with a Stirling engine. The modified updraft fixed bed gasifier employs an embedded combustor inside the gasifier to fully combust the synthetic gas generated by the gasifier. The flue gas produced by the synthetic gas combustion inside the combustion tube is piped directly to the heater head of the Stirling engine. The engine will then extract and convert the heat contained in the flue gas into electricity automatically. Output depends on heat input. And, the heat input is proportional to the flow rate and temperature of the flue gas. The preliminary study of the proposed direct coupling of an updraft gasifier with a 25 kW Stirling engine demonstrates that full power output could be produced by the current system. It could be found from the current investigation that no auxiliary fuel is required to operate the current system smoothly. The proposed technology and units could be considered as a viable solid biomass power system.

  15. Web-Based Simulation Games for the Integration of Engineering and Business Fundamentals

    Science.gov (United States)

    Calfa, Bruno; Banholzer, William; Alger, Monty; Doherty, Michael

    2017-01-01

    This paper describes a web-based suite of simulation games that have the purpose to enhance the chemical engineering curriculum with business-oriented decisions. Two simulation cases are discussed whose teaching topics include closing material and energy balances, importance of recycle streams, price-volume relationship in a dynamic market, impact…

  16. Multidisciplinary design and optimization of a plastic injection mold using an integrated design and engineering environment

    NARCIS (Netherlands)

    Van Dijk, R.E.C.; d’Ippolito, R.; Tosi, G.; La Rocca, G.

    2011-01-01

    In order to remain competitive with respect to low-cost overseas markets, domestic moldmakers will have to increase the productivity of their engineers and maintain high quality standard, while dealing with the problem of an aging workforce. To increase the competitiveness of the European automotive

  17. Embedding an Integrated Learning Environment and Digital Repository in Design Engineering Education: Lessons Learned for Sustainability

    Science.gov (United States)

    Breslin, Caroline; Nicol, David; Grierson, Hilary; Wodehouse, Andrew; Juster, Neal; Ion, William

    2007-01-01

    This paper describes how a system comprising a learning environment and digital repository is being embedded into the teaching and learning of Design Engineering at the University of Strathclyde. It then maps out the issues that have been encountered, how these have been overcome and how other departments or institutions would be affected if they…

  18. Exploring Agricultural and Biotechnical Engineering through Hands-On Integrated STEM

    Science.gov (United States)

    Preble, Brian C.

    2015-01-01

    The manipulation of the natural world in the form of plant materials to design, control, and grow desirable agricultural commodities was central to the establishment and advancement of civilization. Modern developments in genetically modified organisms (GMOs or biologically engineered foods) can trace their origins to macro practices developed and…

  19. Human Factors Engineering: An Enabler for Military Transformation Through Effective Integration of Technology and Personnel

    Science.gov (United States)

    2003-06-01

    Engines Application Server Task Management Application / IM Tier Application Server Workgoup Task Manager Task Triggerer(s) Service Manager Service ... Manager Other Business Logic EJB Other Business Logic EJB Group Workload Manager Message Manager Message Manager J2EE, Jini, JMS RMI, J2EE, JMS

  20. Design of an Integrated Team Project as Bachelor Thesis in Bioscience Engineering

    Science.gov (United States)

    Peeters, Marie-Christine; Londers, Elsje; Van der Hoeven, Wouter

    2014-01-01

    Following the decision at the KU Leuven to implement the educational concept of guided independent learning and to encourage students to participate in scientific research, the Faculty of Bioscience Engineering decided to introduce a bachelor thesis. Competencies, such as communication, scientific research and teamwork, need to be present in the…

  1. Research methodology for integral design in the context of collaborative engineering for active roofs

    NARCIS (Netherlands)

    Quanjel, E.M.C.J.

    2007-01-01

    In the world of design and engineering, gaps of knowledge between these disciplines are recognized [1, 2, 3, 4]. The learning capacity of the building industry – as well as in other industries – is becoming a main issue, also within Architect-organizations [5, 6]. A model for structuring knowledge

  2. Tour Guide Robots: An Integrated Research and Design Platform to Prepare Engineering and Technology Students

    Science.gov (United States)

    Yelamarthi, Kumar

    2016-01-01

    Many interesting research and design questions occur at the intersections of traditional disciplines, yet most coursework and research programs for undergraduate engineering students are focused on one discipline. This leads to underutilization of the potential in better preparing students through multidisciplinary projects. Identifying this…

  3. Integrating the development of continuous improvement andinnovation capabilities into engineering education

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Kofoed, Lise B.

    2007-01-01

    In this paper, a study is presented in which engineering students at a Danish university developed Continuous Improvement (CI) and innovation capabilities through action research and experientiallearning methods. The paper begins with a brief overview of the literature on CI and innovation...

  4. Teaching "Community Engagement" in Engineering Education for International Development: Integration of an Interdisciplinary Social Work Curriculum

    Science.gov (United States)

    Gilbert, Dorie J.; Held, Mary Lehman; Ellzey, Janet L.; Bailey, William T.; Young, Laurie B.

    2015-01-01

    This article reviews the literature on challenges faced by engineering faculty in educating their students on community-engaged, sustainable technical solutions in developing countries. We review a number of approaches to increasing teaching modules on social and community components of international development education, from adding capstone…

  5. Integration of Media Design Processes in Science, Technology, Engineering, and Mathematics (STEM) Education

    Science.gov (United States)

    Karahan, Engin; Canbazoglu Bilici, Sedef; Unal, Aycin

    2015-01-01

    Problem Statement: Science, technology, engineering and mathematics (STEM) education aims at improving students' knowledge and skills in science and math, and thus their attitudes and career choices in these areas. The ultimate goal in STEM education is to create scientifically literate individuals who can survive in the global economy. The…

  6. Towards a Sustainable Approach to Nanotechnology by Integrating Life Cycle Assessment into the Undergraduate Engineering Curriculum

    Science.gov (United States)

    Kopelevich, Dmitry I.; Ziegler, Kirk J.; Lindner, Angela S.; Bonzongo, Jean-Claude J.

    2012-01-01

    Because rapid growth of nanotechnology is expected to lead to intentional and non-intentional releases, future engineers will need to minimize negative environmental and health impacts of nanomaterials. We developed two upper-level undergraduate courses centered on life-cycle assessment of nanomaterials. The first part of the course sequence…

  7. Integrated source of tunable nonmaximally mode-entangled photons in a domain-engineered lithium niobate waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Yang; Wu, Zi-jian; Xu, Fei, E-mail: feixu@nju.edu.cn; Lu, Yan-qing, E-mail: yqlu@nju.edu.cn [National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093 (China); Cui, Guo-xin [National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093 (China); Key Laboratory of Nanodevices and Nanoapplications, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215000 (China); Tan, Ai-hong [Laboratory for Quantum Information, China Jiliang University, Hangzhou 310018 (China)

    2014-04-28

    The nonmaximally entangled state is a special kind of entangled state, which has important applications in quantum information processing. It has been generated in quantum circuits based on bulk optical elements. However, corresponding schemes in integrated quantum circuits have been rarely considered. In this Letter, we propose an effective solution for this problem. An electro-optically tunable nonmaximally mode-entangled photon state is generated in an on-chip domain-engineered lithium niobate (LN) waveguide. Spontaneous parametric down-conversion and electro-optic interaction are effectively combined through suitable domain design to transform the entangled state into our desired formation. Moreover, this is a flexible approach to entanglement architectures. Other kinds of reconfigurable entanglements are also achievable through this method. LN provides a very promising platform for future quantum circuit integration.

  8. Integrated source of tunable nonmaximally mode-entangled photons in a domain-engineered lithium niobate waveguide

    International Nuclear Information System (INIS)

    Ming, Yang; Wu, Zi-jian; Xu, Fei; Lu, Yan-qing; Cui, Guo-xin; Tan, Ai-hong

    2014-01-01

    The nonmaximally entangled state is a special kind of entangled state, which has important applications in quantum information processing. It has been generated in quantum circuits based on bulk optical elements. However, corresponding schemes in integrated quantum circuits have been rarely considered. In this Letter, we propose an effective solution for this problem. An electro-optically tunable nonmaximally mode-entangled photon state is generated in an on-chip domain-engineered lithium niobate (LN) waveguide. Spontaneous parametric down-conversion and electro-optic interaction are effectively combined through suitable domain design to transform the entangled state into our desired formation. Moreover, this is a flexible approach to entanglement architectures. Other kinds of reconfigurable entanglements are also achievable through this method. LN provides a very promising platform for future quantum circuit integration

  9. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.

    Science.gov (United States)

    Attalla, R; Ling, C; Selvaganapathy, P

    2016-02-01

    The lack of a simple and effective method to integrate vascular network with engineered scaffolds and tissue constructs remains one of the biggest challenges in true 3D tissue engineering. Here, we detail the use of a commercially available, low-cost, open-source 3D printer modified with a microfluidic print-head in order to develop a method for the generation of instantly perfusable vascular network integrated with gel scaffolds seeded with cells. The print-head features an integrated coaxial nozzle that allows the fabrication of hollow, calcium-polymerized alginate tubes that can be easily patterned using 3D printing techniques. The diameter of the hollow channel can be precisely controlled and varied between 500 μm - 2 mm by changing applied flow rates or print-head speed. These channels are integrated into gel layers with a thickness of 800 μm - 2.5 mm. The structural rigidity of these constructs allows the fabrication of multi-layered structures without causing the collapse of hollow channels in lower layers. The 3D printing method was fully characterized at a range of operating speeds (0-40 m/min) and corresponding flow rates (1-30 mL/min) were identified to produce precise definition. This microfluidic design also allows the incorporation of a wide range of scaffold materials as well as biological constituents such as cells, growth factors, and ECM material. Media perfusion of the channels causes a significant viability increase in the bulk of cell-laden structures over the long-term. With this setup, gel constructs with embedded arrays of hollow channels can be created and used as a potential substitute for blood vessel networks.

  10. Engineering studies on joint bar integrity, part II : finite element analysis

    Science.gov (United States)

    2014-04-02

    This paper is the second in a two-part series describing : research sponsored by the Federal Railroad Administration : (FRA) to study the structural integrity of joint bars. In Part I, : observations from field surveys of joint bar inspections : cond...

  11. Evaluation of the Effectiveness of the Integration of a LITEE Case Study for a Freshman Level Mechanical Engineering Course at The University of Toledo

    Science.gov (United States)

    Franchetti, Matthew

    2011-01-01

    The purpose of this paper is to report the findings of the integration of a manufacturing case study to a freshman level mechanical engineering course at The University of Toledo. The approach to integrate this case study into the class was completed via weekly assignments analyzing the case, small group discussion, and weekly group discussion.…

  12. Integrated powertrain control for optimal CO2-NOx tradeoff in an Euro-VI diesel engine with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy which minimizes the operational costs over the study test cycle. This Integrated Powertrain Control (IPC) strategy deals with high system complexity and exploits the synergy between engine-aftertreatment systems by following a

  13. Systematic Curriculum Integration of Sustainable Development Using Life Cycle Approaches: The Case of the Civil Engineering Department at the Université de Sherbrooke

    Science.gov (United States)

    Roure, Bastien; Anand, Chirjiv; Bisaillon, Véronique; Amor, Ben

    2018-01-01

    Purpose: The purpose of this paper is to provide a consistent and systematic integration framework of sustainable development (SD) in a civil engineering (CE) curriculum, given the connection between the two. Curriculum integration is a challenging project and requires the development of certain protocols to ensure success.…

  14. Packaging for consumer electronic products: The need for integrating design and engineering

    OpenAIRE

    Wever, R.; Boks, C.; Stevels, A.

    2008-01-01

    From the perspective of a multinational corporation producing durable consumer goods sustainable packaging is packaging that fulfils the right functionalities in the most efficient way. In order to achieve this, an integral design process is required. Such an integral approach to the design of packaging for CE goods would imply a process that takes into account all requirements, whether they are technical, financial, environmental or psychological in nature, and that also incorporates the rel...

  15. Integrating a work-flow engine within a commercial SCADA to build end users applications in a scientific environment

    International Nuclear Information System (INIS)

    Ounsy, M.; Pierre-Joseph Zephir, S.; Saintin, K.; Abeille, G.; Ley, E. de

    2012-01-01

    To build integrated high-level applications, SOLEIL is using an original component-oriented approach based on GlobalSCREEN, an industrial Java SCADA. The aim of this integrated development environment is to give SOLEIL's scientific and technical staff a way to develop GUI (Graphical User Interface) applications for external users of beamlines. These GUI applications must address the two following needs: monitoring and supervision of a control system and development and execution of automated processes (as beamline alignment, data collection and on-line data analysis). The first need is now completely answered through a rich set of Java graphical components based on the COMETE library and providing a high level of service for data logging, scanning and so on. To reach the same quality of service for process automation, a big effort has been made for more seamless integration of PASSERELLE, a work-flow engine with dedicated user-friendly interfaces for end users, packaged as JavaBeans in GlobalSCREEN components library. Starting with brief descriptions of software architecture of the PASSERELLE and GlobalSCREEN environments, we will then present the overall system integration design as well as the current status of deployment on SOLEIL beamlines. (authors)

  16. Improvement of nuclear ship engineering simulation system. Hardware renewal and interface improvement of the integral type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroki; Kyoya, Masahiko; Shimazaki, Junya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kano, Tadashi [KCS, Co., Mito, Ibaraki (Japan); Takahashi, Teruo [Energis, Co., Kobe, Hyogo (Japan)

    2001-10-01

    JAERI had carried out the design study about a lightweight and compact integral type reactor (an advanced marine reactor) with passive safety equipment as a power source for the future nuclear ships, and completed an engineering design. We have developed the simulator for the integral type reactor to confirm the design and operation performance and to utilize the study of automation of the reactor operation. The simulator can be used also for future research and development of a compact reactor. However, the improvement in a performance of hardware and a human machine interface of software of the simulator were needed for future research and development. Therefore, renewal of hardware and improvement of software have been conducted. The operability of the integral-reactor simulator has been improved. Furthermore, this improvement with the hardware and software on the market brought about better versatility, maintainability, extendibility and transfer of the system. This report mainly focuses on contents of the enhancement in a human machine interface, and describes hardware renewal and the interface improvement of the integral type reactor simulator. (author)

  17. The integration of engineering and architecture: A perspective on natural ventilation for the new San Francisco Federal Building

    International Nuclear Information System (INIS)

    McConahey, Erin; Haves, Philip; Christ, Tim

    2002-01-01

    A description of the in-progress design of a new Federal Office Building for San Francisco is used to illustrate a number of issues arising in the design of large, naturally ventilated office buildings. These issues include the need for an integrated approach to design involving the architects, mechanical and structural engineers, lighting designers and specialist simulation modelers. In particular, the use of natural ventilation, and the avoidance of air-conditioning, depends on the high degree of exposed thermal mass made possible by the structural scheme and by the minimization of solar heat gains while maintaining the good daylighting that results from optimization of the facade. Another issue was the need for a radical change in interior space planning in order to enhance the natural ventilation; all the individual enclosed offices are located along the central spine of each floorplate rather than at the perimeter. The role of integration in deterring the undermining of the design through value engineering is discussed. The comfort criteria for the building were established based on the recent extension to the ASHRAE comfort standard based on the adaptive model for naturally ventilated buildings. The building energy simulation program EnergyPlus was used to compare the performance of different natural ventilation strategies. The results indicate that, in the San Francisco climate, wind-driven ventilation provides sufficient nocturnal cooling to maintain comfortable conditions and that external chimneys do not provide significant additional ventilation at times when it when it would be beneficial

  18. An Integrated Business and Engineering Framework for Synthesis and Design of Processing Networks

    DEFF Research Database (Denmark)

    Quaglia, Alberto

    that need to be gathered and of equations that need to be specified. The solution of the optimization problem formulated, moreover, requires expertise in discrete optimization, which is often not part of the standard skills set of design engineers and decision-makers. This Ph.D. project, therefore, aims......The problem of synthesis and design of processing networks corresponds to the generation, evaluation and selection among alternatives with respect to raw materials, process technologies and configurations and product portfolio compositions. This results in a complex and multi-disciplinary problem......, in which all the aspects of the problem (technical, economical, regulatory, logistical, etc.) need to be considered simultaneously, in order to be able to identify the optimal design. Through the developments realized in the last decades, Process Systems Engineering has shown the potential to contribute...

  19. The Promise and Challenges of Ultra High Bypass Ratio Engine Technology and Integration

    Science.gov (United States)

    Hughes, Chris

    2011-01-01

    In this presentation, an overview of the research being conducted by the ERA Project in Ultra High Bypass aircraft propulsion and in partnership with Pratt & Whitney with their Geared TurboFan (GTF) is given. The ERA goals are shown followed by a discussion of what areas need to be addressed on the engine to achieve the goals and how the GTF is uniquely qualified to meet the goals through a discussion of what benefits the cycle provides. The first generation GTF architecture is then shown highlighting the areas of collaboration with NASA, and the fuel burn, noise and emissions reductions possible based on initial static ground test and flight test data of the first GTF engine. Finally, a 5 year technology roadmap is presented focusing on Ultra High Bypass propulsion technology research areas that are being pursued and being planned by ERA and P&W under their GTF program.

  20. Evaluation of surface integrity of WEDM processed inconel 718 for jet engine application

    Science.gov (United States)

    Sharma, Priyaranjan; Tripathy, Ashis; Sahoo, Narayan

    2018-03-01

    A unique superalloy, Inconel 718 has been serving for aerospace industries since last two decades. Due to its attractive properties such as high strength at elevated temperature, improved corrosion and oxidation resistance, it is widely employed in the manufacturing of jet engine components. These components require complex shape without affecting the parent material properties. Traditional machining methods seem to be ineffective to fulfil the demand of aircraft industries. Therefore, an advanced feature of wire electrical discharge machining (WEDM) has been utilized to improve the surface features of the jet engine components. With the help of trim-offset technology, it became possible to achieve considerable amount of residual stresses, lower peak to valley height, reduced density of craters and micro globules, minimum hardness alteration and negligible recast layer formation.

  1. A biotic game design project for integrated life science and engineering education.

    Directory of Open Access Journals (Sweden)

    Nate J Cira

    2015-03-01

    Full Text Available Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course. We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  2. A biotic game design project for integrated life science and engineering education.

    Science.gov (United States)

    Cira, Nate J; Chung, Alice M; Denisin, Aleksandra K; Rensi, Stefano; Sanchez, Gabriel N; Quake, Stephen R; Riedel-Kruse, Ingmar H

    2015-03-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  3. Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge

    International Nuclear Information System (INIS)

    Smith, M.J.

    1980-05-01

    This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed

  4. A Systems Engineering Approach to Integrated Structural Health Monitoring for Aging Aircraft

    Science.gov (United States)

    2006-03-23

    hours. The re- sults of these seven runs are presented in Table 4.5. These baseline runs helped to characterize the baseline behavior such that it could...due to crack growth, corrosion, fatigue stress, load stress, etc. Flight Profile - refers to the severity or level of aggresiveness with wich the...Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue. Printice Hall, 1993. 1st ed. 29. Eisner, Howard. Essentials

  5. Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.J.

    1980-05-01

    This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed.

  6. Monitored retrievable storage (MRS) facility and salt repository integration: Engineering study report

    International Nuclear Information System (INIS)

    1987-07-01

    This MRS Facility and Salt Repository Integration Study evaluates the impacts of an integrated MRS/Salt Repository Waste Management System on the Salt Repository Surface facilities' design, operations, cost, and schedule. Eight separate cases were studied ranging from a two phase repository design with no MRS facility to a design in which the repository only received package waste from the MRS facility for emplacement. The addition of the MRS facility to the Waste Management System significantly reduced the capital cost of the salt repository. All but one of the cases studied were capable of meeting the waste acceptance data. The reduction in the size and complexity of the Salt Repository waste handling building with the integration of the MRS facility reduces the design and operating staff requirements. 7 refs., 35 figs., 43 tabs

  7. Nanocarrier-Integrated Microspheres: Nanogel Tectonic Engineering for Advanced Drug-Delivery Systems.

    Science.gov (United States)

    Tahara, Yoshiro; Mukai, Sada-Atsu; Sawada, Shin-Ichi; Sasaki, Yoshihiro; Akiyoshi, Kazunari

    2015-09-09

    A nanocarrier-integrated bottom-up method is a promising strategy for advanced drug-release systems. Self-assembled nanogels, which are one of the most beneficial nanocarriers for drug-delivery systems, are tectonically integrated to prepare nanogel-crosslinked (NanoClik) microspheres. NanoClik microspheres consisting of nanogel-derived structures (observed by STED microscopy) release "drug-loaded nanogels" after hydrolysis, resulting in successful sustained drug delivery in vivo. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Perfusion-based three dimensional (3D) tissue engineering platform with integrated bioimpedance sensing

    DEFF Research Database (Denmark)

    Muhammad, Haseena Bashir; Canali, Chiara; Heiskanen, Arto

    2014-01-01

    We present an 8-channel bioreactor array with integrated bioimpedance sensors, which enables perfusion culture of cells seeded onto porous 3D scaffolds. Results show the capability of the system for monitoring cell proliferation within the scaffolds through a culture period of 19 days....

  9. Engineering studies on joint bar integrity, part I : field surveys and observed failure modes

    Science.gov (United States)

    2014-04-02

    This paper is the first of a two-part series describing a : research project, sponsored by the Federal Railroad : Administration (FRA), to study the structural integrity of joint : bars. In Part I of this series, observations from field surveys : con...

  10. Integration of Centrifuge Testing in Undergraduate Geotechnical Engineering Education at Remote Campuses

    Science.gov (United States)

    El Shamy, Usama; Abdoun, Tarek; McMartin, Flora; Pando, Miguel A.

    2013-01-01

    We report the results of a pilot study aimed at developing, implementing, and assessing an educational module that integrates remote major research instrumentation into undergraduate classes. Specifically, this study employs Internet Web-based technologies to allow for real-time video monitoring and execution of cutting-edge experiments. The…

  11. Enhancing Basic Skills in Modern Introductory Engineering Mathematics with High IT Integration

    DEFF Research Database (Denmark)

    Schmidt, Karsten; Hussmann, Peter Munkebo

    2013-01-01

    at the Technical University of Denmark (DTU), a course with high IT and Maple integration, now opens with a four-week paper and pencil course in complex numbers and functions. Since this topic is essential for the subsequent instruction in linear algebra and differential equations, we claim that this is a forward...

  12. Integration of Science, Technology, Engineering and Mathematics: Is This Curricular Revolution Really Possible in France?

    Science.gov (United States)

    Lebeaume, Joel

    2011-01-01

    The French school system is a subjects-centred curriculum from the beginning of 1960s. This deep-rooted organisation tends to block the several attempts made to integrate the teaching of scientific school subjects. From an historical point of view, this paper describes the curricular system and the issue of its current change. It focuses on the…

  13. Integrated modelling of the morphological evolution of the sand engine mega-nourishment.

    NARCIS (Netherlands)

    Luijendijk, Arjen; Velhorst, Rufus; Hoonhout, B.; de Vries, S.; Ranasinghe, Ranasinghe W M R J B; Aagaard, Troels; Deigaard, Rolf; Fuhrman, David

    2017-01-01

    This study presents some recent developments in coastal morphological modeling focusing on flexible meshes, flexible coupling between models operating at different time scales, and a recently developed morphodynamic model for the intertidal and dry beach. This integrated modeling approach is applied

  14. Integrated modelling of the morphological evolution of the sand engine mega-nourishment

    NARCIS (Netherlands)

    Luijendijk, A.P.; Hoonhout, B.M.; de Vries, S.; Ranasinghe, D.; Aagaard, T.; Deigaard, R.; Fuhrman, D.

    2017-01-01

    This study presents some recent developments in coastal morphological modeling focusing on flexible meshes, flexible coupling between models operating at different time scales, and a recently developed morphodynamic model for the intertidal and dry beach. This integrated modeling approach is applied

  15. A Theoretical Framework for Integrating Creativity Development into Curriculum: The Case of a Korean Engineering School

    Science.gov (United States)

    Lim, Cheolil; Lee, Jihyun; Lee, Sunhee

    2014-01-01

    Existing approaches to developing creativity rely on the sporadic teaching of creative thinking techniques or the engagement of learners in a creativity-promoting environment. Such methods cannot develop students' creativity as fully as a multilateral approach that integrates creativity throughout a curriculum. The purpose of this study was to…

  16. Work Integrated Learning for Engineering Qualifications: A Spanner in the Works?

    Science.gov (United States)

    Mutereko, Sybert; Wedekind, Volker

    2016-01-01

    Work-integrated learning (WIL) has been identified as a way of equipping graduates with attributes that make them work-ready. Many higher education institutions (HEIs) require their students to go through a compulsory work place learning form (WPL) of WIL. The complications of WPL can affect HEIs' student throughput. To address this challenge, a…

  17. Integrated service engineers and spare parts planning in the maintenance logistics

    NARCIS (Netherlands)

    Al Hanbali, Ahmad; Zijm, Willem H.M.

    2016-01-01

    We analyze the integrated tactical capacity planning of spare parts supply and workforce allocation in maintenance logistics of advanced equipment. The equipment time-to-failure, spare parts replenishment time, and equipment repair time are random and independent of each other.

  18. Integrating different knowledge sources and disciplines for practical applications in Forest and Agricultural Engineering

    Science.gov (United States)

    Guzmán, Gema; Castillo, Carlos; Taguas, Encarnación

    2013-04-01

    One of the aims of 'The Bologna Process' is to promote among the students the acquisition of practical, social and creative skills to face real-life situations and to solve the difficulties they might find during their professional life. It involves an important change in the educational system, from a traditional approach focused on teaching, towards a new one that encourages learning. Under this context, University teaching implies the design of activities addressed to the dissemination of "know-how" to solve different problems associated with two technical disciplines: Forest and Agricultural Engineering. This study presents a preliminary experience where a group of information and communication technologies (ICT) such as, audiovisual resources (videos, reports and photo gallery), virtual visits to blogs and interactive activities have been used to provide a comprehensive knowledge of the environmental and sociocultural components of the landscape in order to facilitate the decision-making process in the engineering project context . With these tools, the students must study and characterize all these aspects in order to justify the chosen solutions and the project design. This approach was followed in the analysis of the limiting factors of practical cases in projects about forestation, landscape restoration and hydrological planning. This communication shows how this methodology has been applied in Forest and Agricultural Engineering and the students' experience with these innovative tools. The use of ICTs involved a friendly framework that stimulated students' interest and made subjects more attractive, since it allowed to assess the complex relationships between landscape, history and economy. Furthermore, this type of activities promotes the interdisciplinary training and the acquisition of creative and autonomous skills which are not included in many cases into the main objectives of the subjects.

  19. Two-vehicle injury severity models based on integration of pavement management and traffic engineering factors.

    Science.gov (United States)

    Jiang, Ximiao; Huang, Baoshan; Yan, Xuedong; Zaretzki, Russell L; Richards, Stephen

    2013-01-01

    The severity of traffic-related injuries has been studied by many researchers in recent decades. However, the evaluation of many factors is still in dispute and, until this point, few studies have taken into account pavement management factors as points of interest. The objective of this article is to evaluate the combined influences of pavement management factors and traditional traffic engineering factors on the injury severity of 2-vehicle crashes. This study examines 2-vehicle rear-end, sideswipe, and angle collisions that occurred on Tennessee state routes from 2004 to 2008. Both the traditional ordered probit (OP) model and Bayesian ordered probit (BOP) model with weak informative prior were fitted for each collision type. The performances of these models were evaluated based on the parameter estimates and deviances. The results indicated that pavement management factors played identical roles in all 3 collision types. Pavement serviceability produces significant positive effects on the severity of injuries. The pavement distress index (PDI), rutting depth (RD), and rutting depth difference between right and left wheels (RD_df) were not significant in any of these 3 collision types. The effects of traffic engineering factors varied across collision types, except that a few were consistently significant in all 3 collision types, such as annual average daily traffic (AADT), rural-urban location, speed limit, peaking hour, and light condition. The findings of this study indicated that improved pavement quality does not necessarily lessen the severity of injuries when a 2-vehicle crash occurs. The effects of traffic engineering factors are not universal but vary by the type of crash. The study also found that the BOP model with a weak informative prior can be used as an alternative but was not superior to the traditional OP model in terms of overall performance.

  20. Design of an integrated team project as bachelor thesis in bioscience engineering

    Science.gov (United States)

    Peeters, Marie-Christine; Londers, Elsje; Van der Hoeven, Wouter

    2014-11-01

    Following the decision at the KU Leuven to implement the educational concept of guided independent learning and to encourage students to participate in scientific research, the Faculty of Bioscience Engineering decided to introduce a bachelor thesis. Competencies, such as communication, scientific research and teamwork, need to be present in the design of this thesis. Because of the high number of students and the multidisciplinary nature of the graduates, all research divisions of the faculty are asked to participate. The yearly surveys and hearings were used for further optimisation. The actual design of this bachelor thesis is presented and discussed in this paper.

  1. Integrated gas and liquid chromatography tandem mass spectrometry for forensic engine lubricating oil identification

    International Nuclear Information System (INIS)

    Shang, D.; McPherson, B.

    2009-01-01

    This paper presented a method for rapid chemical characterization of engine lubricating oils. Motor oils typically contain up to 5 per cent additives, such as detergent, antifoamant, dispersant, emulsifier, antioxidant, friction modifier, colour stabilizer and corrosion inhibitors. Different lube oil products usually have either different additives in various concentrations. As such, the formulation of additives in lube oil products should provide fingerprint information for forensic oil identification. The characterization method used in this study was based on a newly developed fast solvent liquid-liquid sample extraction procedure that combined the use of both liquid chromatography tandem mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) simultaneously together with gas chromatography flame ionization detection (GC-FID). The method was used on a blind sample testing of commercially available engine lubricating products. The sample extraction procedure involved extraction of additives into acidified acetonitrile, two hexane washes of hydrophobic components of lube oil, filtration, and dilution with solvents for GC and LC analysis. The new method proved to be rapid and easy to use. It enabled the identification of unknown additives and hydrocarbons in many different types of fresh lube oils. Further tests will be needed to determine if this method can be used on real-world weathered samples. The method is part of an ongoing effort to deal with mysterious chemical spills, an important aspect of environmental protection and emergency preparedness. 8 refs., 7 figs

  2. Applications of nuclear techniques in agronomy as a contribution to the integral formation of agronomical engineers

    International Nuclear Information System (INIS)

    Núñez Meireles, Mónica; Hernández Martínez, Asiel; Charbonet Martell, Miguel Enrique

    2016-01-01

    Nowadays, nuclear research applied to agriculture and food is a reality, and is being supported by institutions like the International Atomic Energy Agency and the United Nations Food and Agriculture Organization. Stable and radioactive isotopes are used in different ways in agricultural research mainly in the determination of required conditions to optimize efficiency in the use of fertilizers and water, the development of high yield agricultural and horticultural varieties, reduction of diseases due to contaminated food, and soil erosion studies among others. Accordingly to the study carried out, there is not much knowledge about nuclear phenomena applied to agronomy. Nevertheless there is a positive criterion about the introduction of these topics in Agronomical Engineers education, by mean of implementing an optional subject, aimed at explaining different spheres of action of nuclear techniques in Agriculture. Consequently, it would be possible achieving the linkage of agronomical engineers with the nuclear techniques, though respecting at the same time the professional model of this career. Moreover, it is also proposed to include laboratory practices in the curriculum of this career, using nuclear techniques and showing their proper linkage with Agronomy. (author)

  3. Developing Automatic Form and Design System Using Integrated Grey Relational Analysis and Affective Engineering

    Directory of Open Access Journals (Sweden)

    Chen-Yuan Liu

    2018-01-01

    Full Text Available In the modern highly competitive marketplace and global market environment, product quality improvements that abridge development time and reduce the production costs are effective methods for promoting the business competitiveness of a product in shorter lifecycles. Since the design process is the best time to control such parameters, systematically designing the processes to develop a product that more closely fits the demand requirements for the market is a key factor for developing a successful product. In this paper, a combined affective engineering method and grey relational analysis are used to develop a product design process. First, design image scale technology is used to acquire the best the design criteria factors, and then affective engineering methods are used to set the relationships between customer needs and production factors. Finally, grey relational analysis is used to select the optimal design strategy. Using this systematic design method, a higher quality product can be expanded upon in a shorter lead-time for improving business competition.

  4. Integration of active pharmaceutical ingredient solid form selection and particle engineering into drug product design.

    Science.gov (United States)

    Ticehurst, Martyn David; Marziano, Ivan

    2015-06-01

    This review seeks to offer a broad perspective that encompasses an understanding of the drug product attributes affected by active pharmaceutical ingredient (API) physical properties, their link to solid form selection and the role of particle engineering. While the crucial role of active pharmaceutical ingredient (API) solid form selection is universally acknowledged in the pharmaceutical industry, the value of increasing effort to understanding the link between solid form, API physical properties and drug product formulation and manufacture is now also being recognised. A truly holistic strategy for drug product development should focus on connecting solid form selection, particle engineering and formulation design to both exploit opportunities to access simpler manufacturing operations and prevent failures. Modelling and predictive tools that assist in establishing these links early in product development are discussed. In addition, the potential for differences between the ingoing API physical properties and those in the final product caused by drug product processing is considered. The focus of this review is on oral solid dosage forms and dry powder inhaler products for lung delivery. © 2015 Royal Pharmaceutical Society.

  5. Integrating life cycle assessment into managing potential EHS risks of engineered nanomaterials: reviewing progress to date

    International Nuclear Information System (INIS)

    Walker, William C.; Bosso, Christopher J.; Eckelman, Matthew; Isaacs, Jacqueline A.; Pourzahedi, Leila

    2015-01-01

    The 2011 National Nanotechnology Initiative’s Environmental Health and Safety Research Strategy stressed the need for research to integrate life cycle considerations into risk management and, then, to better integrate risk assessment into decisionmaking on environmental, health, and safety (EHS) dimensions of nanomanufacturing. This paper reviews scholarly articles published 2010–2015 that in some way apply life cycle analysis to nanotechnology to assess the extent to which current research reflects the priorities lain out in the NNI report. As the NNI’s focus was primarily on the “responsible development of nanotechnology” we also focus our examination on the ways in which LCA, in concert with other methodologies, can provide utility to decision makers facing the challenge of implementing that broad goal. We explore some of the challenges and opportunities inherent in using LCA, a tool built to optimize manufacturing decisions, as a guide for policy formulation or tool for policy implementation

  6. Integrating life cycle assessment into managing potential EHS risks of engineered nanomaterials: reviewing progress to date

    Science.gov (United States)

    Walker, William C.; Bosso, Christopher J.; Eckelman, Matthew; Isaacs, Jacqueline A.; Pourzahedi, Leila

    2015-08-01

    The 2011 National Nanotechnology Initiative's Environmental Health and Safety Research Strategy stressed the need for research to integrate life cycle considerations into risk management and, then, to better integrate risk assessment into decisionmaking on environmental, health, and safety (EHS) dimensions of nanomanufacturing. This paper reviews scholarly articles published 2010-2015 that in some way apply life cycle analysis to nanotechnology to assess the extent to which current research reflects the priorities lain out in the NNI report. As the NNI's focus was primarily on the "responsible development of nanotechnology" we also focus our examination on the ways in which LCA, in concert with other methodologies, can provide utility to decision makers facing the challenge of implementing that broad goal. We explore some of the challenges and opportunities inherent in using LCA, a tool built to optimize manufacturing decisions, as a guide for policy formulation or tool for policy implementation.

  7. Microstructure Engineering in Hot Strip Mills, Part 1 of 2: Integrated mathematical Model

    Energy Technology Data Exchange (ETDEWEB)

    J.K. Brimacombe; I.V. Samaraseker; E.B. Hawbolt; T.R. Meadowcroft; M. Militzer; W.J. Pool; D.Q. Jin

    1998-09-30

    This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evaluation and mechanical properties of steel strip in a hot-strip mill. This achievement results from a join research effort that is part of the American Iron and Steel Institute's (AISI) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American steel makers.

  8. Integrated Human Test Facilities at NASA and the Role of Human Engineering

    Science.gov (United States)

    Tri, Terry O.

    2002-01-01

    Integrated human test facilities are a key component of NASA's Advanced Life Support Program (ALSP). Over the past several years, the ALSP has been developing such facilities to serve as a large-scale advanced life support and habitability test bed capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. These facilities-targeted for evaluation of hypogravity compatible life support and habitability systems to be developed for use on planetary surfaces-are currently in the development stage at the Johnson Space Center. These major test facilities are comprised of a set of interconnected chambers with a sealed internal environment, which will be outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support and habitability functions. This presentation provides a description of the proposed test "missions" to be supported by these integrated human test facilities, the overall system architecture of the facilities, the current development status of the facilities, and the role that human design has played in the development of the facilities.

  9. Material Selection in Engineering Design Using Choquet Integral-Based Linguistic Operators under Hybrid Environment

    Directory of Open Access Journals (Sweden)

    Anhua Peng

    2015-01-01

    Full Text Available The performance of phase change materials directly influences the performance and cost of thermal energy storage, and it is the first important task to select the suitable phase change materials for use in a particular kind of applications. Due to the decision maker’s knowledge field and the nature of evaluated attributes, assessments are always with different formats, which were first unified into the linguistic terms in the basic linguistic term set. Two-additive fuzzy measures were used to model criteria interactions by pairs, and the special expressions of Marichal entropy and Choquet integral were derived, more convenient to use in practice. Fuzzy measures were identified based on the maximum of Marichal entropy, and, based on the Choquet integral, the linguistic hybrid weighted geometric averaging with interaction was developed for integrating the individual attributes’ ratings. The detailed decision making procedure was illustrated, with the material 33.2Cu as the optimal solution, which by comparison is reasonable and trustworthy.

  10. Convergence facilitating transdisciplinary integration of life sciences, physical sciences, engineering, and beyond

    CERN Document Server

    2014-01-01

    Convergence of the life sciences with fields including physical, chemical, mathematical, computational, engineering, and social sciences is a key strategy to tackle complex challenges and achieve new and innovative solutions. However, institutions face a lack of guidance on how to establish effective programs, what challenges they are likely to encounter, and what strategies other organizations have used to address the issues that arise. This advice is needed to harness the excitement generated by the concept of convergence and channel it into the policies, structures, and networks that will enable it to realize its goals. Convergence investigates examples of organizations that have established mechanisms to support convergent research. This report discusses details of current programs, how organizations have chosen to measure success, and what has worked and not worked in varied settings. The report summarizes the lessons learned and provides organizations with strategies to tackle practical needs and imple...

  11. Integrated Studies of Electric Propulsion Engines during Flights in the Earth's Ionosphere

    Science.gov (United States)

    Marov, M. Ya.; Filatyev, A. S.

    2018-03-01

    Fifty years ago, on October 1, 1966, the first Yantar satellite laboratory with a gas plasma-ion electric propulsion was launched into orbit as part of the Yantar Soviet space program. In 1966-1971, the program launched a total of four laboratories with thrusters operating on argon, nitrogen, and air with jet velocities of 40, 120, and 140 km/s, respectively. These space experiments were the first to demonstrate the long-term stable operation of these thrusters, which exceed chemical rocket engines in specific impulse by an order of magnitude and provide effective jet charge compensation, under the conditions of a real flight at altitudes of 100-400 km. In this article, we have analyzed the potential modern applications of the scientific results obtained by the Yantar space program for the development of air-breathing electric propulsion that ensure the longterm operation of spacecraft in very low orbits.

  12. TECHNOLOGICAL COMPETENCE OF FUTURE ENGINEER: FORMATION AND DEVELOPMENT IN COMPUTER INTEGRATED LABORATORY WORKSHOP ON PHYSICS

    Directory of Open Access Journals (Sweden)

    Ihor S. Chernetskyi

    2013-12-01

    Full Text Available The article examines the category «technological competence» and the definition of its components according to the educational process. A structural and functional model of technological competence of future engineers through forms, means, methods and technologies of computer oriented laboratory work. Selected blocks and elements of the model in the course of a typical student laboratory work on the course of general physics. We consider the possibility of using some type of digital labs «Phywe», «Fourier» and modern electronic media (flash books to optimize laboratory work at the Technical University. The analysis of the future research of structural elements model of technological competence.

  13. An integrative fuzzy Kansei engineering and Kano model for logistics services

    Science.gov (United States)

    Hartono, M.; Chuan, T. K.; Prayogo, D. N.; Santoso, A.

    2017-11-01

    Nowadays, customer emotional needs (known as Kansei) in product and especially in services become a major concern. One of the emerging services is the logistics services. In obtaining a global competitive advantage, logistics services should understand and satisfy their customer affective impressions (Kansei). How to capture, model and analyze the customer emotions has been well structured by Kansei Engineering, equipped with Kano model to strengthen its methodology. However, its methodology lacks of the dynamics of customer perception. More specifically, there is a criticism of perceived scores on user preferences, in both perceived service quality and Kansei response, whether they represent an exact numerical value. Thus, this paper is proposed to discuss an approach of fuzzy Kansei in logistics service experiences. A case study in IT-based logistics services involving 100 subjects has been conducted. Its findings including the service gaps accompanied with prioritized improvement initiatives are discussed.

  14. Proceedings of the 3rd World Congress on Integrated Computational Materials Engineering (ICME 2015). Held in Colorado Springs, CO on May 31-June 4, 2015

    Science.gov (United States)

    2016-06-28

    papers in PDF format are available at http://onlinelibrary.wiley.com. By way of example, some select papers from the ICME 3rd World Congress Proceedings...Integrated Computational N000141512537 Materials Engineering ( ICME 2015) 5b. GRANT NUMBER N000141512537 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Computational Materials Engineering ( ICME ) has received international attention due to its great potential to shorten product and process development

  15. Simulation of biodiesel combustion in a light-duty diesel engine using integrated compact biodiesel–diesel reaction mechanism

    DEFF Research Database (Denmark)

    Ng, Hoon Kiat; Gan, Suyin; Ng, Jo-Han

    2013-01-01

    This computational fluid dynamics (CFD) study is performed to investigate the combustion characteristics and emissions formation processes of biodiesel fuels in a light-duty diesel engine. A compact reaction mechanism with 80 species and 303 reactions is used to account for the effects of chemical...... kinetics. Here, the mechanism is capable of emulating biodiesel–diesel mixture of different blending levels and biodiesel produced from different feedstock. The integrated CFD-kinetic model was validated against a test matrix which covers the entire saturated–unsaturated methyl ester range typical...... of biodiesel fuels, as well as the biodiesel–diesel blending levels. The simulated cases were then validated for in-cylinder pressure profiles and peak pressure values/timings. Errors in the peak pressure values did not exceed 1%, while the variations in peak pressure timings were kept within 1.5 crank angle...

  16. Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines

    DEFF Research Database (Denmark)

    Kyriakidis, Fotis; Sørensen, Kim; Singh, Shobhana

    2017-01-01

    is optimized to utilize the maximum waste heat recovery. The Genetic algorithm and fmincon active-set algorithm are used to optimize the design and operation parameters for the two steam cycles. The optimization aims to find the theoretically optimal combination of the pressure levels and pinch......Waste heat recovery combined with exhaust gas recirculation is a promising technology that can address both the issue of NOx (nitrogen oxides) reduction and fuel savings by including a pressurized boiler. In the present study, a theoretical optimization of the performance of two different...... configurations of steam Rankine cycles, with integrated exhaust gas recirculation for a marine diesel engine, is presented. The first configuration employs two pressure levels and the second is configured with three-pressure levels. The models are developed in MATLAB based on the typical data of a large two...

  17. Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines

    DEFF Research Database (Denmark)

    Kyriakidis, Fotis; Sørensen, Kim; Singh, Shobhana

    2017-01-01

    Waste heat recovery combined with exhaust gas recirculation is a promising technology that can address both the issue of NOx (nitrogen oxides) reduction and fuel savings by including a pressurized boiler. In the present study, a theoretical optimization of the performance of two different....... For the three-pressure level configuration, the optimum pressure levels are found to be 33.5/10.5/4.7 bara. The amount of waste heat recovery from the pressurized boiler is significantly higher than from the main boiler for both cycles. It is, therefore, concluded that the three-pressure level steam cycle...... configurations of steam Rankine cycles, with integrated exhaust gas recirculation for a marine diesel engine, is presented. The first configuration employs two pressure levels and the second is configured with three-pressure levels. The models are developed in MATLAB based on the typical data of a large two...

  18. Unsteady flowfield in an integrated rocket ramjet engine and combustion dynamics of a gas turbine swirl-stabilized injector

    Science.gov (United States)

    Sung, Hong-Gye

    This research focuses on the time-accurate simulation and analysis of the unsteady flowfield in an integrated rocket-ramjet engine (IRR) and combustion dynamics of a swirl-stabilized gas turbine engine. The primary objectives are: (1) to establish a unified computational framework for studying unsteady flow and flame dynamics in ramjet propulsion systems and gas turbine combustion chambers, and (2) to investigate the parameters and mechanisms responsible for driving flow oscillations. The first part of the thesis deals with a complete axi-symmetric IRR engine. The domain of concern includes a supersonic inlet diffuser, a combustion chamber, and an exhaust nozzle. This study focused on the physical mechanism of the interaction between the oscillatory terminal shock in the inlet diffuser and the flame in the combustion chamber. In addition, the flow and ignition transitions from the booster to the sustainer phase were analyzed comprehensively. Even though the coupling between the inlet dynamics and the unsteady motions of flame shows that they are closely correlated, fortunately, those couplings are out of phase with a phase lag of 90 degrees, which compensates for the amplification of the pressure fluctuation in the inlet. The second part of the thesis treats the combustion dynamics of a lean-premixed gas turbine swirl injector. A three-dimensional computation method utilizing the message passing interface (MPI) Parallel architecture and large-eddy-simulation technique was applied. Vortex breakdown in the swirling flow is clearly visualized and explained on theoretical bases. The unsteady turbulent flame dynamics are carefully simulated so that the flow motion can be characterized in detail. It was observed that some fuel lumps escape from the primary combustion zone, and move downstream and consequently produce hot spots and large vortical structures in the azimuthal direction. The correlation between pressure oscillation and unsteady heat release is examined by

  19. Promoting convergence: The integrated graduate program in physical and engineering biology at Yale University, a new model for graduate education

    Science.gov (United States)

    Noble, Dorottya B.; Mochrie, Simon G. J.; O'Hern, Corey S.; Pollard, Thomas D.

    2016-01-01

    Abstract In 2008, we established the Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University. Our goal was to create a comprehensive graduate program to train a new generation of scientists who possess a sophisticated understanding of biology and who are capable of applying physical and quantitative methodologies to solve biological problems. Here we describe the framework of the training program, report on its effectiveness, and also share the insights we gained during its development and implementation. The program features co‐teaching by faculty with complementary specializations, student peer learning, and novel hands‐on courses that facilitate the seamless blending of interdisciplinary research and teaching. It also incorporates enrichment activities to improve communication skills, engage students in science outreach, and foster a cohesive program cohort, all of which promote the development of transferable skills applicable in a variety of careers. The curriculum of the graduate program is integrated with the curricular requirements of several Ph.D.‐granting home programs in the physical, engineering, and biological sciences. Moreover, the wide‐ranging recruiting activities of the IGPPEB serve to enhance the quality and diversity of students entering graduate school at Yale. We also discuss some of the challenges we encountered in establishing and optimizing the program, and describe the institution‐level changes that were catalyzed by the introduction of the new graduate program. The goal of this article is to serve as both an inspiration and as a practical “how to” manual for those who seek to establish similar programs at their own institutions. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):537–549, 2016. PMID:27292366

  20. Promoting convergence: The integrated graduate program in physical and engineering biology at Yale University, a new model for graduate education.

    Science.gov (United States)

    Noble, Dorottya B; Mochrie, Simon G J; O'Hern, Corey S; Pollard, Thomas D; Regan, Lynne

    2016-11-12

    In 2008, we established the Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University. Our goal was to create a comprehensive graduate program to train a new generation of scientists who possess a sophisticated understanding of biology and who are capable of applying physical and quantitative methodologies to solve biological problems. Here we describe the framework of the training program, report on its effectiveness, and also share the insights we gained during its development and implementation. The program features co-teaching by faculty with complementary specializations, student peer learning, and novel hands-on courses that facilitate the seamless blending of interdisciplinary research and teaching. It also incorporates enrichment activities to improve communication skills, engage students in science outreach, and foster a cohesive program cohort, all of which promote the development of transferable skills applicable in a variety of careers. The curriculum of the graduate program is integrated with the curricular requirements of several Ph.D.-granting home programs in the physical, engineering, and biological sciences. Moreover, the wide-ranging recruiting activities of the IGPPEB serve to enhance the quality and diversity of students entering graduate school at Yale. We also discuss some of the challenges we encountered in establishing and optimizing the program, and describe the institution-level changes that were catalyzed by the introduction of the new graduate program. The goal of this article is to serve as both an inspiration and as a practical "how to" manual for those who seek to establish similar programs at their own institutions. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):537-549, 2016. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  1. Five Years of NASA Science and Engineering in the Classroom: The Integrated Product Team/NASA Space Missions Course

    Science.gov (United States)

    Hakkila, Jon; Runyon, Cassndra; Benfield, M. P. J.; Turner, Matthew W.; Farrington, Phillip A.

    2015-08-01

    We report on five years of an exciting and successful educational collaboration in which science undergraduates at the College of Charleston work with engineering seniors at the University of Alabama in Huntsville to design a planetary science mission in response to a mock announcement of opportunity. Alabama high schools are also heavily involved in the project, and other colleges and universities have also participated. During the two-semester course students learn about scientific goals, past missions, methods of observation, instrumentation, and component integration, proposal writing, and presentation. More importantly, students learn about real-world communication and teamwork, and go through a series of baseline reviews before presenting their results at a formal final review for a panel of NASA scientists and engineers. The project is competitive, with multiple mission designs competing with one another for the best review score. Past classes have involved missions to Venus, Europa, Titan, Mars, asteroids, comets, and even the Moon. Classroom successes and failures have both been on epic scales.

  2. Engineering the path to higher-order thinking in elementary education: A problem-based learning approach for STEM integration

    Science.gov (United States)

    Rehmat, Abeera Parvaiz

    As we progress into the 21st century, higher-order thinking skills and achievement in science and math are essential to meet the educational requirement of STEM careers. Educators need to think of innovative ways to engage and prepare students for current and future challenges while cultivating an interest among students in STEM disciplines. An instructional pedagogy that can capture students' attention, support interdisciplinary STEM practices, and foster higher-order thinking skills is problem-based learning. Problem-based learning embedded in the social constructivist view of teaching and learning (Savery & Duffy, 1995) promotes self-regulated learning that is enhanced through exploration, cooperative social activity, and discourse (Fosnot, 1996). This quasi-experimental mixed methods study was conducted with 98 fourth grade students. The study utilized STEM content assessments, a standardized critical thinking test, STEM attitude survey, PBL questionnaire, and field notes from classroom observations to investigate the impact of problem-based learning on students' content knowledge, critical thinking, and their attitude towards STEM. Subsequently, it explored students' experiences of STEM integration in a PBL environment. The quantitative results revealed a significant difference between groups in regards to their content knowledge, critical thinking skills, and STEM attitude. From the qualitative results, three themes emerged: learning approaches, increased interaction, and design and engineering implementation. From the overall data set, students described the PBL environment to be highly interactive that prompted them to employ multiple approaches, including design and engineering to solve the problem.

  3. Integrating a piezoelectric actuator with mechanical and hydraulic devices to control camless engines

    Science.gov (United States)

    Mercorelli, Paolo; Werner, Nils

    2016-10-01

    The paper deals with some interdisciplinary aspects and problems concerning the actuation control which occur in the integration of a piezoelectric structure in an aggregate actuator consisting of a piezoelectric, a stroke ratio displacement, a mechanical and a hydraulic part. Problems like compensation of the piezo hysteresis effect, scaling force-position to obtain an adequate displacement of the actuator and finally the control of such a complex aggregate system are considered and solved. Even though this work considers a particular application, the solutions proposed in the paper are quite general. In fact, the considered technical aspects occurring in systems which utilize piezoelectric technologies can be used in a variegated gamma of actuators integrating piezoelectric technologies. A cascade controller is proposed to combine a Feedforward action with an internal and an external PI-Controller. The Feedforward Controller is based on the model of the whole actuator, so particular attention is paid to the model structure. The resulting Feedforward action is an adaptive one to compensate hydraulic pressure faults. Real measurements are shown.

  4. Integrating Materials and Life Sciences Toward the Engineering of Biomimetic Materials

    Science.gov (United States)

    Miserez, Ali; Guerette, Paul A.

    2012-04-01

    Research in the field of biological and biomimetic materials constitutes a case study of how traditional research boundaries are becoming increasingly obsolete. Positioned at the intersection of life and physical sciences, it is becoming more and more evident that future development in this area will require extensive interaction between materials and life scientists. To highlight this cross-talking, we provide a brief overview of the field, intended to illustrate how these disciplines can be integrated. We start with a short historical perspective, emphasizing the role of biologists in initiating early studies in the field. In the second part of the paper, a summary of important biochemical concepts and techniques relevant to biological materials is presented, with the goal of guiding nonspecialists towards the relevant techniques and knowledge required to investigate potential model systems. In the third part, we describe two case studies that emphasize the critical role of biosynthesis in understanding structure-function-property relationships in biological materials. We conclude with some remarks related to our own perception of how integration of materials and life sciences will lead to future developments in the field.

  5. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    Science.gov (United States)

    Isa, Nor Ashidi Mat

    2015-05-01

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  6. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    International Nuclear Information System (INIS)

    Isa, Nor Ashidi Mat

    2015-01-01

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  7. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    Energy Technology Data Exchange (ETDEWEB)

    Isa, Nor Ashidi Mat [Imaging and Intelligent System Research Team (ISRT), School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2015-05-15

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  8. Integrating Theory and Practice: Applying the Quality Improvement Paradigm to Product Line Engineering

    Science.gov (United States)

    Stark, Michael; Hennessy, Joseph F. (Technical Monitor)

    2002-01-01

    My assertion is that not only are product lines a relevant research topic, but that the tools used by empirical software engineering researchers can address observed practical problems. Our experience at NASA has been there are often externally proposed solutions available, but that we have had difficulties applying them in our particular context. We have also focused on return on investment issues when evaluating product lines, and while these are important, one can not attain objective data on success or failure until several applications from a product family have been deployed. The use of the Quality Improvement Paradigm (QIP) can address these issues: (1) Planning an adoption path from an organization's current state to a product line approach; (2) Constructing a development process to fit the organization's adoption path; (3) Evaluation of product line development processes as the project is being developed. The QIP consists of the following six steps: (1) Characterize the project and its environment; (2) Set quantifiable goals for successful project performance; (3) Choose the appropriate process models, supporting methods, and tools for the project; (4) Execute the process, analyze interim results, and provide real-time feedback for corrective action; (5) Analyze the results of completed projects and recommend improvements; and (6) Package the lessons learned as updated and refined process models. A figure shows the QIP in detail. The iterative nature of the QIP supports an incremental development approach to product lines, and the project learning and feedback provide the necessary early evaluations.

  9. Organic integrated circuits for information storage based on ambipolar polymers and charge injection engineering

    Science.gov (United States)

    Dell'Erba, Giorgio; Luzio, Alessandro; Natali, Dario; Kim, Juhwan; Khim, Dongyoon; Kim, Dong-Yu; Noh, Yong-Young; Caironi, Mario

    2014-04-01

    Ambipolar semiconducting polymers, characterized by both high electron (μe) and hole (μh) mobility, offer the advantage of realizing complex complementary electronic circuits with a single semiconducting layer, deposited by simple coating techniques. However, to achieve complementarity, one of the two conduction paths in transistors has to be suppressed, resulting in unipolar devices. Here, we adopt charge injection engineering through a specific interlayer in order to tune injection into frontier energy orbitals of a high mobility donor-acceptor co-polymer. Starting from field-effect transistors with Au contacts, showing a p-type unbalanced behaviour with μh = 0.29 cm2/V s and μe = 0.001 cm2/V s, through the insertion of a caesium salt interlayer with optimized thickness, we obtain an n-type unbalanced transistor with μe = 0.12 cm2/V s and μh = 8 × 10-4 cm2/V s. We applied this result to the development of the basic pass-transistor logic building blocks such as inverters, with high gain and good noise margin, and transmission-gates. In addition, we developed and characterized information storage circuits like D-Latches and D-Flip-Flops consisting of 16 transistors, demonstrating both their static and dynamic performances and thus the suitability of this technology for more complex circuits such as display addressing logic.

  10. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  11. Integrating opto-thermo-mechanical design tools: open engineering's project presentation

    Science.gov (United States)

    De Vincenzo, P.; Klapka, Igor

    2017-11-01

    An integrated numerical simulation package dedicated to the analysis of the coupled interactions of optical devices is presented. To reduce human interventions during data transfers, it is based on in-memory communications between the structural analysis software OOFELIE and the optical design application ZEMAX. It allows the automated enhancement of the existing optical design with information related to the deformations of optical surfaces due to thermomechanical solicitations. From the knowledge of these deformations, a grid of points or a decomposition based on Zernike polynomials can be generated for each surface. These data are then applied to the optical design. Finally, indicators can be retrieved from ZEMAX in order to compare the optical performances with those of the system in its nominal configuration.

  12. Organic integrated circuits for information storage based on ambipolar polymers and charge injection engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Erba, Giorgio; Natali, Dario [Center for Nano Science and Technology PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano (Italy); Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano (Italy); Luzio, Alessandro; Caironi, Mario, E-mail: mario.caironi@iit.it, E-mail: yynoh@dongguk.edu [Center for Nano Science and Technology PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano (Italy); Kim, Juhwan; Khim, Dongyoon; Kim, Dong-Yu [Heeger Center for Advanced Materials, School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Noh, Yong-Young, E-mail: mario.caironi@iit.it, E-mail: yynoh@dongguk.edu [Department of Energy and Materials Engineering, Dongguk University, 26 Pil-dong, 3-ga, Jung-gu, Seoul 100-715 (Korea, Republic of)

    2014-04-14

    Ambipolar semiconducting polymers, characterized by both high electron (μ{sub e}) and hole (μ{sub h}) mobility, offer the advantage of realizing complex complementary electronic circuits with a single semiconducting layer, deposited by simple coating techniques. However, to achieve complementarity, one of the two conduction paths in transistors has to be suppressed, resulting in unipolar devices. Here, we adopt charge injection engineering through a specific interlayer in order to tune injection into frontier energy orbitals of a high mobility donor-acceptor co-polymer. Starting from field-effect transistors with Au contacts, showing a p-type unbalanced behaviour with μ{sub h} = 0.29 cm{sup 2}/V s and μ{sub e} = 0.001 cm{sup 2}/V s, through the insertion of a caesium salt interlayer with optimized thickness, we obtain an n-type unbalanced transistor with μ{sub e} = 0.12 cm{sup 2}/V s and μ{sub h} = 8 × 10{sup −4} cm{sup 2}/V s. We applied this result to the development of the basic pass-transistor logic building blocks such as inverters, with high gain and good noise margin, and transmission-gates. In addition, we developed and characterized information storage circuits like D-Latches and D-Flip-Flops consisting of 16 transistors, demonstrating both their static and dynamic performances and thus the suitability of this technology for more complex circuits such as display addressing logic.

  13. Engineering Evaluation/Cost Analysis for the 100-N Area Ancillary Facilities and Integration Plan

    International Nuclear Information System (INIS)

    Mukherjee, B.

    1997-09-01

    This document presents the results of an engineering evaluation/cost analysis (EE/CA) that was conducted to evaluate alternatives for addressing final disposition of contaminated buildings and structures in the 100-N Area of the Hanford Site. The Hanford Site is located in southeastern Washington State and is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office (RL). In November 1989, the 100 Area of the Hanford Site (as well as the 200, 300, and 1100 Areas) was placed on the U.S. Environmental Protection Agency's National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980. The 100 Area NPL includes the 100-N Area, which is in various stages of the remediation process. It has been determined by RL that hazardous substances in the 100-N Area ancillary facilities may present a potential threat to human health or the environment, and that a non-time critical removal action at these facilities is warranted. To help determine the most appropriate action, RL, in cooperation with the Washington State Department of Ecology (Ecology) and the EPA, has prepared this EE/CA. The scope of the evaluation includes the inactive contaminated ancillary facilities in the 100-N Area, the facilities residing in the buffer zone, and the Hanford Generating Plant (HGP) and the solid waste management units (SWMUs) inside HGP support facilities. The 105-N Reactor and 109-N Heat Exchange facilities are excluded from this EE/CA evaluation

  14. Integrating societal perspectives and values for improved stewardship of a coastal ecosystem engineer

    Directory of Open Access Journals (Sweden)

    Steven B. Scyphers

    2014-09-01

    of oyster decline could garner additional support for stewardship initiatives. Collectively, the societal, economic, and biophysical complexities of the northern Gulf of Mexico oyster SES illustrate the need and public support for developing more comprehensive management schemes for exploited ecosystem engineers.

  15. A Collaborative Analysis Tool for Integrating Hypersonic Aerodynamics, Thermal Protection Systems, and RBCC Engine Performance for Single Stage to Orbit Vehicles

    Science.gov (United States)

    Stanley, Thomas Troy; Alexander, Reginald

    1999-01-01

    Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. The deficiencies in the scramjet powered concept led to a revival of interest in Rocket-Based Combined-Cycle (RBCC) propulsion systems. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. At this point the transitions to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scram4jet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance.

  16. Engineered Barrier System - Mechanical Integrity of KBS-3 Spent Fuel Canisters. Report from a Workshop. Synthesis and extended abstracts

    Energy Technology Data Exchange (ETDEWEB)

    2007-09-15

    SKI is preparing to review the license applications being developed by the Swedish Nuclear Fuel and Waste Management Company (SKB) for a final repository for the geological disposal of spent nuclear fuel in the year 2009. As part of its preparation, SKI is conducting a series of technical workshops on key aspects of the Engineered Barrier System (EBS). The workshop reported here mainly dealt with the mechanical integrity of KBS-3 spent fuel canisters. This included assessment and review of various loading conditions, structural integrity models and mechanical properties of the copper shell and the cast iron insert. Degradation mechanisms such as stress corrosion cracking and brittle creep fracture were also briefly addressed. Previous workshops have addressed the overall concept for long-term integrity of the EBS, the manufacturing, testing and QA of the EBS, the performance confirmation for the EBS, long-term stability of the buffer and the backfill, corrosion properties of copper canisters and the spent fuel dissolution and source term modelling. The goal of ongoing review work in connection of the workshop series is to achieve a comprehensive overview of all aspects of SKB's EBS and spent fuel work prior to the handling of the forthcoming license application. This report aims to summarise the issues discussed at the workshop and to extract the essential viewpoints that have been expressed. The report is not a comprehensive record of all the discussions at the workshop, and individual statements made by workshop participants should be regarded as personal opinions rather than SKI viewpoints. Results from the EBS workshops series will be used as one important basis in future review work. This reports includes in addition to the workshop synthesis, questions to SKB identified prior to the workshop, and extended abstracts for introductory presentations

  17. Infrastructure for Multiphysics Software Integration in High Performance Computing-Aided Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Michael T. [Illinois Rocstar LLC, Champaign, IL (United States); Safdari, Masoud [Illinois Rocstar LLC, Champaign, IL (United States); Kress, Jessica E. [Illinois Rocstar LLC, Champaign, IL (United States); Anderson, Michael J. [Illinois Rocstar LLC, Champaign, IL (United States); Horvath, Samantha [Illinois Rocstar LLC, Champaign, IL (United States); Brandyberry, Mark D. [Illinois Rocstar LLC, Champaign, IL (United States); Kim, Woohyun [Illinois Rocstar LLC, Champaign, IL (United States); Sarwal, Neil [Illinois Rocstar LLC, Champaign, IL (United States); Weisberg, Brian [Illinois Rocstar LLC, Champaign, IL (United States)

    2016-10-15

    The project described in this report constructed and exercised an innovative multiphysics coupling toolkit called the Illinois Rocstar MultiPhysics Application Coupling Toolkit (IMPACT). IMPACT is an open source, flexible, natively parallel infrastructure for coupling multiple uniphysics simulation codes into multiphysics computational systems. IMPACT works with codes written in several high-performance-computing (HPC) programming languages, and is designed from the beginning for HPC multiphysics code development. It is designed to be minimally invasive to the individual physics codes being integrated, and has few requirements on those physics codes for integration. The goal of IMPACT is to provide the support needed to enable coupling existing tools together in unique and innovative ways to produce powerful new multiphysics technologies without extensive modification and rewrite of the physics packages being integrated. There are three major outcomes from this project: 1) construction, testing, application, and open-source release of the IMPACT infrastructure, 2) production of example open-source multiphysics tools using IMPACT, and 3) identification and engagement of interested organizations in the tools and applications resulting from the project. This last outcome represents the incipient development of a user community and application echosystem being built using IMPACT. Multiphysics coupling standardization can only come from organizations working together to define needs and processes that span the space of necessary multiphysics outcomes, which Illinois Rocstar plans to continue driving toward. The IMPACT system, including source code, documentation, and test problems are all now available through the public gitHUB.org system to anyone interested in multiphysics code coupling. Many of the basic documents explaining use and architecture of IMPACT are also attached as appendices to this document. Online HTML documentation is available through the gitHUB site

  18. W-026 integrated engineering cold run operational test report for balance of plant (BOP)

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, J.K.

    1998-02-24

    This Cold Run test is designed to demonstrate the functionality of systems necessary to move waste drums throughout the plant using approved procedures, and the compatibility of these systems to function as an integrated process. This test excludes all internal functions of the gloveboxes. In the interest of efficiency and support of the facility schedule, the initial revision of the test (rev 0) was limited to the following: Receipt and storage of eight overpacked drums, four LLW and four TRU; Receipt, routing, and staging of eleven empty drums to the process area where they will be used later in this test; Receipt, processing, and shipping of two verification drums (Route 9); Receipt, processing, and shipping of two verification drums (Route 1). The above listed operations were tested using the rev 0 test document, through Section 5.4.25. The document was later revised to include movement of all staged drums to and from the LLW and TRU process and RWM gloveboxes. This testing was performed using Sections 5.5 though 5.11 of the rev 1 test document. The primary focus of this test is to prove the functionality of automatic operations for all mechanical and control processes listed. When necessary, the test demonstrates manual mode operations as well. Though the gloveboxes are listed, only waste and empty drum movement to, from, and between the gloveboxes was tested.

  19. W-026 integrated engineering cold run operational test report for balance of plant (BOP)

    International Nuclear Information System (INIS)

    Kersten, J.K.

    1998-01-01

    This Cold Run test is designed to demonstrate the functionality of systems necessary to move waste drums throughout the plant using approved procedures, and the compatibility of these systems to function as an integrated process. This test excludes all internal functions of the gloveboxes. In the interest of efficiency and support of the facility schedule, the initial revision of the test (rev 0) was limited to the following: Receipt and storage of eight overpacked drums, four LLW and four TRU; Receipt, routing, and staging of eleven empty drums to the process area where they will be used later in this test; Receipt, processing, and shipping of two verification drums (Route 9); Receipt, processing, and shipping of two verification drums (Route 1). The above listed operations were tested using the rev 0 test document, through Section 5.4.25. The document was later revised to include movement of all staged drums to and from the LLW and TRU process and RWM gloveboxes. This testing was performed using Sections 5.5 though 5.11 of the rev 1 test document. The primary focus of this test is to prove the functionality of automatic operations for all mechanical and control processes listed. When necessary, the test demonstrates manual mode operations as well. Though the gloveboxes are listed, only waste and empty drum movement to, from, and between the gloveboxes was tested

  20. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage

    Science.gov (United States)

    El-Kady, Maher F.; Ihns, Melanie; Li, Mengping; Hwang, Jee Youn; Mousavi, Mir F.; Chaney, Lindsay; Lech, Andrew T.; Kaner, Richard B.

    2015-01-01

    Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm3. This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive “dry rooms” required for building today’s supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems. PMID:25831542

  1. An integrated approach for the in vitro dosimetry of engineered nanomaterials

    Science.gov (United States)

    2014-01-01

    Background There is a great need for screening tools capable of rapidly assessing nanomaterial toxicity. One impediment to the development of reliable in vitro screening methods is the need for accurate measures of cellular dose. We present here a methodology that enables accurate determination of delivered to cell dose metrics. This methodology includes (1) standardization of engineered nanomaterial (ENM) suspension preparation; (2) measurement of ENM characteristics controlling delivery to cells in culture; and (3) calculation of delivered dose as a function of exposure time using the ISDD model. The approach is validated against experimentally measured doses, and simplified analytical expressions for the delivered dose (Relevant In Vitro Dose (RID)f function) are derived for 20 ENMs. These functions can be used by nanotoxicologists to accurately calculate the total mass (RIDM), surface area (RIDSA), or particle number (RIDN) delivered to cells as a function of exposure time. Results The proposed methodology was used to derive the effective density, agglomerate diameter and RID functions for 17 industrially-relevant metal and metal oxide ENMs, two carbonaceous nanoparticles, and non-agglomerating gold nanospheres, for two well plate configurations (96 and 384 well plates). For agglomerating ENMs, the measured effective density was on average 60% below the material density. We report great variability in delivered dose metrics, with some materials depositing within 24 hours while others require over 100 hours for delivery to cells. A neutron-activated tracer particle system was employed to validate the proposed in vitro dosimetry methodology for a number of ENMs (measured delivered to cell dose within 9% of estimated). Conclusions Our findings confirm and extend experimental and computational evidence that agglomerate characteristics affect the dose delivered to cells. Therefore measurement of these characteristics is critical for effective use of in vitro systems

  2. Integrating ergonomics knowledge into business-driven design projects: The shaping of resource constraints in engineering consultancy.

    Science.gov (United States)

    Hall-Andersen, Lene Bjerg; Neumann, Patrick; Broberg, Ole

    2016-10-17

    The integration of ergonomics knowledge into engineering projects leads to both healthier and more efficient workplaces. There is a lack of knowledge about integrating ergonomic knowledge into the design practice in engineering consultancies. This study explores how organizational resources can pose constraints for the integration of ergonomics knowledge into engineering design projects in a business-driven setting, and how ergonomists cope with these resource constraints. An exploratory case study in an engineering consultancy was conducted. A total of 27 participants were interviewed. Data were collected applying semi-structured interviews, observations, and documentary studies. Interviews were transcribed, coded, and categorized into themes. From the analysis five overall themes emerged as major constituents of resource constraints: 1) maximizing project revenue, 2) payment for ergonomics services, 3) value of ergonomic services, 4) role of the client, and 5) coping strategies to overcome resource constraints. We hypothesize that resource constraints were shaped due to sub-optimization of costs in design projects. The economical contribution of ergonomics measures was not evaluated in the entire life cycle of a designed workplace. Coping strategies included teaming up with engineering designers in the sales process or creating an alliance with ergonomists in the client organization.

  3. The development of a volume element model for energy systems engineering and integrative thermodynamic optimization

    Science.gov (United States)

    Yang, Sam

    The dissertation presents the mathematical formulation, experimental validation, and application of a volume element model (VEM) devised for modeling, simulation, and optimization of energy systems in their early design stages. The proposed model combines existing modeling techniques and experimental adjustment to formulate a reduced-order model, while retaining sufficient accuracy to serve as a practical system-level design analysis and optimization tool. In the VEM, the physical domain under consideration is discretized in space using lumped hexahedral elements (i.e., volume elements), and the governing equations for the variable of interest are applied to each element to quantify diverse types of flows that cross it. Subsequently, a system of algebraic and ordinary differential equations is solved with respect to time and scalar (e.g., temperature, relative humidity, etc.) fields are obtained in both spatial and temporal domains. The VEM is capable of capturing and predicting dynamic physical behaviors in the entire system domain (i.e., at system level), including mutual interactions among system constituents, as well as with their respective surroundings and cooling systems, if any. The VEM is also generalizable; that is, the model can be easily adapted to simulate and optimize diverse systems of different scales and complexity and attain numerical convergence with sufficient accuracy. Both the capability and generalizability of the VEM are demonstrated in the dissertation via thermal modeling and simulation of an Off-Grid Zero Emissions Building, an all-electric ship, and a vapor compression refrigeration (VCR) system. Furthermore, the potential of the VEM as an optimization tool is presented through the integrative thermodynamic optimization of a VCR system, whose results are used to evaluate the trade-offs between various objective functions, namely, coefficient of performance, second law efficiency, pull-down time, and refrigerated space temperature, in

  4. Thermodynamic analysis of engineering solutions aimed at raising the efficiency of integrated gasification combined cycle

    Science.gov (United States)

    Gordeev, S. I.; Bogatova, T. F.; Ryzhkov, A. F.

    2017-11-01

    Raising the efficiency and environmental friendliness of electric power generation from coal is the aim of numerous research groups today. The traditional approach based on the steam power cycle has reached its efficiency limit, prompted by materials development and maneuverability performance. The rival approach based on the combined cycle is also drawing nearer to its efficiency limit. However, there is a reserve for efficiency increase of the integrated gasification combined cycle, which has the energy efficiency at the level of modern steam-turbine power units. The limit of increase in efficiency is the efficiency of NGCC. One of the main problems of the IGCC is higher costs of receiving and preparing fuel gas for GTU. It would be reasonable to decrease the necessary amount of fuel gas in the power unit to minimize the costs. The effect can be reached by raising of the heat value of fuel gas, its heat content and the heat content of cycle air. On the example of the process flowsheet of the IGCC with a power of 500 MW, running on Kuznetsk bituminous coal, by means of software Thermoflex, the influence of the developed technical solutions on the efficiency of the power plant is considered. It is received that rise in steam-air blast temperature to 900°C leads to an increase in conversion efficiency up to 84.2%. An increase in temperature levels of fuel gas clean-up to 900°C leads to an increase in the IGCC efficiency gross/net by 3.42%. Cycle air heating reduces the need for fuel gas by 40% and raises the IGCC efficiency gross/net by 0.85-1.22%. The offered solutions for IGCC allow to exceed net efficiency of analogous plants by 1.8-2.3%.

  5. DESIGN OF A HIGH COMPRESSION, DIRECT INJECTION, SPARK-IGNITION, METHANOL FUELED RESEARCH ENGINE WITH AN INTEGRAL INJECTOR-IGNITION SOURCE INSERT, SAE PAPER 2001-01-3651

    Science.gov (United States)

    A stratified charge research engine and test stand were designed and built for this work. The primary goal of this project was to evaluate the feasibility of using a removal integral injector ignition source insert which allows a convenient method of charging the relative locat...

  6. Recruitment and Workplace Integration of Men and Women Engineers in France: The Case of EPF Ecole D'ingénieurs Graduates

    Science.gov (United States)

    Stevanovic, Biljana

    2014-01-01

    Based on "First Job" surveys conducted six months after graduation among graduates from 2000 to 2007 and semi-structured interviews, this paper examines the recruitment and workplace integration of women and men graduates from EPF Ecole d'Ingenieurs. The study's findings show that women engineering graduates from EPF generally have more…

  7. A Design-Oriented Approach to the Integration of Thermodynamics, Fluid Mechanics, and Heat Transfer in the Undergraduate Mechanical Engineering Curriculum.

    Science.gov (United States)

    Whale, MacMurray D.; Cravalho, Ernest G.

    This paper describes two parallel efforts that attempt to implement a new approach to the teaching of thermal fluids engineering. In one setting, at the Massachusetts Institute of Technology (MIT), the subject matter is integrated into a single year-long subject at the introductory level. In the second setting, at Victoria (British Columbia,…

  8. Integrated computational microstructure engineering for single-crystal nickel-base superalloys

    Science.gov (United States)

    Wang, Billie

    A methodology that integrates the phase field model with simpler models was developed to study the early stages of microstructural development in nickel base superalloys under non-isothermal conditions, allowing for faster, more comprehensive examination of the experimental system. Additionally, the parameters required for calibrating a phase field model were examined for uncertainty, and a comprehensive method for linking experimental data to a model was developed. The methodology developed was applied to analyze the formation of bimodal particle size distributions during linear continuous cooling. The dynamic competition for supersaturation by growth of existing precipitates and nucleation of new particles was modeled. The nucleation rate was calculated according to classical nucleation theory as function of local supersaturation and temperature. The depletion of matrix super-saturation by growth of existing particles was calculated from fully diffusion-controlled precipitate growth in an infinite matrix. Phase field simulations of gamma' precipitation in a binary Ni-Al alloy were performed under continuous cooling conditions. Then the average and maximum matrix supersaturations were calculated and plotted onto the contours of nucleation rate and growth rate in concentration and temperature space. These methods were used iteratively to identify the window for bimodal particle size distributions. Combining the models of different complexities produced a much more comprehensive understanding of the competing dynamics involved early in microstructure formation. A systemic method for calibrating a model to experimental alloy systems was developed. Calibrated to isothermal aging data along with literature, database and parametric values, a phase field model reproduced the precipitation kinetics. Quantitative phase field modeling techniques were developed to control the influence of uncertainty in the original data sources for model inputs. Using more data sources than

  9. Governing Engineering

    DEFF Research Database (Denmark)

    Buch, Anders

    2012-01-01

    Most people agree that our world face daunting problems and, correctly or not, technological solutions are seen as an integral part of an overall solution. But what exactly are the problems and how does the engineering ‘mind set’ frame these problems? This chapter sets out to unravel dominant...... perspectives in challenge per-ception in engineering in the US and Denmark. Challenge perception and response strategies are closely linked through discursive practices. Challenge perceptions within the engineering community and the surrounding society are thus critical for the shaping of engineering education...... and the engineering profession. Through an analysis of influential reports and position papers on engineering and engineering education the chapter sets out to identify how engineering is problematized and eventually governed. Drawing on insights from governmentality studies the chapter strives to elicit the bodies...

  10. Governing Engineering

    DEFF Research Database (Denmark)

    Buch, Anders

    2011-01-01

    Abstract: Most people agree that our world faces daunting problems and, correctly or not, technological solutions are seen as an integral part of an overall solution. But what exactly are the problems and how does the engineering ‘mind set’ frame these problems? This chapter sets out to unravel...... dominant perspectives in challenge perception in engineering in the US and Denmark. Challenge perception and response strategies are closely linked through discursive practices. Challenge perceptions within the engineering community and the surrounding society are thus critical for the shaping...... of engineering education and the engineering profession. Through an analysis of influential reports and position papers on engineering and engineering education the chapter sets out to identify how engineering is problematized and eventually governed. Drawing on insights from governmentality studies the chapter...

  11. Trends and Opportunities of BIM-GIS Integration in the Architecture, Engineering and Construction Industry: A Review from a Spatio-Temporal Statistical Perspective

    Directory of Open Access Journals (Sweden)

    Yongze Song

    2017-12-01

    Full Text Available The integration of building information modelling (BIM and geographic information system (GIS in construction management is a new and fast developing trend in recent years, from research to industrial practice. BIM has advantages on rich geometric and semantic information through the building life cycle, while GIS is a broad field covering geovisualization-based decision making and geospatial modelling. However, most current studies of BIM-GIS integration focus on the integration techniques but lack theories and methods for further data analysis and mathematic modelling. This paper reviews the applications and discusses future trends of BIM-GIS integration in the architecture, engineering and construction (AEC industry based on the studies of 96 high-quality research articles from a spatio-temporal statistical perspective. The analysis of these applications helps reveal the evolution progress of BIM-GIS integration. Results show that the utilization of BIM-GIS integration in the AEC industry requires systematic theories beyond integration technologies and deep applications of mathematical modeling methods, including spatio-temporal statistical modeling in GIS and 4D/nD BIM simulation and management. Opportunities of BIM-GIS integration are outlined as three hypotheses in the AEC industry for future research on the in-depth integration of BIM and GIS. BIM-GIS integration hypotheses enable more comprehensive applications through the life cycle of AEC projects.

  12. OPTIMIZATION OF THE ENGINE OPERATION AND CONTINUOUSLY VARIABLE TRANSMISSIONS OF VEHICLE BASED ON INTEGRATED FUEL-ECOLOGICAL CRITERIA

    Directory of Open Access Journals (Sweden)

    N. Savenkov

    2011-01-01

    Full Text Available A method of regulating automobile engine operation with continuously variable transmis-sion is developed. This allows to select the optimal modes of engine and gear ratios of the variator ratio, taking into account traffic conditions.

  13. Role of Prognostics in Support of Integrated Risk-based Engineering - A Review in Respect of Nuclear Power Plant Safety

    Directory of Open Access Journals (Sweden)

    Michael G. Pecht

    2012-01-01

    Full Text Available The present approach of plant surveillance employs, on-line monitoring of process parameters, periodic in-service inspection, condition monitoring, etc. To make these program more effective there is growing application of risk-based / risk-informed approach to plant surveillance. However, risk-based approach in the present form is ���static’ in nature, and based on probabilistic methods. It is expected that to cater to real-time challenges the approach should be dynamic in terms on-line monitoring that employing deterministic and probabilistic methods in an integrated manner. The available literature suggests that extensive efforts are being made to upgrade / modify existing condition based approach to prognostic approach. There is a general appreciation of the fact that the prediction capabilities in surveillance programme in general and conditioning monitoring approach in particular can be improved significantly through prognostic approach. This paper reviews prognostics approach that enabled assessment of remaining life of the components in complex engineering systems with a special reference to nuclear plants where safety forms the major objective function.

  14. Role of Prognostics in Support of Integrated Risk-based Engineering - A Review in Respect of Nuclear Power Plant Safety

    Directory of Open Access Journals (Sweden)

    Prabhakar V. Varde

    2012-12-01

    Full Text Available The present approach of plant surveillance employs, on-line monitoring of process parameters, periodic in-service inspection, condition monitoring, etc. To make these program more effective there is growing application of risk-based / risk-informed approach to plant surveillance. However, risk-based approach in the present form is ‘static’ in nature, and based on probabilistic methods. It is expected that to cater to real-time challenges the approach should be dynamic in terms on-line monitoring that employing deterministic and probabilistic methods in an integrated manner. The available literature suggests that extensive efforts are being made to upgrade / modify existing condition based approach to prognostic approach. There is a general appreciation of the fact that the prediction capabilities in surveillance programm in general and conditioning monitoring approach in particular can be improved significantly through prognostic approach. This paper reviews prognostics approach that enabled assessment of remaining life of the components in complex engineering systems with a special reference to nuclear plants where safety forms the major objective function.

  15. Technical and economic feasibility study for the reactivation of the integral test facility of IPEN/CNEN Nuclear Engineering Center

    International Nuclear Information System (INIS)

    Biaty, Flávia P.; Rocha, Marcelo da S.; Oliveira, Otávio L. de

    2017-01-01

    The Integral Test Facility of Nuclear Engineering Center (CEN/IPEN/CNEN-SP), known as 'Loop 70', is a semi-industrial thermal-hydraulic test facility and can operate as a BWR (Boiling Water Reactor) or a PWR (Pressurizing Water Reactor) mode. Designed and built in the 1980's, it is currently disabled. The experimental circuits ('test loop') are facilities that reproduce the thermohydraulic and fluid dynamic conditions that occur inside a reactor and are used to simulate the practical reality which it is not possible to be obtained through mathematical models. In this context, this research project aims the development of a Business Plan to analyze the technical and economic feasibility related to the reactivation of the facility. This methodology (adapted to the government sector) is a decision-making tool that will offer a wide perspective of the project, set the guidelines and actions that will define the future of the facility and provide a general rule to make investments on it. This paper presents the historic aspects to better understand the Loop 70's current situation. It also presents information about similar facilities around the world, services that can be offered (thermal-hydraulics parameters measurements, equipment qualification and transient analysis due accident situations), results of the strategic analysis (SWOT) performed, specific goals for each critical success or failure factor of the facility, financial aspects related to the reactivation and an overview of the facility's perspectives. (author)

  16. Technical and economic feasibility study for the reactivation of the integral test facility of IPEN/CNEN Nuclear Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Biaty, Flávia P.; Rocha, Marcelo da S.; Oliveira, Otávio L. de, E-mail: flavia.biaty@usp.br, E-mail: msrocha@ipen.br, E-mail: otavioluis@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    The Integral Test Facility of Nuclear Engineering Center (CEN/IPEN/CNEN-SP), known as 'Loop 70', is a semi-industrial thermal-hydraulic test facility and can operate as a BWR (Boiling Water Reactor) or a PWR (Pressurizing Water Reactor) mode. Designed and built in the 1980's, it is currently disabled. The experimental circuits ('test loop') are facilities that reproduce the thermohydraulic and fluid dynamic conditions that occur inside a reactor and are used to simulate the practical reality which it is not possible to be obtained through mathematical models. In this context, this research project aims the development of a Business Plan to analyze the technical and economic feasibility related to the reactivation of the facility. This methodology (adapted to the government sector) is a decision-making tool that will offer a wide perspective of the project, set the guidelines and actions that will define the future of the facility and provide a general rule to make investments on it. This paper presents the historic aspects to better understand the Loop 70's current situation. It also presents information about similar facilities around the world, services that can be offered (thermal-hydraulics parameters measurements, equipment qualification and transient analysis due accident situations), results of the strategic analysis (SWOT) performed, specific goals for each critical success or failure factor of the facility, financial aspects related to the reactivation and an overview of the facility's perspectives. (author)

  17. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    International Nuclear Information System (INIS)

    1988-09-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S ampersand A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S ampersand A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S ampersand A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs

  18. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  19. Engineering design and integration of in-vessel single turn segmental coil in vacuum vessel of SST-1

    Science.gov (United States)

    Jayswal, Snehal; Chauhan, P.; Santra, P.; Vasava, K.; Perekh, T.; Patel, H.; Biswas, P.; Pradhan, S.

    2017-04-01

    SST-1 tokamak is having the error field due to unsymmetrical positioning of Toroidal field coils which push the plasma to inner side from its major radius of 1100 mm. hence it is required to install the In-vessel Coil (PF6) at a location of 1350 mm radius and elevation of 350 mm above and below the mid plane of the toroidal field coils. The In-Vessel coil was decided to make in eight segments for futuristic use, to control the individual localized error field correction by supplying the different current. A single turn, eight segments, copper conductor with 18 mm diameter with GFRP insulation and in housed in SS304 L casing to carry 8000 A current for 10 s was designed and installed in vacuum vessel of SST-1. This paper will present the design drivers, material selection, advantages and constraints of the in-vessel coils, its conceptual and engineering design, CAD models, finite element analysis using ANSYS, its fabrication, quality assurance/control and assembly/integration aspects inside vacuum vessel of SST-1.

  20. INTEGRATED DESIGN AND ENGINEERING USING BUILDING INFORMATION MODELLING: A PILOT PROJECT OF SMALL-SCALE HOUSING DEVELOPMENT IN THE NETHERLANDS

    Directory of Open Access Journals (Sweden)

    Rizal Sebastian

    2010-11-01

    Full Text Available During the design phase, decisions are made that affect, on average, 70% of the life-cycle cost of a building. Therefore, collaborative design relying on multidisciplinary knowledge of the building life cycle is essential. Building information modelling (BIM makes it possible to integrate knowledge from various project participants that traditionally work in different phases of the building process. BIM has been applied in a number of large-scale projects in the industrial real estate and infrastructure sectors in different countries, including The Netherlands. The projects in the housing sector, however, are predominantly small scale and carried out by small and medium enterprises (SMEs. These SMEs are looking for practical and affordable BIM solutions for housing projects. This article reports a pilot project of small-scale housing development using BIM in the province of Zeeland, The Netherlands. The conceptual knowledge derived from European and national research projects is disseminated to the SMEs through a series of experimental working sessions. Action learning protocols within a pilot project are developed to ensure direct impacts in terms of cost reduction and quality improvement. The project shows that BIM can be applied without radical changes to the SMEs' information and communication technology systems or to their business organizations. DOI: 10.3763/aedm.2010.0116 Source: Architectural Engineering and Design Management, Volume 6, Number 2, 2010 , pp. 103-110(8

  1. Innovations in Software Engineering Education: An Experimental Study of Integrating Active Learning and Design-based Leaming

    Science.gov (United States)

    2013-06-19

    extension of fundamental pedagogies as part of engineering curricula, as well as the need for continued research into the effectiveness of these... pedagogies on students’ learning within engineering knowledge domains. In this paper, we focus on an engineering educational research study in the domain...approaches compared to peer-to-peer active learning when combined with design-based learning approaches.

  2. Preliminary Performance Data on General Electric Integrated Electronic Control Operating on J47 RX1-3 Turbojet Engine in NACA Altitude Wind Tunnel

    Science.gov (United States)

    Blivas, Darnold; Taylor, Burt L., III

    1950-01-01

    Performance data obtained with recording oscillographs are presented to show the transient response of the General Electric Integrated Electronic Control operating on the J47 RXl-3 turbo-Jet engine over a range of altitudes from 10,000 to 45,000 feet and at ram pressure ratios of 1.03 and 1.4. These data represent the performance of the final control configuration developed after an investigation of the engine transient behavior in the NACA altitude wind tunnel. Oscillograph traces of controlled accelerations (throttle bursts),oontrolled decelerations (throttle chops), and controlled altitude starts are presented.

  3. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  4. Integrated Proteomic Pipeline Using Multiple Search Engines for a Proteogenomic Study with a Controlled Protein False Discovery Rate.

    Science.gov (United States)

    Park, Gun Wook; Hwang, Heeyoun; Kim, Kwang Hoe; Lee, Ju Yeon; Lee, Hyun Kyoung; Park, Ji Yeong; Ji, Eun Sun; Park, Sung-Kyu Robin; Yates, John R; Kwon, Kyung-Hoon; Park, Young Mok; Lee, Hyoung-Joo; Paik, Young-Ki; Kim, Jin Young; Yoo, Jong Shin

    2016-11-04

    In the Chromosome-Centric Human Proteome Project (C-HPP), false-positive identification by peptide spectrum matches (PSMs) after database searches is a major issue for proteogenomic studies using liquid-chromatography and mass-spectrometry-based large proteomic profiling. Here we developed a simple strategy for protein identification, with a controlled false discovery rate (FDR) at the protein level, using an integrated proteomic pipeline (IPP) that consists of four engrailed steps as follows. First, using three different search engines, SEQUEST, MASCOT, and MS-GF+, individual proteomic searches were performed against the neXtProt database. Second, the search results from the PSMs were combined using statistical evaluation tools including DTASelect and Percolator. Third, the peptide search scores were converted into E-scores normalized using an in-house program. Last, ProteinInferencer was used to filter the proteins containing two or more peptides with a controlled FDR of 1.0% at the protein level. Finally, we compared the performance of the IPP to a conventional proteomic pipeline (CPP) for protein identification using a controlled FDR of <1% at the protein level. Using the IPP, a total of 5756 proteins (vs 4453 using the CPP) including 477 alternative splicing variants (vs 182 using the CPP) were identified from human hippocampal tissue. In addition, a total of 10 missing proteins (vs 7 using the CPP) were identified with two or more unique peptides, and their tryptic peptides were validated using MS/MS spectral pattern from a repository database or their corresponding synthetic peptides. This study shows that the IPP effectively improved the identification of proteins, including alternative splicing variants and missing proteins, in human hippocampal tissues for the C-HPP. All RAW files used in this study were deposited in ProteomeXchange (PXD000395).

  5. Identification of volatile and semivolatile compounds in chemical ionization GC-MS using a mass-to-structure (MTS) Search Engine with integral isotope pattern ranking.

    Science.gov (United States)

    Liao, Wenta; Draper, William M

    2013-02-21

    The mass-to-structure or MTS Search Engine is an Access 2010 database containing theoretical molecular mass information for 19,438 compounds assembled from common sources such as the Merck Index, pesticide and pharmaceutical compilations, and chemical catalogues. This database, which contains no experimental mass spectral data, was developed as an aid to identification of compounds in atmospheric pressure ionization (API)-LC-MS. This paper describes a powerful upgrade to this database, a fully integrated utility for filtering or ranking candidates based on isotope ratios and patterns. The new MTS Search Engine is applied here to the identification of volatile and semivolatile compounds including pesticides, nitrosoamines and other pollutants. Methane and isobutane chemical ionization (CI) GC-MS spectra were obtained from unit mass resolution mass spectrometers to determine MH(+) masses and isotope ratios. Isotopes were measured accurately with errors of Search Engine and details performance testing with over 50 model compounds.

  6. Integrated computer-aided design in automotive development development processes, geometric fundamentals, methods of CAD, knowledge-based engineering data management

    CERN Document Server

    Mario, Hirz; Gfrerrer, Anton; Lang, Johann

    2013-01-01

    The automotive industry faces constant pressure to reduce development costs and time while still increasing vehicle quality. To meet this challenge, engineers and researchers in both science and industry are developing effective strategies and flexible tools by enhancing and further integrating powerful, computer-aided design technology. This book provides a valuable overview of the development tools and methods of today and tomorrow. It is targeted not only towards professional project and design engineers, but also to students and to anyone who is interested in state-of-the-art computer-aided development. The book begins with an overview of automotive development processes and the principles of virtual product development. Focusing on computer-aided design, a comprehensive outline of the fundamentals of geometry representation provides a deeper insight into the mathematical techniques used to describe and model geometrical elements. The book then explores the link between the demands of integrated design pr...

  7. 75 FR 70691 - International Game Technology (IGT), Machine Accounting and ABS (Bonusing and BEII), Engineering...

    Science.gov (United States)

    2010-11-18

    ... Engineering, Integration Engineering, Product Management, Tech Support Engineering, Administrative Assistant... Engineering, Product Management, Tech Support Engineering, Administrative Assistant, Systems Administration..., Integration Engineering, Product Management, Tech Support Engineering, Administrative Assistant, Systems...

  8. 'Integration'

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2011-01-01

    , while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...

  9. Integrated smart bearings for next generation aero-engines Part 1: Development of a sensor suite for automatic bearing health monitoring

    OpenAIRE

    Bashir, Imran; Wang, Ling; Harvey, Terence; Zaghari, Bahareh; Weddell, Alexander; White, Neil

    2017-01-01

    The development of smart bearing solutions will contribute to increased aircraft engine reliability, allowing the early detection of bearing failure through robust health monitoring. This project aims to develop intelligent bearing systems for an Ultra High Propulsion Efficiency (UHPE) ground test demonstrator, where a fully integrated self-powered wireless sensing system will be developed for future aircraft. This paper provides a comprehensive review of the state-of-the-art smart bearing te...

  10. CMMI(sm)-SE/SW, V1.0 Capability Maturity Model-Integrated for Systems Engineering/Software Engineering, Version 1.0. Continuous Representation

    National Research Council Canada - National Science Library

    2000-01-01

    ... of products or services. CMM Integration places proven practices into a structure that helps organizations assess their organizational maturity or process area capability, establish priorities for improvement, and implement these improvements...

  11. CMMI(sm)-SE/SW, V1.0 Capability Maturity Model-Integrated for Systems Engineering/Software Engineering, Version 1.0. Staged Representation

    National Research Council Canada - National Science Library

    2000-01-01

    ... of products or services. CMM Integration places proven practices into a structure that helps organizations assess their organizational maturity or process area capability, establish priorities for improvement, and implement these improvements...

  12. A Collaborative Analysis Tool for Integrated Hypersonic Aerodynamics, Thermal Protection Systems, and RBCC Engine Performance for Single Stage to Orbit Vehicles

    Science.gov (United States)

    Stanley, Thomas Troy; Alexander, Reginald; Landrum, Brian

    2000-01-01

    Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. Then there is a transition to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scramjet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance. To adequately determine the performance of the engine/vehicle, the Hypersonic Flight Inlet Model (HYFIM) module was designed to interface with the RBCC

  13. Enhancing the Programming Experience for First-Year Engineering Students through Hands-On Integrated Computer Experiences

    Science.gov (United States)

    Canfield, Stephen L.; Ghafoor, Sheikh; Abdelrahman, Mohamed

    2012-01-01

    This paper describes the redesign and implementation of the course, "Introduction to Programming for Engineers" using microcontroller (MCU) hardware as the programming target. The objective of this effort is to improve the programming competency for engineering students by more closely relating the initial programming experience to the student's…

  14. SNF Project Engineering Process Improvement Plan

    International Nuclear Information System (INIS)

    DESAI, S.P.

    2000-01-01

    This plan documents the SNF Project activities and plans to support its engineering process. It describes five SNF Project Engineering initiatives: new engineering procedures, qualification cards process; configuration management, engineering self assessments, and integrated schedule for engineering activities

  15. Integrating Social Science, Environmental Science, and Engineering to Understand Vulnerability and Resilience to Environmental Hazards in the Bengal Delta

    Science.gov (United States)

    Gilligan, J. M.; Ackerly, B.; Goodbred, S. L.

    2013-12-01

    In populated delta environments, it is impossible to separate human and natural systems. Human activities change the landscape by altering the dynamics of water and sediment and in return, humans themselves are affected by the natural and anthropogenic changes to the landscape. Such interactions can also have significant impacts on the ecology and natural resources of a delta system, affecting local and regional food supply, livelihoods, and economies, particularly in developing nations. Successful adaptation to environmental change in a strongly coupled human-natural system, such as the Bengal delta, requires understanding how the physical environment and the changing social, political, and economic conditions of people's lives interact. Research on human-delta interactions has largely focused on macro-scale effects from major dams, water diversions, and catchment-scale land use; but at the smaller scale of households and communities, decisions, actions, and outcomes may occur abruptly and have significant local impacts (positive or negative). Southwest Bangladesh experiences profound environmental problems at the local human-landscape interface, including groundwater salinity, soil fertility, conflicting land-use practices, management of engineering structures, and declining land-surface elevations. The impacts of climate-induced sea-level rise, especially with respect to population migration, receive great attention and concern, but neither sea level rise nor migration occurs against a background of static physical or human environments. For example, changing land use (e.g., building embankments, which affect drainage, sediment transport, and the evolution of tidal channels; and the transformation of rice fields to shrimp aquaculture, which affects soil chemistry, labor markets, river ecology, and possibly the integrity of embankments) can significantly change the impact that sea level rise will have on flood hazards and the resulting effect on people living on

  16. Energy Optimization and Fuel Economy Investigation of a Series Hybrid Electric Vehicle Integrated with Diesel/RCCI Engines

    Directory of Open Access Journals (Sweden)

    Ali Solouk

    2016-12-01

    Full Text Available Among different types of low temperature combustion (LTC regimes, eactively controlled compression ignition (RCCI has received a lot of attention as a promising advanced combustion engine technology with high indicated thermal efficiency and low nitrogen oxides ( NO x and particulate matter (PM emissions. In this study, an RCCI engine for the purpose of fuel economy investigation is incorporated in series hybrid electric vehicle (SHEV architecture, which allows the engine to run completely in the narrow RCCI mode for common driving cycles. Three different types of energy management control (EMC strategies are designed and implemented to achieve the best fuel economy. The EMC strategies encompass rule-based control (RBC, offline, and online optimal controllers, including dynamic programing (DP and model predictive control (MPC, respectively. The simulation results show a 13.1% to 14.2% fuel economy saving by using an RCCI engine over a modern spark ignition (SI engine in SHEV for different driving cycles. This fuel economy saving is reduced to 3% in comparison with a modern compression ignition (CI engine, while NO x emissions are significantly lower. Simulation results show that the RCCI engine offers more fuel economy improvement in more aggressive driving cycles (e.g., US06, compared to less aggressive driving cycles (e.g., UDDS. In addition, the MPC results show that sub-optimal fuel economy is achieved by predicting the vehicle speed profile for a time horizon of 70 s.

  17. Integrating the SE and HCI models in the human factors engineering cycle for re-engineering Computerized Physician Order Entry systems for medications: basic principles illustrated by a case study.

    Science.gov (United States)

    Bernonville, Stéphanie; Kolski, Christophe; Leroy, Nicolas; Beuscart-Zéphir, Marie-Catherine

    2010-04-01

    The integration of Human Factors is still insufficient in the design and implementation phases of complex interactive systems such as Computerized Physician Order Entry (CPOE) systems. One of the problems is that human factors specialists have difficulties to communicate their data and to have them properly understood by the computer scientists in the design and implementation phases. This paper presents a solution to this problem based on the creation of common documentation supports using Software Engineering (SE) and Human-Computer Interaction (HCI) methods. The integration of SE and HCI methods and models is an interesting means for modelling an organization's activities, with software applications being part of these activities. Integrating these SE and HCI methods and models allows case studies to be seen from the technical, organizational and ergonomic perspectives, and also makes it easier to compare current and future work situations. The exploitation of these techniques allows the creation of common work supports that can be easily understandable by computer scientists and relevant for re-engineering or design. In this paper, the basic principles behind such communication supports are described and illustrated by a real case study. (c) 2008 Elsevier Ireland Ltd. All rights reserved.

  18. Integrating Usability Engineering in the Iterative Design Process of the Land Attack Combat System (LACS) Human Computer Interface (HCI)

    National Research Council Canada - National Science Library

    Borja, Ana T

    2004-01-01

    ...) for its intended purposes. This paper presents our approach of the usability engineering activities and the results from a 1-year Fiscal Year 2003 effort for the development of the LACS Human Computer Interface (HCI...

  19. Integrated Ceramic Matrix Composite and Carbon/Carbon Structures for Large Rocket Engine Nozzles and Nozzle Extensions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Low-cost access to space demands durable, cost-effective, efficient, and low-weight propulsion systems. Key components include rocket engine nozzles and nozzle...

  20. Integration of the clinical engineering specialist at a high complexity children's hospital. Our professional experience at a surgical center

    International Nuclear Information System (INIS)

    Vargas Enriquez, M J; Chazarreta, B; Emilio, D G; Fernandez Sarda, E

    2007-01-01

    This document aims to find relating points between the current and future Clinical Engineer professional in order to discuss about the hospital environment, its characteristics and its realities which lead to our professional development. The main aim is to depict our experience through a retrospective analysis based on the underwriting experience and consequently to arrive at conclusions that will support the inclusion and active interaction of the Clinic Engineer Specialist as part of a Hospital's Surgical Center